Science.gov

Sample records for reduce radiation-induced mucositis

  1. Polaprezinc reduces the severity of radiation-induced mucositis in head and neck cancer patients

    PubMed Central

    DOI, HIROSHI; FUJIWARA, MASAYUKI; SUZUKI, HITOMI; NIWA, YASUE; NAKAYAMA, MASAHIRO; SHIKATA, TOSHIYUKI; ODAWARA, SOICHI; TAKADA, YASUHIRO; KIMURA, TAKESHI; KAMIKONYA, NORIHIKO; HIROTA, SHOZO

    2015-01-01

    Polaprezinc (PZ), an antiulcer drug, has been reported to have antioxidant properties. The aim of the present study was to assess the feasibility and efficacy of administering PZ for radiation-induced mucositis in head and neck cancer patients. Patients with newly diagnosed head and neck cancer were enrolled in this prospective study. PZ was prepared as an oral rinse. The PZ oral rinse was used four times per day during the course of radiotherapy. Sequential changes in radiation mucositis were assessed during and after radiotherapy according to the Common Terminology Criteria for Adverse Events, version 3.0. Furthermore, a retrospective comparison analysis was performed to assess the efficacy of PZ for radiation-induced mucositis. A total of 32 patients were enrolled in the prospective study of the PZ oral rinse. Radiotherapy was performed up to a total dose of 60–66 Gy using a conventional schedule combined with chemotherapy. Of the 32 patients, 30 (93.8%) reported no complaints due to the PZ oral rinse. In addition, PZ was not associated with severe adverse effects. Among the patients who received PZ, grade 3 mucositis was observed in 29.0% based on the mucosal findings and in 39.3% based on the symptoms. In the patients who did not receive PZ, the incidence of grade 3 mucositis was 40.0% based on the mucosal findings and 60.7% based on the symptoms. Moreover, PZ promoted the recovery from mucositis caused by chemoradiotherapy and was not associated with reduced tumor response to radiotherapy. Therefore, the PZ oral rinse was well tolerated and proved to be efficient for the treatment of radiotherapy-induced oral mucositis. PMID:25798271

  2. Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients.

    PubMed

    Ahmadi, Amirhossein

    2012-08-01

    In recent years, more head and neck cancer patients have been treated with radiotherapy. Radiation-induced mucositis is a common and dose limiting toxicity of radiotherapy among patients with head and neck cancers. Patients undergoing radiation therapy for head and neck cancer are also at increased risk of developing oral candidiasis. A number of new agents applied locally or systemically to prevent or treat radiation-induced mucositis have been investigated, but there is no widely accepted prophylactic or effective treatment for mucositis. Topical Aloe vera is widely used for mild sunburn, frostbites, and scalding burns. Studies have reported the beneficial effects of Aloe gel for wound healing, mucous membrane protection, and treatment of oral ulcers, in addition to antiinflammatory, immunomudulation, antifungal, scavenging free radicals, increasing collagen formation and inhibiting collagenase. Herein the author postulates that oral Aloe vera mouthwash may not only prevent radiation-induced mucositis by its wound healing and antiinflammatory mechanism, but also may reduce oral candidiasis of patients undergoing head and neck radiotherapy due to its antifungal and immunomodulatory properties. Hence, Aloe vera mouthwash may provide an alternative agent for treating radiation-induced oral mucositis and candidiasis in patients with head and neck cancers. PMID:22855041

  3. Ghrelin may reduce radiation-induced mucositis and anorexia in head-neck cancer.

    PubMed

    Guney, Yildiz; Ozel Turkcu, Ummuhani; Hicsonmez, Ayse; Nalca Andrieu, Meltem; Kurtman, Cengiz

    2007-01-01

    Body weight loss is common in cancer patients, and is often associated with poor prognosis, it greatly impairs quality of life (QOL). Radiation therapy (RT) is used in head and neck cancers (HNC) either as a primary treatment or as an adjuvant therapy to surgery. Patients with HNC are most susceptible to malnutrition especially due to anorexia, which is aggravated by RT. Multiple pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-1beta (IL-1beta), interferon (IFN)-gamma and tumor necrosis factor-alpha(TNF-alpha), have been all associated with the development of both anorexia and oral mucositis. Radiation-induced mucositis occurs in almost all patients, who are treated for HNC, it could also cause weight loss. Ghrelin is a novel 28-amino acid peptide, which up-regulates body weight through appetite control, increase food intake, down-regulate energy expenditure and induces adiposity. Furthermore, ghrelin inhibits pro-inflammatory cytokines such as IL-1alpha, IL-1beta, TNF-alpha which may cause oral mucositis and aneroxia, which are the results of weight loss. Thus weight loss during RT is an early indicator of nutritional decline, we propose that recombinant ghrelin used prophylactically could be useful as an appetite stimulant; and preventive of mucositis because of its anti-inflammatory effect, it might help patients maintain weight over the course of curative RT of the HNC and can improve specific aspects of QOL. This issue warrants further studies. PMID:17030099

  4. Radiation induced oral mucositis: a review of current literature on prevention and management.

    PubMed

    Mallick, Supriya; Benson, Rony; Rath, G K

    2016-09-01

    Oral mucositis (OM) is a major limiting acute side effect of radiotherapy for head and neck cancer. The spectrum of problems associated with mucositis includes oral pain, odynophagia, reduced oral intake, and secondary infections. Incidence of mucositis is increased with addition of concurrent chemotherapy as well as altered fractionation schedules. This leads to treatment interruption and suboptimal disease control. Hence, prevention as well as timely management of OM is necessary for optimum tumor control. We reviewed the English literature with key words "Radiation induced mucositis, Mucositis, Oral Mucositis" to find relevant articles describing incidence, pathophysiology, prophylaxis, and treatment of oral mucositis. Prevention and treatment of OM is an active area of research. Maintenance of oral hygiene is an important part in prevention of OM. A battery of agents including normal saline and alkali (soda bicarbonate) mouth washes, low level laser therapy, and benzydamine (non-steroidal analgesic and anti-inflammatory) have effectiveness in the prevention and treatment of radiation induced oral mucositis. Chlorhexidine mouth gargles are recommended for prevention of chemotherapy induced oral mucositis but is not recommended for radiotherapy associated mucositis. Treatment of co-existing infection is also important and both topical (povidone iodine) and systemic anti fungals should be used judiciously. Radiation induced oral mucositis is a common problem limiting the efficacy of radiation by increasing treatment breaks. Adequate prophylaxis and treatment may limit the severity of radiation mucositis and improve compliance to radiation which may translate in better disease control and survival. PMID:26116012

  5. Single-Dose Radiation-Induced Oral Mucositis Mouse Model

    PubMed Central

    Maria, Osama Muhammad; Syme, Alasdair; Eliopoulos, Nicoletta; Muanza, Thierry

    2016-01-01

    The generation of a self-resolved radiation-induced oral mucositis (RIOM) mouse model using the highest possibly tolerable single ionizing radiation (RT) dose was needed in order to study RIOM management solutions. We used 10-week-old male BALB/c mice with average weight of 23 g for model production. Mice were treated with an orthovoltage X-ray irradiator to induce the RIOM ulceration at the intermolar eminence of the animal tongue. General anesthesia was injected intraperitoneally for proper animal immobilization during the procedure. Ten days after irradiation, a single RT dose of 10, 15, 18, 20, and 25 Gy generated a RIOM ulcer at the intermolar eminence (posterior upper tongue surface) with mean ulcer floor (posterior epithelium) heights of 190, 150, 25, 10, and 10 μm, respectively, compared to 200 μm in non-irradiated animals. The mean RIOM ulcer size % of the total epithelialized upper surface of the animal tongue was RT dose dependent. At day 10, the ulcer size % was 2, 5, 27, and 31% for 15, 18, 20, and 25 Gy RT, respectively. The mean relative surface area of the total epithelialized upper surface of the tongue was RT dose dependent, since it was significantly decreased to 97, 95, 88, and 38% with 15, 18, 20, and 25 Gy doses, respectively, at day 10 after RT. Subcutaneous injection of 1 mL of 0.9% saline/6 h for 24 h yielded a 100% survival only with 18 Gy self-resolved RIOM, which had 5.6 ± 0.3 days ulcer duration. In conclusion, we have generated a 100% survival self-resolved single-dose RIOM male mouse model with long enough duration for application in RIOM management research. Oral mucositis ulceration was radiation dose dependent. Sufficient hydration of animals after radiation exposure significantly improved their survival. PMID:27446800

  6. Effect of Epicatechin against Radiation-Induced Oral Mucositis: In Vitro and In Vivo Study

    PubMed Central

    Kang, Sung Un; Kim, Jang Hee; Oh, Young-Taek; Park, Keun Hyung; Kim, Chul-Ho

    2013-01-01

    Purpose Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC), a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo. Experimental Design The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed. Results EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells. Conclusions This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis. PMID:23874895

  7. Protective Role of Rheum Tanguticum Polysaccharide 1 in Radiation- induced Intestinal Mucosal Injury

    PubMed Central

    Liu, Lin-Na; Shi, Lei; Li, Shi-Cao; Zhang, Wen-Juan; Zhang, Yan; Zhang, Zhi-Pei

    2015-01-01

    The protective effects of Rheum tanguticum polysaccharide 1 (RTP1), which is extracted from the Chinese traditional medicine Rheum tanguticum, on radiation-induced intestinal mucosal injury was investigated. Rat intestinal crypt epithelial cells (IEC-6 cells) and Sprague-Dawley rats were each divided into control, irradiated and RTP1-pretreated irradiated groups. After irradiation, cell survival was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide). assay, and the intracellular reactive oxygen species (ROS) was detected by fluorescent probe method. Apoptosis was observed by acridine orange staining, and cell cycle was analysed by flow cytometry. Histological analysis of the rat intestinal mucosa was conducted by haematoxylin and eosin staining. Irradiation at 8 Gy(Gray) decreased cell survival rate to only 54%, significantly increased intracellular ROS levels and induced apoptosis. RTP1 pretreatment significantly inhibited cell death, reduced the formation of intracellular ROS and partially inhibited apoptosis. Irradiation markedly reduced the height and quantity of rat intestinal villi, but it could be antagonised by RTP1 pretreatment. RTP1 can promote the recovery of intestinal mucosa damage, possibly by inhibiting radiation-induced intestinal epithelial apoptosis and intracellular ROS production. PMID:26330871

  8. Mucoadhesive propolis gel for prevention of radiation-induced oral mucositis.

    PubMed

    Noronha, Vladimir R A S; Araujo, Gustavo S; Gomes, Rafael T; Iwanaga, Samara H; Barbosa, Maralice C; Abdo, Evandro N; Ferreira e Ferreira, Efigenia; Viana Campos, Ana C; Souza, Alexandre A; Abreu, Sheila R L; Santos, Vagner R

    2014-01-01

    The objective of this phase II study was to determine the effectiveness of a mucoadhesive propolis gel in the prevention of radiation-induced oral mucositis. Twenty-four patients who were selected to undergo radiation therapy for oral cancer were included in this open-label trial. They were advised to use a mucoadhesive gel containing propolis 5,0% w/v three times a day starting one day before the course of radiation therapy and concluding after 2 weeks of radiation therapy. A weekly follow-up for evaluation of food intake, pain and grading of mucositis was performed. In order to confirm the absence of Candida-related mucositis in patients who developed mucositis, it was performed exfoliative cytology of buccal mucosa, palate and tongue and the material for Candifast(®) Candida species identification. At the end of the study was made the compliance of patients, quality, appreciation and acceptance of product evaluation. Twenty patients did not develop mucositis, two patients developed grade 1 mucositis and two patients developed grade 2 mucositis. None of the patients discontinued food intake and no pain was observed during the study. Candidosis was not detected in any patient. Mucoadhesive propolis gel could be considered as a potential topical medication for preventing radiation-induced oral mucositis. However, comparative phase III study with larger number of patients should be done for confirmation of the efficacy of the product. PMID:24502424

  9. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis

    PubMed Central

    Han, Gangwen; Bian, Li; Li, Fulun; Cotrim, Ana; Wang, Donna; Lu, Jian Bo; Deng, Yu; Bird, Gregory; Sowers, Anastasia; Mitchell, James B.; Gutkind, J. Silvio; Zhao, Rui; Raben, David; Dijke, Peter ten; Refaeli, Yosef; Zhang, Qinghong; Wang, Xiao-Jing

    2013-01-01

    We report that K5.Smad7 mice, which express Smad7 transgene by a keratin-5 promoter, were resistant to radiation-induced oral mucositis, a painful oral ulceration. In addition to NF-κB activation known to contribute to oral mucositis, we found activated TGF-β signaling in oral mucositis. Smad7 dampened both pathways to attenuate inflammation, growth inhibition and apoptosis. Additionally, Smad7 promoted oral epithelial migration to close the wound. Further analyses revealed that TGF-β signaling Smads and their co-repressor CtBP1 transcriptionally repressed Rac1, and Smad7 abrogated this repression. Knocking down Rac1 in mouse keratinocytes abrogated Smad7-induced migration. Topically applying Smad7 protein with a cell permeable Tat-tag (Tat-Smad7) to oral mucosa showed preventive and therapeutic effects on radiation-induced oral mucositis in mice. Thus, we have identified novel molecular mechanisms involved in oral mucositis pathogenesis and our data suggest an alternative therapeutic strategy to block multiple pathological processes of oral mucositis. PMID:23475202

  10. Relief of radiation-induced oral mucositis in head and neck cancer.

    PubMed

    Putwatana, Panwadee; Sanmanowong, Phichanee; Oonprasertpong, Ladawal; Junda, Tiraporn; Pitiporn, Supaporn; Narkwong, Ladawan

    2009-01-01

    This study was a prospective, randomized clinical trial carried out to explore the efficacy of payayor in the prevention and relief of radiation-induced oral mucositis compared with benzydamine. Sixty patients with head and neck cancer, who have started to receive radiotherapy and met predetermined criteria, were randomly assigned into each group to use assigned products 3 times a day from the first to the last day of radiation. The first group used glycerin payayor, a Thai prepared herbal product, by dripping it into the mouth. Another group rinsed their mouths with benzydamine hydrochloride. The World Health Organization Mucositis Grading System was used to assess oral status every week and 2 weeks after radiation. Comparison of time to the onset, pain, severity, xerostomia, postponement of treatment, satisfaction of the solution, and body weight between the 2 groups was performed by t test. The average time to the onset of oral mucositis in the payayor group was significantly later, and its severity and pain score were less than those of the benzydamine group throughout the study period. Significantly higher satisfaction with the solution and higher body weight at the end of the study were shown in the payayor group. Payayor seemed to be superior to benzydamine for preventing and relieving radiation-induced oral mucositis. PMID:19104205

  11. Strategies for managing radiation-induced mucositis in head and neck cancer.

    PubMed

    Rosenthal, David I; Trotti, Andrea

    2009-01-01

    Radiation-induced mucositis (RIM) is a common toxicity for head and neck cancer (HNC) patients. The frequency has increased because of the use of more intensive altered radiation fractionation and concurrent chemotherapy regimens. The extent of the injury is directly related to the mucosal volume irradiated, anatomic subsite exposed, treatment intensity, and individual patient predisposition. The consequences of mucositis include pain, dysphagia including feeding tube dependency, dehydration, micronutrient deficiencies, weight loss, and potentially life-threatening aspiration. Currently, there is no Food and Drug Administration-approved cytoprotective agent that reliably prevents RIM for HNC, but several are under investigation. Strategies to limit the extent of mucositis and to manage its symptoms include basic oral care and supportive medications. Limiting the use of aggressive treatments to truly high-risk cancers and special attention to radiation therapy planning techniques can also help restrict the scope of the problem. This review focuses on mucositis recognition, patient treatment selection, and RIM symptom-management strategies. PMID:19028343

  12. A case of radiation-induced mucosal melanoma in an immunohistochemically S-100-negative patient.

    PubMed

    Rodriguez, Michael; Patil, Yash; Gupta, Arun

    2016-08-01

    We report a case of radiation-induced mucosal melanoma in a 41-year-old woman with a history of childhood rhabdomyosarcoma of the nasal cavity that had been treated with radiotherapy. During the workup for the melanoma, the patient was found to be negative for S-100 protein on immunostaining. While many melanotic markers for the histologic confirmation of melanoma exist, they can be negative in some cases, such as ours. To the best of our knowledge, only 1 case of radiation-induced melanoma has been previously reported in the English-language literature, and in that case the patient was S-100-positive. Although our case is rare, it suggests another possible long-term adverse effect of radiotherapy. We also describe the morphologies and histology associated with diagnosing melanoma in an S-100-negative patient. PMID:27551844

  13. The effect of clove-based herbal mouthwash on radiation-induced oral mucositis in patients with head and neck cancer: a single-blind randomized preliminary study

    PubMed Central

    Kong, Moonkyoo; Hwang, Deok-Sang; Yoon, Seong Woo; Kim, Jinsung

    2016-01-01

    Purpose This study was performed to evaluate the efficacy and safety of clove-based herbal mouthwash in ameliorating radiation-induced oral mucositis in patients with head and neck cancer. Methods Fourteen patients were prospectively enrolled in this study and randomized to either an experimental group or a control group. The patients of the experimental group swished their mouths with a clove-based herbal mouthwash during radiotherapy (RT), while the patients of the control group swished with clear water. The primary end point of this study was incidence of radiation-induced oral mucositis. The secondary end points were time to onset of radiation-induced oral mucositis, duration of radiation-induced oral mucositis, incidence of supplemental nutrition through feeding tube, maximum pain score, body weight loss, incidence of RT interruption, and duration of RT interruption. Results The use of clove-based herbal mouthwash shortened the duration of grade ≥2 mucositis (24.3 days vs 37.1 days, P=0.044) and reduced body weight loss during RT (3.1% vs 7.4%, P=0.023) compared with clear water. The use of clove-based herbal mouthwash also reduced the incidence of grade 3 mucositis (28.6% vs 57.1%), supplemental nutrition (0% vs 28.6%), and RT interruption (14.3% vs 28.6%), and reduced the duration of grade 3 mucositis (5.1 days vs 17.7 days) and RT interruption (1 days vs 8.5 days). In addition, clove-based herbal mouthwash delayed the time to onset of mucositis (26.6 days vs 24.5 days) and reduced the maximum pain score (4.1 vs 4.9). However, these differences were not statistically significant. Conclusion Although we could not find significant differences in some end points, this single-blind randomized study showed that a clove-based herbal mouthwash can have a potentially beneficial effect on minimizing or preventing radiation-induced oral mucositis in patients with head and neck cancer. To confirm the results of our study, well-designed randomized studies with large

  14. Radiation-induced oral mucositis and periodontitis - proposal for an inter-relationship.

    PubMed

    Khaw, A; Logan, R; Keefe, D; Bartold, M

    2014-04-01

    Virtually all patients who receive head and neck radiotherapy develop some degree of oral mucositis. Severe oral mucositis may necessitate an interruption of the course of radiotherapy and thus can serve as a dose-limiting factor. Periodontitis is a host-driven inflammatory response to a pathogenic bacterial biofilm in the subgingival environment, resulting in the progressive destruction of the tissues that support the teeth, specifically the gingiva, periodontal ligament and alveolar bone. This disease affects more than 50% of the population. Considering that radiation-induced oral mucositis and periodontitis are both linked with continuing presence of systemic inflammation, they may be associated through a primed inflammatory response as proposed by the 'two-hit' model. Alternatively, both conditions may be correlated as they represent a dysregulation of the inflammatory response. To date, no studies have looked into the association between these conditions. This review considers the current evidence that provides a rationale for proposing a link between periodontitis and oral mucositis. PMID:24147592

  15. C-Reactive Protein Levels and Radiation-Induced Mucositis in Patients With Head-and-Neck Cancer

    SciTech Connect

    Ki, Yongkan; Kim, Wontaek Nam, Jiho; Kim, Donghyun; Park, Dahl; Kim, Dongwon

    2009-10-01

    Purpose: To evaluate the relationship between C-reactive protein (CRP) levels or the erythrocyte sedimentation rate (ESR) and the grade of acute radiation-induced mucositis in patients with head-and-neck cancer. Methods and Materials: This study was performed in 40 patients who received intensity-modulated radiation therapy as a radical treatment of primary laryngo-pharyngeal cancer. Serum CRP level and ESR were initially checked on the day of radiotherapy simulation and were measured every week during the irradiation schedule and two times biweekly after radiotherapy. Mucosal reactions were evaluated by radiation oncologists on days of blood sampling. Results: The distribution of the most severe mucositis was Grade I mucositis in 10% of the patients, Grade II in 60% of the patients and Grade III in 30% of the patients. Statistical analysis indicated a significant rise in the CRP level (p < 0.001) according to radiation fraction number and grade of mucositis. A change of the mean CRP level was correlated with progression of mean grade of mucositis according to fraction number. The ESR did not show any statistically significant relationship with radiotherapy fraction number and grade of acute mucositis. Conclusions: There was a significant correlation between the presence of acute mucositis and CRP level in this study. The CRP level could be conveniently determined along with evaluation of mucosal reactions during or after radiotherapy to provide further information on radiation-induced mucositis.

  16. Glutamine in Alleviation of Radiation-Induced Severe Oral Mucositis: A Meta-Analysis.

    PubMed

    Leung, Henry W C; Chan, Agnes L F

    2016-07-01

    The aim of this meta-analysis was to assess the effectiveness of glutamine to treat severe mucositis induced by radiation therapy in patients with head and neck cancer. We undertook electronic searches of PubMed (1990 to January 2015), Embase (1990 to January 2015), and the Cochrane Library (2013, Issue 2) to identify relevant studies. We included randomized controlled trials of glutamine to alleviate oral mucositis (OM) in patients with head and neck cancer who received radiotherapy. Information regarding methods, patients, results, and risk of bias was independently extracted by two authors. Statistical analyses were conducted to calculate the odds ratio and 95% confidence intervals (95%CIs) using fixed-effect models. We identified five clinical studies that included 234 patients with head and neck cancer. All studies were assessed as being at low risk of bias in most items of six domains. In this meta-analysis, glutamine treatment showed a statistically significant benefit with respect to reducing the risk and severity of OM induced by radiotherapy compared to either placebo or no treatment (risk ratio 0.17, 95%CI 0.06-0.47). Overall, glutamine significantly reduces the risk and severity of OM during radiotherapy or chemotherapy. Further prospective and large trials are required to support the findings. PMID:27045857

  17. Risk, Outcomes, and Costs of Radiation-Induced Oral Mucositis Among Patients With Head-and-Neck Malignancies

    SciTech Connect

    Elting, Linda S. . E-mail: lelting@mdanderson.org; Cooksley, Catherine D.; Chambers, Mark S.; Garden, Adam S.

    2007-07-15

    Purpose: To study the risk, outcomes, and costs of radiation-induced oral mucositis (OM) among patients receiving radiotherapy (RT) to head and neck primary cancers. Methods and Materials: A retrospective cohort consisting of 204 consecutive head-and-neck cancer patients who received RT with or without chemotherapy during 2002 was formed; their records were reviewed for clinical and resource use information. Patients who had received prior therapy, had second primary cancers, or received palliative radiation therapy were excluded. The risk of OM was analyzed by multiple variable logistic regression. The cost of care was computed from the provider's perspective in 2006 U.S. dollars and compared among patients with and without OM. Results: Oral mucositis occurred in 91% of patients; in 66% it was severe (Grade 3-4). Oral mucositis was more common among patients with oral cavity or oropharynx primaries (odds ratio [OR], 44.5; 95% confidence interval [CI], 5.2 to >100; p < 0.001), those who received chemotherapy (OR = 7.8; 95% CI, 1.5-41.6; p 0.02), and those who were treated with altered fractionation schedules (OR 6.3; 95% CI, 1.1-35.1; p = 0.03). Patients with OM were significantly more likely to have severe pain (54% vs. 6%; p < 0.001) and a weight loss of {>=}5% (60% vs. 17%; p < 0.001). Oral mucositis was associated with an incremental cost of $1700-$6000, depending on the grade. Conclusions: Head-and-neck RT causes OM in virtually all patients. Oral mucositis is associated with severe pain, significant weight loss, increased resource use, and excess cost. Preventive strategies are needed.

  18. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs.

    PubMed

    Li, Chang Jiang; Wang, Sheng Zi; Wang, Shu Yi; Zhang, Yan Ping

    2014-09-01

    The aim of present study was to assess the radioprotective effects of the local application of amifostine to treat acute buccal mucositis in guinea pigs. A total of 32 guinea pigs were randomized into four groups: (Group A) topically administered 50 mg of amifostine plus radiotherapy (RT); (Group B) 100 mg amifostine plus RT; (Group C) normal saline plus RT; and (Group D) normal saline plus sham RT. The opportunity for administration was 15 min before irradiation. When administered, the cotton pieces that had been soaked with 0.5 ml amifostine solution or saline were applied gently on the buccal mucosa of each guinea pig for 30 min. The animals in Groups A, B and C were irradiated individually with a single dose of 30 Gy to the bilateral buccal mucosa. Eight days after irradiation, the animals were scored macroscopically; they were then euthanized, and the buccal mucosal tissues were processed for hematoxylin-eosin staining and ICAM-1 immunohistochemical analysis. In Groups A and B, the mean macroscopic scores were 2.9 ± 0.6 and 2.4 ± 1.1, respectively. There was no significant difference between the two groups (P > 0.05). However, when they were separately compared with Group C (4.4 ± 0.7), a noticeable difference was obtained (P < 0.05). No mucositis was observed in Group D. Comparisons of the expression of ICAM-1 were in agreement with the macroscopic data. Histologically, superficial erosion, exudate and ulcer formation were all observed in the RT groups; only the severity and extent were different. The microscopic observations in the amifostine-treated groups were better than in Group C. The results demonstrated that topical administration of amifostine to the oral mucosa is effective treatment of acute radiation-induced mucositis. PMID:24706999

  19. Low-level laser therapy in chemo- and radiation-induced mucositis: results of multicenter phase III studies

    NASA Astrophysics Data System (ADS)

    Bensadoun, Rene-Jean

    2001-04-01

    Low of middle energy irradiation with helium-neon laser (LLLT) appears to be a simple atraumatic technique for the prevention and treatment of mucositis of various origins. Preliminary findings obtained by Ciais et al prompted randomized multi-center, double-blind trials to evaluate LLLT for the prevention of a acute chemo- and radiation- induced stomatitis. Irradiation by LLLT corresponds to local application of a high photon density monochromatic light source. Activation of epithelial healing on LLL-treated surfaces, the most commonly recognized effect, has been confirmed by numerous in vitro studies, and is a function of cell type, wavelength, and energy dose. The mechanism of action at a molecular and enzymatic level is currently being studied (detoxification of free-radicals).

  20. Benzydamine for prophylaxis of radiation-induced oral mucositis in head and neck cancers: a double-blind placebo-controlled randomized clinical trial.

    PubMed

    Kazemian, A; Kamian, S; Aghili, M; Hashemi, F A; Haddad, P

    2009-03-01

    We evaluated the efficacy of benzydamine oral rinse for prevention of radiation-induced mucositis. Patients with head and neck cancers, who were referred in 2004-2005, received an oral rinse of either benzydamine or placebo. One hundred patients were randomized in this trial. At the end of the study, 19 patients were excluded from the analysis because they did not use the medication for the assigned period. In the benzydamine group, the frequency of mucositis grade > or =3 was 43.6% in contrast to 78.6% in other group (P = 0.001). Grade > or =3 mucositis was 2.6 times more frequent in the placebo group. Intensity of mucositis increased up to fourth week of treatment in both groups to grade 2. In the treated group the grade of mucositis was approximately constant to the end of therapy; but in the control group it raised to grade 3 (P < 0.001). The highest grade of mucositis during the treatment time was significantly different between two groups (P = 0.049). The median interval to observation of grade > or =2 mucositis was 24 days in the placebo group and 28 days in the benzydamine group (P = 0.12). Benzydamine oral rinse seems to be effective, safe, and well tolerated for prophylactic treatment of radiation-induced oral mucositis in head and neck tumours. PMID:19267733

  1. Radiation-induced mucositis: a randomized clinical trial of micronized sucralfate versus salt & soda mouthwashes.

    PubMed

    Dodd, Marylin J; Miaskowski, Christine; Greenspan, Deborah; MacPhail, Laurie; Shih, Ai-Shan; Shiba, Gayle; Facione, Noreen; Paul, Steven M

    2003-01-01

    Oral mucositis is one of the major toxicities caused by radiation therapy (RT) treatments to the head and neck. The clinical efficacy of sucralfate (Carafate R) mouthwash for head and neck cancer patients (HNC) is not consistent across studies. In this study, it was hypothesized that if the particles in the original sucralfate suspension were micronized (i.e., < or = 25 microns) then the coating action of the mouthwash in the oral cavity would be enhanced. The purpose of this pilot study was to compare the efficacy of micronized sucralfate (Carafate R) mouthwash and salt & soda mouthwash in terms of the severity of the mucositis, the severity of mucositis-related pain, and the time required to heal RT-induced mucositis in patients with HNC. Severe mucositis and related pain can interfere with the ingestion of food and fluids, so patients' body weights were measured as well. All patients in this randomized clinical trial carried out a systematic oral hygiene protocol called the PRO-SELF: Mouth Aware (PSMA) Program. Patients who developed RT-induced mucositis anytime during their course of RT were randomized to one of the two mouthwashes and followed to the completion of RT and at one month following RT. Two referral sites were used for the study. Repeated measures occurred with the following instruments/variables: MacDibbs Mouth Assessment and weight. Demographic, disease, and cancer treatment information was also obtained. Thirty patients successfully completed the study. The typical participant was male (70%), married/partnered (70%), White (63%), not working or retired (73%), and had an average of 14.5 years of education (SD = 3.7). T-tests and Chi-square analyses with an alpha set at 0.05 were used to compare differences between the two mouthwashes. No significant differences were found in the number of days to onset of mucositis (i.e., 16 +/- 8.4 days). When patients had their worst MacDibbs score, (i.e., the most severe mucositis), there were no significant

  2. The M. D. Anderson Symptom Inventory-Head and Neck Module, a Patient-Reported Outcome Instrument, Accurately Predicts the Severity of Radiation-Induced Mucositis

    SciTech Connect

    Rosenthal, David I. Mendoza, Tito R.; Chambers, Mark; Burkett, V. Shannon; Garden, Adam S.; Hessell, Amy C.; Lewin, Jan S.; Ang, K. Kian; Kies, Merrill S.

    2008-12-01

    Purpose: To compare the M. D. Anderson Symptom Inventory-Head and Neck (MDASI-HN) module, a symptom burden instrument, with the Functional Assessment of Cancer Therapy-Head and Neck (FACT-HN) module, a quality-of-life instrument, for the assessment of mucositis in patients with head-and-neck cancer treated with radiotherapy and to identify the most distressing symptoms from the patient's perspective. Methods and Materials: Consecutive patients with head-and-neck cancer (n = 134) completed the MDASI-HN and FACT-HN before radiotherapy (time 1) and after 6 weeks of radiotherapy or chemoradiotherapy (time 2). The mean global and subscale scores for each instrument were compared with the objective mucositis scores determined from the National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0. Results: The global and subscale scores for each instrument showed highly significant changes from time 1 to time 2 and a significant correlation with the objective mucositis scores at time 2. Only the MDASI scores, however, were significant predictors of objective Common Terminology Criteria for Adverse Events mucositis scores on multivariate regression analysis (standardized regression coefficient, 0.355 for the global score and 0.310 for the head-and-neck cancer-specific score). Most of the moderate and severe symptoms associated with mucositis as identified on the MDASI-HN are not present on the FACT-HN. Conclusion: Both the MDASI-HN and FACT-HN modules can predict the mucositis scores. However, the MDASI-HN, a symptom burden instrument, was more closely associated with the severity of radiation-induced mucositis than the FACT-HN on multivariate regression analysis. This greater association was most likely related to the inclusion of a greater number of face-valid mucositis-related items in the MDASI-HN compared with the FACT-HN.

  3. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study

    PubMed Central

    2013-01-01

    This study was designed to determine the effect of Calendula officinalis flowers extract mouthwash as oral gel on radiation-induced oropharyngeal mucositis (OM) in patients with head-and-neck cancer. Forty patients with neck and head cancers under radiotherapy or concurrent chemoradiotherapy protocols were randomly assigned to receive either 2% calendula extract mouthwash or placebo (20 patients in each group). Patients were treated with telecobalt radiotherapy at conventional fractionation (200 cGy/fraction, five fractions weekly, 30–35 fractions within 4–7 weeks). The oropharyngeal mucositis was evaluated by two clinical investigators (a radiation oncologist and a dentist), using the oral mucositis assessment scale (OMAS). Trying to find out the possible mechanism of action of the treatment, total antioxidant, polyphenol and flavonoid contents, and quercetin concentration of the mouth wash were measured. Calendula mouthwash significantly decreased the intensity of OM compared to placebo at week 2 (score: 5.5 vs. 6.8, p = 0.019), week 3 (score: 8.25 vs. 10.95, p < 0.0001) and week 6 (score: 11.4 vs. 13.35, p = 0.031). Total antioxidant, polyphenol and flavonoid contents and quercetin concentration of the 2% extract were 2353.4 ± 56.5 μM, 313.40 ± 6.52 mg/g, 76.66 ± 23.24 mg/g, and 19.41 ± 4.34 mg/l, respectively. Calendula extract gel could be effective on decreasing the intensity of radiotherapy- induced OM during the treatment and antioxidant capacity may be partly responsible for the effect. PMID:23497687

  4. Antioxidant capacity of calendula officinalis flowers extract and prevention of radiation induced oropharyngeal mucositis in patients with head and neck cancers: a randomized controlled clinical study.

    PubMed

    Babaee, Neda; Moslemi, Dariush; Khalilpour, Mohammad; Vejdani, Fatemeh; Moghadamnia, Yasaman; Bijani, Ali; Baradaran, Mahmoud; Kazemi, Mohammad Taghi; Khalilpour, Asieh; Pouramir, Mahdi; Moghadamnia, Ali Akbar

    2013-01-01

    This study was designed to determine the effect of Calendula officinalis flowers extract mouthwash as oral gel on radiation-induced oropharyngeal mucositis (OM) in patients with head-and-neck cancer. Forty patients with neck and head cancers under radiotherapy or concurrent chemoradiotherapy protocols were randomly assigned to receive either 2% calendula extract mouthwash or placebo (20 patients in each group). Patients were treated with telecobalt radiotherapy at conventional fractionation (200 cGy/fraction, five fractions weekly, 30-35 fractions within 4-7 weeks). The oropharyngeal mucositis was evaluated by two clinical investigators (a radiation oncologist and a dentist), using the oral mucositis assessment scale (OMAS). Trying to find out the possible mechanism of action of the treatment, total antioxidant, polyphenol and flavonoid contents, and quercetin concentration of the mouth wash were measured. Calendula mouthwash significantly decreased the intensity of OM compared to placebo at week 2 (score: 5.5 vs. 6.8, p = 0.019), week 3 (score: 8.25 vs. 10.95, p < 0.0001) and week 6 (score: 11.4 vs. 13.35, p = 0.031). Total antioxidant, polyphenol and flavonoid contents and quercetin concentration of the 2% extract were 2353.4 ± 56.5 μM, 313.40 ± 6.52 mg/g, 76.66 ± 23.24 mg/g, and 19.41 ± 4.34 mg/l, respectively. Calendula extract gel could be effective on decreasing the intensity of radiotherapy- induced OM during the treatment and antioxidant capacity may be partly responsible for the effect. PMID:23497687

  5. Amifostine Reduces Radiation-Induced Complications in a Murine Model of Expander-Based Breast Reconstruction

    PubMed Central

    Felice, Peter A.; Nelson, Noah S.; Page, Erin E.; Deshpande, Sagar S.; Donneys, Alexis; Rodriguez, José; Buchman, Steven R.

    2014-01-01

    Background Immediate expander-based breast reconstruction after mastectomy is a prevalent option for many women with breast cancer. When coupled with adjuvant radiation, however, radiation-induced skin and soft tissue injury diminish the success of this reconstructive technique. We hypothesize that prophylactic administration of the cytoprotectant Amifostine will reduce soft tissue complications from irradiation, aiding expander-based reconstruction for women battling this disease. Methods Sprague Dawley rats were divided into two experimental groups, Operative Expander Placement (Expander) and Operative Sham (Sham). Expander specimens received a sub-latissimus tissue expander with a 15cc fill volume; Shams underwent identical procedures without expander placement. Experimental groups were further divided into Control specimens receiving no further intervention, XRT specimens receiving human-equivalent radiation, and AMF-XRT specimens receiving both Amifostine and human-equivalent radiation. Animals underwent a 45-day recovery period and were evaluated grossly and via ImageJ analysis for skin and soft tissue complications. Results None of the Control, XRT, or AMF-XRT Sham specimens showed skin and soft tissue complications. For Expander animals, significantly fewer AMF-XRT specimens (4 of 13, 30%) demonstrated skin and soft tissue complications compared to XRT specimens (9 of 13, 69%; p = 0.041). ImageJ evaluation of Expander specimens demonstrated a significant increase in skin and soft tissue necrosis for XRT specimens (12.94%), compared with AMF-XRT animals (6.96%, p = 0.019). Conclusions Amifostine pre-treatment significantly reduced skin and soft-tissue complications in both gross inspection and ImageJ analysis. These findings demonstrate that Amifostine prophylaxis provides protection against radiation-induced skin and soft tissue injury in a murine model of expander-based breast reconstruction. Level of Evidence Animal study, not gradable for level of

  6. Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function.

    PubMed

    Lee, Robert J; Workman, Alan D; Carey, Ryan M; Chen, Bei; Rosen, Phillip L; Doghramji, Laurel; Adappa, Nithin D; Palmer, James N; Kennedy, David W; Cohen, Noam A

    2016-01-01

    Aflatoxins are mycotoxins secreted by Aspergillus flavus, which can colonize the respiratory tract and cause fungal rhinosinusitis or bronchopulmonary aspergillosis. A. flavus is the second leading cause of invasive aspergillosis worldwide. Because many respiratory pathogens secrete toxins to impair mucociliary immunity, we examined the effects of acute exposure to aflatoxins on airway cell physiology. Using air-liquid interface cultures of primary human sinonasal and bronchial cells, we imaged ciliary beat frequency (CBF), intracellular calcium, and nitric oxide (NO). Exposure to aflatoxins (0.1 to 10 μM; 5 to 10 minutes) reduced baseline (~6-12%) and agonist-stimulated CBF. Conditioned media (CM) from A. fumigatus, A. niger, and A. flavus cultures also reduced CBF by ~10% after 60 min exposure, but effects were blocked by an anti-aflatoxin antibody only with A. flavus CM. CBF reduction required protein kinase C but was not associated with changes in calcium or NO. However, AFB2 reduced NO production by ~50% during stimulation of the ciliary-localized T2R38 receptor. Using a fluorescent reporter construct expressed in A549 cells, we directly observed activation of PKC activity by AFB2. Aflatoxins secreted by respiratory A. flavus may impair motile and chemosensory functions of airway cilia, contributing to pathogenesis of fungal airway diseases. PMID:27623953

  7. The Mechanism of Zr and Hf in Reducing Radiation-Induced Segregation in 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Hackett, M. J.; Busby, J. T.; Was, G. S.

    2008-02-01

    The addition of oversized solutes has the potential to reduce the effects of radiation-induced segregation (RIS) in austenitic alloys. This RIS has been implicated as one of several factors in enhancing stress corrosion cracking (SCC) under irradiation, so oversized solute additions could promote SCC resistance. Either Zr or Hf was added to 316-type stainless steel, at levels between 0.05 and 0.37 at. pct. Samples were irradiated with 3 MeV protons to 3 dpa at 400 °C and analyzed using high-resolution scanning transmission electron microscopy (HR-STEM) with energy-dispersive X-ray spectroscopy (EDS), to measure the grain-boundary (GB) composition. The Zr additions substantially reduced the amount of RIS, while the Hf was much less effective. Despite similar sizes, first-principles calculations using the Vienna Ab Initio Simulation Package (VASP) demonstrate that solute-vacancy binding for Zr is 1.05 eV vs 0.69 eV for Hf. This difference results in the greater effectiveness of Zr in reducing RIS, as determined by kinetic rate theory calculations, in agreement with experimentally-measured results.

  8. Photobiomodulation reduces oral mucositis by modulating NF-kB.

    PubMed

    Curra, Marina; Pellicioli, Ana Carolina Amorim; Filho, Nélson Alexandre Kretzmann; Ochs, Gustavo; Matte, Úrsula; Filho, Manoel Sant'Ana; Martins, Marco Antonio Trevizani; Martins, Manoela Domingues

    2015-12-01

    The aim of this study was to evaluate NF-kB during 5-fluorouracil (FU)-induced oral mucositis and ascertain whether photobiomodulation (PBM), as a preventive and/or therapeutic modality, influences this transcription factor. Ninety-six male golden Syrian hamsters were allocated into four groups: control (no treatment); PBM therapeutic, PBM preventive, and PBM combined. Animals received an injection of 5-FU on days 0 and 2. On days 3 and 4, the buccal mucosa was scratched. Irradiation was carried out using a 660-nm, 40-mW diode laser at 6  J/cm(2) during 6  s/point, 0.24  J/point, for a total dose of 1.44  J/day of application. Animals were euthanized on days 0, 5, 10, and 15 (n=6). Buccal mucosa was removed for protein quantification by Western blot. Clinical analysis revealed that PBM groups exhibited less mucositis than controls on day 10. Control animals exhibited lower levels of NF-kB during mucositis development and healing. The preventive and combined protocols were associated with higher NF-kB levels at day 5; however, the therapeutic group had higher levels at days 10 and 15. These findings suggest that the preventive and/or therapeutic PBM protocols reduced the severity of oral mucositis by activating the NF-kB pathway. PMID:26720873

  9. Photobiomodulation reduces oral mucositis by modulating NF-kB

    NASA Astrophysics Data System (ADS)

    Curra, Marina; Pellicioli, Ana Carolina Amorim; Filho, Nélson Alexandre Kretzmann; Ochs, Gustavo; Matte, Úrsula; Filho, Manoel Sant'Ana; Martins, Marco Antonio Trevizani; Martins, Manoela Domingues

    2015-12-01

    The aim of this study was to evaluate NF-kB during 5-fluorouracil (FU)-induced oral mucositis and ascertain whether photobiomodulation (PBM), as a preventive and/or therapeutic modality, influences this transcription factor. Ninety-six male golden Syrian hamsters were allocated into four groups: control (no treatment); PBM therapeutic, PBM preventive, and PBM combined. Animals received an injection of 5-FU on days 0 and 2. On days 3 and 4, the buccal mucosa was scratched. Irradiation was carried out using a 660-nm, 40-mW diode laser at 6 J/cm2 during 6 s/point, 0.24 J/point, for a total dose of 1.44 J/day of application. Animals were euthanized on days 0, 5, 10, and 15 (n=6). Buccal mucosa was removed for protein quantification by Western blot. Clinical analysis revealed that PBM groups exhibited less mucositis than controls on day 10. Control animals exhibited lower levels of NF-kB during mucositis development and healing. The preventive and combined protocols were associated with higher NF-kB levels at day 5; however, the therapeutic group had higher levels at days 10 and 15. These findings suggest that the preventive and/or therapeutic PBM protocols reduced the severity of oral mucositis by activating the NF-kB pathway.

  10. Radioprotector WR1065 reduces radiation-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells

    SciTech Connect

    Grdina, D.J.; Hill, C.K.; Peraino, C. ); Biserka, N. ); Wells, R.L. . Dept. of Radiology and Radiation Biology)

    1985-06-01

    N-(2-mercaptoethyl)-1,3-diaminopropane (WR1065) protects against radiation-induced cell killing and mutagenesis at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in V79 Chinese hamster lung fibroblast cells. WR1065 (4 mm) was found to be effective in protecting against radiation-induced cell lethality only if present during irradiation. No protective effect was observed if the protector was added within 5 min after irradiation or 3 h later. The effect of WR1065 on radiation-induced mutation, expressed as resistance to the cytotoxic purine analogue 6-thioguanine (HGPRT), was also investigated. This agent was effective in reducing radiation-induced mutations regardless of when it was administered. Following 10 Gy of /sup 60/Co ..gamma..-rays, the mutation frequencies observed per 10/sup 6/ survivors were 77 +- 8, 27 +- 6, 42 +- 7, and 42 +- 7 for radiation only, and WR1065 present during, immediately after, or 3 h after irradiation. These data suggest that although a segment of radiation-induced damage leading to reproductive death cannot be modulated through the postirradiation action of WR1065, processes leading to the fixation of gross genetic damage and mutation induction in surviving cells can be effectively altered and interfered with leading to a marked reduction in mutation frequency.

  11. Management of chemo/radiation-induced oral mucositis in patients with head and neck cancer: A review of the current literature.

    PubMed

    Moslemi, Dariush; Nokhandani, Akram Mohammadi; Otaghsaraei, Mahsa Taheri; Moghadamnia, Yasaman; Kazemi, Sohrab; Moghadamnia, Ali Akbar

    2016-07-01

    Oropharyngeal mucositis is an important complication in non-surgical cancer treatments. It represents the major complication in radiotherapy of tumors located in head and neck areas. Many results have been published in order to define the best clinical protocol for prophylaxis or treatment of mucositis, but a consensus has not been attained yet. In this review, some recent topics in prophylaxis and treatment of mucositis related to radiation therapy are reconsidered using PUBMED and GOOGLE SCHOOLAR search engines from 2000 to 2015. In this review, more than 100 clinical studies have been selected and divided into the prophylactic or therapeutic uses of the evaluated treatment agents. The number of patients and kind of study design, the clinical features, prevalence, risk factors, pathogenesis, diagnosis, complication, prophylaxis and the treatment of mucositis were also specified. Nevertheless, it has not been truly achieved a consensus protocol of prophylaxis and treatment of oral mucositis. PMID:27113797

  12. Acemannan-containing wound dressing gel reduces radiation-induced skin reactions in C3H mice

    SciTech Connect

    Roberts, D.B.; Travis, E.L.

    1995-07-15

    To determine (a) whether a wound dressing gel that contains acemannan extracted from aloe leaves affects the severity of radiation-induced acute skin reactions in C3H mice; (b) if so, whether other commercially available gels such as a personal lubricating jelly and a healing ointment have similar effects; and (c) when the wound dressing gel should be applied for maximum effect. Male C3H mice received graded single doses of gamma radiation ranging from 30 to 47.5 Gy to the right leg. In most experiments, the gel was applied daily beginning immediately after irradiation. Dose-response curves were obtained by plotting the percentage of mice that reached or exceeded a given peak skin reaction as a function of dose. Curves were fitted by logit analysis and ED{sub 50} values, and 95% confidence limits were obtained. The average peak skin reactions of the wound dressing gel-treated mice were lower than those of the untreated mice at all radiation doses tested. The ED{sub 50} values for skin reactions of 2.0-2.75 were approximately 7 Gy higher in the wound dressing gel-treated mice. The average peak skin reactions and the ED{sub 50} values for mice treated with personal lubricating jelly or healing ointment were similar to irradiated control values. Reduction in the percentage of mice with skin reactions of 2.5 or more was greatest in the groups that received wound dressing gel for at least 2 weeks beginning immediately after irradiation. There was no effect if gel was applied only before irradiation or beginning 1 week after irradiation. Wound dressing gel, but not personal lubricating jelly or healing ointment, reduces acute radiation-induced skin reactions in C3H mice if applied daily for at least 2 weeks beginning immediately after irradiation. 31 refs., 4 figs., 1 tab.

  13. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-05-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug was administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls, All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p less than 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p less than 0.05) and pericardial effusion (p less than 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p less than 0.05) or IB (p less than 0.01) and in the untreated, unirradiated rabbits (p less than 0.01). Early administration of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusion, and improved survival in this experimental model of radiation-induced heart disease.

  14. Complementary and alternative medicine in reducing radiation-induced skin toxicity.

    PubMed

    Hu, Jennifer J; Cui, Tengjiao; Rodriguez-Gil, Jorge L; Allen, Glenn O; Li, Jie; Takita, Cristiane; Lally, Brian E

    2014-08-01

    Radiation therapy-induced acute and late effects, particularly skin toxicities, have significant impact on cancer patients' quality of life and long-term survival. To date, no effective topical agents have been routinely used in the clinical setting to prevent skin toxicity. Using SKH-hr1 hairless mice, we investigated two complementary and alternative medicine in their effects on inflammation and ionizing radiation (IR)-induced skin toxicity: Calendula officinalis (CO) and Ching Wan Hung (CWH). They were applied immediately following each IR dosing of 10 Gy/day for 4 days. Skin toxicity and inflammatory factors were evaluated at multiple time points up to 15 days post-radiation. Serum interleukin (IL)-1α, monocyte chemotactic protein-1 (MCP1), keratinocyte-derived chemokine (KC), and granulocyte colony-stimulating factor (G-CSF) were significantly induced by radiation. Both CO and CWH significantly inhibited IR-induced MCP1 (p < 0.01), KC (p < 0.05), and G-CSF (p < 0.001). IR-induced erythema and blood vessel dilation were significantly reduced by CWH (p < 0.001) but not by CO at day 10 post-IR. Both agents inhibited IR-induced IL-1α (p < 0.01), MCP1 (p < 0.05), and vascular endothelial growth factor (p < 0.05). There were continuous inhibitory effects of CWH on IR-induced skin toxicities and inflammation. In contrast, CO treatment resulted in skin reactions compared to IR alone. Our results suggest that both CO and CWH reduce IR-induced inflammation and CWH reduced IR-induced erythema. In summary, CWH showed promising effects in reducing IR-related inflammation and skin toxicities, and future proof-of-principal testing in humans will be critical in evaluating its potential application in preventing IR-induced skin toxicities. PMID:24792319

  15. ISCOMATRIX™ adjuvant reduces mucosal tolerance for effective pulmonary vaccination against influenza

    PubMed Central

    Timothy, Andrea A; Tokanovic, Ana; Snibson, Kenneth J; Edwards, Stirling J; Pearse, Martin J; Scheerlinck, Jean-Pierre Y; Sutton, Philip

    2015-01-01

    While most pathogens infect via mucosal surfaces, most current vaccines are delivered by injection. This situation remains despite awareness of the potential benefits of mucosal delivery for inducing protection against mucosa-infecting pathogens. A major obstacle to the development of such vaccines is the paucity of safe and effective adjuvants that induce mucosal responses in non-rodents. Previously we demonstrated in sheep the potency of pulmonary-delivered influenza ISCOMATRIX™ vaccine, which induces both mucosal and systemic immunity, even with low antigen doses. In the current study, lung pre-exposure to influenza antigen alone significantly reduced the immune response to subsequent pulmonary-delivered influenza ISCOMATRIX™ vaccine. A single dose of influenza antigen, delivered to the lung without exogenous adjuvant, upregulated IL-10 expression in bronchoalveolar lavage cells and FOXP3 expression in lung tissue, suggestive of induction of a regulatory T cell (Treg) response. However, this effect was inhibited by addition of ISCOMATRIX™ adjuvant. Moreover, effective pulmonary immunization with influenza ISCOMATRIX™ vaccine was associated with a depletion of Treg markers within lung tissues. Lung exposure to influenza antigen induced a localized mucosal tolerance that reduced the efficacy of subsequent influenza ISCOMATRIX™ vaccination. An important role of ISCOMATRIX™ adjuvant in pulmonary vaccination appears to be the depletion of Treg in lung tissues. Pulmonary vaccination remains capable of inducing a strong immune response against mucosal pathogens, but likely requires an adjuvant to overcome mucosal tolerance. ISCOMATRIX™ appears to have considerable potential as a mucosal adjuvant for use in humans, a major unmet need in mucosal vaccine development. PMID:25692970

  16. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models.

