Science.gov

Sample records for reduce exhaust emissions

  1. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  2. Heat pipes to reduce engine exhaust emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F. (inventor)

    1984-01-01

    A fuel combustor is presented that consists of an elongated casing with an air inlet conduit portion at one end, and having an opposite exit end. An elongated heat pipe is mounted longitudinally in the casing and is offset from and extends alongside the combustion space. The heat pipe is in heat transmitting relationship with the air intake conduit for heating incoming air. A guide conduit structure is provided for conveying the heated air from the intake conduit into the combustion space. A fuel discharge nozzle is provided to inject fuel into the combustion space. A fuel conduit from a fuel supply source has a portion engaged in heat transfer relationship of the heat pipe for preheating the fuel. The downstream end of the heat pipe is in heat transfer relationship with the casing and is located adjacent to the downstream end of the combustion space. The offset position of the heat pipe relative to the combustion space minimizes the quenching effect of the heat pipe on the gaseous products of combustion, as well as reducing coking of the fuel on the heat pipe, thereby improving the efficiency of the combustor.

  3. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions.

    PubMed

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua

    2009-01-01

    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents. PMID:19999967

  4. Attempts to Reduce NOx Exhaust Emissions by Using Reformulated Biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two routes were investigated for reformulating soy-based biodiesel in an effort to reduce its nitrogen oxide emissions. In the first approach, methyl soyate was modified by converting a proportion of the cis-bonds in the fatty acid chains of its methyl esters to their trans isomers. In the second ...

  5. Concepts for reducing exhaust emissions and fuel consumption of the aircraft piston engine

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1979-01-01

    A study was made to reduce exhaust emissions and fuel consumption of a general aviation aircraft piston engine by applying known technology. Fourteen promising concepts such as stratified charge combustion chambers, cooling cylinder head improvements, and ignition system changes were evaluated for emission reduction and cost effectiveness. A combination of three concepts, improved fuel injection system, improved cylinder head with exhaust port liners and exhaust air injection was projected as the most cost effective and safe means of meeting the EPA standards for CO, HC and NO. The fuel economy improvement of 4.6% over a typical single engine aircraft flight profile does not though justify the added cost of the three concepts, and significant reductions in fuel consumption must be applied to the cruise mode where most of the fuel is used. The use of exhaust air injection in combination with exhaust port liners reduces exhaust valve stem temperatures which can result in longer valve guide life. The use of exhaust port liners alone can reduce engine cooling air requirements by 11% which is the equivalent of a 1.5% increase in propulsive power. The EPA standards for CO, HC and NO can be met in the IO-520 engine using air injection alone or the Simmonds improved fuel injection system.

  6. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  7. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  8. Remote sensing of vehicle exhaust emissions

    SciTech Connect

    Cadle, S.H.; Stephens, R.D. )

    1994-06-01

    We will briefly discuss vehicle emissions and the vehicle emissions inventory before reviewing remote-sensing technology for exhaust emissions and remote-sensing applications that help characterize and minimize exhaust emissions in the real world. Remote sensing is the only method available that can measure the HC and CO exhaust emission rates of large numbers of individual in-use vehicles. These measurements have helped focus attention on the problem of in-use emissions from malfunctioning and illegally altered vehicles. The method has a bright future as an aid in understanding in-use emissions, a monitor of progress in reducing fleet emission rates, and as an IM and enforcement tool. 11 refs., 2 figs.

  9. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  10. Effectiveness of mitigation measures in reducing future primary particulate matter emissions from on-road vehicle exhaust.

    PubMed

    Yan, Fang; Bond, Tami C; Streets, David G

    2014-12-16

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa. PMID:25393452

  11. Effectiveness of Mitigation Measures in Reducing Future Primary Particulate Matter Emissions from On-Road Vehicle Exhaust

    SciTech Connect

    Yan, Fang; Bond, Tami C.; Streets, David G.

    2014-12-16

    This work evaluates the effectiveness of on-road primary particulate matter emission reductions that can be achieved by long-term vehicle scrappage and retrofit measures on regional and global levels. Scenario analysis shows that scrappage can provide significant emission reductions as soon as the measures begin, whereas retrofit provides greater emission reductions in later years, when more advanced technologies become available in most regions. Reductions are compared with a baseline that already accounts for implementation of clean vehicle standards. The greatest global emission reductions from a scrappage program occur 5 to 10 years after its introduction and can reach as much as 70%. The greatest reductions with retrofit occur around 2030 and range from 16-31%. Monte Carlo simulations are used to evaluate how uncertainties in the composition of the vehicle fleet affect predicted reductions. Scrappage and retrofit reduce global emissions by 22-60% and 15-31%, respectively, within 95% confidence intervals, under a midrange scenario in the year 2030. The simulations provide guidance about which strategies are most effective for specific regions. Retrofit is preferable for high-income regions. For regions where early emission standards are in place, scrappage is suggested, followed by retrofit after more advanced emission standards are introduced. The early implementation of advanced emission standards is recommended for Western and Eastern Africa

  12. CHARACTERIZATION OF EXHAUST EMISSIONS FROM A DUAL CATALYST EQUIPPED VEHICLE

    EPA Science Inventory

    A test program was initiated to characterize exhaust gas emissions from an automobile equipped with a dual catalyst system. The dual catalyst system was designed by Gould, Inc. to reduce emissions of engine exhaust hydrocarbons, carbon monoxide, and nitrogen oxides. It basically ...

  13. Emission of carcinogenic components with automobile exhausts.

    PubMed Central

    Stenberg, U; Alsberg, T; Westerholm, R

    1983-01-01

    Different sampling methods for mutagenic polynuclear aromatic hydrocarbons (PAH) are described. These methods involve either direct sampling of raw exhausts which prior to filtering are cooled in a condenser, or filter sampling of exhausts diluted in a tunnel. The relevance of gas-phase PAHs of samples from diluted exhausts is discussed; methods used are either adsorbents (XAD-2) or cryogenic condensation. The emission of benzo(a)pyrene and certain other PAHs is reported from vehicles using different fuels (gasoline, diesel, LPG, alcohols) or different emission control systems. The emission of some volatiles, such as benzene, ethylene and alkylnitrites, is also presented from different types of fuels used. PMID:6186483

  14. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  15. Reducing Soot in Diesel Exhaust

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1984-01-01

    Electrically charged fuel improves oxidation. Fuel injection system reduces amount of soot formed in diesel engines. Spray injector electrically charges fuel droplets as they enter cylinder. Charged droplets repel each other, creating, dilute fuel mist easily penetrated by oxygen in cylinder.

  16. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  17. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  18. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  19. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  20. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  1. Electromagnetic converter for reduction of exhaust emissions

    SciTech Connect

    Cornwell, J.H.; Kukla, W.J.

    1990-08-07

    This patent describes a device for reduction of emissions in the exhaust stream of fossil fuel combustion processes. It comprises: an ion generator chamber having non-conductive walls, an inlet means for directing the exhaust stream into the chamber, and a first field generator means disposed within the walls in the path of the exhaust stream; means for producing a dc positive field in the first field generator means of a field strength sufficient to achieve ionization potential of HC, CO, and CO{sub 2} molecules present in the exhaust stream and for inducing molecular breakdown into base components of carbon, hydrogen, and oxygen; a collector chamber being insulated from ground and being connected to receive the exhaust steam the ion generator chamber; and an electron transfer chamber.

  2. Characterization of nitromethane emission from automotive exhaust

    NASA Astrophysics Data System (ADS)

    Sekimoto, Kanako; Inomata, Satoshi; Tanimoto, Hiroshi; Fushimi, Akihiro; Fujitani, Yuji; Sato, Kei; Yamada, Hiroyuki

    2013-12-01

    We carried out time-resolved experiments using a proton-transfer-reaction mass spectrometer and a chassis dynamometer to characterize nitromethane emission from automotive exhaust. We performed experiments under both cold-start and hot-start conditions, and determined the dependence of nitromethane emission on vehicle velocity and acceleration/deceleration as well as the effect of various types of exhaust-gas treatment system. We found that nitromethane emission was much lower from a gasoline car than from diesel trucks, probably due to the reduction function of the three-way catalyst of the gasoline car. Diesel trucks without a NOx reduction catalyst using hydrocarbons produced high emissions of nitromethane, with emission factors generally increasing with increasing acceleration at low vehicle velocities.

  3. Controlling automotive exhaust emissions: successes and underlying science.

    PubMed

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures. PMID:15901550

  4. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Standards for exhaust emissions. 34.21 Section 34.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) §...

  5. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or...

  6. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  7. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  8. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  9. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Definitions. Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8... in-use aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust...

  10. Exhaustion, a guide to transportation emissions

    SciTech Connect

    1998-10-01

    This publication contains a series of fact sheets on the environmental impact of the automobile, addressing the issues of vehicle exhaust and its impact, alternative and cleaner fuels, and alternative forms of transportation. The sheets are intended to serve as background information and reference material. Specific topics of the sheets include: Components of car exhaust and other automobile-related emissions; air quality in Canada; smog; climate change and the greenhouse effect; acid rain; stratospheric ozone depletion; hazardous air pollutants and the automobile; health impacts; modifications and improvements to diesel fuels; reformulated gasoline; alternative fuels such as propane, ethanol, natural gas, hydrogen, and methanol; emissions standards and controls; inspection and maintenance programs; transportation demand management; driving behavior and the environment; and indirect costs of the automobile.

  11. [Emission Factors of Vehicle Exhaust in Beijing].

    PubMed

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Qu, Song

    2015-07-01

    Based on the investigation of basic data such as vehicle type composition, driving conditions, ambient temperature and oil quality, etc., emission factors of vehicle exhaust pollutants including carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC) and particulate matter(PM) were calculated using COPERT IV model. Emission factors of typical gasoline passenger cars and diesel trucks were measured using on-board measurement system on actual road. The measured and modeled emission factors were compared and the results showed that: the measured emission factors of CO, NOx and HC were 0. 96, 0. 64 and 4. 89 times of the modeled data for passenger cars conforming to the national IV emission standard. For the light, medium and heavy diesel trucks conforming to the national III emission standard, the measured data of CO emission factors were 1.61, 1. 07 and 1.76 times of the modeled data, respectively, the measured data of NOx emission factors were 1. 04, 1. 21 and 1. 18 times of the modeled data, and the measured data of HC emission factors were 3. 75, 1. 84 and 1. 47 times of the modeled data, while the model data of PM emission factors were 1. 31, 3. 42 and 6. 42 times of the measured data, respectively. PMID:26489301

  12. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  13. Ships going slow in reducing their NOx emissions: changes in 2005-2012 ship exhaust inferred from satellite measurements over Europe

    NASA Astrophysics Data System (ADS)

    Folkert Boersma, K.; Vinken, Geert C. M.; Tournadre, Jean

    2015-07-01

    We address the lack of temporal information on ship emissions, and report on rapid short-term variations of satellite-derived ship NOx emissions between 2005 and 2012 over European seas. Our inversion is based on OMI observed tropospheric NO2 columns and GEOS-Chem simulations. Average European ship NOx emissions increased by 15% from 2005 to 2008. This increase was followed by a reduction of 12% in 2009, a direct result of the global economic downturn in 2008-2009, and steady emissions from 2009 to 2012. Observations of ship passages through the Suez Canal and satellite altimeter derived ship densities suggests that ships in the Mediterranean Sea have reduced their speed by more than 30% since 2008. This reduction in ship speed is accompanied by a persistent 45% reduction of average, per ship NOx emission factors. Our results indicate that the practice of slow steaming, i.e. the lowering of vessel speed to reduce fuel consumption, has indeed been implemented since 2008, and can be detected from space. In spite of the implementation of slow steaming, one in seven of all NOx molecules emitted in Europe in 2012 originated from the shipping sector, up from one in nine in 2005. The growing share of the shipping contributions to the overall European NOx emissions suggests a need for the shipping sector to implement additional measures to reduce pollutant emissions at rates that are achieved by the road transport and energy producing sectors in Europe.

  14. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  15. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust emission standards. 94.8...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines 94.8 Exhaust emission standards. (a) The Tier 1 standards...

  16. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards. 94.8...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines 94.8 Exhaust emission standards. (a) The Tier 1 standards...

  17. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  18. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500C. When the pyrolysis temperature was lower than 300C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. PMID:24239260

  19. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  20. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  1. Three years operation demonstrates exhaust emission control system

    SciTech Connect

    1995-10-01

    The first field installation of a patented NO{sub x} emissions system completed its third year of operation as a demonstration site last August. The cogeneration site is powered by three Caterpillar 350 kW G398 natural gas-fueled engines. The Hybrid Low NO{sub x} system has achieved NO{sub x} and CO levels below 10 ppm consistently. Although this system initially appears complicated and somewhat sophisticated, it has been relatively maintenance free and easy to operate, according to university officials. Petrocon Technologies, of Beaumont, Texas, acquired the license to use the technology in 1994. The first step in the Hybrid Low NO{sub x} system`s process is an afterburner fired at substoichiometric conditions to increase the temperature while also increasing the CO content of the engine exhaust. The added fuel consumption of the burner limits the economy of the system to sites that have use for the additional thermal energy. Cogeneration plants are good candidates. Downstream from the burner, the high-temperature, CO-enriched exhaust passes through a heat recovery steam generator where the gas temperature is reduced to about 538{degree}C. Exhaust then passes over an Allied Signal-supplied reduction catalyst, where NO{sub x} is reduced to below 10 ppm. Controlled levels of CO in contact with the proprietary catalyst is the primary factor in achieving such extraordinarily low NO{sub x} emission levels.

  2. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Standards for exhaust emissions. 87.31 Section 87.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards...

  3. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Exhaust emissions from Category 1 and Category 2 propulsion engines subject to the standards (or FELs) in... 2000 rpm, where N is the maximum test speed of the engine in revolutions per minute. (Note: Round speed...Primary Tier 2 Exhaust Emission Standards (g/kW-hr) Engine Size liters/cylinder, rated power...

  4. Carbonyl emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Machado Corrêa, Sérgio; Arbilla, Graciela

    With the use of biodiesel in clear growth, it is important to quantify any potential emission benefits or liabilities of this fuel. Several researches are available concerning the regulated emissions of biodiesel/diesel blends, but there is a lack of information about non-regulated emissions. In a previous paper [Corrêa, S.M., Arbilla, G., 2006. Emissões de formaldeído e acetaldeído de misturas biodiesel/diesel. Periódico Tchê Química, 3, 54-68], the emissions of aromatic hydrocarbons were reported. In this work, seven carbonyl emissions (formaldehyde, acetaldehyde, acrolein, acetone, propionaldehyde, butyraldehyde, and benzaldehyde) were evaluated by a heavy-duty diesel engine fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1000, 1500, and 2000 rpm. The exhaust gases were diluted nearly 20 times and the carbonyls were sampled with SiO 2-C18 cartridges, impregnated with acid solution of 2,4-dinitrophenylhydrazine. The chemical analyses were performed by high performance liquid chromatography using UV detection. Using average values for the three modes of operation (1000, 1500, and 2000 rpm) benzaldehyde showed a reduction on the emission (-3.4% for B2, -5.3% for B5, -5.7% for B10, and -6.9% for B20) and all other carbonyls showed a significative increase: 2.6, 7.3, 17.6, and 35.5% for formaldehyde; 1.4, 2.5, 5.4, and 15.8% for acetaldehyde; 2.1, 5.4, 11.1, and 22.0% for acrolein+acetone; 0.8, 2.7, 4.6, and 10.0% for propionaldehyde; 3.3, 7.8, 16.0, and 26.0% for butyraldehyde.

  5. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lnd, Felix; Schlatter, Jrg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Hgstrm, Richard; Yli-Ojanper, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  6. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test...) AVS=Volume of absorbing reagent (deionized water) in impinger through which methanol sample from dilute exhaust is drawn, ml (xiv) AVD=Volume of absorbing reagent (deionized water) in impinger...

  7. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... = Carbon monoxide concentration of the dilute exhaust sample corrected for background, water vapor, and CO2... bag sample volume corrected for water vapor and carbon dioxide extraction, in ppm. For...

  8. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... = Carbon monoxide concentration of the dilute exhaust sample corrected for background, water vapor, and CO2... bag sample volume corrected for water vapor and carbon dioxide extraction, in ppm. For...

  9. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... = Carbon monoxide concentration of the dilute exhaust sample corrected for background, water vapor, and CO2... bag sample volume corrected for water vapor and carbon dioxide extraction, in ppm. For...

  10. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test...) AVS=Volume of absorbing reagent (deionized water) in impinger through which methanol sample from dilute exhaust is drawn, ml (xiv) AVD=Volume of absorbing reagent (deionized water) in impinger...

  11. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test...) AVS=Volume of absorbing reagent (deionized water) in impinger through which methanol sample from dilute exhaust is drawn, ml (xiv) AVD=Volume of absorbing reagent (deionized water) in impinger...

  12. DEVELOPMENT OF A PROPORTIONAL SAMPLER FOR AUTOMOBILE EXHAUST EMISSIONS TESTING

    EPA Science Inventory

    The report describes the development of a device that is capable of sampling gaseous emissions from automobiles. The device samples exhaust gases at a mass rate that is proportional to the total exhaust gas mass flow rate, which is measured using an ultrasonic vortex flowmeter. T...

  13. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  14. Comparison of vehicle exhaust emissions from modified diesel fuels.

    PubMed

    Zhu, Jiping; Cao, Xu-Liang; Pigeon, Ren; Mitchell, Ken

    2003-01-01

    Three diesel fuels, one oil sand-derived (OSD) diesel serving as base fuel, one cetane-enhanced base fuel, and one oxygenate [diethylene glycol dimethyl ether (DEDM)]-blended base fuel, were tested for their emission characterizations in vehicle exhaust on a light-duty diesel truck that reflects the engine technology of the 1994 North American standard. Both the cetane-enhanced and the oxygenate-blended fuels were able to reduce regulated [CO, particulate matter (PM), total hydrocarbon (THC)] and nonregulated [polyaromatic hydrocarbons (PAHs), carbonyls, and other volatile organic chemicals] emissions, except for nitrogen oxides (NO(x)), compared with the base fuel. Although burning a fuel that contains oxygen could conceivably yield more oxygenated compounds in emissions, the oxygenate-blended diesel fuel resulted in reduced emissions of formaldehyde along with hydrocarbons such as benzene, 1,3-butadiene, and PAHs. Reductions in nitro-PAH emissions have been observed in both the cetane-enhanced and oxygenated fuels. This further demonstrates the benefits of using a cetane enhancer and the oxygenated fuel component. PMID:12568255

  15. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  16. Evolution of on-road vehicle exhaust emissions in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  17. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Calculations; exhaust emissions. 86.144-94 Section 86.144-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year...

  18. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Calculation; idle exhaust emissions. 86.1544 Section 86.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle...

  19. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Calculations; exhaust emissions. 86.1342-90 Section 86.1342-90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle...

  20. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Calculations; exhaust emissions. 86.144-94 Section 86.144-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year...

  1. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Calculations; exhaust emissions. 86.1342-94 Section 86.1342-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle...

  2. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Calculation; idle exhaust emissions. 86.1544 Section 86.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines,...

  3. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Calculations; particulate exhaust emissions. 86.1343-88 Section 86.1343-88 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for...

  4. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Raterman, Kevin T. (Idaho Falls, ID)

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  5. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D. (Ammon, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID); Raterman, Kevin T. (Idaho Falls, ID)

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  6. Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions

    NASA Astrophysics Data System (ADS)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Li, Jiaqiang; Peng, Zihang; Song, Yanan; Zhang, Liwei

    2015-02-01

    The emission characteristics of motorcycles using gasoline and M15 (consisting of 85% gasoline and 15% methanol by volume) were investigated in this article. Exhaust and evaporative emissions, including regulated and unregulated emissions, of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED), respectively. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions, including carbonyls, volatile organic compounds (VOCs) and methanol, were sampled through battery-operated air pumps using tubes coated with 2,4-dintrophenylhydrazine (DNPH), Tenax TA and silica gel, respectively. The experimental results showed that, for exhaust emission, compared with those from gasoline fueled motorcycles, the concentration of total hydrocarbons (THC) and CO from motorcycles fueled with M15 decreased by 11%-34.5% and 63%-84% respectively, while the concentration of NOx increased by 76.9%-107.7%. Compared with those from gasoline fueled motorcycles, BTEX from motorcycles fueled with M15 decreased by 16%-60% while formaldehyde increased by 16.4%-52.5%. For evaporative emission, diurnal losses were more than hot soak losses and turned out to be dominated in evaporative emissions. In addition, compared with gasoline fueling motorcycles, the evaporative emissions of THC, carbonyls and VOCs from motorcycles fueled with M15 increased by 11.7%-37%, 38%-45% and 16%-42%, respectively. It should be noted that the growth rate of methanol was as high as 297%-1429%. It is important to reduce the evaporative emissions of methanol fueling motorcycles.

  7. EXHAUST EMISSIONS FROM A DIESEL ENGINE

    EPA Science Inventory

    Studies were performed using (1) Diesel particles collected from the undiluted exhaust of a single-cylinder engine, operated at constant speed and load, using a binary pure hydrocarbon fuel with air or gas mixture oxidizers, and (2) Diesel particles collected from the diluted exh...

  8. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  9. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    SciTech Connect

    Koermer, Gerald S.; Moini, Ahmad; Furbeck, Howard; Castellano, Christopher R.

    2012-05-08

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.

  10. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOEpatents

    Castellano, Christopher R. (Ringoes, NJ); Moini, Ahmad (Princeton, NJ); Koermer, Gerald S. (Basking Ridge, NJ); Furbeck, Howard (Hamilton, NJ); Schmieg, Steven J. (Troy, MI); Blint, Richard J. (Shelby Township, MI)

    2011-05-17

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

  11. Emissions and fuel economy effects of vehicle exhaust emission control device (revision). Technical report

    SciTech Connect

    Johnson, H.

    1998-10-01

    This report describes testing by EPA of the Vehicle Exhaust Emission Control Device (VEECD) retrofit device under Section 32918 of Title 49 U.S.C. Retrofit Devices (RD). The VEECD is described by the developer in the international patent application as an embodiment of air bleed principle. It is intended to be retrofitted to vehicles produced without any, or with earlier-technology emission control systems. The developer claims (RD Application Appendix A) that the valve significantly reduces CO and HC emissions without substantially increasing CO{sub 2} or NOx emissions. Incidental city fuel economy enhancement was also claimed. Non-FTP test data obtained for 1986/87 European vehicles from two laboratories in the UK was submitted. This data (Appendix B) was analyzed using the t-test for the difference of constant speed data (30/60/85MPH) at 95% confidence level.

  12. Urban air quality: the challenge of traffic non-exhaust emissions.

    PubMed

    Amato, Fulvio; Cassee, Flemming R; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M; Jozwicka, Magdalena; Kelly, Frank J; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier

    2014-06-30

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment. PMID:24837462

  13. Effects of vehicle exhaust emissions on urban wild plant species.

    PubMed

    Bell, J N B; Honour, S L; Power, S A

    2011-01-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems. PMID:21458124

  14. Effects of vehicle exhaust emissions on urban wild plant species.

    TOXLINE Toxicology Bibliographic Information

    Bell JN; Honour SL; Power SA

    2011-08-01

    Very few investigations have examined the direct impacts of vehicle exhausts on plants and attempted to separate out the key pollutants responsible for observed effects. This paper describes a multi-phase investigation into this topic, using 12 herbaceous species typical of urban areas and representing different functional groups. Fumigations were conducted in solardomes with diesel exhaust pollutants at concentrations designed to simulate those close to a major highway in inner London. A wide range of effects were detected, including growth stimulation and inhibition, changes in gas exchange and premature leaf senescence. This was complemented by controlled fumigations with NO, NO(2) and their mixture, as well as a transect study away from a busy inner London road. All evidence suggested that NO(x) was the key phytotoxic component of exhaust emissions, and highlights the potential for detrimental effects of vehicle emissions on urban ecosystems.

  15. Utilization of LPG and gasoline engine exhaust emissions by microalgae.

    PubMed

    Ta?tan, Burcu Ertit; Duygu, Ergin; Ilba?, Mustafa; Dnmez, Gnl

    2013-02-15

    The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors. PMID:23298742

  16. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    SciTech Connect

    Schmieg, Steven J.; Blint, Richard J.; Den, Ling; Viola, Michael B.; Lee, Jong-Hwan

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  17. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde. PMID:14551948

  18. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  19. 40 CFR 86.159-08 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust emission test procedures for US06 emissions. 86.159-08 Section 86.159-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and...

  20. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust emission test procedures for US06 emissions. 86.159-00 Section 86.159-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and...

  1. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust emission test procedures for US06 emissions. 86.159-00 Section 86.159-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and...

  2. 40 CFR 86.159-08 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust emission test procedures for US06 emissions. 86.159-08 Section 86.159-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and...

  3. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    Due to their excellent fuel efficiency, reliability, and durability, compression ignition direct injection (CIDI) engines have been used extensively to power almost all highway trucks, urban buses, off-road vehicles, marine carriers, and industrial equipment. CIDI engines burn 35 to 50% less fuel than gasoline engines of comparable size, and they emit far less greenhouse gases (Carbon Dioxides), which have been implicated in global warming. Although the emissions of CIDI engines have been reduced significantly over the last decade, there remains concern with the Nitrogen Oxides (NOX) and Particulate Matter (PM) emission levels. In 2000, the US EPA proposed very stringent emissions standards to be introduced in 2007 along with low sulfur (< 15ppm) diesel fuel. The California Air Resource Board (CARB) has also established the principle that future diesel fueled vehicles should meet the same emissions standards as gasoline fueled vehicles and the EPA followed suit with its Tier II emissions regulations. Meeting the Tier II standards requires NOX and PM emissions to be reduced dramatically. Achieving such low emissions while minimizing fuel economy penalty cannot be done through engine development and fuel reformulation alone, and requires application of NOX and PM aftertreatment control devices. A joint effort was made between Cummins Inc. and the Department of Energy to develop the generic aftertreatment subsystem technologies applicable for Light-Duty Vehicle (LDV) and Light-Duty Truck (LDT) engines. This paper provides an update on the progress of this joint development program. Three NOX reduction technologies including plasmaassisted catalytic NOX reduction (PACR), active lean NOX catalyst (LNC), and adsorber catalyst (AC) technology using intermittent rich conditions for NOX reduction were investigated in parallel in an attempt to select the best NOX control approach for light-duty aftertreatment subsystem integration and development. Investigations included system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  4. On-Road Measurement of Exhaust Emission Factors for Individual Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; DeMartini, S.; Harley, R. A.; Kirchstetter, T. W.; Wood, E. C.; Onasch, T. B.; Herndon, S. C.

    2011-12-01

    Diesel trucks are an important source of primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. More stringent exhaust emission standards for new engines, effective starting in 2007, considerably reduce allowable emissions and have led to use of after-treatment control devices such as diesel particle filters. The state of California is also implementing programs to accelerate replacement or retrofit of older trucks. In light of these changes, measurements of emissions from in-use heavy-duty diesel trucks are timely and needed to understand the impact of new control technologies on emissions. PM2.5, BC mass, particle light absorption, and particle light extinction emission factors for hundreds of individual diesel trucks were measured in this study. Emissions were measured in July 2010 from trucks driving through the Caldecott tunnel in the San Francisco Bay area. Gas-phase emissions including nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide (CO2) were also measured. Pollutants were measured using air sampling inlets located directly above the vertical exhaust stacks of heavy-duty trucks driving by on the roadway below. All of these measurements were made using fast time response (1 Hz) sensors. Particle optical properties were simultaneously characterized with direct measurements of absorption (babs) and extinction (bext) coefficients. Emission factors for individual trucks were calculated using a carbon balance method in which emissions of PM2.5, BC, babs, and bext in each exhaust plume were normalized to emissions of CO2. Emission factor distributions and fleet-average values are quantified. Absorption and extinction emission factors are used to calculate the aerosol single scattering albedo and BC mass absorption efficiency for individual truck exhaust plumes.

  5. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration factors as follows: (1) Additive deterioration factor for exhaust emissions. Except as specified in paragraph (c)(2) of this section, use an additive deterioration factor for exhaust emissions. An additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  6. The effect of gasoline RVP on exhaust emissions from current European vehicles

    SciTech Connect

    Bennett, P.J.; Beckwith, P.; Goodfellow, C.L.; Skaardalsmo, K.

    1995-12-31

    The effect of gasoline RVP on regulated exhaust emissions has been investigated in a fleet consisting of five current European vehicles. The effects of MTBE with changing RVP and E70 were also studied. All vehicles were equipped with the standard OEM small carbon canisters and three-way catalytic converters and the regulated emissions measured over the new European test cycle. A rigorous refueling protocol was employed to ensure that the carbon canisters were loaded in a repeatable way before the emission tests. The results show that a reduction in RVP gave benefits in CO and NOx, but no effect on exhaust THC emissions. The benefits for CO and NOx were greater in non-oxygenated fuels. Of the five test vehicles, three showed CO emission benefits due to RVP reduction, while CO from the other two was insensitive to RVP changes. Four vehicles also showed NOx emission benefits due to RVP reduction while the NOx emissions from the other vehicle were insensitive to RVP changes. The benefits of reducing RVP were observed for the fleet over all three phases of the cycle, however, the largest percentage of changes were seen after the vehicles had warmed up. Although no significant overall effect of RVP on exhaust THC emissions was apparent, reductions in THC over the ECE 3+4 and EUDC phases were observed. At high RVP MTBE addition gave reductions in CO and NOx emissions, but at low RVP no emission reductions were observed. A reduction in E70 only influenced exhaust THC emissions, resulting in a small increase.

  7. Influence of MTBE addition into gasoline on automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S.; Philippopoulos, C.

    The effect of methyl-t-butyl ether (MTBE) addition into gasoline on the exhaust emissions from internal combustion engines was studied. A four-cylinder OPEL 1.6 l engine equipped with a hydraulic brake dynamometer was used in all the experiments. Fuels containing 0.0-11.0% MTBE were used in a wide range of engine operations, and the exhaust gases were analyzed for CO, HC (total unburned hydrocarbons, methane, ethylene) and MTBE, before and after their catalytic treatment by a three-way catalytic converter. The addition of MTBE into gasoline resulted in a decrease in CO and HC emissions only at high engine loading. During cold-start up of the engine, MTBE, HC, CO emissions were significant and increased with MTBE addition into fuel. At the catalytic converter outlet MTBE was detected when its concentration in fuels was greater than 8% and only as long as the catalytic converter operates at low temperatures. Methane and ethylene emissions were comparable for all fuels tested at engine outlet, but methane emissions remained almost at the same level while ethylene emissions were significantly decreased by the catalytic converter.