    PubMed

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  17. Oral Administration of Escin Inhibits Acute Inflammation and Reduces Intestinal Mucosal Injury in Animal Models

    PubMed Central

    Li, Minmin; Lu, Chengwen; Zhang, Leiming; Zhang, Jianqiao; Du, Yuan; Duan, Sijin; Wang, Tian; Fu, Fenghua

    2015-01-01

    The present study aimed to investigate the effects of oral administration of escin on acute inflammation and intestinal mucosal injury in animal models. The effects of escin on carrageenan-induced paw edema in a rat model of acute inflammation, cecal ligation and puncture (CLP) induced intestinal mucosal injury in a mouse model, were observed. It was shown that oral administration of escin inhibits carrageenan-induced paw edema and decreases the production of prostaglandin E2 (PGE2) and cyclooxygenase- (COX-) 2. In CLP model, low dose of escin ameliorates endotoxin induced liver injury and intestinal mucosal injury and increases the expression of tight junction protein claudin-5 in mice. These findings suggest that escin effectively inhibits acute inflammation and reduces intestinal mucosal injury in animal models. PMID:26199634

  18. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    SciTech Connect

    Ryu, Janice K. . E-mail: janice.ryu@ucdmc.ucdavis.edu; Swann, Suzanne; LeVeque, Francis; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Kim, Harold; Ang, Kian K.

    2007-03-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 {mu}g/m{sup 2} or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer.

  19. Amelioration of Radiation-Induced Oral Cavity Mucositis and Distant Bone Marrow Suppression in Fanconi Anemia Fancd2−/− (FVB/N) Mice by Intraoral GS-Nitroxide JP4-039

    PubMed Central

    Berhane, Hebist; Shinde, Ashwin; Kalash, Ronny; Xu, Karen; Epperly, Michael W.; Goff, Julie; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Li, Song; Gao, Xiang; Greenberger, Joel S.

    2014-01-01

    The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2−/− mice, comparing this to Fancd2+/− and Fancd2+/+ mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10–12-week-old mice, of FVB/N background Fancd2−/−, Fancd2+/− and Fancd2+/+ were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2−/− mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2+/+ mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2−/− mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2+/+ mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2−/− mice compared to Fancd2+/+ controls. Fancd2−/− mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2+/+ mice. In radiosensitive Fancd2−/− mice, biomarkers of both local oral cavity and distant marrow

  20. Amelioration of radiation-induced oral cavity mucositis and distant bone marrow suppression in fanconi anemia Fancd2-/- (FVB/N) mice by intraoral GS-nitroxide JP4-039.

    PubMed

    Berhane, Hebist; Shinde, Ashwin; Kalash, Ronny; Xu, Karen; Epperly, Michael W; Goff, Julie; Franicola, Darcy; Zhang, Xichen; Dixon, Tracy; Shields, Donna; Wang, Hong; Wipf, Peter; Li, Song; Gao, Xiang; Greenberger, Joel S

    2014-07-01

    The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2(-/-) mice, comparing this to Fancd2(+/-) and Fancd2(+/+) mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10-12-week-old mice, of FVB/N background Fancd2(-/-), Fancd2(+/-) and Fancd2(+/+) were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2(-/-) mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2(+/+) mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2(-/-) mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2(+/+) mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2(-/-) mice compared to Fancd2(+/+) controls. Fancd2(-/-) mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2(+/+) mice. In radiosensitive Fancd2(-/-) mice, biomarkers of both local oral cavity and distant marrow

  1. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  2. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    SciTech Connect

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin; Jeong, Jae-Hoon; Kang, Seongman; Lim, Young-Bin

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  3. Targeting α4β7 integrin reduces mucosal transmission of SIV and protects GALT from infection

    PubMed Central

    Byrareddy, Siddappa N.; Kallam, Brianne; Arthos, James; Cicala, Claudia; Nawaz, Fatima; Hiatt, Joseph; Kersh, Ellen N.; McNicholl, Janet M.; Hanson, Debra; Reimann, Keith A.; Brameier, Markus; Walter, Lutz; Rogers, Kenneth; Mayne, Ann E.; Dunbar, Paul; Villinger, Tara; Little, Dawn; Parslow, Tristram G.; Santangelo, Philip J.; Villinger, Francois; Fauci, Anthony S.; Ansari, Aftab A.

    2014-01-01

    α4β7 integrin expressing CD4+ T cells preferentially traffic to gut-associated lymphoid tissues (GALT) and play a key role in HIV/SIV pathogenesis. The administration of an anti-α4β7 monoclonal antibody during acute infection protects macaques from transmission following repeated low-dose intra-vaginal challenges with SIVmac251. In treated animals that became infected the GALT was significantly protected and CD4+ T–cell numbers were maintained. Thus, targeting α4β7 reduces mucosal transmission of SIV in macaques. PMID:25419708

  4. Saccharomyces cerevisiae UFMG A-905 treatment reduces intestinal damage in a murine model of irinotecan-induced mucositis.

    PubMed

    Bastos, R W; Pedroso, S H S P; Vieira, A T; Moreira, L M C; França, C S; Cartelle, C T; Arantes, R M E; Generoso, S V; Cardoso, V N; Neves, M J; Nicoli, J R; Martins, F S

    2016-09-01

    Indigenous microbiota plays a crucial role in the development of several intestinal diseases, including mucositis. Gastrointestinal mucositis is a major and serious side effect of cancer therapy, and there is no effective therapy for this clinical condition. However, some probiotics have been shown to attenuate such conditions. To evaluate the effects of Saccharomyces cerevisiae UFMG A-905 (Sc-905), a potential probiotic yeast, we investigated whether pre- or post-treatment with viable or inactivated Sc-905 could prevent weight loss and intestinal lesions, and maintain integrity of the mucosal barrier in a mucositis model induced by irinotecan in mice. Only post-treatment with viable Sc-905 was able to protect mice against the damage caused by chemotherapy, reducing the weight loss, increase of intestinal permeability and jejunal lesions (villous shortening). Besides, this treatment reduced oxidative stress, prevented the decrease of goblet cells and stimulated the replication of cells in the intestinal crypts of mice with experimental mucositis. In conclusion, Sc-905 protects animals against irinotecan-induced mucositis when administered as a post-treatment with viable cells, and this effect seems to be related with the reduction of oxidative stress and preservation of intestinal mucosa. PMID:27133563

  5. Replacing the acetyl linkage in aspirin with choline and magnesium moieties reduces the occurrence of gastric mucosal injury.

    PubMed

    Danesh, B J; Nelson, L M; Russell, R I; Docherty, C

    1987-02-01

    The acetyl moiety in aspirin (acetyl salicylic acid: ASA) is considered to play a major part in the pathogenesis of ASA-induced mucosal injury. At equivalent salicylate doses and pH values, the induction of acute gastric mucosal haemorrhagic erosions in rats by ASA and choline magnesium trisalicylate (CMT), a new non-acetylated salicylate, with and without the potentiating damaging effect of taurodeoxycholic acid (TDCA) were compared. Test solutions were administered by per oral intubation to five groups of fasting Sprague-Dawley rats (n = 24). Gastric mucosa were examined after 4 hours and mucosal injury assessed by a lesion-scoring system. The incidence and severity (median lesion scores with quartiles) of the lesions were 83% and 13 (7:20) respectively for ASA (128 mg kg-1) compared with 17% and 0 (0:0) for CMT (128 mg kg-1) (P less than 0.001 and P less than 0.001). TDCA increased mucosal damage to 100% and 29 (20:34) for ASA compared with 30% and 0 (0:4) for CMT (P less than 0.001) and P less than 0.001). Serum salicylate levels (median values of 1.4 for ASA and 1.5 mmol litre-1 for CMT) were not significantly different. It is concluded that replacing the acetyl moiety in ASA with choline and magnesium moieties reduces the ASA-induced mucosal injury, without affecting blood salicylate concentrations. PMID:2979212

  6. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs.

    PubMed

    Linard, Christine; Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-11-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage. PMID:24068742

  7. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis

    PubMed Central

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-01-01

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5−/− mice or adoptive transfer of splenic naïve CD4+ T-cells from wild type or CCR5−/− mice into RAG-1−/−. CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4+ and CD11b+ leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs. PMID:27492684

  8. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis.

    PubMed

    Mencarelli, Andrea; Cipriani, Sabrina; Francisci, Daniela; Santucci, Luca; Baldelli, Franco; Distrutti, Eleonora; Fiorucci, Stefano

    2016-01-01

    Targeted disruption of leukocyte trafficking to the gut represents a promising approach for the treatment of inflammatory bowel diseases (IBDs). CCR5, the shared receptor for MIP1α and β and RANTES, is expressed by multiple leukocytes. Here, we aimed to determine the role of CCR5 in mediating leukocyte trafficking in models of colitis, and evaluate the therapeutic potential of maraviroc, an orally active CCR5 antagonist used in the treatment of CCR5-tropic HIV. Acute and chronic colitis were induced by administration of DSS or TNBS to wild-type and CCR5(-/-) mice or adoptive transfer of splenic naïve CD4(+) T-cells from wild type or CCR5(-/-) mice into RAG-1(-/-). CCR5 gene ablation reduced the mucosal recruitment and activation of CCR5-bearing CD4(+) and CD11b(+) leukocytes, resulting in profound attenuation of signs and symptoms of inflammation in the TNBS and transfer models of colitis. In the DSS/TNBS colitis and in the transfer model, maraviroc attenuated development of intestinal inflammation by selectively reducing the recruitment of CCR5 bearing leukocytes. In summary, CCR5 regulates recruitment of blood leukocytes into the colon indicating that targeting CCR5 may offer therapeutic options in IBDs. PMID:27492684

  9. Reducing Nasal Morbidity After Skull Base Reconstruction with the Nasoseptal Flap: Free Middle Turbinate Mucosal Grafts

    PubMed Central

    Kimple, Adam J.; Leight, W. Derek; Wheless, Stephen A.; Zanation, Adam M.

    2012-01-01

    Introduction The nasoseptal flap provides hearty, vascularized tissue for reconstruction of Expanded Endonasal Approaches (EEA); however, it produces donor site morbidity due to exposed cartilage. Mucosalization of the septum requires 12 weeks, multiple debridements, and frequent saline rinses. This study addresses the reduction of nasal morbidity by grafting middle turbinate mucosa onto the exposed septum. Methods 15 patients undergoing EEA of the ventral skull base were prospectively enrolled. In seven cases, the sacrificed middle turbinate mucosa was harvested and placed as a free mucosal graft on the septal cartilage. In eight controls middle turbinate grafting was not performed due to tumor involvement. Septal mucosalization and crusting of all patients was quantified at follow-up appointments. An additional 46 patients were retrospectively identified who received middle turbinate grating on their exposed septal cartilage and mucosalization rates determined from clinical records. Results Three weeks after initial operation, the mucosalization rate was 70% versus 5% in the graft and non-graft groups, respectively. At post-operative week six, the mucosalization and crusting were 97% and 5% for the graft group versus 60% and 85% for the non-graft group. Mucosalization rates in the retrospective graft series agreed with the prospective series. Conclusions Despite donor site morbidity, the nasoseptal flap is becoming the standard of care for skull base reconstruction due to its reliability in reestablishing a barrier between the subarachnoid space and the sinonasal tract. It is possible to dramatically increase the rate of septal mucosalization and decrease crusting by using a middle turbinate free mucosal graft. Level of Evidence 1b PMID:22926937

  10. Emu Oil Combined with Lyprinol™ Reduces Small Intestinal Damage in a Rat Model of Chemotherapy-Induced Mucositis.

    PubMed

    Mashtoub, Suzanne; Lampton, Lorrinne S; Eden, Georgina L; Cheah, Ker Y; Lymn, Kerry A; Bajic, Juliana E; Howarth, Gordon S

    2016-10-01

    Chemotherapy-induced mucositis is characterized by inflammation and ulcerating lesions lining the alimentary tract. Emu Oil and Lyprinol™ have independently demonstrated their therapeutic potential in intestinal inflammatory disorders, including mucositis. We investigated Emu Oil and Lyprinol™ in combination for their further potential to alleviate chemotherapy-induced mucositis in rats. Rats were gavaged with (1 ml) water, Olive Oil, Emu Oil + Olive Oil, Lyprinol™ + Olive Oil or Emu Oil + Lyprinol™ from Days 0 to 7, injected with saline (control) or 5-Fluorouracil (5-FU) on Day 5 and euthanized on Day 8. Myeloperoxidase (MPO) activity (indicative of acute inflammation), histological severity scores, and intestinal architecture were quantified. Myeloperoxidase activity was significantly increased in the jejunum and ileum following 5-FU, compared to saline controls. Both Olive Oil and Emu Oil + Lyprinol™ significantly reduced jejunal MPO levels (1.8-fold and 1.7-fold, respectively), whereas only Emu Oil + Lyprinol™ significantly decreased ileal MPO levels, relative to 5-FU controls. All oil treatments decreased histological severity scores in the jejunum and ileum, and normalized crypt depth in the mid small intestine, relative to 5-FU controls. Emu Oil combined with Lyprinol™ partially reduced acute small intestinal inflammation. Isolating bioactive constituents of these naturally sourced oils could provide a more targeted strategy to protect against intestinal mucositis. PMID:27618153

  11. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  12. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice.

    PubMed

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  13. Neurogenic differentiation factor NeuroD confers protection against radiation-induced intestinal injury in mice

    PubMed Central

    Li, Ming; Du, Aonan; Xu, Jing; Ma, Yanchao; Cao, Han; Yang, Chao; Yang, Xiao-Dong; Xing, Chun-Gen; Chen, Ming; Zhu, Wei; Zhang, Shuyu; Cao, Jianping

    2016-01-01

    The gastrointestinal tract, especially the small intestine, is particularly sensitive to radiation, and is prone to radiation-induced injury as a result. Neurogenic differentiation factor (NeuroD) is an evolutionarily-conserved basic helix-loop-helix (bHLH) transcription factor. NeuroD contains a protein transduction domain (PTD), which allows it to be exogenously delivered across the membrane of mammalian cells, whereupon its transcription activity can be unleashed. Whether NeuroD has therapeutic effects for radiation-induced injury remains unclear. In the present study, we prepared a NeuroD-EGFP recombinant protein, and explored its protective effects on the survival and intestinal damage induced by ionizing radiation. Our results showed that NeuroD-EGFP could be transduced into small intestine epithelial cells and tissues. NeuroD-EGFP administration significantly increased overall survival of mice exposed to lethal total body irradiation (TBI). This recombinant NeuroD also reduced radiation-induced intestinal mucosal injury and apoptosis, and improved crypt survival. Expression profiling of NeuroD-EGFP-treated mice revealed upregulation of tissue inhibitor of metalloproteinase 1 (TIMP-1), a known inhibitor of apoptosis in mammalian cells. In conclusion, NeuroD confers protection against radiation-induced intestinal injury, and provides a novel therapeutic clinical option for the prevention of intestinal side effects of radiotherapy and the treatment of victims of incidental exposure. PMID:27436572

  14. Radiation-induced osteochondromas

    SciTech Connect

    Libshitz, H.I.; Cohen, M.A.

    1982-03-01

    Radiation-induced osteochondromas, either single or multiple, occur more commonly than is generally recognized. The incidence following irradiation for childhood malignancy is approximately 12%. Any open epiphysis is vulnerable. Age at irradiation, time of appearance following therapy, dose and type of radiation, and clinical course in 14 cases are dicussed. Due to growth of the lesion and/or pain, 3 tumors were excised. None revealed malignant degeneration.

  15. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  16. The effect of honey on mucositis induced by chemoradiation in head and neck cancer.

    PubMed

    Maiti, Pradip Kumar; Ray, Amitabh; Mitra, Tarak Nath; Jana, Utpal; Bhattacharya, Jibak; Ganguly, Subir

    2012-07-01

    The aim of this study was to evaluate the effect of pure natural honey on radiation-induced mucositis. Fifty-five patients diagnosed with head and neck cancer requiring radiation to the oropharyngeal mucosal area were divided into two groups (study arm-28 and control arm-27) to receive either chemoradiation or chemoradiation plus topical application of honey. Patients were treated using a telecobalt machine at 2 Gy per day, five times a week up to a total dose of 66 Gy. in the study arm, patients were advised to take 20 ml of honey 15 minutes before, 15 minutes after and similar amount at bed time. Patients were evaluated every week for the development of radiation mucositis using the WHO grading system. There was significant reduction in the symptomatic grades 3 and 4 mucositis in honey-treated patients compared to controls ie, 18% versus 41% for grade 3 and 4% versus 22% for grade 4 mucositis. Seventy-one per cent of patients treated with topical honey showed no change or a positive gain in body weight. In the control group also 22% had no weight loss, though none showed weight gain. Furthermore, it didn't affect blood sugar level when initial fasting blood sugar level was < 150 mg%. Honey is a cheap, simple, easily available and effective agent in reducing radiation-induced mucositis. Within the limits of this study the results showed the application of natural honey is effective in managing radiation induced mucositis, which warrants further multicentric randomised trials to validate the findings. PMID:23520669

  17. Nitro-arginine methyl ester, a non-selective inhibitor of nitric oxide synthase reduces ibuprofen-induced gastric mucosal injury in the rat.

    PubMed

    Abraham, Premila; K, Indirani; K, Desigamani

    2005-09-01

    Ibuprofen is a commonly used non-steroidal anti-inflammatory drug. Gastrointestinal adverse drug reactions from ibuprofen usage include gastric mucosal ulcers and bleeding. The mechanism by which ibuprofen induces gastric mucosal damage is not clear. The present study is an attempt to examine the role of nitric oxide in the pathogenesis of ibuprofen-induced gastric mucosal damage. Ibuprofen administered orally at the dose of 100 mg/kg body weight for 6 days to the rats resulted in gastric mucosal injury. Serum nitrite and nitrosothiol were increased significantly as compared with the controls, which were treated with the vehicle alone. In the gastric mucosa, lipid peroxidation and protein thiols were increased, and the activity of glyceraldehyde 3-phosphate dehydrogenase, a nitric oxide sensitive enzyme was decreased significantly. Pretreatment of the rats daily with nitric oxide synthase inhibitor, nitro-arginine methyl ester (30 mg/kg body weight) 1 hr before treatment with ibuprofen reduced the gastric mucosal injury. Biochemically, it prevented the rise in serum nitrite levels and the increase in lipid peroxidation and protein thiol levels and the loss of glyceraldehyde 3-phosphate dehydrogenase activity in the gastric mucosa. The results of the present study suggest that increased nitric oxide production may be one of the mechanisms by which ibuprofen produces gastric mucosal injury and that inhibition of nitric oxide synthase reduces gastric mucosal injury. PMID:16133962

  18. [Radiation-induced cancers].

    PubMed

    Dutrillaux, B

    1998-01-01

    The induction of malignant diseases is one of the most concerning late effects of ionising radiation. A large amount of information has been collected form atomic bomb survivors, patients after therapeutic irradiation, occupational follow-up and accidentally exposed populations. Major uncertainties persist in the (very) low dose range i.e., population and workers radioprotection. A review of the biological mechanisms leading to cancer strongly suggests that the vast majority of radiation-induced malignancies arise as a consequence of recessive mutations of tumour-suppressor genes. These mutations can be unveiled by ageing, this process being possibly furthered by constitutional or acquired genomic instability. The individual risk is likely to be very low, probably because of the usual dose level. However, the magnitude of medical exposure and the reliance of our societies on nuclear industry are so high that irreproachable decision-making processes and standards for practice are inescapable. PMID:9868399

  19. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  20. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  1. [Radiation-induced neuropathy].

    PubMed

    Kolak, Agnieszka; Starosławska, Elzbieta; Kieszko, Dariusz; Cisek, Paweł; Patyra, Krzysztof Ireneusz; Surdyka, Dariusz; Dobrzyńska-Rutkowska, Aneta; Łopacka-Szatan, Karolina; Burdan, Franciszek

    2013-12-01

    Radiation-induced neuropathy is commonly observed among oncological patients. Radiation can affect the nervous tissue directly or indirectly by inducing vasculopathy or dysfunction of internal organs. Symptoms may be mild and reversible (e.g., pain, nausea, vomiting, fever, drowsiness, fatigue, paresthesia) or life-threatening (cerebral oedema, increased intracranial pressure, seizures). Such complications are clinically divided into peripheral (plexopathies, neuropathies of spinal and cranial nerves) and central neuropathy (myelopathy, encephalopathy, cognitive impairment). The degree of neuronal damages primarily depends on the total and fractional radiation dose and applied therapeutic methods. The conformal and megavoltage radiotherapy seems to be the safeties ones. Diagnostic protocol includes physical examination, imaging (in particular magnetic resonance), electromyography, nerve conduction study and sometimes histological examination. Prevention and early detection of neurological complications are necessary in order to prevent a permanent dysfunction of the nervous system. Presently their treatment is mostly symptomatic, but in same cases a surgical intervention is required. An experimental and clinical data indicates some effectiveness of different neuroprotective agents (e.g. anticoagulants, vitamin E, hyperbaric oxygen, pentoxifylline, bevacizumab, methylphenidate, donepezil), which should be administered before and/or during radiotherapy. PMID:24490474

  2. Reduced Mucosal Associated Invariant T-Cells Are Associated with Increased Disease Severity and Pseudomonas aeruginosa Infection in Cystic Fibrosis

    PubMed Central

    Smith, Daniel J.; Hill, Geoffrey R.; Bell, Scott C.; Reid, David W.

    2014-01-01

    Background Primary defects in host immune responses have been hypothesised to contribute towards an inability of subjects with cystic fibrosis (CF) to effectively clear pulmonary infections. Innate T-lymphocytes provide rapid pathogen-specific responses prior to the development of classical MHC class I and II restricted T-cell responses and are essential to the initial control of pulmonary infection. We aimed to examine the relationship between peripheral blood lymphocyte phenotype and clinical outcomes in adults with CF. Methods We studied 41 subjects with CF and 22, age matched, non-smoking healthy control subjects. Lymphocytes were extracted from peripheral blood samples and phenotyped by flow-cytometry. Lymphocyte phenotype was correlated with sputum microbiology and clinical parameters. Results In comparison to healthy control subjects, mucosal associated invariant T (MAIT)-lymphocytes were significantly reduced in the peripheral blood of subjects with CF (1.1% versus 2.0% of T-lymphocytes, P = 0.002). MAIT cell concentration was lowest in CF subjects infected with P. aeruginosa and in subjects receiving treatment for a pulmonary exacerbation. Furthermore a reduced MAIT cell concentration correlated with severity of lung disease. Conclusion Reduced numbers of MAIT cells in subjects with CF were associated with P. aeruginosa pulmonary infection, pulmonary exacerbations and more severe lung disease. These findings provide the impetus for future studies examining the utility of MAIT cells in immunotherapies and vaccine development. Longitudinal studies of MAIT cells as biomarkers of CF pulmonary infection are awaited. PMID:25296025

  3. Mucosal vaccines

    PubMed Central

    Nizard, Mevyn; Diniz, Mariana O; Roussel, Helene; Tran, Thi; Ferreira, Luis CS; Badoual, Cecile; Tartour, Eric

    2014-01-01

    The mucosal immune system displays several adaptations reflecting the exposure to the external environment. The efficient induction of mucosal immune responses also requires specific approaches, such as the use of appropriate administration routes and specific adjuvants and/or delivery systems. In contrast to vaccines delivered via parenteral routes, experimental, and clinical evidences demonstrated that mucosal vaccines can efficiently induce local immune responses to pathogens or tumors located at mucosal sites as well as systemic response. At least in part, such features can be explained by the compartmentalization of mucosal B and T cell populations that play important roles in the modulation of local immune responses. In the present review, we discuss molecular and cellular features of the mucosal immune system as well as novel immunization approaches that may lead to the development of innovative and efficient vaccines targeting pathogens and tumors at different mucosal sites. PMID:25424921

  4. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

    PubMed Central

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD. PMID:26881044

  5. Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

    PubMed

    Pokhrel, Damodar; Sood, Sumit; Lominska, Christopher; Kumar, Pravesh; Badkul, Rajeev; Jiang, Hongyu; Wang, Fen

    2015-01-01

    mean and maximum doses to hippocampus were 8.4 ± 0.3 Gy, 11.2 ± 0.3 Gy, and 15.6 ± 0.4 Gy, on average, respectively. The mean values of homogeneity index (HI) and conformity index (CI) were 0.23 ± 0.02 and 0.96 ± 0.02, respectively. The maximum point dose to WB-PTV was 35.3 Gy, well below the optic pathway tolerance of 37.5 Gy. In addition, compared to NC-WBRT, dose reduction of mean and maximum of parotid glands from IMAT were 65% and 50%, respectively. Ear canals mean and maximum doses were reduced by 26% and 12%, and mean and maximum scalp doses were reduced by 9 Gy (32%) and 2 Gy (6%), on average, respectively. The mean dose to skin was 9.7 Gy with IMAT plans compared to 16 Gy with conventional NC-WBRT, demonstrating that absolute reduction of skin dose by a factor of 2. The mean values of the total number of monitor units (MUs) and actual beam on time were 719 ± 44 and 2.34 ± 0.14 min, respectively. The accuracy of IMAT QA plan delivery was (98.1 ± 0.8) %, on average, with a 3%/3 mm gamma index passing rate criteria. All of these plans were considered clinically acceptable per RTOG 0933 criteria. IMAT planning provided highly conformal and homogenous plan with a fast and effective treatment option for WBRT patients, sparing not only hippocampi but also other OARs, which could potentially result in an additional improvement of the quality life (QoL). In the future, we plan to evaluate the clinical potential of IMAT planning and treatment option with hippocampal and other OARs avoidance in our patient's cohort and asses the QoL of the WBRT patients, as well as simultaneous integrated boost (SIB) for the brain metastases diseases. PMID:26699321

  6. Pravastatin limits radiation-induced vascular dysfunction in the skin.

    PubMed

    Holler, Valerie; Buard, Valerie; Gaugler, Marie-Helene; Guipaud, Olivier; Baudelin, Cedric; Sache, Amandine; Perez, Maria del R; Squiban, Claire; Tamarat, Radia; Milliat, Fabien; Benderitter, Marc

    2009-05-01

    About half of people with cancer are treated with radiation therapy; however, normal tissue toxicity still remains a dose-limiting factor for this treatment. The skin response to ionizing radiation may involve multiple inflammatory outbreaks. The endothelium is known to play a critical role in radiation-induced vascular injury. Furthermore, endothelial dysfunction reflects a decreased availability of nitric oxide. Statins have been reported to preserve endothelial function through their antioxidant and anti-inflammatory activities. In this study, wild type and endothelial nitric oxide synthase (eNOS)(-/-) mice were subjected to dorsal skin irradiation and treated with pravastatin for 28 days. We demonstrated that pravastatin has a therapeutic effect on skin lesions and abolishes radiation-induced vascular functional activation by decreasing interactions between leukocytes and endothelium. Pravastatin limits the radiation-induced increase of blood CCL2 and CXCL1 production expression of inflammatory adhesion molecules such as E-selectin and intercellular adhesion molecule-1, and inflammatory cell migration in tissues. Pravastatin limits the in vivo and in vitro radiation-induced downregulation of eNOS. Moreover, pravastatin has no effect in eNOS(-/-) mice, demonstrating that eNOS plays a key role in the beneficial effect of pravastatin in radiation-induced skin lesions. In conclusion, pravastatin may be a good therapeutic approach to prevent or reduce radiation-induced skin damage. PMID:19212344

  7. Radiation-induced intracranial malignant gliomas

    SciTech Connect

    Shapiro, S.; Mealey, J. Jr.; Sartorius, C.

    1989-07-01

    The authors present seven cases of malignant gliomas that occurred after radiation therapy administered for diseases different from the subsequent glial tumor. Included among these seven are three patients who were treated with interstitial brachytherapy. Previously reported cases of radiation-induced glioma are reviewed and analyzed for common characteristics. Children receiving central nervous system irradiation appear particularly susceptible to induction of malignant gliomas by radiation. Interstitial brachytherapy may be used successfully instead of external beam radiotherapy in previously irradiated, tumor-free brain, and thus may reduce the risk of radiation necrosis. 31 references.

  8. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  9. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    PubMed Central

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h before irradiation. Irradiated groups received a single dose of 5 Gy on whole-body using Cesium-137 source and were sacrificed 3 or 30 days after irradiation. Tissues were removed, fixed, stained with hematoxylin and eosin or PAS staining and histological characteristics were evaluated. Proliferative and apoptotic markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate DNA damage. Submandibular gland (SMG) function was evaluated by methacholine-induced salivation. Results indicate that JNJ7777120 treatment diminished mucosal atrophy and preserved villi and the number of crypts after radiation exposure (240±8 vs. 165±10, P<0.01). This effect was associated to a reduced apoptosis and DNA damage in intestinal crypts. JNJ7777120 reduced radiation-induced aplasia, preserving medullar components and reducing formation of micronucleus and also it accelerated bone marrow repopulation. Furthermore, it reduced micronucleus frequency in peripheral blood (27±8 vs. 149±22, in 1,000 erythrocytes, P<0.01). JNJ7777120 completely reversed radiation-induced reduced salivation, conserving glandular mass with normal histological appearance and reducing apoptosis and atrophy of SMG. JNJ7777120 exhibits radioprotective effects against radiation-induced cytotoxic and genotoxic damages in small intestine, SMG and hematopoietic tissues and, thus, could be of clinical value for patients undergoing radiotherapy. PMID:23922686

  10. [Prevention and treatment of mucositis in children with oral cancers: Practical recommendations].

    PubMed

    El Bousaadani, A; Eljahd, L; Abada, R; Rouadi, S; Roubal, M; Mahtar, M

    2016-05-01

    Oral mucositis is an inflammation of the mucosa of the oral cavity of various etiologies. This is a common and debilitating complication in children treated with chemoradiotherapy for cancer. Its management remains a major concern both for the doctor than the patient. It affects the quality of life of patients and families. It may initiate the functional and vital prognosis because of the judgment of cancer treatment. Several treatment options are available, but there is no clear consensus therapeutic especially for the pediatric population. We have identified, through a comprehensive literature search indexed publications on this subject in order to review the pharmacological and non-pharmacological approaches that have been used to prevent and treat oral mucositis. Thus, current recommendations for the management of oral mucositis are very limited, and therefore the standard of care for this complication was palliative. In recent years several studies have revealed that the use of low-energy laser was particularly interesting in the prevention and treatment of radiation-induced or chemically induced mucositis. It significantly reduces the pain, the severity and duration of the ulcer by promoting wound healing. Randomized controlled trials with a large number of patients are expected to establish preventive and therapeutic protocols. Treatment with low power laser, known devoid of side effects, is a very promising oncology care to support radio-induced mucositis and chemotherapy. PMID:27032624

  11. Characterization of radiation-induced Apoptosis in rodent cell lines

    SciTech Connect

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-03-01

    For REC:myc(ch1), Rat1 and Rat1:myc{sub b} cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using {sup 4}He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on {sup 4}He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G{sub 2} phases reduced the relative radioresistance observed for clonogenic survival during late S and G{sub 2} phases. 30 refs., 8 figs.

  12. A Novel Peptide for Simultaneously Enhanced Treatment of Head and Neck Cancer and Mitigation of Oral Mucositis

    PubMed Central

    Chen, Peili; Mancini, Maria; Sonis, Stephen T.; Fernandez-Martinez, Juan; Liu, Jing; Cohen, Ezra E. W.; Toback, F. Gary

    2016-01-01

    We have characterized a novel 21 amino acid-peptide derived from Antrum Mucosal Protein (AMP)-18 that mediates growth promotion of cultured normal epithelial cells and mitigates radiation-induced oral mucositis in animal models, while suppressing in vitro function of cancer cells. The objective of this study was to evaluate these dual potential therapeutic effects of AMP peptide in a clinically relevant animal model of head and neck cancer (HNC) by simultaneously assessing its effect on tumor growth and radiation-induced oral mucositis in an orthotopic model of HNC. Bioluminescent SCC-25 HNC cells were injected into the anterior tongue and tumors that formed were then subjected to focal radiation treatment. Tumor size was assessed using an in vivo imaging system, and the extent of oral mucositis was compared between animals treated with AMP peptide or vehicle (controls). Synergism between AMP peptide and radiation therapy was suggested by the finding that tumors in the AMP peptide/radiation therapy cohort demonstrated inhibited growth vs. radiation therapy-only treated tumors, while AMP peptide-treatment delayed the onset and reduced the severity of radiation therapy-induced oral mucositis. A differential effect on apoptosis appears to be one mechanism by which AMP-18 can stimulate growth and repair of injured mucosal epithelial cells while inhibiting proliferation of HNC cells. RNA microarray analysis identified pathways that are differentially targeted by AMP-18 in HNC vs. nontransformed cells. These observations confirm the notion that normal cells and tumor cells may respond differently to common biological stimuli, and that leveraging this finding in the case of AMP-18 may provide a clinically relevant opportunity. PMID:27049860

  13. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  14. Mucosal immunoglobulins.

    PubMed

    Woof, Jenny M; Mestecky, Jiri

    2005-08-01

    Due to their vast surface area, the mucosal surfaces of the body represent a major site of potential attack by invading pathogens. The secretions that bathe mucosal surfaces contain significant levels of immunoglobulins (Igs), which play key roles in immune defense of these surfaces. IgA is the predominant antibody class in many external secretions and has many functional attributes, both direct and indirect, that serve to prevent infective agents such as bacteria and viruses from breaching the mucosal barrier. This review details current understanding of the structural and functional characteristics of IgA, including interaction with specific receptors (such as Fc(alpha)RI, Fc(alpha)/microR, and CD71) and presents examples of the means by which certain pathogens circumvent the protective properties of this important Ig. PMID:16048542

  15. Reduced mucosal side-effects of acetylsalicylic acid after conjugation with tris-hydroxymethyl-aminomethane. Synthesis and biological evaluation of a new anti-inflammatory compound.

    PubMed

    Varga, Gabriella; Lajkó, Norbert; Ugocsai, Melinda; Érces, Dániel; Horváth, Gyöngyi; Tóth, Gábor; Boros, Mihály; Ghyczy, Miklós

    2016-06-15

    Acetylsalicylic acid (ASA) causes adverse haemorrhagic reactions in the upper gastrointestinal (GI) tract, and previous results have suggested that combination therapy with 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) could provide protection in this scenario. Based on this hypothesis, our aim was to develop a new compound from ASA and Tris precursors and to characterize the biological effects of ASA-Tris and the derivatives ASA-bis- and mono-hydroxymethyl-aminomethane (ASA-Bis, ASA-Mono, respectively) using in vivo and in vitro test systems. ASA or ASA conjugates (0.55mmol/kg, each) were administered intragastrically to Sprague-Dawley rats. Changes in the mucosal structure and in the serosal microcirculation were detected by in vivo imaging techniques, the plasma TNF-alpha, tissue xanthine oxidoreductase and myeloperoxidase activities, and liver cytochrome c changes were also determined. In two separate series, platelet aggregation and carrageenan arthritis-induced inflammatory pain were measured in control, ASA and ASA-Tris-treated groups. Severe mucosal injury and a significant decrease in serosal red blood cell velocity developed in the ASA-treated group and an ~2-fold elevation in proinflammatory mediator levels evolved. ASA-Tris did not cause bleeding, microcirculatory dysfunction, mucosal injury or an elevation in proinflammatory markers. The ASA-Mono and ASA-Bis conjugates did not cause macroscopic bleeding, but the inflammatory activation was apparent. ASA-Tris did not influence the cyclooxygenase-induced platelet aggregation significantly, but the inflammatory pain was reduced as effectively as in the case of equimolar ASA doses. ASA-Tris conjugation is an effective approach through which the GI side-effects of ASA are controlled by decreasing the cytokine-mediated progression of pro-inflammatory events. PMID:27079640

  16. Reduced gastric acid production in burn shock period and its significance in the prevention and treatment of acute gastric mucosal lesions.

    PubMed

    Zhu, Li; Yang, Zhong-Cheng; Li, Ao; Cheng, De-Chang

    2000-02-01

    AIM:To investigate the changes of gastric acid production and its mechanism in shock period of severe burn in rats.METHODS:A rat model with 30% TBSA full thickness burn injury was employed and the gastric acid production,together with gastric mucosal blood flow (GMBF) and energy charge (EC) were measured serially within 48h postburn.RESULTS:The gastric acid production in the acute shock period was markedly inhibited after severe burn injury.At the 3rd h postburn,the gastric juice volume, total acidity and acid output were already significantly decreased (P < 0.01 =, and reached the lowest point, 0.63mL/L ± 0.20mL/L, 10.81mmol/L ± 2.58mmol/L and 2.23mmol/h ± 0.73mmol/h respectively, at the 12th h postburn. Although restored to some degree 24h after thermal injury, the variables above were still statistically lower, compared with those of control animals at the 48th h postburn. The GMBF and EC were also significantly reduced after severe burns, consistent with the trend of gastric acid production changes.CONCLUSION:Gastric acid production, as well as GMBF and EC was predominantly decreased in the early postburn stage, suggesting that gastric mucosal ischemia and hypoxia with resultant disturbance in energy metabolism, but not gastric acid proper, might be the decisive factor in the pathogenesis of AGML after thermal injury, and that the preventive use of anti-acid drugs during burn shock period was unreasonable in some respects. Therefore, taking effective measures to improve gastric mucosal blood perfusion as early as possible postburn might be more preferable for the AGML prevention and treatment. PMID:11819529

  17. Selenomethionine in Reducing Mucositis in Patients With Locally Advanced Head and Neck Cancer Who Are Receiving Cisplatin and Radiation Therapy

    ClinicalTrials.gov

    2014-08-08

    Chemotherapeutic Agent Toxicity; Mucositis; Radiation Toxicity; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Larynx; Stage IV Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IV Squamous Cell Carcinoma of the Oropharynx; Stage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Xerostomia

  18. [Immunoglobulin for prevention of radiogenic mucositis].

    PubMed

    Mose, S; Adamietz, I A; Thilmann, C; Saran, F; Heyd, R; Knecht, R; Böttcher, H D

    1995-07-01

    Among various therapies administered during radiation-induced mucositis, treatment with immunoglobulin has proven clinically successful. In this study the efficacy of prophylactic applications of immunoglobulin was investigated from January 1992 through August 1993. Forty-two patients with histologically-proven head and neck cancer were given postoperative radiation treatment. In cases with macroscopic tumor residues or inoperability, combined radio-chemotherapy was given. This included 51.3 Gy at 1.9 Gy 5x/week, boosted to 10-26 Gy at 2 Gy 5x/week and carboplatin 60 mg/m2 at days 1-5 and 29-33. Panthenol (4x10 ml/day) and nystatin (4 x 1 ml/day) were given to 20 patients as prophylactic treatment for mucositis. Twenty-two subsequent patients also received intramuscular 800 mg (5 ml) human immunoglobulin (1x/week). According to the Seegenschmiedt/Sauer classification the extent of mucositis was determined 3x/week. Comparison of the distribution of maximal mucositis revealed a slightly more severe mucosal reaction in the control group (n.s.). Analysis of the mean degree of mucositis in both groups demonstrated statistically significant differences (p = 0.031) related to the whole collective and patients receiving concomitant chemotherapy while no effect of immunoglobulin was found in patients treated by radiation alone. In the immunoglobulin-treated-group, the time from the beginning of therapy to the first interruption was prolonged 5 days (37.5 +/- 13.1 vs. 42.7 +/- 13.3 days), but this difference was not significant. Although prophylactic application of immunoglobulin seemed to lower the degree of radiation-induced mucositis, this effect was less significant when compared to the immunoglobulin given in a therapeutic manner. PMID:7672999

  19. Amifostine (ETHYOL) protects rats from mucositis resulting from fractionated or hyperfractionated radiation exposure

    SciTech Connect

    Cassatt, David R.; McCarthy, Michael P. . E-mail: mccarthym@medimmune.com

    2005-03-01

    Purpose: The cytoprotective drug amifostine (Ethyol) protects rats from oral mucositis resulting from a single dose of {gamma}-irradiation. We expanded earlier studies to determine whether multiple doses of amifostine protect against fractionated or hyperfractionated radiation and whether the active metabolite of amifostine (WR-1065) accumulates in tissues upon repeated administration. Methods and materials: Rats received amifostine daily for 5 days in conjunction with a 1-week fractionated radiation schedule and were evaluated for oral mucositis. Rats also received amifostine before the am or pm exposure or b.i.d. in conjunction with hyperfractionated radiation. To determine the pharmacokinetics of WR-1065 after repeated dosing, amifostine was given 5 days a week for 1 or 3 weeks, and rat tissue and plasma were collected at intervals during and after treatment and analyzed for WR-1065. Results: Amifostine protected rats from mucositis resulting from fractionated or hyperfractionated radiation. When the number of days of amifostine administration was reduced, protection was diminished. A dose of 100 mg/kg given in the morning or 2 doses at 50 mg/kg provided the best protection against hyperfractionated radiation. WR-1065 did not accumulate in tissues or tumor upon repeated administration. Conclusions: Amifostine prevented radiation-induced mucositis in a rat model; protection was dose and schedule dependent.

  20. Azilsartan Reduced TNF-α and IL-1β Levels, Increased IL-10 Levels and Upregulated VEGF, FGF, KGF, and TGF-α in an Oral Mucositis Model

    PubMed Central

    de Araújo, Aurigena Antunes; Varela, Hugo; de Medeiros, Caroline Addison Carvalho Xavier; de Castro Brito, Gerly Anne; de Lima, Kênio Costa; de Moura, Ligia Moreno; de Araújo, Raimundo Fernandes

    2015-01-01

    Oral mucositis (OM) is a common complication of treatments for head and neck cancer, particularly radiotherapy with or without chemotherapy. OM is characterised by oral erythema, ulceration, and pain. The aim of this study was to evaluate the effect of azilsartan (AZT), an angiotensin II receptor antagonist, on 5-fluorouracil (5-FU)-induced oral mucositis (OM) in Syrian hamsters. OM was induced by the intraperitoneal administration of 5-FU on experimental days 1 (60mg/Kg) and 2 (40mg/Kg). Animals were pretreated with oral AZT (1, 5, or 10 mg/kg) or vehicle 30 min before 5-FU injection and daily until day 10. Experimental treatment protocols were approved by the Animal Ethics Committee Use/CEUA (Number 28/2012) of the UFRN. Macroscopic analysis and cheek pouch samples were removed for histopathologic analysis. Myeloperoxidase (MPO), Malonyldialdehyde (MDA), interleukin-1 beta (IL-1β), interleukin-10 (IL-10), and tumour necrosis factor-alpha (TNF-α) were analysed by Enzyme Linked Immuno Sorbent Assay (ELISA). Vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), and transforming growth factor (TGF)-α were measured by immunohistochemistry. Analysis of variance followed by Bonferroni’s test was used to calculate the means of intergroup differences (p ≤ 0.05). Treatment with 1 mg/kg AZT reduced levels MPO (p<0.01), MDA (p<0.5) and histological inflammatory cell infiltration, and increased the presence of granulation tissue. AZT treatment at 1 mg/kg reduced the TNF-α (p<0.05) and IL-1β (p<0.05) levels, increased the cheek pouch levels of IL-10 (p<0.01), and upregulated VEGF, FGF, KGF, and TGF-α. Administration of AZT at higher doses (5 and 10 mg/kg) did not significantly reverse the OM. AZT at a dose of 1 mg/kg prevented the mucosal damage and inflammation associated with 5-FU-induced OM, increasing granulation and tissue repair. PMID:25689279

  1. Reduced-dose methotrexate in combination with tacrolimus was associated with rapid engraftment and recovery from oral mucositis without affecting the incidence of GVHD.

    PubMed

    Matsukawa, Toshihiro; Hashimoto, Daigo; Sugita, Junichi; Nakazawa, Seitarou; Matsushita, Takae; Kashiwazaki, Haruhiko; Goto, Hideki; Onozawa, Masahiro; Kahata, Kaoru; Fujimoto, Katsuya; Endo, Tomoyuki; Kondo, Takeshi; Hashino, Satoshi; Yamazaki, Yutaka; Teshima, Takanori

    2016-07-01

    Allogeneic hematopoietic stem cell transplantation is a curable treatment for hematological diseases. Graft-versus-host disease (GVHD) causes morbidity and mortality after HSCT. Methotrexate (MTX) is used for GVHD prophylaxis, but its appropriate dose remains unclear. In the present study, we compared the efficacy and toxicity of 15-10-10 MTX (day +1: 15 mg/m(2); days +3 and +6: 10 mg/m(2)) with 10-7-7 MTX (day +1: 10 mg/m(2); day +3 and +6: 7 mg/m(2)) in combination with tacrolimus. The cumulative incidence rates of grades II-IV acute GVHD, grades III-IV acute GVHD and chronic GVHD in the 15-10-10 MTX and 10-7-7 MTX groups did not differ to a statistically significant extent. The median time for neutrophil engraftment in the 15-10-10 MTX group was 16 days (range, 11-31 days), while that in the 10-7-7 group was 15 days (range, 12-19 days) (P = 0.024). Moreover, the median time for platelet recovery was significantly shorter in the 10-7-7 MTX group (22 days; range, 13-49 days) than that in the 15-10-10 MTX group (27 days; range, 9-405 days) (P = 0.027). The duration of oral mucositis was significantly shorter in the patients who received a reduced dose of MTX (median, 4.5 vs 13.0 days; P = 0.013). In conclusion, GVHD prophylaxis with a reduced dose of MTX was associated with earlier engraftment and earlier recovery from mucositis in comparison to a standard dose of MTX, without affecting the incidence of GVHD. PMID:27119977

  2. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  3. Radiation-induced neoplasms of the brain

    SciTech Connect

    Kumar, P.P.; Good, R.R.; Skultety, F.M.; Leibrock, L.G.; Severson, G.S.

    1987-04-01

    The histopathology of two patients with radiation-induced neoplasms of the brain following therapeutic irradiation for intracranial malignancies is described. The second neoplasms were an atypical meningioma and a polymorphous cell sarcoma, respectively. They occurred 12 and 23 years after irradiation (4000 rad), within the original field of irradiation. In both cases, the radiation-induced tumors were histologically distinct from the initial medulloblastomas. Both patients were retreated with local irradiation using permanent implantation of radioactive iodine-125 seeds.

  4. Prophylaxis with povidone-iodine against induction of oral mucositis by radiochemotherapy.

    PubMed

    Adamietz, I A; Rahn, R; Böttcher, H D; Schäfer, V; Reimer, K; Fleischer, W

    1998-07-01

    Oral mucositis is a frequent complication of radiochemotherapy. The origin of radiation-induced mucosal lesions is iatrogenic in nature, although further development of mucositis is essentially influenced by infection. It can be assumed that disinfection measures should decrease the severity of mucositis induced by radiochemotherapy. Therefore, in a prospective randomised study the efficacy of prophylactic oral rinsing with a disinfection agent was investigated. A randomised, prospective comparative trial was conducted with 40 patients undergoing radiochemotherapy of the head and neck region because of malignant disease. The treatment scheme consisted of irradiation to the tumour region and adjacent lymph nodes, with a total dose of 71.3 Gy, and simultaneous chemotherapy with carboplatin (60 mg/m2) on days 1-5 and 29-34. In all patients mucositis prophylaxis with nystatin, rutosides, panthenol and immunoglobulin was undertaken. In addition, 20 patients rinsed the oral cavity 4 times daily with povidone-iodine solution, while the group for comparison rinsed with sterile water. Clinical examination of the oral mucosa was performed weekly. Onset, grading and duration of mucositis were used as the main variables. Clinically manifest oral mucositis was observed in 14 patients in the iodine group (mean grading: 1.0) and in all 20 patients in the control group (mean grading: 3.0). The total duration (mean) of clinically observed mucositis was 2.75 weeks in treatment patients and 9.25 weeks in control patients. Median AUC (area under curve for grade vs duration) was 2.5 in the iodine rinsing patients and 15.75 in control patients. All differences found between the two groups were statistically significant. Increased iodine incorporation was not observed. A pathologic rise in thyroid hormone levels was not found in the iodine group. The results obtained indicate that incidence, severity and duration of radiochemotherapy-induced mucositis can be significantly reduced by oral

  5. Mucosal vaccination with formalin-inactivated avian metapneumovirus Subtype C reduces clinical signs of disease but enhances local pathology of turkeys following challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies were performed to determine if mucosal vaccination with inactivated avian metapneumovirus (aMPV) subtype C protected turkey poults from clinical disease and virus replication following mucosal challenge. Although decreases in clinical disease were observed in vaccinated groups, the vaccine...

  6. Acetylcysteine Rinse in Reducing Saliva Thickness and Mucositis in Patients With Head and Neck Cancer Undergoing Radiation Therapy

    ClinicalTrials.gov

    2016-02-04

    Mucositis; Oral Complications; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Stage I Adenoid Cystic Carcinoma of the Oral Cavity; Stage I Basal Cell Carcinoma of the Lip; Stage I Lymphoepithelioma of the Nasopharynx; Stage I Lymphoepithelioma of the Oropharynx; Stage I Mucoepidermoid Carcinoma of the Oral Cavity; Stage I Salivary Gland Cancer; Stage I Squamous Cell Carcinoma of the Larynx; Stage I Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage I Squamous Cell Carcinoma of the Nasopharynx; Stage I Squamous Cell Carcinoma of the Oropharynx; Stage I Verrucous Carcinoma of the Larynx; Stage I Verrucous Carcinoma of the Oral Cavity; Stage II Adenoid Cystic Carcinoma of the Oral Cavity; Stage II Basal Cell Carcinoma of the Lip; Stage II Lymphoepithelioma of the Nasopharynx; Stage II Lymphoepithelioma of the Oropharynx; Stage II Mucoepidermoid Carcinoma of the Oral Cavity; Stage II Salivary Gland Cancer; Stage II Squamous Cell Carcinoma of the Larynx; Stage II Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage II Squamous Cell Carcinoma of the Nasopharynx; Stage II Squamous Cell Carcinoma of the Oropharynx; Stage II Verrucous Carcinoma of the Larynx; Stage II Verrucous Carcinoma of the Oral Cavity; Stage III Adenoid Cystic Carcinoma of the Oral Cavity; Stage III Basal Cell Carcinoma of the Lip; Stage III Lymphoepithelioma of the Nasopharynx; Stage III Lymphoepithelioma of the Oropharynx; Stage III Mucoepidermoid

  7. Cathodoluminescence of radiation-induced zircon

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Nishido, H.; Kayama, M.; Noumi, Y.

    2013-12-01

    youngest formation ages of 1.93-1.20 Ma and 1.7-0.9 Ma, respectively (Harayama,1994; Harayama et al., 2010) in the world. In this case, it is hardly to detect yellow CL emissions derived from radiation-induced defect center, suggesting low radiation dose of alpha radiation from 238U and 232Th on them. CL spectra of MZ, TZ and KZ showed an increase in the intensities of yellow emissions with an increase in radiation dose of He+ ion implantation, though He+ ion implantation reduces the intensities of their impurity centers. CL intensity in the yellow region depends on radiation dose of He+ ion implantation. Therefore, if the component of yellow emission could be deconvoluted from the CL spectra in zircon, its intensity will be used for an indicator to evaluate total exposure doses on it during geological age.

  8. Estrogen Protects against Radiation-Induced Cataractogenesis

    PubMed Central

    Dynlacht, Joseph R.; Valluri, Shailaja; Lopez, Jennifer; Greer, Falon; DesRosiers, Colleen; Caperell-Grant, Andrea; Mendonca, Marc S.; Bigsby, Robert M.

    2008-01-01

    Cataractogenesis is a complication of radiotherapy when the eye is included in the treatment field. Low doses of densely ionizing space radiation may also result in an increased risk of cataracts in astronauts. We previously reported that estrogen (17-β-estradiol), when administered to ovariectomized rats commencing 1 week before γ irradiation of the eye and continuously thereafter, results in a significant increase in the rate and incidence of cataract formation and a decreased latent period compared to an ovariectomized control group. We therefore concluded that estrogen accelerates progression of radiation-induced opacification. We now show that estrogen, if administered continuously, but commencing after irradiation, protects against radiation cataractogenesis. Both the rate of progression and incidence of cataracts were greatly reduced in ovariectomized rats that received estrogen treatment after irradiation compared to ovariectomized rats. As in our previous study, estradiol administered 1 week prior to irradiation at the time of ovariectomy and throughout the period of observation produced an enhanced rate of cataract progression. Estrogen administered for only 1 week prior to irradiation had no effect on the rate of progression but resulted in a slight reduction in the incidence. We conclude that estrogen may enhance or protect against radiation cataractogenesis, depending on when it is administered relative to the time of irradiation, and may differentially modulate the initiation and progression phases of cataractogenesis. These data have important implications for astronauts and radiotherapy patients. PMID:19138041

  9. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties. PMID:27135971

  10. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells

    PubMed Central

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-01-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects. PMID:24813621

  11. White and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate.

    PubMed

    Monk, Jennifer M; Zhang, Claire P; Wu, Wenqing; Zarepoor, Leila; Lu, Jenifer T; Liu, Ronghua; Pauls, K Peter; Wood, Geoffrey A; Tsao, Rong; Robinson, Lindsay E; Power, Krista A

    2015-07-01

    Common beans are a rich source of nondigestible fermentable components and phenolic compounds that have anti-inflammatory effects. We assessed the gut-health-promoting potential of kidney beans in healthy mice and their ability to attenuate colonic inflammation following dextran sodium sulphate (DSS) exposure (via drinking water, 2% DSS w/v, 7 days). C57BL/6 mice were fed one of three isocaloric diets: basal diet control (BD), or BD supplemented with 20% cooked white (WK) or dark red kidney (DK) bean flour for 3 weeks. In healthy mice, anti-inflammatory microbial-derived cecal short chain fatty acid (SCFA) levels (acetate, butyrate and propionate), colon crypt height and colonic Mucin 1 (MUC1) and Resistin-like Molecule beta (Relmβ) mRNA expression all increased in WK- and DK-fed mice compared to BD, indicative of enhanced microbial activity, gut barrier integrity and antimicrobial defense response. During colitis, both bean diets reduced (a) disease severity, (b) colonic histological damage and (c) increased mRNA expression of antimicrobial and barrier integrity-promoting genes (Toll-like Receptor 4 (TLR4), MUC1-3, Relmβ and Trefoil Factor 3 (TFF3)) and reduced proinflammatory mediator expression [interleukin (IL)-1β, IL-6, interferon (IFN)γ, tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1], which correlated with reduced colon tissue protein levels. Further, bean diets exerted a systemic anti-inflammatory effect during colitis by reducing serum levels of IL-17A, IFNγ, TNFα, IL-1β and IL-6. In conclusion, both WK and DK bean-supplemented diets enhanced microbial-derived SCFA metabolite production, gut barrier integrity and the microbial defensive response in the healthy colon, which supported an anti-inflammatory phenotype during colitis. Collectively, these data demonstrate a beneficial colon-function priming effect of bean consumption that mitigates colitis severity. PMID:25841250

  12. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    SciTech Connect

    Wu Xiaoyan; Chen Peili; Sonis, Stephen T.; Lingen, Mark W.; Berger, Ann; Toback, F. Gary

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results: Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.

  13. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    PubMed Central

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  14. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    PubMed

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  15. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  16. Oral mucositis - self-care

    MedlinePlus

    Cancer treatment - mucositis; Cancer treatment - mouth pain; Cancer treatment - mouth sores; Chemotherapy - mucositis; Chemotherapy - mouth pain; Chemotherapy - mouth sores; Radiation therapy - mucositis; Radiation therapy - mouth pain; Radiation ...

  17. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized. PMID:3589954

  18. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  19. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  20. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  1. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  2. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  3. Imaging Radiation-Induced Normal Tissue Injury

    PubMed Central

    Robbins, Mike E.; Brunso-Bechtold, Judy K.; Peiffer, Ann M.; Tsien, Christina I.; Bailey, Janet E.; Marks, Lawrence B.

    2013-01-01

    Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them. PMID:22348250

  4. Management of radiation-induced urethral strictures

    PubMed Central

    Hofer, Matthias D.

    2015-01-01

    Radiation as a treatment option for prostate cancer has been chosen by many patients. One of the side effects encountered are radiation-induced urethral strictures which occur in up to 11% of patients. Radiation damage has often left the irradiated field fibrotic and with poor vascularization which make these strictures a challenging entity to treat. The mainstay of urologic management remains an urethroplasty procedure for which several approaches exist with variable optimal indication. Excision and primary anastomoses are ideal for shorter bulbar strictures that comprise the majority of radiation-induced urethral strictures. One advantage of this technique is that it does not require tissue transfers and success rates of 70-95% have consistently been reported. Substitution urethroplasty using remote graft tissue such as buccal mucosa are indicated if the length of the stricture precludes a tension-free primary anastomosis. Despite the challenge of graft survival in radiation-damaged and poorly vascularized recipient tissue, up to 83% of patients have been treated successfully although the numbers described in the literature are small. The most extensive repairs involve the use of tissue flaps, for example gracilis muscle, which may be required if the involved periurethral tissue is unable to provide sufficient vascular support for a post-operative urethral healing process. In summary, radiation-induced urethral strictures are a challenging entity. Most strictures are amenable to excision and primary anastomosis (EPA) with encouraging success rates but substitution urethroplasty may be indicated when extensive repair is needed. PMID:26816812

  5. The effects of sucralfate suspension and diphenhydramine syrup plus kaolin-pectin on radiotherapy-induced mucositis

    SciTech Connect

    Barker, G.; Loftus, L.; Cuddy, P.; Barker, B. )

    1991-03-01

    A prospective, double-blind study compared the effectiveness of sucralfate suspension with diphenhydramine syrup plus kaolin-pectin in reducing severity and pain of radiation-induced oropharyngeal mucositis. Fourteen patients who received at least 4600 cGy to the oral cavity used one of the mouth rinses four times a day, beginning at 1600 cGy. Data were collected on daily perceived pain and helpfulness of mouth rinse, weekly mucositis grade, weight change, and interruption of therapy. Analysis of data revealed no statistically significant differences between the two groups in any parameter. A retrospective review of 15 patients who had received at least 4600 cGy radiation to the oropharynx but had not used a daily mouth-coating rinse, was compared with the study group. Comparison of the two groups suggested that consistent daily oral hygiene and use of a mouth-coating agent will result in less pain and may reduce weight loss and interruption of radiation because of severe mucositis.

  6. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy.

    PubMed

    Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S

    2010-04-01

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo. PMID:20334517

  7. Mucosal dendritic cells shape mucosal immunity

    PubMed Central

    Chang, Sun-Young; Ko, Hyun-Jeong; Kweon, Mi-Na

    2014-01-01

    Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases. PMID:24626170

  8. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats.

    PubMed

    Zhang, KunYi; He, XuYu; Zhou, Yingling; Gao, Lijuan; Qi, Zhengyu; Chen, Jiyan; Gao, Xiuren

    2015-12-01

    Radiation-induced heart injury is one of the major side effects of radiotherapy for thoracic malignancies. Previous studies have shown that radiotherapy induced myocardial fibrosis and intensified myocardial remodeling. In this study, we investigated whether atorvastatin could inhibit radiation-induced heart fibrosis in Sprague-Dawley rats, which were randomly divided into six groups: control; radiation only; and four treatment groups receiving atorvastatin plus radiation (E1, E2, E3 and E4). All rats, except the control group, received local heart irradiation in 7 daily fractions of 3 Gy for a total of 21 Gy. Rats in groups E1 (10 mg/kg/day) and E2 (20 mg/kg/day) received atorvastatin and radiation treatment until week 12 after exposure. Rats in groups E3 (10 mg/kg/day) and E4 (20 mg/kg/day) received atorvastatin treatment from 3 months before irradiation to week 12 after irradiation. The expressions of TGF-β1, Smad2, Smad3, fibronectin, ROCK I and p-Akt in heart tissues were evaluated using real-time PCR or Western blot analyses. Atorvastatin significantly reduced the expression of TGF-β1, Smad3/P-Smad3, ROCK I and p-Akt in rats of the E1-E4 groups and in a dose-dependent manner. Fibronectin exhibited a similar pattern of expression changes. In addition, echocardiography showed that atorvastatin treatment can inhibit the increase of left ventricular end-diastolic dimension, left ventricular end-systolic diameter and left ventricular posterior wall thickness, and prevent the decrease of ejection fraction and fraction shortening in E1-E4 groups compared with the radiation only group. This study demonstrated that radiation exposure increased the expression of fibronectin in cardiac fibroblasts and induced cardiac fibrosis through activation of the TGF-β1/Smad3, RhoA/ROCK, and PI3K/AKT signaling pathways. Statins ameliorated radiation-induced cardiac fibrosis in Sprague-Dawley rats. Our results suggest that atorvastatin is effective for the treatment of radiation-induced

  9. Epithelial MUC1 promotes cell migration, reduces apoptosis and affects levels of mucosal modulators during acetylsalicylic acid (aspirin)-induced gastropathy.

    PubMed

    Banerjee, Debashish; Fernandez, Harvey Robert; Patil, Pradeep Bhatu; Premaratne, Pushpa; Quiding-Järbrink, Marianne; Lindén, Sara Katarina

    2015-02-01

    MUC1 is a transmembrane mucin highly expressed in the stomach. Although extensive research has uncovered many of its roles in cancer, knowledge about the functions of MUC1 in normal tissues is limited. In the present study, we showed that acetylsalicylic acid (ASA; aspirin) up-regulated MUC1/Muc1 expression in the gastric mucosa of humans and wild-type (WT) mice. ASA induced mucosal injury in all mice to a similar extent; however, WT animals and those chimaeras with Muc1 on the epithelia recovered faster than Muc1-knockout (KO) mice and chimaeras carrying Muc1 on haemopoietic but not epithelial cells. MUC1 enhanced proliferation and migration of the human gastric cell line MKN-7 and increased resistance to apoptosis. The repeated treatment regime used caused a reduction in cyclo-oxygenase-1 (Cox-1) expression, though WT animals returned faster towards pre-treatment levels and had increased Cox-2 and vascular endothelial growth factor levels during recovery. Thus we found that epithelial Muc1 is more important for the healing process than haemopoietic Muc1 and Muc1/MUC1 facilitates wound healing by enhancing cell migration and proliferation, protecting against apoptosis and mediating expression of mucosal modulators. Thus MUC1 plays essential roles during wound healing and development of treatment modalities targeting enhanced expression of MUC1 may be beneficial to treat mucosal wounds. PMID:25387004

  10. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  11. Genistein mitigates radiation-induced testicular injury.

    PubMed

    Kim, Joong-Sun; Heo, Kyu; Yi, Joo-Mi; Gong, Eun Ji; Yang, Kwangmo; Moon, Changjong; Kim, Sung-Ho

    2012-08-01

    The present study investigated the radioprotective effect of a multifunctional soy isoflavone, genistein, with the testicular system. Genistein was administered (200 mg/kg body weight) to male C3H/HeN mice by subcutaneous injection 24 h prior to pelvic irradiation (5 Gy). Histopathological parameters were evaluated 12 h and 21 days post-irradiation. Genistein protected the germ cells from radiation-induced apoptosis (p < 0.05 vs vehicle-treated irradiated mice at 12 h post-irradiation). Genistein significantly attenuated radiation-induced reduction in testis weight, seminiferous tubular diameter, seminiferous epithelial depth and sperm head count in the testes (p < 0.05 vs vehicle-treated irradiated mice at 21 days post-irradiation). Repopulation and stem cell survival indices of the seminiferous tubules were increased in the genistein-treated group compared with the vehicle-treated irradiation group at 21 days post-irradiation (p < 0.01). The irradiation-mediated decrease in the sperm count and sperm mobility in the epididymis was counteracted by genistein (p < 0.01), but no effect on the frequency of abnormal sperm was evident. Reactive oxygen species (ROS) were evaluated using DCFDA method and exposure to irradiation elevated ROS levels in the testis and genistein treatment resulted in a significant attenuation of radiation-induced ROS production. The results indicate that genistein protects from testicular dysfunction induced by gamma-irradiation by an antiapoptotic effect and recovery of spermatogenesis. PMID:22162311

  12. Radiation-induced hydrogen transfer in metals

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.

    2015-11-01

    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.

  13. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  14. Vitamin D Deficiency Is Associated With the Severity of Radiation-Induced Proctitis in Cancer Patients

    SciTech Connect

    Ghorbanzadeh-Moghaddam, Amir; Gholamrezaei, Ali; Hemati, Simin

    2015-07-01

    Purpose: Radiation-induced injury to normal tissues is a common complication of radiation therapy in cancer patients. Considering the role of vitamin D in mucosal barrier hemostasis and inflammatory responses, we investigated whether vitamin D deficiency is associated with the severity of radiation-induced acute proctitis in cancer patients. Methods and Materials: This prospective observational study was conducted in cancer patients referred for pelvic radiation therapy. Serum concentration of 25-hydroxyvitamin D was measured before radiation therapy. Vitamin D deficiency was defined as 25-hydroxyvitamin D concentrations of <35 nmol/L and <40 nmol/L in male and female patients, respectively, based on available normative data. Acute proctitis was assessed after 5 weeks of radiation therapy (total received radiation dose of 50 Gy) and graded from 0 to 4 using Radiation Therapy Oncology Group (RTOG) criteria. Results: Ninety-eight patients (57.1% male) with a mean age of 62.8 ± 9.1 years were studied. Vitamin D deficiency was found in 57 patients (58.1%). Symptoms of acute proctitis occurred in 72 patients (73.4%) after radiation therapy. RTOG grade was significantly higher in patients with vitamin D deficiency than in normal cases (median [interquartile range] of 2 [0.5-3] vs 1 [0-2], P=.037). Vitamin D deficiency was associated with RTOG grade of ≥2, independent of possible confounding factors; odds ratio (95% confidence interval) = 3.07 (1.27-7.50), P=.013. Conclusions: Vitamin D deficiency is associated with increased severity of radiation-induced acute proctitis. Investigating the underlying mechanisms of this association and evaluating the effectiveness of vitamin D therapy in preventing radiation-induced acute proctitis is warranted.

  15. Can prophylactic application of immunoglobulin decrease radiotherapy-induced oral mucositis?

    PubMed

    Mose, S; Adamietz, I A; Saran, F; Thilmann, C; Heyd, R; Knecht, R; Böttcher, H D

    1997-08-01

    Therapeutic application of immunoglobulin is reported to be successful in radiation-induced oral and oropharyngeal mucositis. In this study the efficacy of prophylactic application of immunoglobulin was investigated. In 42 patients with head and neck cancer, postoperative radiation treatment or radiation combined with chemotherapy was performed. In 20 consecutive patients, prophylactic mucositis treatment consisted of panthenol (4 x 10 ml/day) and nystatin (4 x 1 ml/day). The 22 following patients received, supplementary to panthenol and nystatin, 800 mg (5 ml) human immunoglobulin intramuscularly once weekly. During the treatment time, the degree of mucositis was examined 3 times a week. The distribution of maximal mucositis degree revealed slightly more severe mucous membrane reaction in the control group compared with the immunoglobulin group (n.s.). The analysis of mean mucositis degrees in both groups demonstrated statistically significant differences (t test, p = 0.031) related to the entire group (n = 42) and to those 16 patients receiving radiation combined with chemotherapy. There was no significant immunoglobulin-induced effect on mucositis in patients treated by radiation alone. The time from the beginning of therapy to the first interruption could be prolonged 5 days in the immunoglobulin group (n.s.). In conclusion, it is demonstrated that the prophylactic application of immunoglobulin seems to lower the degree of radiation-induced mucositis. In comparison to the published data about therapeutically given immunoglobulin, the clinical efficacy of the prophylactic application of immunoglobulin as it is performed in this study is less evident. PMID:9256900

  16. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  17. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  18. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  19. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    SciTech Connect

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  20. Radiation-induced transmission loss in low water peak single mode fibers

    NASA Astrophysics Data System (ADS)

    Wang, Tingyun; Xiao, Zhongyin; Luo, Wenyun; Wen, Jianxiang; Yin, Jianchong; Wu, Wenkai; Gong, Renxiang

    2013-12-01

    Radiation-induced transmission loss in Low Water Peak Single Mode (LWPSM) fiber has been investigated. Formation and conversion processes of defect centers also have been proposed using electron spin resonance in the fiber irradiated with gamma rays. When the irradiation dose is low, Germanium electron center (GEC) and self-trapped hole center (STH) occur. With the increase of dose, E' centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. With the help of thermal-bleaching or photo-bleaching, the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively. The obtain results also have been analyzed in detail.

  1. Radiation-Induced Breast Cancer Incidence and Mortality from Digital Mammography Screening: A Modeling Study

    PubMed Central

    Miglioretti, Diana L.; Lange, Jane; van den Broek, Jeroen J.; Lee, Christoph I.; van Ravesteyn, Nicolien T.; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J.; Melnikow, Joy; de Koning, Harry J.; Hubbard, Rebecca A.

    2016-01-01

    Background Estimates of radiation-induced breast cancer risk from mammography screening have not previously considered dose exposure variation or diagnostic work-up after abnormal screening. Objective To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening, considering exposure from screening and diagnostic mammography and dose variation across women. Design Two simulation-modeling approaches using common data on screening mammography from the Breast Cancer Surveillance Consortium and radiation dose from mammography from the Digital Mammographic Imaging Screening Trial. Setting U.S. population. Patients Women aged 40–74 years. Interventions Annual or biennial digital mammography screening from age 40, 45, or 50 until 74. Measurements Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality per 100,000 women screened (harms). Results On average, annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancers (95% confidence interval [CI]=88–178) leading to 16 deaths (95% CI=11–23) relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 radiation-induced breast cancers leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete breast examination (8% of population) were projected to have higher radiation-induced breast cancer incidence and mortality (266 cancers, 35 deaths per 100,000 women), compared to women with small or average breasts (113 cancers, 15 deaths per 100,000 women). Biennial screening starting at age 50 reduced risk of radiation-induced cancers 5-fold. Limitations We were unable to estimate years of life lost from radiation-induced breast cancer. Conclusions Radiation-induced breast cancer incidence and mortality from digital mammography screening are impacted by dose

  2. Treatment of oral mucositis due to chemotherapy

    PubMed Central

    Bagán-Sebastián, José V

    2016-01-01

    Introduction The management of oral mucositis is a challenge, due to its complex biological nature. Over the last 10 years, different strategies have been developed for the management of oral mucositis caused by chemotherapy in cancer patients. Material and Methods An exhaustive search was made of the PubMed-Medline, Cochrane Library and Scopus databases, crossing the key words “oral mucositis”, “prevention” and “treatment” with the terms “chemotherapy” and “radiotherapy” by means of the boolean operators “AND” and “NOT”. A total of 268 articles were obtained, of which 96 met the inclusion criteria. Results Several interventions for the prevention of oral mucositis, such as oral hygiene protocols, amifostine, benzidamine, calcium phosphate, cryotherapy and iseganan, among others, were found to yield only limited benefits. Other studies have reported a decrease in the appearance and severity of mucositis with the use of cytoprotectors (sucralfate, oral glutamine, hyaluronic acid), growth factors, topical polyvinylpyrrolidone, and low power laser irradiation. Conclusions Very few interventions of confirmed efficacy are available for the management of oral mucositis due to chemotherapy. However, according to the reviewed literature, the use of palifermin, cryotherapy and low power laser offers benefits, reducing the incidence and severity of oral mucositis – though further studies are needed to confirm the results obtained. Key words:Chemotherapy-Induced Oral Mucositis Treatment. PMID:27034762

  3. Why mucosal health?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquaculture species depend more heavily on mucosal barriers than their terrestrial agricultural counterparts as they are continuously interacting with the aquatic microbiota. Unlike classical immune centers, such as the spleen and kidney, the accessibility of mucosal surfaces through immersion/dip t...

  4. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  5. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  6. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  7. Radiation-induced autophagy: mechanisms and consequences.

    PubMed

    Chaurasia, Madhuri; Bhatt, Anant Narayan; Das, Asmita; Dwarakanath, Bilikere S; Sharma, Kulbhushan

    2016-01-01

    Autophagy is an evolutionary conserved, indispensable, lysosome-mediated degradation process, which helps in maintaining homeostasis during various cellular traumas. During stress, a context-dependent role of autophagy has been observed which drives the cell towards survival or death depending upon the type, time, and extent of the damage. The process of autophagy is stimulated during various cellular insults, e.g. oxidative stress, endoplasmic reticulum stress, imbalances in calcium homeostasis, and altered mitochondrial potential. Ionizing radiation causes ROS-dependent as well as ROS-independent damage in cells that involve macromolecular (mainly DNA) damage, as well as ER stress induction, both capable of inducing autophagy. This review summarizes the current understanding on the roles of oxidative stress, ER stress, DNA damage, altered mitochondrial potential, and calcium imbalance in radiation-induced autophagy as well as the merits and limitations of targeting autophagy as an approach for radioprotection and radiosensitization. PMID:26764568

  8. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury

    PubMed Central

    Cotrim, Ana P.; Hyodo, Fuminori; Baum, Bruce J.; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing. PMID:20413641

  9. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  10. The mucosal immune system for vaccine development.

    PubMed

    Lamichhane, Aayam; Azegamia, Tatsuhiko; Kiyonoa, Hiroshi

    2014-11-20

    Mucosal surfaces are continuously exposed to the external environment and therefore represent the largest lymphoid organ of the body. In the mucosal immune system, gut-associated lymphoid tissues (GALTs), including Peyer's patches and isolated lymphoid follicles, play an important role in the induction of antigen-specific immune responses in the gut. GALTs have unique organogenesis characteristics and interact with the network of dendritic cells and T cells for the simultaneous induction and regulation of IgA responses and oral tolerance. In these lymphoid tissues, antigens are up taken by M cells in the epithelial layer, and antigen-specific immune responses are subsequently initiated by GALT cells. Nasopharynx- and tear-duct-associated lymphoid tissues (NALTs and TALTs) are key organized lymphoid structures in the respiratory tract and ocular cavities, respectively, and have been shown to interact with each other. Mucosal surfaces are also characterized by host-microbe interactions that affect the genesis and maturation of mucosa-associated lymphoid tissues and the induction and regulation of innate and acquired mucosal immune responses. Because most harmful pathogens enter the body through mucosal surfaces by ingestion, inhalation, or sexual contact, the mucosa is a candidate site for vaccination. Mucosal vaccination has some physiological and practical advantages, such as decreased costs and reduced risk of needle-stick injuries and transmission of bloodborne diseases, and it is painless. Recently, the application of modern bioengineering and biochemical engineering technologies, including gene transformation and manipulation systems, resulted in the development of systems to express vaccine antigens in transgenic plants and nanogels, which will usher in a new era of delivery systems for mucosal vaccine antigens. In this review, based on some of our research group's thirty seven years of progress and effort, we highlight the unique features of mucosal immune

  11. Exploiting Mucosal Immunity for Antiviral Vaccines.

    PubMed

    Iwasaki, Akiko

    2016-05-20

    Mucosal surfaces provide a remarkably effective barrier against potentially dangerous pathogens. Therefore, enhancing mucosal immunity through vaccines-strengthening that first line of defense-holds significant promise for reducing the burden of viral diseases. The large and varied class of viral pathogens, however, continues to present thorny challenges to vaccine development. Two primary difficulties exist: Viruses exhibit a stunning diversity of strategies for evading the host immune response, and even when we understand the nature of effective immune protection against a given virus, eliciting that protection is technically challenging. Only a few mucosal vaccines have surmounted these obstacles thus far. Recent developments, however, could greatly improve vaccine design. In this review, we first sketch out our understanding of mucosal immunity and then compare the herpes simplex virus, human immunodeficiency virus, and influenza virus to illustrate the distinct challenges of developing successful vaccines and to outline potential solutions. PMID:27168245

  12. Radiation-induced osteosarcoma of the sphenoid bone

    SciTech Connect

    Tanaka, S.; Nishio, S.; Morioka, T.; Fukui, M.; Kitamura, K.; Hikita, K. )

    1989-10-01

    The case of a patient who developed osteosarcoma in the sphenoid bone 15 years after radiation therapy for a craniopharyngioma is reported. Radiation-induced osteosarcoma of the sphenoid bone has not been reported previously. Reported cases of radiation-induced osteosarcomas are reviewed.

  13. Theory Of Radiation-Induced Attenuation In Optical Fibers

    NASA Technical Reports Server (NTRS)

    Liu, Tsuen-Hsi; Johnston, Alan R.

    1996-01-01

    Improved theory of radiation-induced attenuation of light in optical fibers accounts for effects of dose rates. Based on kinetic aspects of fundamental physics of color centers induced in optical fibers by radiation. Induced attenuation is proportional to density of color centers, and part of this density decays by thermal-annealing/recombination process after irradiation.

  14. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  15. [Radiation-induced cancers: state of the art in 1997].

    PubMed

    Cosset, J M

    1997-01-01

    Scientists now have available a large amount of data dealing with radiation-induced neoplasms. These data went back to anecdotal observations which were made in the very first years of utilization of X-rays and radioactive elements. In fact, it is essentially the strict follow-up of the Japanese populations irradiated by the Hiroshima and Nagasaki bombing which allowed a more precise evaluation of the carcinogenicity of ionizing radiations. Further refinements came from therapeutical irradiations: it is now possible to study large cohorts of patients given well-known doses in well-defined volumes and followed for more than 20 years. Last but not least, a significant increase in the incidence and mortality of thyroid cancer has been detected in children contaminated by iodine radioisotopes after the Tchernobyl accident. Recently, some data suggested the emergence of "clusters" of leukemias close to some nuclear facilities, but this question remains highly polemical, both in France and in the UK. Other questions are still waiting for a precise answer; of course, the extrapolation of our available data to very low doses delivered at very low dose rates, but also the carcinogenic risk at high doses. For these "high" doses (about 30 to 70 Gy), a competition between mutagenesis and cell killing was expected, so that these dose levels were expected to be less carcinogenic than lower (a few sieverts) doses. Actually, recent data suggest that the carcinogenic risk goes on increasing up to relatively important doses. In addition, carcinogenic factors, such as tabacco, anticancer chemotherapy and individual susceptibility, are found more and more to be closely intricated with ionizing radiation in the genesis of a given cancer. Even if a number of questions are still pending, the already available data allow specialists, both in medicine and radioprotection, to edict strict rules which can be reasonably expected to have significantly reduced the risk of radiation-induced

  16. Reduced numbers of mucosal DR(int) macrophages and increased numbers of CD103(+) dendritic cells during anti-TNF-α treatment in patients with Crohn's disease.

    PubMed

    Dige, Anders; Magnusson, Maria K; Öhman, Lena; Hvas, Christian Lodberg; Kelsen, Jens; Wick, Mary Jo; Agnholt, Jørgen

    2016-06-01

    Objective Anti-TNF-α treatment constitutes a mainstay in the treatment of Crohn's disease (CD), but its mechanisms of action are not fully understood. We aimed to investigate the effects of adalimumab, a human monoclonal TNF-α antibody, on macrophage (MQ) and dendritic cell (DC) subsets in mucosal biopsies and peripheral blood. Material and methods Intestinal biopsies and blood samples were obtained from 12 different CD patients both before and 4 weeks after the initiation of the induction of adalimumab treatment. Endoscopic disease activity was estimated by the Simple Endoscopic Score for Crohn's Disease. Biopsies were obtained from inflamed and non-inflamed areas. The numbers of lamina propria CD14 (+) DR(int) and CD14 (+) DR(hi) MQs, CD141(+), CD141(-) and CD103(+ )DCs subsets, and circulating monocytes and DCs were analyzed using flow cytometry. Results At baseline, we observed higher numbers of DR(int) MQs and lower numbers of CD103(+ )DCs in inflamed versus non-inflamed mucosa [843 vs. 391/10(5) lamina propria mononuclear cells (LPMCs) (p < 0.05) and 9 vs. 19 × 10(5) LPMCs (p = 0.01), respectively]. After four weeks of adalimumab treatment, the numbers of DR(int) MQs decreased [843 to 379/10(5) LPMCs (p = 0.03)], whereas the numbers of CD103(+ )DCs increased [9-20 × 10(5) LPMCs (p = 0.003)] compared with baseline. In peripheral blood, no alterations were observed in monocyte or DC numbers between baseline and week 4. Conclusions In CD, mucosal inflammation is associated with high numbers of DR(int) MQs and low numbers of CD103(+ )DCs. This composition of intestinal myeloid subsets is reversed by anti-TNF-α treatment. These results suggest that DR(int) MQs play a pivotal role in CD inflammation. PMID:26784676

  17. Protection by polaprezinc against radiation-induced apoptosis in rat jejunal crypt cells.

    PubMed

    Matsuu-Matsuyama, Mutsumi; Shichijo, Kazuko; Okaichi, Kumio; Nakayama, Toshiyuki; Nakashima, Masahiro; Uemura, Takashi; Niino, Daisuke; Sekine, Ichiro

    2008-07-01

    Polaprezinc, an anti-ulcer drug, is a chelate compound consisting of zinc and L-carnosine. Polaprezinc has been shown to prevent gastric mucosal injury. The anti ulcer effects of polaprezinc have been ascribed to its antioxidative property. The effect of polaprezinc on ionizing radiation-induced apoptosis was studied in the jejunal epithelial crypt cells of rats. Seven-to eight week-old Wistar rats, which were treated with 100 mg/kg of polaprezinc orally 1h before irradiation or 2% carboxymethyl cellulose sodium in controls, were exposed to whole body X-ray irradiation at 2 Gy. The number of apoptotic cells per jejunum crypt was counted in haematoxylin and eosin stained sections at 0-6 h after irradiation. TUNEL positive cells and immunopositive cells for active caspase-3 per crypt were also counted. Accumulation of p53, p21(WAF1/CIP1) and Bax expression in the jejunum after irradiation were examined by Western blot analyses. Polaprezinc treatment given prior to radiation resulted in a significant reduction in numbers of apoptotic cells, TUNEL positive cells and active caspase-3 immunopositive cells in jejunal crypt cells. Polaprezinc treatment resulted in decreases of p53 accumulation, p21(WAF1/CIP1) and Bax expression after irradiation. Polaprezinc has a protective effect against ionizing radiation induced apoptosis in rat jejunal crypt cells. PMID:18413982

  18. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  19. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  20. Gasoline-induced mucositis

    SciTech Connect

    Hoffman, D.L.; Swanson, B.Z. Jr.; Lutins, N.D.

    1980-02-01

    Gasoline-induced mucositis may become more common because of fuel shortages or increased fuel cost. Dentists should, therefore, consider this oral irritant in the differential diagnosis of oral lesions.

  1. Mucosal Health in Aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract The mucosal surfaces (skin, gill, and intestine) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient absorption, osmoregulation, and waste excretion. Aquaculture specie...

  2. Nasal mucosal biopsy

    MedlinePlus

    Biopsy - nasal mucosa; Nose biopsy ... to fast for a few hours before the biopsy. ... Nasal mucosal biopsy is usually done when abnormal tissue is seen during examination of the nose. It may also be done ...

  3. Mucosal delivery of vaccines.

    PubMed

    Del Giudice, G; Pizza, M; Rappuoli, R

    1999-09-01

    Oral delivery represents one of the most pursued approaches for large-scale human vaccination. Due to the different characteristics of mucosal immune response, as compared with systemic response, oral immunization requires particular methods of antigen preparation and selective strategies of adjuvanticity. In this paper, we describe the preparation and use of genetically detoxified bacterial toxins as mucosal adjuvants and envisage the possibility of their future exploitation for human oral vaccines. PMID:10525451

  4. Oral Lapacho-Based Medication: An Easy, Safe, and Feasible Support to Prevent and/or Reduce Oral Mucositis During Radiotherapy for Head and Neck Cancer.

    PubMed

    Giacomelli, Irene; Scartoni, Daniele; Fiammetta, Meacci; Baki, Muhammed; Zei, Giacomo; Muntoni, Cristina; Cappelli, Sabrina; Greto, Daniela; Scoccianti, Silvia; Livi, Lorenzo

    2015-01-01

    The aim of our Phase II study is to demonstrate the benefits, safety, and tolerance of Orasol Plus, an easy and feasible Lapacho-based medication. Orasol Plus is a nutritional, swallowable solution, useful to support the defenses of the oropharyngeal mucosa. Between January and June 2014, 40 consecutive adult patients affected by head and neck cancer were enrolled. Orasol Plus was administered 3 times a day from the first day till the end of radiotherapy. Primary endpoint was to evaluate tolerance and safety of Orasol Plus; secondary endpoint was to evaluate the effect of Orasol Plus on the incidence of treatment discontinuation. Nearly all patients used Orasol Plus easily till the end of radiotherapy without interruptions. Only 11 (27.5%) patients developed oral mucositis (OM) Grade 2 and only 4 (10%) patients OM Grade 3, no patient developed OM Grade 4. No patient discontinued radiotherapy because of OM. Orasol Plus was well tolerated and the compliance of patients was optimal, mainly due to the fact that it can be swallowed. Data from our study are encouraging and they need to be confirmed by a Phase III study. PMID:26451712

  5. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  6. Extracellular Adenosine Production by ecto-5'-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis.

    PubMed

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V; Gau, Eva; Thompson, Linda F; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W; Blackburn, Michael R; Westendorf, Astrid M; Stuschke, Martin; Jendrossek, Verena

    2016-05-15

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks postirradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately 3-fold. Histologic evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P < 0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacologic strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. Cancer Res; 76(10); 3045-56. ©2016 AACR. PMID:26921334

  7. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    PubMed

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy. PMID:27109915

  8. A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

    SciTech Connect

    Boomsma, Marjolein J.; Bijl, Hendrik P.; Christianen, Miranda E.M.C.; Beetz, Ivo; Chouvalova, Olga; Steenbakkers, Roel J.H.M.; Laan, Bernard F.A.M. van der; Oosting, Sjoukje F.; Schilstra, Cornelis; Langendijk, Johannes A.

    2012-11-01

    Purpose: To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. Methods and Materials: The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. Results: Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm{sup 3}). Model performance was good with an area under the curve (AUC) of 0.85. Conclusions: This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.

  9. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies.

    PubMed

    Fleenor, Courtney J; Higa, Kelly; Weil, Michael M; DeGregori, James

    2015-10-01

    Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis. PMID:26414506

  10. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases.

    PubMed

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-08-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  11. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  12. Structural investigation of radiation-induced aggregates of ribonuclease.

    PubMed

    Hajós, G; Delincée, H

    1983-10-01

    Following irradiation of bovine pancreatic ribonuclease in aqueous solution with 60Co gamma-rays protein aggregates are formed. The nature of the bonds linking these radiation-induced aggregates together has been investigated by chromatographic and electrophoretic methods. Thin-layer gel filtration and polyacrylamide gel electrophoresis, both in the presence of sodium dodecyl sulphate, demonstrated the existence of covalent crosslinks between the aggregates. However, non-covalent crosslinking also plays a role in the radiolysis of ribonuclease. Thin-layer gel filtration with and without 6 M urea and 2 per cent beta-mercaptoethanol added to the gel, revealed that only part of the covalent bonds between the aggregates consisted of disulphide linkages. By separation of the reduced aggregates by thin-layer gel filtration and electrophoresis, both with SDS, this finding was substantiated. Densitometric measurements indicated for example that the percentage of covalently linked dimers held together by disulphide bridges amounted to about 40-45 per cent, whereas the remaining 55-60 per cent of the dimers must be linked by other covalent bonds. The existence of covalent crosslinks other than disulphide bonds was also confirmed by isoelectric focusing. By this method definite differences were established between the proteolytic hydrolysates of the reduced aggregates and the reduced monomer of gamma-irradiated ribonuclease. PMID:6605318

  13. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  14. Radiation-induced nausea and vomiting

    PubMed Central

    Habibi, Mohsen; Namimoghadam, Amir; Korouni, Roghaye; Fashiri, Paria; Borzoueisileh, Sajad; Elahimanesh, Farideh; Amiri, Fatemeh; Moradi, Ghobad

    2016-01-01

    Abstract Despite the improvements in cancer screening and treatment, it still remains as one of the leading causes of mortality worldwide. Nausea and vomiting as the side effects of different cancer treatment modalities, such as radiotherapy, are multifactorial and could affect the treatment continuation and patient quality of life. Therefore, the aim of this study was to assess the possible linkage between ABO blood groups and radiation-induced nausea and vomiting (RINV), also its incidence and affecting factors. One hundred twenty-eight patients referring to Tohid hospital of Sanandaj, Iran, were selected and the patients and treatment-related factors were determined in a cross-sectional study. Patients’ nausea and vomiting were recorded from the onset of treatment until 1 week after treatment accomplishment. Also, previous possible nausea and vomiting were recorded. The frequencies of nausea and vomiting and their peak time were examined during the treatment period. The association between ABO blood group and the incidence of radiotherapy-induced nausea and vomiting (RINV) were significant and it seems that A blood group patients are the most vulnerable individuals to these symptoms. The association between Rhesus antigen and the time of maximum severity of RINV may indicate that Rhesus antigen affects the time of maximum severity of RINV. The incidence of RINV was not affected by karnofsky performance status, but it was related to the severity of RINV. Furthermore, among the factors affecting the incidence of nausea and vomiting, nausea and vomiting during patient's previous chemotherapy, radiotherapy region, and background gastrointestinal disease were shown to be three important factors. In addition to familiar RINV-affecting factors, ABO blood group may play an important role and these results address the needs for further studies with larger sample size. PMID:27495037

  15. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  16. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature

    PubMed Central

    Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C.

    2010-01-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance—and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials. For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase ii and phase iii trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho–McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6). In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus

  17. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature.

    PubMed

    Salvo, N; Barnes, E; van Draanen, J; Stacey, E; Mitera, G; Breen, D; Giotis, A; Czarnota, G; Pang, J; De Angelis, C

    2010-08-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance-and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials.For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase II and phase III trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho-McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6).In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus on

  18. Blocking HMGB1 signal pathway protects early radiation-induced lung injury

    PubMed Central

    Wang, Liping; Zhang, Jing; Wang, Baozhong; Wang, Guifu; Xu, Junlong

    2015-01-01

    It has been reported that HMGB1 participated in various types of lung injury. In this study, we explored whether blocking HMGB1 has a preventive effect on the early radiation-induced lung injury and investigate the mechanism. Mice model of radiation-induced lung injury were accomplished by a single dose irradiation (15 Gy) to the whole thorax. Irradiated mice were treated with HMGB1-neutralizing antibody intraperitoneally dosed 10 μg, 50 μg, 100 μg/mouse respectively and were sacrificed after one week post-irradiation. Lung tissue slices were stained by H&E, and alveolitis was quantified by Szapiel scoring system. The level of cytokines TNF-γ in bronchoalveolar lavage fluid was detected by ELISA method. And p65NF-κB, p50NF-κB protein expression in mice lung tissues was detected by Western blot analysis. The results showed that blocking HMGB1 inhibited the inflammatory response, and thereby decreased the degree of alveolitis of irradiated lung tissue. In addition, HMGB1 antagonist can restrain the expression of type Th2 or Th17 derived inflammatory cytokines TNF-α, IL-6 and IL-17A, promote the expression of Th1 type cytokines INF-γ, and inhibit p65 NF-κB but promote p50 NF-κB activation, which promoted the resolution of the radiation-induced inflammatory response. In conclusion, blocking HMGB1 can reduce the degree of early radiation-induced lung injury, and its mechanism may be related to the promotion of p50NF-κB activation and its downstream molecules expression. Inhibiting HMGB1 may be a new target to deal with early radiation-induced lung injury. PMID:26191172

  19. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  20. Blocking HMGB1 signal pathway protects early radiation-induced lung injury.

    PubMed

    Wang, Liping; Zhang, Jing; Wang, Baozhong; Wang, Guifu; Xu, Junlong

    2015-01-01

    It has been reported that HMGB1 participated in various types of lung injury. In this study, we explored whether blocking HMGB1 has a preventive effect on the early radiation-induced lung injury and investigate the mechanism. Mice model of radiation-induced lung injury were accomplished by a single dose irradiation (15 Gy) to the whole thorax. Irradiated mice were treated with HMGB1-neutralizing antibody intraperitoneally dosed 10 μg, 50 μg, 100 μg/mouse respectively and were sacrificed after one week post-irradiation. Lung tissue slices were stained by H&E, and alveolitis was quantified by Szapiel scoring system. The level of cytokines TNF-γ in bronchoalveolar lavage fluid was detected by ELISA method. And p65NF-κB, p50NF-κB protein expression in mice lung tissues was detected by Western blot analysis. The results showed that blocking HMGB1 inhibited the inflammatory response, and thereby decreased the degree of alveolitis of irradiated lung tissue. In addition, HMGB1 antagonist can restrain the expression of type Th2 or Th17 derived inflammatory cytokines TNF-α, IL-6 and IL-17A, promote the expression of Th1 type cytokines INF-γ, and inhibit p65 NF-κB but promote p50 NF-κB activation, which promoted the resolution of the radiation-induced inflammatory response. In conclusion, blocking HMGB1 can reduce the degree of early radiation-induced lung injury, and its mechanism may be related to the promotion of p50NF-κB activation and its downstream molecules expression. Inhibiting HMGB1 may be a new target to deal with early radiation-induced lung injury. PMID:26191172

  1. Radiation-Induced Alterations in Mitochondria of the Rat Heart

    PubMed Central

    Sridharan, Vijayalakshmi; Aykin-Burns, Nukhet; Tripathi, Preeti; Krager, Kimberly J.; Sharma, Sunil K.; Moros, Eduardo G.; Corry, Peter M.; Nowak, Grazyna; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria. In this study, Sprague-Dawley male rats received image-guided local X irradiation of the heart with a single dose ranging from 3–21 Gy. Two weeks after irradiation, left ventricular mitochondria were isolated to assess the dose-dependency of the mitochondrial permeability transition pore (mPTP) opening in a mitochondrial swelling assay. At time points from 6 h to 9 months after a cardiac dose of 21 Gy, the following analyses were performed: left ventricular Bax and Bcl-2 protein levels; apoptosis; mitochondrial inner membrane potential and mPTP opening; mitochondrial mass and expression of mitophagy mediators Parkin and PTEN induced putative kinase-1 (PINK-1); mitochondrial respiration and protein levels of succinate dehydrogenase A (SDHA); and the 70 kDa subunit of complex II. Local heart irradiation caused a prolonged increase in Bax/Bcl-2 ratio and induced apoptosis between 6 h and 2 weeks. The mitochondrial membrane potential was reduced until 2 weeks, and the calcium-induced mPTP opening was increased from 6 h up to 9 months. An increased mitochondrial mass together with unaltered levels of Parkin suggested that mitophagy did not occur. Lastly, we detected a significant decrease in succinate-driven state 2 respiration in isolated mitochondria from 2 weeks up to 9 months after irradiation, coinciding with reduced mitochondrial levels of succinate dehydrogenase A. Our results suggest that local heart irradiation induces long-term changes in cardiac mitochondrial membrane functions, levels of SDH and state 2 respiration. At any time after

  2. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  3. Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille; Dadrich, Monika; Hauser, Kai; Abdollahi, Amir; Groene, Hermann-Josef; Angel, Peter; Huber, Peter E.

    2010-06-01

    Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results: We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.

  4. Treatment of radiation-induced cystitis with hyperbaric oxygen

    SciTech Connect

    Weiss, J.P.; Boland, F.P.; Mori, H.; Gallagher, M.; Brereton, H.; Preate, D.L.; Neville, E.C.

    1985-08-01

    The effects of hyperbaric oxygen on radiation cystitis have been documented in 3 patients with radiation-induced hemorrhagic cystitis refractory to conventional therapy. Cessation of gross hematuria and reversal of cystoscopic bladder changes were seen in response to a series of hyperbaric oxygen treatments of 2 atmosphere absolute pressure for 2 hours. To our knowledge this is the first report of cystoscopically documented healing of radiation-induced bladder injury.

  5. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  6. Basic Fibroblast Growth Factor Ameliorates Endothelial Dysfunction in Radiation-Induced Bladder Injury

    PubMed Central

    Zhang, Shiwei; Qiu, Xuefeng; Zhang, Yanting; Fu, Kai; Zhao, Xiaozhi; Wu, Jinhui; Hu, Yiqiao; Zhu, Weiming; Guo, Hongqian

    2015-01-01

    This study was designed to explore the effect of basic fibroblast growth factor (bFGF) on radiation-induced endothelial dysfunction and histological changes in the urinary bladder. bFGF was administrated to human umbilical vein cells (HUVEC) or urinary bladder immediately after radiation. Reduced expression of thrombomodulin (TM) was indicated in the HUVEC and urinary bladder after treatment with radiation. Decreased apoptosis was observed in HUVEC treated with bFGF. Administration of bFGF increased the expression of TM in HUVEC medium, as well as in the urinary bladder at the early and delayed phases of radiation-induced bladder injury (RIBI). At the early phase, injection of bFGF increased the thickness of urothelium and reduced inflammation within the urinary bladder. At the delayed phase, bFGF was effective in reducing fibrosis within the urinary bladder. Our results indicate that endothelial dysfunction is a prominent feature of RIBI. Administration of bFGF can ameliorate radiation-induced endothelial dysfunction in urinary bladder and preserve bladder histology at early and delayed phases of RIBI. PMID:26351640

  7. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  8. Simvastatin attenuates radiation-induced salivary gland dysfunction in mice

    PubMed Central

    Xu, Liping; Yang, Xi; Chen, Jiayan; Ge, Xiaolin; Qin, Qin; Zhu, Hongcheng; Zhang, Chi; Sun, Xinchen

    2016-01-01

    Objective Statins are widely used lipid-lowering drugs, which have pleiotropic effects, such as anti-inflammation, and vascular protection. In our study, we investigated the radioprotective potential of simvastatin (SIM) in a murine model of radiation-induced salivary gland dysfunction. Design Ninety-six Institute of Cancer Research mice were randomly divided into four groups: solvent + sham irradiation (IR) (Group I), SIM + sham IR (Group II), IR + solvent (Group III), and IR + SIM (Group IV). SIM (10 mg/kg body weight, three times per week) was administered intraperitoneally 1 week prior to IR through to the end of the experiment. Saliva and submandibular gland tissues were obtained for biochemical, morphological (hematoxylin and eosin staining and Masson’s trichrome), and Western blot analysis at 8 hours, 24 hours, and 4 weeks after head and neck IR. Results IR caused a significant reduction of salivary secretion and amylase activity but elevation of malondialdehyde. SIM remitted the reduction of saliva secretion and restored salivary amylase activity. The protective benefits of SIM may be attributed to scavenging malondialdehyde, remitting collagen deposition, and reducing and delaying the elevation of transforming growth factor β1 expression induced by radiation. Conclusion SIM may be clinically useful to alleviate side effects of radiotherapy on salivary gland. PMID:27471375

  9. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    PubMed Central

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT. PMID:15849822

  10. Pharmacokinetics of Antiretrovirals in Mucosal Tissue

    PubMed Central

    Cottrell, M.L.; Srinivas, N.; Kashuba, A.D.M.