  8. Emission control equipment fractional efficiency considerations for recirculated exhaust systems

    SciTech Connect

    Brackbill, E.A.

    1984-01-01

    Process exhaust recirculation is an often considered, simple method for heat recovery. However, since most process exhaust streams contain some type of contaminant, the air must be cleaned prior to recirculation. In many cases, air-cleaning equipment has already been installed under the impetus of air pollution control regulations. Although adequate for compliance with these regulations, this same control equipment may not be efficient enough to permit recirculation. The mass collection efficiency basis inherent to air pollution control regulations is not necessarily relevant to the evaluation of a potential exhaust recirculation situation. The fractional efficiency, or the control equipment's ability to collect particles of specific size, is far more relevant. All control equipment exhibits varying degrees of reduced efficiency in the respirable particulate size range. Knowledge of the extent of this reduction for the actual system under consideration is very important, since it can result in increased hazard and preclude recirculation as a heat recovery option.

  9. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    NASA Astrophysics Data System (ADS)

    Al-lwayzy, Saddam H.; Yusaf, Talal; Jensen, Troy

    2012-09-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  10. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions at the end of useful life to exhaust emissions at the low-hour test point. Adjust the official... represented by the ratio of exhaust emissions at the end of the useful life to exhaust emissions at the low... end of useful life and exhaust emissions at the low-hour test point. Adjust the official...

  11. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions at the end of useful life to exhaust emissions at the low-hour test point. Adjust the official... represented by the ratio of exhaust emissions at the end of the useful life to exhaust emissions at the low... end of useful life and exhaust emissions at the low-hour test point. Adjust the official...

  12. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions at the end of useful life to exhaust emissions at the low-hour test point. Adjust the official... represented by the ratio of exhaust emissions at the end of the useful life to exhaust emissions at the low... end of useful life and exhaust emissions at the low-hour test point. Adjust the official...

  13. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions at the end of useful life to exhaust emissions at the low-hour test point. Adjust the official... represented by the ratio of exhaust emissions at the end of the useful life to exhaust emissions at the low... end of useful life and exhaust emissions at the low-hour test point. Adjust the official...

  14. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions at the end of useful life to exhaust emissions at the low-hour test point. Adjust the official... represented by the ratio of exhaust emissions at the end of the useful life to exhaust emissions at the low... end of useful life and exhaust emissions at the low-hour test point. Adjust the official...

  15. Diesel-exhaust emissions-toxicology program. Status report

    SciTech Connect

    McClellan, R.O.

    1980-07-01

    This document reports the current status of the Department of Energy's (DOE) Office of Environment (EV) research programs to assess the potential health impacts of increased use of diesel engines. The EV research effort consists of activities in five inter-related areas: (1) studies to establish the physical, chemical and biological characteristics of emissions from different vehicles over a range of operating conditions, fuel types and control devices; (2) evaluations to predict the transport and transformation of diesel exhaust as it moves from vehicles to the breathing zone of man; (3) research to predict the inhalation, deposition, retention and fate in the body of diesel exhaust particles and the organic compounds that are an integral part of the particles; (4) chronic exposure of laboratory animals to graded levels of diesel exhaust to determine the potential of these exposures for causing cancer or functional disorders, especially the respiratory tract, over the lifetime of the animals; and (5) development of an integrated risk assessment that brings together all relevant information to predict (a) emissions, (b) exposure atmospheres, (c) effective dose to critical tissues, and (d) health effects in man for various scenarios of diesel vehicle production and deployment.

  16. Hydrocarbon emissions speciation in diesel and biodiesel exhausts

    NASA Astrophysics Data System (ADS)

    Payri, Francisco; Bermdez, Vicente R.; Tormos, Bernardo; Linares, Waldemar G.

    Diesel engine emissions are composed of a long list of organic compounds, ranging from C 2 to C 12+, and coming from the hydrocarbons partially oxidized in combustion or produced by pyrolisis. Many of these are considered as ozone precursors in the atmosphere, since they can interact with nitrogen oxides to produce ozone under atmospheric conditions in the presence of sunlight. In addition to problematic ozone production, Brookes, P., and Duncan, M. [1971. Carcinogenic hydrocarbons and human cells in culture. Nature.] and Heywood, J. [1988. Internal Combustion Engine Fundamentals.Mc Graw-Hill, ISBN 0-07-1000499-8.] determined that the polycyclic aromatic hydrocarbons present in exhaust gases are dangerous to human health, being highly carcinogenic. The aim of this study was to identify by means of gas chromatography the amount of each hydrocarbon species present in the exhaust gases of diesel engines operating with different biodiesel blends. The levels of reactive and non-reactive hydrocarbons present in diesel engine exhaust gases powered by different biodiesel fuel blends were also analyzed. Detailed speciation revealed a drastic change in the nature and quantity of semi-volatile compounds when biodiesel fuels are employed, the most affected being the aromatic compounds. Both aromatic and oxygenated aromatic compounds were found in biodiesel exhaust. Finally, the conservation of species for off-side analysis and the possible influence of engine operating conditions on the chemical characterization of the semi-volatile compound phase are discussed. The use of oxygenated fuel blends shows a reduction in the Engine-Out emissions of total hydrocarbons. But the potential of the hydrocarbon emissions is more dependent on the compositions of these hydrocarbons in the Engine-Out, to the quantity; a large percent of hydrocarbons existing in the exhaust, when biodiesel blends are used, are partially burned hydrocarbons, and are interesting as they have the maximum reactivity, but with the use of pure biodiesel and diesel, the most hydrocarbons are from unburned fuel and they have a less reactivity. The best composition in the fuel, for the control of the hydrocarbon emissions reactivity, needs to be a fuel with high-saturated fatty acid content.

  17. Cermet Filters To Reduce Diesel Engine Emissions

    SciTech Connect

    Kong, Peter

    2001-08-05

    Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.Diesel engines currently emit soot and NOx that pollute our air. It is expected that the U.S. Environmental Protection Agency (EPA) will begin tightening the regulatory requirements to control these emissions. The INEEL's self-cleaning, high temperature cermet filter provides a technology to clean heavy-duty diesel engine emissions. Under high engine exhaust temperatures, the cermet filter simultaneously removes carbon particles and NOx from the exhaust gas. The cermet filter is made from inexpensive starting materials, via net shape bulk forming and a single-step combustion synthesis process, and can be brazed to existing structures. It is self-cleaning, lightweight, mechanically strong, thermal shock resistant, and has a high melting temperature, high heat capacity, and controllable thermal expansion coefficient. The filter's porosity is controlled to provide high removal efficiency for carbon particulate. It can be made catalytic to oxidize CO, H2, and hydrocarbons, and reduce NOx. When activated by engine exhaust, the filter produces NH3 and light hydrocarbon gases that can effectively destroy the NOx in the exhaust. The following sections describe cermet filter technology and properties of the INEEL filter.

  18. Parametric modeling of exhaust gas emission from natural gas fired gas turbines

    SciTech Connect

    Bakken, L.E.; Skogly, L.

    1996-07-01

    Increased focus on air pollution from gas turbines in the Norwegian sector of the North Sea has resulted in taxes on CO{sub 2}. Statements made by the Norwegian authorities imply regulations and/or taxes on NO{sub x} emissions in the near future. The existing CO{sub 2} tax of NOK 0.82/Sm{sup 3} (US Dollars 0.12/Sm{sup 3}) and possible future tax on NO{sub x} are analyzed mainly with respect to operating and maintenance costs for the gas turbine. Depending on actual tax levels, the machine should be operated on full load/optimum thermal efficiency or part load to reduce specific exhaust emissions. Based on field measurements, exhaust emissions (CO{sub 2}, CO, NO{sub x}, N{sub 2}O, UHC, etc.) are established with respect to load and gas turbine performance, including performance degradation. Different NO{sub x} emission correlations are analyzed based on test results, and a proposed prediction model presented. The impact of machinery performance degradation on emission levels is particularly analyzed. Good agreement is achieved between measured and predicted NO{sub x} emissions from the proposed correlation. To achieve continuous exhaust emission control, the proposed NO{sub x} model is implemented to the on-line condition monitoring system on the Sleipner A platform, rather than introducing sensitive emission sensors in the exhaust gas stack. The on-line condition monitoring system forms an important tool in detecting machinery condition/degradation and air pollution, and achieving optimum energy conservation.

  19. 40 CFR 1066.835 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... exhaust emissions while simulating an urban trip on a hot summer day. The provisions of 40 CFR part 86 and 40 CFR part 600 waive SC03 testing for some vehicles; in those cases, calculate SFTP composite emissions by adjusting the weighting calculation as specified in 40 CFR part 86, subpart S. (a) Drain...

  20. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust...

  1. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust...

  2. Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles.

    PubMed

    Rhys-Tyler, Glyn A; Bell, Margaret C

    2012-10-01

    A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models. PMID:22894824

  3. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §...

  4. Characterization, concentrations and emission rates of polycyclic aromatic hydrocarbons in the exhaust emissions from in-service vehicles in Damascus

    NASA Astrophysics Data System (ADS)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2013-02-01

    Motor vehicles are significant sources of polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Improved understanding of PAH emission profiles in mobile sources is the key to determining the viable approach for reducing PAH emissions from motor vehicles. Very limited data is available on the levels of PAH emissions in the urban atmospheres in Syria and no data are currently available on the level of PAH emissions from different combustion sources in the country. The aim of this study was to determine the profile and concentration of PAH in exhaust emissions of light and heavy-duty vehicles running on the roads of Damascus city. Three different types of vehicles (passenger cars, minivans and buses) were selected along with different age groups. Vapor- and particulate-phase PAH were collected from the vehicular exhausts of six in-service vehicles (with/without catalytic converters). High-performance liquid chromatography system, equipped with UV-Visible and fluorescence detectors, was used for the identification and quantification of PAH compounds in the cleaned extracts of the collected samples. The mean concentration of total PAH emissions (sum of 15 compounds) from all types of studied vehicles ranged between 69.28 ± 1.06 μg/m3 for passenger cars equipped with catalytic converters and 2169.41 ± 5.17 μg/m3 for old diesel buses without pollution controls. Values of total benzo(a)pyrene equivalent (∑ B[a]Peq) ranged between 1.868 μg/m3and 37.652 μg/m3. The results obtained in this study showed that the use of catalytic converters resulted into cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained in the absence of catalytic converters.

  5. 40 CFR 86.159-08 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-08 Exhaust emission test... during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO,...

  6. 40 CFR 86.159-08 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-08 Exhaust emission test... during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO,...

  7. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-00 Exhaust emission test... stalling should occur during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are...

  8. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-00 Exhaust emission test... stalling should occur during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are...

  9. 40 CFR 86.159-08 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-08 Exhaust emission test... during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are analyzed for THC, CO,...

  10. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.160-00 Exhaust emission test... official test cycle, is either conducted in an environmental test facility or under test conditions that... ambient test conditions of: 95 °F air temperature, 100 grains of water/pound of dry air (approximately...

  11. 40 CFR 86.159-00 - Exhaust emission test procedures for US06 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.159-00 Exhaust emission test... stalling should occur during cycle operation, follow the provisions of § 86.136-90 (engine starting and restarting). For gasoline-fueled Otto-cycle vehicles, the composite samples collected in bags are...

  12. Application of hybrid evolutionary algorithms to low exhaust emission diesel engine design

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Obayashi, S.; Minemura, Y.

    2008-01-01

    A hybrid evolutionary algorithm, consisting of a genetic algorithm (GA) and particle swarm optimization (PSO), is proposed. Generally, GAs maintain diverse solutions of good quality in multi-objective problems, while PSO shows fast convergence to the optimum solution. By coupling these algorithms, GA will compensate for the low diversity of PSO, while PSO will compensate for the high computational costs of GA. The hybrid algorithm was validated using standard test functions. The results showed that the hybrid algorithm has better performance than either a pure GA or pure PSO. The method was applied to an engineering design problemthe geometry of diesel engine combustion chamber reducing exhaust emissions such as NOx, soot and CO was optimized. The results demonstrated the usefulness of the present method to this engineering design problem. To identify the relation between exhaust emissions and combustion chamber geometry, data mining was performed with a self-organising map (SOM). The results indicate that the volume near the lower central part of the combustion chamber has a large effect on exhaust emissions and the optimum chamber geometry will vary depending on fuel injection angle.

  13. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  14. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  15. Progress in Understanding the Toxicity of Gasoline and Diesel Engine Exhaust Emissions

    SciTech Connect

    Kristen J. Nikula; Gregory L. Finch; Richard A. Westhouse; JeanClare Seagrave; Joe L. Mauderly; Doughlas R. Lawson; Michael Gurevich

    1999-04-26

    To help guide heavy vehicle engine, fuel, and exhaust after-treatment technology development, the U.S. Department of Energy and the Lovelace Respiratory Research Institute are conducting research not addressed elsewhere on aspects of the toxicity of particulate engine emissions. Advances in these technologies that reduce diesel particulate mass emissions may result in changes in particle composition, and there is concern that the number of ultrafine (<0.1 micron) particles may increase. All present epidemiological and laboratory data on the toxicity of diesel emissions were derived from emissions of older-technology engines. New, short-term toxicity data are needed to make health-based choices among diesel technologies and to compare the toxicity of diesel emissions to those of other engine technologies. This research program has two facets: (1) development and use of short-term in vitro and in vivo toxicity assays for comparing the toxicities of gasoline and diesel exhaust emissions; and (2) determination of the disposition of inhaled ultrafine particles deposited in the lung. Responses of cultured cells, cultured lung slices, and rodent lungs to various types of particles were compared to develop an improved short-term toxicity screening capability. To date, chemical toxicity indicators of cultured human A549 cells and early inflammatory and cytotoxic indicators of rat lungs have given the best distinguishing capability. A study is now underway to determine the relative toxicities of exhaust samples from in-use diesel and gasoline engines. The samples are being collected under the direction of the National Renewable Energy Laboratory with support from DOE's Office of Heavy Vehicle Technologies. The ability to generate solid ultrafine particles and to trace their movement in the body as particles and soluble material was developed. Data from rodents suggest that ultrafine particles can move from the lung to the liver in particulate form. The quantitative disposition of inhaled ultrafine particles will be determined in rodents and nonhuman primates.

  16. TERATOLOGIC EFFECTS OF LONG-TERM EXPOSURE TO DIESEL EXHAUST EMISSIONS (RABBITS)

    EPA Science Inventory

    This research project was initiated with the objective of evaluating the potential for diesel exhaust emissions to produce malformations in rabbit fetuses. The pregnant does were exposed by the inhalation route to a 10% concentration of diesel exhaust emissions in inhalation cham...

  17. TERATOLOGIC EFFECTS OF LONG-TERM EXPOSURE TO DIESEL EXHAUST EMISSIONS (RATS)

    EPA Science Inventory

    This research project was initiated with the objective of evaluating the potential for diesel exhaust emissions to produce malformations in rat fetuses. The dams were exposed by the inhalation route to a 10% concentration of diesel exhaust emissions in inhalation chambers on days...

  18. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability demonstration procedures for exhaust emissions. 86.1823-01 Section 86.1823-01 Protection of Environment ENVIRONMENTAL... Durability demonstration procedures for exhaust emissions. This section applies to light-duty vehicles,...

  19. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles. ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles. ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION...

  1. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles. ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION...

  2. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be obtained from the... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft...

  3. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be obtained from the... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft...

  4. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can be obtained from the... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft...

  5. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) §...

  6. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 234 225 33,000 CFR part... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust emission standards for CO2 for... and Related Requirements 1037.105 Exhaust emission standards for CO2 for vocational vehicles....

  7. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 234 225 33,000 CFR part... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust emission standards for CO2 for... and Related Requirements 1037.105 Exhaust emission standards for CO2 for vocational vehicles....

  8. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 225 33,000 CFR part 1036... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust emission standards for CO2 for... and Related Requirements 1037.105 Exhaust emission standards for CO2 for vocational vehicles....

  9. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines)...

  10. 14 CFR 34.23 - Exhaust Emission Standards for Engines Manufactured on and after July 18, 2012.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.23 Exhaust Emission... emissions from each new aircraft gas turbine engine shall not exceed: (1) For Classes TF, T3 and T8 of rated... afterburning applied. (b) Gaseous exhaust emissions from each new aircraft gas turbine engine shall not...

  11. 14 CFR 34.23 - Exhaust Emission Standards for Engines Manufactured on and after July 18, 2012.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.23 Exhaust Emission... emissions from each new aircraft gas turbine engine shall not exceed: (1) For Classes TF, T3 and T8 of rated.... (b) Gaseous exhaust emissions from each new aircraft gas turbine engine shall not exceed: (1)...

  12. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  13. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  14. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  15. The effects of fuel properties and oxygenates on diesel exhaust emissions

    SciTech Connect

    Tsurutani, Kazushi; Takei, Yasunori; Fujimoto, Yoshio; Matsudaira, Junichi; Kumamoto, Mitsuhiro

    1995-12-31

    The effects of diesel fuel properties (aromatic content, cetane index and T90), cetane improver, oxygenates, high boiling point hydrocarbons and aromatics distribution on diesel exhaust emissions were studied under the Japanese 10-15 test cycle and the ECE+EUDC test cycle. The test vehicle was a Toyota Corolla with a natural aspirated, 2.0L displacement, IDI diesel engine. It was demonstrated that particulate emissions are highly correlated with T90 and that NOx is affected by the aromatic content of fuel. A reduction in particulates emissions was observed in fuel with a lower cetane number by adding cetane improver, but this reduction was limited. Cetane improver had no effect on NOx emissions in the 45--60 cetane number range. Oxygenates reduced particulate emissions remarkably but had little effect on NOx emissions. A decrease in the soot in particulates was particularly observed. Particulate emissions seemed to be more affected by the blended oxygen content of oxygenated fuel than by its molecular structure, cetane number or boiling point. The reduction in particulates with oxygenated fuels was larger under the ECE+EUDC test cycle than the Japanese 10-15 test cycle. Di- and Tri-aromatics affected PM emissions more than Paraffin or Monoaromatics. Furthermore, the effects of the test fuels were evaluated using a DI Diesel engine. Fuel with lower T90 and lower aromatic content reduced PM by 40% in the Japanese diesel 13 mode test. Cetane improver reduced ignition delay effectively, but had no effect on PM or NOx. Oxygenated fuel reduced PM emissions, however oxygenated fuel with a low cetane number increased PM given a specific injection timing under a high load condition.

  16. Exhaust emissions from light- and heavy-duty vehicles: chemical composition, impact of exhaust after treatment, and fuel parameters.

    PubMed Central

    Westerholm, R; Egebck, K E

    1994-01-01

    This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Ttortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699

  17. The significance of vehicle emissions standards for levels of exhaust pollution from light vehicles in an urban area

    NASA Astrophysics Data System (ADS)

    Rhys-Tyler, G. A.; Legassick, W.; Bell, M. C.

    2011-06-01

    This paper addresses the research question "Are more stringent exhaust emissions standards, as applied to light vehicle type approval, resulting in reduced vehicle pollution in an urban area?" The exhaust emissions of a sample of over fifty thousand road vehicles operating in London were measured using roadside remote sensing absorption spectroscopy techniques (infrared and ultraviolet), combined with Automatic Number Plate Recognition for vehicle identification. Levels of carbon monoxide (CO), hydrocarbons (HC), nitric oxide (NO), and smoke (particulate) exhaust emissions are reported by vehicle class, fuel type, and Euro emissions standard. Emissions from petrol cars of each pollutant were all observed to display a statistically significant reduction with the introduction of each successive Euro emissions standard from Euro 1 onwards. However, Euro 2 diesel cars were observed to emit statistically higher rates of NO than either Euro 1 or Euro 3 standard diesel cars. The study also confirms the continuing 'dieselisation' of the UK passenger car fleet. Mean NO emissions from Euro 4 diesel cars were found to be 6 times higher than Euro 4 petrol cars, highlighting the need to develop a sound understanding of the current and future 'in-use' emissions characteristics of diesel vehicles, and their influence on local air quality. Smoke emissions from TXII London taxis (black cabs) were found to be statistically higher than either earlier TX1 or later TX4 model variants, with possible implications for local air quality policy interventions such as maximum age limits for taxis.

  18. Subsonic Jet Noise Reduced With Improved Internal Exhaust Gas Mixers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Aircraft noise pollution is becoming a major environmental concern for the world community. The Federal Aviation Administration (FAA) is responding to this concern by imposing more stringent noise restrictions for aircraft certification then ever before to keep the U.S. industry competitive with the rest of the world. At the NASA Lewis Research Center, attempts are underway to develop noise-reduction technology for newer engines and for retrofitting existing engines so that they are as quiet as (or quieter than) required. Lewis conducted acoustic and Laser Doppler Velocimetry (LDV) tests using Pratt & Whitney's Internal Exhaust Gas Mixers (IEGM). The IEGM's mix the core flow with the fan flow prior to their common exhaust. All tests were conducted in Lewis' Aero-Acoustic Propulsion Laboratory--a semihemispheric dome open to the ambient atmosphere. This was the first time Laser Doppler Velocimetry was used in such a facility at Lewis. Jet exhaust velocity and turbulence and the internal velocity fields were detailed. Far-field acoustics were also measured. Pratt & Whitney provided 1/7th scale model test hardware (a 12-lobe mixer, a 20-lobe mixer, and a splitter) for 1.7 bypass ratio engines, and NASA provided the research engineers, test facility, and test time. The Pratt & Whitney JT8D-200 engine power conditions were used for all tests.

  19. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    SciTech Connect

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

  20. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  1. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  2. Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.; Streets, David G.

    2011-09-01

    We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels. We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission standards to income levels, Africa introduces those standards 30-40 years later than other regions and thus makes a remarkable contribution to the global emissions in 2050 (almost half). All Asian regions (South Asia, East Asia, and Southeast Asia) have a decreasing fractional contribution to global totals, from 32% in 2030 to around 22% in 2050. Total emissions from normal vehicles can decrease 1.3-2% per year. However, superemitters have a large effect on emission totals. They can potentially contribute more than 50% of global emissions around 2020, which suggests that they should be specifically addressed in modeling and mitigation policies. As new vehicles become cleaner, the majority of on-road emissions will come from the legacy fleet. This work establishes a modeling framework to explore policies targeted at that fleet.

  3. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at...

  4. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at...

  5. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at...

  6. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures 86.244-94 Calculations; exhaust.... Should NOX measurements be calculated, note that the humidity correction factor is not valid at...

  7. On-Road Exhaust Emissions from Passenger Cars Fitted with a Start-Stop System

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Pielecha, Ireneusz; Pielecha, Jacek; Brudnicki, Kamil

    2011-03-01

    The paper presents the results of on-road (city traffic) exhaust emission and fuel consumption tests related to a vehicle fitted with a start-stop system. The tests of different types of vehicle cruise cycles were performed on road portions of several kilometers under different traffic conditions. For the tests a portable exhaust analyzer SEMTECH DS was used. It measured the concentrations of the exhaust components and the exhaust gas mass flow. As a result the authors determined the usefulness of the engine disengaging systems in vehicles under the conditions of city traffic.

  8. The Effect of the Diesel Cetane Number on Exhaust Emissions Characteristics by Various Additives

    NASA Astrophysics Data System (ADS)

    Lim, Yunsung; Seo, Choongyeol; Lee, Jongtae; Kang, Daeil; Kim, Jeong Soo; Kim, Hyung Jun

    This paper described the effect of the diesel cetane number on exhaust emissions characteristics according to various additives. In addition, the emission characteristics of test fuels blended with three additives (GTL, biodiesel and additive for improving CN) were analyzed and the potential for uses of these additives were evaluated in this study. To achieve this purpose, the test diesel vehicle with a two-thousand cubic centimeter displacement was used to analyze the emission characteristics according to the CN. Also, the NEDC (New European Driving Cycle) was applied as the test mode which is widely used as the test method for environmental certification of diesel vehicles. To analyze the characteristics of HAPs, the VOCs and PAHs were analyzed from the BTEX and the particulate matter, respectively. The analysis results revealed that the CO emissions show the largest reduction rate while the NOx+THC emissions are reduced at a low as the CN got higher. In the NEDC mode, the PM emissions in the EUDC mode were found to be at a lower level than those in the UDC mode. As for the VOCs and PAHs characteristics, the VOCs of the CN 58 show the lowest amounts. Also, the PAHs of diesel blended with GTL show the highest level, followed by those of diesel blended with biodiesel and diesel blended with cetane additive.

  9. Combustor exhaust emissions with air-atomizing splash-groove fuel injectors burning Jet A and Diesel number 2 fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Air-atomizing, splash-groove injectors were shown to improve primary-zone fuel spreading and reduce combustor exhaust emissions for Jet A and diesel number 2 fuels. With Jet A fuel large-orifice, splash-groove injectors the oxides-of-nitrogen emission index was reduced, but emissions of carbon monoxide, unburned hydrocarbons, or smoke were unaffected. Small-orifice, splash-groove injectors did not reduce oxides of nitrogen, but reduced the smoke number and carbon monoxide and unburned-hydrocarbon emission indices. With diesel number 2 fuel, the small-orifice, splash-groove injectors reduced oxides of nitrogen by 19 percent, smoke number by 28 percent, carbon monoxide by 75 percent, and unburned hydrocarbons by 50 percent. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. Combustor blowout limits were similar for diesel number 2 and Jet A fuels.

  10. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What are the exhaust emission standards for snowmobiles? 1051.103 Section 1051.103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements...

  11. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What are the exhaust emission standards for snowmobiles? 1051.103 Section 1051.103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission Standards and Related Requirements...

  12. Reducing children's exposure to school bus diesel exhaust in one school district in North Carolina.

    PubMed

    Mazer, Mary E; Vann, Julie C Jacobson; Lamanna, Beth F; Davison, Jean

    2014-04-01

    Children who are exposed to diesel exhaust from idling school buses are at increased risk of asthma exacerbation, decreased lung function, immunologic reactions, leukemia, and increased susceptibility to infections. Policies and initiatives that aim to protect school children from the harmful effects of exposure to diesel exhaust range from general environmental air quality standards to more specific legislation that targets diesel exhaust near school children. School nurse standards of practice specify that school nurses should attain current knowledge of environmental health concepts, implement environmental health strategies, and advocate for environmental health principles. This article provides a description of the professional responsibilities of school nurses in protecting children from harmful environmental exposures, provides an overview of legislative initiatives intended to protect school children from diesel exhaust exposure, and summarizes one school district's effort to reduce diesel exhaust exposure among school children. PMID:23850988

  13. 40 CFR 1054.240 - How do I demonstrate that my emission family complies with exhaust emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I demonstrate that my emission family complies with exhaust emission standards? 1054.240 Section 1054.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL...

  14. 40 CFR 1054.240 - How do I demonstrate that my emission family complies with exhaust emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I demonstrate that my emission family complies with exhaust emission standards? 1054.240 Section 1054.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL...

  15. 40 CFR 1054.240 - How do I demonstrate that my emission family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I demonstrate that my emission family complies with exhaust emission standards? 1054.240 Section 1054.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL...

  16. 40 CFR 1054.240 - How do I demonstrate that my emission family complies with exhaust emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I demonstrate that my emission family complies with exhaust emission standards? 1054.240 Section 1054.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL...

  17. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  18. Bioethanol-gasoline fuel blends: exhaust emissions and morphological characterization of particulate from a moped engine.

    PubMed

    Seggiani, Maurizia; Prati, M Vittoria; Costagliola, M Antonietta; Puccini, Monica; Vitolo, Sandra

    2012-08-01

    This study was aimed at evaluating the effects of gasoline-ethanol blends on the exhaust emissions in a catalyst-equipped four-stroke moped engine. The ethanol was blended with unleaded gasoline in at percentages (10, 15, and 20% v/v). The regulated pollutants and the particulate matter emissions were evaluated over the European ECE R47 driving cycle on the chassis dynamometer bench. Particulate matter was characterized in terms of total mass collected on filters and total number ofparticles in the range 7 nm-10 microm measured by electrical low-pressure impactor (ELPI). In addition, particle-phase polycyclic aromatic hydrocarbons (PAHs) emissions were evaluated to assess the health impact of the emitted particulate. Finally, an accurate morphological analysis was performed on the particulate by high-resolution transmission electron microscope (TEM) equipped with a digital image-processing/data-acquisition system. In general, CO emission reductions of 60-70% were obtained with 15 and 20% v/v ethanol blends, while the ethanol use did not reduce hydrocarbon (HC) and NOx emissions. No evident effect of ethanol on the particulate mass emissions and associated PAHs emissions was observed. Twenty-one PAHs were quantified in the particulate phase with emissions ranging from 26 to 35 microg/km and benzo[a]pyrene equivalent (BaPeq) emission factors from 2.2 to 4.1 microg/km. Both particulate matter and associated PAHs with higher carcinogenic risk were mainly emitted in the submicrometer size range (<0.1 microm). On the basis of the TEM observations, no relevant effect of the ethanol use on the particulate morphology was evidenced, showing aggregates composed ofprimary particles with mean diameters in the range 17.5-32.5 nm. PMID:22916436

  19. Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-04-01

    Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOX emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

  20. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... or, for diesel-cycle (or methanol-fueled vehicles, if selected), average hydrocarbon concentration of... exhaust sample corrected for background, water vapor, and CO2 extraction, in ppm. (B) COconc = COe −...

  1. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle... or, for diesel-cycle (or methanol-fueled vehicles, if selected), average hydrocarbon concentration of... exhaust sample corrected for background, water vapor, and CO2 extraction, in ppm. (B) COconc = COe −...

  2. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...=Total hydrocarbon concentration of the dilute exhaust sample or, for diesel-cycle (or methanol-fueled..., water vapor, and CO2 extraction, in ppm. (B) COconc = COe − COd(1 − (1/DF)). Where: (iv)(A) COe =...

  3. Identification of polycyclic aromatic hydrocarbons in unleaded petrol and diesel exhaust emission.

    PubMed

    Yadav, Vinay Kumar; Prasad, Sahdeo; Patel, Devendra K; Khan, Altaf Husain; Tripathi, Madhu; Shukla, Yogeshwer

    2010-09-01

    Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm(3) motor car and 3,455-cm(3) vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C(18) column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants. PMID:19629732

  4. Measurement of primary exhaust particulate matter emissions from light-duty motor vehicles. Final report

    SciTech Connect

    Whitney, K.A.

    1998-11-01

    An in-use fleet of 60 gasoline-fueled and 8 diesel-fueled vehicles was evaluated to characterize primary particulate exhaust emissions. The candidate vehicles included light-duty passenger cars and trucks, and passenger trucks with heavy-duty engines. The six visibly smoking gasoline-fueled vehicles were chosen from a pool of over 30 smoking vehicles because they emitted smoke during virtually all operating conditions (idle, acceleration, deceleration, and cruise). Primary particulate exhaust emission samples were characterized for total mass emission rate, PM-10, PM-2.5, organic and elemental carbon fraction, trace elements, sulfates, nitrates, and the presence of select polynuclear aromatics, hopanes, and steranes. In addition, particle mass size distribution and particle number concentration were measured for a subset of vehicles. Gaseous and particulate exhaust emissions were evaluated using the Federal Test Procedure (FTP).

  5. Diesel emission reduction using internal exhaust gas recirculation

    SciTech Connect

    He, Xin; Durrett, Russell P.

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  6. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... longer than the minimum useful life. (e) Applicability for testing. The duty-cycle emission standards in.... (2) Specify a longer useful life in hours for an engine family under either of two conditions: (i) If... Category 3 engines. (a) Duty-cycle standards. Exhaust emissions from your engines may not exceed...

  7. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance with non-duty-cycle standards, such as NTE standards. Note that your FELs are considered to be the... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  8. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance with non-duty-cycle standards, such as NTE standards. Note that your FELs are considered to be the... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  9. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compliance with non-duty-cycle standards, such as NTE standards. Note that your FELs are considered to be the... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  10. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance with non-duty-cycle standards, such as NTE standards. Note that your FELs are considered to be the... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  11. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) 87.82 Sampling and analytical procedures for measuring smoke...

  12. 40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading...

  13. 40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading...

  14. 40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading...

  15. 40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading...

  16. 40 CFR 89.111 - Averaging, banking, and trading of exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Averaging, banking, and trading of... ENGINES Emission Standards and Certification Provisions § 89.111 Averaging, banking, and trading of exhaust emissions. Regulations regarding the availability of an averaging, banking, and trading...

  17. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can...

  18. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can...

  19. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82... Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. This document can...

  20. 40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust emission standards for Category 1 engines and Category 2 engines. 1042.101 Section 1042.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND...

  1. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Durability demonstration procedures for exhaust emissions. 86.1823-08 Section 86.1823-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General...

  2. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Durability demonstration procedures for exhaust emissions. 86.1823-08 Section 86.1823-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General...

  3. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Durability demonstration procedures for exhaust emissions. 86.1823-08 Section 86.1823-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions...

  4. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Durability demonstration procedures for exhaust emissions. 86.1823-01 Section 86.1823-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General Compliance Provisions...

  5. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1)...

  6. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1)...

  7. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1)...

  8. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards for off-highway motorcycles? 1051.105 Section 1051.105 Protection of Environment ENVIRONMENTAL... off-highway motorcycles? (a) Apply the exhaust emission standards in this section by model year. Measure emissions with the off-highway motorcycle test procedures in subpart F of this part. (1)...

  9. Effects of outboard motor exhaust emissions on goldfish (Carassius auratus).

    PubMed

    Brenniman, G R; Anver, M R; Hartung, R; Rosenberg, S H

    1979-01-01

    Goldfish (Carassius auratus) were exposed to outboard exhaust products in water or to toluene (a constituent of outboard motor exhaust water) via a continuous flow bioassay dosing apparatus. Various physiologic and pathologic changes were noted. In the blood a consistent decrease (p less than 0.05) in the partial pressure of oxygen, a significant increase (p less than 0.05) in the partial pressures of carbon dioxide, and significant decreases (p less than 0.05) in pH and oxygen saturation were found in many of the blood gas experiments. Laboratory experiments also indicated that these fish are capable of metabolizing toluene to hippuric acid (p less than 0.05). Exposure up to 30 days to these exhaust products produced gross and microscopic lesions in the high-, intermediate-, and low-dose fish. Grossly, livers were smaller and pale; intestines were empty of ingesta and feces; and gills were coated excessively with mucus. Microscopically, the livers of the exposed fish had a decreased cytoplasmic:nuclear ratio, gill filaments were fused, and some kidneys had tubular vacuolization. PMID:528841

  10. A COMPREHENSIVE ANALYSIS OF BIODIESEL IMPACTS ON EXHAUST EMISSIONS

    EPA Science Inventory

    Existing emissions data from heavy-duty diesel engines was assembled into a database. Statistical regression analysis was used to correlate biodiesel concentration with changes in emissions of regulated and unregulated pollutants. The report concludes that biodiesel produces sm...

  11. 40 CFR 90.103 - Exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission... Phase 1 and Phase 2 nonroad spark ignition engines at or below 19 kilowatts (kW), shall not exceed...

  12. 40 CFR 90.103 - Exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission... Phase 1 and Phase 2 nonroad spark ignition engines at or below 19 kilowatts (kW), shall not exceed...

  13. 40 CFR 90.103 - Exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission... Phase 1 and Phase 2 nonroad spark ignition engines at or below 19 kilowatts (kW), shall not exceed...

  14. 40 CFR 90.103 - Exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission... Phase 1 and Phase 2 nonroad spark ignition engines at or below 19 kilowatts (kW), shall not exceed...

  15. 40 CFR 90.103 - Exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission... Phase 1 and Phase 2 nonroad spark ignition engines at or below 19 kilowatts (kW), shall not exceed...

  16. EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES

    EPA Science Inventory

    Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...

  17. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    PubMed

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372

  18. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    PubMed Central

    Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372

  19. [Emission characteristics of polycyclic aromatic hydrocarbons in exhaust particles from a diesel car].

    PubMed

    Tan, Pi-Qiang; Zhou, Zhou; Hu, Zhi-Yuan; Lou, Di-Ming

    2013-03-01

    The emission characteristics of polycyclic aromatic hydrocarbons (PAHs) in exhaust particles from a diesel car were studied. In the experiment, pure diesel fuel and B10 fuel with a biodiesel blend ratio of 10% were chosen. The gaseous emissions of HC, CO and NO(x) under New European Driving Cycle (NEDC) were measured, and exhaust particulate matter (PM) samples were analyzed by gas chromatography-mass spectrometry. The emission characteristics of PAHs in exhaust particles were highlighted. The results show that the emission concentrations of HC, CO, NO(x), and PM decreased when the diesel car used B10 fuel. Fluoranthene and pyrene were dominant in PAHs of PM emissions when the diesel car used pure diesel or B10 fuel. Compared to pure diesel, there was a slight increase in low-ring PAHs emissions when the diesel car used B10 fuel. On the contrary, PAHs emissions in middle and high-ring declined significantly. Besides, Benzo [ a] pyrene equivalent toxicity analysis results show that the BEQs of B10 fuel decreased by 21.6% compared to pure diesel. That means the toxicity of PAHs in exhaust particles declined when the diesel car used biodiesel fuel. PMID:23745427

  20. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... this section. See 40 CFR part 1036 for CH4 or N2O standards that apply to engines used in these... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements 1037.106 Exhaust emission standards for CO2 for...

  1. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... this section. See 40 CFR part 1036 for CH4 or N2O standards that apply to engines used in these... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements 1037.106 Exhaust emission standards for CO2 for...

  2. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... this section. See 40 CFR part 1036 for CH4 or N2O standards that apply to engines used in these... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements 1037.106 Exhaust emission standards for CO2 for...

  3. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of HC in exhaust gas. (A) For gasoline-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to hydrogen ratio of 1:1.85, at 20 °C (68 °F) and 101.3 kPa (760 mm...)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to...

  4. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of HC in exhaust gas. (A) For gasoline-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to hydrogen ratio of 1:1.85, at 20 °C (68 °F) and 101.3 kPa (760 mm...)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to...

  5. Influence of the methanol fuel composition on performance and exhaust emissions of diesel - Derived alcohol engines

    SciTech Connect

    Bartunek, B.; Hilger, U.; Scheid, E.; Rogers, G.W.

    1988-01-01

    This paper describes the application of straight alcohol fuel concepts to diesel engines while evaluating the influence of methanol fuel composition on performance and exhaust emission behavior. A thermodynamic analysis of the cylinder pressure was conducted and the exhaust emissions both, gaseous and particulate, were measured. The results show that, with respect to future emission standards and requirements for a very low emission engine concept for heavy duty application, alcohol fuels should contain the smallest concentration of higher alcohols and hydrocarbons possible. Alcohol fuels containing higher alcohols exhibit better self-ignition properties, but NO/sub x/, HC, and aldehyde emissions are also observed to increase over levels obtained with methanol. Of the straight methanol fuel concepts presented in this paper, only the glow plug assisted methanol engine is expected to meet the 1994 U.S. EPA heavy duty standards for gaseous and particulate emissions.

  6. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants.

    PubMed

    Ryu, Kyunghyun

    2010-01-01

    The aim of this study is to investigate the effects of antioxidants on the oxidation stability of biodiesel fuel, the engine performance and the exhaust emissions of a diesel engine. Biodiesel fuel used in the study was derived from soybean oil. The results show that the efficiency of antioxidants is in the order TBHQ>PrG>BHA>BHT>alpha-tocopherol. The oxidative stability of biodiesel fuel attained the 6-h quality standard with 100 ppm TBHQ and with 300 ppm PrG in biodiesel fuel. Combustion characteristics and exhaust emissions in diesel engine were not influenced by the addition of antioxidants in biodiesel fuel. The BSFC of biodiesel fuel with antioxidants decreased more than that of biodiesel fuel without antioxidants, but no trends were observed according to the type or amount of antioxidant. Antioxidants had few effects on the exhaust emissions of a diesel engine running on biodiesel. PMID:19525107

  7. A GIS-BASED MODAL MODEL OF AUTOMOBILE EXHAUST EMISSIONS

    EPA Science Inventory

    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation s...

  8. Motor vehicle exhaust emissions and control in Finland

    SciTech Connect

    Laurikko, J.

    1989-01-01

    This paper outlines the status and trends of atmospheric pollution in Finland caused by motor vehicles and evaluates the effect of the current regulatory policy. Details of new emission regulations for passenger cars and heavy duty vehicles are given. Research activities and items of particular concern like the effect of low ambient temperature on emissions are also discussed.

  9. Examination of Acute Pulmonary Responses to Various Cookstove Exhaust Emissions

    EPA Science Inventory

    Air pollution is a global public heath problem, to which the emissions from rudimentary cooking devices has been estimated to contribute significantly through the burning of various types of biomass. Notably, exposure to cookstove emissions (CE) has been linked to increases in mo...

  10. Visible light emission excited by interaction of space shuttle exhaust with the atmosphere

    SciTech Connect

    Ashley, G.; Twist, L. ); Elgin, J.B. ); Blaha, J.E. ); Murad, E.; Knecht, D.J.; Viereck, R.A.; Pike, C.P.; Kofsky, I.L; Trowbridge, C.A.; Rall, D.L.A.; Setayesh, A.; Stair, A.T. Jr.

    1990-11-01

    Ground-based video photography of firings of Space Shuttle Primary Reaction Control System (PRCS) engines show optical emissions extending nearly 4 km from the vehicle after steady state is reached. The total intensity and spatial distribution of these emissions depend on the angle between the spacecraft velocity vector and the engine exhaust axis. Candidate sources for this radiation are reviewed and the conclusion is reached that it is most likely due to vibrationally excited OH, formed by the reaction of fast ambient O atoms and H{sub 2}O molecules in the exhaust.

  11. Visible light emission excited by interaction of Space Shuttle exhaust with the atmosphere

    NASA Technical Reports Server (NTRS)

    Murad, E.; Knecht, D. J.; Viereck, R. A.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Ashley, G.; Twist, L.; Blaha, J. E.

    1990-01-01

    Ground-based video photography of firings of Space Shuttle Primary Reaction Control System (PRCS) engines show optical emissions extending nearly 4 km form the vehicle after steady state is reached. The total intensity and spatial distribution of these emissions depend on the angle between the spacecraft velocity vector and the engine exhaust axis. Candidate sources for this radiation are reviewed and the conclusion is reached that it is most likely due to vibrationally excited OH, formed by the reaction of fast ambient O atoms and H2O molecules in the exhaust.

  12. A survey of exposure to diesel engine exhaust emissions in the workplace.

    PubMed

    Groves, J; Cain, J R

    2000-09-01

    Forty sites were visited during a survey of exposures to diesel engine exhaust emissions. Personal and background exposure to gaseous components, respirable dust, elemental carbon, organic carbon and total carbon were measured and details of control systems were recorded. The results show a wide spread in exposure patterns reflecting the different work practices, job categories of employees and the control methods used. However, sites where fork-lift trucks were in use consistently produced the highest exposures. The survey results suggest that the measurement of elemental carbon could be used as an indicator of exposure to diesel engine exhaust emissions. PMID:10963708

  13. Emission of trans, trans-2,4-decadienal from restaurant exhausts to the atmosphere

    NASA Astrophysics Data System (ADS)

    Yang, Hsi-Hsien; Chien, Shu-Mei; Lee, Hui-Ling; Chao, Mu-Rong; Luo, Hong-Wei; Hsieh, Dennis P. H.; Lee, Wen-Jhy

    Cooking exhausts may contribute significant organic compounds to the atmosphere. It has been shown that trans, trans-2,4-decadienal ( tt-DDE) is an important toxic compound in cooking oil fumes (COF). In this study, the emissions of tt-DDE were quantified in both gaseous and particulate phases of three kinds of restaurant exhausts (Chinese, western and barbecue). Samples of exhausts were collected with a sampling system meeting the criteria of US EPA Modified Method 5. The tt-DDE was analyzed by HPLC-MS/MS. The results indicate that the emission factors of tt-DDE in terms of μg customer -1 were in sequence: barbecue (1990)>Chinese (570)>western (63.8). The average proportion of tt-DDE in the particulate phase of the exhausts was 83% for the 16 investigated restaurants. Evidently, the majority of tt-DDE in the exhausts was in the particulate phase. There was no evident correlation found between phase distribution of tt-DDE and exhaust temperature in the restaurants investigated. The efficiencies of removal of particulate tt-DDE by air pollution control devices (APCDs) were assessed. The removal efficiencies of electrostatic precipitator (ESP), ESP and activated carbon in series, and wet scrubber were 64.2%, 86.3% and 71.3%, respectively.

  14. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  15. Reducing environmental emissions in tanneries.

    PubMed

    van Groenestijn, J W; Langerwerf, J S A; Lucas, M

    2002-01-01

    Tanning, in particular chrome leather production, is still characterised by an inefficient use of raw material and the production of highly polluted wastewater and solid wastes. A part of the emissions can be prevented by introducing clean tanning technologies, the remaining emissions can be treated. Clean production technologies and waste (water) treatment technologies should have a designed complimentarity. Anaerobic wastewater treatment with recovery of sulfides, sulfur and energy (biogas) is a cornerstone in such integral clean chrome leather technology. PMID:12046670

  16. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  17. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. Conclusions A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions. PMID:24621126

  18. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  19. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  20. Multicomponent remote sensing of vehicle exhaust emissions by dispersive IR and UV spectroscopy

    NASA Astrophysics Data System (ADS)

    Baum, Marc M.; Kiyomiya, Eileen S.; Kumar, Sasi; Lappas, Anastasios M.; Lord, Harry C., III

    2000-12-01

    Direct remote sensing of vehicle exhaust emissions under real-world driving conditions is desirable for a number of reasons, including: identifying high emitters, investigating the chemical composition of the exhaust, and probing fast reactions in the plume. A remote sensor, incorporating IR and UV spectrometers, was developed. The IR spectrometer consists of a grating system mounted on a synchronous motor, optically interfaced to a room temperature PbSe detector. UV-vis measurements are made with a CCD array spectrometer. Eight optical passes through the exhaust plume allow rapid and sensitive monitoring of the exhaust stream emitted by moving vehicles on a car-by-car basis. The combination of these two techniques resulted in unprecedented, direct measurement capability of over 25 pollutants in the exhaust plume. Emissions from a fleet of vehicles powered by a range of fuels (gasoline, diesel, natural gas, and methanol) were tested. The exhaust from hot gasoline- and methanol-powered cars contained high levels of NH3, up to 1500 ppm. These emissions were up to 14 times higher than the corresponding NOx emissions. Unlike most previous work, NOx was measured as the sum of NO and NO2; N2O was also measured. Field testing at a southern California freeway on-ramp was conducted over a one week period, totaling >4,500 measurements. It was found that 66.4% of the emitted NH3 was produced by 10% of the fleet, following the (gamma) - distribution that has been reported for criteria pollutants. Mean NH3 emission rates were calculated at 138 mg km-1, nearly twice as high was previous estimates.

  1. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than diesel does. Major difference in both fuels is formaldehyde emission which drops by 23% on the average. Lower aldehyde emissions found in B20 correspond to lower ozone formation potentials. As a result, use of biodiesel in diesel engines has the beneficial effect in terms of aldehyde emissions.

  2. A comprehensive inventory of the ship traffic exhaust emissions in the Baltic Sea from 2006 to 2009.

    PubMed

    Jalkanen, Jukka-Pekka; Johansson, Lasse; Kukkonen, Jaakko

    2014-04-01

    This study addresses the exhaust emissions of CO₂, NO(x), SO(x), CO, and PM(2.5) originated from Baltic Sea shipping in 2006-2009. Numerical results have been computed using the Ship Traffic Emissions Assessment Model. This model is based on the messages of the automatic identification system (AIS), which enable the positioning of ships with a high spatial resolution. The NO(x) emissions in 2009 were approximately 7 % higher than in 2006, despite the economic recession. However, the SO(x) emissions in 2009 were approximately 14 % lower, when compared to those in 2006, mainly caused by the fuel requirements of the SO(x) emission control area (SECA) which became effective in May 2006, but affected also by changes in ship activity. Results are presented on the differential geographic distribution of shipping emissions before (Jan-April 2006) and after (Jan-April 2009) the SECA regulations. The predicted NO(x) emissions in 2009 substantially exceeded the emissions in 2006 along major ship routes and at numerous harbors, mostly due to the continuous increase in the number of small vessels that use AIS transmitters. Although the SO(x) emissions have been reduced in 2009 in most major ship routes, these have increased in the vicinity of some harbors and on some densely trafficked routes. A seasonal variation of emissions is also presented, as well as the distribution of emissions in terms of vessel flag state, type, and weight. PMID:23479266

  3. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  4. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    PubMed

    Westphal, Gtz A; Krahl, Jrgen; Munack, Axel; Ruschel, Yvonne; Schrder, Olaf; Hallier, Ernst; Brning, Thomas; Bnger, Jrgen

    2012-06-01

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced mutagenic effects most effectively in the gas phase. Mutagenicity of particle extracts was less efficiently diminished. No significant differences of mutagenic effects were observed among the tested fuels. In conclusion, the benefits of the DOC concern regulated emissions except NO(X) as well as nonregulated emissions such as the mutagenicity of the exhaust. The reduction of mutagenicity was particularly observed in the condensates of the gas phase. This is probably due to better accessibility of gaseous mutagenic compounds during the passage of the DOC in contrast to the particle-bound mutagens. Concerning the particulate emissions DOC especially decreased ultrafine particles. PMID:22587467

  5. Aromatic hydrocarbons emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Regulated emissions of biodiesel blends are reasonably well documented in several works, non-regulated emissions, on the contrary, lack research. In this work, mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs, respectively) emission tests were performed with a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5) and 20% (B20%). The main objective of this study is to investigate the effect of the biodiesel addition on the emission profile of MAHs and PAHs. The tests were conducted using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, in a steady-state condition under 1500 rpm. The PAHs were sampled with Teflon filters and XAD-2 cartridges and were identified by gaseous chromatograph coupled to a mass spectrometer (GC/MS) and quantified by flame ionization detection (GC/FID). The MAHs were sampled with active charcoal cartridges and analyzed by GC/FID. Both MAHs and PAHs filters and cartridges were extracted with dichloromethane in an ultrasonic bath. Ten PAHs and eight MAHs were identified and the average reduction of MAHs was 4.2% (B5), 8.2% (B5), and 21.1% (B20). The average reduction for PAHs was 2.7% (B2), 6.3% (B5), and 17.2% (B20). However, some PAHs and MAHs emissions increased because of/due to the biodiesel blends like phenanthrene, ethyl benzene, and trimethyl benzenes.

  6. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  7. Accuracy of exhaust emission factor measurements on chassis dynamometer.

    PubMed

    Joumard, Robert; Laurikko, Juhani; Le Han, Tuan; Geivanidis, Savas; Samaras, Zissis; Mertei, Tams; Devaux, Philippe; Andr, Jean-Marc; Cornelis, Erwin; Lacour, Stphanie; Prati, Maria Vittoria; Vermeulen, Robin; Zallinger, Michael

    2009-06-01

    To improve the accuracy, reliability, and representativeness of emission factors, 10 European laboratories worked together to study the influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer of 4 main categories: driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters. The results are based on (1) literature synthesis, (2) approximately 2700 specific tests with 183 vehicles, and (3) the reprocessing of more than 900 tests. These tests concern the regulated atmospheric pollutants and pre-Euro to Euro 4 vehicles. Of the 20 parameters analyzed, 7 seemed to have no effect, 7 were qualitatively influential, and 6 were highly influential (gearshift strategy, vehicle mileage, ambient temperature, humidity, dilution ratio, and driving cycle). The first four of the six were able to have correction factors developed for them. The results allow for the design of recommendations or guidelines for the emission factor measurement method. PMID:19603737

  8. Effect of gasoline composition on stoichiometry and exhaust emissions

    SciTech Connect

    McDonald, C.R.; Lee, G.R.; Otter, G.J. den; Shore, P.R.; Humphries, D.T.

    1994-10-01

    Six full range gasolines were tested in two engines (one with a catalyst) operated at 4 steady states. Engine-out regulated emissions responded to equivalence ratio, {Phi}, in the accepted manner. For both CO and NO{sub x}, there was a characteristic, single emissions response to changes in {Phi}. Changing fuel composition will primarily alter the production of these emissions by modifying the stoichiometric air/fuel ratio, projecting engine operation onto another part of the {Phi} response curve. These {Phi} effects, which are independent of engine design, also determine how operating conditions affect engine-out CO and NO{sub x}. Speciated hydrocarbon measurements at engine-out and tail-pipe confirm results seen in previous test-cycle based programmes. 24 refs., 11 figs., 3 tabs.

  9. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  10. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (1) Tier 1 standards. NOX emissions from model year 2004 and later engines with displacement of 2.5... Model year a THC+NOX g/kW-hr CO g/kW-hr PM g/kW-hr disp. model years listed indicate the model years for which the specified standards start....

  11. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (1) Tier 1 standards. NOX emissions from model year 2004 and later engines with displacement of 2.5... Model year a THC+NOX g/kW-hr CO g/kW-hr PM g/kW-hr disp. model years listed indicate the model years for which the specified standards start....

  12. 75 FR 67634 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Noise Emission Standards: Exhaust Systems'' in the Federal Register (75 FR 57191). The direct final rule... Federal Register (75 FR 57191). This rule eliminates turbochargers from the list of equipment considered... dissipative devices. FMCSA used the direct final rule procedures (75 FR 29915, May 28, 2010) because it was...

  13. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  14. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable...

  15. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable...

  16. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Averaging, banking, and trading of... Standards and Certification Provisions 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable...

  17. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable...

  18. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Averaging, banking, and trading of... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits. Regulations regarding averaging, banking, and trading provisions along with applicable...

  19. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine...

  20. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine...

  1. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles 86.1823-01 Durability demonstration procedures for exhaust emissions. This section applies to light-duty vehicles,...

  2. 40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles 86.1823-01 Durability demonstration procedures for exhaust emissions. This section applies to light-duty vehicles,...

  3. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle tests for fuel economy and exhaust emissions. 610.31 Section 610.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria 610.31 Vehicle tests for...

  4. SENSOR FOR MONITORING OF PARTICULATE EMISSIONS IN DIESEL EXHAUST GASES - PHASE I

    EPA Science Inventory

    Active Spectrum, Inc., proposes a novel, low-cost soot sensor for on-board measurement of soot emissions in diesel exhaust gases. The proposed technology is differentiated from existing methods by excellent sensitivity, high specificity to carbon particulates, and robustness ...

  5. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  6. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Calculation of average fuel economy and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures...

  7. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Automobiles-Test Procedures § 600.114-08 Vehicle-specific 5-cycle fuel economy and carbon... to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional... each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the...

  8. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method in which all gaseous compounds are absorbed before particles are collected, and in which the volatile compounds are derivatized, would improve the precision and the accuracy of the data.

  9. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.

    PubMed

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli

    2015-01-01

    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene). PMID:25302450

  10. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... individual engine was on or before December 31, 1999: Oxides of Nitrogen: (40+2(rPR)) grams/kilonewtons r0... after December 31, 1999: Oxides of Nitrogen: (32+1.6 (rPR)) grams/kilonewtons r0. (v) The emission... 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6 (rPR)) grams/kilonewtons rO. (B) That have a...

  11. 40 CFR 87.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31, 1999. Oxides of Nitrogen: (40 + 2(rPR)) grams/kilonewtons rO. (iv) Engines of a type or model of... Nitrogen: (32 + 1.6(rPR)) grams/kilonewtons rO. (v) The emission standards prescribed in paragraphs (d)(1... greater than 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6(rPR)) grams/kilonewtons rO. (2) Engines with...

  12. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... individual engine was on or before December 31, 1999: Oxides of Nitrogen: (40+2(rPR)) grams/kilonewtons r0... after December 31, 1999: Oxides of Nitrogen: (32+1.6 (rPR)) grams/kilonewtons r0. (v) The emission... 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6 (rPR)) grams/kilonewtons rO. (B) That have a...

  13. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2} which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  14. Reducing emissions from uranium dissolving

    SciTech Connect

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO[sub x] emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO[sub x] fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO[sub x] emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO[sub 2] which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  15. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi

    NASA Astrophysics Data System (ADS)

    Nagpure, Ajay Singh; Gurjar, B. R.; Kumar, Vivek; Kumar, Prashant

    2016-02-01

    Analysis of emissions from on-road vehicles in an Indian megacity, Delhi, have been performed by comparing exhaust emissions of gaseous, particulate matter and mobile source air toxics (MSATs), together with volatile organic compound (VOCs) and PM10 (particulate matter ≤10 μm) from non-exhaust vehicular sources, during the past (1991-2011) and future (2011-2020) scenarios. Results indicate that emissions of most of the pollutants from private vehicles (two wheelers and cars) have increased by 2- to 18-times in 2020 over the 1991 levels. Two wheelers found to be dominating the emissions of carbon monoxide (CO, 29-51%), hydrocarbons (HC, 45-73%), acetaldehyde (46-51%) and total poly aromatic hydrocarbons (PAHs, 37-42%). Conversely, private cars were found to be responsible for the majority of the carbon dioxide (CO2, 24-42%), 1,3-butadiene (72-89%), benzene (60-82%), formaldehyde (23-44%) and total aldehyde (27-52%) between 1991 and 2011. The heavy-duty commercial vehicles (HCVs) shows their accountability for most of the nitrogen oxide (NOx, 18-41%) and PM10 (33-43%) emissions during the years 1991-2011. In terms of PM10 emissions, vehicular exhaust contributed by 21-55%, followed by road dust (42-73%) and brake wear (3-5%) between 1991 and 2011. After 2002, non-exhaust emissions (e.g. road dust, brake wear and tyre wear) together indicate higher accountability (66-86%) for PM10 emission than the exhaust emissions (14-34%). The temporal trend of emissions of NOx and CO show reasonable agreement with available ambient air concentrations that were monitored at locations, significantly influenced by vehicular activity. Encouraging results were emerged, showing a good correlation coefficient for CO (0.94) and NOx (0.68).

  16. Catalytic converters for exhaust emission control of commercial equipment powered by internal combustion engines.

    PubMed Central

    Cohn, J G

    1975-01-01

    The development of PTX, monolithic catalytic exhaust purifiers, is outlined, and their first use for exhaust emissions control of commercial equipment is described. The main use of PTX converters is on forklift trucks. The purification achievable with PTX-equipped fork-lift trucks under various operational conditions is discussed, and examples from the field are given. During more than ten years of operation, no adverse health effects have been reported, and PTX-equipped internal combustion engines appear safe for use in confined areas. PMID:50933

  17. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  18. Reducing Emissions from Uranium Dissolving

    SciTech Connect

    Griffith, W.L.

    1992-01-01

    This study was designed to assess the feasibility of decreasing NO{sub x} emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. The trays are steam coil heated. The process has operated satisfactorily, with few difficulties, for decades. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO{sub x} fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO{sub x} emissions. Because NO{sub x} is hazardous, fumes should be suppressed whenever the electric blower system is inoperable. Because the tray dissolving process has worked well for decades, as much of the current capital equipment and operating procedures as possible were preserved. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO{sub 2}, which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered.

  19. Assessment for Fuel Consumption and Exhaust Emissions of China's Vehicles: Future Trends and Policy Implications

    PubMed Central

    Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 20202050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NOx, and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 20172021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524

  20. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry. PMID:23365524

  1. Costs and benefits of an enhanced reduction policy of particulate matter exhaust emissions from road traffic in Flanders

    NASA Astrophysics Data System (ADS)

    Schrooten, Liesbeth; De Vlieger, Ina; Lefebre, Filip; Torfs, Rudi

    We demonstrate that accelerated policies beyond the steady improvement of technologies and the fleet turnover are not always justified by assumptions about health benefits. Between the years 2000 and 2010, particulate matter (PM) exhaust emissions from traffic in Flanders, a region of Belgium, will be reduced by about 44% without taking any extra reduction measures (baseline scenario). The PM emissions from road traffic were calculated using the MIMOSA model. Furthermore, we explored a range of options to increase attempts to reduce PM exhaust emission from traffic in 2010. When installing particle filters on heavy-duty trucks and buses, introducing biodiesel and diesel/hybrid cars, as well as slowing down the increase of private diesel cars, only an extra reduction of about 8% PM can be achieved in Flanders. The costs to achieve this small reduction are very high. To justify these costs, benefits for public health have been calculated and expressed in external costs. We demonstrate that only an enhanced effort to retrofit trucks and buses with particle filters has a net benefit. We have used Monte Carlo techniques to test the validity of this conclusion. It is concluded that a local or national policy that goes beyond European policies is not always beneficial and that additional measures should be assessed carefully.