    2015-01-01

    Introduction In the absence of an HIV vaccine or cure, antiretroviral (ARV) based prevention strategies are being investigated to reduce HIV incidence. These prevention strategies depend on achieving effective drug concentrations at the site HIV exposure which is most commonly the mucosal tissues of the lower gastrointestinal tract and the female genital tract. Areas covered This article collates all known data regarding drug exposure in these vulnerable mucosal tissues, and reviews important mechanisms of ARV drug distribution. Research papers and abstracts describing antiretroviral pharmacokinetics in the female genital tract and lower gastrointestinal mucosal tissues available in MEDLINE® or presented at scientific conferences prior to December 2014 are reviewed in detail. Important influences on ARV mucosal tissue distribution, including protein binding, active drug transport, and endogenous hormones, are also reviewed. Expert opinion ARVs exhibit highly variable pharmacokinetics in mucosal tissues. In general, antiretroviral exposure is higher in the lower gastrointestinal tract compared to the female genital tract, but concentrations required for protective efficacy are largely unknown. The expected site of HIV exposure represents an important consideration when designing and optimizing antiretroviral based prevention strategies. PMID:25797064

  11. Influence of interface sink strength on the reduction of radiation-induced defect concentrations and fluxes in materials with large interface area per unit volume

    SciTech Connect

    Demkowicz, M. J.; Hoagland, R. G.; Uberuaga, B. P.; Misra, A.

    2011-09-01

    We use a reaction-diffusion model to demonstrate that buried interfaces in polycrystalline composites simultaneously reduce both the concentrations and the fluxes of radiation-induced defects. The steady-state radiation-induced defect concentrations, however, are highly sensitive to the interface sink strength {eta}. Materials containing a large volume fraction of interfaces may therefore be resistant to multiple forms of radiation-induced degradation, such as swelling and hardening, as well as to embrittlement by solute segregation, provided that the interfaces have suitable {eta} values.

  12. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis.

    PubMed

    Weigel, Christoph; Veldwijk, Marlon R; Oakes, Christopher C; Seibold, Petra; Slynko, Alla; Liesenfeld, David B; Rabionet, Mariona; Hanke, Sabrina A; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  13. Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis

    PubMed Central

    Weigel, Christoph; Veldwijk, Marlon R.; Oakes, Christopher C.; Seibold, Petra; Slynko, Alla; Liesenfeld, David B.; Rabionet, Mariona; Hanke, Sabrina A.; Wenz, Frederik; Sperk, Elena; Benner, Axel; Rösli, Christoph; Sandhoff, Roger; Assenov, Yassen; Plass, Christoph; Herskind, Carsten; Chang-Claude, Jenny; Schmezer, Peter; Popanda, Odilia

    2016-01-01

    Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy. PMID:26964756

  14. The suppression of radiation-induced NF-{kappa}B activity by dexamethasone correlates with increased cell death in vivo

    SciTech Connect

    Nam, Seon Young; Chung, Hee-Yong . E-mail: hychung@hanyang.ac.kr

    2005-10-21

    In this study, we show that dexamethasone treatment increases ionizing radiation-induced cell death by inducing the inhibitory {kappa}B{alpha} (I{kappa}B{alpha}) pathway in mice. The effect of dexamethasone on radiation-induced cell death was assessed by changes in total spleen cellularity and bone marrow colony-forming unit-granulocyte-macrophage (CFU-GM) contents after total body irradiation. While in vivo treatment of mice with dexamethasone alone (1 mg/kg/day, for 2 days) failed to elicit cell death in spleen cells, the combined treatment with dexamethasone (1 mg/kg/day, for 2 days) and {gamma}-rays (1 or 5 Gy) caused a 50-80% reduction in total cellularity in spleen and CFU-GM contents in bone marrow. These results demonstrate that dexamethasone has a synergistic effect on radiation-induced cellular damages in vivo. Immunoblot analysis showed that dexamethasone treatment significantly increases I{kappa}B{alpha} expression in the spleens of irradiated mice. In addition, the dexamethasone treatment significantly reduced radiation-induced nuclear translocation of the nucleus factor-{kappa}B in the spleens of irradiated mice. These results indicate that dexamethasone treatment in vivo may increase radiation-induced cell damages by increasing I{kappa}B{alpha} expression in hematopoietic organs such as spleen and bone marrow.

  15. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  16. Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    PubMed Central

    Kang, Bong Gu; Lee, Se Jeong; Kim, Kang Ho; Yang, Heekyoung; Lee, Young-Ae; Cho, Yu Jin; Im, Yong-Seok; Lee, Dong-Sup; Lim, Do-Hoon; Kim, Dong Hyun; Um, Hong-Duck; Lee, Sang-Hun; Lee, Jung-II; Nam, Do-Hyun

    2012-01-01

    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases. PMID:22347993

  17. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  18. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants.

    PubMed

    Pizza, M; Giuliani, M M; Fontana, M R; Monaci, E; Douce, G; Dougan, G; Mills, K H; Rappuoli, R; Del Giudice, G

    2001-03-21

    Most vaccines are still delivered by injection. Mucosal vaccination would increase compliance and decrease the risk of spread of infectious diseases due to contaminated syringes. However, most vaccines are unable to induce immune responses when administered mucosally, and require the use of strong adjuvant on effective delivery systems. Cholera toxin (CT) and Escherichia coli enterotoxin (LT) are powerful mucosal adjuvants when co-administered with soluble antigens. However, their use in humans is hampered by their extremely high toxicity. During the past few years, site-directed mutagenesis has permitted the generation of LT and CT mutants fully non toxic or with dramatically reduced toxicity, which still retain their strong adjuvanticity at the mucosal level. Among these mutants, are LTK63 (serine-to-lysine substitution at position 63 in the A subunit) and LTR72 (alanine-to-arginine substitution at position 72 in the A subunit). The first is fully non toxic, whereas the latter retains some residual enzymatic activity. Both of them are extremely active as mucosal adjuvants, being able to induce very high titers of antibodies specific for the antigen with which they are co-administered. Both mutants have now been tested as mucosal adjuvants in different animal species using a wide variety of antigens. Interestingly, mucosal delivery (nasal or oral) of antigens together with LTK63 or LTR72 mutants also conferred protection against challenge in appropriate animal models (e.g. tetanus, Helicobacter pylori, pertussis, pneumococci, influenza, etc). In conclusion, these LTK63 and LTR72 mutants are safe adjuvants to enhance the immunogenicity of vaccines at the mucosal level, and will be tested soon in humans. PMID:11257389

  19. Oral mucositis in myelosuppressive cancer therapy.

    PubMed

    Epstein, J B; Schubert, M M

    1999-09-01

    Because the etiology of mucositis is multifactorial , approaches to prevention and management have also been multifactorial. Effective prevention and management of mucositis will reduce the pain and suffering experienced during cancer treatment. Oropharyngeal pain in cancer patients frequently requires systemic analgesics, adjunctive medications, physical therapy, and psychologic therapy in addition to oral care and topical treatments. Good oral hygiene reduces the severity of oral mucositis and does not increase the risk of bacteremia. Current approaches to management include frequent oral rinsing with saline or bicarbonate rinses, maintaining excellent oral hygiene, and using topical anesthetics and analgesics. Cryotherapy is a potential adjunctive approach in some cases. There are a number of approaches that appear to represent viable candidates for further study. Biologic response modifiers offer the potential for prevention and for acceleration of healing. Various cytokines will enter clinical trials in the near future; these offer the potential for reduction of epithelial cell sensitivity to the toxic effects of cancer therapy or for stimulation of repair of the damaged tissue. Other approaches include the use of medications to reduce exposure of the oral mucosa to chemotherapeutic drugs that are secreted in saliva. Antimicrobial approaches have met with conflicting results, little effect being seen with chlorhexidine and systemic antimicrobials in the prevention of mucositis in radiation patients. In patients with BMT and patients with leukemia, chlorhexidine may not be effective in preventing mucositis, although there may be reduction in oral colonization by Candida. Initial studies of topical antimicrobials that affect the gram-negative oral flora have shown reductions in ulcerative mucositis during radiation therapy but have not been assessed in leukemia/BMT. Among other approaches that require further study are low-energy lasers and anti

  20. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  1. Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines.

    PubMed

    Shin, Yoo Seob; Hwang, Hye Sook; Kang, Sung Un; Chang, Jae Won; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation is a widely used treatment for head and neck cancers, and one of its most severe side effects is ototoxicity. Radiation-induced ototoxicity has been demonstrated to be linked to the increased production of ROS and MAPK. We intended to investigate the effect of p38 inhibition on radiation-induced ototoxicity in cochlea-derived HEI-OC1 cells and in a zebrafish model. The otoprotective effect of p38 inhibition against radiation was tested in vitro in the organ of Corti-derived cell line, HEI-OC1, and in vivo in a zebrafish model. Radiation-induced apoptosis, mitochondrial dysfunction, and an increase of intracellular NO generation were demonstrated in HEI-OC1 cells. The p38-specific inhibitor, SB203580, ameliorated radiation-induced apoptosis and mitochondrial injury in HEI-OC1 cells. p38 inhibition reduced radiation-induced activation of JNK, p38, cytochrome c, and cleavage of caspase-3 and PARP in HEI-OC1 cells. Scanning electron micrography showed that SB203580 prevented radiation-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. The results of this study suggest that p38 plays an important role in mediating radiation-induced ototoxicity and inhibition of p38 could be a plausible option for preventing radiation ototoxicity. PMID:24374476

  2. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  3. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    SciTech Connect

    Musk, S.R. )

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  4. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  5. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    PubMed

    Katiyar, Santosh K; Mantena, Sudheer K; Meeran, Syed M

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  6. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  7. Hedgehog signaling and radiation induced liver injury: a delicate balance

    PubMed Central

    Kabarriti, Rafi

    2016-01-01

    Radiation-induced liver disease (RILD) is a major limitation of radiation therapy (RT) for the treatment of liver cancer. Emerging data indicate that hedgehog (Hh) signaling plays a central role in liver fibrosis and regeneration after liver injury. Here, we review the potential role of Hh signaling in RILD and propose the temporary use of Hh inhibition during liver RT to radiosensitize HCC tumor cells and inhibit their progression, while blocking the initiation of the radiation-induced fibrotic response in the surrounding normal liver. PMID:26202634

  8. Hyperbaric oxygen: Primary treatment of radiation-induced hemorrhagic cystitis

    SciTech Connect

    Weiss, J.P.; Neville, E.C.

    1989-07-01

    Of 8 patients with symptoms of advanced cystitis due to pelvic radiation treated with hyperbaric oxygen 7 are persistently improved during followup. All 6 patients treated for gross hematuria requiring hospitalization have been free of symptoms for an average of 24 months (range 6 to 43 months). One patient treated for stress incontinence currently is dry despite little change in bladder capacity, implying salutary effect from hyperbaric oxygen on the sphincter mechanism. One patient with radiation-induced prostatitis failed to respond. This experience suggests that hyperbaric oxygen should be considered the primary treatment for patients with symptomatic radiation-induced hemorrhagic cystitis.

  9. Hedgehog signaling and radiation induced liver injury: a delicate balance.

    PubMed

    Kabarriti, Rafi; Guha, Chandan

    2014-07-01

    Radiation-induced liver disease (RILD) is a major limitation of radiation therapy (RT) for the treatment of liver cancer. Emerging data indicate that hedgehog (Hh) signaling plays a central role in liver fibrosis and regeneration after liver injury. Here, we review the potential role of Hh signaling in RILD and propose the temporary use of Hh inhibition during liver RT to radiosensitize HCC tumor cells and inhibit their progression, while blocking the initiation of the radiation-induced fibrotic response in the surrounding normal liver. PMID:26202634

  10. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  11. Radiation-induced emesis in the dog: effects of lesions and drugs

    SciTech Connect

    Carpenter, D.O.; Briggs, D.B.; Knox, A.P.; Strominger, N.L.

    1986-12-01

    Dogs exposed to 8 Gy /sup 60/Co gamma mid-abdominal irradiation exhibited emesis with an average latency of 102 min and an average of 7.4 episodes over 96 min. There were no significant changes in dogs subjected to a chronic bilateral subdiaphragmatic vagotomy, but emesis was prevented by ablation of the area postrema. Indomethacin pretreatment also prevented radiation-induced emesis in two of seven dogs and in the remainder reduced the average number of episodes. Domperidone pretreatment prevented radiation-induced emesis in all of four dogs tested. In electrophysiological studies recording from the area postrema the chemosensitive neurons were found to be normally silent in anesthetized preparations but excitable by a variety of emetic agents. After irradiation of the abdomen spontaneously active neurons were found with a discharge pattern that mirrored the behavioral pattern of postirradiation emesis. These studies are consistent with radiation-induced emesis being humorally mediated in the dog and implicate dopamine and/or prostaglandins as possible mediators.

  12. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  13. Gamma-Tocotrienol Modulates Radiation-Induced MicroRNA Expression in Mouse Spleen.

    PubMed

    Ghosh, Sanchita P; Pathak, Rupak; Kumar, Parameet; Biswas, Shukla; Bhattacharyya, Sharmistha; Kumar, Vidya P; Hauer-Jensen, Martin; Biswas, Roopa

    2016-05-01

    Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation. PMID:27128741

  14. Kinetics of radiation-induced segregation in ternary alloys. [LMFBR

    SciTech Connect

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally.

  15. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  16. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  17. SPHINX Measurements of Radiation Induced Conductivity of Foam

    SciTech Connect

    Ballard, W.P.; Beutler, D.E.; Burt, M.; Dudley, K.J.; Stringer, T.A.

    1998-12-14

    Experiments on the SPHINX accelerator studying radiation-induced conductivity (RIC) in foam indicate that a field-exclusion boundary layer model better describes foam than a Maxwell-Garnett model that treats the conducting gas bubbles in the foam as modifying the dielectric constant. In both cases, wall attachment effects could be important but were neglected.

  18. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  19. Laser therapy for severe radiation-induced rectal bleeding

    SciTech Connect

    Ahlquist, D.A.; Gostout, C.J.; Viggiano, T.R.; Pemberton, J.H.

    1986-12-01

    Four patients with chronic hematochezia and transfusion-dependent anemia from postradiation rectal vascular lesions were successfully managed by endoscopic laser coagulation. In all four patients, symptomatic, hematologic, and endoscopic improvement was evident. Laser therapy for severe radiation-induced rectal bleeding seems to be safe and efficacious and should be considered before surgical intervention.

  20. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  1. SENSITIVITY TO RADIATION-INDUCED CANCER IN HEMOCHROMATOSIS

    EPA Science Inventory

    Determination of dose-response relationships for radiation-induced cancer in segments of the population with high susceptibility is critical for understanding the risks of low dose and low dose rates to humans. Clean-up levels for radionuclides will depend upon the fraction of t...

  2. Radiation-induced segregation in alloy X-750

    SciTech Connect

    Kenik, E.A.

    1996-12-31

    Microstructural and microchemical evolution of an Alloy X-750 heat under neutron irradiation was studied in order to understand the origin of irradiation-assisted stress corrosion cracking. Both clustering of point defects and radiation-induced segregation at interfaces were observed. Although no significant changes in the precipitate structure were observed, boundaries exhibited additional depletion of Cr and Fe and enrichment of Ni.

  3. Radiation-induced inflammatory markers of brain injury are modulated by PPARdelta activation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Schnegg, Caroline Isabel

    responses in microglia in vitro. To extend our in vitro findings in vivo, we investigated whether administration of the peroxisomal proliferator-activated receptor (PPAR)ä agonist, GW0742, prevented radiation-induced brain injury in C57Bl/6 WT mice. Our data demonstrate that GW0742 prevented the radiation-induced increase in the number of activated microglia (CD68+ cells) in wild-type (WT) mice 1 week following 10 Gy WBI. Furthermore, GW0742 inhibited the WBI-induced increase in IL-1β message levels and ERK phosphorylation observed 3 h post-irradiation. In contrast, GW0742 administration failed to modulate the radiation-induced decrease in hippocampal neurogenesis (NeuN+/BrdU+ cells) determined 2 months after irradiation, or mitigate hippocampal-dependent spatial memory impairment observed 3 months post-irradiation using the Barnes Maze task. We used PPARō knockout (KO) mice to examine if the effects of GW0742 are PPARō-dependent. Unexpectedly, PPARō KO mice exhibited a differential response following WBI compared to WT mice; therefore, we were unable to make mechanistic conclusions about GW0742. KO mice do not exhibit a WBI-induced increase in activated microglia; however, they appeared to display a pronounced astrocytic response. In particular, PPARō KO but not WT mice displayed increased GFAP message levels 2 months after WBI. Additionally, the number of GFAP+ cells was reduced significantly in the WT mice 2 months after WBI, but it was not in the PPARō KO mice. These results demonstrate that: i) GW0742 prevents the radiation-induced increase in microglial activation and inflammatory markers, and ii) WT and PPARō KO mice have a differential response to WBI.

  4. Natural Products for Management of Oral Mucositis Induced by Radiotherapy and Chemotherapy.

    PubMed

    Aghamohamamdi, Azar; Hosseinimehr, Seyed Jalal

    2016-03-01

    Oral mucositis is a common side effect of systemic chemotherapy and radiotherapy of head and neck in patients with cancer. Severe oral mucositis is painful and affects oral functions, including intake of food and medications and speech. Prevention of oral mucositis affects the life quality of patients. Recent studies have been focused on natural products to improve or reduce this complication. Many clinical trials have been performed to assess natural products for treatment of mucositis and their results are promising. The authors reviewed the evidence for natural products in the prevention and treatment of oral mucositis induced by radiation therapy and chemotherapy. PMID:26306626

  5. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  6. Chemoprevention of Radiation Induced Rat Mammary Neoplasms

    NASA Technical Reports Server (NTRS)

    Huso, David L.

    1999-01-01

    Radiations encountered in space include protons and heavy ions such as iron as well as their secondaries. The relative biological effect (RBE) of these ions is not known, particularly at the doses and dose-rates expected for planetary missions. Neutrons, are not particularly relevant to space travel, but have been found experimentally to have an increase in their RBE with decreasing dose. If a similar trend of increasing RBE with decreasing dose is present for heavy ions and protons during irradiation in space, the small doses received during space travel could potentially have substantial carcinogenic risk. Clearly more investigation of the effects of heavy ions and protons is needed before accurate risk assessment for prolonged travel in space can be done. One means to mitigate the increased risk of cancer due to radiation exposure in space is by developing effective countermeasures that can reduce the incidence of tumor development. Tamoxifen has recently been shown to be an effective chemopreventive agent in both animal models and humans for the prevention of mammary tumors. Tamoxifen is a unique drug, with a highly specific mechanism of action affecting a specific radiation-sensitive population of epithelial cells in the mammary gland. In human studies, the annual incidence of a primary tumor in the contralateral breast of women with previous breast cancer is about 8 per 1000, making them an exceedingly high-risk group for the development of breast cancer. In this high risk group, treated with tamoxifen, daily, for 2 years, the incidence of a new primary tumor in the contralateral breast was approximately one third of that noted in the non-tamoxifen treatment group. Tamoxifen antagonizes the action of estrogen by competing for the nuclear receptor complex thereby altering the association of the receptor complex and nuclear binding sites. Its effects in reducing the development of breast cancer could be accomplished by controlling clinically undetectable

  7. Treatment of hemorrhagic radiation-induced proctopathy with a 4% formalin application under perianal anesthetic infiltration

    PubMed Central

    Samalavicius, Narimantas Evaldas; Dulskas, Audrius; Kilius, Alfredas; Petrulis, Kestutis; Norkus, Darius; Burneckis, Arvydas; Valuckas, Konstantinas Povilas

    2013-01-01

    AIM: To evaluate the results of hemorrhagic radiation proctopathy treatment with a 4% formalin application. METHODS: A prospective study was performed. Over a three-year period, 38 patients underwent 4% formalin application under perianal anesthetic infiltration for hemorrhagic radiation proctopathy. All patients included in the study were irradiated for prostate cancer. The patients ranged in age from 56-77 years (average 70 ± 5 years). All of the patients were referred for formalin therapy after noninvasive management had failed. Twenty-four (63.2%) patients underwent a single application, 10 (26.3%) patients underwent 2 applications, and 4 (10.5%) patients underwent 3 applications. RESULTS: Two to 36 mo (average 12 ± 3 mo) following treatment, 34 patients were interviewed (four were lost to follow-up). Twenty (58.8%) subjects reported complete cure, 8 (23.5%) subjects reported significant improvement, and 6 (17.7%) subjects reported no change. One patient (who underwent a colostomy at a regional hospital with no specialized services available for previous bleeding episodes from radiation proctopathy) was cured, and the colostomy was closed. One patient (2.6%) developed rectal mucosal damage after the second application. CONCLUSION: A 4-min application of 4% formalin for hemorrhagic radiation-induced proctopathy under perianal anesthetic infiltration in patients who have received external radial radiation therapy for prostate cancer is simple, reasonably safe, inexpensive, generally well tolerated, and effective. PMID:23946599

  8. Probiotics as Antifungals in Mucosal Candidiasis.

    PubMed

    Matsubara, Victor H; Bandara, H M H N; Mayer, Marcia P A; Samaranayake, Lakshman P

    2016-05-01

    Candidais an opportunistic pathogen that causes mucosal and deep systemic candidiasis. The emergence of drug resistance and the side effects of currently available antifungals have restricted their use as long-term prophylactic agents for candidal infections. Given this scenario, probiotics have been suggested as a useful alternative for the management of candidiasis. We analyzed the available data on the efficacy of probiotics in candidal colonization of host surfaces. A number of well-controlled studies indicate that probiotics, particularly lactobacilli, suppressCandidagrowth and biofilm development in vitro.A few clinical trials have also shown the beneficial effects of probiotics in reducing oral, vaginal, and enteric colonization byCandida; alleviation of clinical signs and symptoms; and, in some cases, reducing the incidence of invasive fungal infection in critically ill patients. Probiotics may serve in the future as a worthy ally in the battle against chronic mucosal candidal infections. PMID:26826375

  9. Radiation-induced cholecystitis after hepatic radioembolization: do we need to take precautionary measures?

    PubMed

    Prince, Jip F; van den Hoven, Andor F; van den Bosch, Maurice A A J; Elschot, Mattijs; de Jong, Hugo W A M; Lam, Marnix G E H

    2014-11-01

    Controversy exists over the need to take precautionary measures during hepatic radioembolization to minimize the risk of radiation-induced cholecystitis. Strategies for a variety of clinical scenarios are discussed on the basis of a literature review. Precautionary measures are unnecessary in the majority of patients and should be taken only when single photon-emission computed tomography (CT; SPECT)/CT shows a significant concentration of technetium-99m macroaggregated albumin in the gallbladder wall. In this case report with quantitative SPECT analysis, it is illustrated how an adjustment of the catheter position can effectively reduce the absorbed dose of radiation delivered to the gallbladder wall by more than 90%. PMID:25442134

  10. Radiation-induced electrical breakdown of helium in fusion reactor superconducting magnet systems

    SciTech Connect

    Perkins, L.J.

    1983-12-02

    A comprehensive theoretical study has been performed on the reduction of the electrical breakdown potential of liquid and gaseous helium under neutron and gamma radiation. Extension of the conventional Townsend breakdown theory indicates that radiation fields at the superconducting magnets of a typical fusion reactor are potentially capable of significantly reducing currently established (i.e., unirradiated) helium breakdown voltages. Emphasis is given to the implications of these results including future deployment choices of magnet cryogenic methods (e.g., pool-boiling versus forced-flow), the possible impact on magnet shielding requirements and the analogous situation for radiation-induced electrical breakdown in fusion RF transmission systems.

  11. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  12. The efficacy of sucralfate suspension in the prevention of oral mucositis due to radiation therapy

    SciTech Connect

    Epstein, J.B.; Wong, F.L.W. )

    1994-02-01

    The purpose of this study was to assess the value of sucralfate suspension in prevention of oral mucositis and for reduction of oral pain in patients who develop mucositis during radiation therapy. The study was a double-blind, placebo-controlled, randomized prospective trial of a sucralfate suspension in the prevention and management of oral mucositis during radiation therapy. Oral mucositis was assessed using a quantitative scale and symptoms were assessed using visual analogue scales. The statistical model was developed to detect a 40% reduction in mucositis. No statistically significant reduction in mucositis was seen. Early during radiation therapy less oral pain was reported in the sucralfate group, but as treatment progressed all patients experienced pain. Patients in the sucralfate group were prescribed topical and systemic analgesics later in the course of radiation therapy. Prophylactic oral rinsing with sucralfate did not prevent oral ulcerative mucositis. Sucralfate may reduce the experience of pain during radiation therapy. 32 refs., 3 tabs.

  13. Segmental Differences in Radiation-Induced Alterations of Tight Junction-Related Proteins in Non-Human Primate Jejunum, Ileum and Colon.

    PubMed

    Garg, Sarita; Zheng, Junying; Wang, Junru; Authier, Simon; Pouliot, Mylene; Hauer-Jensen, Martin

    2016-01-01

    Dysfunction of the intestinal epithelial barrier and leakage of luminal antigens and bacteria across the barrier have been linked to various human diseases. Intestinal permeability is regulated by intercellular structures, termed "tight junction" (Tj), which are disrupted after total-body irradiation (TBI). In this study, we investigated radiation-induced alterations in Tj-related proteins in the jejunum, ileum and colon of a non-human primate (NHP) model. NHPs were total-body irradiated with 6.7 and 7.4 Gy and intestines were procured at day 4, 7 and 12. Radiation exposure was found to induce significant increases in claudin-10 mRNA early (day 4) in all three gut segments and claudin-4 mRNA levels were repressed through day 12. TNF-alpha was highly induced in the jejunum and colon at early time points, but little induction was found in the ileum. Claudin-1 was induced only in the colon on day 4 postirradiation. Unlike the colon and jejunum, the ileum levels of claudin-7 were significantly downregulated through day 12 postirradiation. Western blot analysis revealed increased levels of claudin-2 on day 4 and of JAM-1 on day 7 postirradiation in all three gut segments. E-cadherin was downregulated on day 4 postirradiation in all segments, but remained reduced in the jejunum only until day 12. Taken together, these data suggest that exposure to radiation causes segment-specific alterations in the expression of Tj-related proteins. Interruption of Tjs may be a key factor contributing to injury to the intestinal mucosal barrier and increased intestinal permeability. PMID:26720804

  14. Experience with registered mucosal vaccines.

    PubMed

    Dietrich, Guido; Griot-Wenk, Monika; Metcalfe, Ian C; Lang, Alois B; Viret, Jean-François

    2003-01-30

    Most pathogens gain access to their host through mucosal surfaces. It is therefore desirable to develop vaccination strategies that lead to mucosal immune responses. Ideally, a vaccine should be administered mucosally in order to elicit mucosal protection. Several attenuated live viral and bacterial pathogens are registered as oral vaccines for human use, including the oral polio vaccine (Sabin) as well as attenuated strains of Salmonella typhi and Vibrio cholerae. These attenuated bacterial live vaccines-S. typhi Ty21a as well as V. cholerae CVD 103-HgR-are employed as vaccines against typhoid and cholera, respectively. In this manuscript, we review the immune responses that are induced by these vaccines, with a focus on mucosal immunity. PMID:12531339

  15. Mucosal biofilms of Candida albicans.

    PubMed

    Ganguly, Shantanu; Mitchell, Aaron P

    2011-08-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties. PMID:21741878

  16. Mucosal IgG Levels Correlate Better with Respiratory Syncytial Virus Load and Inflammation than Plasma IgG Levels

    PubMed Central

    Vissers, Marloes; Ahout, Inge M. L.; de Jonge, Marien I.

    2015-01-01

    Maternal vaccination is currently considered a strategy against respiratory syncytial virus (RSV) infections. In RSV-infected infants, high mucosal IgG levels correlated better with reduced RSV load and lower mucosal CXCL10 levels than plasma IgG levels. For future vaccination strategies against RSV, more focus should be on the mucosal humoral immune response. PMID:26656116

  17. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    SciTech Connect

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.; Sowa, Marianne B.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examples to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.

  18. Radiation-induced decomposition of explosives under extreme conditions

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Yang, Wenge; Liermann, Peter

    2008-11-03

    We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.

  19. Radiation-induced hemorrhagic duodenitis associated with sorafenib treatment.

    PubMed

    Yanai, Shunichi; Nakamura, Shotaro; Ooho, Aritsune; Nakamura, Shigeo; Esaki, Motohiro; Azuma, Koichi; Kitazono, Takanari; Matsumoto, Takayuki

    2015-06-01

    Sorafenib, an oral inhibitor of multiple tyrosine kinase receptors, has been widely used as a standard medical treatment for advanced hepatocellular carcinoma (HCC). Here, we report a 66-year-old male patient who developed gastrointestinal bleeding due to radiation-induced hemorrhagic duodenitis associated with sorafenib treatment. We started oral administration of sorafenib because of the recurrence of HCC with lung metastases. The patient had been treated by radiotherapy for para-aortic lymph node metastases from HCC 4 months before the bleeding. Esophagogastroduodenoscopy (EGD) revealed edematous reddish mucosa with friability and telangiectasia in the second portion of the duodenum. Computed tomography and capsule endoscopy revealed that the hemorrhagic lesions were located in the distal duodenum. After discontinuation of sorafenib, the bleeding disappeared and a follow-up EGD confirmed improvement of duodenitis. Based on these findings, the diagnosis of radiation-induced hemorrhagic duodenitis associated with sorafenib was made. PMID:25832768

  20. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis

    SciTech Connect

    Xiao Zhenyu; Su Ying; Yang Shanmin; Yin Liangjie; Wang Wei; Yi Yanghua; Fenton, Bruce M.; Zhang Lurong; Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu

    2006-07-01

    Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-{beta}1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. Results: In vivo, EsA reduced levels of IL-1{alpha}, MCP-1, VEGF, and TGF-{beta}1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1{alpha} ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1{alpha}, IL-1{beta}, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. Conclusions: Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue.

  1. Paradoxical Relationship between Mn Superoxide Dismutase Deficiency and Radiation-Induced Cognitive Defects

    PubMed Central

    Corniola, Rikki; Zou, Yani; Leu, David; Fike, John R.; Huang, Ting-Ting

    2012-01-01

    Radiation therapy of the CNS, even at low doses, can lead to deficits in neurocognitive functions. Reduction in hippocampal neurogenesis is usually, but not always, associated with cognitive deficits resulting from radiation therapy. Generation of reactive oxygen species is considered the main cause of radiation-induced tissue injuries, and elevated levels of oxidative stress persist long after the initial cranial irradiation. Consequently, mutant mice with reduced levels of the mitochondrial antioxidant enzyme, Mn superoxide dismutase (MnSOD or Sod2), are expected to be more sensitive to radiation-induced changes in hippocampal neurogenesis and the related functions. In this study, we showed that MnSOD deficiency led to reduced generation of immature neurons in Sod2−/+ mice even though progenitor cell proliferation was not affected. Compared to irradiated Sod2+/+ mice, which showed cognitive defects and reduced differentiation of newborn cells towards the neuronal lineage, irradiated Sod2−/+ mice showed normal hippocampal-dependent cognitive functions and normal differentiation pattern for newborn neurons and astroglia. However, we also observed a disproportional decrease in newborn neurons in irradiated Sod2−/+ following behavioral studies, suggesting that MnSOD deficiency may render newborn neurons more sensitive to stress from behavioral trainings following cranial irradiation. A positive correlation between normal cognitive functions and normal dendritic spine densities in dentate granule cells was observed. The data suggest that maintenance of synaptic connections, via maintenance of dendritic spines, may be important for normal cognitive functions following cranial irradiation. PMID:23145165

  2. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  3. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  4. Aging masks detection of radiation-induced brain injury

    PubMed Central

    Shi, Lei; Olson, John; D’Agostino, Ralph; Linville, Constance; Nicolle, Michelle M.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2011-01-01

    Fractionated partial or whole-brain irradiation (fWBI) is a widely used, effective treatment for primary and metastatic brain tumors, but it also produces radiation-induced brain injury, including cognitive impairment. Radiation-induced neural changes are particularly problematic for elderly brain tumor survivors who also experience age-dependent cognitive impairment. Accordingly, we investigated, i] radiation-induced cognitive impairment, and ii] potential biomarkers of radiation-induced brain injury in a rat model of aging. Fischer 344 × Brown Norway rats received fractionated whole-brain irradiation (fWBI rats, 40 Gy, 8 fractions over 4 wk) or sham-irradiation (Sham-IR rats) at 12 months of age; all analyses were performed at 26–30 months of age. Spatial learning and memory were measured using the Morris water maze (MWM), hippocampal metabolites were measured using proton magnetic resonance spectroscopy (1H MRS), and hippocampal glutamate receptor subunits were evaluated using Western blots. Young rats (7–10 month-old) were included to control for age effects. The results revealed that both Sham-IR and fWBI rats exhibited age-dependent impairments in MWM performance; fWBI induced additional impairments in the reversal MWM. 1H MRS revealed age-dependent decreases in neuronal markers, increases in glial markers, but no detectable fWBI-dependent changes. Western blot analysis revealed age-dependent, but not fWBI-dependent, glutamate subunit declines. Although previous studies demonstrated fWBI-induced changes in cognition, glutamate subunits, and brain metabolites in younger rats, age-dependent changes in these parameters appear to mask their detection in old rats, a phenomenon also likely to occur in elderly fWBI patients >70 years of age. PMID:21338580

  5. Sulfonic acid catalysts prepared by radiation-induced graft polymerization

    SciTech Connect

    Mizota, Tomotoshi; Tsuneda, Satoshi; Saito, Kyoichi, Saito

    1994-09-01

    In this study, the authors prepared two variations of graft-type acid catalysts with different adjacent groups by radiation-induced graft polymerization (RIGP), and compared the hydrolytic activity of the resultant acid catalysts for methyl acetate with that of commercially available SO{sub 3}H-type ion-exchange beads with different degrees of cross-linking. 8 refs., 3 figs.

  6. Radiation-induced products of peptides and their enzymatic digestibility

    SciTech Connect

    Gajewski, E.

    1983-01-01

    Chemical characterization of radiation-induced products of peptides and proteins is essential for understanding the effect of ionizing radiation on peptides and proteins. Furthermore, peptides containing radiation-altered amino acid residues might not be completely digestible by proteolytic enzymes. In this work, small homopeptides of Ala, Phe and Met were chosen as model peptides. Lysozyme was used to investigate the effect of ionizing radiation on a small protein. All peptides and lysozyme were irradiated in diluted, oxygen free, N/sub 2/O-saturated aqueous solutions, using a /sup 60/Co-..gamma..-source. HPLC, capillary GC and GC-MS were applied to isolate and characterize the radiation-induced products. The enzymatic digestibility of the products was investigated using aminopeptidase M, leucine aminopeptidase, carboxypeptidase A and carboxypeptidase Y. It was found that irradiation of peptides examined in this work leads to racemization and alteration of amino acid residues and crosslinks between the peptide chains. In addition, it was established that exopeptidases act differently on radiation-induced dimers of peptides composed of aliphatic, aromatic and sulfur-containing amino acids.

  7. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  8. Role of Ferulic Acid in the Amelioration of Ionizing Radiation Induced Inflammation: A Murine Model

    PubMed Central

    Das, Ujjal; Manna, Krishnendu; Sinha, Mahuya; Datta, Sanjukta; Das, Dipesh Kr; Chakraborty, Anindita; Ghosh, Mahua; Saha, Krishna Das; Dey, Sanjit

    2014-01-01

    Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation. PMID:24854039

  9. Apigenin ameliorates gamma radiation-induced cytogenetic alterations in cultured human blood lymphocytes.

    PubMed

    Begum, Naziya; Prasad, N Rajendra; Kanimozhi, G; Hasan, Annie Q

    2012-08-30

    The aim of the present study was to assess the protective effect of apigenin, a dietary flavone, against cytogenetic alterations in human peripheral blood lymphocytes (HPBL) induced by Cobalt-60 radiation (3Gy). Results of MTT [3-(4, 5-dimethyl-2-thiaozolyl)-2,5-diphenyl-2H tetrazolium bromide] assay revealed that 37.2μM of apigenin was found to be non-toxic in HPBL. At this dose (37.2μM) of apigenin, the LD(50) radiation dose of HPBL increased from 2.9Gy to 3.4Gy, which resulted in a DMF of 1.17. Apigenin (37.2μM) treatment 1h before irradiation significantly (p<0.05) reduced DNA damage in irradiated HPBL as measured by comet assay (% tail DNA, tail length, tail moment, and olive tail moment). Moreover, apigenin treatment significantly decreased the frequencies of dicentric (DC), acentric fragments (AF), and acentric rings (AR) in irradiated HPBL. Apigenin pretreatment also reduced the radiation-induced CBMN (cytokinesis blocked micronuclei) anomalies such as micronuclei (MNi), nucleoplasmic bridges (NPB) and nuclear buds (NBUD) in HPBL. These results also showed that there was a significant correlation between NPB and DC frequencies and MNi and AF+AR. Treatment with apigenin alone had no significant effect on DNA damage and chromosomal aberrations in HPBL. Thus, the current studies indicate that apigenin protects HPBL from radiation-induced cytogenetic alterations. PMID:22516036

  10. PHD Inhibition Mitigates and Protects Against Radiation-Induced Gastrointestinal Toxicity via HIF2

    PubMed Central

    Taniguchi, Cullen M.; Miao, Yu Rebecca; Diep, Anh N.; Wu, Colleen; Rankin, Erinn B.; Atwood, Todd F.; Xing, Lei; Giaccia, Amato J.

    2014-01-01

    Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD isoforms by the small molecule dimethyloxyallylglycine (DMOG) increases HIF expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased VEGF expression contributes to the protective effects of HIF2, since inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality is reduced from abdominal or total body irradiation even when DMOG is given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a new treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures. PMID:24828078

  11. Mitigation of Radiation-Induced Dermatitis by Activation of Aldehyde Dehydrogenase 2 Using Topical Alda-1 in Mice1

    PubMed Central

    Ning, Shoucheng; Budas, Grant R.; Churchill, Eric N.; Chen, Che-Hong; Knox, Susan J.; Mochly-Rosen, Daria

    2012-01-01

    Ning, S., Budas, G. R., Churchill, E. N., Chen, C., Knox, S. J. and Mochly-Rosen, D. Mitigation of Radiation-Induced Dermatitis by Activation of Aldehyde Dehydrogenase 2 Using Topical Alda-1 in Mice. Radiation-induced dermatitis is a debilitating clinical problem in cancer patients undergoing cancer radiation therapy. It is also a possible outcome of exposure to high levels of radiation due to accident or hostile activity. We report that activation of aldehyde dehydrogenase 2 (ALDH2) enzymatic activity using the allosteric agonist, Alda-1, significantly reduced 4-hydroxynonenal adducts accumulation, delayed the onset of radiation dermatitis and substantially reduced symptoms in a clinically-relevant model of radiation-induced dermatitis. Importantly, Alda-1 did not radioprotect tumors in mice. Rather, it increased the sensitivity of the tumors to radiation therapy. This is the first report of reactive aldehydes playing a role in the intrinsic radiosensitivity of normal and tumor tissues. Our findings suggest that ALDH2 represents a novel target for the treatment of radiation dermatitis without reducing the benefit of radiotherapy. PMID:22404739

  12. Inside the brachycephalic nose: intranasal mucosal contact points.

    PubMed

    Schuenemann, Riccarda; Oechtering, Gerhard U

    2014-01-01

    The purpose of this study was to evaluate the prevalence of intranasal mucosal contact points in brachycephalic and normocephalic dogs. In total, 82 brachycephalic dogs (42 pugs and 40 French bulldogs) were evaluated by rhinoscopy for their intranasal mucosal contact and 25 normocephalic dogs were evaluated as a control group. Of those, 162 brachycephalic nasal cavities were evaluable and 140 had contact between intranasal structures (87%). Intraconchal and septoconchal mucosal contact points were the most commonly detected sites of contact. French bulldogs had a significantly higher prevalence of mucosal contact and had 3 mean contact points compared with 1.7 mean contact points per nasal cavity in pugs. Septal deviations were present in 62% of brachycephalic dogs. In the control group, mucosal contact points were present in only 7 of 50 nasal cavities (14%), and septal deviations occurred in 16% of those cases. Contact point average was 0.1 in large and 0.3 in small normocephalic dogs. Intranasal mucosal contact was identified as a common and previously unreported problem in brachycephalic dogs. Numerous contact points reduce the lumen of the intranasal passageways and indicate potential intranasal obstruction. Affected dogs might benefit from removal of obstructing conchae, potentially using laser-assisted turbinectomy. PMID:24659729

  13. Novel strategies using DNA for the induction of mucosal immunity.

    PubMed

    McCluskie, M J; Davis, H L

    1999-01-01

    The mucosal surfaces are the primary sites for transmission of most infectious diseases. However, most conventional vaccines are administered parenterally [e.g., by intramuscular (IM) or intradermal (ID) injection] and induce systemic but rarely mucosal immunity. Novel vaccination strategies capable of inducing both systemic and mucosal immune responses could greatly reduce infection and morbidity worldwide. One of the most exciting advances in vaccine technology in recent years has been the development of DNA vaccines, through which the antigen is synthesized in vivo after direct introduction of its encoding sequences. The vast majority of DNA vaccines have been delivered parenterally; however, in recent years a number of studies have reported successful mucosal immunization with DNA vaccines. The induction of strong immune responses following the introduction of DNA appears to be partly due to the potent adjuvant effect of unmethylated immunostimulatory CpG motifs present in the DNA backbone. Synthetic oligodeoxynucleotides (ODN) containing such immunostimulatory CpG motifs are potent adjuvants systemically and mucosally in mice, and have synergistic action with other adjuvants, such as alum and cholera toxin (CT). This article highlights the recent advances in vaccination strategies using DNA delivered to mucosal surfaces either as an antigen-encoding plasmid or as an adjuvant. PMID:10530431

  14. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  15. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  16. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  17. Radiation-induced physical changes in UHMWPE implant components.

    PubMed

    Naidu, S H; Bixler, B L; Moulton, M J

    1997-02-01

    Post-irradiation aging of ultra-high molecular weight polyethylene (UHMWPE) is not well understood. Retrieval studies and in vitro aged specimens have shown oxidative changes along with increases in crystallinity. Critical analysis and review of the polymer science and polymer physics literature shows that while oxidation may be important during the first year post-irradiation, subsequent aging occurs because of initial gamma radiation-induced chain scission leading to eventual isothermal crystallization of polymer chains in the amorphous regions of the UHMWPE bulk. Mechanical properties of aged UHMWPE are not as yet clear and, until such data become available, gamma irradiation sterilization must be used with caution. PMID:9048391

  18. Transient radiation-induced absorption in laser materials

    NASA Astrophysics Data System (ADS)

    Brannon, Paul J.

    1994-06-01

    Transient radiation-induced absorption losses in laser materials have been measured using a pulsed nuclear reactor. Reactor pulse widths of 70 to 90 microsecond(s) and absorbed doses of 1 to 7.5 krad have been used. Transmission recovery times and peak absorption coefficients are given. Materials tested include LiNbO3, GSGG, silica substrates, and filter glasses used in the laser cavity. The filter glasses are tested at discrete wavelengths in the range 440 - 750 nm. Lithium niobate, MgO-doped LiNbO3, GSGG, and the silica substrates are tested at 1061 nm.

  19. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  20. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  1. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  2. Radiation-induced collisional pumping of molecules containing few atoms

    SciTech Connect

    Vasil'ev, G.K.; Chernyshev, Y.A.; Makarov, E.F.; Yakushev, V.G.

    1986-01-01

    The authors analyze the radiation-induced collisional pumping of few-atom molecules by laser emission taking into account both collisional and noncollisional processes of vibrational energy transfer in a molecule. For typical values of the parameters the vibrational energy of the molecules was found to depend on the laser emission intensity; regions of weak absorption, optimum absorption, and saturation appear as the pumping rate rises. Qualitative general conclusions are reached concerning the optimum conditions for the realization, in a medium absorbing laser emission, of either nonequilibrium dissociation or a chemical reaction involving vibrationally excited molecules.

  3. Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage.

    PubMed

    Bing, So Jin; Ha, Danbee; Kim, Min Ju; Park, Eunjin; Ahn, Ginnae; Kim, Dae Seung; Ko, Ryeo Kyeong; Park, Jae Woo; Lee, Nam Ho; Jee, Youngheun

    2013-07-01

    Gamma ray irradiation triggers DNA damage and apoptosis of proliferating stem cells and peripheral immune cells, resulting in the destruction of intestinal crypts and lymphoid system. Geraniin is a natural compound extracts from an aquatic plant Nymphaea tetragona and possesses good antioxidant property. In this study, we demonstrate that geraniin rescues radiosensitive splenocytes and jejunal crypt cells from radiation-induced DNA damage and apoptosis. Isolated splenocytes from C57BL/6 mice treated with geraniin were protected against radiation injury of 2 Gy irradiation through the enhancement of the proliferation and attenuation of DNA damage. Also, geraniin inhibited apoptosis in radiosensitive splenocytes by reducing the expression level and immunoreactivity of proapoptotic p53 and Bax and increasing those of anti-apoptotic Bcl-2. In mice exposed to radiation, geraniin treatment protected splenocytes and intestinal crypt cells from radiation-induced cell death. Our results suggest that geraniin presents radioprotective effects by regulating DNA damage on splenocytes, exerting immunostimulatory capacities and inhibiting apoptosis of radiosensitive immune cells and jejunal crypt cells. Therefore, geraniin can be a radioprotective agent against γ-irradiation exposure. PMID:23541438

  4. Punica granatum peel extract protects against ionizing radiation-induced enteritis and leukocyte apoptosis in rats.

    PubMed

    Toklu, Hale Z; Sehirli, Ozer; Ozyurt, Hazan; Mayadağli, A Alpaslan; Ekşioğlu-Demiralp, Emel; Cetinel, Sule; Sahin, Hülya; Yeğen, Berrak C; Ulusoylu Dumlu, Melek; Gökmen, Vural; Sener, Göksel

    2009-07-01

    Radiation-induced enteritis is a well-recognized sequel of therapeutic irradiation. Therefore we examined the radioprotective properties of Punica granatum peel extract (PPE) on the oxidative damage in the ileum. Rats were exposed to a single whole-body X-ray irradiation of 800 cGy. Irradiated rats were pretreated orally with saline or PPE (50 mg/kg/day) for 10 days before irradiation and the following 10 days, while control rats received saline or PPE but no irradiation. Then plasma and ileum samples were obtained. Irradiation caused a decrease in glutathione and total antioxidant capacity, which was accompanied by increases in malondialdehyde levels, myeloperoxidase activity, collagen content of the tissue with a concomitant increase 8-hydroxy-2'-deoxyguanosine (an index of oxidative DNA damage). Similarly, pro-inflammatory cytokines (TNF-alpha, IL-1beta and IL-6) and lactate dehydrogenase were elevated in irradiated groups as compared to control. PPE treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. Furthermore, flow cytometric measurements revealed that leukocyte apoptosis and cell death were increased in irradiated animals, while PPE reversed these effects. PPE supplementation reduced oxidative damage in the ileal tissues, probably by a mechanism that is associated with the decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms. Adjuvant therapy of PPE may have a potential to support a successful radiotherapy by protecting against radiation-induced enteritis. PMID:19478462

  5. Imaging of dose distributions using polymer gels based on radiation induced changes in stiffness

    NASA Astrophysics Data System (ADS)

    Crescenti, Remo A.; Bamber, Jeffrey C.; Oberai, Assad A.; Barbone, Paul E.; Richter, Joseph P.; Rivas, Carlos; Bush, Nigel L.; Webb, Steve

    2009-05-01

    Previously, dose determination based on radiation induced stiffness difference measurements has received no or very little attention. Here, a preliminary evaluation of a combined system for dosimetry based on radiation sensitive gels, ultrasonic elastography and a plane strain inverse algorithm is presented. A block of gel was irradiated along one of its axes producing stiff rod-like regions. The dose distribution found with quantitative ultrasound elastography was compared with a reference dose distribution measured with magnetic resonance imaging. In these early results, the high dose areas were clearly detected, while noise in the ultrasound measurement and strong regularisation in the inverse computing introduced shape distortions, noise in the dose estimates and problems estimating the correct dose contrast. Improvements in the experimental setup and inverse computing are possible, for example by acquisition of transversal ultrasound data, which could essentially reduce the noise and restrict direct influence of the experimental boundary condition on the dose estimation by providing additional information for inverse computing. Based on the preliminary results and the potential for improvement it is concluded that further investigations should follow to establish the potential of the rapidly developing field of elastography for measuring radiation dose based on radiation induced changes in stiffness.

  6. The Role of Alveolar Epithelium in Radiation-Induced Lung Injury

    PubMed Central

    Almeida, Celine; Nagarajan, Devipriya; Tian, Jian; Leal, Sofia Walder; Wheeler, Kenneth; Munley, Michael; Blackstock, William; Zhao, Weiling

    2013-01-01

    Pneumonitis and fibrosis are major lung complications of irradiating thoracic malignancies. In the current study, we determined the effect of thoracic irradiation on the lungs of FVB/N mice. Survival data showed a dose-dependent increase in morbidity following thoracic irradiation with single (11–13 Gy) and fractionated doses (24–36 Gy) of 137Cs γ-rays. Histological examination showed a thickening of vessel walls, accumulation of inflammatory cells, collagen deposition, and regional fibrosis in the lungs 14 weeks after a single 12 Gy dose and a fractionated 30 Gy dose; this damage was also seen 5 months after a fractionated 24 Gy dose. After both single and fractionated doses, i] aquaporin-5 was markedly decreased, ii] E-cadherin was reduced and iii] prosurfactant Protein C (pro-SP-c), the number of pro-SP-c+ cells and vimentin expression were increased in the lungs. Immunofluorescence analysis revealed co-localization of pro-SP-c and α-smooth muscle actin in the alveoli after a single dose of 12 Gy. These data suggest that, i] the FVB/N mouse strain is sensitive to thoracic radiation ii] aquaporin-5, E-cadherin, and pro-SP-c may serve as sensitive indicators of radiation-induced lung injury; and iii] the epithelial-to-mesenchymal transition may play an important role in the development of radiation-induced lung fibrosis. PMID:23326473

  7. Does altered fractionation influence the risk of radiation-induced optic neuropathy?

    SciTech Connect

    Bhandare, Niranjan; Monroe, Alan T.; Morris, Christopher G.; Bhatti, M. Tariq; Mendenhall, William M. . E-mail: mendewil@shands.ufl.edu

    2005-07-15

    Purpose: To analyze the parameters that influence the risk of radiation-induced optic neuropathy (RION) after radiotherapy for head-and-neck tumors. Methods and Materials: Between 1964 and 2000, 273 patients with tumors of the nasopharynx, paranasal sinuses, nasal cavity, and hard palate adenoid cystic carcinomas were treated with curative intent and had radiation fields that included the optic nerves and/or chiasm. Patients were followed for at least 1 year after radiotherapy. Results: Radiation-induced optic neuropathy developed in 32 eyes of 24 patients (9%). The 5-year rates of freedom from RION according to the total dose and once- vs. twice-daily fractionation were as follows: {<=}63 Gy once daily, 95%; {<=}63 Gy twice daily, 98%; >63 Gy once daily, 78%; and >63 Gy twice daily, 91%. Multivariate analysis revealed that the total dose affected the risk of RION (p = 0.0047), with patient age (p = 0.0909), once-daily vs. twice-daily fractionation (p = 0.0684), and overall treatment time (p = 0.0972) were marginally significant. The use of adjuvant chemotherapy did not significantly influence the likelihood of developing RION. Conclusion: The likelihood of developing RION is primarily influenced by the total dose. Hyperfractionation may reduce the risk of experiencing this complication.

  8. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; Shiau, Chung-Wai; Cheng, Ann-Lii; Chen, Kuen-Feng

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  9. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly

    PubMed Central

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  10. Aminoguanidine Alleviates Radiation-Induced Small-Bowel Damage Through Its Antioxidant Effect

    SciTech Connect

    Huang, E.-Y.; Wang, F.-S.; Lin, I-H.; Yang, Kuender D.

    2009-05-01

    Purpose: To evaluate the effect and its mechanism of aminoguanidine (AG) on small-bowel protection after whole-abdominal irradiation (WAI) in rats. Methods and Materials: Male Sprague-Dawley rats (300-400 g) subjected to 12 Gy WAI were used for the study. Aminoguanidine at a dose of 50-800 mg/kg was administered by the gavage route 2 h before WAI. Mucosal damage of small bowel was evaluated by the grade of diarrhea and crypt survival; oxidative stress was determined by the level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) with immunohistochemistry (IHC). Nitrosative stress was evaluated by the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine (3-NT) with IHC, and systemic and portal vein NOx (nitrite + nitrate) levels were measured and compared with and without AG treatment after WAI. Results: Aminoguanidine showed a dose-dependent effect against WAI-induced diarrhea. Aminoguanidine at a dose of 400 mg/kg had the best protective effect, from 92% to 17% (p = 0.002). Aminoguanidine increased crypt survival from 23% to 46% (p = 0.003). It also significantly attenuated 8-OHdG expression but not 3-NT and iNOS expression at both 4 and 8 h after 12-Gy WAI. Aminoguanidine did not alter the portal vein NOx levels 4 and 8 h after 12-Gy WAI. Conclusion: Aminoguanidine has a radioprotective effect against radiation-induced small-bowel damage due to its antioxidant effect but not inhibition of nitric oxide production. Dietary AG may have a potentially protective effect on the small intestine of patients subjected to pelvic and abdominal radiotherapies.

  11. The correlation between swelling and radiation-induced segregation in iron-chromium-nickel alloys.

    SciTech Connect

    Allen, T. R.; Busby, J. T.; Kenik, E. A.; Was, G. S.

    1998-03-05

    The magnitudes of both void swelling and radiation-induced segregation (RIS) in iron-chromium-nickel alloys are dependent on bulk alloy composition. Because the diffusivity of nickel via the vacancy flux is slow relative to chromium, nickel enriches and chromium depletes at void surfaces during irradiation. This local composition change reduces the subsequent vacancy flux to the void, thereby reducing void swelling. In this work, the resistance to swelling from major element segregation is estimated using diffusivities derived from grain boundary segregation measurements in irradiated iron-chromium-nickel alloys. The resistance to void swelling in iron- and nickel-base alloys correlates with the segregation and both are functions of bulk alloy composition. Alloys that display the greatest amount of nickel enrichment and chromium depletion are found to be most resistant to void swelling, as predicted. Additionally, swelling is shown to be greater in alloys in which the RIS profiles are slow to develop.

  12. Functional properties of nisin-carbohydrate conjugates formed by radiation induced Maillard reaction

    NASA Astrophysics Data System (ADS)

    Muppalla, Shobita R.; Sonavale, Rahul; Chawla, Surinder P.; Sharma, Arun

    2012-12-01

    Nisin-carbohydrate conjugates were prepared by irradiating nisin either with glucose or dextran. Increase in browning and formation of intermediate products was observed with a concomitant decrease in free amino and reducing sugar groups indicating occurrence of the Maillard reaction catalyzed by irradiation. Nisin-carbohydrate conjugates showed a broad spectrum antibacterial activity against Gram negative bacteria (Escherichia coli, Pseudomonas fluorescence) as well as Gram positive bacteria (Staphylococcus aureus, Bacillus cereus). Results of antioxidant assays, including that of DPPH radical-scavenging activity and reducing power, showed that the nisin-dextran conjugates possessed better antioxidant potential than nisin-glucose conjugate. These results suggested that it was possible to enhance the functional properties of nisin by preparing radiation induced conjugates suitable for application in food industry.

  13. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    PubMed Central

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose. PMID:24225302

  14. Radiation-Induced Noncancer Risks in Interventional Cardiology: Optimisation of Procedures and Staff and Patient Dose Reduction

    PubMed Central

    Khairuddin Md Yusof, Ahmad

    2013-01-01

    Concerns about ionizing radiation during interventional cardiology have been increased in recent years as a result of rapid growth in interventional procedure volumes and the high radiation doses associated with some procedures. Noncancer radiation risks to cardiologists and medical staff in terms of radiation-induced cataracts and skin injuries for patients appear clear potential consequences of interventional cardiology procedures, while radiation-induced potential risk of developing cardiovascular effects remains less clear. This paper provides an overview of the evidence-based reviews of concerns about noncancer risks of radiation exposure in interventional cardiology. Strategies commonly undertaken to reduce radiation doses to both medical staff and patients during interventional cardiology procedures are discussed; optimisation of interventional cardiology procedures is highlighted. PMID:24027768

  15. Protective Effects of Polysaccharides from Soybean Meal Against X-ray Radiation Induced Damage in Mouse Spleen Lymphocytes

    PubMed Central

    Yao, Lei; Wang, Zhenyu; Zhao, Haitian; Cheng, Cuilin; Fu, Xiaoyi; Liu, Jiaren; Yang, Xin

    2011-01-01

    The aim of this study was to investigate radioprotective effect of the polysaccharides from soybean meal (SMP) against X-ray radiation-induced damage in mouse spleen lymphocytes. MTT and comet assay were performed to evaluate SMP’s ability to prevent cell death and DNA damage induced by radiation. The results show that, X-ray radiation (30 KV, 10 mA, 8 min (4 Gy)) can significantly increase cell death and DNA fragmentation of mouse spleen lymphocytes. Pretreatment with SMP for 2 h before radiation could increase cell viability, moreover, the SMP can reduce X-ray radiation-induced DNA damage. The percentage of tail DNA and the tail moment of the SMP groups were significantly lower than those of the radiation alone group (p < 0.05). These results suggest SMP may be a good candidate as a radioprotective agent. PMID:22174652

  16. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by γ-radiation-induced oxidative stress.

    PubMed

    Kang, Kyoung Ah; Lee, In Kyung; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kim, Sang Young; Shin, Taekyun; Kim, Bum Joon; Lee, Nam Ho; Hyun, Jin Won

    2011-04-01

    The radioprotective effect of geraniin, a tannin compound isolated from Nymphaea tetragona Georgi var. (Nymphaeaceae), against γ-radiation-induced damage was investigated in Chinese hamster lung fibroblast (V79-4) cells. Geraniin recovered cell viability detected by MTT test and colony formation assay, which was compromised by γ-radiation, and reduced the γ-radiation-induced apoptosis by the inhibition of loss of the mitochondrial membrane potential. Geraniin protected cellular components (lipid membrane, cellular protein, and DNA) damaged by γ-radiation, which was detected by lipid peroxidation, protein carbonyl formation, and comet assay. Geraniin significantly reduced the level of intracellular reactive oxygen species generated by γ-radiation, which was detected using spectrofluorometer, flow cytometer, and confocal microscope after 2',7'-dichlorodihydrofluorescein diacetate staining. Geraniin normalized the superoxide dismutase and catalase activities, which were decreased by γ-radiation. These results suggest that geraniin protects cells against radiation-induced oxidative stress via enhancing of antioxidant enzyme activities and attenuating of cellular damage. PMID:20680428

  17. Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage

    PubMed Central

    Kim, Ki Cheon; Piao, Mei Jing; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Kumara, Madduma Hewage Susara Ruwan; Han, Xia; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2014-01-01

    Fucodiphlorethol G (6’-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2’,4,4’,6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species. PMID:25143808

  18. Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Kumara, Madduma Hewage Susara Ruwan; Han, Xia; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2014-07-01

    Fucodiphlorethol G (6'-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2',4,4',6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species. PMID:25143808

  19. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGESBeta

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  20. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  1. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  2. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  3. Radiation-induced dural fibrosarcoma with unusually short latent period

    SciTech Connect

    Ghatak, N.R.; Aydin, F.; Leshner, R.T. Tulane Univ., New Orleans, LA )

    1993-05-01

    Although rare, the occurrence of radiation-induced intracranial neoplasms of various types is well known. Among these tumors, fibrosarcomas, especially in the region of seila turcica, seem to be the most common type. These tumors characteristically occur after a long latent period, usually several years, following radiation therapy. The authors now report a case of apparently radiation-induced fibrosarcoma with some unusual features in a 10-year-old boy who was treated with radiation for medulloblastoma. He received a total dose of 53.2 Gy radiation delivered at 1.8 per fraction with 6 MV acceleration using the standard craniospinal technique. An MRI at 15 months after the completion of radiotherapy showed a mass over the cerebral convexity, which increased two-fold in size within a period of 4 months. A well circumscribed tumor was removed from the fronto-parietal convexity. The tumor measured 5x4.5x1.5 cm and was attached to the dura with invasion of the overlying bone. Histologically, it displayed the characteristic features of a low-grade fibrosarcoma. The patient remains free of tumor 18 months after the surgery. This case emphasizes the potential risk for the development of a second neoplasm following therapeutic radiation and also documents, to the authors' knowledge, the shortest latent period reported so far between administration of radiotherapy and development of an intracranial tumor.

  4. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; von Bardeleben, H. J.

    2016-01-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  5. Nature of radiation-induced defects in quartz

    NASA Astrophysics Data System (ADS)

    Wang, Bu; Yu, Yingtian; Pignatelli, Isabella; Sant, Gaurav; Bauchy, Mathieu

    2015-07-01

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si-O connectivity defects, e.g., small Si-O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E' centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  6. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  7. Treatment of radiation-induced acute intestinal injury with bone marrow-derived mesenchymal stem cells

    PubMed Central

    ZHENG, KAI; WU, WEIZHEN; YANG, SHUNLIANG; HUANG, LIANGHU; CHEN, JIN; GONG, CHUNGUI; FU, ZHICHAO; LIN, RUOFEI; TAN, JIANMING

    2016-01-01

    The aim of the present study was to investigate the ability of bone marrow-derived mesenchymal stem cells (BMSCs) to repair radiation-induced acute intestinal injury, and to elucidate the underlying repair mechanism. Male Sprague-Dawley rats were subjected to whole abdominal irradiation using a single medical linear accelerator (12 Gy) and randomly assigned to two groups. Rats in the BMSC-treated group were injected with 1 ml BMSC suspension (2×106 cells/ml) via the tail vein, while the control group rats were injected with normal saline. BMSCs were identified by detecting the expression of CD29, CD90, CD34 and CD45 using flow cytometry. The expression of the cytokines stromal cell-derived factor 1 (SDF-1), prostaglandin E2 (PGE2) and interleukin (IL)-2 was detected using immunohistochemical techniques. Plasma citrulline concentrations were evaluated using an ELISA kit. Rat general conditions, including body weight, and changes in cellular morphology were also recorded. The results suggested that BMSCs exerted a protective effect on radiation-induced acute intestinal injury in rats. The histological damage was rapidly repaired in the BMSC-treated group. In addition, the BMSC-treated group showed significantly reduced radiation injury scores (P<0.01), mildly reduced body weight and plasma citrulline levels, significantly more rapid recovery (P<0.01), significantly reduced expression of the cytokines PGE2 and IL-2 (P<0.05) and significantly increased SDF-1 expression (P<0.01) compared with the control group. In summary, the present results indicate that BMSCs are able to effectively reduce inflammation and promote repair of the structure and function of intestinal tissues damaged by radiation exposure, suggesting that they may provide a promising therapeutic agent. PMID:27284330

  8. [Evolving therapeutic targets in inflammatory Bowel Disease: mucosal healing as an emerging end point].

    PubMed

    Condino, Giovanna; Margagnoni, Giovanna; Aratari, Annalisa; Luchetti, Roberto; Papi, Claudio

    2015-11-01

    In the last years the therapeutic goals of inflammatory bowel disease have changed from control of symptoms only towards long term strategies aimed at modifying the natural history of the disease. In this setting mucosal healing has emerged as an important therapeutic goal both in clinical trials and in clinical practice. Growing evidence suggests that mucosal healing may be associated with lower relapse rates, reduced hospitalizations and reduced need of surgery both in ulcerative colitis and in Crohn's disease. However, a validated definition of mucosal healing is lacking: as a consequence, although several drugs are capable of inducing and maintaining mucosal healing in different clinical settings, the effect size of different treatments is difficult to assess. One of the most important question for clinical practice is if we should systematically assess mucosal healing in all patients and target our treatment strategies to achieve mucosal healing. This review focuses on the definition of mucosal healing and on the ability of different medications to induce and maintain mucosal healing in inflammatory bowel disease. The significance of mucosal healing as a surrogate end point of disease outcome is also discussed. PMID:26668042

  9. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  10. Benzydamine HCl, a new agent for the treatment of radiation mucositis of the oropharynx

    SciTech Connect

    Kim, J.H.; Chu, F.C.; Lakshmi, V.; Houde, R.

    1986-04-01

    Benzydamine HCl is a new nonsteroidal analgesic and anti-inflammatory compound which is not chemically related to local anesthetics such as procaine and xylocaine. A double-blind, randomized clinical investigation was carried out to determine the analgesic and anti-inflammatory effectiveness of benzydamine HCl in patients with radiation-induced mucositis of the oropharynx. Of the 67 patients in the study, 37 were on benzydamine and 30 on placebo. Patients developed radiation mucositis, hyperemia, and throat pain when the total radiation dose reached above 2000 rad over 2 weeks (200 rad per fraction, five treatments per week). Analysis of the data showed that benzydamine HCl used as a rinse/gargle provided a statistically significant and clinically meaningful alleviation of the symptoms of oropharyngeal mucositis. There was also significant improvement in terms of reduction in hyperemia and mucositis in benzydamine group. No systemic side effects associated with benzydamine medication were noted. In view of the relative ineffectiveness of systemic analgesics and topical anesthetics for these conditions, benzydamine HCl promises to be a useful addition to the therapeutic armamentarium.

  11. Alpha Lipoic Acid Attenuates Radiation-Induced Thyroid Injury in Rats

    PubMed Central

    Jung, Jung Hwa; Jung, Jaehoon; Kim, Soo Kyoung; Woo, Seung Hoon; Kang, Ki Mun; Jeong, Bae-Kwon; Jung, Myeong Hee; Kim, Jin Hyun; Hahm, Jong Ryeal

    2014-01-01

    Exposure of the thyroid to radiation during radiotherapy of the head and neck is often unavoidable. The present study aimed to investigate the protective effect of α-lipoic acid (ALA) on radiation-induced thyroid injury in rats. Rats were randomly assigned to four groups: healthy controls (CTL), irradiated (RT), received ALA before irradiation (ALA + RT), and received ALA only (ALA, 100 mg/kg, i.p.). ALA was treated at 24 h and 30 minutes prior to irradiation. The neck area including the thyroid gland was evenly irradiated with 2 Gy per minute (total dose of 18 Gy) using a photon 6-MV linear accelerator. Greater numbers of abnormal and unusually small follicles in the irradiated thyroid tissues were observed compared to the controls and the ALA group on days 4 and 7 after irradiation. However, all pathologies were decreased by ALA pretreatment. The quantity of small follicles in the irradiated rats was greater on day 7 than day 4 after irradiation. However, in the ALA-treated irradiated rats, the numbers of small and medium follicles were significantly decreased to a similar degree as in the control and ALA-only groups. The PAS-positive density of the colloid in RT group was decreased significantly compared with all other groups and reversed by ALA pretreatment. The high activity index in the irradiated rats was lowered by ALA treatment. TGF-ß1 immunoreactivity was enhanced in irradiated rats and was more severe on the day 7 after radiation exposure than on day 4. Expression of TGF-ß1 was reduced in the thyroid that had undergone ALA pretreatment. Levels of serum pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) did not differ significantly between the all groups. This study provides that pretreatment with ALA decreased the severity of radiation-induced thyroid injury by reducing inflammation and fibrotic infiltration and lowering the activity index. Thus, ALA could be used to ameliorate radiation-induced thyroid injury. PMID:25401725

  12. Claudin-3 expression in radiation-exposed rat models: A potential marker for radiation-induced intestinal barrier failure

    SciTech Connect

    Shim, Sehwan; Lee, Jong-geol; Bae, Chang-hwan; Lee, Seung Bum; Jang, Won-Suk; Lee, Sun-Joo; Lee, Seung-Sook; Park, Sunhoo

    2015-01-02

    Highlights: • Irradiation increased intestinal bacterial translocation, accompanied by claudin protein expression in rats. • Neurotensin decreased the bacterial translocation and restored claudin-3 expression. • Claudin-3 can be used as a marker in evaluating radiation induced intestinal injury. - Abstract: The molecular events leading to radiation-induced intestinal barrier failure are not well known. The influence of the expression of claudin proteins in the presence and absence of neurotensin was investigated in radiation-exposed rat intestinal epithelium. Wistar rats were randomly divided into control, irradiation, and irradiation + neurotensin groups, and bacterial translocation to the mesenteric lymph node and expression of claudins were determined. Irradiation led to intestinal barrier failure as demonstrated by significant bacterial translocation. In irradiated terminal ilea, expression of claudin-3 and claudin-4 was significantly decreased, and claudin-2 expression was increased. Administration of neurotensin significantly reduced bacterial translocation and restored the structure of the villi as seen by histologic examination. Among the three subtype of claudins, only claudin-3 expression was restored. These results suggest that the therapeutic effect of neurotensin on the disruption of the intestinal barrier is associated with claudin-3 alteration and that claudin-3 could be used as a marker in evaluating radiation-induced intestinal injury.

  13. In Vivo Space Radiation-Induced Non-Targeted Responses: Late Effects On Molecular Signaling In Mitochondria

    PubMed Central

    Jain, Mohit R.; Li, Min; Chen, Wei; Liu, Tong; de Toledo, Sonia M.; Pandey, Badri N.; Li, Hong; Rabin, Bernard M.; Azzam, Edouard I.

    2012-01-01

    The lack of clear knowledge about space radiation-induced biological effects has been singled out as the most important factor limiting the prediction of radiation risk associated with human space exploration. The expression of space radiation-induced non-targeted effects is thought to impact our understanding of the health risks associated with exposure to low fluences of particulate radiation encountered by astronauts during prolonged space travel. Following a brief review of radiation-induced bystander effects and the growing literature for the involvement of oxidative metabolism in their expression, we show novel data on the induction of in vivo non-targeted effects following exposure to 1100 MeV/nucleon titanium ions. Analyses of proteins by two-dimensional gel electrophoresis in non-targeted liver of cranially-irradiated Sprague Dawley rats revealed that the levels of key proteins involved in mitochondrial fatty acid metabolism are decreased. In contrast, those of proteins involved in various cellular defense mechanisms, including antioxidation, were increased. These data contribute to our understanding of the mechanisms underlying the biological responses to space radiation, and support the involvement of mitochondrial processes in the expression of radiation induced non-targeted effects. Significantly, they reveal the cross-talk between propagated stressful effects and induced adaptive responses. Together, with the accumulating data in the field, our results may help reduce the uncertainty in the assessment of the health risks to astronauts. They further demonstrate that ‘network analyses’ is an effective tool towards characterizing the signaling pathways that mediate the long-term biological effects of space radiation. PMID:21166651

  14. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  15. Measurements of prompt radiation induced conductivity of alumina and sapphire.

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  16. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  17. Radiation-induced transmission loss of integrated optic waveguide devices

    NASA Astrophysics Data System (ADS)

    Henschel, Henning; Koehn, Otmar; Schmidt, Hans U.

    1993-04-01

    The radiation sensitivity of different integrated optic (IO) devices was compared under standardized test conditions. We investigated four relatively simple device types made by four different manufacturers. The waveguide materials were proton exchanged LiTaO3, LiNbO3:Ti, Tl-diffused glass, and Ag-diffused glass, respectively. In order to standardize the irradiation parameters we followed the 'Procedure for Measuring Radiation-Induced Attenuation in Optical Fibers and Optical Cables' proposed by the NATO NETG as close as possible. In detail we made pulsed irradiations with dose values of about 500 rad*, 104 rad, and 105 rad, as well as continuous irradiations at a 60Co source with a dose rate of 1300 rad*/min up to a total dose of 104 rad. Device temperatures were about 22 degree(s)C, -50 degree(s)C, and +80 degree(s)C.

  18. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  19. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  20. Radiation-induced renal disease. A clinicopathologic study.

    PubMed

    Keane, W F; Crosson, J T; Staley, N A; Anderson, W R; Shapiro, F L

    1976-01-01

    Radiation injury to the renal parenchyma is an unusual cause of renal insufficiency. Light, immunofluorescence and electron microscopic studies were performed on the renal tissue from two patients in whom renal insufficiency developed within a year after they received abdominal irradiation. The glomerular lesion in both patients was similar. Mild endothelial cell swelling and basement membrane splitting were noted consistently on light microscopy. The electron microscopic examination revealed marked subendothelial expansion with electron-lucent material associated with deposition of basement membrane-like material adjacent to the endothelial cells. In some capillary loops, the endothelial cell lining appeared to be completely lost. The pathogenesis of radiation-induced renal injury is still uncertain. It is speculated that local activation of the coagulation system with consequent thrombosis of the renal microvasculature may be extremely important. PMID:1251842

  1. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Wolfger, H.; Getoff, N.

    2002-12-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented.

  2. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  3. Research on radiation-induced color change of white topaz

    NASA Astrophysics Data System (ADS)

    Ying, Wang; yong-bao, Gu

    2002-03-01

    In the present study, a method of producing sky blue topaz is studied. A 3-5 MeV scanning electron beam linear accelerator (which is currently used for processing semiconductor devices) was employed to change the color of white topaz under room-temperature conditions, together with a cooling device. A radiation-induced ion color center is formed in white topaz by an electron beam. To finish the irradiation, the total dose needs to be more than 5×10 7-1×10 8 Gy, the temperature of heat-treatment was between 180°C and 280°C in air conditions, after a while, a sky blue topaz was obtained. There was a bright color and no radioactivity was formed in the sky blue topaz by this production method.

  4. Radiation-induced cerebral meningioma: a recognizable entity

    SciTech Connect

    Rubinstein, A.B.; Shalit, M.N.; Cohen, M.L.; Zandbank, U.; Reichenthal, E.

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the era prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.

  5. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  6. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7. PMID:19860183

  7. Radiation induced damage and recovery in poly(3-hexyl thiophene) based polymer solar cells.

    PubMed

    Li, Gang; Yang, Yang; Devine, R A B; Mayberry, Clay

    2008-10-22

    Polymer solar cells have been characterized during and after x-ray irradiation. The open circuit voltage, dark current and power conversion efficiency show degradation consistent with the generation of defect states in the polymer semiconductor. The polymer solar cell device remained functional with exposure to a considerable dose (500 krad (SiO(2))) and showed clear signs of recovery upon removal of the irradiation source (degraded from 4.1% to 2.2% and recovered to 2.9%). Mobility-relaxation time variation, derived from J-V measurement, clearly demonstrates that radiation induced defect generation mechanisms in the organic semiconductor are active and need to be further studied. Optical transmission results ruled out the possibility of reduced light absorption and/or polymer crystallinity. The results suggest that organic solar cells are sufficiently radiation tolerant to be useful for space applications. PMID:21832674

  8. Molecular mechanisms of radiation-induced genomic instability in human cells

    SciTech Connect

    Liber, Howard L.

    2003-02-13

    The overall strategy was to create a series of isogenic human cell lines that differ in key elements of cell cycle checkpoint, apoptosis, or DNA repair in response to radiation-induced damage. The goal then was to quantify the fractions of cells within a population that exhibit reduced telomere lengths and relate this to the genetic background of the cell, as well as to the response to ionizing radiation. Association between telomere length and degree of genomic instability in the population is being examined for seven closely related cell lines, that vary in p53 status, bcl-2 status, or ability to repair double strand breaks. Experiments utilize gamma rays at doses of 0, 10, and 200 cGy. During this time period the effort concentrated on generating data with two cell lines. Approximately one-third of the required clones were isolated, and analyses for mutagenesis and chromosome aberrations were undertaken.

  9. Evaluation of topical external medicine for 5-fluorouracil-induced oral mucositis in hamsters.

    PubMed

    Mitsuhashi, Hiromi; Suemaru, Katsuya; Li, Bingjin; Cui, Ranji; Araki, Hiroaki

    2006-12-01

    Oral ulcerative mucositis is a common and painful toxicity associated with chemotherapy for cancer. Current treatment for chemotherapy-induced oral mucositis is largely palliative, and no adequate treatment with conclusive evidence exists. The purpose of this study was to evaluate the potential effectiveness of the topical external medicines used in clinical settings, and the authors investigated the effects of 1% azulene ointment, 0.12% dexamethasone ointment, and polaprezinc-sodium alginate suspension on an animal model for oral mucositis induced by chemotherapy. Oral mucositis was induced in hamsters through a combination treatment of 5-fluorouracil and mild abrasion of the cheek pouch. Each drug was administered topically to the oral mucosa of hamsters, and the process of healing of damaged oral mucositis was examined by measuring the size of the mucositis. Azulene ointment did not reduce the size of the mucositis compared with the vaseline-treated control group. Polaprezinc-sodium alginate suspension significantly improved the recovery from 5-fluorouracil-induced damage. In contrast, local treatment with dexamethasone exacerbated the mucositis markedly. These results suggested the healing effect of polaprezinc-sodium alginate suspension and the risk of steroids to severe oral mucositis induced by chemotherapy. PMID:17046745

  10. Characterization of a Novel Radiation-Induced Sarcoma Cell Line

    PubMed Central

    Lang, J.E.; Zhu, W.; Nokes, B.T.; Sheth, G.R.; Novak, P.; Fuchs, L.; Watts, G.S.; Futscher, B.W.; Mineyev, N.; Ring, A.; LeBeau, L.; Nagle, R.; Cranmer, L.D.

    2014-01-01

    Background Radiation-induced sarcoma (RIS) is a potential complication of cancer treatment. No widely available cell line models exist to facilitate studies of RIS. Methods We derived a spontaneously immortalized primary human cell line, UACC-SARC1, from a RIS. Results Short tandem repeat (STR) profiling of UACC-SARC1 was virtually identical to its parental tumor. Immunohistochemistry (IHC) analysis of the tumor and immunocytochemistry (ICC) analysis of UACC-SARC1 revealed shared expression of vimentin, osteonectin, CD68, Ki67 and PTEN but tumor-restricted expression of the histiocyte markers α1-antitrypsin and α1-antichymotrypsin. Karyotyping of the tumor demonstrated aneuploidy. Comparative genomic hybridization (CGH) provided direct genetic comparison between the tumor and UACC-SARC1. Sequencing of 740 mutation hotspots revealed no mutations in UACC-SARC1 nor in the tumor. NOD/SCID gamma mouse xenografts demonstrated tumor formation and metastasis. Clonogenicity assays demonstrated that 90% of single cells produced viable colonies. NOD/SCID gamma mice produced useful patient-derived xenografts for orthotopic or metastatic models. Conclusion Our novel RIS strain constitutes a useful tool for pre-clinical studies of this rare, aggressive disease. UACC-SARC1 is an aneuploid cell line with complex genomics lacking common oncogenes or tumor suppressor genes as drivers of its biology. The UACC-SARC1 cell line will enable further studies of the drivers of RIS. Synopsis We derived a spontaneously immortalized primary human cell line, UACC-SARC1, from a radiation-induced sarcoma (RIS). Our novel RIS cell line constitutes a useful tool for pre-clinical studies of this rare, aggressive disease. PMID:25644184

  11. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  12. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation.

    PubMed

    Hallahan, D E; Virudachalam, S

    1997-06-10

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  13. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  14. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  15. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect

    Hunter, Nancy R.; Valdecanas, David; Liao Zhongxing; Milas, Luka; Thames, Howard D.; Mason, Kathy A.

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  16. Adenosine A2A receptor plays an important role in radiation-induced dermal injury.

    PubMed

    Perez-Aso, Miguel; Mediero, Aránzazu; Low, Yee Cheng; Levine, Jamie; Cronstein, Bruce N

    2016-01-01

    Ionizing radiation is a common therapeutic modality and following irradiation dermal changes, including fibrosis and atrophy, may lead to permanent changes. We have previously demonstrated that occupancy of A2A receptor (A2AR) stimulates collagen production, so we determined whether blockade or deletion of A2AR could prevent radiation-induced fibrosis. After targeted irradiation (40 Gy) of the skin of wild-type (WT) or A2AR knockout (A2ARKO) mice, the A2AR antagonist ZM241385 was applied daily for 28 d. In irradiated WT mice treated with the A2AR antagonist, there was a marked reduction in collagen content and skin thickness, and ZM241385 treatment reduced the number of myofibroblasts and angiogenesis. After irradiation, there is an increase in loosely packed collagen fibrils, which is significantly diminished by ZM241385. Irradiation also induced an increase in epidermal thickness, prevented by ZM241385, by increasing the number of proliferating keratinocytes. Similarly, in A2ARKO mice, the changes in collagen alignment, skin thickness, myofibroblast content, angiogenesis, and epidermal hyperplasia were markedly reduced following irradiation. Radiation-induced changes in the dermis and epidermis were accompanied by an infiltrate of T cells, which was prevented in both ZM241385-treated and A2ARKO mice. Radiation therapy is administered to a significant number of patients with cancer, and radiation reactions may limit this therapeutic modality. Our findings suggest that topical application of an A2AR antagonist prevents radiation dermatitis and may be useful in the prevention or amelioration of radiation changes in the skin. PMID:26415936

  17. Toll-like Receptor 5 Agonist Protects Mice From Dermatitis and Oral Mucositis Caused by Local Radiation: Implications for Head-and-Neck Cancer Radiotherapy

    SciTech Connect

    Burdelya, Lyudmila G.; Gleiberman, Anatoli S.; Toshkov, Ilia; Aygun-Sunar, Semra; Bapardekar, Meghana; Manderscheid-Kern, Patricia; Bellnier, David; Krivokrysenko, Vadim I.; Feinstein, Elena; Gudkov, Andrei V.

    2012-05-01

    Purpose: Development of mucositis is a frequent side effect of radiotherapy of patients with head-and-neck cancer. We have recently reported that bacterial flagellin, an agonist of Toll-like receptor 5 (TLR5), can protect rodents and primates from acute radiation syndrome caused by total body irradiation. Here we analyzed the radioprotective efficacy of TLR5 agonist under conditions of local, single dose or fractionated radiation treatment. Methods and Materials: Mice received either single-dose (10, 15, 20, or 25 Gy) or fractioned irradiation (cumulative dose up to 30 Gy) of the head-and-neck area with or without subcutaneous injection of pharmacologically optimized flagellin, CBLB502, 30 min before irradiation. Results: CBLB502 significantly reduced the severity of dermatitis and mucositis, accelerated tissue recovery, and reduced the extent of radiation induced weight loss in mice after a single dose of 15 or 20 Gy but not 25 Gy of radiation. CBLB502 was also protective from cumulative doses of 25 and 30 Gy delivered in two (10 + 15 Gy) or three (3 Multiplication-Sign 10 Gy) fractions, respectively. While providing protection to normal epithelia, CBLB502 did not affect the radiosensitivity of syngeneic squamous carcinoma SCCVII grown orthotopically in mice. Use of CBLB502 also elicited a radiation independent growth inhibitory effect upon TLR5-expressing tumors demonstrated in the mouse xenograft model of human lung adenocarcinoma A549. Conclusion: CBLB502 combines properties of supportive care (radiotherapy adjuvant) and anticancer agent, both mediated via activation of TLR5 signaling in the normal tissues or the tumor, respectively.

  18. Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance

    PubMed Central

    Chistiakov, Dimitry A.; Bobryshev, Yuri V.; Kozarov, Emil; Sobenin, Igor A.; Orekhov, Alexander N.

    2015-01-01

    The mucosal barriers are very sensitive to pathogenic infection, thereby assuming the capacity of the mucosal immune system to induce protective immunity to harmful antigens and tolerance against harmless substances. This review provides current information about mechanisms of induction of mucosal tolerance and about impact of gut microbiota to mucosal tolerance. PMID:25628617

  19. Management of a large mucosal defect after duodenal endoscopic resection

    PubMed Central

    Fujihara, Shintaro; Mori, Hirohito; Kobara, Hideki; Nishiyama, Noriko; Matsunaga, Tae; Ayaki, Maki; Yachida, Tatsuo; Masaki, Tsutomu

    2016-01-01

    Duodenal endoscopic resection is the most difficult type of endoscopic treatment in the gastrointestinal tract (GI) and is technically challenging because of anatomical specificities. In addition to these technical difficulties, this procedure is associated with a significantly higher rate of complication than endoscopic treatment in other parts of the GI tract. Postoperative delayed perforation and bleeding are hazardous complications, and emergency surgical intervention is sometimes required. Therefore, it is urgently necessary to establish a management protocol for preventing serious complications. For instance, the prophylactic closure of large mucosal defects after endoscopic resection may reduce the risk of hazardous complications. However, the size of mucosal defects after endoscopic submucosal dissection (ESD) is relatively large compared with the size after endoscopic mucosal resection, making it impossible to achieve complete closure using only conventional clips. The over-the-scope clip and polyglycolic acid sheets with fibrin gel make it possible to close large mucosal defects after duodenal ESD. In addition to the combination of laparoscopic surgery and endoscopic resection, endoscopic full-thickness resection holds therapeutic potential for difficult duodenal lesions and may overcome the disadvantages of endoscopic resection in the near future. This review aims to summarize the complications and closure techniques of large mucosal defects and to highlight some directions for management after duodenal endoscopic treatment. PMID:27547003

  20. Chemotherapy-induced oral mucositis. Prevention and management.

    PubMed

    Knox, J J; Puodziunas, A L; Feld, R

    2000-10-01

    Oral mucositis is a frequent and potentially severe complication of chemotherapy which has a considerable impact on patient quality of life. While the management of other chemotherapy-related toxicities has improved, the incidence of mucositis is increasing. A critical review of the literature published between 1985 and 1999 reveals very few strategies or agents with proven efficacy, leaving few recommendations for the standard care in the prevention and treatment of mucositis at this time. Recommendations that can be made include: reducing patient risk factors, implementing proven preventative interventions such as utilising oral ice chips with fluorouracil chemotherapy, and optimising supportive care practices individualised to the patients' needs and symptoms. Progress in understanding the pathophysiology of mucositis at the molecular level has led to the evaluation of a number of new investigational agents, specifically those directed to the epithelial mucosa, such as mitogens and epithelial growth factors. These appear to be very promising in preclinical studies. Randomised clinical trials with these agents may finally demonstrate an impact on the clinical practice of mucositis management in the coming years. PMID:11087004

  1. Effect of epidermal growth factor against radiotherapy-induced oral mucositis in rats

    SciTech Connect

    Lee, Sang-wook; Jung, Kwon Il; Kim, Yeun Wha B.S.; Jung, Heun Don; Kim, Hyun Sook; Hong, Joon Pio . E-mail: joonphong@amc.seoul.kr

    2007-03-15

    Purpose: We tested the efficacy of oral recombinant human epidermal growth factor (rhEGF) against radiation-induced oral mucositis in a rat model. Methods and Materials: Each of 35 Sprague-Dawley rats, 7 to 8 weeks of age and weighing 178 {+-} 5 grams, was irradiated once in the head region with 25 Gy, using a 4-MV therapeutic linear accelerator at a rate of 2 Gy/min. The irradiated rats were randomly divided into four groups: those receiving no treatment (Group 1), those treated with vehicle only three times per day (Group 2), and those treated with 50 {mu}g/mL (Group 3), or 100 {mu}g/mL (Group 4) rhEGF three times per day. Results: Rats were monitored for survival rate and daily activity, including hair loss, sensitivity, and anorexia. We found that survival rate and oral intake were significantly increased and histologic changes were significantly decreased in the rhEGF-treated rats. There was no difference, however, between rats treated with 50 {mu}g/mL or 100 {mu}g/mL rhEGF. Conclusion: These findings suggest that orally administered rhEGF decreased radiation-induced oral mucositis in rats.

  2. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2016-06-01

    The main focus of this study is evaluation of radioprotective efficacy of silymarin, a flavonolignan, against γ-radiation-induced damage to hematological, vital organs (liver and intestine), and immune system. Survival studies revealed that silymarin (administered orally for 3 days) provided maximum protection (67%) at 70 mg/kg body weight (b.wt.) against lethal 9 Gy γ-irradiation (dose reduction factor = 1.27). The study revealed significant (p < 0.05) changes in levels of catalase (12.57 ± 2.58 to 30.24 ± 4.89 units), glutathione peroxidase (6.23 ± 2.95 to 13.26 ± 1.36 µg of reduced glutathione consumed/min/mg protein), glutathione reductase (0.25 ± 5.6 to 11.65 ± 2.83 pM NADPH consumed/min/mg protein), and superoxide dismutase (11.74 ± 0.2 to 16.09 ± 3.47 SOD U/mg of protein) activity at 30th day. Silymarin pretreated irradiated group exhibited increased proliferation in erythrocyte count (1.76 ± 0.41 × 10(6) to 9.25 ± 0.24 × 10(6) ), hemoglobin (2.15 ± 0.48g/dL to 14.77 ± 0.25g/dL), hematocrit (4.55 ± 0.24% to 37.22 ± 0.21%), and total leucocyte count (1.4 ± 0.15 × 10(6) to 8.31 ± 0.47 × 10(6) ) as compared with radiation control group on 15th day. An increase in CD4:CD8 ratio was witnessed (0.2-1%) at 30th day time interval using flow cytometry. Silymarin also countered radiation-induced decrease (p < 0.05) in regulatory T-cells (Tregs ) (11.23% in radiation group at 7th day versus 0.1% in pretreated silymarin irradiated group at 15th day). The results of this study indicate that flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity and might prove useful in management of nuclear and radiological emergencies. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 641-654, 2016. PMID:25411116

  3. Resolving the H 2 effect on radiation induced dissolution of UO 2-based spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Trummer, Martin; Jonsson, Mats

    2010-01-01

    In recent years, the impact of H2 on α-radiation induced dissolution of UO2-based spent nuclear fuel has been studied and debated extensively. Experimental results on the effect of H2 on the concentration of H2O2 during α-radiolysis have been shown to disagree with numerical simulations. For this reason, the reaction scheme used in simulations of aqueous radiation chemistry has sometimes been questioned. In this work, we have studied the impact of H2 on the H2O2 concentration in α-irradiated aqueous solution using numerical simulations. The effects of H2 pressure, α-dose rate and HCO3- concentration were investigated by performing systematic variations in these parameters. The simulations show that the discrepancy between the previously published experimental result and numerical simulations is due to the use of a homogeneous dose rate (the energy is assumed to be equally distributed in the whole volume). Taking the actual dose rate of the α-irradiated volume into account, the simulation is in perfect agreement with the experimental results. This shows that the H2 effect is strongly α-dose rate dependent, and proves the reliability of the reaction scheme used in the simulations. The simulations also show that H2 influences the H2O2 concentration under α-radiolysis. The magnitude of the effect depends on the dose rate and the H2 pressure as well as on the concentration of HCO 3-. The impact of the radiolytic H2 effect on the rate of α-radiation induced dissolution of spent nuclear fuel is discussed along with other (α- and γ-) radiation induced processes capable of reducing the concentration of uranium in solution. The radiolytic H2 effect is quantitatively compared to the previously presented noble metal catalyzed H2 effect. This comparison shows that the noble metal catalyzed H2 effect is far more efficient than the radiolytic H2 effect. Reduction of U(VI) in solution due to low dose rate γ-radiolysis in the presence of H2 is proposed to be the cause of

  4. Immunology of Gut Mucosal Vaccines

    PubMed Central

    Pasetti, Marcela F.; Simon, Jakub K.; Sztein, Marcelo B.; Levine, Myron M.

    2011-01-01

    Summary Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines. PMID:21198669

  5. Research controversies in management of oral mucositis.

    PubMed

    Biron, P; Sebban, C; Gourmet, R; Chvetzoff, G; Philip, I; Blay, J Y

    2000-01-01

    The management of mucositis is the subject of many controversies, and the optimal treatment is still not known. Several evaluation scoring systems have been described, but no one of these is appropriate to all clinical situations: a simple scale such as that devised by the WHO can be used routinely, and more sophisticated ones can be implemented by trained experimenters working in research. We have considered the impact of each of the treatments currently available on each stage of mucositis. In attempts at prevention, self-care, in the sense of oral hygiene, must remain atraumatic. It is probably advisable to differentiate patients with good previous oral care, in whom tooth brushing is beneficial, from others, in whom the risk of hemorrhage and infection excludes any brushing. Before the dosage of chemotherapy is reduced, the curative or palliative intent of the strategy must be carefully evaluated. In the vascular phase protection of the proliferating cells is attempted by means of vasoconstriction (cryotherapy), cytoprotection (prostaglandin E2 and other antioxidants) or epithelial cell-inhibiting factors such as TGF-B3. Treatments applied in the epithelial phase are directed at increasing the cell proliferation to accelerate epithelial restoration by sucralfate and several growth factors: hematopoietic GF, which has demonstrated a direct effect on the mucosa (GM-CSF), or epithelial growth factors such as keratinocyte GF. In the ulcerative and bacteriological phase attempts are made to attenuate sepsis by means of antiseptics (chlorhexidine), amphotericin B and antiviral agents or antibiotic lozenges. In the healing phase application of the low-energy helium-neon laser has demonstrably been followed by a later time of onset, less pronounced peak severity and shorter duration of oral mucositis. After cancer treatment, oral hygiene, inhibition of oral flora, and pain relief are the main goals. Physiopathogen-specific treatment is the next step, with the emphasis

  6. Industrialization of radiation-induced emulsion polymerization ----technological process and its advantages

    NASA Astrophysics Data System (ADS)

    Zhicheng, Zhang; Manwei, Zhang

    1993-07-01

    A technological process for industrialization of radiation induced emulsion polymerization was introduced briefly. A batch process rather than continuous one was adopted in the industrial-scale production. The advantages of radiation induced emulsion polymerization were described in comparison with chemical initiated process.

  7. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  8. Using Drosophila Larval Imaginal Discs to Study Low-Dose Radiation-Induced Cell Cycle Arrest

    PubMed Central

    Yan, Shian-Jang; Li, Willis X.

    2012-01-01

    Under genotoxic stress, activation of cell cycle checkpoint responses leads to cell cycle arrest, which allows cells to repair DNA damage before continuing to cycle. Drosophila larval epithelial sacs, called imaginal discs, are an excellent in vivo model system for studying radiation-induced cell cycle arrest. Larval imaginal discs go into cell cycle arrest after being subjected to low-dose irradiation, are subject to easy genetic manipulation, are not crucial for survival of the organism, and can be dissected easily for further molecular or cellular analysis. In this chapter, we describe methods for assessing low-dose irradiation-induced cell cycle arrest. Mitotic cells are identified by immunofluorescence staining for the mitotic marker phosphorylated histone H3 (phospho-histone H3 or pH3). When wandering third-instar control larvae, without transgene expression, are exposed to 500 rads of X-ray or γ-ray irradiation, the number of pH3-positive cells in wing imaginal discs is reduced from hundreds before irradiation to approximately 30 after irradiation, with an equal distribution between the anterior and posterior compartments (Yan et al., 2011, FASEB J). Using the GAL4/UAS system, RNAi, cDNA, or microRNA sponge transgenes can be expressed in the posterior compartment of the wing disc using drivers such as engrailed (en)-Gal4, while the anterior compartment serves as an internal control. This approach makes it possible to do genome-wide genetic screening for molecules involved in radiation-induced cell cycle arrest. PMID:21870287

  9. Mitigation of radiation-induced lung injury by Genistein and EUK-207

    PubMed Central

    Mahmood, J; Jelveh, S; Calveley, V; Zaidi, A; Doctrow, SR; Hill, RP

    2011-01-01

    Purpose We examined the effects of genistein and/or Eukarion (EUK)-207 on radiation-induced lung damage and investigated whether treatment for 0–14 weeks (wks) post-irradiation (PI) would mitigate late lung injury. Materials and Methods The lungs of female Sprague-Dawley (SD) rats were irradiated with 10 Gy. EUK-207 was delivered by infusion and genistein was delivered as a dietary supplement starting immediately after irradiation (PI) and continuing until 14 wks PI. Rats were sacrificed at 0, 4, 8, 14 and 28 wks PI. Breathing rate was monitored and lung fibrosis assessed by lung hydroxyproline content at 28 wks. DNA damage was assessed by micronucleus (MN) assay and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. The expression of the cytokines Interleukin (IL)-1α, IL-1β, IL-6, Tumor necrotic factor (TNF)-α and Transforming growth factor (TGF)-β1, and macrophage activation were analysed by immunohistochemistry. Results Increases in breathing rate observed in the irradiated rats were significantly reduced by both drug treatments during the pneumonitis phase and the later fibrosis phase. The drug treatments decreased micronuclei (MN) formation from 4–14 wks but by 28 wks the MN levels had increased again. The 8-OHdG levels were lower in the drug treated animals at all time points. Hydroxyproline content and levels of activated macrophages were decreased at 28 wks in all drug treated rats. The treatments had limited effects on the expression of the cytokines. Conclusion Genistein, and EUK-207 can provide partial mitigation of radiation-induced lung damage out to at least 28 wks PI even after cessation of treatment at 14 wks PI. PMID:21675818

  10. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma. PMID:26684801

  11. Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction

    PubMed Central

    Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian

    2014-01-01

    Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2. Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species. PMID:24618260

  12. Using Drosophila larval imaginal discs to study low-dose radiation-induced cell cycle arrest.

    PubMed

    Yan, Shian-Jang; Li, Willis X

    2011-01-01

    Under genotoxic stress, activation of cell cycle checkpoint responses leads to cell cycle arrest, which allows cells to repair DNA damage before continuing to cycle. Drosophila larval epithelial sacs, called imaginal discs, are an excellent in vivo model system for studying radiation-induced cell cycle arrest. Larval imaginal discs go into cell cycle arrest after being subjected to low-dose irradiation, are subject to easy genetic manipulation, are not crucial for survival of the organism, and can be dissected easily for further molecular or cellular analysis. In this chapter, we describe methods for assessing low-dose irradiation-induced cell cycle arrest. Mitotic cells are identified by immunofluorescence staining for the mitotic marker phosphorylated histone H3 (phospho-histone H3 or pH3). When wandering third-instar control larvae, without transgene expression, are exposed to 500 rads of X-ray or γ-ray irradiation, the number of pH3-positive cells in wing imaginal discs is reduced from hundreds before irradiation to approximately 30 after irradiation, with an equal distribution between the anterior and posterior compartments (Yan et al., 2011, FASEB J). Using the GAL4/UAS system, RNAi, cDNA, or microRNA sponge transgenes can be expressed in the posterior compartment of the wing disc using drivers such as engrailed (en)-Gal4, while the anterior compartment serves as an internal control. This approach makes it possible to do genome-wide genetic screening for molecules involved in radiation-induced cell cycle arrest. PMID:21870287

  13. The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway.

    PubMed

    Delanian, Sylvie; Lefaix, Jean-Louis

    2004-11-01

    The radiation-induced fibroatrophic process (RIF) constitutes a late, local and unavoidable sequela to high-dose radiotherapy, traditionally considered irreversible. Today, this process is partly reversible, thanks to recent progress in understanding the physiopathology of the lesions it causes and the results of recent clinical trials using antioxidant therapy. This review includes a synthetic description of the static and dynamic features of the RIF process, as reflected by its clinical, instrumental and histopathological characteristics, and by its cellular and molecular regulation. Schematically, three successive clinical and histopathological phases can be distinguished: a pre-fibrotic aspecific inflammatory phase, a constitutive fibrotic cellular phase, and a matrix densification and remodelling phase, possibly ending in terminal tissular necrosis. The respective roles of the chief actors in the RIF process are defined, as well as their development with time. A fibroblastic stromal hypothesis is suggested revolving around a 'gravitational effect' exerted by the couple ROS (reactive oxygen species)--fibroblasts, and partly mediated by TGF-beta1. A variety of strategies have been tested for the management of RIF. In the light of the mechanisms described, a curative procedure has been proposed via the antioxidant pathway. In particular, it was showed that superoxide dismutase and combined pentoxifylline-tocopherol treatment enables the process of established radiation-induced fibroatrophy to be greatly reduced or even reversed, both in clinical practice and animal experiments. The efficacy of combined pentoxifylline-tocopherol treatment in superficial RIF was confirmed in a randomised clinical trial, and then in successful phase II trials especially in uterine fibroatrophy and osteoradionecrosis. It is of critical importance to evaluate these new management approaches in larger clinical trials and to improve the recording of results for better outcome analysis

  14. Environmental applications of radiation-induced defects in clay minerals

    NASA Astrophysics Data System (ADS)

    Allard, T.