  2. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  3. Effects of equivalence ratio and dwell time on exhaust emissions from an experimental premixing prevaporizing burner

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1975-01-01

    A flame-tube study was performed to determine the effects of equivalence ratio and residence time on exhaust emissions with premixed, prevaporized propane fuel. Nitrogen oxides emissions as low as 0.3 g NO2/kg fuel were measured with greater than 99 percent combustion efficiency at 800 K inlet temperature and an equivalence ratio of 0.4. For a constant combustion efficiency, lower nitrogen oxides emissions were obtained by burning very lean with relatively long residence times than by using somewhat higher equivalence ratios with shorter times.

  4. Effects of equivalence ratio and dwell time on exhaust emissions from an experimental premixing prevaporizing burner

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1974-01-01

    A flame-tube study was performed to determine the effects of equivalence ratio and residence time on exhaust emissions with premixed, prevaporized propane fuel. Nitrogen oxides emissions as low as .3 g NO2/kg fuel were measured with greater than 99% combustion efficiency at 800 K inlet temperature and an equivalence ratio of .4. For a constant combustion efficiency, lower nitrogen oxides emissions were obtained by burning very lean with relatively long residence times than by using somewhat higher equivalence ratios with shorter times.

  5. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net...

  6. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net...

  7. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net...

  8. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitronaphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  9. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  10. Assessment of benzene and toluene emissions from automobile exhaust in Bangkok.

    PubMed

    Muttamara, S; Leong, S T; Lertvisansak, I

    1999-07-01

    The use of unleaded gasoline, together with an increase in the number of vehicles in Bangkok, has significantly influenced benzene and toluene concentrations in vehicular emissions and contributes to the air pollution problem. As a matter of practical necessity, a quick test program is done for the measurement of emission concentrations/rates for vehicles driven on the road. Exhaust emission measurement at idle mode was conducted in a fleet of 12 vehicles of different model years and manufacturers. The study revealed that the benzene and toluene concentrations in the exhaust effluent averaged 4.4-22.02 and 12.24-44.75 mg/m3, respectively for 1990-1992 cars and decreased to 0.76-4.14 and 0.89-6.26 mg/m3, respectively for 1994-1995 cars. In another study, exhaust emission measurement on a chassis dynamometer was carried out in a fleet of nine selected, in-use cars. It was observed that benzene and toluene emission rates were considerably higher-in the range of 70.84-85.82 and 354.15- 429.00 mg/km, respectively, for 1990-1991 model year cars. Lower benzene and toluene emission rates of 0.43-95.07 and 2. 15-475.35 mg/km, respectively, were represented by newer cars with model years 1994-1995. These results indicated that there was a significant increase in benzene and toluene emission concentrations and rates with increasing car mileage and model year. The finding also revealed that only 28% of the tested vehicles complied to the approved emission standard. PMID:10361023

  11. Two-Stage Combustor Reduces Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1982-01-01

    By controlling fuel-to-air ratio of local reactants, pollutant emissions would be minimized in a proposed two-stage combustor for gas-turbine engines. It would use fuel-rich partial-oxidation stage and air-rich combustion stage to reduce emissions of nitrogen oxide, carbon monoxide and hydrocarbons. Combustor fuel-lean burning limit would be extended simultaneously.

  12. US Coast Guard/US Maritime Administration Cooperative Research on marine engine exhaust emissions. Marine exhaust emissions measurement of the M/V Kings Pointer. Final report

    SciTech Connect

    Allen, S.J.; Bentz, A.P.

    1996-07-01

    This report presents the results of emissions testing conducted on board the M/V KINGS POINTER in May 1995. The objective of this testing was to conduct baseline instrumentation, monitoring, and evaluation of the engine exhaust emissions as part of joint U.S. Coast Guard/Maritime Administration cooperative research on controlling air pollution from ships. The U.S. Coast Guard`s interest in emissions testing arises from both its desire to meet all federal and state air quality regulations and the fact that in the future it may be called upon to enforce regulations in the marine environment. The U.S. Maritime Administration`s interest in this and related research is based on its efforts to assure that its vessels and those of the privately-owned U.S. Flag Merchant Marine can comply with future air pollution control requirements. Underway tests were conducted of the 224-foot M/V KINGS POINTER in which two of its four diesel-electric generators were sampled for NO, NO2, CO, and SO2 in the exhaust. Additional data on fuel flow and power output were collected at five speeds over the full range of vessel operating ranges. NOx values were calculated and compared with standards proposed by the Environmental Protection Agency (EPA) and the International Maritime Organization (IMO). Results showed that average NOx values were 9.4 g/kWh which is slightly below the 10.9 g/kWh upper limit or cap that is being proposed by the IMO for a diesel engine with a rated speed of 1200 RPM. Additional conclusions and recommendations on the technique of portable emissions monitoring instrumentation are made.

  13. Emissions in the exhaust of fishing boats after adding viscous agents into fuel oils.

    PubMed

    Hsieh, Lien-Te; Shih, Shun-I; Lin, Sheng-Lun; Yang, Tsun-Lirng; Wu, Tser-Son; Hung, Chung-Hsien

    2009-12-20

    In order to avoid the illegal use of fishing boat fuel A (FBFA) by traveling diesel vehicles (TDVs) in Taiwan, alternatives that are easily distinguished from premium diesel fuel (PDF) were prepared to evaluate their suitability. Two new ingredients, pyrolysis fuel oil (PFO) and residue of desulfurization unit (RDS), were added into FBFA and formed PFO0.5 and RDS0.5, respectively. Along with FBFA, these three fuels were analyzed for their chemical and physical properties. Furthermore, they were used by three fishing boats with different sizes, output powers, and weights. The engine performances and pollutant emissions were examined and monitored. Experimental results show that there are significant differences in appearance between PDF and the two new blended fuels (PFO0.5 and RDS0.5), and thus misuse or illegal use of FBFA could be substantially reduced. The fuel consumption, which is negatively related to the heating value of fuels, is in order of FBFAemissions, while the PM emission factors (g bhp(-1) h(-1) and g L(-1)-fuel) were reduced by approximately 36% and 33%, respectively. Owing to the higher total aromatic content in PFO0.5 and RDS0.5, total-PAH concentrations in the exhausts from the three fishing boats using PFO0.5 and RDS0.5 were slightly (1.2 and 1.1 times, respectively) higher than for those using FBFA. Nevertheless, the estimated total BaP(eq) from the three fishing boats using RDS0.5 was 27.5, 19.5, and 8.25% lower than those using FBFA. With using PFO0.5, they were totally different, at 23.5, 2.79, and 2.58% higher. With regard to looking different to PDF, RDS0.5 is superior to PFO0.5, and is thus recommended as a better alternative to FBFA, particularly because it can help lower more emissions of CO, NO(x), PM and BaP(eq). PMID:19846209

  14. Vitamin D3 Reduces Tissue Damage and Oxidative Stress Caused by Exhaustive Exercise

    PubMed Central

    Ke, Chun-Yen; Yang, Fwu-Lin; Wu, Wen-Tien; Chung, Chen-Han; Lee, Ru-Ping; Yang, Wan-Ting; Subeq, Yi-Maun; Liao, Kuang-Wen

    2016-01-01

    Exhaustive exercise results in inflammation and oxidative stress, which can damage tissue. Previous studies have shown that vitamin D has both anti-inflammatory and antiperoxidative activity. Therefore, we aimed to test if vitamin D could reduce the damage caused by exhaustive exercise. Rats were randomized to one of four groups: control, vitamin D, exercise, and vitamin D+exercise. Exercised rats received an intravenous injection of vitamin D (1 ng/mL) or normal saline after exhaustive exercise. Blood pressure, heart rate, and blood samples were collected for biochemical testing. Histological examination and immunohistochemical (IHC) analyses were performed on lungs and kidneys after the animals were sacrificed. In comparison to the exercise group, blood markers of skeletal muscle damage, creatine kinase and lactate dehydrogenase, were significantly (P < 0.05) lower in the vitamin D+exercise group. The exercise group also had more severe tissue injury scores in the lungs (average of 2.4 ± 0.71) and kidneys (average of 3.3 ± 0.6) than the vitamin D-treated exercise group did (1.08 ± 0.57 and 1.16 ± 0.55). IHC staining showed that vitamin D reduced the oxidative product 4-Hydroxynonenal in exercised animals from 20.6% to 13.8% in the lungs and from 29.4% to 16.7% in the kidneys. In summary, postexercise intravenous injection of vitamin D can reduce the peroxidation induced by exhaustive exercise and ameliorate tissue damage, particularly in the kidneys and lungs. PMID:26941574

  15. Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel-biodiesel blends

    NASA Astrophysics Data System (ADS)

    Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.

    2015-11-01

    A comparative morphological analysis was performed on the exhaust particles emitted from a CI engine using different blending ratios of palm biodiesel at several operating conditions. It was observed from this experiment; peak particle concentration for PB10 at 1200 rpm is 1.85E + 02 and at 1500 rpm is 2.12E + 02. A slightly smaller amount of volatile material has found from the biodiesel samples compared to the diesel fuel sample. Thermogravimetric analysis (TGA) showed that the amount of volatile material in the soot from biodiesel fuels was slightly lower than that of diesel fuel. PB20 biodiesel blends reduced maximum 11.26% of volatile matter from the engine exhaust, while PB10 biodiesel blend reduced minimum 5.53% of volatile matter. On the other hand, the amount of fixed carbon from the biodiesel samples was slightly higher than diesel fuel. Analysis of carbon emissions, palm biodiesel (PB10) reduced elemental carbon (EC) was varies 0.75%-18%, respectively. Similarly, the emission reduction rate for PB20 was varies 11.36%-23.46% respectively. While, organic carbon (OC) emission rates reduced for PB20 was varied 13.7-49% respectively. Among the biodiesel blends, PB20 exhibited highest oxygen (O), sulfur (S) concentration and lowest silicon (Si) and iron (Fe) concentration. Scanning electron microscope (SEM) images for PB20 showed granular structure particulates with bigger grain sizes compared to diesel. Particle diameter increased under the 2100-2400 rpm speed condition and it was 8.70% higher compared to the low speed conditions. Finally, the results indicated that the composition and degree of unsaturation of the methyl ester present in biodiesel, play an important role in the chemical composition of particulate matter emissions.

  16. Comparison of exhaust emissions resulting from cold- and hot-start motorcycle driving modes.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Ye, Hui-Fen; Chiang, Hung-Lung

    2009-11-01

    This study investigated the emissions of criteria air pollutants (carbon monoxide [CO], hydrocarbons [HCs], and oxides of nitrogen [NOx]) from motorcycle exhaust at cold- and hot-start driving cycles on a chassis dynamometer. Seven four-stroke carburetors and two fuel-injection motorcycles were tested. As expected, the emission factors (g/km) of CO and HCs increased during cold-start driving. The ratio of emission factors (g/km) for cold- and hot-start driving cycles ranged from 1.1-1.5 (for CO) to 1.2-2.8 (for HCs). However, the difference of NOx emissions between the cold- and hot-start cycles was not pronounced. Further, the cold-/hot-start ratios of CO and HCs from 50-cm3 motorcycles were higher than those of 100- and 125-cm3 motorcycles; however, the carbon dioxide (CO2) emission was the lowest for the four-stroke motorcycles. High engine temperature and poor combustion efficiency of smaller cylinder-capacity motorcycles may contribute a significant amount of exhaust emission. Additionally, the fuel-base emission factor (g/L-fuel) ratios were low compared with the distance-base emission factor (g/km) in cold- and hot-start driving. This indicates that the effect of catalyst efficiency was greater than the effect of fuel combustion in the tested motorcycles. A comparison of emission ratios of motorcycles and passenger cars shows that the warm-up may be more important for cars, especially under low-temperature conditions. However, the motorcycle contributes a large proportion of CO and HC emissions in many Asian counties. The difference between cold- and hot-start emissions may affect inventory PMID:19947115

  17. Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Winijkul, Ekbordin; Bond, Tami C.; Streets, David G.

    2014-04-01

    Estimates of future emissions are necessary for understanding the future health of the atmosphere, designing national and international strategies for air quality control, and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so, thus it is important to quantify the uncertainty inherent in emission projections. This paper is the second in a series that seeks to establish a more mechanistic understanding of future air pollutant emissions based on changes in technology. The first paper in this series (Yan et al., 2011) described a model that projects emissions based on dynamic changes of vehicle fleet, Speciated Pollutant Emission Wizard-Trend, or SPEW-Trend. In this paper, we explore the underlying uncertainties of global and regional exhaust PM emission projections from on-road vehicles in the coming decades using sensitivity analysis and Monte Carlo simulation. This work examines the emission sensitivities due to uncertainties in retirement rate, timing of emission standards, transition rate of high-emitting vehicles called superemitters, and emission factor degradation rate. It is concluded that global emissions are most sensitive to parameters in the retirement rate function. Monte Carlo simulations show that emission uncertainty caused by lack of knowledge about technology composition is comparable to the uncertainty demonstrated by alternative economic scenarios, especially during the period 2010-2030.

  18. The role of sulfur emission in volatile particle formation in jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Krcher, B.; Fahey, D. W.

    Recent in-situ emission measurements of the Concorde in the lower stratosphere point to a surprisingly efficient conversion of fuel sulfur to H2SO4 in the exhaust plume. By means of a comprehensive model, the formation and evolution of aerosol particles and precursors are calculated in the diluting aircraft wake. The results provide strong evidence that high levels of SO3 present in the nascent plume are required to explain the observations of large numbers of nanometer-sized aerosols. Limiting particle formation at emission to keep potential chemical effects on stratospheric ozone small will require control of the sulfur oxidation kinetics during fuel combustion. The similarities between super- and subsonic exhaust plumes suggest that the presence of SO3 in the latter will also be a key limiting factor in new aerosol production.

  19. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    NASA Astrophysics Data System (ADS)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during the first minutes of the cycle, before the light-off of the Three-Way Catalyst (TWC). Less ammonia has been emitted with ethanol fuel, in particular in low ambient condition (E75 versus E5). Ammonia is a harmful compound for human health and vegetation, and is a precursor of secondary aerosol. Even if agricultural activities are the main source of anthropogenic ammonia, the contribution from the transport sector increases significantly during the cold season. Consequently, using high concentrated ethanol as fuel may have a positive impact on ammonia emission in urban area. However, ethanol fuel had a negative impact on formaldehyde and acetaldehyde. The latter together with methane was notably emitted in low ambient temperature, in comparison with gasoline fuel (E5). Moreover, the OFP at -7°C was influenced by the amount of ethanol in gasoline, mainly because of the increase of ozone precursors linked to ethanol (ethylene, acetylene, and acetaldehyde). Even if ozone concentration levels are generally lower during the cold seasons these results show that the issue should be considered globally before promoting the use of high concentrated ethanol fuel in a large scale.

  20. Analysis of alternative pathways for reducing nitrogen oxide emissions

    EPA Science Inventory

    Strategies for reducing tropospheric ozone typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the ...

  1. Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  2. [Emission Characteristics of Vehicle Exhaust in Beijing Based on Actual Traffic Flow Information].

    PubMed

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Qu, Song

    2015-08-01

    The basic data of traffic volume, vehicle type constitute and speed on road networks in Beijing was obtained fly modei simulation and field survey. Based on actual traffic flow information and. emission factors data with temporal and spatial distribution features, emission inventory of motor vehicle exhaust in Beijing was built on the ArcGIS platform, meanwhile, the actual road emission characteristics and spatial distribution of the pollutant emissions were analyzed. The results showed that the proportion of passenger car was higher than 89% on each type of road in the urban, and the proportion of passenger car was the highest in suburban roads as well while the pickup truck, medium truck, heavy truck, motorbus, tractor and motorcycle also occupied a certain proportion. There was a positive correlation between the pollutant emission intensity and traffic volume, and the emission intensity was generally higher in daytime than nighttime, but the diurnal variation trend of PM emission was not clear for suburban roads and the emission intensity was higher in nighttime than daytime for highway. The emission intensities in urban area, south, southeast and northeast areas near urban were higher than those in the western and northern mountainous areas with lower density of road network. The ring roads in urban and highways in suburban had higher emission intensity because of the heavy traffic volume. PMID:26592000

  3. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T.

    2012-03-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the positioning of ship emissions with a high spatial resolution (typically a few tens of metres). The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM) and carbon monoxide (CO). The presented Ship Traffic Emissions Assessment Model (STEAM2) allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. We have also compared the annually averaged emission values with those of the corresponding EMEP inventory, As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions of the Baltic Sea surrounding the Danish Straits.

  4. Compensation of the exhaust gas transport dynamics for accurate instantaneous emission measurements.

    PubMed

    Ajtay, Delia; Weilenmann, Martin

    2004-10-01

    Instantaneous emission models of vehicles describe the amount of emitted pollutants as a function of the driving state of the car. Emission measurements of chassis dynamometer tests with high time resolution are necessary for the development of such models. However, the dynamics of gas transport in both the exhaust system of the car and the measurement line last significantly longer than 1 s. In a simplified approach, the transport dynamics can be divided into two parts: a perfect time delay, corresponding to a piston-like transport of the exhaust gas, and a dynamic part, corresponding to the mixing of gases by turbulence along the way. This determines the occurrence of emission peaks that are longer in time and lower in height at the analyzer than they actually are in the vehicle at their location of formation. It is shown here how the sharp emission signals at their location of formation can be reconstructed from the flattened emission signals recorded at the analyzer by using signal theory approaches. A comparison between the reconstructions quality when using the raw or the dilution analyzer system is also given. PMID:15506210

  5. On-road measurement of particle emission in the exhaust plume of a diesel passenger car.

    PubMed

    Vogt, Rainer; Scheer, Volker; Casati, Roberto; Benter, Thorsten

    2003-09-15

    Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated. PMID:14524437

  6. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Review of fuel economy, CO2 emissions... emissions, and carbon-related exhaust emission data, testing by the Administrator. (a) Testing by the... the 2013 model year for CO2 emissions, the evaluations, testing, and test data described in...

  7. Characterization of polycyclic aromatic hydrocarbons and carbonyl compounds in diesel exhaust emissions.

    PubMed

    Mabilia, Rosanna; Cecinato, Angelo; Tomasi Scian, Maria Concetta; Di Palo, Vincenzo; Possanzini, Massimiliano

    2004-01-01

    Exhaust emissions from a recent model heavy-duty diesel vehicle (city bus) in a chassis dynamometer were measured during a transient driving cycle. Particle-bound polycyclic aromatic hydrocarbons (PAHs) and gaseous carbonyls, substances that create health hazards and are, as yet, unregulated were collected, the former on filters and the latter on dinitrophenylhydrazine (DNPH)-coated silica cartridges and analysed by GC-MS and HPLC, respectively. PAH emission rates decreased with the number of benzene fused rings. They averaged 0.2 mg km(-1) for a total of 11 PAHs ranging from fluoranthene to benzo(ghi)perylene. Fluoranthene and pyrene accounted for 90% of total PAHs. The sum of emission rates of C1 approximately C6 carbonyls averaged 174 mg km(-1), even if formaldehyde alone represented approximately 70% of the total carbonyl mass, followed by acetaldehyde (13%). Results obtained were compared with emission data reported in previous studies. PMID:15506624

  8. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T.

    2011-08-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the positioning of ship emissions with a high spatial resolution (typically a few metres). The model also takes into account the detailed technical data of each individual vessel. The previously developed model was applicable for evaluating the emissions of NOx, SOx and CO2. This paper addresses a substantial extension of the modelling system, to allow also for the mass-based emissions of particulate matter (PM) and carbon monoxide (CO). The presented Ship Traffic Emissions Assessment Model (STEAM2) allows for the influences of accurate travel routes and ship speed, engine load, fuel sulphur content, multiengine setups, abatement methods and waves. We address in particular the modeling of the influence on the emissions of both engine load and the sulphur content of the fuel. The presented methodology can be used to evaluate the total PM emissions, and those of organic carbon, elemental carbon, ash and hydrated sulphate. We have evaluated the performance of the extended model against available experimental data on engine power, fuel consumption and the composition-resolved emissions of PM. As example results, the geographical distributions of the emissions of PM and CO are presented for the marine regions surrounding the Danish Straits.

  9. 40 CFR 1039.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... place than the applicable standard. (2) Multiplicative deterioration factor for exhaust emissions. Use a... place than the applicable standard. Apply the deterioration factor to the official emission result,...

  10. Dilution rates for tailpipe emissions: effects of vehicle shape, tailpipe position, and exhaust velocity.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The rate at which motor vehicle exhaust undergoes dilution with ambient air will greatly affect the size distribution characteristics of the particulate emissions. Wind tunnel experiments were conducted to investigate the impacts of vehicle shape, tailpipe orientation, and exhaust exit velocity on the dilution profiles under steady driving conditions for three model vehicles: a light-duty truck, a passenger car, and a heavy-duty tractor head. A three dimensional array of 60 sensors provided simultaneous measurements of dilution ratios for the emissions in the near- and far-wake regions downstream of the vehicle. The processes underlying the observations were investigated via nondimensionalization. Many of the trends seen substantially downstream can be well generalized using a simple nondimensionalization technique; however, this is not true in the near-wake region (within a downstream distance equivalent to a few vehicle heights). In the near-wake region, using the vehicle width and length to normalize for the vehicle shape is not enough to fully account for the variations seen. Including the exhaust flow rate in the nondimensionalization process is effective further downwind but does not adequately capture the complexity in the near-wake region. Tailpipe orientation and location are also shown to be influential factors affecting the near-wake dilution characteristics. PMID:19603739

  11. Emission factor of exhaust gas constituents during the pyrolysis of zinc chloride immersed biosolid.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung; Chiu, Hua-Hsien

    2013-08-01

    Pyrolysis enables ZnCl2 immersed biosolid to be reused, but some hazardous air pollutants are emitted during this process. Physical characteristics of biosolid adsorbents were investigated in this work. In addition, the constituents of pyrolytic exhaust were determined to evaluate the exhaust characteristics. Results indicated that the pyrolytic temperature was higher than 500 C, the specific surface area was >900 m(2)/g, and the total pore volume was as much as 0.8 cm(3)/g at 600 C. For non-ZnCl2 immersed biosolid pyrolytic exhaust, VOC emission factors increased from 0.677 to 3.170 mg-VOCs/g-biosolid with the pyrolytic temperature increase from 400 to 700 C, and chlorinated VOCs and oxygenated VOCs were the dominant fraction of VOC groups. VOC emission factors increased about three to seven times, ranging from 1.813 to 21.448 mg/g for pyrolytic temperatures at 400-700 C, corresponding to the mass ratio of ZnCl2 and biosolid ranging from 0.25-2.5. PMID:23471775

  12. Combustor exhaust-emissions and blowout-limits with diesel number 2 and Jet A fuels utilizing air-atomizing and pressure-atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    The effect of fuel properties on exhaust emissions and blowout limits of a high-pressure combustor segment is evaluated using a splash-groove air-atomizing fuel injector and a pressure-atomizing simplex fuel nozzle to burn both diesel number 2 and Jet A fuels. Exhaust emissions and blowout data are obtained and compared on the basis of the aromatic content and volatility of the two fuels. Exhaust smoke number and emission indices for oxides of nitrogen, carbon monoxide, and unburned hydrocarbons are determined for comparison. As compared to the pressure-atomizing nozzle, the air-atomizing nozzle is found to reduce nitrogen oxides by 20%, smoke number by 30%, carbon monoxide by 70%, and unburned hydrocarbons by 50% when used with diesel number 2 fuel. The higher concentration of aromatics and lower volatility of diesel number 2 fuel as compared to Jet A fuel appears to have the most detrimental effect on exhaust emissions. Smoke number and unburned hydrocarbons are twice as high with diesel number 2 as with Jet A fuel.

  13. Exhaust emission calibration of two J-58 afterburning turbojet engines at simulated high-altitude, supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  14. Characteristics of volatile organic compounds from motorcycle exhaust emission during real-world driving

    NASA Astrophysics Data System (ADS)

    Tsai, Jiun-Horng; Huang, Pei-Hsiu; Chiang, Hung-Lung

    2014-12-01

    The number of motorcycles has increased significantly in Asia, Africa, Latin American and Europe in recent years due to their reasonable price, high mobility and low fuel consumption. However, motorcycles can emit significant amounts of air pollutants; therefore, the emission characteristics of motorcycles are an important consideration for the implementation of control measures for motorcycles in urban areas. Results of this study indicate that most volatile organic compound (VOC) emission factors were in the range of several decades mg/km during on-road driving. Toluene, isopentane, 1,2,4-trimethylbenzene, m,p-xylene, and o-xylene were the most abundant VOCs in motorcycle exhaust, with emission factors of hundreds mg/km. Motorcycle exhaust was 15.4 mg/km for 15 carbonyl species. Acetaldehyde, acetone, formaldehyde and benzaldehyde were the major carbonyl species, and their emission factors ranged from 1.4 to 3.5 mg/km 1,2,4-trimethylbenzene, m,p-xylene, 1-butene, toluene, o-xylene, 1,2,3-trimethylbenzene, propene, 1,3,5-trimethylbenzene, isoprene, m-diethylbenzene, and m-ethyltoluene were the main ozone formation potential (OFP) species, and their OFP was 200 mg-O3/km or higher.

  15. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok.

    PubMed

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana

    2009-01-01

    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods. PMID:20108661

  16. Gaseous exhaust emissions from a JT8D-109 turbofan engine at simulated cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Holdeman, J. D.

    1975-01-01

    Gaseous emissions from a JT8D-109 turbofan engine were measured in an altitude facility at four simulated cruise flight conditions: Mach 0.8 at altitudes of 9.1, 10, 7, and 12.2 km and Mach 0.9 at 10.7 km. Engine inlet air temperature was held constant at 283 K for all tests. Emissions measurements were made at nominally 6 cm intervals across the horizontal diameter of the engine exhaust nozzle with a single-point traversing gas sample probe. Measured emissions of decreased with increasing altitude from an emission index of 10.4 to one of 8.3, while carbon monoxide increased with increasing altitude from an emission index of 1.6 to one of 4.4. Unburned hydrocarbon emissions were essentially negligible for all flight conditions. Since the engine inlet air temperatures were not correctly simulated, the NOx emission indices were corrected to true altitude conditions by using correlating parameters for changes in combustor inlet temperature, pressure, and temperature rise. The correction was small at the lowest altitude. At the 10.7 and 12.2 km, Mach 0.8 test conditions the correction decreased the measured values by 1 emission index.

  17. Efficiency of automotive cabin air filters to reduce acute health effects of diesel exhaust in human subjects

    PubMed Central

    Rudell, B.; Wass, U.; Horstedt, P.; Levin, J. O.; Lindahl, R.; Rannug, U.; Sunesson, A. L.; Ostberg, Y.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: To evaluate the efficiency of different automotive cabin air filters to prevent penetration of components of diesel exhaust and thereby reduce biomedical effects in human subjects. Filtered air and unfiltered diluted diesel exhaust (DDE) were used as negative and positive controls, respectively, and were compared with exposure to DDE filtered with four different filter systems. METHODS: 32 Healthy non- smoking subjects (age 21-53) participated in the study. Each subject was exposed six times for 1 hour in a specially designed exposure chamber: once to air, once to unfiltered DDE, and once to DDE filtered with the four different cabin air filters. Particle concentrations during exposure to unfiltered DDE were kept at 300 micrograms/m3. Two of the filters were particle filters. The other two were particle filters combined with active charcoal filters that might reduce certain gaseous components. Subjective symptoms were recorded and nasal airway lavage (NAL), acoustic rhinometry, and lung function measurements were performed. RESULTS: The two particle filters decreased the concentrations of diesel exhaust particles by about half, but did not reduce the intensity of symptoms induced by exhaust. The combination of active charcoal filters and a particle filter significantly reduced the symptoms and discomfort caused by the diesel exhaust. The most noticable differences in efficacy between the filters were found in the reduction of detection of an unpleasant smell from the diesel exhaust. In this respect even the two charcoal filter combinations differed significantly. The efficacy to reduce symptoms may depend on the abilities of the filters investigated to reduce certain hydrocarbons. No acute effects on NAL, rhinometry, and lung function variables were found. CONCLUSIONS: This study has shown that the use of active charcoal filters, and a particle filter, clearly reduced the intensity of symptoms induced by diesel exhaust. Complementary studies on vehicle cabin air filters may result in further diminishing the biomedical effects of diesel exhaust in subjects exposed in traffic and workplaces. PMID:10450238

  18. Ten Recommendations for Reducing Carbon Emissions

    NASA Astrophysics Data System (ADS)

    2007-04-01

    Former U.S. Vice President Al Gore testified about possible solutions to mitigate anthropogenic climate change at two 21 March hearings held before committees of the U.S. House of Representatives and the U.S. Senate. His 10 recommendations to reduce U.S. carbon emissions:

  19. Impact of higher alcohols blended in gasoline on light-duty vehicle exhaust emissions.

    PubMed

    Ratcliff, Matthew A; Luecke, Jon; Williams, Aaron; Christensen, Earl; Yanowitz, Janet; Reek, Aaron; McCormick, Robert L

    2013-12-01

    Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested. PMID:24180630

  20. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions § 600.008 Review of fuel economy, CO2... or HFET test is close to a Gas Guzzler Tax threshold value based on tolerances established by...

  1. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions § 600.008 Review of fuel economy, CO2... or HFET test is close to a Gas Guzzler Tax threshold value based on tolerances established by...