    2011-12-01

    Radiation effects on clay minerals have been studied over the last 35 years, providing a wealth of information on environmental and geological processes. They have been applied to the reconstruction of past radioelement migrations in the geosphere, the dating of clay minerals from soils or the evolution of the physico-chemical properties under irradiation. All known radiation-induced point defects in clay minerals are detected using Electron Paramagnetic Resonance Spectroscopy. They mostly consist in electron holes located on oxygen atoms of the structure, and can be differentiated through their nature and their thermal stability. For instance, several are associated to a π orbital on a Si-O bond. One defect, namely the A-center, is stable over geological periods at ambiant temperature. These point defects are produced mainly by ionizing radiations. By contrast to point defects, it was shown that electron or heavy ion irradiation easily produces amorphization in smectites. Two main applications of radiation-induced defects in clay minerals are derived : (i) the use of defects as tracers of past radioactivity. In geosystems where the age of the clay can be constrained, migrations of radioelements can be reconstructed in natural analogues of the far field of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to laterites of the Amazon basin. (ii) The influence of radiation on clay mineral properties that remains poorly documented, although it is an important issue in various domains such as the safety assessment of the high level nuclear waste repositories. In case of a leakage of transuranic elements from the radioactive wasteform, alpha recoil nuclei would amorphize smectite after a period much lower than the disposal lifetime. By contrast, amorphisation from ionizing radiation is unlikely over 1 million years. Furthermore, it was shown that amorphization

  15. Radiation-induced defects in clay minerals: A review

    NASA Astrophysics Data System (ADS)

    Allard, Th.; Balan, E.; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S.

    2012-04-01

    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagnetic Resonance Spectroscopy has shown the presence of defects produced by natural or artificial radiations. These defects consist mostly of electron holes located on oxygen atoms of the structure. The various radiation-induced defects are differentiated through their nature and their thermal stability. Most of them are associated with a π orbital on a Si-O bond. The most abundant defect in clay minerals is oriented perpendicular to the silicate layer. Thermal annealing indicates this defect in kaolinite (A-center) to be stable over geological periods at ambient temperature. Besides, electron or heavy ion irradiation easily leads to an amorphization in smectites, depending on the type of interlayer cation. The amorphization dose exhibits a bell-shaped variation as a function of temperature, with a decreasing part that indicates the influence of thermal dehydroxylation. Two main applications of the knowledge of radiation-induced defects in clay minerals are derived: (i) The use of defects as tracers of past radioactivity. In geological systems where the age of the clay can be constrained, ancient migrations of radioelements can be reconstructed in natural analogues of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to fault gouges or laterites of the Amazon basin. (ii) The influence of irradiation over physico-chemical properties of clay minerals. An environmental

  16. The Mucosal Immune System of Teleost Fish

    PubMed Central

    Salinas, Irene

    2015-01-01

    Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT+ B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture. PMID:26274978

  17. Primary mucosal melanomas: a comprehensive review

    PubMed Central

    Mihajlovic, Marija; Vlajkovic, Slobodan; Jovanovic, Predrag; Stefanovic, Vladisav

    2012-01-01

    Primary mucosal melanomas arise from melanocytes located in mucosal membranes lining respiratory, gastrointestinal and urogenital tract. Although a majority of mucosal melanomas originate from the mucosa of the nasal cavity and accessory sinuses, oral cavity, anorectum, vulva and vagina, they can arise in almost any part of mucosal membranes. Most of mucosal melanomas occur in occult sites, which together with the lack of early and specific signs contribute to late diagnosis, and poor prognosis. Because of their rareness the knowledge about their pathogenesis and risk factors is insufficient, and also there are not well established protocols for staging and treatment of mucosal melanomas. Surgery is the mainstay of treatment, with trends toward more conservative treatment since radical surgery did not show an advantage for survival. Radiotherapy can provide better local control in some locations, but did not show improvement in survival. There is no effective systemic therapy for these aggressive tumors. Compared with cutaneous and ocular melanoma, mucosal melanomas have lowest percent of five-year survival. Recently revealed molecular changes underlying mucosal melanomas offer new hope for development of more effective systemic therapy for mucosal melanomas. Herein we presented a comprehensive review of various locations of primary melanoma along mucosal membranes, their epidemiological and clinical features, and treatment options. We also gave a short comparison of some characteristics of cutaneous and mucosal melanomas. PMID:23071856

  18. Dexmedetomidine decreases the oral mucosal blood flow.

    PubMed

    Kawaai, Hiroyoshi; Yoshida, Kenji; Tanaka, Eri; Togami, Kohei; Tada, Hitoshi; Ganzberg, Steven; Yamazaki, Shinya

    2013-12-01

    There is an abundance of blood vessels in the oral cavity, and intraoperative bleeding can disrupt operations. There have been some interesting reports about constriction of vessels in the oral cavity, one of which reported that gingival blood flow in cats is controlled by sympathetic α-adrenergic fibres that are involved with vasoconstriction. Dexmedetomidine is a sedative and analgesic agent that acts through the α-2 adrenoceptor, and is expected to have a vasoconstrictive action in the oral cavity. We have focused on the relation between the effects of α-adrenoceptors by dexmedetomidine and vasoconstriction in oral tissues, and assessed the oral mucosal blood flow during sedation with dexmedetomidine. The subjects comprised 13 healthy male volunteers, sedated with dexmedetomidine in a loading dose of 6 μg/kg/h for 10 min and a continuous infusion of 0.7 μg/kg/h for 32 min. The mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), stroke volume (SV), systemic vascular resistance (SVR), and palatal mucosal blood flow (PMBF) were measured at 0, 5, 10, 12, 22, and 32 min after the start of the infusion. The HR, CO, and PBMF decreased significantly during the infusion even though there were no differences in the SV. The SVR increased significantly but the PMBF decreased significantly. In conclusion, PMBF was reduced by the mediating effect of dexmedetomidine on α-2 adrenoceptors. PMID:23958351

  19. Oral Mucositis Prevention and Management by Therapeutic Laser in Head and Neck Cancers

    PubMed Central

    Fekrazad, Reza

    2014-01-01

    Introduction: Oral mucositis is considered a severe complication in cancer patients receiving radiotherapy or chemotherapy for head and neck cancer. The aim of this review study was to assess the effect of low level laser therapy for prevention and management of oral mucositis in cancer patients. Methods: The electronic databases searched included Pubmed, ISI Web of Knowledge and Google scholar with keywords as “oral mucositis”, “low level laser therapy” from 2000 to 2013. Results: The results of most studies showed that photobiomodulation (PBM) reduced the severity of mucositis. Also, it can delay the appearance of severe mucositis. Conclusion: Low level laser therapy is a safe approach for management and prevention of oral mucositis. PMID:25606332

  20. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  1. Radiation induced destruction of thebaine, papaverine and noscapine in methanol

    NASA Astrophysics Data System (ADS)

    Kantoğlu, Ömer; Ergun, Ece

    2016-07-01

    The presence of methanol decreases the efficiency of radiation-induced decomposition of alkaloids in wastewater. Intermediate products were observed before the complete degradation of irradiated alkaloids. In order to identify the structure of the by-products and the formation pathway, thebaine, papaverine and noscapine solutions were prepared in pure methanol and irradiated using a 60Co gamma cell at absorbed doses of 0, 1, 3, 5, 7, 10, 30, 50 and 80 kGy. The dose-dependent alkaloid degradation and by-product formation were monitored by ESI mass spectrometer. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated and methoxy group containing organic compounds was observed in the mass spectra of irradiated alkaloids. At initial dose values oxygenated by-products were formed due to the presence of dissolved oxygen in solutions. After the consumption of dissolved oxygen with radicals, the main mechanism was addition of solvent radicals to alkaloid structure. However, it was determined that alkaloids and by-products were completely degraded at doses higher than 50 kGy. The G-value and degradation efficiency of alkaloids were also evaluated.

  2. Outcome of Carotid Artery Stenting for Radiation-Induced Stenosis

    SciTech Connect

    Dorresteijn, Lucille; Vogels, Oscar; Leeuw, Frank-Erik de; Vos, Jan-Albert; Christiaans, Marleen H.; Ackerstaff, Rob; Kappelle, Arnoud C.

    2010-08-01

    Purpose: Patients who have been irradiated at the neck have an increased risk of symptomatic stenosis of the carotid artery during follow-up. Carotid angioplasty and stenting (CAS) can be a preferable alternative treatment to carotid endarterectomy, which is associated with increased operative risks in these patients. Methods and Materials: We performed a prospective cohort study of 24 previously irradiated patients who underwent CAS for symptomatic carotid stenosis. We assessed periprocedural and nonprocedural events including transient ischemic attack (TIA), nondisabling stroke, disabling stoke, and death. Patency rates were evaluated on duplex ultrasound scans. Restenosis was defined as a stenosis of >50% at the stent location. Results: Periprocedural TIA rate was 8%, and periprocedural stroke (nondisabling) occurred in 4% of patients. After a mean follow-up of 3.3 years (range, 0.3-11.0 years), only one ipsilateral incident event (TIA) had occurred (4%). In 12% of patients, a contralateral incident event was present: one TIA (4%) and two strokes (12%, two disabling strokes). Restenosis was apparent in 17%, 33%, and 42% at 3, 12, and 24 months, respectively, although none of the patients with restenosed vessels became symptomatic. The length of the irradiation to CAS interval proved the only significant risk factor for restenosis. Conclusions: The results of CAS for radiation-induced carotid stenosis are favorable in terms of recurrence of cerebrovascular events at the CAS site.

  3. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  4. Processability improvement of polyolefins through radiation-induced branching

    NASA Astrophysics Data System (ADS)

    Cheng, Song; Phillips, Ed; Parks, Lewis

    2010-03-01

    Radiation-induced long-chain branching for the purpose of improving melt strength and hence the processability of polypropylene (PP) and polyethylene (PE) is reviewed. Long-chain branching without significant gel content can be created by low dose irradiation of PP or PE under different atmospheres, with or without multifunctional branching promoters. The creation of long-chain branching generally leads to improvement of melt strength, which in turn may be translated into processability improvement for specific applications in which melt strength plays an important role. In this paper, the changes of the melt flow rate and the melt strength of the irradiated polymer and the relationship between long-chain branching and melt strength are reviewed. The effects of the atmosphere and the branching promoter on long-chain branching vs. degradation are discussed. The benefits of improved melt strength on the processability, e.g., sag resistance and strain hardening, are illustrated. The implications on practical polymer processing applications such as foams and films are also discussed.

  5. Radiation-induced sarcomas of the head and neck

    PubMed Central

    Thiagarajan, Anuradha; Iyer, N Gopalakrishna

    2014-01-01

    With improved outcomes associated with radiotherapy, radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. They exhibit no subsite predilection within the head and neck and can arise in any irradiated tissue of mesenchymal origin. Common histologic subtypes of RIS parallel their de novo counterparts and include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma/sarcoma nitricoxide synthase, and fibrosarcoma. While imaging features of RIS are not pathognomonic, large size, extensive local invasion with bony destruction, marked enhancement within a prior radiotherapy field, and an appropriate latency period are suggestive of a diagnosis of RIS. RIS development may be influenced by factors such as radiation dose, age at initial exposure, exposure to chemotherapeutic agents and genetic tendency. Precise pathogenetic mechanisms of RIS are poorly understood and both directly mutagenizing effects of radiotherapy as well as changes in microenvironments are thought to play a role. Management of RIS is challenging, entailing surgery in irradiated tissue and a limited scope for further radiotherapy and chemotherapy. RIS is associated with significantly poorer outcomes than stage-matched sarcomas that arise independent of irradiation and surgical resection with clear margins seems to offer the best chance for cure. PMID:25493233

  6. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-01-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  7. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  8. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff

    PubMed Central

    Bitarafan Rajabi, Ahmad; Noohi, Feridoun; Hashemi, Hassan; Haghjoo, Majid; Miraftab, Mohammad; Yaghoobi, Nahid; Rastgou, Fereydon; Malek, Hadi; Faghihi, Hoshang; Firouzabadi, Hassan; Asgari, Soheila; Rezvan, Farhad; Khosravi, Hamidreza; Soroush, Sara; Khabazkhoob, Mehdi

    2015-01-01

    Background: The use of ionizing radiation has led to advances in medical diagnosis and treatment. Objectives: The purpose of this study was to determine the risk of radiation cataractogenesis in the interventionists and staff performing various procedures in different interventional laboratories. Patients and Methods: This cohort study included 81 interventional cardiology staff. According to the working site, they were classified into 5 groups. The control group comprised 14 professional nurses who did not work in the interventional sites. Participants were assigned for lens assessment by two independent trained ophthalmologists blinded to the study. Results: The electrophysiology laboratory staff received higher doses of ionizing radiation (17.2 ± 11.9 mSv; P < 0.001). There was a significant positive correlation between the years of working experience and effective dose in the lens (P < 0.001). In general, our findings showed that the incidence of lens opacity was 79% (95% CI, 69.9-88.1) in participants with exposure (the case group) and our findings showed that the incidence of lenses opacity was 7.1% (95% CI:2.3-22.6) with the relative risk (RR) of 11.06 (P < 0.001). Conclusions: We believe that the risk of radiation-induced cataract in cardiology interventionists and staff depends on their work site. As the radiation dose increases, the prevalence of posterior eye changes increases. PMID:25789258

  9. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro.

    PubMed

    Behrends, U; Peter, R U; Hintermeier-Knabe, R; Eissner, G; Holler, E; Bornkamm, G W; Caughman, S W; Degitz, K

    1994-11-01

    Intercellular adhesion molecule-1 (ICAM-1) plays a central role in various inflammatory reactions and its expression is readily induced by inflammatory stimuli such as cytokines or ultraviolet irradiation. We have investigated the effect of ionizing radiation (IR) on human ICAM-1 expression in human cell lines and skin cultures. ICAM-1 mRNA levels in HL60, HaCaT, and HeLa cells were elevated at 3-6 h after irradiation and increased with doses from 10-40 Gy. The rapid induction of ICAM-1 occurred at the level of transcription, was independent of de novo protein synthesis, and did not involve autocrine stimuli including tumor necrosis factor-alpha and interleukin-1. IR also induced ICAM-1 cell surface expression within 24 h. Immunohistologic analysis of cultured human split skin revealed ICAM-1 upregulation on epidermal keratinocytes and dermal microvascular endothelial cells 24 h after exposure to 6 Gy. In conclusion, we propose ICAM-1 as an important radiation-induced enhancer of immunologic cell adhesion, which contributes to inflammatory reactions after local and total body irradiation. PMID:7963663

  10. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2013-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients.

  11. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  12. Radiation induced thyroid neoplasms 1920 to 1987: A vanishing problem

    SciTech Connect

    Mehta, M.P.; Goetowski, P.G.; Kinsella, T.J.

    1989-06-01

    Radiation for benign diseases has been implicated as an etiologic factor in thyroid cancer. From 1930-60, over 2 million children may have been exposed to therapeutic radiation and it is estimated that up to 7% may develop thyroid cancer after a 5-40 year latency. Thyroid stimulating hormone, secondary to radioinduced hypothyroidism, has been implicated as causative in animals. Such data has led to expensive screening programs in high risk patients. Because of a decline in irradiation for benign diseases in children over the last 2 decades, we questioned whether the incidence of radiation induced thyroid neoplasms (RITN) was also decreasing. Twenty-six of 227 patients (11%) with thyroid malignancies seen at our institution from 1974-87 had a history of previous head and neck irradiation. These included 13 papillary, 3 follicular, and 7 mixed carcinomas as well as 2 lymphomas and 1 synovial cell sarcoma. None of these 26 patients had abnormal thyroid function tests at presentation. Mean latency from irradiation to the diagnosis of thyroid cancer was 25.4 years (6-55 year range). Compared to the reported increasing incidence of RITN from 1940-70, there appears to be a significant decrease since 1970. Based on our analysis, the use of expensive screening programs in high risk populations may no longer be warranted. Additionally, the routine use of thyroid replacement in previously irradiated chemically hypothyroid patients is not recommended.30 references.

  13. Radiation-induced sarcomas of the chest wall

    SciTech Connect

    Souba, W.W.; McKenna, R.J. Jr.; Meis, J.; Benjamin, R.; Raymond, A.K.; Mountain, C.F.

    1986-02-01

    Sixteen patients are presented who had sarcomas of the chest wall at a site where a prior malignancy had been irradiated. The first malignancies included breast cancer (ten cases), Hodgkin's disease (four cases), and others (two cases). Radiation doses varied from 4200 to 5500 R (mean, 4900 R). The latency period ranged from 5 to 28 years (mean, 13 years). The histologic types of the radiation-induced sarcomas were as follows: malignant fibrous histiocytoma, nine cases; osteosarcoma, six cases; and malignant mesenchymoma, one case. The only long-term survivor is alive and well 12 years after resection of a clavicular chondroblastic osteosarcoma. Three cases were recently diagnosed. Despite aggressive multimodality treatment, the remaining 13 patients have all died from their sarcomas (mean survival, 13.5 months). All patients have apparently been cured of their first malignancies. Chemotherapy was ineffective. No treatment, including forequarter amputation, appeared to palliate the patients with supraclavicular soft tissue sarcomas. Major chest wall resection offered good palliation for seven of eight patients with sarcomas arising in the sternum or lateral chest wall. Close follow-up is needed to detect signs of these sarcomas in the ever-increasing number of patients receiving therapeutic irradiation.

  14. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  15. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  16. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  17. Countermeasures for space radiation induced adverse biologic effects

    NASA Astrophysics Data System (ADS)

    Kennedy, A. R.; Wan, X. S.

    2011-11-01

    Radiation exposure in space is expected to increase the risk of cancer and other adverse biological effects in astronauts. The types of space radiation of particular concern for astronaut health are protons and heavy ions known as high atomic number and high energy (HZE) particles. Recent studies have indicated that carcinogenesis induced by protons and HZE particles may be modifiable. We have been evaluating the effects of proton and HZE particle radiation in cultured human cells and animals for nearly a decade. Our results indicate that exposure to proton and HZE particle radiation increases oxidative stress, cytotoxicity, cataract development and malignant transformation in in vivo and/or in vitro experimental systems. We have also shown that these adverse biological effects can be prevented, at least partially, by treatment with antioxidants and some dietary supplements that are readily available and have favorable safety profiles. Some of the antioxidants and dietary supplements are effective in preventing radiation induced malignant transformation in vitro even when applied several days after the radiation exposure. Our recent progress is reviewed and discussed in the context of the relevant literature.

  18. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    NASA Technical Reports Server (NTRS)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  19. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  20. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  1. An ESR study of radiation induced radicals in glucose polymers

    NASA Astrophysics Data System (ADS)

    Kameya, Hiromi; Ukai, Mitsuko; Shimoyama, Yuhei

    2013-03-01

    Using electron spin resonance (ESR) spectroscopy with both experimental and theoretical approaches, we revealed the γ-radiation induced radicals in two glucose polymers, cellulose and starch. Before irradiation, ESR signals are silent in both the glucose polymers. After irradiation, a singlet signal at g=2.0 appeared in both the glucose polymers. The twin peaks were invisible in the starch sample. We identified the twin peaks to be a part of triplet signal and analyzed the molecular structure of the cellulose radical. Through theoretical simulations, we revealed, for the first time, that the triplet signal was due to hyperfine interactions of unpaired electron with two protons in the cellulose radical. The third peak within the triplet is overlapped by the free radical at g=2.0. We further found that the cellulose radical does not remain at the rigid limit or the static state, but undergoes axial rotations around C-C and C-H bonds. We concluded that the triplet ESR signal reflects the cellulose radical.

  2. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  3. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  4. Radiation-induced mitotic cell death and glioblastoma radioresistance: a new regulating pathway controlled by integrin-linked kinase, hypoxia-inducible factor 1 alpha and survivin in U87 cells.

    PubMed

    Lanvin, Olivia; Monferran, Sylvie; Delmas, Caroline; Couderc, Bettina; Toulas, Christine; Cohen-Jonathan-Moyal, Elizabeth

    2013-09-01

    We have previously shown that integrin-linked kinase (ILK) regulates U87 glioblastoma cell radioresistance by modulating the main radiation-induced cell death mechanism in solid tumours, the mitotic cell death. To decipher the biological pathways involved in these mechanisms, we constructed a U87 glioblastoma cell model expressing an inducible shRNA directed against ILK (U87shILK). We then demonstrated that silencing ILK enhanced radiation-induced centrosome overduplication, leading to radiation-induced mitotic cell death. In this model, ionising radiations induce hypoxia-inducible factor 1 alpha (HIF-1α) stabilisation which is inhibited by silencing ILK. Moreover, silencing HIF-1α in U87 cells reduced the surviving fraction after 2 Gy irradiation by increasing cell sensitivity to radiation-induced mitotic cell death and centrosome amplification. Because it is known that HIF-1α controls survivin expression, we then looked at the ILK silencing effect on survivin expression. We show that survivin expression is decreased in U87shILK cells. Furthermore, treating U87 cells with the specific survivin suppressor YM155 significantly increased the percentage of giant multinucleated cells, centrosomal overduplication and thus U87 cell radiosensitivity. In consequence, we decipher here a new pathway of glioma radioresistance via the regulation of radiation-induced centrosome duplication and therefore mitotic cell death by ILK, HIF-1α and survivin. This work identifies new targets in glioblastoma with the intention of radiosensitising these highly radioresistant tumours. PMID:23747271

  5. Dendritic cell-targeting DNA-based mucosal adjuvants for the development of mucosal vaccines

    PubMed Central

    Kataoka, Kosuke; Fujihashi, Kohtaro

    2009-01-01

    In order to establish effective mucosal immunity against various mucosal pathogens, vaccines must be delivered via the mucosal route and contain effective adjuvant(s). Since mucosal adjuvants can simply mix with the antigen, it is relatively easy to adapt them for different types of vaccine development. Even in simple admixture vaccines, the adjuvant itself must be prepared without any complications. Thus, CpG oligodeoxynucleotides or plasmids encoding certain cDNA(s) would be potent mucosal adjuvant candidates when compared with other substances that can be used as mucosal adjuvants. The strategy of a DNA-based mucosal adjuvant facilitates the targeting of mucosal dendritic cells, and thus is an effective and safe approach. It would also provide great flexibility for the development of effective vaccines for various mucosal pathogens. PMID:19722892

  6. Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective.

    PubMed

    Renukaradhya, Gourapura J; Dwivedi, Varun; Manickam, Cordelia; Binjawadagi, Basavaraj; Benfield, David

    2012-06-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically important infectious disease of swine. Constant emergence of variant strains of PRRS virus (PPRSV) and virus-mediated immune evasion followed by viral persistence result in increased incidence and recurrence of PRRS in swine herds. Current live and killed PRRSV vaccines administered by a parenteral route are ineffective in inducing complete protection. Thus, new approaches in design and delivery of PRRSV vaccines are needed to reduce the disease burden of the swine industry. Induction of an effective mucosal immunity to several respiratory pathogens by direct delivery of a vaccine to mucosal sites has proven to be effective in a mouse model. However, there are challenges in eliciting mucosal immunity to PRRS due to our limited understanding of safe and potent mucosal adjuvants, which could potentiate the mucosal immune response to PRRSV. The purpose of this review is to discuss methods for induction of protective mucosal immune responses in the respiratory tract of pigs. The manuscript also discusses how PRRSV modulates innate, adaptive and immunoregulatory responses at both mucosal and systemic sites of infected and/or vaccinated pigs. This information may help in the design of innovative mucosal vaccines to elicit superior cross-protective immunity against divergent field strains of PRRSV. PMID:22717576

  7. Oropharyngeal mucositis in cancer therapy. Review of pathogenesis, diagnosis, and management.

    PubMed

    Epstein, Joel B; Schubert, Mark M

    2003-12-01

    Oropharyngeal mucositis is a common and treatment-limiting side effect of cancer therapy. Severe oral mucositis can lead to the need to interrupt or discontinue cancer therapy and thus may have an impact on cure of the primary disease. Mucositis may also increase the risk of local and systemic infection and significantly affects quality of life and cost of care. Current care of patients with mucositis is essentially palliative and includes appropriate oral hygiene, nonirritating diet and oral care products, topical palliative mouth rinses, topical anesthetics, and opioid analgesics. Systemic analgesics are the mainstay of pain management. Topical approaches to pain management are under investigation. The literature supports use of benzydamine for prophylaxis of mucositis caused by conventional fractionationated head and neck radiotherapy, and cryotherapy for short-half-life stomatoxic chemotherapy, such as bolus fluorouracil. Continuing studies are investigating the potential use of biologic response modifiers and growth factors, including topical and systemic delivery of epithelial growth factors and agents. Progress in the prevention and management of mucositis will improve quality of life, reduce cost of care, and facilitate completion of more intensive cancer chemotherapy and radiotherapy protocols. In addition, improved management of mucositis may allow implementation of cancer treatment protocols that are currently excessively mucotoxic but may produce higher cure rates. Continuing research related to the pathogenesis and management of mucositis will undoubtedly lead to the development of potential interventions and improved patient care. PMID:14723014

  8. Mucosal vaccination: lung versus nose.

    PubMed

    Vujanic, Ana; Sutton, Philip; Snibson, Kenneth J; Yen, Hung-Hsun; Scheerlinck, Jean-Pierre Y

    2012-07-15

    The induction of potent mucosal immune responses able to prevent the establishment of infection at the onset of mucosal pathogen colonisation represents a desirable but challenging goal for vaccine development. Here we compare nasal vaccine delivery with intra-pulmonary vaccination using a sheep lymphatic cannulation model. Our results demonstrate that nasal delivery of a non-infective ISCOMATRIX(®) influenza vaccine does not induce primary immune responses in the lymph draining the nasal lymph nodes, suggesting that local immune responses in the lymph nodes draining the nasal cavity are relatively weak. However, this mode of delivery can boost existing immunity in the nasal lymph. Using the same adjuvant we were able to induce very potent immune responses in both blood and bronchoalveolar lavage (BAL), following intra-pulmonary delivery of ISCOMATRIX(®) influenza vaccine, even when very small doses of antigen were employed. Lung delivery could also induce comparable immune responses against other recombinant antigens mixed with ISCOMATRIX(®) adjuvant and could therefore become a method of choice for the induction of immunity to mucosal pathogens infecting the lower respiratory tract. PMID:21492942

  9. Cryopreservation of Human Mucosal Leukocytes

    PubMed Central

    Shu, Zhiquan; Levy, Claire N.; Ferre, April L.; Hartig, Heather; Fang, Cifeng; Lentz, Gretchen; Fialkow, Michael; Kirby, Anna C.; Adams Waldorf, Kristina M.; Veazey, Ronald S.; Germann, Anja; von Briesen, Hagen; McElrath, M. Juliana; Dezzutti, Charlene S.; Sinclair, Elizabeth; Baker, Chris A. R.; Shacklett, Barbara L.; Gao, Dayong; Hladik, Florian

    2016-01-01

    Background Understanding how leukocytes in the cervicovaginal and colorectal mucosae respond to pathogens, and how medical interventions affect these responses, is important for developing better tools to prevent HIV and other sexually transmitted infections. An effective cryopreservation protocol for these cells following their isolation will make studying them more feasible. Methods and Findings To find an optimal cryopreservation protocol for mucosal mononuclear leukocytes, we compared cryopreservation media and procedures using human vaginal leukocytes and confirmed our results with endocervical and colorectal leukocytes. Specifically, we measured the recovery of viable vaginal T cells and macrophages after cryopreservation with different cryopreservation media and handling procedures. We found several cryopreservation media that led to recoveries above 75%. Limiting the number and volume of washes increased the fraction of cells recovered by 10–15%, possibly due to the small cell numbers in mucosal samples. We confirmed that our cryopreservation protocol also works well for both endocervical and colorectal leukocytes. Cryopreserved leukocytes had slightly increased cytokine responses to antigenic stimulation relative to the same cells tested fresh. Additionally, we tested whether it is better to cryopreserve endocervical cells on the cytobrush or in suspension. Conclusions Leukocytes from cervicovaginal and colorectal tissues can be cryopreserved with good recovery of functional, viable cells using several different cryopreservation media. The number and volume of washes has an experimentally meaningful effect on the percentage of cells recovered. We provide a detailed, step-by-step protocol with best practices for cryopreservation of mucosal leukocytes. PMID:27232996

  10. Mucosal Immunology of Food Allergy

    PubMed Central

    Berin, M. Cecilia; Sampson, Hugh A.

    2013-01-01

    Food allergies are increasing in prevalence at a higher rate than can be explained by genetic factors, suggesting a role for as yet unidentified environmental factors. In this review, we summarize the state of knowledge about the healthy immune response to antigens in the diet and the basis of immune deviation that results in IgE sensitization and allergic reactivity to foods. The intestinal epithelium forms the interface between the external environment and the mucosal immune system, and emerging data suggest that the interaction between intestinal epithelial cells and mucosal dendritic cells is of particular importance in determining the outcome of immune responses to dietary antigens. Exposure to food allergens through non-oral routes, in particular through the skin, is increasingly recognized as a potentially important factor in the increasing rate of food allergy. There are many open questions on the role of environmental factors such as dietary factors and microbiota in the development of food allergy, but data suggest that both have an important modulatory effect on the mucosal immune system. Finally, we discuss recent developments in our understanding of immune mechanisms of clinical manifestations of food allergy. New experimental tools, particularly in the field of genomics and microbiome, are likely to shed light on factors responsible for the growing clinical problem of food allergy. PMID:23660362

  11. Intestinal mucosal adaptation

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2006-01-01

    Intestinal failure is a condition characterized by malnutrition and/or dehydration as a result of the inadequate digestion and absorption of nutrients. The most common cause of intestinal failure is short bowel syndrome, which occurs when the functional gut mass is reduced below the level necessary for adequate nutrient and water absorption. This condition may be congenital, or may be acquired as a result of a massive resection of the small bowel. Following resection, the intestine is capable of adaptation in response to enteral nutrients as well as other trophic stimuli. Identifying factors that may enhance the process of intestinal adaptation is an exciting area of research with important potential clinical applications. PMID:16937429

  12. Transient radiation-induced absorption in the materials for a GSGG laser

    NASA Astrophysics Data System (ADS)

    Brannon, P. J.

    1993-11-01

    Materials used in the optical elements of a 1,061 m GSGG (gadolinium scandium gallium garnet) laser have been tested for transient radiation-induced absorption. The transient radiation-induced absorption in KK1, Schott S7005 and S7010, and M382 glasses have been determined for discrete wavelengths in the range 440-750 nm. Also, the transient radiation-induced absorption in 'pure' and MgO doped LiNbO3 has been measured at 1,061 nm. Mathematical expressions composed of exponentials are fitted to the data.

  13. Role of PECAM-1 in radiation-induced liver inflammation.

    PubMed

    Malik, Ihtzaz Ahmed; Stange, Ina; Martius, Gesa; Cameron, Silke; Rave-Fränk, Margret; Hess, Clemens Friedrich; Ellenrieder, Volker; Wolff, Hendrik Andreas

    2015-10-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is known to play an important role in hepatic inflammation. Therefore, we investigated the role of PECAM-1 in wild-type (WT) and knock-out (KO)-mice after single-dose liver irradiation (25 Gy). Both, at mRNA and protein level, a time-dependent decrease in hepatic PECAM-1, corresponding to an increase in intercellular cell adhesion molecule-1 (ICAM-1) (6 hrs) was detected in WT-mice after irradiation. Immunohistologically, an increased number of neutrophil granulocytes (NG) (but not of mononuclear phagocytes) was observed in the liver of WT and PECAM-1-KO mice at 6 hrs after irradiation. The number of recruited NG was higher and prolonged until 24 hrs in KO compared to WT-mice. Correspondingly, a significant induction of hepatic tumour necrosis factor (TNF)-α and CXC-chemokines (KC/CXCL1 interleukin-8/CXCL8) was detected together with an elevation of serum liver transaminases (6-24 hrs) in WT and KO-mice. Likewise, phosphorylation of signal transducer and activator of transcription-3 (STAT-3) was observed in both animal groups after irradiation. The level of all investigated proteins as well as of the liver transaminases was significantly higher in KO than WT-mice. In the cell-line U937, irradiation led to a reduction in PECAM-1 in parallel to an increased ICAM-1 expression. TNF-α-blockage by anti-TNF-α prevented this change in both proteins in cell culture. Radiation-induced stress conditions induce a transient accumulation of granulocytes within the liver by down-regulation/absence of PECAM-1. It suggests that reduction/lack in PECAM-1 may lead to greater and prolonged inflammation which can be prevented by anti-TNFα. PMID:26177067

  14. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  15. Role of PECAM-1 in radiation-induced liver inflammation

    PubMed Central

    Malik, Ihtzaz Ahmed; Stange, Ina; Martius, Gesa; Cameron, Silke; Rave-Fränk, Margret; Hess, Clemens Friedrich; Ellenrieder, Volker; Wolff, Hendrik Andreas

    2015-01-01

    Platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) is known to play an important role in hepatic inflammation. Therefore, we investigated the role of PECAM-1 in wild-type (WT) and knock-out (KO)-mice after single-dose liver irradiation (25 Gy). Both, at mRNA and protein level, a time-dependent decrease in hepatic PECAM-1, corresponding to an increase in intercellular cell adhesion molecule-1 (ICAM-1) (6 hrs) was detected in WT-mice after irradiation. Immunohistologically, an increased number of neutrophil granulocytes (NG) (but not of mononuclear phagocytes) was observed in the liver of WT and PECAM-1-KO mice at 6 hrs after irradiation. The number of recruited NG was higher and prolonged until 24 hrs in KO compared to WT-mice. Correspondingly, a significant induction of hepatic tumour necrosis factor (TNF)-α and CXC-chemokines (KC/CXCL1 interleukin-8/CXCL8) was detected together with an elevation of serum liver transaminases (6–24 hrs) in WT and KO-mice. Likewise, phosphorylation of signal transducer and activator of transcription-3 (STAT-3) was observed in both animal groups after irradiation. The level of all investigated proteins as well as of the liver transaminases was significantly higher in KO than WT-mice. In the cell-line U937, irradiation led to a reduction in PECAM-1 in parallel to an increased ICAM-1 expression. TNF-α-blockage by anti-TNF-α prevented this change in both proteins in cell culture. Radiation-induced stress conditions induce a transient accumulation of granulocytes within the liver by down-regulation/absence of PECAM-1. It suggests that reduction/lack in PECAM-1 may lead to greater and prolonged inflammation which can be prevented by anti-TNFα. PMID:26177067

  16. Radiation-induced lung damage: dose-time-fractionation considerations.

    PubMed

    Van Dyk, J; Mah, K; Keane, T J

    1989-01-01

    The comparison of different dose-time-fractionation schedules requires the use of an isoeffect formula. In recent years, the NSD isoeffect formula has been heavily criticized. In this report, we consider an isoeffect formula which is specifically developed for radiation-induced lung damage. The formula is based on the linear-quadratic model and includes a factor for overall treatment time. The proposed procedures allow for the simultaneous derivation of an alpha/beta ratio and a gamma/beta time factor. From animal data in the literature, the derived alpha/beta and gamma/beta ratios for acute lung damage are 5.0 +/- 1.0 Gy and 2.7 +/- 1.4 Gy2/day respectively, while for late damage the suggested values are 2.0 Gy and 0.0 Gy2/day. Data from two clinical studies, one prospective and the other retrospective, were also analysed and corresponding alpha/beta and gamma/beta ratios were determined. For the prospective clinical study, with a limited range of doses per fraction, the resultant alpha/beta and gamma/beta ratios were 0.9 +/- 2.6 Gy and 2.6 +/- 2.5 Gy2/day. The combination of the retrospective and prospective data yielded alpha/beta and gamma/beta ratios of 3.3 +/- 1.5 Gy and 2.4 +/- 1.5 Gy2/day, respectively. One potential advantage of this isoeffect formalism is that it might possibly be applied to both acute and late lung damage. The results of this formulation for acute lung damage indicate that time-dependent effects such as slow repair or proliferation might be more important in determining isoeffect doses than previously predicted by the estimated single dose (ED) formula. Although we present this as an alternative approach, we would caution against its clinical use until its applicability has been confirmed by additional clinical data. PMID:2928557

  17. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  18. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  19. Molecular responses of radiation-induced liver damage in rats

    PubMed Central

    CHENG, WEI; XIAO, LEI; AINIWAER, AIMUDULA; WANG, YUNLIAN; WU, GE; MAO, RUI; YANG, YING; BAO, YONGXING

    2015-01-01

    The aim of the present study was to investigate the molecular responses involved in radiation-induced liver damage (RILD). Sprague-Dawley rats (6-weeks-old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT-qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor (NF)-κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor-α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF-β1/Smads and NF-κB65 signaling pathways are involved in the mechanism of RILD recovery. PMID:25483171

  20. Evidence for involvement of cytosolic thioredoxin peroxidase in the excessive resistance of Sf9 Lepidopteran insect cells against radiation-induced apoptosis.

    PubMed

    Hambarde, Shashank; Singh, Vijaypal; Chandna, Sudhir

    2013-01-01

    Lepidopteran insect cells display 50-100 times higher radioresistance compared to human cells, and reportedly have more efficient antioxidant system that can significantly reduce radiation-induced oxidative stress and cell death. However, the antioxidant mechanisms that contribute substantially to this excessive resistance still need to be understood thoroughly. In this study, we investigated the role of thioredoxin peroxidase (TPx) in high-dose γ-radiation response of Sf9 cell line derived from Spodoptera frugiperda, the Fall armyworm. We identified a TPx orthologue (Sf-TPx) in Spodoptera system, with primarily cytosolic localization. Gamma-irradiation at 500 Gy dose significantly up-regulated Sf-TPx, while higher doses (1000 Gy-2000 Gy) had no such effect. G2/M checkpoint induced following 500 Gy was associated with transition of Sf-TPx decamer into enzymatically active dimer. Same effect was observed during G2/M block induced by 5 nM okadaic acid or 10 µM CDK1 (cycline dependent kinase-1) inhibitor roscovitine, thus indicating that radiation-induced Sf-TPx activity is mediated by CDKs. Accumulation of TPx dimer form during G2/M checkpoint might favour higher peroxidase activity facilitating efficient survival at this dose. Confirming this, higher lethal doses (1000 Gy-2000 Gy) caused significantly less accumulation of dimer form and induced dose-dependent apoptosis. A ∼50% knock-down of Sf-TPx by siRNA caused remarkable increase in radiation-induced ROS as well as caspase-3 dependent radiation-induced apoptosis, clearly implying TPx role in the radioresistance of Sf9 cells. Quite importantly, our study demonstrates for the first time that thioredoxin peroxidase contributes significantly in the radioresistance of Lepidopteran Sf9 insect cells, especially in their exemplary resistance against radiation-induced apoptosis. This is an important insight into the antioxidant mechanisms existing in this highly stress-resistant model cell system. PMID:23505474

  1. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice

    PubMed Central

    Schüler, Emil; Larsson, Maria; Parris, Toshima Z.; Johansson, Martin E.; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity. Methods C57BL/6N mice were i.v. injected with 0, 30, 60, 90, 120, or 150 MBq 177Lu-octreotate (0, 16, 29, 40, 48, and 54 Gy to the kidneys). At 4, 8, and 12 months after administration, radiation-induced effects were evaluated in relation to (a) global transcriptional variations in kidney tissues, (b) morphological changes in the kidneys, (c) changes in white and red blood cell count as well as blood levels of urea, and (d) changes in renal function using 99mTc-DTPA/99mTc-DMSA scintigraphy. Results In general, the highest number of differentially regulated transcripts was observed at 12 months after administration. The Cdkn1a, C3, Dbp, Lcn2, and Per2 genes displayed a distinct dose-dependent regulation, with increased expression level with increasing absorbed dose. Ifng, Tnf, and Il1B were identified as primary up-stream regulators of the recurrently regulated transcripts. Furthermore, previously proposed biomarkers for kidney injury and radiation damage were also observed. The functional investigation revealed reduced excretion of 99mTc-DTPA after 150 MBq, an increased uptake of 99mTc-DMSA at all dose levels compared with the controls, and markedly increased urea level in blood after 150 MBq at 12 months. Conclusion Distinct dose-response relationships were found for several of the regulated transcripts. The Cdkn1a, Dbp, Lcn2, and Per2 genes are proposed as biomarkers for 177Lu-octreotate exposure of kidney. Correlations to functional and morphological effects further confirm

  2. Why Chitosan? From properties to perspective of mucosal drug delivery.

    PubMed

    Kumar, Ashwini; Vimal, Archana; Kumar, Awanish

    2016-10-01

    Non-parenteral drug delivery routes primarily remove the local pain at the injection site. The drugs administered through the oral route encounter the process of hepatic first pass metabolism. Among the alternative delivery routes, mucosal route is being investigated as the most preferred route. Different mucosal routes include the gastrointestinal tract (oral), vagina, buccal cavity and nasal cavity. Novel formulations are being developed using natural and synthetic polymers that could increase the residence time of the drug at mucosal surface in order to facilitate permeation and reduce (or bypass) the first pass metabolism. For recombinant drugs, the formulations are accompanied by enzyme inhibitors and penetration enhancers. Buccal cavity (buccal and sublingual mucosa) has smaller surface area than the gastrointestinal tract but the drugs can easily escape the first pass metabolism. Chitosan is the most applied natural polymer while synthetic polymers include Carbopol and Eudragit. Chitosan has inherent properties of mucoadhesion and penetration enhancement apart from biodegradability and efflux pump inhibition. This review hoards the important research purview of chitosan as a compatible drug carrier macromolecule for mucosal delivery on single platform. PMID:27196368

  3. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    SciTech Connect

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-07-15

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  4. Palifermin: new drug. Prevention of oral mucositis: inappropriate evaluation.

    PubMed

    2007-08-01

    (1) Patients treated with high-dose chemotherapy combined with total body irradiation (myeloablative therapy) often develop oral mucositis. Prevention is based mainly on sucking ice during chemotherapy. (2) Palifermin is a growth factor marketed for the prevention of severe oral mucositis in adults with malignant haemopathies who are receiving myeloablative therapy followed by peripheral stem cell autografting. (3) Palifermin has not been compared with sucking ice, despite the efficacy of this simple treatment. (4) In a randomised placebo-controlled double-blind trial involving 212 adult patients treated with high-dose chemotherapy and total body irradiation, palifermin reduced the incidence of severe oral mucositis (63% versus 98%) and its duration (about 3 days versus 9 days). The myeloablative regimen used in this trial is not that commonly used in Europe. The efficacy of palifermin during less aggressive regimens, which cause less severe oral mucositis, is not known. (5) The main adverse events noted in clinical trials were erythema and cutaneous oedema. It is not known whether palifermin increases the long-term risk of cancer. (6) Treatment with palifermin is expensive, 4800.00 euros in France); the optimal dosing schedule is not known and the unit dose chosen by the manufacturer is wastefully large. (7) In practice, it remains to be demonstrated that palifermin is more effective than simply sucking ice. PMID:17724832

  5. Mucosal vaccination by adenoviruses displaying reovirus sigma 1

    SciTech Connect

    Weaver, Eric A.; Camacho, Zenaido T.; Hillestad, Matthew L.; Crosby, Catherine M.; Turner, Mallory A.; Guenzel, Adam J.; Fadel, Hind J.; Mercier, George T.; Barry, Michael A.

    2015-08-15

    We developed adenovirus serotype 5 (Ad5) vectors displaying the sigma 1 protein from reovirus as mucosal vaccines. Ad5-sigma retargets to JAM-1 and sialic acid, but has 40-fold reduced gene delivery when compared to Ad5. While weaker at transduction, Ad5-sigma generates stronger T cell responses than Ad5 when used for mucosal immunization. In this work, new Ad5-fiber-sigma vectors were generated by varying the number of fiber β-spiral shaft repeats (R) between the fiber tail and sigma. Increasing chimera length led to decreasing insertion of these proteinsAd5 virions. Ad-R3 and R14 vectors effectively targeted JAM-1 in vitro while R20 did not. When wereused to immunize mice by the intranasal route, Ad5-R3-sigma produced higher serum and vaginal antibody responses than Ad5. These data suggest optimized Ad-sigma vectors may be useful vectors for mucosal vaccination. - Highlights: • Constructed adenoviruses (Ads) displaying different reovirus sigma 1 fusion proteins. • Progressively longer chimeras were more poorly encapsidated onto Ad virions. • Ad5-R3-sigma mediated better systemic and mucosal immune responses than Ad5.

  6. Oral and intestinal mucositis - causes and possible treatments.

    PubMed

    Duncan, M; Grant, G

    2003-11-01

    Chemotherapy and radiotherapy, whilst highly effective in the treatment of neoplasia, can also cause damage to healthy tissue. In particular, the alimentary tract may be badly affected. Severe inflammation, lesioning and ulceration can occur. Patients may experience intense pain, nausea and gastro-enteritis. They are also highly susceptible to infection. The disorder (mucositis) is a dose-limiting toxicity of therapy and affects around 500 000 patients world-wide annually. Oral and intestinal mucositis is multi-factorial in nature. The disruption or loss of rapidly dividing epithelial progenitor cells is a trigger for the onset of the disorder. However, the actual dysfunction that manifests and its severity and duration are greatly influenced by changes in other cell populations, immune responses and the effects of oral/gut flora. This complexity has hampered the development of effective palliative or preventative measures. Recent studies have concentrated on the use of bioactive/growth factors, hormones or interleukins to modify epithelial metabolism and reduce the susceptibility of the tract to mucositis. Some of these treatments appear to have considerable potential and are at present under clinical evaluation. This overview deals with the cellular changes and host responses that may lead to the development of mucositis of the oral cavity and gastrointestinal tract, and the potential of existing and novel palliative measures to limit or prevent the disorder. Presently available treatments do not prevent mucositis, but can limit its severity if used in combination. Poor oral health and existing epithelial damage predispose patients to mucositis. The elimination of dental problems or the minimization of existing damage to the alimentary tract, prior to the commencement of therapy, lowers their susceptibility. Measures that reduce the flora of the tract, before therapy, can also be helpful. Increased production of free radicals and the induction of inflammation are

  7. Voice Disorders in Mucosal Leishmaniasis

    PubMed Central

    Ruas, Ana Cristina Nunes; Lucena, Márcia Mendonça; da Costa, Ananda Dutra; Vieira, Jéssica Rafael; de Araújo-Melo, Maria Helena; Terceiro, Benivaldo Ramos Ferreira; de Sousa Torraca, Tania Salgado; de Oliveira Schubach, Armando; Valete-Rosalino, Claudia Maria

    2014-01-01

    Introduction Leishmaniasis is considered as one of the six most important infectious diseases because of its high detection coefficient and ability to produce deformities. In most cases, mucosal leishmaniasis (ML) occurs as a consequence of cutaneous leishmaniasis. If left untreated, mucosal lesions can leave sequelae, interfering in the swallowing, breathing, voice and speech processes and requiring rehabilitation. Objective To describe the anatomical characteristics and voice quality of ML patients. Materials and Methods A descriptive transversal study was conducted in a cohort of ML patients treated at the Laboratory for Leishmaniasis Surveillance of the Evandro Chagas National Institute of Infectious Diseases - Fiocruz, between 2010 and 2013. The patients were submitted to otorhinolaryngologic clinical examination by endoscopy of the upper airways and digestive tract and to speech-language assessment through directed anamnesis, auditory perception, phonation times and vocal acoustic analysis. The variables of interest were epidemiologic (sex and age) and clinic (lesion location, associated symptoms and voice quality. Results 26 patients under ML treatment and monitored by speech therapists were studied. 21 (81%) were male and five (19%) female, with ages ranging from 15 to 78 years (54.5+15.0 years). The lesions were distributed in the following structures 88.5% nasal, 38.5% oral, 34.6% pharyngeal and 19.2% laryngeal, with some patients presenting lesions in more than one anatomic site. The main complaint was nasal obstruction (73.1%), followed by dysphonia (38.5%), odynophagia (30.8%) and dysphagia (26.9%). 23 patients (84.6%) presented voice quality perturbations. Dysphonia was significantly associated to lesions in the larynx, pharynx and oral cavity. Conclusion We observed that vocal quality perturbations are frequent in patients with mucosal leishmaniasis, even without laryngeal lesions; they are probably associated to disorders of some resonance

  8. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving

  9. Radiation-Induced Topological Disorder in Irradiated Network Structures

    SciTech Connect

    Hobbs, Linn W.

    2002-12-21

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  10. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  11. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation

    PubMed Central

    Pandiyan, Pushpa; Younes, Souheil-Antoine; Ribeiro, Susan Pereira; Talla, Aarthi; McDonald, David; Bhaskaran, Natarajan; Levine, Alan D.; Weinberg, Aaron; Sekaly, Rafick P.

    2016-01-01

    Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light

  12. A New Model for Predicting Acute Mucosal Toxicity in Head-and-Neck Cancer Patients Undergoing Radiotherapy With Altered Schedules

    SciTech Connect

    Strigari, Lidia; Pedicini, Piernicola; D'Andrea, Marco; Pinnaro, Paola; Marucci, Laura; Giordano, Carolina; Benassi, Marcello

    2012-08-01

    Purpose: One of the worst radiation-induced acute effects in treating head-and-neck (HN) cancer is grade 3 or higher acute (oral and pharyngeal) mucosal toxicity (AMT), caused by the killing/depletion of mucosa cells. Here we aim to testing a predictive model of the AMT in HN cancer patients receiving different radiotherapy schedules. Methods and Materials: Various radiotherapeutic schedules have been reviewed and classified as tolerable or intolerable based on AMT severity. A modified normal tissue complication probability (NTCP) model has been investigated to describe AMT data in radiotherapy regimens, both conventional and altered in dose and overall treatment time (OTT). We tested the hypothesis that such a model could also be applied to identify intolerable treatment and to predict AMT. This AMT NTCP model has been compared with other published predictive models to identify schedules that are either tolerable or intolerable. The area under the curve (AUC) was calculated for all models, assuming treatment tolerance as the gold standard. The correlation between AMT and the predicted toxicity rate was assessed by a Pearson correlation test. Results: The AMT NTCP model was able to distinguish between acceptable and intolerable schedules among the data available for the study (AUC = 0.84, 95% confidence interval = 0.75-0.92). In the equivalent dose at 2 Gy/fraction (EQD2) vs OTT space, the proposed model shows a trend similar to that of models proposed by other authors, but was superior in detecting some intolerable schedules. Moreover, it was able to predict the incidence of {>=}G3 AMT. Conclusion: The proposed model is able to predict {>=}G3 AMT after HN cancer radiotherapy, and could be useful for designing altered/hypofractionated schedules to reduce the incidence of AMT.