  2. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine. PMID:24350455

  3. Exhaust emissions from a diesel power generator fuelled by waste cooking oil biodiesel.

    PubMed

    Valente, Osmano Souza; Pasa, Vanya Mrcia Duarte; Belchior, Carlos Rodrigues Pereira; Sodr, Jos Ricardo

    2012-08-01

    The exhaust emissions from a diesel power generator operating with waste cooking oil biodiesel blends have been studied. Fuel blends with 25%, 50% and 75% of biodiesel concentration in diesel oil were tested, varying engine load from 0 to 25 kW. The original engine settings for diesel oil operation were kept the same during the experiments with the biodiesel blends. The main physical-chemical characteristics of the fuel blends used were measured to help with the analysis of the emission results. The results show that the addition of biodiesel to the fuel increases oxides of nitrogen (NO(X)), carbon monoxide (CO) and hydrocarbon (HC) emissions. Carbon dioxide (CO(2)) and exhaust gas opacity were also increased with the use of biodiesel. Major increase of NO(X) was observed at low loads, while CO and HC were mainly increased at high loads. Using 50% of biodiesel in diesel oil, the average increase of CO(2), CO, HC and NO(X) throughout the load range investigated was 8.5%, 20.1%, 23.5% and 4.8%, respectively. PMID:22664538

  4. Opacity meter for monitoring exhaust emissions from non-stationary sources

    DOEpatents

    Dec, John Edward

    2000-01-01

    Method and apparatus for determining the opacity of exhaust plumes from moving emissions sources. In operation, a light source is activated at a time prior to the arrival of a diesel locomotive at a measurement point, by means of a track trigger switch or the Automatic Equipment Identification system, such that the opacity measurement is synchronized with the passage of an exhaust plume past the measurement point. A beam of light from the light source passes through the exhaust plume of the locomotive and is detected by a suitable detector, preferably a high-rate photodiode. The light beam is well-collimated and is preferably monochromatic, permitting the use of a narrowband pass filter to discriminate against background light. In order to span a double railroad track and provide a beam which is substantially stronger than background, the light source, preferably a diode laser, must provide a locally intense beam. A high intensity light source is also desirable in order to increase accuracy at the high sampling rates required. Also included is a computer control system useful for data acquisition, manipulation, storage and transmission of opacity data and the identification of the associated diesel engine to a central data collection center.

  5. Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.

    2014-12-01

    Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.

  6. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  7. Effect of gasoline composition on exhaust emissions from modern BMW vehicles

    SciTech Connect

    Lange, W.W.; Mueller, A.; Schaefer, V.; McArragher, J.S.

    1994-10-01

    In a cooperative program between BMW and Shell, the effects of gasoline properties and composition on regulated emissions (HC, CO, NO{sub X}), CO{sub 2}, fuel consumption and catalyst performance have been studied. The objective of the test program was to investigate the effect of different hydrocarbon groups from typical refinery streams on exhaust emissions with a detailed analysis not only of the tailpipe emissions but also engine out emissions and catalyst performance. In total thirteen fuels with widely varying physical properties and chemical composition were evaluated in a 1991 series production BMW 526i, and a subset of three of these fuels in two other BMW models to verify their sensitivity in fuel quality. The results for the BMW 525i showed that significant reductions in HC, CO, and NO{sub x} emissions were seen for fuels containing splashblended oxygenates and with aromatics replaced by isoparaffins. Similar reductions in HC and CO emissions were seen in the other two vehicles, although the BMW 525i was somewhat less sensitive to fuel changes. 12 refs., 22 figs., 8 tabs.

  8. Exhaust emissions from engines of the Detroit Diesel Corporation in transit buses: a decade of trends.

    PubMed

    Prucz, J C; Clark, N N; Gautam, M; Lyons, D W

    2001-05-01

    In the U.S.A., exhaust emissions from city buses fueled by diesel are not characterized well because current emission standards require engine tests rather than tests of whole vehicles. Two transportable chassis dynamometer laboratories developed and operated by West Virginia University (WVU) have been used extensively to gather realistic emission data from heavy-duty vehicles, including buses, tested in simulated driving conditions. A subset of these data has been utilized for a comprehensive introspection into the trends of regulated emissions from transit buses over the last 7 years, which has been prompted by continuously tightening restrictions on one hand, along with remarkable technological progress, on the other hand. Two widely used models of diesel engines manufactured by the Detroit Diesel Corporation (DDC) have been selected as a case-study for such an overview, based on full-scale, on-site testing of actual city buses, driven in accordance with the SAE J1376 standard of a Commercial Business District (CBD) cycle. The results provide solid, quantitative evidence that most regulated emissions from engines produced by DDC have declined over the years, especially with the transition from the 6V-92TA to the Series 50 models. This improvement is remarkable mainly for the emissions of particulate matter (PM), that are lower by over 70%, on average, for the Series 50 engines, though the emissions of nitrogen oxides (NOx) exhibit a reversed trend, showing a degradation of about 6%, on average, with the transition from 6V-92TA to the Series 50 engines. The expected trend of decreasing emission levels with the model year of the engine is clear and consistent for particulate matter (PM), hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx), starting with the 1990 models, although it is not conclusive for carbon dioxide (CO2) emissions. PMID:11355189

  9. 40 CFR 1045.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I demonstrate that my engine family complies with exhaust emission standards? 1045.240 Section 1045.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM...

  10. 40 CFR 1045.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I demonstrate that my engine family complies with exhaust emission standards? 1045.240 Section 1045.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM...

  11. 40 CFR 1045.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I demonstrate that my engine family complies with exhaust emission standards? 1045.240 Section 1045.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM...

  12. 40 CFR 1045.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I demonstrate that my engine family complies with exhaust emission standards? 1045.240 Section 1045.240 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM...

  13. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES...

  14. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES...

  15. 40 CFR 1039.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deterioration factors that represent the deterioration expected in emissions over your engines' full useful life... additive deterioration factor is the difference between exhaust emissions at the end of the useful life and... multiplicative deterioration factor if good engineering judgment calls for the deterioration factor for...

  16. Existing capacity; The key to reducing emissions

    SciTech Connect

    Andrews, C.J. ); Connors, S.R. . Energy Lab.)

    1991-01-01

    Existing power plants, often grandfathered under previous environmental regulations, are the source of much pollution. Yet in seeking to reduce emissions from electricity production, most efforts have been focused on the choice of new generation technologies and electricity conservation options,assuming that changes to existing capacity were too problematic. In this paper, a detailed analysis of the electric power sector in New England suggests that there are surprisingly cost-competitive existing capacity options, which, as part of multi-option strategies, offer promise in reducing systemwide pollutant emissions. Technically achievable strategies combine the repowering or retirement of the dirtiest of the existing capacity, fuel switching in remaining utility boilers, end-use conservation, and the introduction of new, cleaner, and more efficient generating technologies. A scenario-based multi-attribute trade off analysis framework is used to identify these strategies.

  17. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  18. Construction of fuzzy membership functions for urban vehicular exhaust emissions modeling.

    PubMed

    Jain, Suresh; Khare, Mukesh

    2010-08-01

    This paper presents a method for constructing a membership function (MF) for the fuzzy sets that expert systems deal with. This paper introduces a Bezier curve-based mechanism for constructing MFs of convex normal fuzzy sets. The mechanism can fit any given data set with a minimum level of discrepancy. In the absence of data, the mechanism can be intuitively manipulated by the user to construct MFs with the desired shape. MFs have been developed using the proposed mechanism for urban vehicular exhaust emission modeling. It has been observed that all meteorological and vehicular parameters have either S-shaped MFs or Z-shaped MFs. Gaussian MF has been mostly applied for modeling air quality. The present study explored the application of fuzzy MF to analyze air pollution data from vehicular emission. The study reveals that S-shaped and Z-shaped MF can be used in addition to Gaussian MF. PMID:19603277

  19. Effect of operating conditions on the exhaust emissions from a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Papathakos, L.; Strancar, R. J.

    1972-01-01

    Exhaust concentrations of total unburned hydrocarbons, carbon monoxide, and nitric oxide were measured from a single J-57 combustor liner installed in a 30 diameter test section. Tests were conducted over a range of inlet total pressures from 1 to 20 atmospheres, inlet total temperatures from 310 to 590 K, reference velocities from 8 to m/sec, and fuel-air ratios from 0.004 to 0.015. Most of the data were obtained using ASTM A-1 fuel; however, a limited number of tests was performed with natural gas fuel. Combustion efficiency and emission levels are correlated with operating conditions. Sampling error at operating conditions for which combustion efficiency was below about 90 percent resulted in abnormally low readings for hydrocarbon emissions.

  20. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Miake-Lye, R. C.; Anderson, M. R.; Kolb, C. E.

    A two dimensional, axisymmetric flowfield model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the Concorde engine on the formation and growth of volatile H2SO4/H2O aerosols in the near field plume. Rased on estimated exit plane sulfur speciation, results are shown for between 2% and 20% conversion of the fuel sulfur to S(VI) (SO3 and H2SO4) in engine. The primary motivation is to provide estimates for the changes in the number density and surface area density of sulfuric acid aerosols due to sulfur oxidation in the engine. This analysis indicates the need for experimental measurements of sulfur emissions at the exhaust exit, in addition to soot properties, to fully assess the atmospheric impact of aircraft emissions.

  1. Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis A.; Vázquez, Monica; Zielinska, Barbara

    2009-12-01

    The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography-mass spectrometry (GC-MS) methodology. Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5-25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed. The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.

  2. Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions.

    PubMed

    Yang, Hsi-Hsien; Chien, Shu-Mei; Chao, Mu-Rong; Lin, Chi-Chwen

    2005-10-17

    The size distribution of polycyclic aromatic hydrocarbons (PAHs) in emission of a two-stroke carburetor motorcycle was studied. The exhaust gas from the test motorcycle was passed to a dilution tunnel and collected using a 10 cascade micro-orifice uniform deposit impactor (MOUDI) of 0.056-10 microm aerodynamic diameter fitted with aluminum substrates. All MOUDI substrates were analyzed for particulate mass and for PAHs by GC/MS. Most of the 21 analyzed PAHs have two significant modes that peak at <0.1 and 0.18-0.32 microm. For some PAHs, a third peak appears around 1.8 microm. MOUDI impactor samples show that 88.9% particulate and 89.6% PAH mass distributed smaller than 2.5 microm. Mass median diameters of PAHs are about 0.2 microm. Total benzo[a]pyrene toxic equivalency emission factor was 440+/-13.8 ng/km for the test motorcycle. An average of 90.3% of carcinogenicity is observed in particulate smaller than 1.0 microm. The results suggest that submicron particulates predominate in the exhaust from motorcycle and exhibit high carcinogenic potency for these particulate. PMID:15979788

  3. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.

    PubMed

    Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E

    2014-09-01

    Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. PMID:24913859

  4. Emission projection and uncertainty analysis of exhaust emissions from global and Asian on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T.; Streets, D. G.

    2009-12-01

    Two of the most notable impacts from emissions of air pollutants are climate change and hemispheric or intercontinental transport. Global emission projections are identified as critical elements in understanding these large-scale impacts. Such projections are required to understand the net response of climate to combined emissions of greenhouse gases, aerosols, and other trace species in the next 30 to 50 years. Emissions from vehicles vary with introduction of advanced technology and implementation of stringent environmental regulations. We present global emission projections of primary particulate matter emissions including the aerosol components black and organic carbon, from on-road vehicles from 2010 to 2050. These projections are based on a new model of technology that responds to socioeconomic conditions in different economic and mitigation scenarios. The model contains detail about technology stock, such as vintage, and applies exogenous data from economic scenarios to choose new technologies and retire old ones. The driving factors involved in the transitions of technology decision-making include consumption growth rates, retirement rates, timing of emission standards, and generation of superemitters. Asia is a significant contributor to global emissions and its growth rate is expected to be high, so we emphasize the trajectories in this region. Before 2030, the tradeoff between decreasing emission intensity and increasing fuel consumption results in relatively lower rates of increase of PM emissions, although emissions are still increasing. After 2030, we expect that standards will have cleaned up normal vehicles, so emission projections are highly dependent on the behavior of superemitters. Changes of technology and policy in the future are uncertain, and their relationship with socioeconomic variables is not well known. This lack of knowledge raises the question: What can be known about future emissions and air quality? We also present sensitivity analyses and Monte Carlo simulations to explore the impacts of these uncertainties on emission projection. We identify the most critical factors affecting our knowledge of emission pathways; these are targets for future research on the interaction between social and economic conditions and technological response

  5. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were dominant. At low loads, photo-oxidation increased aerosol loadings in the chamber by a factor of fifty. We attribute this substantial secondary organic aerosol (SOA) production to oxidation of low-volatility organic vapors emitted under low loads. At higher loads, we see more modest secondary aerosol production from both organics and inorganics. Therefore secondary aerosol production can substantially exceed the direct aerosol emissions from aircraft. The results underscore the dramatic effects that photo-oxidation has on aerosol emissions from aircraft.

  6. Reducing Methyl Halide Emissions from Soils

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Xuan, R.; Ashworth, D.; Luo, L.

    2011-12-01

    Volatilization and soil transformation are major pathways by which pesticides dissipate from treated agricultural soil. Methyl bromide (MeBr) emissions from agricultural fumigation can lead to depletion of the stratospheric ozone layer. This has led to a gradual phase-out of MeBr and replacement by other halogenated chemicals. However, MeBr continues to be widely used under Critical Use Exemptions and development of emission-reduction strategies remains important. Several methods to reduce emissions of MeBr, and other halogenated soil fumigants, have been developed and are currently being tested under field conditions. In this paper, several approaches for reducing fumigant emissions to the atmosphere are described and include the use of virtually impermeable films, the creation of reactive soil barriers and a recently developed reactive film which was designed to limit loss of MeBr from soil without adding any material to the soil surface. Ammonium thiosulfate (ATS) was used to create a reactive layer. For a reactive soil layer, ATS was sprayed on the soil surface or incorporated to a depth of 1-2 cm. For the reactive film, ATS was placed between two layers of plastic film. The lower plastic layer was a high-density polyethylene film (HDPE), which is readily permeable to MeBr. The upper layer was a virtually impermeable film (VIF) and limits MeBr diffusion. MeBr diffusion and transformation through VIFs and reactive layers were tested in laboratory and field experiments. Although ineffective when dry, when sufficient water was present, reactive barriers substantially depleted halogenated fumigants, including MeBr. When ATS was activated in laboratory experiments, MeBr half-life was about 9.0 h (20C) in a reactive film barrier, and half life decreased with increasing temperature. When the soil was covered with VIF, less than 10% of the added MeBr diffused through the film and the remainder was transformed within the soil. This compares with 60 to 90% emission losses, respectively, for a soil covered with HDPE or for a bare soil surface. These findings demonstrate that several methods are available to reduce atmospheric emissions of MeBr and other halogenated fumigants.

  7. Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles

    NASA Astrophysics Data System (ADS)

    de Castro, A. J.; Meneses, J.; Briz, S.; Lpez, F.

    1999-07-01

    Road traffic is one of the most important contributors to air pollution, being that a small fraction of the running vehicles is responsible for more than a half of the emissions. Roadside emission monitoring of individual cars appears to be an efficient way to identify these gross polluters. In this sense, nondispersive infrared (NDIR) systems have been developed to monitor the gas emissions of individual vehicles. However, these systems do not include NOx detection because of the strong interference of NO and NO2 absorption bands with the water band. This work is focused on the roadside monitoring of NO emissions by NDIR techniques. A theoretical study of the interference between NO and H2O absorption bands in the 1800-1950 cm-1 spectral region has been performed. Two absorption lines, centered at 1876 and 1900 cm-1 have been selected due to the very low water interference. The development of a new application based on the buildup of a high order interference filter, the solid state Fabry-Prot filter, is presented. Design of the filter system has been done, optimizing the transmittance at these two absorption lines. Finally, the ability of such a filter to discriminate NO absorption has been tested by using experimental absorption spectra measured by a commercial Fourier transform infrared spectroradiometer working in the active mode. The buildup of such a filter would permit us to increase the capabilities of on road exhaust monitoring systems using the NDIR technique, extending the range of analyzed gases to the nitrogen oxides.

  8. Effect of exhaust emissions on carbon monoxide levels in employees working at indoor car wash facilities

    PubMed Central

    Topacoglu, H; Katsakoglou, S; Ipekci, A

    2014-01-01

    Background: Exhaust emissions from motor vehicles threaten the environment and human health. Carbon monoxide (CO) poisoning, especially the use of exhaust gas CO in suicidal attempts is well known in the literature. Recently, indoor car wash facilities established in large shopping malls with closed parking, lots is a new risk area that exposes car wash employees to prolonged periods of high level CO emissions from cars. The aim of this study was to investigate how carboxyhemoglobin (COHb) blood levels of employees get affected in confined areas with relatively poor air circulation. Methods: Twenty male volunteers working in indoor parking car wash facilities were included in the study. Participants were informed about the aim of this study and their consent was obtained. Their pulse COHb levels were measured twice, at the beginning and at the end of the working day using Rad-57 pulse CO-oximeter device, allowing non-invasive measurement of COHb blood levels to compare the changes in their COHb levels before and after work. Results: The mean age of the male volunteers was 29.8 ± 11.9 (range 18-55). While the mean COHb levels measured at the start of the working day was 2.1 ± 2.0 (range 0-9), it was increased to 5.2 ± 3.3 (range 1-15) at the end of work shift (Wilcoxon test, p <0.001). There was a statistically significant difference in COHb levels between the beginning and the end of the work shift in smoker subjects, while the difference was not significant in the non-smoking group (Wilcoxon test, p=0.001, p=0.102, respectively). Conclusion: The COHb blood levels of indoor car wash facility employees is directly impacted and gets elevated by motor vechile exhaust emissions. For the health of the employees at indoor parking car wash facilities, stricter precautions are needed and the government should not give permit to such operations. PMID:25125950

  9. Environment, Renewable Energy and Reduced Carbon Emissions

    NASA Technical Reports Server (NTRS)

    Sen, S.; Khazanov, G.; Kishimoto, Y.

    2011-01-01

    Increased energy security and reduced carbon emissions pose significant challenges for science and technology. However, they also create substantial opportunities for innovative research and development. In this review paper, we highlight some of the key opportunities and mention public policies that are needed to enable the efforts and to maximize the probability of their success. Climate is among the uttermost nonlinear behaviors found around us. As recent studies showed the possible effect of cosmic rays on the Earth's climate, we investigate how complex interactions between the planet and its environment can be responsible for climate anomalies.

  10. AN ENGINE EXHAUST PARTICLE SIZERTM SPECTROMETER FOR TRANSIENT EMISSION PARTICLE MEASUREMENTS

    SciTech Connect

    Johnson, T; Caldow, R; Pucher, A; Mirme, A; Kittelson, D

    2003-08-24

    There has been increased interest in obtaining size distribution data during transient engine operation where both particle size and total number concentrations can change dramatically. Traditionally, the measurement of particle emissions from vehicles has been a compromise based on choosing between the conflicting needs of high time resolution or high particle size resolution for a particular measurement. Currently the most common technique for measuring submicrometer particle sizes is the Scanning Mobility Particle Sizer (SMPSTM) system. The SMPS system gives high size resolution but requires an aerosol to be stable over a long time period to make a particle size distribution measurement. A Condensation Particle Counter (CPC) is commonly used for fast time response measurements but is limited to measuring total concentration only. This paper describes a new instrument, the Engine Exhaust Particle SizerTM (EEPSTM) spectrometer, which has high time resolution and a reasonable size resolution. The EEPS was designed specifically for measuring engine exhaust and, like the SMPS system, uses a measurement based on electrical mobility. Particles entering the instrument are charged to a predictable level, then passed through an annular space where they are repelled outward by the voltage from a central column. When the particles reach electrodes on the outer cylindrical (a column of rings), they create a current that is measured by an electrometer on one or more of the rings. The electrometer currents are measured multiple times per second to give high time resolution. A sophisticated realtime inversion algorithm converts the currents to particle size and concentration for immediate display.

  11. AN ENGINE EXHAUST PARTICLE SIZER{trademark} SPECTROMETER FOR TRANSIENT EMISSION PARTICLE MEASUREMENTS

    SciTech Connect

    Johnson, T: Caldow, R; Pucher, A Mirme, A Kittelson, D

    2003-08-24

    There has been increased interest in obtaining size distribution data during transient engine operation where both particle size and total number concentrations can change dramatically. Traditionally, the measurement of particle emissions from vehicles has been a compromise based on choosing between the conflicting needs of high time resolution or high particle size resolution for a particular measurement. Currently the most common technique for measuring submicrometer particle sizes is the Scanning Mobility Particle Sizer (SMPSTM) system. The SMPS system gives high size resolution but requires an aerosol to be stable over a long time period to make a particle size distribution measurement. A Condensation Particle Counter (CPC) is commonly used for fast time response measurements but is limited to measuring total concentration only. This paper describes a new instrument, the Engine Exhaust Particle SizerTM (EEPSTM) spectrometer, which has high time resolution and a reasonable size resolution. The EEPS was designed specifically for measuring engine exhaust and, like the SMPS system, uses a measurement based on electrical mobility. Particles entering the instrument are charged to a predictable level, then passed through an annular space where they are repelled outward by the voltage from a central column. When the particles reach electrodes on the outer cylindrical (a column of rings), they create a current that is measured by an electrometer on one or more of the rings. The electrometer currents are measured multiple times per second to give high time resolution. A sophisticated realtime inversion algorithm converts the currents to particle size and concentration for immediate display.

  12. Radioactive air emissions notice of construction use of a portable exhauster on single shell tanks (SSTs) during salt well pumping

    SciTech Connect

    GRANDO, C.J.

    1999-11-18

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, portable exhausters for use on single-shell tanks (SSTs) during salt well pumping. Table 1-1 lists 18 SSTs covered by this NOC. This NOC also addresses other activities that are performed in support of salt well pumping but do not require the application of a portable exhauster. Specifically this NOC analyzes the following three activities that have the potential for emissions. (1) Salt well pumping (i.e., the actual transferring of waste from one tank to another) under nominal tank operating conditions. Nominal tank operating conditions include existing passive breathing rates. (2) Salt well pumping (the actual transferring of waste from one tank to another) with use of a portable exhauster. (3) Use of a water lance on the waste to facilitate salt well screen and salt well jet pump installation into the waste. This activity is to be performed under nominal (existing passive breathing rates) tank operating conditions. The use of portable exhausters represents a cost savings because one portable exhauster can be moved back and forth between SSTs as schedules for salt well pumping dictate. A portable exhauster also could be used to simultaneously exhaust more than one SST during salt well pumping.

  13. Effects of prevaporized fuel on exhaust emissions of an experimental gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1973-01-01

    Effects of fuel vaporization on the exhaust emission levels of oxides of nitrogen (NOX), carbon monoxide, total hydrocarbons, and smoke number were obtained in an experimental turbojet combustor segment. Two fuel injector types were used in which liquid ASTM A-1 jet fuel and vapor propane fuel were independently controlled to simulate varying degrees of vaporization. Tests were conducted over a range of inlet-air temperatures from 478 to 700 K (860 to 1260 R), pressures from 4 to 20 atmospheres, and combustor reference velocities from 15.3 to 27.4 m/sec (50 to 90 ft/sec). Converting from liquid to complete vapor fuel resulted in NOX reductions as much as 22 percent and smoke number reductions up to 51 percent.

  14. Potential Dilemma: The Methods of Meeting Automotive Exhaust Emission Standards of the Clean Air Act of 1970

    PubMed Central

    Piver, Warren T.

    1974-01-01

    This review attempts to provide an overview of the interconnected industrial changes associated with compliance with the exhaust emission standards of the Clean Air Act of 1970. To understand the complex nature of air pollution problems, Federal legislation, and compliance with this legislation requires an understanding of automotive technology, petroleum refining, atmospheric chemistry and physics, economics, and public health. The endeavors of all of these different areas impinge to a greater or lesser extent on the final response to the Clean Air Act which is designed to safeguard public health. This overview begins by examining gasoline refinery practice and gasoline composition. Included in this discussion are average values for trace contaminants in gasoline, and an explanation of the function of the many gasoline additives. Next, exhaust emissions are characterized, average values of exhaust components given, and a summary of important atmospheric air pollution reactions presented. Emission control devices and sulfate emissions from these devices are described. This is followed by a complete discussion of methyl cyclopentadienyl manganese tricarbonyl, a substitute antiknock for tetraethyllead. In the event TEL is legally banned from gasoline, or removed because it poisons the catalytic muffler surface, this manganese antiknock is the most efficaous replacement. In this discussion, the adverse health effects caused by exposure to manganese oxide particulates, the possible exhaust emission products from this additive, are examined in detail. The review concludes with comments on automotive engine and gasoline composition redesign as an approach to automotive air pollution. PMID:4143457

  15. Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands - Auto exhaust along the Milky Way

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Tielens, A. G. G. M.; Barker, J. R.

    1985-01-01

    The unidentified infrared emission features (UIR bands) are attributed to a collection of partially hydrogenated, positively charged polycyclic aromatic hydrocarbons (PAHs). This assignment is based on a spectroscopic analysis of the UIR bands. Comparison of the observed interstellar 6.2 and 7.7-micron bands with the laboratory measured Raman spectrum of a collection of carbon-based particulates (auto exhaust) shows a very good agreement, supporting this identification. The infrared emission is due to relaxation from highly vibrationally and electronically excited states. The excitation is probably caused by UV photon absorption. The infrared fluorescence of one particular, highly vibrationally excited PAH (chrysene) is modeled. In this analysis the species is treated as a molecule rather than bulk material and the non-thermodynamic equilibrium nature of the emission is fully taken into account. From a comparison of the observed ratio of the 3.3 to 11.3-micron UIR bands with the model calculations, the average number of carbon atoms per molecule is estimated to be about 20. The abundance of interstellar PAHs is calculated to be about 2 x 10 to the -7th with respect to hydrogen.

  16. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Pirjola, Liisa; Ketzel, Matthias; Harrison, Roy M.

    2013-03-01

    Nanoparticle emissions from road vehicles have been studied extensively in the recent past due to their dominant contribution towards the total airborne particle number concentrations (PNCs) found in the urban atmospheric environment. In view of upcoming tighter vehicle emission standards and adoption of cleaner fuels in many parts of the world, the contribution to urban nanoparticles from non-vehicle exhaust sources (NES) may become more pronounced in future. As of now, only limited information exists on nanoparticle emissions from NES through the discretely published studies. This article presents critically synthesised information in a consolidated manner on 11 NES (i.e. road-tyre interaction, construction and demolition, aircraft, ships, municipal waste incineration, power plants, domestic biomass burning, forest fires, cigarette smoking, cooking, and secondary formation). Source characteristics and formation mechanisms of nanoparticles emitted from each NES are firstly discussed, followed by their emission strengths, airborne concentrations and physicochemical characteristics. Direct comparisons of the strengths of NES are not straightforward but an attempt has been made to discuss their importance relative to the most prominent source (i.e. road vehicles) of urban nanoparticles. Some interesting comparisons emerged such as 1 kg of fast and slow wood burning produces nearly the same number of particles as for each km driven by a heavy duty vehicle (HDV) and a light duty vehicle, respectively. About 1 min of cooking on gas can produce the similar particle numbers generated by ˜10 min of cigarette smoking or 1 m travel by a HDV. Apportioning the contribution of numerous sources from the bulk measured airborne PNCs is essential for determining their relative importance. Receptor modelling methods for estimation of source emission contributions are discussed. A further section evaluates the likely exposure risks, health and regulatory implications associated with each NES. It is concluded that much research is needed to provide adequate quantification of all nanoparticle sources, and to establish the relative toxicity of nanosize particles from each.

  17. Utilizing intake-air oxygen-enrichment technology to reduce cold- phase emissions

    SciTech Connect

    Poola, R.B.; Ng, H.K.; Sekar, R.R.; Baudino, J.H.; Colucci, C.P.

    1995-12-31

    Oxygen-enriched combustion is a proven, serious considered technique to reduce exhaust hydrocarbons (HC) and carbon monoxide (CO) emissions from automotive gasoline engines. This paper presents the cold-phase emissions reduction results of using oxygen-enriched intake air containing about 23% and 25% oxygen (by volume) in a vehicle powered by a spark-ignition (SI) engine. Both engineout and converter-out emissions data were collected by following the standard federal test procedure (FTP). Converter-out emissions data were also obtained employing the US Environmental Protection Agency`s (EPA`s) ``Off-Cycle`` test. Test results indicate that the engine-out CO emissions during the cold phase (bag 1) were reduced by about 46 and 50%, and HC by about 33 and 43%, using nominal 23 and 25% oxygen-enriched air compared to ambient air (21% oxygen by volume), respectively. However, the corresponding oxides of nitrogen (NO{sub x}) emissions were increased by about 56 and 79%, respectively. Time-resolved emissions data indicate that both HC and CO emissions were reduced considerably during the initial 127 s of the cold-phase FTP, without any increase in NO, emissions in the first 25 s. Hydrocarbon speciation results indicate that all major toxic pollutants, including ozone-forming specific reactivity factors, such as maximum incremental reactivity (NUR) and maximum ozone incremental reactivity (MOIR), were reduced considerably with oxygen-enrichment. Based on these results, it seems that using oxygen-enriched intake air during the cold-phase FTP could potentially reduce HC and CO emissions sufficiently to meet future emissions standards. Off-cycle, converter-out, weighted-average emissions results show that both HC and CO emissions were reduced by about 60 to 75% with 23 or 25% oxygen-enrichment, but the accompanying NO{sub x}, emissions were much higher than those with the ambient air.

  18. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust.

    PubMed

    Wenger, Daniela; Gerecke, Andreas C; Heeb, Norbert V; Naegeli, Hanspeter; Zenobi, Renato

    2008-04-01

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17beta-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 +/- 0.31 ng E2 CALUX equivalents (E2-CEQs) per m(3) of unfiltered exhaust. In filtered exhaust, we measured 0.74 +/- 0.07 (iron-catalyzed DPF) and 0.55 +/- 0.09 ng E2-CEQ m(-3) (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust. PMID:18264702

  19. ROLE OF NEPRILYSIN IN AIRWAY INFLAMMATION INDUCED BY DIESEL EXHAUST EMISSIONS

    EPA Science Inventory

    The investigators intend to evaluate airway inflammatory responses and expression of the enzyme neprilysin in response to diesel exhaust particle exposure. Dr. Wong and colleagues anticipate that their research will reveal that components of diesel exhaust decrease neprilys...

  20. Carbonyl emissions from heavy-duty diesel vehicle exhaust in China and the contribution to ozone formation potential.