  13. Topical and mucosal liposomes for vaccine delivery.

    PubMed

    Romero, Eder Lilia; Morilla, Maria Jose

    2011-01-01

    Mucosal (and in minor extent transcutanous) stimulation can induce local or distant mucosa secretory IgA. Liposomes and other vesicles as mucosal and transcutaneous adjuvants are attractive alternatives to parenteral vaccination. Liposomes can be massively produced under good manufacturing practices and stored for long periods, at high antigen/vesicle mass ratios. However, their uptake by antigen-presenting cells (APC) at the inductive sites remains as a major challenge. As neurotoxicity is a major concern in intranasal delivery, complexes between archaeosomes and calcium as well as cationic liposomes complexed with plasmids encoding for antigenic proteins could safely elicit secretory and systemic antigen-specific immune responses. Oral bilosomes generate intense immune responses that remain to be tested against challenge, but the admixing with toxins or derivatives is mandatory to reduce the amount of antigen. Most of the current experimental designs, however, underestimate the mucus blanket 100- to 1000-fold thicker than a 100-nm diameter liposome, which has first to be penetrated to access the underlying M cells. Overall, designing mucoadhesive chemoenzymatic resistant liposomes, or selectively targeted to M cells, has produced less relevant results than tailoring the liposomes to make them mucus penetrating. Opposing, the nearly 10 µm thickness stratum corneum interposed between liposomes and underlying APC can be surpassed by ultradeformable liposomes (UDL), with lipid matrices that penetrate up to the limit with the viable epidermis. UDL made of phospholipids and detergents, proved to be better transfection agents than conventional liposomes and niosomes, without the toxicity of ethosomes, in the absence of classical immunomodulators. PMID:21360692

  14. Infection and mucosal injury in cancer treatment.

    PubMed

    Khan, S A; Wingard, J R

    2001-01-01

    The oral and gastrointestinal mucosa acts as an important mechanical barrier that prevents local or systemic invasion by microorganisms. Cytotoxic chemotherapy-induced mucosal injury (MI) of oral cavity and intestinal epithelium occurs in many patients treated for malignancy. Compromise of the mucosal barrier can contribute to local invasion by colonizing microorganisms and, subsequently, to systemic infection. Historically, gram-negative bacteremia has been the most problematic bacterial infection in neutropenic patients, but its incidence has reduced over time because of the use of prophylactic antibiotics. There has been a shift in the type of infecting organisms responsible for bacteremia in these patients, from predominantly gram-negative organisms to gram-positive cocci. The viridans group of streptococci is composed of the most frequent bacterial pathogens associated with MI. When speciated, oral colonizers such as Streptococcus mitis, Streptococcus oralis, and Streptococcus sangulis II are the most frequently identified pathogens. Other systemic infections caused by vancomycin-resistant enterococci, Stenotrophomonas maltophilia, and Candida species have also been associated with MI after cancer treatment. Infection can also exacerbate MI after cancer treatment. The best recognized example is herpes simplex virus type 1 (HSV-1). Latent virus is frequently reactivated in HSV-seropositive patients; this reactivation leads to stomatitis, which can be indistinguishable from MI caused by cytoreductive therapies. Antiviral prophylaxis or treatment can control the virus-induced MI and bring about overall amelioration of MI. Recognition of this infectious cause of MI is important in order for clinicians to anticipate and minimize oral toxicity and to facilitate optimal delivery of the antineoplastic regimen. PMID:11694563

  15. Eosinophils in mucosal immune responses

    PubMed Central

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  16. Radiation induced currents in MRI RF coils: application to linac/MRI integration

    PubMed Central

    Burke, B; Fallone, B G; Rathee, S

    2010-01-01

    The integration of medical linear accelerators (linac) with magnetic resonance imaging (MRI) systems is advancing the current state of image-guided radiotherapy. The MRI in these integrated units will provide real-time, accurate tumor locations for radiotherapy treatment, thus decreasing geometric margins around tumors and reducing normal tissue damage. In the real-time operation of these integrated systems, the radiofrequency (RF) coils of MRI will be irradiated with radiation pulses from the linac. The effect of pulsed radiation on MRI radio frequency (RF) coils is not known and must be studied. The instantaneous radiation induced current (RIC) in two different MRI RF coils were measured and presented. The frequency spectra of the induced currents were calculated. Some basic characterization of the RIC was also done: isolation of the RF coil component responsible for RIC, dependence of RIC on dose rate, and effect of wax buildup placed on coil on RIC. Both the time and frequency characteristics of the RIC were seen to vary with the MRI RF coil used. The copper windings of the RF coils were isolated as the main source of RIC. A linear dependence on dose rate was seen. The RIC was decreased with wax buildup, suggesting an electronic disequilibrium as the cause of RIC. This study shows a measurable RIC present in MRI RF coils. This unwanted current could be possibly detrimental to the signal to noise ratio in MRI and produce image artifacts. PMID:20071754

  17. Radiation-induced synthesis and characterization of ruthenium/carboxymethylated-chitosan nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Qilu; Zhai, Maolin; Peng, Jing; Hao, Yan; Li, Jiuqiang

    2012-09-01

    Carboxymethylated chitosan (CMCts) protected ruthenium nanoparticles (RuNPs) were synthesized by γ-radiation-induced reduction of metal ions at room temperature. The characteristics of RuNPs/CMCts composites prepared under different experimental conditions have been investigated by means of TEM, XPS and TGA. The results indicated that the average size of RuNPs increases as the concentration of precursor decreases. Narrowly distributed nanocomposites have been obtained when low molecular weight CMCts (LM-CMCts, Mn = 4400 Da) was utilized as stabilizer. The TEM images demonstrated the RuNPs prepared in a wide pH range of 4.5-12.3 can be dispersed uniformly in the alkalic CMCts solution for more than 2 months with the average particle sizes of 1.0-3.0 nm. XPS spectrum confirmed the ruthenium ions have been reduced to metal atoms by irradiation. TGA curves indicated that RuNPs/CMCts composites exhibited good thermal stability at temperature less than 200 °C and strong interactions existed between the metal nanoparticles and stabilizer molecules.

  18. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  19. Anisotropic Radiation-Induced Segregation in 316L Austenitic Stainless Steel with Grain Boundary Character

    SciTech Connect

    Christopher M. Barr; Gregory A. Vetterick; Kinga A. Unocic; Khalid Hattar; Xian-Ming Bai; Mitra L. Taheri

    2014-04-01

    Radiation-induced segregation (RIS) and subsequent depletion of chromium along grain boundaries has been shown to be an important factor in irradiation-assisted stress corrosion cracking in austenitic face-centered cubic (fcc)-based alloys used for nuclear energy systems. A full understanding of RIS requires examination of the effect of the grain boundary character on the segregation process. Understanding how specific grain boundary structures respond under irradiation would assist in developing or designing alloys that are more efficient at removing point defects, or reducing the overall rate of deleterious Cr segregation. This study shows that solute segregation is dependent not only on grain boundary misorientation, but also on the grain boundary plane, as highlighted by markedly different segregation behavior for the __3 incoherent and coherent grain boundaries. The link between RIS and atomistic modeling is also explored through molecular dynamic simulations of the interaction of vacancies at different grain boundary structures through defect energetics in a simple model system. A key insight from the coupled experimental RIS measurements and corresponding defect–grain boundary modeling is that grain boundary–vacancy formation energy may have a critical threshold value related to the major alloying elements’ solute segregation.

  20. The Effects of Fenugreek on Radiation Induced Toxicity for Human Blood T-Cells in Radiotherapy

    PubMed Central

    Tavakoli, Mohamed Bagher; Kiani, Ali; Roayaei, Mahnaz

    2015-01-01

    Many cellular damages either in normal or cancerous tissues are the outcome of molecular events affected by ionizing radiation. T-cells are the most important among immune system agents and are used for biological radiation dose measurement in recommended standard methods. The herbs with immune modulating properties may be useful to reduce the risk of the damages and subsequently the diseases. The T-cells as the most important immune cells being targeted for biological dosimetry of radiation. This study proposes a flowcytometric-method based on fluorescein isothiocyanate- and propidium iodide (PI)-labeled annexin-V to assess apoptosis in blood T-cells after irradiation in both presence and absence of fenugreek extract. T-cells peripheral blood lymphocyte isolated from blood samples of healthy individuals with no irradiated job background. The media of cultured cells was irradiated 1-h after the fenugreek extract was added. The number of apoptotic cells was assessed by annexin-V protocol and multicolor flowcytometry. An obvious variation in apoptotic cells number was observed in presence of fenugreek extract (>80%). The results suggest that fenugreek extract can potentiate the radiation induced apoptosis or radiation toxicity in blood T-cells (P < 0.05). PMID:26284174

  1. Effect of solvents on the radiation-induced polymerization of ethyl and isopropyl vinyl ethers

    SciTech Connect

    Hsieh, W.C.

    1981-01-01

    The effect of solvents on the radiation-induced cationic polymerization of ethyl and isopropyl vinyl ethers (EVE and IPVE, respectively) was investigated. EVE and IPVE polymerizations were carried out in bulk and in solution under superdry conditions in which polar impurities, especially water, have been reduced to negligible levels. This was accomplished by means of a sodium mirror technique using joint free baked out glass equipment and high vacuum. Plots of the monomer conversions and irradiation times were obtained for EVE and IPVE polymerizations in bulk and in benzene solution at constant monomer concentrations. The monomer concentration dependence of the polymerization rate was studied for EVE polymerization in bulk and in benzene, diethlyl ether, diglyme and methylene chloride, and for IPVE polymerization in bulk and in benzene. Solvent effect on the estimated propagating rate constants was examined for EVE and IPVE polymerization in bulk and in solution. The effect of temperature on the polymerization rate was also investigated for EVE polymerization in bulk ad in benzene, diethyl and diisopropyl ethers, methylene chloride and nitromethane, and for IPVE ploymerization in bulk and in benzene.

  2. Lack of EC-SOD in the Microenvironment Impacts Radiation-Induced Changes in Neurogenesis

    PubMed Central

    Rola, Radoslaw; Zou, Yani; Huang, Ting-Ting; Fishman, Kelly; Baure, Jennifer; Rosi, Susanna; Milliken, Heather; Limoli, Charles L.; Fike, John R.

    2007-01-01

    Ionizing irradiation results in significant alterations in hippocampal neurogenesis that are associated with cognitive impairments. Such effects are influenced, in part, by alterations in the microenvironment within which the neurogenic cells exist. One important factor that may affect neurogenesis is oxidative stress, and this study was done to determine if and how the extracellular isoform of superoxide dismutase (SOD3, EC-SOD) mediated radiation-induced alterations in neurogenic cells. Wild type (WT) and EC-SOD knock out (KO) mice were irradiated with 5 Gy and acute (8–48 hr) cellular changes and long-term changes in neurogenesis were quantified. Acute radiation responses were not different between genotypes suggesting that the absence of EC-SOD did not influence mechanisms responsible for acute cell death after irradiation. On the other hand, the extent of neurogenesis was decreased by 39% in non-irradiated KO mice relative to WT controls. In contrast, while neurogenesis was decreased by nearly 85% in WT mice after irradiation, virtually no reduction in neurogenesis was observed in KO mice. These findings show that after irradiation, an environment lacking EC-SOD is much more permissive in the context of hippocampal neurogenesis. This finding may have a major impact in developing strategies to reduce cognitive impairment after cranial irradiation. PMID:17382195

  3. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice

    PubMed Central

    Jeong, Bae Kwon; Song, Jin Ho; Jeong, Hojin; Choi, Hoon Sik; Jung, Jung Hwa; Hahm, Jong Ryeal; Woo, Seung Hoon; Jung, Myeong Hee; Choi, Bong-Hoi; Kim, Jin Hyun; Kang, Ki Mun

    2016-01-01

    Purpose Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and Methods Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappa B and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death. PMID:26943777

  4. Biology and Mucosal Immunity to Myxozoans

    PubMed Central

    Gómez, Daniela; Bartholomew, Jerri; Sunyer, J. Oriol

    2014-01-01

    Myxozoans are among the most abundant parasites in nature. Their life cycles involve two hosts: an invertebrate, usually an annelid, and a vertebrate, usually a fish. They affect fish species in their natural habitats but also constitute a menace for fish aquaculture. Using different strategies they are able to parasitize and cause damage in multiple organs, including mucosal tissues, which they use also as portals of entry. In fish, the main mucosal sites include the intestine, skin and gills. Recently the finding of a specific mucosal immunoglobulin in teleost (IgT), analogous to mammalian IgA, and the capacity of fish to develop a specific mucosal immune response against different pathogens, has highlighted the importance of studying immune responses at mucosal sites. In this review, we describe the major biological characteristics of myxozoan parasites and present the data available regarding immune responses for species that infect mucosal sites. As models for mucosal immunity we review the responses to Enteromyxum spp. and Ceratomyxa shasta, both of which parasitize the intestine. The immune response at the skin and gills is also described, as these mucosal tissues are used by myxozoans as attaching surfaces and portal of entry, and some species also parasitize these sites. Finally, the development of immunoprophylactic strategies is discussed. PMID:23994774

  5. Vaccination Strategies for Mucosal Immune Responses

    PubMed Central

    Ogra, Pearay L.; Faden, Howard; Welliver, Robert C.

    2001-01-01

    Mucosal administration of vaccines is an important approach to the induction of appropriate immune responses to microbial and other environmental antigens in systemic sites and peripheral blood as well as in most external mucosal surfaces. The development of specific antibody- or T-cell-mediated immunologic responses and the induction of mucosally induced systemic immunologic hyporesponsiveness (oral or mucosal tolerance) depend on complex sets of immunologic events, including the nature of the antigenic stimulation of specialized lymphoid structures in the host, antigen-induced activation of different populations of regulatory T cells (Th1 versus Th2), and the expression of proinflammatory and immunoregulatory cytokines. Availability of mucosal vaccines will provide a painless approach to deliver large numbers of vaccine antigens for human immunization. Currently, an average infant will receive 20 to 25 percutaneous injections for vaccination against different childhood infections by 18 months of age. It should be possible to develop for human use effective, nonliving, recombinant, replicating, transgenic, and microbial vector- or plant-based mucosal vaccines to prevent infections. Based on the experience with many dietary antigens, it is also possible to manipulate the mucosal immune system to induce systemic tolerance against environmental, dietary, and possibly other autoantigens associated with allergic and autoimmune disorders. Mucosal immunity offers new strategies to induce protective immune responses against a variety of infectious agents. Such immunization may also provide new prophylactic or therapeutic avenues in the control of autoimmune diseases in humans. PMID:11292646

  6. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  7. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry

    SciTech Connect

    Miller, John H.; Jin, Shuangshuang; Morgan, William F.; Yang, Austin; Wan, Yunhu; Aypar, Umut; Peters, Jonathan S.; Springer, David L.

    2008-06-01

    Radiation-induced genome instability (RIGI) is a response to radiation exposure in which the progeny of surviving cells exhibit increased frequency of chromosomal changes many generations after the initial insult. Persistently elevated oxidative stress accompanying RIGI and the ability of free-radical scavengers, given before irradiation, to reduce the incidence of instability suggest that radiation induced alterations to mitochondrial function likely play a role in RIGI. To further elucidate this mechanism, we performed high-throughput quantitative mass spectrometry on samples enriched in mitochondrial proteins from three chromosomally-unstable GM10115 Chinese-hamster-ovary cell lines and their stable parental cell line. Out of several hundred identified proteins, sufficient data were collected on 74 mitochondrial proteins to test for statistically significant differences in their abundance between unstable and stable cell lines. Each of the unstable cell lines showed a distinct profile of statistically-significant differential abundant mitochondrial proteins. The LS-12 cell line was characterized by 8 downregulated proteins, whereas the CS-9 cell line exhibited 5 distinct up-regulated proteins. The unstable 115 cell line had two down-regulated proteins, one of which was also downregulated in LS-12, and one up-regulated protein relative to stable parental cells. The mitochondrial protein profiles for LS-12 and C-9 provide further evidence that mitochondrial dysfunction is involved in the genome instability of these cell lines.

  8. Radiation-Induced Microvascular Injury as a Mechanism of Salivary Gland Hypofunction and Potential Target for Radioprotectors.

    PubMed

    Mizrachi, Aviram; Cotrim, Ana P; Katabi, Nora; Mitchell, James B; Verheij, Marcel; Haimovitz-Friedman, Adriana

    2016-08-01

    Radiation therapy is commonly used to treat patients with head and neck squamous cell carcinoma (HNSCC). One of the major side effects of radiotherapy is injury to the salivary glands (SG), which is thought to be mediated by microvascular dysfunction leading to permanent xerostomia. The goal of this study was to elucidate the mechanism of radiation-induced microvasculature damage and its impact on SG function. We measured bovine aortic endothelial cell (BAEC) apoptosis and ceramide production in response to 5 Gy irradiation, either alone or with reactive oxygen species (ROS) scavengers. We then investigated the effect of a single 15 Gy radiation dose on murine SG function. BAECs exposed to 5 Gy underwent apoptosis with increased ceramide production, both prevented by ROS scavengers. Among the 15 Gy irradiated mice, there was considerable weight loss, alopecia and SG hypofunction manifested by reduced saliva production and lower lysozyme levels. All of these effects, except for the lysozyme levels, were prevented by pretreatment with ROS scavengers. Microvessel density was significantly lower in the SG of irradiated mice compared to the control group, and this effect was significantly attenuated by pretreatment with Tempol. This study demonstrates that radiation-induced SG hypofunction is to a large extent mediated by microvascular dysfunction involving ceramide and ROS generation. These findings strongly suggest that ROS scavengers may serve as potential radioprotectors of SG function in patients undergoing radiotherapy for HNSCC. PMID:27459704

  9. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  10. Image-based modeling of radiation-induced foci

    NASA Astrophysics Data System (ADS)

    Costes, Sylvain; Cucinotta, Francis A.; Ponomarev, Artem; Barcellos-Hoff, Mary Helen; Chen, James; Chou, William; Gascard, Philippe

    Several proteins involved in the response to DNA double strand breaks (DSB) form microscopically visible nuclear domains, or foci, after exposure to ionizing radiation. Radiation-induced foci (RIF) are believed to be located where DNA damage occurs. To test this assumption, we used Monte Carlo simulations to predict the spatial distribution of DSB in human nuclei exposed to high or low-LET radiation. We then compared these predictions to the distribution patterns of three DNA damage sensing proteins, i.e. 53BP1, phosphorylated ATM and γH2AX in human mammary epithelial. The probability to induce DSB can be derived from DNA fragment data measured experimentally by pulsed-field gel electrophoresis. We first used this probability in Monte Carlo simulations to predict DSB locations in synthetic nuclei geometrically described by a complete set of human chromosomes, taking into account microscope optics from real experiments. Simulations showed a very good agreement for high-LET, predicting 0.7 foci/µm along the path of a 1 GeV/amu Fe particle against measurement of 0.69 to 0.82 foci/µm for various RIF 5 min following exposure (LET 150 keV/µm). On the other hand, discrepancies were shown in foci frequency for low-LET, with measurements 20One drawback using a theoretical model for the nucleus is that it assumes a simplistic and static pattern for DNA densities. However DNA damage pattern is highly correlated to DNA density pattern (i.e. the more DNA, the more likely to have a break). Therefore, we generalized our Monte Carlo approach to real microscope images, assuming pixel intensity of DAPI in the nucleus was directly proportional to the amount of DNA in that pixel. With such approach we could predict DNA damage pattern in real images on a per nucleus basis. Since energy is randomly deposited along high-LET particle paths, RIF along these paths should also be randomly distributed. As expected, simulations produced DNA-weighted random (Poisson) distributions. In

  11. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    SciTech Connect

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  12. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice

    PubMed Central

    Wang, Yan-Yang; Zhang, Cui-Ying; Ma, Ya-Qiong; He, Zhi-Xu; Zhe, Hong; Zhou, Shu-Feng

    2015-01-01

    The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson’s trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI. PMID:26124639

  13. Respiratory mucosal permeability in asthma

    SciTech Connect

    Elwood, R.K.; Kennedy, S.; Belzberg, A.; Hogg, J.C.; Pare, P.D.

    1983-09-01

    The permeability of respiratory mucosa to technetium-labeled diethylenetriamine pentacetic acid (/sup 99m/Tc-DTPA) was measured in 10 clinically stable chronic asthmatics and the results were compared with those in 9 nonasthmatic control subjects. Nonspecific bronchial reactivity was measured using methacholine, and the PC20 was calculated. The intrapulmonary distribution and dose of the inhaled /sup 99m/Tc-DTPA was determined by a gamma camera and the half-life of the aerosolized label in the lung was calculated. The accumulation of radioactivity in the blood was monitored and a permeability index was calculated at 10, 25, and 60 min after aerosolization. Despite marked differences in airway reactivity, no differences in either parameter of permeability could be detected between the asthmatics and the control group. It is concluded that clinically stable asthmatics do not demonstrate increase mucosal permeability to small solutes when compared with normal subjects.

  14. Mucosal exposure to antigen: cause or cure of type 1 diabetes?

    PubMed

    Fousteri, Georgia; von Herrath, Matthias; Bresson, Damien

    2007-04-01

    The human gut offers more than 200 m2 of mucosal surface, where direct interactions between the immune system and foreign antigens take place to eliminate pathogens or induce immune tolerance toward food antigens or normal gut flora. Therefore, mucosally administered antigens can induce tolerance under certain circumstances. In autoimmune diabetes, mucosal vaccination with autoantigens elicits some efficacy in restoring tolerance in mice, but it never succeeded in humans. Furthermore, in some instances autoimmunity can be precipitated upon oral or intranasal autoantigen administration. Therefore, it is difficult to predict the effect of mucosal vaccination on autoimmunity and much effort should be put into establishing better assays to reduce the risk for possible adverse events in humans and enable a rapid and smooth translation. PMID:17425912

  15. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    SciTech Connect

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  16. Blueberry anthocyanins ameliorate radiation-induced lung injury through the protein kinase RNA-activated pathway.

    PubMed

    Liu, Yunen; Tan, Dehong; Tong, Changci; Zhang, Yubiao; Xu, Ying; Liu, Xinwei; Gao, Yan; Hou, Mingxiao

    2015-12-01

    The purpose of this study was to explore the effect of blueberry anthocyanins (BA) on radiation-induced lung injury and investigate the mechanism of action. Seven days after BA(20 and 80 mg/kg/d)administration, 6 weeks old male Sprague-Dawley rats rats were irradiated by LEKTA precise linear accelerator at a single dose of 20 Gy only once. and the rats were continuously treated with BA for 4 weeks. Moreover, human pulmonary alveolar epithelial cells (HPAEpiC) were transfected with either control-siRNA or siRNA targeting protein kinase R (PKR). Cells were then irradiated and treated with 75 μg/mL BA for 72 h. The results showed that BA significantly ameliorated radiation-induced lung inflammation, lung collagen deposition, apoptosis and PKR expression and activation. In vitro, BA significantly protected cells from radiation-induced cell death through modulating expression of Bcl-2, Bax and Caspase-3. Suppression of PKR by siRNA resulted in ablation of BA protection on radiation-induced cell death and modulation of anti-apoptotic and pro-apoptotic proteins, as well as Caspase-3 expression. These findings suggest that BA is effective in ameliorating radiation-induced lung injury, likely through the PKR signaling pathway. PMID:26551926

  17. Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Sugiyama, K.

    2013-11-01

    An influence of radiation-induced damage on hydrogen isotope retention and transport in a bulk tungsten (W), dense nano-structured W coatings and Eurofer was investigated under well-defined laboratory conditions. Radiation-induced defects in W materials and Eurofer were created by irradiation with 20 MeV W ions. Following the damage production, samples were exposed to low-energy deuterium plasma. The deuterium (D) retention in each sample was subsequently measured by nuclear reaction analysis (NRA) for the depth profiling up to 6 μm. It was shown that the D retention at radiation-induced damage is almost equivalent for different W grades after irradiation at high enough fluence. The kinetic of D migration and trapping in damaged area as well as recovery of radiation-induced damage were investigated by loading at different temperatures. It was shown that deuterium retention in tungsten in fusion environment will be dominated by radiation-induced effect in a wide range of investigated temperatures, namely, from room temperature to 1100 K. Whereas displacement damage produced in Eurofer has less pronounced effect on the deuterium accumulation.

  18. Treatment-induced mucositis: an old problem with new remedies.

    PubMed Central

    Symonds, R. P.

    1998-01-01

    Mucositis may be a painful, debilitating, dose-limiting side-effect of both chemotherapy and radiotherapy for which there is no widely accepted prophylaxis or effective treatment. The basis of management is pain relief, prevention of dehydration and adequate nutrition. When tested vigorously, most antiseptic mouthwashes and anti-ulcer agents are ineffective. Simple mechanical cleansing by saline is the most effective traditional measure. A variety of new agents are effective. Granulocyte macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) act outwith the haemopoeitic system and can reduce mucositis, but the best schedule, dosage and method of administration is not known or which is the best growth factor to prevent this side-effect. A placebo-controlled randomized trial of antibiotic pastilles has shown a significant reduction in mucositis and weight loss during radiotherapy for head and neck cancer. Another method to reduce radiation effects in normal tissue is to stimulate cells to divide before radiotherapy by silver nitrate or interleukin 1. These methods may be particularly effective when given along with hyperfractionated radiation treatment such as CHART. PMID:9635851

  19. Critical Roles of Intestinal Epithelial Vitamin D Receptor Signaling in Controlling Gut Mucosal Inflammation

    PubMed Central

    Li, Yan Chun; Chen, Yunzi; Du, Jie

    2015-01-01

    Although vitamin D receptor (VDR) is highly expressed in the intestine, the role of VDR signaling in the gut is not fully understood. Our recent studies unveil a regulatory circuit that centers gut epithelial VDR as a key molecule in the control of mucosal inflammation and colitis development. On the one hand, intestinal epithelial VDR signaling protects the integrity of the mucosal barrier by inhibiting inflammation-induced epithelial cell apoptosis. This barrier-protecting, anti-colitic activity is independent of the non-epithelial immune VDR actions. A healthy and intact mucosal barrier prevents bacterial invasion and thus reduces mucosal inflammation. On the other hand, inflammation in turn down-regulates epithelial VDR expression by inducing VDR-targeting microRNA-346, thus compromising mucosal barrier functions. Consistently, colonic epithelial VDR levels are markedly reduced in patients with inflammatory bowel diseases or in experimental colitis models, whereas vitamin D analog therapy that ameliorates colitis up-regulates epithelial VDR. Thus, gut epithelial VDR signaling appears to play an essential role in controlling mucosal inflammation and thus could be a useful therapeutic target in the management of inflammatory bowel diseases. PMID:25603468

  20. Inhibition of the development of radiation-induced leukemia in mice by reduction of food intake

    SciTech Connect

    Gross, L.; Dreyfuss, Y.

    1986-10-01

    We have reported previously that the incidence of tumors induced in Sprague-Dawley rats by total-body gamma-ray irradiation can be considerably reduced by restriction of food intake (Gross, L. and Dreyfuss, Y. (1984) Proc. Natl. Acad. Sci. USA 81, 7596-7598). In experiments reported here we investigated the influence of reduced food intake on the development of radiation-induced leukemia in C/sub 3/H(f) mice. The incidence of spontaneous leukemia in mice of this strain does not exceed 0.5%, but it can be considerably increased by total-body x-irradiation. In our study, two groups of C/sub 3/H(f) mice were submitted to fractionated total-body gamma-irradiation (150 rads, five times at weekly intervals; 1 rad = 0.01 gray). The first group received a full ad lib diet (4.5-5.4 g of Purina Rodent Lab Chow pellets per day, each). In this group 31 out of 58 females (53.4%) and 24 out of 50 males (48%) developed leukemia at an average age of 8 months. In the second group, consisting of sisters and brothers of the first group, and submitted to the same gamma-irradiation but receiving a restricted diet (2 g of Purina Lab Chow pellets each, followed by 3 g on alternate days), only 2 out of 55 females (3.6%), and 1 out of 36 males (2.8%), developed leukemia at an average age of 9 and 12 months, respectively. Leukemia in both groups was predominantly of the lymphatic or lymphoblastic form, the leukemic cells infiltrating most organs, particularly the thymus, mesenteric and peripheral lymph nodes, spleen, liver, kidneys, and bone marrow; in most instances the peripheral blood was also leukemic.

  1. Palliation of radiation-related mucositis

    SciTech Connect

    Rothwell, B.R.; Spektor, W.S.

    1990-01-01

    Oral mucositis associated with head and neck radiotherapy can substantially hinder completion of cancer therapy. Alleviation of this often severe stomatitis can provide enhanced patient comfort and facilitate appropriate care. A double-blind format was used in a pilot project to measure, against a control rinse, the effectiveness of an oral rinse consisting of hydrocortisone, nystatin, tetracycline, and diphenhydramine in controlling radiation-related mucositis. A combination of clinical evaluation and patient responses to a questionnaire was used to judge the results of the topical medications. Patients using the experimental medication developed less mucositis than did patients in the control group.

  2. Oral mucositis. A complication of radiotherapy

    SciTech Connect

    Rider, C.A. )

    1990-11-01

    Oral mucositis is a complication of head and neck radiotherapy. It is understood what causes the inflammation and what biological tissue changes occur, however, a definite cure for oral mucositis has not yet been found. Supportive treatments, analgesics, antimicrobials and anti-inflammatory agents have been prescribed, none of which has been a thorough measure of treatment. An effective cure for oral mucositis is still in the midst of scientific research. In the interim local palliative treatments will help to alleviate the patients', debilitating symptoms.

  3. Alteration of the Redox State with Reactive Oxygen Species for 5-Fluorouracil-Induced Oral Mucositis in Hamsters

    PubMed Central

    Wada-Takahashi, Satoko; Takahashi, Shun-suke; Lee, Masaichi Chang-il

    2013-01-01

    Oral mucositis is often induced in patients receiving cancer chemotherapy treatment. It has been reported that oral mucositis can reduce quality of life, as well as increasing the incidence of mortality. The participation of reactive oxygen species (ROS) in the pathogenesis of oral mucositis is well known, but no report has actually demonstrated the presence of ROS. Thus, the purpose of this study was thus to demonstrate the involvement of ROS and the alteration of the redox state in oral mucositis using an in vivo L-band electron spin resonance (ESR) technique. An oral mucositis animal model induced by treatment of 5-fluorouracil with 10% acetic acid in hamster cheek pouch was used. Lipid peroxidation was measured as the level of malondialdehyde determined by the thiobarbituric acid reaction. The rate constants of the signal decay of nitroxyl compounds using in vivo L-band ESR were calculated from the signal decay curves. Firstly, we established the oral mucositis animal model induced by treatment of 5-fluorouracil with acetic acid in hamster cheek pouch. An increased level of lipid peroxidation in oral mucositis was found by measuring malondialdehyde using isolated hamster cheek pouch ulcer. In addition, as a result of in vivo L-band ESR measurements using our model animals, the decay rate constants of carbamoyl-PROXYL, which is a reagent for detecting the redox balance in tissue, were decreased. These results suggest that a redox imbalance might occur by excessive generation of ROS at an early stage of oral mucositis and the consumption of large quantities of antioxidants including glutathione in the locality of oral mucositis. These findings support the presence of ROS involved in the pathogenesis of oral mucositis with anti-cancer therapy, and is useful for the development of novel therapies drugs for oral mucositis. PMID:24376587

  4. Effect of Prophylactic Low Level Laser Therapy on Oral Mucositis: A Systematic Review and Meta-Analysis

    PubMed Central

    Oberoi, Sapna; Zamperlini–Netto, Gabriele; Beyene, Joseph; Treister, Nathaniel S.; Sung, Lillian

    2014-01-01

    Background Objective was to determine whether prophylactic low level laser therapy (LLLT) reduces the risk of severe mucositis as compared to placebo or no therapy. Methods MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials were searched until February 2014 for randomized controlled trials (RCTs) comparing prophylactic LLLT with placebo or no therapy in patients with cancer or undergoing hematopoietic stem cell transplantation (HSCT). All analyses used random effects models. Results Eighteen RCTs (1144 patients) were included. Prophylactic LLLT reduced the overall risk of severe mucositis (risk ratio (RR) 0.37, 95% confidence interval (CI) 0.20 to 0.67; P = 0.001). LLLT also reduced the following outcomes when compared to placebo/no therapy: severe mucositis at the time of anticipated maximal mucositis (RR 0.34, 95% CI 0.20 to 0.59), overall mean grade of mucositis (standardized mean difference −1.49, 95% CI −2.02 to −0.95), duration of severe mucositis (weighted mean difference −5.32, 95% CI −9.45 to −1.19) and incidence of severe pain (RR 0.26, 95% CI 0.18 to 0.37). Conclusion Prophylactic LLLT reduced severe mucositis and pain in patients with cancer and HSCT recipients. Future research should identify the optimal characteristics of LLLT and determine feasibility in the clinical setting. PMID:25198431

  5. Genetic background influences loss of heterozygosity patterns in radiation-induced mouse thymic lymphoma

    PubMed Central

    Hang, Michael; Huang, Yurong; Snijders, Antoine M.; Mao, Jian-Hua

    2015-01-01

    Previous studies have revealed that p53 heterozygous (p53+/−) mice are extremely susceptible to radiation-induced tumorigenesis. To investigate whether genetic background influences radiation induced tumor susceptibility, we crossed p53+/− 129/Sv mice with genetically diverse strains to generate p53+/− F1 hybrids. The results showed that genetic background had a profound impact on tumor latency after exposure to gamma radiation, while the tumor spectrum did not change. We further characterized the thymic lymphomas that arose in the p53+/− mice by genome-wide loss of heterozygosity (LOH) analyses and found that genetic background strongly influenced the frequency of LOH and the loss of which parental allele on different chromosomes. Further research is needed to identify which genetic variations control the LOH patterns in radiation-induced thymic lymphomas and to evaluate its relevance to human cancers. PMID:25932465

  6. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour.

    PubMed

    Di Marco, J; Kaci, R; Orcel, P; Nizard, R; Laredo, J-D

    2016-02-01

    Radiation-induced sarcoma is a long-term complication of radiation therapy. The most common secondary neoplasia is the undifferentiated pleomorphic sarcoma, which is usually described in the deep soft tissue of the trunk or extremities. Radiation-induced sarcomas have a poor prognosis. An early diagnosis and management are needed to improve the survival rate of such patients. We presently report a case of a radiation-induced undifferentiated pleomorphic sarcoma of the left gluteus maximus muscle, which developed 25 years after an initial diagnosis of aggressive fibromatosis and 21 years after a tumour recurrence. This case study illustrates the risk of developing a sarcoma in a radiation field and the need for long-term follow-up after radiation therapy. Unnecessary radiation therapy, in particular in the case of benign conditions in young patients, should be avoided. PMID:26725422

  7. Radiation-induced genomic instability and its implications for radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Huang, Lei; Snyder, Andrew R.; Morgan, William F.

    2003-01-01

    Radiation-induced genomic instability is characterized by an increased rate of genetic alterations including cytogenetic rearrangements, mutations, gene amplifications, transformation and cell death in the progeny of irradiated cells multiple generations after the initial insult. Chromosomal rearrangements are the best-characterized end point of radiation-induced genomic instability, and many of the rearrangements described are similar to those found in human cancers. Chromosome breakage syndromes are defined by chromosome instability, and individuals with these diseases are cancer prone. Consequently, chromosomal instability as a phenotype may underlie some fraction of those changes leading to cancer. Here we attempt to relate current knowledge regarding radiation-induced chromosome instability with the emerging molecular information on the chromosome breakage syndromes. The goal is to understand how genetic and epigenetic factors might influence the onset of chromosome instability and the role of chromosomal instability in carcinogenesis.

  8. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  9. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  10. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  11. Gamma radiation-induced blue shift of resonance peaks of Bragg gratings in pure silica fibres

    NASA Astrophysics Data System (ADS)

    Faustov, A. V.; Gusarov, A. I.; Mégret, P.; Wuilpart, M.; Kinet, D.; Zhukov, A. V.; Novikov, S. G.; Svetukhin, V. V.; Fotiadi, A. A.

    2016-02-01

    We report the first observation of a significant gamma radiation-induced blue shift of the reflection/transmission peak of fibre Bragg gratings inscribed into pure-silica core fibres via multiphoton absorption of femtosecond pulses. At a total dose of ~100 kGy, the shift is ~20 pm. The observed effect is attributable to the ionising radiation-induced decrease in the density of the silica glass when the rate of colour centre formation is slow. We present results of experimental measurements that provide the key parameters of the dynamics of the gratings for remote dosimetry and temperature sensing.

  12. Growth hormone used to control intractable bleeding caused by radiation-induced gastritis

    PubMed Central

    Zhang, Liang; Xia, Wen-Jie; Zhang, Zheng-Sen; Lu, Xin-Liang

    2015-01-01

    Intractable bleeding caused by radiation-induced gastritis is rare. We describe a 69-year-old man with intractable hemorrhagic gastritis induced by postoperative radiotherapy for the treatment of esophageal carcinoma. Although anti-secretory therapy with or without octreotide was initiated for hemostasis over three months, melena still occurred off and on, and the patient required blood transfusions to maintain stable hemoglobin. Finally growth hormone was used in the treatment of hemorrhage for two weeks, and hemostasis was successfully achieved. This is the first report that growth hormone has been used to control intractable bleeding caused by radiation-induced gastritis. PMID:26309374

  13. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation.

    PubMed

    Guha, C; Sharma, A; Gupta, S; Alfieri, A; Gorla, G R; Gagandeep, S; Sokhi, R; Roy-Chowdhury, N; Tanaka, K E; Vikram, B; Roy-Chowdhury, J

    1999-12-01

    Hepatic tumors often recur in the liver after surgical resection. Postoperative radiotherapy (RT) could improve survival, but curative RT may induce delayed life-threatening radiation-induced liver damage. Because RT inhibits liver regeneration, we hypothesized that unirradiated, transplanted hepatocytes would proliferate preferentially in a partially resected and irradiated liver, providing metabolic support. We subjected F344 rats to hepatic RT and partial hepatectomy with/without a single intrasplenic, syngeneic hepatocyte transplantation. Hepatocyte transplantation ameliorated radiation-induced liver damage and improved survival of rats receiving RT after partial hepatectomy. We further demonstrated that transplanted hepatocytes extensively repopulate and function in a heavily irradiated rat liver. PMID:10606225

  14. Antimicrobial fabric adsorbed iodine produced by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Aoki, Shoji; Fujiwara, Kunio; Sugo, Takanobu; Suzuki, Koichi

    2013-03-01

    Antimicrobial fabric was synthesized by radiation-induced graft polymerization of N-vinyl pyrrolidone onto polyolefine nonwoven fabric and subsequent adsorption of iodine. In response of the huge request for the antimicrobial material applied to face masks for swine flu in 2009, operation procedure of continuous radiation-induced graft polymerization apparatus was improved. The improved grafting production per week increased 3.8 times compared to the production by former operation procedure. Shipped antimicrobial fabric had reached 130,000 m2 from June until December, 2009.

  15. [A case of prednisolone therapy for radiation-induced hemorrhagic cystitis].

    PubMed

    Yanagi, Masato; Nishimura, Taiji; Kurita, Susumu; Lee, Chorsu; Kondo, Yukihiro; Yamazaki, Keiichi

    2011-05-01

    Hemorrhagic cystitis resulting from radiation to pelvic visceral malignant lesions often might be incurable and there have been no established definitive treatment. We experienced a case with severe radiation-induced hemorrhagic cystitis refractory to conventional therapy. The treatment with oral administration of prednisolone was performed and obtained a successful result. Gross hematuria disappeared in 2 weeks in this case. This experience suggested that oral administration of prednisolone could be considered the treatment for patients with radiation-induced hemorrhagic cystitis when usual treatments including transurethral electro-coagulation are unsuccessful. PMID:21846069

  16. Detection of radiation-induced hydrocarbons in baked sponged cake prepared with irradiated liquid egg

    NASA Astrophysics Data System (ADS)

    Schulzki, G.; Spiegelberg, A.; Bögl, K. W.; Schreiber, G. A.

    1995-02-01

    For identification of irradiated food, radiation-induced volatile hydrocarbons (HC) are determined by gas chromatography in the non-polar fraction of fat. However, in complex food matrices the detection is often disturbed by fat-associated compounds. On-line coupling of high performance liquid chromatography (LC) and gas chromatography (GC) is very efficient to remove such compounds from the HC fraction. The high sensitivity of this fast and efficient technique is demonstrated by the example of detection of radiation-induced HC in fat isolated from baked sponge cake which had been prepared with irradiated liquid egg.

  17. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  18. The effect of 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation induced DNA double strand damage and repair in V79 cells.

    PubMed Central

    Sigdestad, C. P.; Treacy, S. H.; Knapp, L. A.; Grdina, D. J.

    1987-01-01

    Radiation induced DNA double strand breaks are believed to be important lesions involved in processes related to cell killing, induction of chromosome aberrations and carcinogenesis. This paper reports the effects of the radioprotector 2-[(aminopropyl)amino]ethanethiol (WR-1065) on radiation-induced DNA damage and repair in V79 cells using the neutral elution method performed at pH 7.2 or pH 9.6. WR-1065 (4 mM) was added to the culture medium either 30 minutes prior to and during irradiation with Cobalt-60 gamma rays (for dose response experiments) or during the repair times tested (for DNA rejoining experiments). The results indicate that WR-1065 is an effective protector against the formation of radiation-induced double-strand breaks in DNA as measured using a neutral elution technique at either pH. The protector reduced the strand scission factors by 1.44 and 1.77 in experiments run at pH 9.6 and pH 7.2, respectively. The kinetics of DNA double-strand rejoining were dependent upon the pH at which the neutral elution procedure was performed. Unlike the results obtained with alkaline elution, rejoining of DNA breaks was unaffected by the presence of WR-1065 at either pH. PMID:3606941

  19. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    PubMed

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments. PMID:27144583

  20. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.

    PubMed

    Wang, Hongyan; Wang, Xiang; Chen, Guangnan; Zhang, Xiangming; Tang, Xiaobing; Park, Dongkyoo; Cucinotta, Francis A; Yu, David S; Deng, Xingming; Dynan, William S; Doetsch, Paul W; Wang, Ya

    2014-10-31

    High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy. PMID:25210033

  1. Roles of ROS and PKC-βII in ionizing radiation-induced eNOS activation in human vascular endothelial cells.

    PubMed

    Sakata, Kimimasa; Kondo, Takashi; Mizuno, Natsumi; Shoji, Miki; Yasui, Hironobu; Yamamori, Tohru; Inanami, Osamu; Yokoo, Hiroki; Yoshimura, Naoki; Hattori, Yuichi

    2015-07-01

    Vascular endothelial cells can absorb higher radiation doses than any other tissue in the body, and post-radiation impaired endothelial nitric oxide synthase (eNOS) function may be developed as a potential contributor to the pathogenesis of vascular injury. In this study, we investigated early alterations of eNOS signaling in human umbilical venous endothelial cells (HUVECs) exposed to X-ray radiation. We found that ionizing radiation increased eNOS phosphorylation at Ser-1177 and dephosphorylation at Thr-495 in HUVECs in a dose-dependent (≤ 20 Gy) and time-dependent (6-72 h) manner. The total expression levels of eNOS were unchanged by radiation. Although a transient but significant increase in extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation and a biphasic decline in Akt phosphorylation were observed after irradiation, these inhibitors were without effect on the radiation-induced changes in eNOS phosphorylation. There was an increase in protein kinase C-βII (PKC-βII) expression and the ablation of PKC-βII by small interfering RNA (siRNA) negated the radiation effect on the two eNOS phosphorylation events. Furthermore, when the radiation-induced increase in reactive oxygen species (ROS) generation was prevented by the anti-oxidant N-acetyl-L-cysteine, eNOS Ser-1177 phosphorylation and Thr-495 dephosphorylation in irradiated HUVECs were significantly reduced. However, transfection of PKC-β siRNA did not alter ROS production after irradiation, and NAC failed to block the radiation-induced increase in PKC-βII expression. Taken together, our results suggest that ionizing radiation-induced eNOS activation in human vascular endothelial cells is attributed to both the up-regulation of PKC-βII and the increase in ROS generation which were independent of each other. PMID:25869503

  2. Microbiota and Mucosal Immunity in Amphibians

    PubMed Central

    Colombo, Bruno M.; Scalvenzi, Thibault; Benlamara, Sarah; Pollet, Nicolas

    2015-01-01

    We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota. PMID:25821449

  3. Localized Pemphigus Vegetans without Mucosal Involvement

    PubMed Central

    Jain, VK; Jindal, N; Imchen, S

    2014-01-01

    Pemphigus vegetans is a rare variant of pemphigus vulgaris. A 62-year-old woman presented with erythematous moist vegetative plaque on the left breast and left groin. There was no mucosal involvement. Histopathological and direct immunofluorescence findings were suggestive of pemphigus vegetans. She showed excellent response to oral steroids. Literature is scarcely available on the limited involvement with pemphigus vegetans without mucosal involvement. PMID:24700958

  4. CXC Receptor 1 and 2 and Neutrophil Elastase Inhibitors Alter Radiation-induced Lung Disease in the Mouse

    SciTech Connect

    Fox, Jessica; Haston, Christina K.

    2013-01-01

    Purpose: We previously reported increased numbers of neutrophils to be associated with the development of the radiation-induced lung responses of alveolitis (pneumonitis) and fibrosis in mice. In the present study we investigated whether CXC receptor 1 and 2 antagonism with DF2156A, a small molecule inhibitor of neutrophil chemotaxis, or the neutrophil elastase inhibitor sivelestat decreases the lung response to irradiation. Methods and Materials: KK/HIJ mice received 14 Gy whole-thorax irradiation, and a subset of them received drug treatment 3 times per week from the day of irradiation until they were killed because of respiratory distress symptoms. Results: Irradiated mice receiving sivelestat survived 18% longer than did mice receiving radiation alone (73 vs 60 days for female mice, 91 vs 79 days for male mice), whereas postirradiation survival times did not differ between the group of mice receiving DF2156A and the radiation-only group. The numbers of neutrophils in lung tissue and in bronchoalveolar lavage fluid did not differ among groups of irradiated mice, but they significantly exceeded the levels in unirradiated control mice. The extent of alveolitis, assessed histologically, did not differ between irradiated mice treated with either drug and those receiving radiation alone, when assessed at the end of the experiment, but it was significantly reduced, as were the neutrophil measures, in sivelestat-treated mice at the common kill time of 60 days after irradiation. Mice treated with radiation and DF2156A developed significantly less fibrosis than did mice receiving radiation alone, and this difference was associated with decreased expression of interleukin-13 in lung tissue. Conclusions: We conclude that neutrophil elastase inhibition affects alveolitis and prolongs survival, whereas CXCR1/2 antagonism reduces radiation-induced fibrotic lung disease in mice without affecting the onset of distress.

  5. Phytochemicals for prevention of solar ultraviolet radiation-induced damages.

    PubMed

    Adhami, Vaqar M; Syed, Deeba N; Khan, Naghma; Afaq, Farrukh

    2008-01-01

    While solar light is indispensable for sustenance of life, excessive exposure can cause several skin-related disorders. The UV part of solar radiation, in particular, is linked to disorders ranging from mild inflammatory effects of the skin to as serious as causing several different types of cancers. Changes in lifestyle together with depletion in the atmospheric ozone layer during the last few decades have led to an increase in the incidence of skin cancer. Skin cancers consisting of basal and squamous cell carcinomas are especially linked to the UVB part of solar radiation. Reducing excessive exposure to solar radiation is desirable; however, as this approach is unavoidable, it is suggested that other novel strategies be developed to reduce the effects of solar radiation to skin. One approach to reduce the harmful effects of solar radiation is through the use of phytochemicals, an approach that is popularly known as "Photochemoprotection." In recent years many phytochemicals with potential antioxidant properties have been identified and found to be photoprotective in nature. We describe here some of the most popular phytochemicals being studied that have the potential to reduce the harmful effects associated with solar UV radiation. PMID:18266816

  6. Thermal Injury Lowers the Threshold for Radiation-Induced Neuroinflammation and Cognitive Dysfunction

    PubMed Central

    Cherry, Jonathan D.; Williams, Jacqueline P.; O’Banion, M. Kerry; Olschowka, John A.

    2013-01-01

    The consequences of radiation exposure alone are relatively well understood, but in the wake of events such as the World War II nuclear detonations and accidents such as Chernobyl, other critical factors have emerged that can substantially affect patient outcome. For example, ~70% of radiation victims from Hiroshima and Nagasaki received some sort of additional traumatic injury, the most common being thermal burn. Animal data has shown that the addition of thermal insult to radiation results in increased morbidity and mortality. To explore possible synergism between thermal injury and radiation on brain, C57BL/6J female mice were exposed to either 0 or 5 Gy whole-body gamma irradiation. Irradiation was immediately followed by a 10% total-body surface area full thickness thermal burn. Mice were sacrificed 6 h, 1 week or 6 month post-injury and brains and plasma were harvested for histology, mRNA analysis and cytokine ELISA. Plasma analysis revealed that combined injury synergistically upregulates IL-6 at acute time points. Additionally, at 6 h, combined injury resulted in a greater upregulation of the vascular marker, ICAM-1 and TNF-α mRNA. Enhanced activation of glial cells was also observed by CD68 and Iba1 immunohistochemistry at all time points. Additionally, doublecortin staining at 6 months showed reduced neurogenesis in all injury conditions. Finally, using a novel object recognition test, we observed that only mice with combined injury had significant learning and memory deficits. These results demonstrate that thermal injury lowers the threshold for radiation-induced neuroinflammation and long-term cognitive dysfunction. PMID:24059681

  7. Aloe vera for prevention of radiation-induced dermatitis: a self-controlled clinical trial.

    PubMed

    Haddad, P; Amouzgar-Hashemi, F; Samsami, S; Chinichian, S; Oghabian, M A

    2013-08-01

    To evaluate an Aloe vera lotion for prevention of radiation-induced dermatitis, all patients with a prescription of radiotherapy to a minimum dose of 40 Gy were eligible provided that their treatment area could be divided into two symmetrical halves. Patients were given a lotion of Aloe vera to use on one half of the irradiated area, with no medication to be used on the other half. The grade of dermatitis in each half was recorded weekly until 4 weeks after the end of radiotherapy. The trial enrolled 60 patients (mean age: 52 years; 67% women). Most patients had breast cancer (38%), followed by pelvic (32%), head-and-neck (22%), and other cancers (8%). Field size was 80-320 cm(2) (mean: 177 cm(2)), and the dose of radiotherapy was 40-70 Gy (mean: 54 Gy). Concurrent chemotherapy was administered in 20 patients. From week 4 to week 6 of radiotherapy and then at weeks 2 and 4 after radiotherapy, the mean grade of dermatitis with and without Aloe vera was 0.81 and 1.10 (p < 0.001), 0.96 and 1.28 (p < 0.001), 1.00 and 1.57 (p = 0.006), 0.59 and 0.79 (p = 0.003), and 0.05 and 0.21 (p = 0.002) respectively. Age and radiation field size had a significant effect on the grade of dermatitis. Based on these results, we conclude that the prophylactic use of Aloe vera reduces the intensity of radiationinduced dermatitis. PMID:23904773

  8. Recovery From Radiation-induced Bone Marrow Damage by HSP25 Through Tie2 Signaling

    SciTech Connect

    Lee, Hae-June; Kwon, Hee-Chung; Chung, Hee-Yong; Lee, Yoon-Jin; Lee, Yun-Sil

    2012-09-01

    Purpose: Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Methods and Materials: Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. Results: HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. Conclusions: HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM.

  9. Protection against radiation-induced DNA damage by amino acids: a DFT study.

    PubMed

    Jena, N R; Mishra, P C; Suhai, S

    2009-04-23

    Direct and indirect radiation-induced DNA damage is associated with the formation of radical cations (G(+)) and radical anions (G(-)) of guanine, respectively. Deprotonation of G(+) and dehydrogenation of G(-) generate guanine neutral radical [G(-H)] and guanine anion [G(-H)(-)], respectively. These products are of worrisome concern, as they are involved in reactions that are related to certain lethal diseases. It has been observed that guanyl radicals can be repaired by amino acids having strong reducing properties that are believed to be the residues of DNA-bound proteins such as histones. As a result, repair of G(-H) and G(-H)(-) by the amino acids cysteine and tyrosine has been studied here in detail by density functional theory in both the gas phase and aqueous medium using the polarized continuum and Onsager solvation models of self-consistent reaction field theory. Solvation in aqueous medium using three explicit water molecules was also studied. Four equivalent tautomers of each the above radical and anion that will be formed through proton and hydrogen loss from all of the nitrogen centers of guanine radical cation and guanine radical anion, respectively, were considered in the present study. It was found that in both the gas phase and aqueous medium, normal guanine can be retrieved from its radical-damaged form by a hydrogen-atom-transfer (HT) mechanism. Normal guanine can also be retrieved from its anionic damaged form in both the gas phase and aqueous medium through a two-electron-coupled proton-transfer (TECPT) mechanism or a one-step hydrogen-atom- and electron-transfer (OSHET) mechanism. The present results are discussed in light of the experimental findings. PMID:19334703

  10. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    NASA Astrophysics Data System (ADS)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (p<0.05) from control, both in the absence and presence of BM extract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (p<0.05) in the lymphocytes group treated with 25.0 μEq GA/ml BM extract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  11. Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization

    SciTech Connect

    Tsuneda, Satoshi; Saito, Kyoichi; Misuhara, Hisashi; Sugo, Takanobu

    1995-11-01

    Ion-exchange membranes have been used to concentrate seawater to produce salt as well as to desalinate brackish water to render it potable. Also, the interest in applications of ion-exchange membranes as separators for electrodialytic desalination of bioproducts and separators in hydrogen-oxygen fuel cells has been growing. Novel ion-exchange membranes containing sulfonic acid (SO{sub 3}H) and trimethyl ammonium [N(CH{sub 3}){sub 3}] groups were prepared by a simple method of radiation-induced cografting of sodium styrene sulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 {micro}m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, receptively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 M NaCl solution were 0.25 and 0.85 {Omega} cm{sup 2}, respectively. From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 M NaCl solutions was reduced to 85% comparing with that of the commercial ion-exchange membranes.

  12. Cell Cycle Regulators Guide Mitochondrial Activity in Radiation-Induced Adaptive Response

    PubMed Central

    Alexandrou, Aris T.

    2014-01-01

    Abstract Significance: There are accruing concerns on potential genotoxic agents present in the environment including low-dose ionizing radiation (LDIR) that naturally exists on earth's surface and atmosphere and is frequently used in medical diagnosis and nuclear industry. Although its long-term health risk is being evaluated and remains controversial, LDIR is shown to induce temporary but significant adaptive responses in mammalian cells and animals. The mechanisms guiding the mitochondrial function in LDIR-induced adaptive response represent a unique communication between DNA damage and cellular metabolism. Elucidation of the LDIR-regulated mitochondrial activity may reveal new mechanisms adjusting cellular function to cope with hazardous environmental stress. Recent Advances: Key cell cycle regulators, including Cyclin D1/CDK4 and Cyclin B1/cyclin-dependent kinase 1 (CDK1) complexes, are actively involved in the regulation of mitochondrial functions via phosphorylation of their mitochondrial targets. Accumulating new evidence supports a concept that the Cyclin B1/CDK1 complex acts as a mediator in the cross talk between radiation-induced DNA damage and mitochondrial functions to coordinate cellular responses to low-level genotoxic stresses. Critical Issues: The LDIR-mediated mitochondrial activity via Cyclin B1/CDK1 regulation is an irreplaceable network that is able to harmonize vital cellular functions with adjusted mitochondrial metabolism to enhance cellular homeostasis. Future Directions: Further investigation of the coordinative mechanism that regulates mitochondrial activities in sublethal stress conditions, including LDIR, will reveal new insights of how cells cope with genotoxic injury and will be vital for future targeted therapeutic interventions that reduce environmental injury and cancer risk. Antioxid. Redox Signal. 20, 1463–1480. PMID:24180340

  13. Aloe vera for prevention of radiation-induced dermatitis: a self-controlled clinical trial

    PubMed Central

    Haddad, P.; Amouzgar–Hashemi, F.; Samsami, S.; Chinichian, S.; Oghabian, M.A.

    2013-01-01

    To evaluate an Aloe vera lotion for prevention of radiation-induced dermatitis, all patients with a prescription of radiotherapy to a minimum dose of 40 Gy were eligible provided that their treatment area could be divided into two symmetrical halves. Patients were given a lotion of Aloe vera to use on one half of the irradiated area, with no medication to be used on the other half. The grade of dermatitis in each half was recorded weekly until 4 weeks after the end of radiotherapy. The trial enrolled 60 patients (mean age: 52 years; 67% women). Most patients had breast cancer (38%), followed by pelvic (32%), head-and-neck (22%), and other cancers (8%). Field size was 80–320 cm2 (mean: 177 cm2), and the dose of radiotherapy was 40–70 Gy (mean: 54 Gy). Concurrent chemotherapy was administered in 20 patients. From week 4 to week 6 of radiotherapy and then at weeks 2 and 4 after radiotherapy, the mean grade of dermatitis with and without Aloe vera was 0.81 and 1.10 (p < 0.001), 0.96 and 1.28 (p < 0.001), 1.00 and 1.57 (p = 0.006), 0.59 and 0.79 (p = 0.003), and 0.05 and 0.21 (p = 0.002) respectively. Age and radiation field size had a significant effect on the grade of dermatitis. Based on these results, we conclude that the prophylactic use of Aloe vera reduces the intensity of radiationinduced dermatitis. PMID:23904773

  14. Polaprezinc prevents oral mucositis associated with radiochemotherapy in patients with head and neck cancer.

    PubMed

    Watanabe, Tomoko; Ishihara, Masashi; Matsuura, Katsuhiko; Mizuta, Keisuke; Itoh, Yoshinori

    2010-10-15

    Oral mucositis is frequent but serious adverse event associated with radiotherapy or radiochemotherapy in head and neck cancer severely impairs health-related quality of life, leading to poor prognosis due to discontinuation of the therapy. Although a number of compounds have been tested for prophylaxis of oral mucositis, few of them are satisfactory. We investigated the effect of polaprezinc (zinc L-carnosine), a gastric mucosal protective drug, on radiochemotherapy-induced oral mucositis, pain, xerostomia and taste disturbance in patients with head and neck cancer. Patients were randomly assigned to receive polaprezinc (n = 16) or azulene oral rinse as the control (n = 15). The incidence rates of mucositis, pain, xerostomia and taste disturbance were all markedly lower in polaprezinc group than in control. Moreover, the use of analgesics was significantly (p = 0.003) less frequent and the amount of food intake was significantly (p = 0.002) higher in polaprezinc group than in control. On the other hand, tumor response rate in patients with neoadjuvant radiochemotherapy was not significantly affected by polaprezinc, in which the response rate (complete plus partial response) was 88% for polaprezinc and 92% for control (p = 1.000). Therefore, it is highly assumable that polaprezinc is potentially useful for prevention of oral mucositis and improvement of quality of life without reducing the tumor response. PMID:20104529

  15. Intestinal inflammation and mucosal barrier function.

    PubMed

    Sánchez de Medina, Fermín; Romero-Calvo, Isabel; Mascaraque, Cristina; Martínez-Augustin, Olga

    2014-12-01

    Intestinal mucosal barrier function is the capacity of the intestine to provide adequate containment of luminal microorganisms and molecules while preserving the ability to absorb nutrients. The central element is the epithelial layer, which physically separates the lumen and the internal milieu and is in charge of vectorial transport of ions, nutrients, and other substances. The secretion of mucus-forming mucins, sIgA, and antimicrobial peptides reinforces the mucosal barrier on the extraepithelial side, while a variety of immune cells contributes to mucosal defense in the inner side. Thus, the mucosal barrier is of physical, biochemical, and immune nature. In addition, the microbiota may be viewed as part of this system because of the mutual influence occurring between the host and the luminal microorganisms. Alteration of the mucosal barrier function with accompanying increased permeability and/or bacterial translocation has been linked with a variety of conditions, including inflammatory bowel disease. Genetic and environmental factors may converge to evoke a defective function of the barrier, which in turn may lead to overt inflammation of the intestine as a result of an exacerbated immune reaction toward the microbiota. According to this hypothesis, inflammatory bowel disease may be both precipitated and treated by either stimulation or downregulation of the different elements of the mucosal barrier, with the outcome depending on timing, the cell type affected, and other factors. In this review, we cover briefly the elements of the barrier and their involvement in functional defects and the resulting phenotype. PMID:25222662

  16. Role of bombesin on gut mucosal growth.

    PubMed Central

    Chu, K U; Evers, B M; Ishizuka, J; Townsend, C M; Thompson, J C

    1995-01-01

    OBJECTIVE: The authors examined the effects of exogenous bombesin (BBS) on gut mucosal growth in chow-fed rats and the mucosal regeneration after gut atrophy brought about by feeding an elemental diet and after intestinal injury produced by methotrexate (MTX). SUMMARY BACKGROUND DATA: Bombesin is one of many gastrointestinal peptides implicated in the regulation of gut mucosal growth. Although BBS is known to stimulate growth of normal pancreatic tissue, the trophic effect of BBS on gut mucosa is less clear and its exact role in gut mucosal regeneration and repair is not known. METHODS: Rats were fed a regular chow diet (control) or an elemental diet plus either saline or BBS (10 micrograms/kg). In another experiment, rats fed a chow diet and treated with saline or BBS were given MTX (20 micrograms/kg) or a single intraperitoneal injection. In all experiments, small and large bowel mucosa and pancreas were removed and analyzed for BBS-mediated proliferation. RESULTS: Bombesin produced significant mucosal proliferation of the small bowel at day 14, but not at day 7, in rats fed regular chow. In contrast, BBS treatment for 7 days produced significant proliferation in both the atrophic and injured gut mucosa of rats given elemental diet or MTX. CONCLUSIONS: Bombesin may be an important enterotrophic factor for normal mucosal proliferation and may be clinically beneficial as an agent to restore or maintain gut mucosa during periods of atrophy or injury. PMID:7618976

  17. Mucosal Immunology of HIV Infection

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Veazey, Ronald S.

    2013-01-01

    Summary Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of ‘symbiotic’ intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4+ T-cell responses, binding antibodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Further, immune therapies specifically directed towards boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients. PMID:23772612

  18. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines

    PubMed Central

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  19. Smad2/3-Regulated Expression of DLX2 Is Associated with Radiation-Induced Epithelial-Mesenchymal Transition and Radioresistance of A549 and MDA-MB-231 Human Cancer Cell Lines.

    PubMed

    Choi, Yeo-Jin; Baek, Ga-Young; Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee

    2016-01-01

    The control of radioresistance and metastatic potential of surviving cancer cells is important for improving cancer eradication by radiotheraphy. The distal-less homeobox2 (DLX2) gene encodes for a homeobox transcription factor involved in morphogenesis and its deregulation was found in human solid tumors and hematologic malignancies. Here we investigated the role of DLX2 in association with radiation-induced epithelial to mesenchymal transition (EMT) and stem cell-like properties and its regulation by Smad2/3 signaling in irradiated A549 and MDA-MB-231 human cancer cell lines. In irradiated A549 and MDA-MB-231 cells, EMT was induced as demonstrated by EMT marker expression, phosphorylation of Smad2/3, and migratory and invasive ability. Also, irradiated A549 and MDA-MB-231 cells showed increased cancer stem cells (CSCs) marker. Interestingly, DLX2 was overexpressed upon irradiation. Therefore, we examined the role of DLX2 in radiation-induced EMT and radioresistance. The overexpression of DLX2 alone induced EMT, migration and invasion, and CSC marker expression. The reduced colony-forming ability in irradiated cells was partially restored by DLX2 overexpression. On the other hand, the depletion of DLX2 using si-RNA abolished radiation-induced EMT, CSC marker expression, and phosphorylation of Smad2/3 in irradiated A549 and MDA-MB-231 cells. Also, depletion of DLX2 increased the radiation sensitivity in both cell lines. Moreover, knockdown of Smad2/3, a key activator of TGF-β1 pathway, abrogated the radiation-induced DLX2 expression, indicating that radiation-induced DLX2 expression is dependent on Smad2/3 signaling. These results demonstrated that DLX2 plays a crucial role in radioresistance, radiation-induced EMT and CSC marker expression, and the expression of DLX2 is regulated by Smad2/3 signaling in A549 and MDA-MB-231 cell lines. PMID:26799321

  20. Effect of MPG on radiation-induced odontogenic tissue metaplasia

    SciTech Connect

    Geist, J.R.; Kafrawy, A.H.; Shupe, R.E.

    1988-01-01

    This investigation monitored the effect of 2-mercaptopropionylglycine (MPG) in reducing radiation damage to the tooth-forming tissues. Fifty rats were exposed to x-ray doses of between 3 and 19 Gy directed toward the maxillary incisor germinal centers. Half of the animals were given an injection of MPG before irradiation, while the other rats were injected with saline solution. Administration of MPG did not significantly reduce the frequency of dentinal niche formation relative to the control teeth. The average lengths and percentage depths of the apicoincisal niches were statistically smaller in the groups treated with MPG. Although statistically significant, the mild protective effect of MPG was not clinically important because damage to the irradiated teeth was still extensive.

  1. Radiation-induced radioresistance of mammals and risk assessment

    NASA Astrophysics Data System (ADS)

    Smirnova, O.; Yonezawa, M.

    It is shown experimentally that a preliminary low dose exposure can induce radioresistance in mice in two (early and late) periods after preirradiation. The manifestation of such effects is reduced mortality of pre-exposed specimens after challenge acute irradiation, the reason of the animal death being the hematopoietic subsyndrome of the acute radiation syndrome. Therefore, proceeding from the radiobiological concept of the critical system, the theoretical investigation of the influence of preirradiation on mammalian radiosensitivity is conducted by making use of mathematical models of the vital body system, hematopoiesis. Modeling results make it possible to elucidate the mechanisms of the radioprotection effect of low level priming irradiation on mammals. Specifically, the state of acquired radioresistance in mice is caused by reduced radiosensitivity of lymphopoietic and thrombocytopoietic systems in the early period and by reduced radiosensitivity of granulocytopoietic system in the late period after preirradiation. It is important to emphasize that the evaluations of the duration of the early and late periods of postirradiation radioresistance in mice, carried out on the basis of the modeling and experimental investigations, practically coincide. All this demonstrates the effectiveness of joint modeling and experimental methods in studies and predictions of modification effects of preirradiation on mammalian radiosensitivity. The results obtained show the importance of accounting such effects in radiation risk assessments for cosmonauts and astronauts on long-term missions.

  2. Experimental Study on Radiation Induced Boiling Enhancement for Stainless Steel Plate

    SciTech Connect

    Koji Okamoto; Hiroshi Akiyama; Haruki Madarame; Tomoji Takamasa

    2002-07-01

    The Radiation Induced Boiling Enhancement phenomena (RIBE) were confirmed using the SUS304 foil. The SUS304 with plasma oxidized surface shows higher CHF, i.e., about 20% improvement. While, the natural and mixed gas oxidized surface does not show the boiling enhancement. The RIBE has been highly related to the surface conditions. (authors)

  3. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  4. The radiation-induced changes in rectal mucosa: Hyperfractionated vs. hypofractionated preoperative radiation for rectal cancer

    SciTech Connect

    Starzewski, Jacek J.; Pajak, Jacek T.; Pawelczyk, Iwona; Lange, Dariusz; Golka, Dariusz . E-mail: dargolka@wp.pl; Brzeziska, Monika; Lorenc, Zbigniew

    2006-03-01

    Purpose: The purpose of the study was the qualitative and quantitative evaluation of acute radiation-induced rectal changes in patients who underwent preoperative radiotherapy according to two different irradiation protocols. Patients and Methods: Sixty-eight patients with rectal adenocarcinoma underwent preoperative radiotherapy; 44 and 24 patients underwent hyperfractionated and hypofractionated protocol, respectively. Fifteen patients treated with surgery alone served as a control group. Five basic histopathologic features (meganucleosis, inflammatory infiltrations, eosinophils, mucus secretion, and erosions) and two additional features (mitotic figures and architectural glandular abnormalities) of radiation-induced changes were qualified and quantified. Results: Acute radiation-induced reactions were found in 66 patients. The most common were eosinophilic and plasma-cell inflammatory infiltrations (65 patients), erosions, and decreased mucus secretion (54 patients). Meganucleosis and mitotic figures were more common in patients who underwent hyperfractionated radiotherapy. The least common were the glandular architectural distortions, especially in patients treated with hypofractionated radiotherapy. Statistically significant differences in morphologic parameters studied between groups treated with different irradiation protocols were found. Conclusion: The system of assessment is a valuable tool in the evaluation of radiation-induced changes in the rectal mucosa. A greater intensity of regenerative changes was found in patients treated with hyperfractionated radiotherapy.

  5. P2Y6 Receptor-Mediated Microglial Phagocytosis in Radiation-Induced Brain Injury.

    PubMed

    Xu, Yongteng; Hu, Weihan; Liu, Yimin; Xu, Pengfei; Li, Zichen; Wu, Rong; Shi, Xiaolei; Tang, Yamei

    2016-08-01

    Microglia are the resident immune cells and the professional phagocytic cells of the CNS, showing a multitude of cellular responses after activation. However, how microglial phagocytosis changes and whether it is involved in radiation-induced brain injury remain unknown. In the current study, we found that microglia were activated and microglial phagocytosis was increased by radiation exposure both in cultured microglia in vitro and in mice in vivo. Radiation increased the protein expression of the purinergic receptor P2Y6 receptor (P2Y6R) located on microglia. The selective P2Y6 receptor antagonist MRS2578 suppressed microglial phagocytosis after radiation exposure. Inhibition of microglial phagocytosis increased inhibitory factor Nogo-A and exacerbated radiation-induced neuronal apoptosis and demyelination. We also found that the levels of protein expression for phosphorylated Ras-related C3 botulinum toxin substrate 1 (Rac1) and myosin light chain kinase (MLCK) were elevated, indicating that radiation exposure activated Rac1 and MLCK. The Rac1 inhibitor NSC23766 suppressed expression of MLCK, indicating that the Rac1-MLCK pathway was involved in microglial phagocytosis. Taken together, these findings suggest that the P2Y6 receptor plays a critical role in mediating microglial phagocytosis in radiation-induced brain injury, which might be a potential strategy for therapeutic intervention to alleviate radiation-induced brain injury. PMID:26099306

  6. Radiation induces genomic instability and mammary ductal dysplasia in Atm heterozygous mice

    NASA Technical Reports Server (NTRS)

    Weil, M. M.; Kittrell, F. S.; Yu, Y.; McCarthy, M.; Zabriskie, R. C.; Ullrich, R. L.

    2001-01-01

    Ataxia-telangiectasia (AT) is a genetic syndrome resulting from the inheritance of two defective copies of the ATM gene that includes among its stigmata radiosensitivity and cancer susceptibility. Epidemiological studies have demonstrated that although women with a single defective copy of ATM (AT heterozygotes) appear clinically normal, they may never the less have an increased relative risk of developing breast cancer. Whether they are at increased risk for radiation-induced breast cancer from medical exposures to ionizing radiation is unknown. We have used a murine model of AT to investigate the effect of a single defective Atm allele, the murine homologue of ATM, on the susceptibility of mammary epithelial cells to radiation-induced transformation. Here we report that mammary epithelial cells from irradiated mice with one copy of Atm truncated in the PI-3 kinase domain were susceptible to radiation-induced genomic instability and generated a 10% incidence of dysplastic mammary ducts when transplanted into syngenic recipients, whereas cells from Atm(+/+) mice were stable and formed only normal ducts. Since radiation-induced ductal dysplasia is a precursor to mammary cancer, the results indicate that AT heterozygosity increases susceptibility to radiogenic breast cancer in this murine model system.

  7. Management of late radiation-induced rectal injury after treatment of carcinoma of the uterus

    SciTech Connect

    Allen-Mersh, T.G.; Wilson, E.J.; Hope-Stone, H.F.; Mann, C.V.

    1987-06-01

    Sixty-one of 1418 (4.3 per cent) patients treated with radiation for carcinoma of the uterus from 1963 to 1983 had significant radiation-induced complications of the intestine develop which required a surgical opinion considering further management. Ninety-three per cent of these complications involved the rectum. Florid proctitis resolved within two years of onset in 33 per cent of the patients who were managed conservatively while 22 per cent of the patients died of disseminated disease within the same time period. Surgical treatment was eventually necessary in 39 per cent of the patients who were initially treated conservatively for radiation induced proctitis. Rectal excision with coloanal sleeve anastomosis produced a satisfactory result in eight of 11 patients with severe radiation injury involving the rectum. The incidence of radiation-induced and malignant rectovaginal fistula were similar (1 per cent), but disease-induced symptoms tended to occur earlier after primary treatment (a median of eight months) compared with radiation-induced symptoms (a median of 16 months).

  8. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  9. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  10. Deep Friction Massage in Treatment of Radiation-induced Fibrosis: Rehabilitative Care for Breast Cancer Survivors

    PubMed Central

    Warpenburg, Mary J.

    2014-01-01

    Treatment for invasive breast cancer usually involves some combination of surgery, radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy. For approximately 50% of patients, radiation therapy is a component of the therapies used. As a result, radiation-induced fibrosis is becoming a common and crippling side effect, leading to muscle imbalance with a lessened range of motion as well as pain and dysfunction of the vascular and lymphatic systems. No good estimates are available for how many patients experience complications from radiation. Radiation-induced fibrosis can affect the underlying fascia, muscles, organs, and bones within the primary target field and the larger secondary field that is caused by the scatter effect of radioactive elements. For breast cancer patients, the total radiation field may include the neck, shoulder, axillary, and thoracic muscles and the ribs for both the ipsilateral (cancer-affected) and contralateral sides. This case study indicates that therapy using deep friction massage can affect radiation-induced fibrosis beneficially, particularly in the thoracic muscles and the intercostals (ie, the muscles between the ribs). When delivered in intensive sessions using deep friction techniques, massage has the potential to break down fibrotic tissues, releasing the inflammation and free radicals that are caused by radiation therapy. In the course of the massage, painful and debilitating spasms resulting from fibrosis can be relieved and the progressive nature of the radiation-induced fibrosis interrupted. PMID:26770116

  11. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D R

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800/sup 0/K) Q/sup -1/ measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures.

  12. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    SciTech Connect

    Yannam, Govardhana Rao; Han, Bing; Setoyama, Kentaro; Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  13. Radiation-induced meningioma after treatment for pituitary adenoma: Case report and literature review

    SciTech Connect

    Partington, M.D.; Davis, D.H. )

    1990-02-01

    Radiation-induced meningiomas are becoming increasingly well-recognized. We report a case of a 35-year-old man who developed a suprasellar meningioma 9 years after receiving a radiation dose of 4480 cGy for a pituitary adenoma. The literature is also reviewed. 10 references.

  14. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review

    PubMed Central

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  15. Molecular, Cellular and Functional Effects of Radiation-Induced Brain Injury: A Review.

    PubMed

    Balentova, Sona; Adamkov, Marian

    2015-01-01

    Radiation therapy is the most effective non-surgical treatment of primary brain tumors and metastases. Preclinical studies have provided valuable insights into pathogenesis of radiation-induced injury to the central nervous system. Radiation-induced brain injury can damage neuronal, glial and vascular compartments of the brain and may lead to molecular, cellular and functional changes. Given its central role in memory and adult neurogenesis, the majority of studies have focused on the hippocampus. These findings suggested that hippocampal avoidance in cranial radiotherapy prevents radiation-induced cognitive impairment of patients. However, multiple rodent studies have shown that this problem is more complex. As the radiation-induced cognitive impairment reflects hippocampal and non-hippocampal compartments, it is of critical importance to investigate molecular, cellular and functional modifications in various brain regions as well as their integration at clinically relevant doses and schedules. We here provide a literature overview, including our previously published results, in order to support the translation of preclinical findings to clinical practice, and improve the physical and mental status of patients with brain tumors. PMID:26610477

  16. The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury

    PubMed Central

    Qiu, Xuefeng; Zhang, Shiwei; Zhao, Xiaozhi; Fu, Kai; Guo, Hongqian

    2016-01-01

    This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI. PMID:27051426

  17. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization.

    PubMed

    Meng, Zhen; Gan, Ye-Hua

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. PMID:25770423

  18. Physiology of Hormone Autonomous Tissue Lines Derived From Radiation-Induced Tumors of Arabidopsis thaliana.

    PubMed

    Campell, B R; Town, C D

    1991-11-01

    gamma-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms. (gram fresh weight)(-1) free indoleacetic acid (IAA), 150 nanograms. (gram fresh weight)(-1) ester-conjugated IAA, and 10 to 20 micrograms. (gram fresh weight)(-1) amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms. (gram fresh weight)(-1) of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to

  19. Physiology of Hormone Autonomous Tissue Lines Derived From Radiation-Induced Tumors of Arabidopsis thaliana 1

    PubMed Central

    Campell, Bruce R.; Town, Christopher D.

    1991-01-01

    γ-Radiation-induced tumors of Arabidopsis thaliana L. have been produced as a novel approach to isolation of genes that regulate plant development. Tumors excised from irradiated plants are hormone autonomous in culture and have been maintained on hormone-free medium for up to 4 years. Five tumor tissue lines having different morphologies and growth rates were analyzed for auxin, cytokinin, and 1-aminocyclopropane-1-carboxylic acid (ACC) content, ethylene production, and response to exogenous growth regulators. Normal tissues and two crown gall tissue lines were analyzed for comparison. Rosettes and whole seedlings each contained approximately 30 nanograms· (gram fresh weight)−1 free indoleacetic acid (IAA), 150 nanograms· (gram fresh weight)−1 ester-conjugated IAA, and 10 to 20 micrograms· (gram fresh weight)−1 amide-conjugated IAA. The crown gall lines contained similar amounts of free and ester-conjugated IAA but less amide conjugates. Whereas three of the radiation-induced tumor lines had IAA profiles similar to normal tissues, one line had 10- to 100-fold more free IAA and three- to 10-fold less amide-conjugated IAA. The fifth line had normal free IAA levels but more conjugated IAA than control tissues. Whole seedlings contained approximately 2 nanograms· (gram fresh weight)−1 of both zeatin riboside and isopentenyladenosine. The crown gall lines had 100- to 1000-fold higher levels of each cytokinin. In contrast, the three radiation-induced tumor lines analyzed contained cytokinin levels similar to the control tissue. The radiation-induced tumor tissues produced very little ethylene, although each contained relatively high levels of ACC. Normal callus contained similar amounts of ACC but produced several times more ethylene than the radiation-induced tumor lines. Each of the radiation-induced tumor tissues displayed a unique set of responses to exogenously supplied growth regulators. Only one tumor line showed the same response as normal callus to

  20. [Radiation-induced damage of mitochondrial genome and its role in long-term effects of irradiation].

    PubMed

    Berogovskaia, N N; Savich, A V

    1994-01-01

    The role of mt-genome mutations in radiation-induced carcinogenesis has been hypothesized. The data on radiation chemistry of nucleic acids has been used to evaluate mutagenic effect of carcinogenic doses of ionizing radiation. The assumptions about the ways of biological augmentation of primary radiation-induced lesions in mt-genome has been given. PMID:8069366

  1. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  2. On the mechanism of radiation-induced emesis: The role of serotonin

    SciTech Connect

    Scarantino, C.W.; Ornitz, R.D.; Hoffman, L.G.

    1994-11-15

    The aim of this study was to determine the mechanism of action of radiation-induced emesis by determining the incidence of radiation-induced emesis following hemibody irradiation; the effects of specific antiemetics especially ondansetron, a 5-hydroxytryptamine receptor antagonist, and to determine the relationship between radiation-induced emesis and serotonin (5-hydroxytryptamine) through its active metabolite, 5-hydroxyindoleacetic acid (5-HIAA). Forty-one patients received 53 hemibody treatments of 5-8 Gy following intravenous hydration. The patients were divided into three groups according to prehemibody irradiation treatment: Group A: no pretreatment antiemetics, 30 patients; Group B: nonondansetron antiemetics (metoclopramide, dexamethasone, prochlorperazine), ten patients; and Group C: ondansetron, 13 patient. The incidence of radiation-induced emesis was determined prehemibody irradiation or baseline and at 1 h posthemibody irradiation in 38 patients and the results expressed as the percent change in 5-HIAA (ng/ug creatinine). The incidence of radiation-induced emesis was 82% (14/17) following upper/mid hemibody irradiation and 15% (2/11) following lower hemibody irradiation in Group A; 50% (3/6) and 25% (1/4) following upper/mid and lower hemibody irradiation respectively, in Group B/; and 0% (p/13) after upper/mid hemibody irradiation in Group C. The incidence of emesis was significantly different (p<0.001) between the patients of Group A and C who received upper/mid hemibody irradiation. The percent change in 5-HIAA excretion following upper/mid hemibody irradiation were greatest in Group A and smallest in Group C (p<0.002). The degree of change following lower hemibody irradiation (15% incidence of emesis) in Group A was lower than upper/mid hemibody irradiation of the same group. 17 refs., 3 figs., 2 tabs.

  3. Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction

    PubMed Central

    Acharya, Munjal M.; Baulch, Janet E.; Lusardi, Theresa A.; Allen, Barrett. D.; Chmielewski, Nicole N.; Baddour, Al Anoud D.; Limoli, Charles L.; Boison, Detlev

    2016-01-01

    Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered

  4. Journal of Nuclear Materials - Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    SciTech Connect

    Jiao, Zhijie; Busby, Jeremy T; Was, Gary S; Jiao, Zhijie

    2010-01-01

    Radiation-induced segregation in ferritic martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni Si Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures. 2010 Elsevier B.V. All rights reserved

  5. Targeting the Renin–Angiotensin System Combined With an Antioxidant Is Highly Effective in Mitigating Radiation-Induced Lung Damage

    SciTech Connect

    Mahmood, Javed; Jelveh, Salomeh; Zaidi, Asif; Doctrow, Susan R.; Medhora, Meetha; Hill, Richard P.

    2014-07-15

    Purpose: To investigate the outcome of suppression of the renin angiotensin system using captopril combined with an antioxidant (Eukarion [EUK]-207) for mitigation of radiation-induced lung damage in rats. Methods and Materials: The thoracic cavity of female Sprague-Dawley rats was irradiated with a single dose of 11 Gy. Treatment with captopril at a dose of 40 mg/kg/d in drinking water and EUK-207 given by subcutaneous injection (8 mg/kg daily) was started 1 week after irradiation (PI) and continuing until 14 weeks PI. Breathing rate was monitored until the rats were killed at 32 weeks PI, when lung fibrosis was assessed by lung hydroxyproline content. Lung levels of the cytokine transforming growth factor-β1 and macrophage activation were analyzed by immunohistochemistry. Oxidative DNA damage was assessed by 8-hydroxy-2-deoxyguanosine levels, and lipid peroxidation was measured by a T-BARS assay. Results: The increase in breathing rate in the irradiated rats was significantly reduced by the drug treatments. The drug treatment also significantly decreased the hydroxyproline content, 8-hydroxy-2-deoxyguanosine and malondialdehyde levels, and levels of activated macrophages and the cytokine transforming growth factor-β1 at 32 weeks. Almost complete mitigation of these radiation effects was observed by combining captopril and EUK-207. Conclusion: Captopril and EUK-207 can provide mitigation of radiation-induced lung damage out to at least 32 weeks PI after treatment given 1-14 weeks PI. Overall the combination of captopril and EUK-207 was more effective than the individual drugs used alone.

  6. Radiation-Induced Damage to Microstructure of Parotid Gland: Evaluation Using High-Resolution Magnetic Resonance Imaging

    SciTech Connect

    Kan, Tomoko; Kodani, Kazuhiko; Michimoto, Koichi; Fujii, Shinya; Ogawa, Toshihide

    2010-07-15

    Purpose: To elucidate the radiation-induced damage to the microstructure of the parotid gland using high-resolution magnetic resonance imaging. Methods and Materials: High-resolution magnetic resonance imaging of the parotid gland was performed before radiotherapy (RT) and during the RT period or {<=}3 weeks after RT completion for 12 head-and-neck cancer patients using a 1.5-T scanner with a microscopy coil. The maximal cross-sectional area of the gland was evaluated, and changes in the internal architecture of the gland were assessed both visually and quantitatively. Results: Magnetic resonance images were obtained at a median parotid gland dose of 36 Gy (range, 11-64). According to the quantitative analysis, the maximal cross-sectional area of the gland was reduced, the width of the main duct was narrowed, and the intensity ratio of the main duct lumen to background was significantly decreased after RT (p <.0001). According to the visual assessment, the width of the main duct tended to narrow and the contrast of the duct lumen tended to be decreased, but no significant differences were noted. The visibility of the duct branches was unclear in 10 patients (p = .039), and the septum became dense in 11 patients (p = .006) after RT. Conclusion: High-resolution magnetic resonance imaging is a noninvasive method of evaluating radiation-induced changes to the internal architecture of the parotid gland. Morphologic changes in the irradiated parotid gland were demonstrated during the RT course even when a relatively small dose was delivered to the gland.

  7. Quantitative proteomic analysis of mitochondrial proteins reveals prosurvival mechanisms in the perpetuation of radiation-induced genomic instability

    PubMed Central

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.

    2016-01-01

    Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability. PMID:22569412

  8. Protective effect of an antithyroid compound against γ-radiation-induced damage in human colon cancer cells.

    PubMed

    Perona, Marina; Dagrosa, Maria A; Pagotto, Romina; Casal, Mariana; Pignataro, Omar; Pisarev, Mario A; Juvenal, Guillermo J

    2014-08-01

    We have previously reported the radioprotective effect of propylthiouracil (PTU) on thyroid cells. The aim of the present study was to analyze whether tumor cells and normal cells demonstrate the same response to PTU. Human colon carcinoma cells were irradiated with γ-irradiation with or without PTU. We evaluated the clonogenic survival, intracellular reactive oxygen species levels, catalase, superoxide dismutase and glutathione peroxidase activities, and apoptosis by nuclear cell morphology and caspase-3 activity assays. Cyclic AMP (cAMP) levels were measured by radioimmunoassay. PTU treatment increased surviving cell fraction at 2 Gy (SF2) from 56.9 ± 3.6 in controls to 75.0 ± 3.5 (p < 0.05) and diminished radiation-induced apoptosis. In addition, we observed that the level of antioxidant enzymes' activity was increased in cells treated with PTU. Moreover, pretreatment with PTU increased intracellular levels of cAMP. Forskolin (p < 0.01) and dibutyryl cAMP (p < 0.05) mimicked the effect of PTU on SF2. Co-treatment with H89, an inhibitor of protein kinase A, abolished the radioprotective effect of PTU. PTU reduces the toxicity of ionizing radiation by increasing cAMP levels and also possibly through a reduction in apoptosis levels and in radiation-induced oxidative stress damage. We therefore conclude that PTU protects both normal and cancer cells during exposure to radiation in conditions mimicking the radiotherapy. PMID:24811726

  9. Effect of radiation-induced segregation on void nucleation

    SciTech Connect

    Si-Ahmed, A.; Wolfer, W.G.

    1982-01-01

    The effect of segregation on void nucleation is investigated utilizing previous results for the capture efficiency of coated void. First, it is shown that any segregation, whether or not it leads to actual precipitation, leads to a modification of the bias factors for any sink. Small increases of either the lattice parameters or the elastic moduli result in reduced interstitial bias factors. Second, segregations to void embryos not only changes their capture efficiencies but also the surface energy. The effect of these changes on the void nucleation rate is studied in quantitative terms. When the segregation to voids results in an increase of the local lattice parameters by 0.4% or an increase of the shear modulus by 3%, the ultimate void nucleation rate is reached. Further increases no longer enhance void nucleation. Void nucleation without segregation effects would only be possible if the dislocation bias exceeds 50%. With segregation, void nucleation is not strongly dependent on the dislocation bias.

  10. Prospects for use of interleukin-12 as a mucosal adjuvant for vaccination of humans to protect against respiratory pneumococcal infection.

    PubMed

    Wright, A K A; Briles, D E; Metzger, D W; Gordon, S B

    2008-09-01

    Mucosal vaccination against pneumococcal disease offers potential protection against otitis media, pneumonia and invasive disease, including providing herd benefit by reducing pathogen carriage. The major obstacle, however, remains the lack of a suitable adjuvant for use in humans. Animal models have demonstrated success of interleukin-12 (IL-12) as an adjuvant for mucosal vaccines using recombinant pneumococcal protein antigens. This review examines the biology of the IL-12 cytokine family, the toxicity of IL-12 in human studies and suggests approaches by which IL-12 could be developed as a mucosal adjuvant with pneumococcal protein based vaccines, for use in humans. PMID:18602438

  11. Radiation-induced tumor neoantigens: imaging and therapeutic implications

    PubMed Central

    Corso, Christopher D; Ali, Arif N; Diaz, Roberto

    2011-01-01

    Exposure of tumor cells to ionizing radiation (IR) is widely known to induce a number of cellular changes. One way that IR can affect tumor cells is through the development of neoantigens which are new molecules that tumor cells express at the cell membrane following some insult or change to the cell. There have been numerous reports in the literature of changes in both tumor and tumor vasculature cell surface molecule expression following treatment with IR. The usefulness of neoantigens for imaging and therapeutic applications lies in the fact that they are differentially expressed on the surface of irradiated tumor cells to a greater extent than on normal tissues. This differential expression provides a mechanism by which tumor cells can be “marked” by radiation for further targeting. Drug delivery vehicles or imaging agents conjugated to ligands that recognize and interact with the neoantigens can help to improve tumor-specific targeting and reduce systemic toxicity with cancer drugs. This article provides a review of the molecules that have been reported to be expressed on the surface of tumor cells in response to IR either in vivo or in vitro. Additionally, we provide a discussion of some of the methods used in the identification of these antigens and applications for their use in drug delivery and imaging. PMID:21969260

  12. Radiation-induced motility alterations in medulloblastoma cells.

    PubMed

    Rieken, Stefan; Rieber, Juliane; Brons, Stephan; Habermehl, Daniel; Rief, Harald; Orschiedt, Lena; Lindel, Katja; Weber, Klaus J; Debus, Jürgen; Combs, Stephanie E

    2015-05-01

    Photon irradiation has been repeatedly suspected of increasing tumor cell motility and promoting locoregional recurrence of disease. This study was set up to analyse possible mechanisms underlying the potentially radiation-altered motility in medulloblastoma cells. Medulloblastoma cell lines D425 and Med8A were analyzed in migration and adhesion experiments with and without photon and carbon ion irradiation. Expression of integrins was determined by quantitative FACS analysis. Matrix metalloproteinase concentrations within cell culture supernatants were investigated by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using Student's t-test. Both photon and carbon ion irradiation significantly reduced chemotactic medulloblastoma cell transmigration through 8-μm pore size membranes, while simultaneously increasing adherence to fibronectin- and collagen I- and IV-coated surfaces. Correspondingly, both photon and carbon ion irradiation downregulate soluble MMP9 concentrations, while upregulating cell surface expression of proadhesive extracellular matrix protein-binding integrin α5. The observed phenotype of radiation-altered motility is more pronounced following carbon ion than photon irradiation. Both photon and (even more so) carbon ion irradiation are effective in inhibiting medulloblastoma cell migration through downregulation of matrix metalloproteinase 9 and upregulation of proadhesive cell surface integrin α5, which lead to increased cell adherence to extracellular matrix proteins. PMID:25736470

  13. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    SciTech Connect

    Nambiar, Dhanya K.; Rajamani, Paulraj; Singh, Rana P.

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  14. Impaired T-cell survival promotes mucosal inflammatory disease in SHIP1-deficient mice.

    PubMed

    Park, M Y; Srivastava, N; Sudan, R; Viernes, D R; Chisholm, J D; Engelman, R W; Kerr, W G

    2014-11-01

    T cells have a critical role in immune surveillance at mucosal surfaces. SHIP1(-/-) mice succumb to mucosal inflammatory disease that afflicts the lung and small intestine (SI). The basis of this condition has not been defined. Here we show that SHIP1 is required for the normal persistence and survival of T cells in mucosal tissues. We find that CD4 and CD8 effector T cells are reduced; however, Treg cells are increased in the SI and lungs of SHIP1(-/-) and CD4CreSHIP(flox/flox) mice. Furthermore, a subset of T cells in the SI of SHIP1(-/-) mice are FasL(+) and are more susceptible to extrinsic cell death. Mechanistic analyses showed that SHIP1 associates with the death receptor CD95/Fas and treatment with a Caspase 8 inhibitor prevents SHIP1 inhibitor-mediated T-cell death. Notably, mucosal inflammation in SHIP1(-/-) mice is reduced by treatment with a Caspase 8 inhibitor. We also find that the incidence of Crohn's disease (CD) and pneumonia is significantly increased in mice with dual T and myeloid lineage SHIP1 deletion but not in single lineage-deleted mice. Thus, by promoting survival of protective T cells, thereby preventing an inflammatory myeloid response, SHIP1 maintains an appropriate balance of innate immune function at mucosal surfaces necessary for immune homeostasis. PMID:24781051

  15. Opportunities for nutritional amelioration of radiation-induced cellular damage.

    PubMed

    Turner, Nancy D; Braby, Leslie A; Ford, John; Lupton, Joanne R

    2002-10-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations. PMID:12361786

  16. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  17. Chromatin structure and ionizing-radiation-induced chromosome aberrations

    SciTech Connect

    Muehlmann-Diaz, M.C.

    1993-01-01

    The possible influence of chromatic structure or activity on chromosomal radiosensitivity was studied. A cell line was isolated which contained some 10[sup 5] copies of an amplified plasmid in a single large mosquito artificial chromosome (MAC). This chromosome was hypersensitive to DNase I. Its radiosensitivity was some three fold greater than normal mosquito chromosomes in the same cell. In cultured human cells irradiated during G[sub 0], the initial breakage frequency in chromosome 4, 19 and the euchromatic and heterochromatic portions of the Y chromosome were measured over a wide range of doses by inducing Premature Chromosome Condensation (PCC) immediately after irradiation with Cs-137 gamma rays. No evidence was seen that Y heterochromatin or large fragments of it remained unbroken. The only significant deviation from the expected initial breakage frequency per Gy per unit length of chromosome was that observed for the euchromatic portion of the Y chromosome, with breakage nearly twice that expected. The development of aberrations involving X and Y chromosomes at the first mitosis after irradation was also studied. Normal female cells sustained about twice the frequency of aberrations involving X chromosomes for a dose of 7.3 Gy than the corresponding male cells. Fibroblasts from individuals with supernumerary X chromosomes did not show any further increase in X aberrations for this dos. The frequency of aberrations involving the heterochromatic portion of the long arm of the Y chromosome was about what would be expected for a similar length of autosome, but the euchromatic portion of the Y was about 3 times more radiosensitive per unit length. 5-Azacytidine treatment of cultured human female fibroblasts or fibroblasts from a 49,XXXXY individual, reduced the methylation of cytosine residues in DNA, and resulted in an increased chromosomal radiosensitivity in general, but it did not increase the frequency of aberrations involving the X chromosomes.

  18. Role of Interleukin-1 in Radiation-Induced Cardiomyopathy

    PubMed Central

    Mezzaroma, Eleonora; Mikkelsen, Ross B; Toldo, Stefano; Mauro, Adolfo G; Sharma, Khushboo; Marchetti, Carlo; Alam, Asim; Van Tassell, Benjamin W; Gewirtz, David A; Abbate, Antonio

    2015-01-01

    Thoracic X-ray therapy (XRT), used in cancer treatment, is associated with increased risk of heart failure. XRT-mediated injury to the heart induces an inflammatory response leading to cardiomyopathy. The aim of this study was to determine the role of interleukin (IL)-1 in response to XRT injury to the heart and on the cardiomyopathy development in the mouse. Female mice with genetic deletion of the IL-1 receptor type I (IL-1R1 knockout mice [IL-1R1 KO]) and treatment with recombinant human IL-1 receptor antagonist anakinra, 10 mg/kg twice daily for 7 d, were used as independent approaches to determine the role of IL-1. Wild-type (wt) or IL-1R1 KO mice were treated with a single session of XRT (20 or 14 gray [Gy]). Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson’s trichrome was used to assess myocardial fibrosis and pericardial thickening. After 20 Gy, the contractile reserve was impaired in wt mice at d 3, and the LV ejection fraction (EF) was reduced after 4 months when compared with sham-XRT. IL-1R1 KO mice had preserved contractile reserve at 3 d and 4 months and LVEF at 4 months after XRT. Anakinra treatment for 1 d before and 7 d after XRT prevented the impairment in contractile reserve. A significant increase in LV end-diastolic pressure, associated with increased myocardial interstitial fibrosis and pericardial thickening, was observed in wt mice, as well as in IL-1R1 KO–or anakinra-treated mice. In conclusion, induction of IL-1 by XRT mediates the development of some, such as the contractile impairment, but not all aspects of the XRT-induced cardiomyopathy, such as myocardial fibrosis or pericardial thickening. PMID:25822795

  19. SKI2162, an inhibitor of the TGF-β type I receptor (ALK5), inhibits radiation-induced fibrosis in mice.

    PubMed

    Park, Jin-hong; Ryu, Seung-Hee; Choi, Eun Kyung; Ahn, Seung Do; Park, Euisun; Choi, Kyung-Chul; Lee, Sang-wook

    2015-02-28

    Here we demonstrated that SKI2162, a small-molecule inhibitor of the TGF-β type I receptor (ALK5), prevented radiation-induced fibrosis (RIF) in mice. SKI2162 inhibited phosphorylation of Smad and induction of RIF-related genes in vitro. In RIF a mouse model, SKI2162 reduced late skin reactions and leg-contracture without jeopardizing the acute skin reaction. Irradiation of mouse tissue increased COL1A2 mRNA levels, and topical administration of SKI2162 significantly inhibited this effect. Thus, these findings support that SKI2162 has potential value as novel RIF-protective agent, and could be candidate for clinical trials. PMID:25686821

  20. [Direct and indirect mucosal wave imaging techniques].

    PubMed

    Krasnodębska, Paulina; Szkiełkowska, Agata

    2016-04-01

    The vocal folds play a key role in the process of phonation. Cyclical movements of the vocal folds model a space called glottis, what leads to voice formation. The space contains surface between the vocal folds and the inner surface of the arytenoid cartilages. The best indicator of the vocal folds vibratory function is the mucosal wave. The presence and size of the mucosal wave is widely recognized as an indicator of tension and plasticity of vocal folds. It is also essential in the process of creating a proper, resonant voice. In the article, current knowledge of mucosal wave imaging techniques is given. Imaging can be carried out directly and indirectly. Among the direct methods, the following are distinguished: laryngostroboscopy, laryngovideostroboscopy, videokymography and high-speed digital imaging. Indirect methods include: electroglottography, photoglottography and ultrasonography. PMID:27137829

  1. Novel vaccine development strategies for inducing mucosal immunity

    PubMed Central

    Fujkuyama, Yoshiko; Tokuhara, Daisuke; Kataoka, Kosuke; Gilbert, Rebekah S; McGhee, Jerry R; Yuki, Yoshikazu; Kiyono, Hiroshi; Fujihashi, Kohtaro

    2012-01-01