    PubMed

    Dong, Dong; Shao, Min; Li, Yue; Lu, Sihua; Wang, Yanjun; Ji, Zhe; Tang, Dagang

    2014-01-01

    Fifteen heavy-duty diesel vehicles were tested on chassis dynamometer by using typical heavy duty driving cycle and fuel economy cycle. The air from the exhaust was sampled by 2,4-dinitrophenyhydrazine cartridge and 23 carbonyl compounds were analyzed by high performance liquid chromatography. The average emission factor of carbonyls was 97.2 mg/km, higher than that of light-duty diesel vehicles and gasoline-powered vehicles. Formaldehyde, acetaldehyde, acetone and propionaldehyde were the species with the highest emission factors. Main influencing factors for carbonyl emissions were vehicle type, average speed and regulated emission standard, and the impact of vehicle loading was not evident in this study. National emission of carbonyls from diesel vehicles exhaust was calculated for China, 2011, based on both vehicle miles traveled and fuel consumption. Carbonyl emission of diesel vehicle was estimated to be 45.8 Gg, and was comparable to gasoline-powered vehicles (58.4 Gg). The emissions of formaldehyde, acetaldehyde and acetone were 12.6, 6.9, 3.8 Gg, respectively. The ozone formation potential of carbonyls from diesel vehicles exhaust was 537 mg O3/km, higher than 497 mg O3/km of none-methane hydrocarbons emitted from diesel vehicles. PMID:24649697

  1. Trends in primary NO2 and exhaust PM emissions from road traffic for the period 2000-2020 and implications for air quality and health in the Netherlands

    NASA Astrophysics Data System (ADS)

    Keuken, M. P.; Roemer, M. G. M.; Zandveld, P.; Verbeek, R. P.; Velders, G. J. M.

    2012-07-01

    Application of an oxidation catalyst mainly by diesel-fuelled passenger cars reduces harmful exhaust emissions of particulate matter (PM). As a side effect, the primary NO2/NOx emission ratio by these vehicles increased from 10% in 2000 (before the introduction of the oxidation catalyst) to between 55% and 70% in 2010. The impact of this evolution in traffic emissions was studied from both a health and a regulatory perspective. Primary NO2 emissions from road traffic in the Netherlands is expected to increase from 8 kt in 2000 to 15 kt by 2015 and subsequently to decrease to 9 kt by 2020. Meanwhile, exhaust PM emissions from road traffic in the Netherlands will decrease from 7 kt in 2000 to 3 kt by 2020. The impact of exhaust PM on air quality and health was assessed according to the mass concentrations of elemental carbon (EC) in ambient air, as EC is a more sensitive indicator than PM. Monitoring data on the NO2/EC concentration ratios near road traffic between 2000 and 2010 indicate no significant change in ambient air quality. This indicates that health effects in epidemiological studies associated with long-term exposure to NO2 concentrations are still valid. The health impact from the introduction of the oxidation catalyst was assessed by comparing the relatively higher NO2 ("cost") and lower EC ("benefit") concentrations at street locations. "Relative" refers to traffic emissions in situations "with" and "without" the oxidation catalyst being introduced. The cost-benefit ratio in 2010 was in balance, but benefits are expected to outweigh costs by 2015 and 2020. It is concluded that the application of oxidation catalysts is beneficial from a health perspective, but from a regulatory perspective it complicates compliance with the average annual limit value of NO2. This indicates that additional local measures may be required in order to meet air quality standards at locations with high traffic intensities.

  2. NEW YORK CITY BUS TERMINAL DIESEL EMISSIONS STUDY: MEASUREMENT AND COLLECTION OF DIESEL EXHAUST FOR CHEMICAL CHARACTERIZATION AND MUTAGENIC ACTIVITY

    EPA Science Inventory

    The paper is concerned with the impact of diesel emissions on the quality of the ambient air and the resulting effects on human health. The study was designed to chemically characterize and bioassay heavy-duty diesel engine exhaust as it exists in the ambient atmosphere. Diesel e...

  3. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measured on the federal Highway Fuel Economy Test in 40 CFR part 600, subpart B, shall be not greater than... are incorporated by reference (see § 86.1). (v) Hybrid electric vehicle requirements. Deterioration... Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1709-99 Exhaust emission standards...

  4. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... measured on the federal Highway Fuel Economy Test in 40 CFR part 600, subpart B, shall be not greater than... Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1709-99 Exhaust emission standards for... exceed the standards in Tables R99-8 and R99-9 in rows designated with the applicable vehicle...

  5. 40 CFR 86.1709-99 - Exhaust emission standards for 1999 and later light light-duty trucks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... measured on the federal Highway Fuel Economy Test in 40 CFR part 600, subpart B, shall be not greater than... Vehicle Program for Light-Duty Vehicles and Light-Duty Trucks § 86.1709-99 Exhaust emission standards for... exceed the standards in Tables R99-8 and R99-9 in rows designated with the applicable vehicle...

  6. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    SciTech Connect

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  7. Reducing VOC Press Emission from OSB Manufacturing

    SciTech Connect

    Dr. Gary D. McGinnis; Laura S. WIlliams; Amy E. Monte; Jagdish Rughani: Brett A. Niemi; Thomas M. Flicker

    2001-12-31

    Current regulations require industry to meet air emission standards with regard to particulates, volatile organic compounds (VOCs), hazardous air pollutants (HAPs) and other gases. One of many industries that will be affected by the new regulations is the wood composites industry. This industry generates VOCs, HAPs, and particulates mainly during the drying and pressing of wood. Current air treatment technologies for the industry are expensive to install and operate. As regulations become more stringent, treatment technologies will need to become more efficient and cost effective. The overall objective of this study is to evaluate the use of process conditions and chemical additives to reduce VOC/HAPs in air emitted from presses and dryers during the production of oriented strand board.

  8. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12 Section 600.208-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...

  9. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600.208-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF...

  10. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600.208-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF...

  11. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. 600.113-12 Section... and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP... the FTP, HFET, US06, SC03 and cold temperature FTP tests. Additionally, the specific gravity,...

  12. Final summary report on project 3310 marine diesel exhaust emissions (alternative fuels). Final report

    SciTech Connect

    Bentz, A.P.

    1997-09-01

    This report summarizes the results of a 5-year study to ascertain the magnitude of emission problems from Coast Guard and commercial vessels; to develop methodology applicable for use on small vessels by using portable emission analyzers, and to examine various potential means of reducing excessive emissions. During this project, the Coast Guard RD Center tested eight vessels (of six types); and the Volpe National Transportation Systems Center tested six Coast Guard vessels (of five types) operating on the West Coast. Of the 14 vessels tested, eight were found to exceed the proposed NOx limits, although some by very small amounts.

  13. Increasing trend of primary NO(2) exhaust emission fraction in Hong Kong.

    PubMed

    Tian, Linwei; Hossain, Sarah R; Lin, Hualiang; Ho, Kin Fai; Lee, Shun Cheng; Yu, Ignatius T S

    2011-12-01

    Despite the successful reduction in roadside NO( x ) levels, no such decrease has been detected in roadside NO(2) concentration in Hong Kong. One underlying cause could be the rising primary NO(2) fraction of the total emission of NO( x ). Primary NO(2) can be particularly detrimental to Hong Kong because a large fraction of the population are exposed to the traffic-related primary pollutants in the street canyons formed by congested high-rise buildings. In this study, hourly mean concentration data for roadside nitrogen oxides (NO( x )), nitrogen dioxide (NO(2)), and background ozone (O(3)) were used to estimate the mean primary NO(2) fraction from vehicle exhausts in Hong Kong. An overall increasing trend was observed for the primary NO(2) fraction (f-NO(2)) values in all the three roadside air monitoring sites. The primary NO(2) as a fraction of total NO( x ) (f-NO(2)) increased approximately from 2% in 1998 to 13% in 2008 in Hong Kong. The two particular periods of rising f-NO(2) coincided with the two implementation periods of the diesel retrofit programs for the light-duty vehicles and heavy-duty vehicles. Future vehicle emission control strategies should target not only total NO( x ) but also primary NO(2). Health benefit or disease burden estimates should be taken into account and updated in the process of policy planning and evaluation. PMID:21331790

  14. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  15. Experimental characterization of cooled EGR in a gasoline direct injection engine for reducing fuel consumption and nitrogen oxide emission

    NASA Astrophysics Data System (ADS)

    Park, Sang-Ki; Lee, Jungkoo; Kim, Kyungcheol; Park, Seongho; Kim, Hyung-Man

    2015-11-01

    The emphasis on increasing fuel economy and reducing emissions is increasing. Attention has turned to how the performance of a gasoline direct injection (GDI) engine can be improved to achieve lower fuel consumption and NOx emission. Therefore, positive effects can reduce fuel consumption and NOx emission as well as knock suppression. The cooled exhaust gas recirculation (EGR) ranges within the characteristic map are characterized from the experimental results at various speeds and brake mean effective pressures in a GDI engine. The results show that the application of cooled EGR system brought in 3.63 % reduction as for the fuel consumption and 4.34 % as for NOx emission.

  16. Pelletize to reduce fuel costs and emissions

    SciTech Connect

    Akers, D.J.; Blankenship, C.K.; Harrison, C.D.; Watson, M.L.

    1998-07-01

    Electric utilities and other commercial/industrial companies that burn coal as a heat source are responding to increasing competitive pressures by pursuing all possible ways to reduce fuel costs. One cost saving measure that is gaining popularity is supplementing traditional coal supplies with waste byproducts from other industries. Such byproducts include tires, sawdust, wood chips, various types of sludge and food wastes. Although many of these byproducts are available at little or no cost, the coal users are limited in their abilities to use the byproducts because their facilities were designed to handle coal that has different chemical and physical properties than the byproducts. However, waste byproducts can be combined with coal and pelletized into a coal-like fuel to provide a fuel cost savings without the capital expense for retrofitting existing coal handling and combustion systems and recognize reductions in their air emissions . A Westvaco Corporation facility in Tyrone, Pennsylvania is currently utilizing such a fuel, marketed as E-Fuel{trademark}, as their complete fuel feedstock. This paper reviews research and current technologies for producing coal-like fuel from waste byproducts and coal or coal fines. It discusses the various waste byproducts and binders that were investigated. It concentrates on the combination of paper sludge (byproduct of the paper industry), low-density polyethylene plastic waste, and coal that represent the main raw materials for E-Fuel{trademark}. The paper will present and discuss the economics associated with the existing installation at Tyrone, PA with respect to their stoker coal-fired boiler and their overall operation and it will discuss the realized reduction of SO{sub 2}, NO{sub x} and particulate emissions at this facility. This paper will demonstrate that pelletizing technologies, such as E-Fuel{trademark}, provides an economical fuel alternative to coal.

  17. Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions.

    PubMed

    Papapostolou, Vasileios; Lawrence, Joy E; Diaz, Edgar A; Wolfson, Jack M; Ferguson, Stephen T; Long, Mark S; Godleski, John J; Koutrakis, Petros

    2011-07-01

    Laboratory experiments simulating atmospheric aging of motor vehicle exhaust emissions were conducted using a single vehicle and a photochemical chamber. A compact automobile was used as a source of emissions. The vehicle exhaust was diluted with ambient air to achieve carbon monoxide (CO) concentrations similar to those observed in an urban highway tunnel. With the car engine idling, it is expected that the CO concentration is a reasonable surrogate for volatile organic compounds (VOCs) emissions. Varying the amount of dilution of the exhaust gas to produce different CO concentrations, allowed adjustment of the concentrations of VOCs in the chamber to optimize production of secondary organic aerosol (SOA) needed for animal toxicological exposures. Photochemical reactions in the chamber resulted in nitric oxide (NO) depletion, nitrogen dioxide (NO?) formation, ozone (O?) accumulation, and SOA formation. A stable SOA concentration of approximately 40 ?g m? at a chamber mean residence time of 30 min was achieved. This relatively short mean residence time provided adequate chamber flow output for both particle characterization and animal exposures. The chamber was operated as a continuous flow reactor for animal toxicological tests. SOA mass generated from the car exhaust diluted with ambient air was almost entirely in the ultrafine mode. Chamber performance was improved by using different types of seed aerosol to provide a surface for condensation of semivolatile reaction products, thus increasing the yield of SOA. Toxicological studies using Sprague-Dawley rats found significant increases of in vivo chemiluminescence in lungs following exposure to SOA. PMID:21689011

  18. Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions

    PubMed Central

    Papapostolou, Vasileios; Lawrence, Joy E.; Diaz, Edgar A.; Wolfson, Jack M.; Ferguson, Stephen T.; Long, Mark S.; Godleski, John J.; Koutrakis, Petros

    2013-01-01

    Laboratory experiments simulating atmospheric aging of motor vehicle exhaust emissions were conducted using a single vehicle and a photochemical chamber. A compact automobile was used as a source of emissions. The vehicle exhaust was diluted with ambient air to achieve carbon monoxide (CO) concentrations similar to those observed in an urban highway tunnel. With the car engine idling, it is expected that the CO concentration is a reasonable surrogate for volatile organic compounds (VOCs) emissions. Varying the amount of dilution of the exhaust gas to produce different CO concentrations, allowed adjustment of the concentrations of VOCs in the chamber to optimize production of secondary organic aerosol (SOA) needed for animal toxicological exposures. Photochemical reactions in the chamber resulted in nitric oxide (NO) depletion, nitrogen dioxide (NO2) formation, ozone (O3) accumulation, and SOA formation. A stable SOA concentration of approximately 40 g m?3 at a chamber mean residence time of 30 min was achieved. This relatively short mean residence time provided adequate chamber flow output for both particle characterization and animal exposures. The chamber was operated as a continuous flow reactor for animal toxicological tests. SOA mass generated from the car exhaust diluted with ambient air was almost entirely in the ultrafine mode. Chamber performance was improved by using different types of seed aerosol to provide a surface for condensation of semivolatile reaction products, thus increasing the yield of SOA. Toxicological studies using Sprague-Dawley rats found significant increases of in vivo chemiluminescence in lungs following exposure to SOA. PMID:21689011

  19. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C). PMID:24758145

  20. Turbine exhaust diffuser flow path with region of reduced total flow area

    DOEpatents

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  1. A comparative study on the ultrafine particle episodes induced by vehicle exhaust: A crude oil refinery and ship emissions

    NASA Astrophysics Data System (ADS)

    Gonzlez, Yenny; Rodrguez, Sergio

    2013-02-01

    A study on the contribution of vehicle exhausts, ships and an oil refinery emission to the ambient air concentration of ultrafine particles (UFPs) is presented. It is based on a data set of particle number coarser than 2.5 nm (N), black carbon (BC), gaseous pollutants (NOx, SO2, CO and O3), PM2.5 and PM10 measured from 2008 to 2010 in the ambient air of Santa Cruz de Tenerife City, where a previous study found an association between hospitalizations due to heart failure and exposure to UFPs in the ambient air. The observed relationship between N, BC and gaseous pollutants allowed segregating UFP concentrations in a set of components linked to each source. It was found that vehicle exhausts contribute to the background of UFPs, whereas high UFP episodes were due to the emissions of the refinery and ships. The concentration of UFP linked to vehicle exhaust emissions maximized in the morning (07:00-09:00 GMT, 5000-25,000 cm- 3 = 25th-75th percentile), whereas those linked to ship (15,000-45,000 cm- 3) and refinery (25,000-95,000 cm- 3) emissions maximized in the 10:00-17:00 GMT period due to the effects of meteorology and photochemistry. It was found that the UFP concentrations were more sensitive to the fresh emissions of the three sources than PM2.5, which was mostly linked to aged fine particles (0.1-1 ?m) of the urban background. BC was the better tracer of vehicle exhaust emissions. It was concluded that the simultaneous monitoring of UFP, BC and PM2.5 is a suitable strategy of tracing aerosol pollutants of different nature (fresh vs. aged) and from different sources.

  2. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  3. Pelletize to reduce fuel costs and emissions

    SciTech Connect

    Akers, D.J.; Blankenship, C.K.; Harrison, C.D.; Watson, M.L.

    1997-07-01

    Electric utilities and other companies that burn coal as a beat source are responding to increasing competitive pressures by pursuing all possible ways to reduce fuel costs, the primary cost of generating electricity. One cost saving measure that is gaining popularity is to supplement traditional coal supplies with waste byproducts from other industries. Such byproducts include fees, sawdust, wood chips, various types of sludge, and food wastes. Although many of these byproducts are available at little or no cost, the coal users are limited in their abilities to use the byproducts because their facilities were designed to handle coal that has different chemical and physical properties than the byproducts. However, by contracting with a third party to combine the waste byproducts with coal and pelletize them into a coal-like fuel, these coal users can achieve a fuel savings without the capital expense for retrofitting existing coal handling and combustion systems. CQ Inc. currently provides such a fuel to a Westvaco facility in Tyrone, Pennsylvania. This paper reviews current technologies for producing coal like fuel from waste byproducts and coal fines. It presents some economics for stoker and pulverized coal-fired boilers. It also summarizes the emissions reduction potential for boilers that utilize waste byproducts in a coal-like fuel.

  4. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Heland, Jrg; Schfer, Klaus

    1997-07-01

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO 2 hot band at approximately 2400 cm 1 . Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within 20 for the CO and NO x results. The overall accuracy of the system was found to be 30 . The detection limits of the system for a typical engine plume (380 C, 50 cm) are below 0.1 for CO 2 , 0.7 for H 2 O, 20 ppmv (parts per million by volume) for CO, and 90 ppmv for NO.

  5. Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy.

    PubMed

    Heland, J; Schfer, K

    1997-07-20

    Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO. PMID:18259296

  6. Development and characterization of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas.

    PubMed

    Beck, H A; Niessner, R; Haisch, C

    2003-04-01

    Upcoming regulations for vehicle exhaust emission demand substantial reduction of particle emission in diesel exhaust. To achieve these emission levels, the car manufacturing industry is developing new combustion concepts and exhaust after-treatment techniques such as the use of catalysts and particle filters. Many of the state-of-the-art analytical instruments do not meet the required detection limits, in combination with a high temporal resolution necessary for engine optimization. This paper reports a new detection system and the first results of its application to on-line diesel exhaust soot measurements on a engine test bench (MAN diesel engine facility Nürnberg, Germany). The instrument is based on differential photoacoustic (PA) spectroscopy of black carbon aerosol. It contains two identical PA cells, one for the measurement of the aerosol particles and one which analyses the particle-free gas. Thus, a potential cross-sensitivity to gaseous absorbers in the exhaust gas can be excluded. The PA cells were characterized in a laboratory set-up, with water vapor as reference gas and artificial soot generated by a spark discharge generator. The detection limit was found to be 2 microg m(-3) BC (for diesel soot) with a sampling rate of 3 Hz. The temporal response of the system was found to be in the order of 1 s. After full characterization of the cells, the system was transferred into a mobile 19"-rack. Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. Results for the limit of detection, the time resolution, accuracy, repeatability, and robustness of the sensor system are very promising with regards to a routine application of the system in engine development. PMID:12733029

  7. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2: Surface moisture and salt impact modelling

    NASA Astrophysics Data System (ADS)

    Denby, B. R.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Kauhaniemi, M.; Omstedt, G.

    2013-12-01

    Non-exhaust traffic induced emissions are a major source of airborne particulate matter in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. Though the total mass generated by wear sources is a key factor in non-exhaust emissions, these emissions are also strongly controlled by surface moisture conditions. In this paper, Part 2, the road surface moisture sub-model of a coupled road dust and surface moisture model (NORTRIP) is described. We present a description of the road surface moisture part of the model and apply the coupled model to seven sites in Stockholm, Oslo, Helsinki and Copenhagen over 18 separate periods, ranging from 3.5 to 24 months. At two sites surface moisture measurements are available and the moisture sub-model is compared directly to these observations. The model predicts the frequency of wet roads well at both sites, with an average fractional bias of -2.6%. The model is found to correctly predict the hourly surface state, wet or dry, 85% of the time. From the 18 periods modelled using the coupled model an average absolute fractional bias of 15% for PM10 concentrations was found. Similarly the model predicts the 90'th daily mean percentiles of PM10 with an average absolute bias of 19% and an average correlation (R2) of 0.49. When surface moisture is not included in the modelling then this average correlation is reduced to 0.16, demonstrating the importance of the surface moisture conditions. Tests have been carried out to assess the sensitivity of the model to model parameters and input data. The model provides a useful tool for air quality management and for improving our understanding of non-exhaust traffic emissions.

  8. Influence of ethanol-diesel blended fuels on diesel exhaust emissions and mutagenic and genotoxic activities of particulate extracts.

    PubMed

    Song, Chong-Lin; Zhou, Ying-Chao; Huang, Rui-Jing; Wang, Yu-Qiu; Huang, Qi-Fei; L, Gang; Liu, Ke-Ming

    2007-10-22

    This study was aimed at evaluating the influence of ethanol addition on diesel exhaust emissions and the toxicity of particulate extracts. The experiments were conducted on a heavy-duty diesel engine and five fuels were used, namely: E0 (base diesel fuel), E5 (5%), E10 (10%), E15 (15%) and E20 (20%), respectively. The regulated emissions (THC, CO, NOx, PM) and polycyclic aromatic hydrocarbon (PAH) emissions were measured, and Ames test and Comet assay, respectively, were used to investigate the mutagenicity and genotoxicity of particulate extracts. From the point of exhaust emissions, the introduction of ethanol to diesel fuel could result in higher brake specific THC (BSTHC) and CO (BSCO) emissions and lower smoke emissions, while the effects on the brake specific NOx (BSNOx) and particulate matters (BSPM) were not obvious. The PAH emissions showed an increasing trend with a growth of ethanol content in the ethanol-diesel blends. As to the biotoxicity, E20 always had the highest brake specific revertants (BSR) in both TA98 and TA100 with or without metabolizing enzymes (S9), while the lowest BSR were found in E5 except that of TA98-S9. DNA damage data showed a lower genotoxic potency of E10 and E15 as a whole. PMID:17513038

  9. Trends in exhaust emissions from in-use Mexico City vehicles, 2000-2006. A remote sensing study.

    PubMed

    Schifter, I; Daz, L; Rodrguez, R; Durn, J; Chvez, O

    2008-02-01

    A remote sensing study was conducted in year 2006 in four locations of the Metropolitan Area of Mexico City (MAMC). Two of the sites were the same studied back by us in year 2000 and by others in year 1994. A database was compiled containing 11,289 valid measurements for the carbon monoxide (CO), total hydrocarbons (THC), and nitric oxide (NO) exhaust vehicles emissions. Valid measurements were binned for each pollutant by the vehicle specific power (between -5 and 20 kW tonne(-1)) for the 2000 and 2006 databases. The mean average CO, THC, and NO emissions for year 2006 were determined to be 1.10 +/- 0.18 vol.%, 299 +/- 88.4 ppm, and 610 +/- 115.0 ppm, respectively. Matching the vehicle driving patterns of the fleet measured in year 2000 with the emissions factors obtained in this work, allows estimating the trends in the exhaust emissions of vehicles in the MAMC. The adjusted results of the remote sensing study performed in year 2006 shows that the fleet has decrease 22% in CO and 17% in NO emissions, with small change in total hydrocarbons emissions. The improvements could be related with the introduction in year 2001 of vehicles that met tighter emissions standards, particularly for nitrogen oxides. PMID:17503197

  10. Method of controlling exhaust gas emissions from an electric arc furnace

    SciTech Connect

    Squibbs, J.D.

    1980-12-30

    A method for controlling exhaust gases emitted from a direct arc furnace melting furnace is described. Prior to cleaning the temperature of the gases is sensed and the arc power is regulated in response to the sensed exhaust gas temperature. Also, the cleaning process of the gases is changed depending upon the sensed gas temperature.

  11. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions.

    PubMed

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement. PMID:22893964

  12. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  13. Online characterization of regulated and unregulated gaseous and particulate exhaust emissions from two-stroke mopeds: a chemometric approach.

    PubMed

    Clairotte, M; Adam, T W; Chirico, R; Giechaskiel, B; Manfredi, U; Elsasser, M; Sklorz, M; DeCarlo, P F; Heringa, M F; Zimmermann, R; Martini, G; Krasenbrink, A; Vicet, A; Tourni, E; Prvt, A S H; Astorga, C

    2012-03-01

    Two-stroke mopeds are a popular and convenient mean of transport in particular in the highly populated cities. These vehicles can emit potentially toxic gaseous and aerosol pollutants due to their engine technology. The legislative measurements of moped emissions are based on offline methods; however, the online characterization of gas and particulate phases offers great possibilities to understand aerosol formation mechanism and to adapt future emission standards. The purpose of this work was to study the emission behavior of two mopeds complying with different European emission standards (EURO-1 and EURO-2). A sophisticated set of online analyzers was applied to simultaneously monitor the gas phase and particulate phase of exhaust on a real time basis. The gaseous emission was analyzed with a high resolution Fourier transform infrared spectrometer (FTIR; nitrogen species) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-ToF-MS; polycyclic aromatic hydrocarbons: PAH), whereas the particulate phase was chemically characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; organic, nitrate and chloride aerosol) and a multiangle absorption photometer (MAAP; black carbon). The physical characterization of the aerosol was carried out with a condensation particle counter (CPC; particle number concentration) and a fast mobility particle sizer (FMPS; size distribution in real time). In order to extract underlying correlation between gas and solid emissions, principal component analysis was applied to the comprehensive online dataset. Multivariate analysis highlighted the considerable effect of the exhaust temperature on the particles and heavy PAH emissions. The results showed that the after-treatment used to comply with the latest EURO-2 emission standard may be responsible for the production of more potentially harmful particles compared to the EURO-1 moped emissions. PMID:22304813

  14. Reduced environmental emissions and carbon sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural ecosystems can play a significant role in the production and consumption of greenhouse gases, specifically, carbon dioxide. Information is needed on the mechanism and magnitude of gas generation and emission from agricultural soils with specific emphasis on tillage mechanisms. The objec...

  15. REDUCING STYRENE EMISSIONS FROM SPRAYED FILLED RESINS

    EPA Science Inventory

    Styrene emissions are coming under increasing study as the U.S. Environmental Protection Agency (EPA) develops maximum achievable control technology standards. During the manufacture of fiber-reinforced plastics/composites products, styrene, a volatile organic compound and a haz...

  16. Field Methods To Reduce Soil Fumigation Emission

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Telone or 1,3-dichloropropene and chloropicrin are primary alternative soil fumigants to methyl bromide and their emission reductions are required to improve air-quality standards in California. Research has identified various methods including plastic tarp, irrigation, and soil amendment with orga...

  17. REFORMULATING BIODIESEL TO REDUCE NOX EMISSIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of biodiesel, a diesel engine fuel produced from agriculturally derived fats and oils, offers many advantages over petrodiesel, but has been shown in certain instances to increase emissions of oxides of nitrogen (NOx), a federally regulated pollutant. The work described here involved modifi...

  18. The environmental cost of reducing agricultural fine particulate matter emissions.

    PubMed

    Funk, Paul A

    2010-06-01

    The U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) in 2006, reducing acceptable fine particulate matter (PM2.5) levels; state environmental protection agencies in states with nonattainment areas are required to draft State Implementation Plans (SIPs) detailing measures to reduce regional PM2.5 levels by reducing PM2.5 and PM2.5 precursor emissions. These plans need to account for increases in emissions caused by operating control technologies. Potential PM2.5 emissions reductions realized by adding a second set of dust cyclones were estimated for the cotton ginning industry. Increases in energy consumption were calculated based on dust cyclone air pressure drop. Additional energy required was translated into increased emissions using published emission factors and state emissions inventories. Reductions in gin emissions were compared with increases in emissions at the power plant. Because of the electrical energy required, reducing one unit of agricultural PM2.5 emissions at a cotton gin results in emitting 0.11-2.67 units of direct PM2.5, 1.39-69.1 units of PM2.5 precursors, 1.70-76.8 units of criteria pollutants, and 692-15,400 units of greenhouse gases at the point where electricity is produced. If regulations designed to reduce rural PM2.5 emissions increase electrical power consumption, the unintended net effect may be more emissions, increased environmental damage, and a greater risk to public health. PMID:20564993

  19. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Grazia; Carbone, Claudio; Faedo, Davide; Ferrero, Luca; Maggioni, Angela; Sangiorgi, Giorgia; Bolzacchini, Ezio

    2014-01-01

    EU emission standards for vehicles do not include many particulate (PM) and gaseous species, despite their considerable impact on air pollution and health. Emission factors (EFs) were measured for unregulated species, i.e. polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (ALKs) in the particle phase, and, for the first time, EFs for phenols in both particle and gas phases. Exhaust samples were collected under controlled operating conditions (chassis dynamometer tests) for in-service vehicles (private cars, PCs and light duty vehicles, LDVs) from different EURO classes. EFs of trace organics were highest for the old EURO 1 vehicles (the tested EURO 1 vehicles were without emission-control devices), and lowest for the more recent EURO 3 and 4 vehicles. ALKs (C20-C32) were the most abundant trace organic compounds found in PM vehicle exhaust, and their EF ranged between 2034 and 101 μg km-1 (Euro 1-4 LDVs). PM-phased phenols EFs were in the range 0.42-2.50 μg km-1, and 4-nitrophenol was the most abundant one. The highest EFs were measured for phenols in the gas phase (dominated by the presence of phenol) for gasoline EURO 1 (43.16 ± 9.99 μg km-1). Emissions of PAHs changed depending on the fuel used. The PAH EFs of diesel-driven PCs were 4-5 times higher than those of gasoline vehicles, with PAHs diesel exhaust being mainly enriched in low 4-ring PAHs (85%), while 5-6 ring PAHs were prevalent (55%) in gasoline vehicles. Results of source profiles from chassis dynamometer tests were compared with ambient data, and the traffic PAH source profile derived from a tunnel study (Milan) agreed with the estimated emissions from a mix of diesel and gasoline vehicles circulating in the same area. Moreover, the impact of EURO regulatory changes on exhaust emissions was calculated, and this made it possible to estimate the downward trend of PAH emissions in the Province of Milan in the period 2005-2020.

  20. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison of aerosol emissions between ground and altitude is less straight forward. The implications of these factors for developing new aviation emissions factors / inventories related to aerosol species will be discussed.

  1. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison of aerosol emissions between ground and altitude is less straight forward. The implications of these factors for developing new aviation emissions factors / inventories related to aerosol species will be discussed.

  2. Current and future emission estimates of exhaust gases and particles from shipping at the largest port in Korea.

    PubMed

    Song, Sang-Keun; Shon, Zang-Ho

    2014-05-01

    The emissions of exhaust gases (NOx , SO2, VOCs, and CO2) and particles (e.g., PM) from ships traversing Busan Port in Korea were estimated over three different years (the years 2006, 2008, and 2009). This analysis was performed according to the ship operational modes ("at sea," "maneuvering," and "in port") and ship types based on an activity-based method. The ship emissions for current (base year 2009) and future scenarios (years 2020 and 2050) were also compared. The annual emissions of SO2, VOCs, PM, and CO2 were highest (9.6 × 10(3), 374, 1.2 × 10(3), and 5.6 × 10(5) ton year(-1), respectively) in 2008. In contrast, the annual NO x emissions were highest (11.7 × 10(3) ton year(-1)) in 2006 due mainly to the high NO x emission factor. The emissions of air pollutants for each ship operational mode differed considerably, with the largest emission observed in "in port" mode. In addition, the largest fraction (approximately 45-67%) of the emissions of all air pollutants during the study period was emitted from container ships. The future ship emissions of most pollutants (except for SO2 and PM) in 2020 and 2050 are estimated to be 1.4-1.8 and 4.7-6.1 times higher than those in 2009 (base year), respectively. PMID:24497306

  3. Role of Neprilysin in Airway Inflammation Induced by Diesel Exhaust Emissions

    PubMed Central

    Wong, Simon S.; Sun, Nina N.; Fastje, Cynthia D.; Witten, Mark L.; Lantz, R. Clark; Lu, Bao; Sherrill, Duane L.; Gerard, Craig J.; Burgess, Jefferey L.

    2016-01-01

    In this study, we examined the role of neprilysin (NEP*), a key membrane-bound endopeptidase, in the inflammatory response induced by diesel exhaust emissions (DEE) in the airways through a number of approaches: in vitro, animal, and controlled human exposure. Our specific aims were (1) to examine the role of NEP in inflammatory injury induced by diesel exhaust particles (DEP) using Nep-intact (wild-type) and Nep-null mice; (2) to examine which components of DEP are associated with NEP downregulation in vitro; (3) to determine the molecular impact of DEP exposure and decreased NEP expression on airway epithelial cells’ gene expression in vitro, using a combination of RNA interference (RNAi) and microarray approaches; and (4) to evaluate the effects on NEP activity of human exposure to DEE. We report four main results: First, we found that exposure of normal mice to DEP consisting of standard reference material (SRM) 2975 via intratracheal installation can downregulate NEP expression in a concentration-dependent manner. The changes were accompanied by increases in the number of macrophages and epithelial cells, as well as proinflammatory cytokines, examined in bronchoalveolar lavage (BAL) fluid and cells. Nep-null mice displayed increased and/or additional inflammatory responses when compared with wild-type mice, especially in response to exposure to the higher dose of DEP that we used. These in vivo findings suggest that loss of NEP in mice could cause increased susceptibility to injury or exacerbate inflammatory responses after DEP exposure via release of specific cytokines from the lungs. Second, we found evidence, using in vitro studies, that downregulation of NEP by DEP in cultured human epithelial BEAS-2B cells was mostly attributable to DEP-adsorbed organic compounds, whereas the carbonaceous core and transition metal components of DEP had little or no effect on NEP messenger RNA (mRNA) expression. This NEP downregulation was not a specific response to DEP or its contents because the change also occurred after exposure to urban dust (SRM 1649a), which differs in physical and chemical composition from DEP. Third, we also collected the transcriptome profiles of the cells through a 2 × 3 factorial design. DEP exposure upregulated 151 genes and downregulated 59 genes. Cells with decreased NEP expression (accomplished by transfecting an NEP-specific small interfering RNA [siRNA]) substantially altered the expression of genes (upregulating 17 and downregulating 14) associated with DNA/protein binding, calcium channel activities, and the cascade of intracellular signaling by cytokines. Data generated from the combined RNAi and microarray approaches revealed that there is a complex molecular cascade mediated by NEP in different subcellular compartments, possibly influencing the inflammatory response. Fourth, in a controlled human exposure study, we observed significant increases in soluble NEP in sputum after acute exposure to DEE, with an average net increase of 31%. We speculate that the change in NEP activity in sputum, if confirmed in larger epidemiologic investigations at ambient exposure levels to DEE, may provide a useful endpoint and promote insight into the mechanism of DEE-induced airway alterations. PMID:21877416

  4. Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment.

    PubMed

    Giordano, Simonetta; Adamo, Paola; Spagnuolo, Valeria; Vaglieco, Bianca Maria

    2010-01-01

    In the present article we characterized the emissions at the exhaust of a Common Rail (CR) diesel engine, representative of light-duty class, equipped with a catalyzed diesel particulate filter (CDPF) in controlled environment. The downstream exhausts were directly analyzed (for PM, CO, CO2, 02, HCs, NOx) by infrared and electrochemical sensors, and SEM-EDS microscope; heavy metals were chemically analyzed using mosses and lichens in bags, and glass-fibre filters all exposed at the engine exhausts. The highest particle emission value was in the 7-54 nm size range; the peak concentration rose until one order of magnitude for the highest load and speed. Particle composition was mainly carbonaceous, associated to noticeable amounts of Fe and silica fibres. Moreover, the content of Cu, Fe, Na, Ni and Zn in both moss and lichen, and of Al and Cr in moss, was significantly increased. Glass-fibre filters were significantly enriched in Al, B, Ba, Cu, Fe, Na, and Zn. The role of diesel engines as source of carbonaceous nanoparticles has been confirmed, while further investigations in controlled environment are needed to test the catalytic muffler as a possible source of silica fibres considered very hazardous for human health. PMID:21174966

  5. Subsurface manure application to reduce ammonia emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation into soil is generally recommended to reduce ammonia volatilization and nutrient runoff following land application of manures. A range of subsurface applicators are available for manure incorporation with minimal soil disturbance in reduced tillage systems, but none have been widely a...

  6. Reducing Carbon Dioxide Emissions: Using the Mole Concept.

    ERIC Educational Resources Information Center

    Myers, Alan

    2002-01-01

    Provides an application of quantitative chemistry concepts in the context of motor vehicle emissions. Shows how carbon dioxide emissions from cars may be reduced by up to 25% by reducing motorway speeds from 70-75 mph to 60 mph. (Author/MM)

  7. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T.

    2009-07-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the identification and location determination of ships. The use of the AIS data enables the positioning of ship emissions with a high spatial resolution, which is limited only by the inaccuracies of the Global Positioning System (typically a few metres) that is used in vessel navigation. The emissions are computed based on the relationship of the instantaneous speed to the design speed, and these computations also take into account the detailed technical information of the ships' engines. The modelling of emissions is also based on a few basic equations of ship design, including the modelling of the propelling power of each vessel in terms of its speed. We have also investigated the effect of waves on the consumption of fuel, and on the emissions to the atmosphere. The predictions of fuel consumption were compared with the actual values obtained from the shipowners. For a RoPax vessel, the predicted and reported values of fuel consumption agreed within an accuracy of 6%. According to the data analysis and model computations, the emissions of NOx, SOx and CO2 originating from ships in the Baltic Sea in 2007 were in total 400 kt, 138 kt and 19 Mt, respectively. A breakdown of emissions by flag state, ship's type and year of construction is also presented. The modelling system can be used as a decision support tool in the case of issues concerning, e.g., health effects caused by shipping emissions, the construction of emission-based fairway dues systems or emissions trading. The computation of emissions can also be automated, which will save resources in constructing emission inventories. Both the methodologies and the emission computation program can be applied in any sea region in the world, provided that the AIS data from that specific region are available.

  8. Estimation of road vehicle exhaust emissions from 1992 to 2010 and comparison with air quality measurements in Genoa, Italy

    NASA Astrophysics Data System (ADS)

    Zamboni, Giorgio; Capobianco, Massimo; Daminelli, Enrico

    An investigation into road transport exhaust emissions in the Genoa urban area was performed by comparing the quantities of carbon monoxide (CO), nitrogen oxides (NO x), nitrogen dioxide (NO 2) and particulate matter (PM) emitted by different vehicle categories with air quality measurements referred to the same pollutants. Exhaust emissions were evaluated by applying the PROGRESS (computer PROGramme for Road vehicle EmiSSions evaluation) code, developed by the Internal Combustion Engines Group of the University of Genoa, to eight different years (from 1992 to 2010), considering spark ignition and Diesel passenger cars and light duty vehicles, heavy duty vehicles and buses, motorcycles and mopeds. Changes in terms of vehicles number, mileage and total emissions are presented together with relative distributions among the various vehicle categories. By comparing 1992 and 2010 data, calculated trends show a 7% increase in the number of vehicles, with total mileage growing at a faster rate (approx. 22%); total emissions decrease considerably, by approximately 50% for NO x and PM, 70% for HC and 80% for CO, due to improvements in engines and fuels forced by the stricter European legislation and the fleet renewal, while primary NO 2 emission will be very close to 1992 level, after a decrease of about 18% in 2000. Air quality was analysed by selecting traffic and background measuring stations from the monitoring network managed by the Environmental Department of the Province of Genoa: average annual concentrations of considered pollutants from 1994 to 2007 were calculated in order to obtain the relative historical trends and compare them with European public health limits and with road vehicle emissions. Though an important reduction in pollutant concentrations has been achieved as a consequence of cleaner vehicles, some difficulties in complying with present and/or future NO 2 and PM 10 limits are also apparent, thus requiring suitable measures to be taken by the local authorities.

  9. Role of average speed in N?O exhaust emissions as greenhouse gas in a huge urban zone (MVMZ): would we need a cold sun?

    PubMed

    Castillo, S; Mac-Beath, I; Mejia, I; Camposeco, R; Bazan, G; Morn-Pineda, M; Carrera, R; Gmez, R

    2012-05-15

    Nowadays, the drastic pollution problems, some of them related with greenhouse gas emissions, have promoted important attempts to face and diminish the global warming effects on the Mexico Valley Metropolitan Zone (MVMZ) as well as on the huge urban zones around the world. To reduce the exhaust gas emissions, many efforts have been carried out to reformulate fuels and design new catalytic converters; however, it is well known that other variables such as socio-economic and transport structure factors also play an important role around this problem. The present study analyzes the roles played by several commonly-used three-way catalytic converters (TWC) and the average traffic speed in the emission of N(2)O as greenhouse gas. According to this study, by increasing the average traffic flow and avoiding constant decelerations (frequent stops) during common trips, remarkable environmental and economic benefits could be obtained due to the diminution of N(2)O and other contaminant emissions such as ammonia (NH(3)) and even CO(2) with the concomitant reduced fossil fuel consumption. The actions mentioned above could be highly viable to diminish, in general, the global warming effects and contamination problems. PMID:22245865

  10. Reducing greenhouse gas emissions in Czechoslovakia

    SciTech Connect

    Kostalova, M. ); Suk, J. ); Kolar, S. )

    1991-12-01

    In this paper are presented important findings on the potential for energy conservation and carbon emissions reduction over the coming decades in Czechoslovakia. The authors describe the state of the energy use in Czechoslovakia today and the measures required to transform its energy system to a market-based economy oriented towards the environmental goal of decreased energy intensity. This work furthers our understanding of the need for energy efficiency in the newly forming market economies of East and Central Europe. This paper is part of a series of country studies sponsored by the Global Climate Division of the Office of Policy, Planning, and Evaluation, United States Environmental Protection Agency (EPA). We have completed similar studies in Canada, the former Soviet Union, France, Hungary, Italy, Japan, Poland the United Kingdom, and the United States. Research is currently underway or planned in Bulgaria, Romania, and Ukraine.

  11. PARKING MANAGEMENT STRATEGIES FOR REDUCING AUTOMOBILE EMISSIONS

    EPA Science Inventory

    This report defines the concept of parking management and explores how parking management can be used to improve air quality, support mass transit, reduce energy consumption and improve the amenities of life in urban areas. Specific aspects of this analysis were developments of a...

  12. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    NASA Astrophysics Data System (ADS)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  13. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, Rhett L. (Los Alamos, NM); Ambrose, W. Patrick (Los Alamos, NM); Demas, James N. (Charlottesville, VA); Goodwin, Peter M. (Jemez Springs, NM); Johnson, Mitchell E. (Pittsburgh, PA); Keller, Richard A. (Los Alamos, NM); Petty, Jeffrey T. (Los Alamos, NM); Schecker, Jay A. (Sante Fe, NM); Wu, Ming (Los Alamos, NM)

    1998-01-01

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region.

  14. Apparatus for reducing solvent luminescence background emissions

    DOEpatents

    Affleck, R.L.; Ambrose, W.P.; Demas, J.N.; Goodwin, P.M.; Johnson, M.E.; Keller, R.A.; Petty, J.T.; Schecker, J.A.; Wu, M.

    1998-11-10

    The detectability of luminescent molecules in solution is enhanced by reducing the background luminescence due to impurity species also present in the solution. A light source that illuminates the solution acts to photolyze the impurities so that the impurities do not luminesce in the fluorescence band of the molecule of interest. Molecules of interest may be carried through the photolysis region in the solution or may be introduced into the solution after the photolysis region. 6 figs.

  15. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-01

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%. PMID:22870990

  16. The 1977 emissions inventory for southeastern Virginia. [environment model of air quality based on exhaust emission from urban areas

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.; Quinn, L. C.

    1979-01-01

    Regional tropospheric air pollution modeling and data compilation to simulate the time variation of species concentrations in and around an urban area is discussed. The methods used to compile an emissions inventory are outlined. Emissions factors for vehicular travel in the urban area are presented along with an analysis of the emission gases. Emission sources other than vehicular including industrial wastes, residential solid waste disposal, aircraft emissions, and emissions from the railroads are investigated.

  17. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following relative shares were obtained for PM10: 22% exhaust, 22% abrasion and 56% resuspension (40%, 27%, 33% for PM1). Compared to previous publications we have observed a significantly lower portion of exhaust particles and a significantly higher portion of resuspension particles. The high abundance of resuspension particles underlines their significance for the observed adverse health effects of traffic emissions and for mitigation measures.

  18. Apparatus for improving gasoline comsumption, power and reducing emission pollutants of internal combustion engines

    SciTech Connect

    Piedrafita, R.

    1986-02-18

    This patent describes an apparatus for improving performance and reducing fuel comsumption and emission pollutants from an internal combustion gasoline engine. This apparatus consists of: 1.) an internal combustion gasoline engine having, in part, an intake manifold and an exhaust manifold where the exhaust manifold is modified to include a manifold exhaust port; 2.) a modified internal combustion engine carburetor connected to the intake manifold on the engine; 3.) a positive crankcase ventilation valve (PCV) which has an input port conventionally connected to the internal combustion engine and also has a PCV output port; 4.) an automobile fuel pump having an input connected to a conventional fuel tank and having a fuel pump output port; 5.) a thermic reactor; 6.) a thermic reactor air cleaner pneumatically connected to the clean air input port on the thermic reactor; 7.) a catalytic gas injector; 8.) a fuel regulator/restrictor consisting of a solid block having a fuel pump input port and a carburetor output port.

  19. Method for reducing nitrogen oxide emissions from gas turbines

    SciTech Connect

    Gabrielson, J.E.; Breen, B.P.

    1993-06-08

    A process for reducing nitrogen oxide in exhaust gas from a gas turbine of the type having a compressor section, which receives and compresses an air stream which is directed to a combustor section from which combustion products are then directed to a turbine section; the process is described comprising the introduction of a combustible gaseous fuel into the air stream as the stream approaches the compressor section while the gas turbine is operating, in order to introduce a mixed gaseous fuel and air stream having excess air to the combustor section.

  20. OPTIONS FOR REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    The report was prepared to assist personnel responsible for the design, construction, and maintenance of retail food refrigeration equipment in making knowledgeable decisions regarding the implementation of refrigerant-emissions-reducing practices and technologies. It characteriz...

  1. Primary emissions and secondary organic aerosol formation from the exhaust of a flex-fuel (ethanol) vehicle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Zardini, A. A.; Platt, S. M.; Hellebust, S.; Pieber, S. M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A. S. H.; Astorga, C.

    2015-09-01

    Incentives to use biofuels may result in increasing vehicular emissions of compounds detrimental to air quality. Therefore, regulated and unregulated emissions from a Euro 5a flex-fuel vehicle, tested using E85 and E75 blends (gasoline containing 85% and 75% of ethanol (vol/vol), respectively), were investigated at 22 and -7 °C over the New European Driving Cycle, at the Vehicle Emission Laboratory at the European Commission Joint Research Centre Ispra, Italy. Vehicle exhaust was comprehensively analyzed at the tailpipe and in a dilution tunnel. A fraction of the exhaust was injected into a mobile smog chamber to study the photochemical aging of the mixture. We found that emissions from a flex-fuel vehicle, fueled by E85 and E75, led to secondary organic aerosol (SOA) formation, despite the low aromatic content of these fuel blends. Emissions of regulated and unregulated compounds, as well as emissions of black carbon (BC) and primary organic aerosol (POA) and SOA formation were higher at -7 °C. The flex-fuel unregulated emissions, mainly composed of ethanol and acetaldehyde, resulted in very high ozone formation potential and SOA, especially at low temperature (860 mg O3 km-1 and up to 38 mg C kg-1). After an OH exposure of 10 × 106 cm-3 h, SOA mass was, on average, 3 times larger than total primary particle mass emissions (BC + POA) with a high O:C ratio (up to 0.7 and 0.5 at 22 and -7 °C, respectively) typical of highly oxidized mixtures. Furthermore, high resolution organic mass spectra showed high 44/43 ratios (ratio of the ions m/z 44 and m/z 43) characteristic of low-volatility oxygenated organic aerosol. We also hypothesize that SOA formation from vehicular emissions could be due to oxidation products of ethanol and acetaldehyde, both short-chain oxygenated VOCs, e.g. methylglyoxal and acetic acid, and not only from aromatic compounds.

  2. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled engines and particulate emissions from all engines. 86.1310-2007 Section 86.1310-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL...

  3. Effects of Fresh and Aged Vehicular Exhaust Emissions on Breathing Pattern and Cellular Responses – Pilot Single Vehicle Study

    PubMed Central

    Diaz, Edgar A.; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S.; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J.

    2013-01-01

    The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O3, OH and other radicals. Sprague-Dawley rats were exposed for five hours to either filtered room air (Sham) or one of two different atmospheres: 1. Diluted Car Exhaust (P) + Mt. Saint Helens Ash (MSHA); 2. P+MSHA+SOA (Secondary Organic Aerosol, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a non-selective diffusion denuder. Continuous respiratory data was collected during the exposure, and broncho-alveolar lavage (BAL) and complete blood counts (CBC) were performed 24 hours after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363±66 μg/m3 P+MSHA and 212±95 μg/m3 P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in Total Cells, Macrophages and Neutrophils in the BAL and in-vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions. PMID:22486346

  4. Mathematical study of methods to reduce emission of nitrogen oxides and particulate from a compression ignited, direct injection engine

    NASA Astrophysics Data System (ADS)

    Gao, Zhiming

    2001-11-01

    A phenomenological model based on the multizone concept and a three-dimensional CFD model were used to predict the effect of engine modification on particulated and NOx emission from a compression ignited direct injection (CIDI) engine. The phenomenological model consisted of a spray model, an evaporation model, a heat release model, NOx formation, soot formation, and oxidation model, and can be used to predict the combustion process and pollutant emission in a CIDI diesel engine. The advantage of the multizone model over the 3-D CFD model is the small CPU and memory it requires for a simulation. In this study, the phenomenological model was used to investigate (1) the effect of increasing the intake-air O2 content on soot and NO x emission as a function of power level and wall temperature; and (2) the effect of exhaust gas recirculation (EGR) and split fuel injection on pollutant emission, and compare their soot penalty at a given NOx emission. The results indicate that EGR with a relatively low temperature can reduce NOx emission with a minimum penalty of soot particle emission. The use of EGR is promising for significantly reducing NOx emission with small or no penalty of soot particle emission. The effect of auxiliary gas injection (AGI) on diesel engine combustion and emission was studied using KIVA 3V, a multidimensional computation fluid dynamics code. AGI enhances the diesel combustion via mixing to reduce the emission of pollutants. The simulation of a high-speed gas jet model with a relatively coarse computational grids was described. The choice of turbulent length scale for optimum simulation suitability is dependent of local mesh grid. The results demonstrate that AGI creates a second-way flow in the cylinder, which improves the mixing of charge in the cylinder. The effect of AGI on combustion and flow movement is significant. The use of exhaust gas on the AGI can reduce soot emission, while NOx emission also can be decreased to some degree. To reduce soot and NOx emission effectively, the combination effect of EGR and AGI on pollutant emission was analyzed. The results showed that soot and NOx emission were reduced more than 50%, respectively.

  5. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine

    SciTech Connect

    Reksowardojo, I.K.; Ogawa, Hideyuki; Miyamoto, Noboru; Enomoto, Yoshiteru; Kitamura, Toru

    1996-09-01

    Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.

  6. Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro A.; Platt, Stephen M.; Clairotte, Michael; El Haddad, Imad; Temime-Roussel, Brice; Marchand, Nicolas; Jeek, Irena; Drinovec, Luka; Mo?nik, Gria; Slowik, Jay G.; Manfredi, Urbano; Prvt, Andr S. H.; Baltensperger, Urs; Astorga, Covadonga

    2014-09-01

    Regulated and unregulated emissions from a 2-stroke and a 4-stroke scooter were characterized during a legislative driving cycle in a certified laboratory. Scooter exhaust was analyzed at the tailpipe, in a dilution tunnel, and partly collected in a mobile smog chamber for photochemical ageing. We present evidence that the photochemically aged exhaust from a 2-stroke and a 4-stroke scooter produces considerable amounts of secondary organic aerosol: from 1.5 to 22.0 mg/km, and from 5.5 to 6.6 mg/km, respectively. Tests were repeated after replacing the standard petrol and synthetic lube oil with an alkylate fuel (with low content of aromatic compounds) and ultra-clean lube oil (low ash forming potential). We observed emission reduction (with some exceptions) for several gaseous and particulate phase species, in particular for carbon monoxide (from 8% up to 38% and from 31% to 50%, for the 2-stroke and the 4-stroke scooters, respectively), particulate mass (from 32% up to 75% for the 2-stroke scooter), aromatic compounds (89% and 97% for the 2-stroke and the 4-stroke scooter, respectively), and secondary organic aerosol (from 87% to 100% and 99% for the 2-stroke and the 4-stroke scooters, respectively). We attribute the organic aerosol reduction to the low content of aromatics in the alkylate fuel.

  7. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section based on the following types of hydrocarbon emissions for engines powered by the following... testing. The emission standards in this subpart apply to all testing, including certification,...

  8. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section based on the following types of hydrocarbon emissions for engines powered by the following... testing. The emission standards in this subpart apply to all testing, including certification,...

  9. 40 CFR 1033.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families 1033... significant figures to calculate the cycle-weighted emission rate to at least one more decimal place than...

  10. 40 CFR 1033.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families 1033... significant figures to calculate the cycle-weighted emission rate to at least one more decimal place than...

  11. 40 CFR 1033.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families 1033... significant figures to calculate the cycle-weighted emission rate to at least one more decimal place than...

  12. 40 CFR 1033.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families 1033... significant figures to calculate the cycle-weighted emission rate to at least one more decimal place than...

  13. 40 CFR 1033.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Certifying Engine Families 1033... significant figures to calculate the cycle-weighted emission rate to at least one more decimal place than...

  14. Chemical characterization of exhaust emissions from selected canadian marine vessels: the case of trace metals and lanthanoids.

    PubMed

    Celo, Valbona; Dabek-Zlotorzynska, Ewa; McCurdy, Mark

    2015-04-21

    This paper reports the chemical composition of exhaust emissions from the main engines of five ocean going cargo vessels, as they traveled in Canadian waters. The emission factors (EFs) of PM2.5 and SO2 for vessels tested on various intermediate fuel oils (IFO), ranged from 0.4 to 2.2 g kW(-1) hr(-1) and 4.7 to 10.3 g kW(-1) hr(-1), respectively, and were mainly dependent on the content of sulfur in the fuel. Average NOx, CO, and CO2 EFs for these tests were 12.7, 0.45, and 618 g kW(-1) hr(-1), respectively and were generally below benchmark values commonly used by regulatory agencies. The composition of PM2.5 was dominated by hydrated sulfates, organic carbon and trace metals which accounted for 80-97% of total PM2.5 mass. A substantial decrease of measured emission factors for PM2.5 and SO2 was observed when the fuel was changed from IFO to marine diesel oil (MDO), in one of the tested vessels. The main component of PM2.5 in this case was organic carbon accounting for 65% of PM2.5 mass. In addition to commonly reported pollutants, this study presents EFs of the lanthanoid elements and showed that their distribution patterns in ship-exhaust PM2.5 were very similar to the PM2.5 emitted by oil refining facilities. Hence, using La:Ce:V tertiary diagrams and La/V ratios is necessary to distinguish ship plumes from primary emissions related to accidental and/or routine operation of oil-refining industry. PMID:25825794

  15. RSM Based Optimization of Chemical and Enzymatic Transesterification of Palm Oil: Biodiesel Production and Assessment of Exhaust Emission Levels

    PubMed Central

    Mumtaz, Muhammad Waseem; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel. PMID:25162053

  16. RSM based optimization of chemical and enzymatic transesterification of palm oil: biodiesel production and assessment of exhaust emission levels.

    PubMed

    Mumtaz, Muhammad Waseem; Mukhtar, Hamid; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel. PMID:25162053

  17. Exhaust emissions survey of a turbofan engine for flame holder swirl type augmentors at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E., Jr.

    1981-01-01

    Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.

  18. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  19. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.

    2016-01-01

    Emissions originating from ship traffic in European sea areas were modelled using the Ship Traffic Emission Assessment Model (STEAM), which uses Automatic Identification System data to describe ship traffic activity. We have estimated the emissions from ship traffic in the whole of Europe in 2011. We report the emission totals, the seasonal variation, the geographical distribution of emissions, and their disaggregation between various ship types and flag states. The total ship emissions of CO2, NOx, SOx, CO, and PM2.5 in Europe for year 2011 were estimated to be 121, 3.0, 1.2, 0.2, and 0.2 million tons, respectively. The emissions of CO2 from the Baltic Sea were evaluated to be more than a half (55 %) of the emissions of the North Sea shipping; the combined contribution of these two sea regions was almost as high (88 %) as the total emissions from ships in the Mediterranean. As expected, the shipping emissions of SOx were significantly lower in the SOx Emission Control Areas, compared with the corresponding values in the Mediterranean. Shipping in the Mediterranean Sea is responsible for 40 and 49 % of the European ship emitted CO2 and SOx emissions, respectively. In particular, this study reported significantly smaller emissions of NOx, SOx, and CO for shipping in the Mediterranean than the EMEP inventory; however, the reported PM2.5 emissions were in a fairly good agreement with the corresponding values reported by EMEP. The vessels registered to all EU member states are responsible for 55 % of the total CO2 emitted by ships in the study area. The vessels under the flags of convenience were responsible for 25 % of the total CO2 emissions.

  20. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Johansson, L.; Kukkonen, J.

    2015-03-01

    Emissions originated from ship traffic in European sea areas were modelled using the Ship Traffic Emission Assessment Model (STEAM), which uses Automatic Identification System data to describe ship traffic activity. We have estimated the emissions from ship traffic in the whole of Europe in 2011. We report the emission totals, the seasonal variation, the geographical distribution of emissions, and their disaggregation between various ship types and flag states. The total ship emissions of CO2, NOx, SOx, CO and PM2.5 in Europe for year 2011 were estimated to be 131, 2.9, 1.2, 0.2 and 0.3 million tons, respectively. The emissions of CO2 from Baltic Sea were evaluated to be more than a half (58%) of the emissions of the North Sea shipping; the combined contribution of these two sea regions was almost as high (96%) as the total emissions from ships in the Mediterranean. As expected, the shipping emissions of SOx were significantly lower in the SOx Emission Control Areas, compared with the corresponding values in the Mediterranean. Shipping in the Mediterranean Sea is responsible for 39 and 49% of the European ship emitted CO2 and SOx emissions, respectively. In particular, this study reported significantly smaller emissions of NOx, SOx and CO for shipping in the Mediterranean than the EMEP inventory; however, the reported PM2.5 emissions were in a fairly good agreement with the corresponding values reported by EMEP. The vessels registered to all EU member states are responsible for 55% of the total CO2 emitted by ships in the study area. The vessels under the flags of convenience were responsible for 25% of the total CO2 emissions.

  1. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  2. A modelling system for the exhaust emissions of marine traffic and its application in the Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Jalkanen, J.-P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T.

    2009-12-01

    A method is presented for the evaluation of the exhaust emissions of marine traffic, based on the messages provided by the Automatic Identification System (AIS), which enable the identification and location determination of ships. The use of the AIS data facilitates the positioning of ship emissions with a high spatial resolution, which is limited only by the inaccuracies of the Global Positioning System (typically a few metres) that is used in vessel navigation. The emissions are computed based on the relationship of the instantaneous speed to the design speed, and the detailed technical information of the engines of the ships. The modelling of emissions is also based on a few basic principles of ship design, including the modelling of the propelling power of each vessel in terms of its speed. We have investigated the effect of waves on the consumption of fuel, and on the emissions to the atmosphere. The predictions of fuel consumption were compared with the actual values obtained from the shipowners. For a Roll on - Roll off cargo/passenger ship (RoPax), the predicted and reported values of annual fuel consumption agreed within an accuracy of 6%. According to the data analysis and model computations, the emissions of NOx, SOx and CO2 originating from ships in the Baltic Sea during the full calendar year of 2007 were in total 400 kt, 138 kt and 19 Mt, respectively. A breakdown of emissions by flag state, the type of ship and the year of construction is also presented. The modelling system can be used as a decision support tool in the case of issues concerning, e.g., the health effects caused by shipping emissions or the construction of emission-based fairway dues systems or emissions trading. The computation of emissions can be automated, which will save resources in constructing emission inventories. Both the methodologies and the emission computation program can be applied in any sea region in the world, provided that the AIS data from that specific region are available.

  3. Detailed Characterization and Profiles of Crankcase and Diesel Particular Matter Exhaust Emissions Using Speciated Organics

    PubMed Central

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R.; Ireson, Robert G.; Weaver, Christopher S.; Hesterberg, Thomas W.; Larson, Timothy; Davey, Mark; Liu, L.-J. Sally

    2008-01-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as intentional quantitative tracers for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes, and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 ?g/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions. PMID:18754490

  4. Full-scale experiments with an ejector to reduce jet engine exhaust noise

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1973-01-01

    Experiments with a modified J65 turbojet engine and ejector resulted in noise power reductions as large as 13 decibels in the low-frequency range. High-frequency noise power, which appeared to originate mainly from the mixing processes within the ejector, increased. Peak velocities at the ejector exit were reduced by one-half to two-thirds, although survey rakes showed that mixing was not complete. Acoustical lining inside the ejector would reduce the perceived noise level (in PNdB) by removing much of the high-frequency noise.

  5. Exhaust emissions of volatile organic compounds of powered two-wheelers: effect of cold start and vehicle speed. Contribution to greenhouse effect and tropospheric ozone formation.

    PubMed

    Costagliola, M Antonietta; Murena, Fabio; Prati, M Vittoria

    2014-01-15

    Powered two-wheeler (PTW) vehicles complying with recent European type approval standards (stages Euro 2 and Euro 3) were tested on chassis dynamometer in order to measure exhaust emissions of about 25 volatile organic compounds (VOCs) in the range C1-C7, including carcinogenic compounds as benzene and 1,3-butadiene. The fleet consists of a moped (engine capacity ? 50 cm(3)) and three fuel injection motorcycles of different engine capacities (150, 300 and 400 cm(3)). Different driving conditions were tested (US FPT cycle, constant speed). Due to the poor control of the combustion and catalyst efficiency, moped is the highest pollutant emitter. In fact, fuel injection strategy and three way catalyst with lambda sensor are able to reduce VOC motorcycles' emission of about one order of magnitude with respect to moped. Cold start effect, that is crucial for the assessment of actual emission of PTWs in urban areas, was significant: 30-51% of extra emission for methane. In the investigated speed range, moped showed a significant maximum of VOC emission factor at minimum speed (10 km/h) and a slightly decreasing trend from 20 to 60 km/h; motorcycles showed on the average a less significant peak at 10 km/h, a minimum at 30-40 km/h and then an increasing trend with a maximum emission factor at 90 km/h. Carcinogenic VOCs show the same pattern of total VOCs. Ozone Formation Potential (OFP) was estimated by using Maximum Incremental Reactivity scale. The greatest contribution to tropospheric ozone formation comes from alkenes group which account for 50-80% to the total OFP. VOC contribution effect on greenhouse effect is negligible with respect to CO2 emitted. PMID:24095967

  6. Estimation of exhaust emission from ocean-going vessels in Hong Kong.

    PubMed

    Yau, P S; Lee, S C; Corbett, James J; Wang, Chengfeng; Cheng, Y; Ho, K F

    2012-08-01

    As one of the busiest port in the world, ship emissions have become of great concern in Hong Kong. In this study, a detailed maritime emission inventory for ocean-going vessels (OGVs) in Hong Kong with the base year of 2007 was developed. The high-resolution vessel speed profiles determined using the Automatic Identification System (AIS) during 2009 were adopted for the speed data in the estimation. It was obtained that the total ship emissions from 37,150 voyages of OGVs in 2007 were 17,097, 8190, and 1035 tonnes accounting for 17%, 11%, and 16% of the total emissions of NO(x), SO(2), and PM(10), respectively. The contribution of ship emissions during transiting was 60-68% for three pollutants while the emissions during hotelling were responsible for the remaining portions. From the emission spatial allocation, the shipping route along the East Lamma Channel and the berthing location of the Kwai Chung and Tsing Yi Container Port comprised the regions with the highest emissions. The OGV emissions in Hong Kong contributed 0.07% NO(x), 0.05% SO(2), and 0.06% PM(10) out of the global total shipping emissions in 2007. PMID:22698572

  7. Radioactive air emissions notice of construction, use of a portable exhauster on 244-AR vault

    SciTech Connect

    Allen, C.P., Fluor Daniel Hanford

    1997-02-11

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247- 060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the use of a portable exhauster at the 244-AR Vault during transfers or movement of radioactive waste as part of pumping of secondary containment, tank stabilization/pumping, and other activities (i.e., transfer or pumping of radioactive waste using established procedures, entries for maintenance and inspections) within the 244-AR Vault.

  8. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  9. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  10. Speciated hydrocarbon profiles and calculated reactivities of exhaust and evaporative emissions from 82 in-use light-duty Australian vehicles

    NASA Astrophysics Data System (ADS)

    Duffy, B. L.; Nelson, P. F.; Ye, Y.; Weeks, I. A.

    Mass emissions of non-methane hydrocarbon (NMHC) from 26 pre-1986 and 56 post-1985 catalyst-equipped in-service vehicles were determined from measurements made on a chassis dynamometer using an urban drive cycle. Evaporative emissions were measured on a subset (4 pre-1986 and 8 post-1985) of these vehicles. Average ADR emissions (mg/km) of the individual HCs from the older pre-1986 vehicles were generally 4-7 times the emissions from newer catalyst-equipped vehicles. Evaporative emissions from the older vehicles are also much higher than those of newer vehicles. Exhaust from newer catalyst-equipped vehicles had lower proportions of substituted aromatics and alkenes and higher proportions of lower molecular weight alkanes. The effect of fuel type on the exhaust emissions was also investigated by refuelling 9 of the pre-1986 vehicles with both unleaded and leaded petrol. A 20-40% reduction in HC mass emissions was observed when unleaded petrol was used instead of leaded petrol. Reactivities of the emissions and the contributions from different classes of compounds are also reported. The specific reactivity of the exhaust emissions from newer vehicles was lower than that for older vehicles owing to the smaller proportions of highly reactive alkenes and substituted aromatic species. Moreover, as older vehicles have higher average mass emissions, when considered on a per-km basis, the pre-1986 vehicles have a greater ozone-forming potential than post-1985 vehicles. The specific reactivities of the NMHC (gO 3/gNMHC) of both the heat build and hot soak evaporative emissions were much lower than the exhaust emissions.

  11. Emission of polycyclic aromatic hydrocarbons from light-duty diesel vehicles exhaust

    NASA Astrophysics Data System (ADS)

    de Abrantes, Rui; de Assuno, Joo V.; Pesquero, Clia R.

    Standardised tests were performed on four light-duty diesel vehicles running in a chassis dynamometer at a vehicular emission laboratory, using the FTP-75 test cycle procedure. The aim was to characterise emissions of Polycyclic Aromatic Hydrocarbons (PAHs), substances that create health hazards and are, as yet, unregulated. The pollutants were analysed in both solid and gaseous phases using high-performance liquid chromatography. Total PAH values ranged from 1.133 to 5.801 mg km -1. Naphthalene, phenanthrene, fluoranthene, pyrene and chrysene were detected in all tests. In addition, PAH emission was observed to be inversely related to emission of CO 2.

  12. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    SciTech Connect

    Davis, W.E.

    1995-12-01

    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.

  13. Vegetative environmental buffers and exhaust fan deflectors for reducing downwind odor and VOCs from tunnel-ventilated swine barns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists have investigated methods for reducing odor emissions from livestock buildings for decades, yet few technologies have proven effective. Vegetative Environmental Buffers (VEB), which are specially designed combinations of trees, shrubs and grasses, have shown promise in recent years for r...

  14. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

  15. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specify the percentage of your U.S.-directed production that must comply with the emission standards for... production units within each certified engine family compared with a simple count of your total U.S.-directed production units. Table 1 also shows the maximum value you may specify for a family emission limit,...

  16. 40 CFR 1045.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under 40 CFR 1065.10(c)(2), consistent with good engineering judgment. (b) ...: Emission credits (kg) = (STD?FEL) (Volume) (Power) (UL) (LF) (10?3) Where: STD = the emission... kilowatts (see 1045.140). UL = The useful life for the given family. LF = load factor. Use 0.207. We...

  17. 40 CFR 1045.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under 40 CFR 1065.10(c)(2), consistent with good engineering judgment. (b) ...: Emission credits (kg) = (STD?FEL) (Volume) (Power) (UL) (LF) (10?3) Where: STD = the emission... kilowatts (see 1045.140). UL = The useful life for the given family. LF = load factor. Use 0.207. We...

  18. 40 CFR 1066.831 - Exhaust emission test procedures for aggressive driving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... intervals (see 40 CFR part 600), or you may collect emissions over the full US06 driving schedule as a...) For diesel-fueled vehicles, measure THC emissions on a continuous basis as described in 40 CFR part... schedule as described in 40 CFR 86.1816. (iii) All heavy-duty vehicles shall be tested at their...

  19. CHARACTERIZATION OF EXHAUST EMISSIONS FROM LIGHT-DUTY GAS VEHICLES IN THE KANSAS CITY METROPOLITAN AREA

    EPA Science Inventory

    This research program on light duty vehicle emissions is being performed under an interagency agreement. It will provide current information on particulate matter emissions and distributions from light-duty vehicles, an area where more and better data are necessary to meet the n...

  20. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1, 2011, report CO2 values along with your emission levels of regulated NOX to the Administrator for... on or after January 1, 2011. By January 1, 2011, report CO2 values along with your emission levels of... date of manufacture of the individual engine was before January 1, 2011. Round CO2 to the nearest 1...

  1. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  2. Preface: Special Issue on Catalytic Control of Lean-Burn Engine Exhaust Emissions

    SciTech Connect

    Yezerets, Aleksey; Peden, Charles HF; Szanyi, Janos; Nova, Isabella; Epling, Bill

    2012-04-30

    This issue of Catalysis Today includes original research articles based on select presentations from the Mobile Emissions Control Symposium at the 22nd North American Catalysis Society (NACS) Meeting held in Detroit in June 2011, with a particular focus on catalyzed diesel emissions control. The Symposium was dedicated to the memory of Dr. Haren Gandhi, a visionary technology leader and a passionate environmental advocate.

  3. A GIS-BASED MODAL MODEL OF AUTOMOBILE EXHAUST EMISSIONS (EPA/600/R-98/097)

    EPA Science Inventory

    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation s...

  4. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle

    NASA Astrophysics Data System (ADS)

    Suarez-Bertoa, R.; Zardini, A. A.; Astorga, C.

    2014-11-01

    A study aiming to measure ammonia emissions from light duty vehicles has been performed in the Vehicle Emission Laboratory at the European Commission Joint Research Centre, Ispra, Italy. Ammonia, known for being toxic and dangerous for the environment, also contributes to the formation of particulate matter that has been related with adverse health and environmental effects. Nine modern light duty vehicles tested over the New European Driving Cycle showed that ammonia emissions are considerable for gasoline and ethanol flexi-fuel vehicles and also for one diesel vehicle equipped with a selective catalytic reduction system, ranging from 4 mg/km to 70 mg/km. Real-time ammonia emission profiles were monitored at the tailpipe by a High Resolution Fourier Transform Infrared spectrometer during tests at 22 and/or -7 °C. Ammonia emissions are thoroughly discussed and compared to those of its precursors, CO and NO, and other regulated compounds.

  5. Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

    NASA Astrophysics Data System (ADS)

    Lamas, M. I.; Rodrguez, C. G.; Rodrguez, J. D.; Telmo, J.

    2013-12-01

    Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce NOx (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to 120, modification of the intake valve closing from 510 to 570, and modification of the cooling water temperature from 70 to 90 oC. NOx was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in NOx, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.

  6. A portable fiber-optic chemical device for the quantitative determination of carbon monoxide from automobile exhaust emissions.

    PubMed

    Matias, F A; Tubino, M

    2001-07-01

    A colorimetric method for the quantitative determination of CO by diffuse reflectance is described. This method is based on the reduction by CO of Mo (VI) from the indicator reagent molybdosilicic acid (H8Si[Mo2O7]6). The reduction yielded a change of color from clear yellow to dark green on white disk filter chart paper wetted with reagent indicator solution. The gaseous mixture containing CO was forced to pass through this chart paper, initiating the reaction. The intensity of the color produced, measured by diffuse reflectance, was proportional to the CO concentration present in exhaust gases in the range from 0.02 to 12% volume/volume (v/v). A 650-nm light-emitting diode was used as a light source. A two-fiber-optic system carried the light from the source to the detection system, which was composed of a photodiode, an amplification circuit, and a digital display. The method was applied with success in field measurements for automobiles in the Otto cycle. In a previous paper, this method was used for the quantitative determination of exhaust emissions from diesel-fueled vehicles. PMID:15658214

  7. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    PubMed

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend. PMID:25993509

  8. Hanford Site radionuclide national emission standards for hazardous air pollutants unregistered stack (power exhaust) source assessment

    SciTech Connect

    Davis, W.E.

    1994-08-04

    On February 3, 1993, the US Department of Energy, Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Division of the US Environmental Protection Agency, Region 10. The Compliance Order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford Site to determine which are subject to continuous emission measurement requirements in 40 Code of Federal Regulations (CFR) 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. This evaluation provides an assessment of the 39 unregistered stacks, under Westinghouse Hanford Company`s management, and their potential radionuclide emissions, i.e., emissions with no control devices in place. The evaluation also determined if the effective dose equivalent from any of these stack emissions exceeded 0.1 mrem/yr, which will require the stack to have continuous monitoring. The result of this assessment identified three stacks, 107-N, 296-P-26 and 296-P-28, as having potential emissions that would cause an effective dose equivalent greater than 0.1 mrem/yr. These stacks, as noted by 40 CFR 61.93, would require continuous monitoring.

  9. Reducing dust emissions at OAO Alchevskkoks coke battery 10A

    SciTech Connect

    T.F. Trembach; E.N. Lanina

    2009-07-15

    Coke battery 10A with rammed batch is under construction at OAO Alchevskkoks. The design documentation developed by Giprokoks includes measures for reducing dust emissions to the atmosphere. Aspiration systems with dry dust trapping are employed in the new components of coke battery 10A and in the existing coke-sorting equipment. Two-stage purification of dusty air in cyclones and bag filters is employed for the coke-sorting equipment. This system considerably reduces coke-dust emissions to the atmosphere.

  10. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling...

  11. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...). (3) Sterndrive/inboard engines must meet the engine-diagnostic requirements in 1045.110. (4)...

  12. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE...). (3) Sterndrive/inboard engines must meet the engine-diagnostic requirements in 1045.110. (4)...

  13. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... credits (kg) = (STD − FEL) × (Volume) × (Power) × (UL) × (LF) × (10−3) Where: STD = the emission...

  14. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... credits (kg) = (STD − FEL) × (Volume) × (Power) × (UL) × (LF) × (10−3) Where: STD = the emission...

  15. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... credits (kg) = (STD − FEL) × (Volume) × (Power) × (UL) × (LF) × (10−3) Where: STD = the emission...

  16. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... credits (kg) = (STD − FEL) × (Volume) × (Power) × (UL) × (LF) × (10−3) Where: STD = the emission...

  17. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... credits (kg) = (STD − FEL) × (Volume) × (Power) × (UL) × (LF) × (10−3) Where: STD = the emission...

  18. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    NASA Astrophysics Data System (ADS)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in Borneo will also be discussed.

  19. PM10 emission factors for non-exhaust particles generated by road traffic in an urban street canyon and along a freeway in Switzerland

    NASA Astrophysics Data System (ADS)

    Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prvt, A. S. H.; Baltensperger, U.; Buchmann, B.; Gehrig, R.

    2010-06-01

    Recent studies have shown clear contributions of non-exhaust emissions to the traffic related PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as vehicle induced resuspension of deposited road dust. The main scope of the presented work was to identify and quantify the non-exhaust fraction of traffic related PM10 for two roadside locations in Switzerland with different traffic regimes. The two investigated locations, an urban street canyon with heavily congested traffic and an interurban freeway, are considered as being typical for Central Europe. Mass-relevant contributions from abrasion particles and resuspended road dust mainly originated from particles in the size range 1-10 ?m. The results showed a major influence of vehicle induced resuspension of road dust. In the street canyon, the traffic related PM10 emissions (LDV: 24 8 mg km -1 vehicle -1, HDV: 498 86 mg km -1 vehicle -1) were assigned to 21% brake wear, 38% resuspended road dust and 41% exhaust emissions. Along the freeway (LDV: 50 13 mg km -1 vehicle -1, HDV: 288 72 mg km -1 vehicle -1), respective contributions were 3% brake wear, 56% resuspended road dust and 41% exhaust emissions. There was no indication for relevant contributions from tire wear and abrasion from undamaged pavements.

  20. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  1. Reducing Children's Exposure to School Bus Diesel Exhaust in One School District in North Carolina

    ERIC Educational Resources Information Center

    Mazer, Mary E.; Jacobson Vann, Julie C.; Lamanna, Beth F.; Davison, Jean

    2014-01-01

    Children who are exposed to diesel exhaust from idling school buses are at increased risk of asthma exacerbation, decreased lung function, immunologic reactions, leukemia, and increased susceptibility to infections. Policies and initiatives that aim to protect school children from the harmful effects of exposure to diesel exhaust range from…

  2. Reducing Children's Exposure to School Bus Diesel Exhaust in One School District in North Carolina

    ERIC Educational Resources Information Center

    Mazer, Mary E.; Jacobson Vann, Julie C.; Lamanna, Beth F.; Davison, Jean

    2014-01-01

    Children who are exposed to diesel exhaust from idling school buses are at increased risk of asthma exacerbation, decreased lung function, immunologic reactions, leukemia, and increased susceptibility to infections. Policies and initiatives that aim to protect school children from the harmful effects of exposure to diesel exhaust range from

  3. In-cylinder catalysts -- A novel approach to reduce hydrocarbon emissions from spark-ignition engines

    SciTech Connect

    Hu, Z.; Ladommatos, N.

    1995-12-31

    A novel approach was proposed and investigated to reduce unburned hydrocarbon emissions from spark-ignition engines using in-cylinder catalysts. The unburned hydrocarbons in spark-ignition engines arise primarily from sources near the combustion chamber walls, such as flame quenching at the entrance of crevice volumes and at the combustion chamber wall, and the absorption and desorption of fuel vapor into oil layers on the cylinder wall. The proximity of these sources of unburned hydrocarbons to the wall means that they can be reduced significantly by simply using in-cylinder catalysts on the combustion chamber walls, in particular on the surfaces of the crevice volumes. A platinum-rhodium coating was deposited on the top and side surfaces of the piston crown, and its effects on the engine combustion and emission characteristics were examined in this experimental investigation. The in-cylinder catalyst gave rise to a reduction of exhaust unburned hydrocarbon emissions by approximately 20% over a wide range of operating conditions.

  4. Reducing transit bus emissions: Alternative fuels or traffic operations?

    NASA Astrophysics Data System (ADS)

    Alam, Ahsan; Hatzopoulou, Marianne

    2014-06-01

    In this study, we simulated the operations and greenhouse gas (GHG) emissions of transit buses along a busy corridor and quantified the effects of two different fuels (conventional diesel and compressed natural gas) as well as a set of driving conditions on emissions. Results indicate that compressed natural gas (CNG) reduces GHG emissions by 8-12% compared to conventional diesel, this reduction could increase to 16% with high levels of traffic congestion. However, the benefits of switching from conventional diesel to CNG are less apparent when the road network is uncongested. We also investigated the effects of bus operations on emissions by applying several strategies such as transit signal priority (TSP), queue jumper lanes, and relocation of bus stops. Results show that in congested conditions, TSP alone can reduce GHG emissions by 14% and when combined with improved technology; a reduction of 23% is achieved. The reduction benefits are even more apparent when other transit operational improvements are combined with TSP. Finally a sensitivity analysis was performed to investigate the effect of operational improvements on emissions under varying levels of network congestion. We observe that under “extreme congestion”, the benefits of TSP decrease.

  5. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-09-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) concentrations of 50, 150, or 500??g/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2?h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5?d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of TH2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500??g/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone. PMID:26514781

  6. Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control

    SciTech Connect

    Mather, Daniel

    2000-08-20

    Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

  7. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    PubMed Central

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalized for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  8. Wellbeing impacts of city policies for reducing greenhouse gas emissions.

    PubMed

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias; Martuzzi, Marco; Perez, Laura; Sabel, Clive

    2014-12-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what 'wellbeing' is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies. PMID:25464129

  9. REDUCING FUMIGANT EMISSIONS USING SURFACE TARPS: FIELD AND LABORATORY ASSESSMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasingly stringent regulations require that emissions of fumigants to the atmosphere be reduced to protect human and environmental health. Plastic tarps used to cover the soil surface during soil fumigation vary in their effectiveness as diffusion barriers. Virtually impermeable films (VIFs) hav...

  10. TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...

  11. Structuring economic incentives to reduce emissions from deforestation within Indonesia

    PubMed Central

    Busch, Jonah; Lubowski, Ruben N.; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A.; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-01

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO2e, a mandatory incentive structure, such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163247 MtCO2e/y (2031% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a basic voluntary incentive structure modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 4576 MtCO2e/y (69%), while generating a programmatic budget shortfall. By making four policy improvementspaying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districtsan improved voluntary incentive structure would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136207 MtCO2e/y (1726%) and generating a programmatic budget surplus. PMID:22232665

  12. Structuring economic incentives to reduce emissions from deforestation within Indonesia.

    PubMed

    Busch, Jonah; Lubowski, Ruben N; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-24

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO(2)e, a "mandatory incentive structure," such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163-247 MtCO(2)e/y (20-31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a "basic voluntary incentive structure" modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45-76 MtCO(2)e/y (6-9%), while generating a programmatic budget shortfall. By making four policy improvements--paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts--an "improved voluntary incentive structure" would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136-207 MtCO(2)e/y (17-26%) and generating a programmatic budget surplus. PMID:22232665

  13. Approach to SSME health monitoring. III - Exhaust plume emission spectroscopy: Recent results and detailed analysis

    NASA Technical Reports Server (NTRS)

    Tejwani, Gopal D.; Van Dyke, David B.; Bircher, Felix E.

    1993-01-01

    Spectral data for two recent A-1 test firings, 901-717 and 901-718, obtained from an Optical Multichannel Analyzer and an Optical Plume Anomaly Detector, are presented. The spectral data encompasses the database of SSME critical components and materials and the spectral database for the SSME related elements and materials. Relatively strong and continuous emissions from Cr and Fe atomic transitions were observed starting at engine start plus 494 s and persisting until the engine shut off at engine start plus 520 s. These emissions are considered to be emanated from the SSME material AISI 440C, which is traced to high pressure turbopump bearings.

  14. Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.; Gordon, Timothy D.; Robinson, Allen L.

    2013-10-01

    The gas-particle partitioning of the primary organic aerosol (POA) emissions from fifty-one light-duty gasoline vehicles (model years 1987-2012) was investigated at the California Air Resources Board Haagen-Smit Laboratory. Each vehicle was operated over the cold-start unified cycle on a chassis dynamometer and its emissions were sampled using a constant volume sampler. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: sampling artifact correction of quartz filter data, dilution from the constant volume sampler into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry analysis of quartz filter samples. This combination of techniques allowed gas-particle partitioning measurements to be made across a wide range of atmospherically relevant conditions - temperatures of 25-100 C and organic aerosol concentrations of <1-600 ?g m-3. The gas-particle partitioning of the POA emissions varied continuously over this entire range of conditions and essentially none of the POA should be considered non-volatile. Furthermore, for most vehicles, the low levels of dilution used in the constant volume sampler created particle mass concentrations that were greater than a factor of 10 or higher than typical ambient levels. This resulted in large and systematic partitioning biases in the POA emission factors compared to more dilute atmospheric conditions, as the POA emission rates may be over-estimated by nearly a factor of four due to gas-particle partitioning at higher particle mass concentrations. A volatility distribution was derived to quantitatively describe the measured gas-particle partitioning data using absorptive partitioning theory. Although the POA emission factors varied by more than two orders of magnitude across the test fleet, the vehicle-to-vehicle differences in gas-particle partitioning were modest. Therefore, a single volatility distribution can be used to quantitatively describe the gas-particle partitioning of the entire test fleet. This distribution is designed to be applied to quartz filter POA emission factors in order to update emissions inventories for use in chemical transport models.

  15. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 μm) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 μm, exceptionally 13 μm), rarely <0.5 μm, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 μm in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere. PMID:24274188

  16. Comparison of exhaust emissions from Swedish environmental classified diesel fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: a chemical and biological characterization, with viewpoints on cancer risk.

    PubMed

    Westerholm, R; Christensen, A; Trnqvist, M; Ehrenberg, L; Rannug, U; Sjgren, M; Rafter, J; Soontjens, C; Almn, J; Grgg, K

    2001-05-01

    Diesel fuels, classified as environmentally friendly, have been available on the Swedish market since 1991. The Swedish diesel fuel classification is based upon the specification of selected fuel composition and physical properties to reduce potential environmental and health effects from direct human exposure to exhaust. The objective of the present investigation was to compare the most stringent, environmentally classified Swedish diesel fuel (MK1) to the reference diesel fuel used in the "European Program on Emissions, Fuels and Engine Technologies" (EPEFE) program. The study compares measurements of regulated emissions, unregulated emissions, and biological tests from a Volvo truck using these fuels. The regulated emissions from these two fuels (MK1 vs EPEFE) were CO (-2.2%), HC (12%), NOx (-11%), and particulates (-11%). The emissions of aldehydes, alkenes, and carbon dioxide were basically equivalent. The emissions of particle-associated polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene were 88% and 98% lower than those of the EPEFE fuel, respectively. The emissions of semi-volatile PAHs and 1-nitropyrene were 77% and 80% lower than those from the EPEFE fuel, respectively. The reduction in mutagenicity of the particle extract varied from -75 to -90%, depending on the tester strain. The reduction of mutagenicity of the semi-volatile extract varied between -40 and -60%. Furthermore, the dioxin receptor binding activity was a factor of 8 times lower in the particle extracts and a factor of 4 times lower in the semi-volatile extract than that of the EPEFE fuel. In conclusion, the MK1 fuel was found to be more environmentally friendly than the EPEFE fuel. PMID:11355188

  17. Tank exhaust comparison with 40 CFR 61.93, Subpart H, and other referenced guidelines for Tank Farms National Emission Standards for Hazardous Air Pollutant (NESHAP) designated stacks

    SciTech Connect

    Bachand, D.D.; Crummel, G.M.

    1994-07-01

    The US Environmental Protection Agency (EPA) promulgated National Emission Standards other than Radon from US Department of Energy (DOE) Facilities (40 CFR 61, Subpart H) on December 15, 1989. The regulations specify procedures, equipment, and test methods that.are to be used to measure radionuclide emissions from exhaust stacks that are designated as National Emission Standards for Hazardous Air Pollutant (NESHAP) stacks. Designated NESHAP stacks are those that have the potential to cause any member of the public to receive an effective dose equivalent (EDE) greater than or equal to 0.1 mrem/year, assuming all emission controls were removed. Tank Farms currently has 33 exhaust stacks, 15 of which are designated NESHAP stacks. This document assesses the compliance status of the monitoring and sampling systems for the designated NESHAP stacks.

  18. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family emission limit. The phase-in values specify the percentage of your U.S.-directed production that... based on a simple count of your U.S.-directed production units within each certified engine family compared with a simple count of your total U.S.-directed production units. Table 1 follows: Table 1...

  19. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012). The EPA also proposed...). The final rule adopting these proposals was published on June 18, 2012 (77 FR 36342), and was... (77 FR 76842) adopting the EPA's new emissions standards in part 34. Although the EPA's NPRM...

  20. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas turbine engine test procedures of the... 18, 2012 (77 FR 36342), and was effective July 18, 2012. On December 31, 2012, the FAA published a final rule with a request for comments (77 FR 76842) adopting the EPA's new emissions standards in...

  1. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in 40 CFR part 1065, subpart H, on which the engines in the engine family are designed to operate... engines with total displacement at or below 1000 cc may comply with the requirements of 40 CFR part 90 or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION...

  2. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in 40 CFR part 1065, subpart H, on which the engines in the engine family are designed to operate... engines with total displacement at or below 1000 cc may comply with the requirements of 40 CFR part 90 or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION...

  3. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  4. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  5. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is... below the applicable standards. See 40 CFR part 86, subpart S, for showing compliance with the...

  6. 40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... in this paragraph (a)(2) apply starting with the applicable model year identified in 1042.1: (i) 8...Tier 3 Standards for Category 2 Engines Below 3700 kW a Displacement (L/cyl) Maximum engine power...

  7. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (b) Starting January 1, 2011, report CO2 values along with your emission levels of regulated NOX to... individual production model was on or after January 1, 2011. By January 1, 2011, report CO2 values along with.... Round CO2 to the nearest 1 g/kilonewton rO. (c) Report CO2 by calculation from fuel mass flow...

  8. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (b) Starting January 1, 2011, report CO2 values along with your emission levels of regulated NOX to... individual production model was on or after January 1, 2011. By January 1, 2011, report CO2 values along with.... Round CO2 to the nearest 1 g/kilonewton rO. (c) Report CO2 by calculation from fuel mass flow...

  9. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model... installed on vessels excluded from 40 CFR part 1043 because they operate only domestically may not be...)(3)(i) or (ii) of this section must comply with HC standards based on THC emissions. (4) The...

  10. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards apply as specified in 40 CFR part 94 for engines originally manufactured in model years 2004... installed on vessels excluded from 40 CFR part 1043 because they operate only domestically may not be...) of this section must comply with HC standards based on THC emissions. (4) The CO standard for Tier...

  11. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Tier 1 NOX standards apply as specified in 40 CFR part 94 for engines originally manufactured in model... installed on vessels excluded from 40 CFR part 1043 because they operate only domestically may not be...)(3)(i) or (ii) of this section must comply with HC standards based on THC emissions. (4) The...

  12. 40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... guidelines of the high mileage IUVP program (ref: 40 CFR 86.1845-04). (3) Manufacturers may use previously...) Emission component durability. . For guidance see 40 CFR 86.1823-01(e). (h) Application of the durability...-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles §...

  13. 40 CFR 1042.101 - Exhaust emission standards for Category 1 engines and Category 2 engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Emission Standards and Related Requirements § 1042.101... the 2014 model year, recreational marine engines at or above 3700 kW (with any displacement) must be... recreational marine engines. (6) Interim Tier 4 PM standards apply for 2014 and 2015 model year engines...

  14. 40 CFR 1045.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under 40 CFR 1065.10(c)(2), consistent with good engineering judgment. (b) ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I generate and calculate... manufacturer. (a) For each participating family, calculate positive or negative emission credits relative...

  15. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... model year 2012 and later; see 40 CFR part 89 for provisions that apply to earlier model years. 4 For... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient...

  16. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... years. See § 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... model year 2012 and later; see 40 CFR part 89 for provisions that apply to earlier model years. 4 For... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient...

  17. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... years. See 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... model year 2012 and later; see 40 CFR part 89 for provisions that apply to earlier model years. 4 For... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient...

  18. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... years. See 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... model year 2012 and later; see 40 CFR part 89 for provisions that apply to earlier model years. 4 For... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient...

  19. 40 CFR 1039.102 - What exhaust emission standards and phase-in allowances apply for my engines in model year 2014...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... years. See 1039.101 for exhaust emission standards that apply to later model years. See 40 CFR 89.112... model year 2012 and later; see 40 CFR part 89 for provisions that apply to earlier model years. 4 For... 40 CFR part 89. However, except as specified by paragraph (a)(1) of this section, the transient...

  20. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles...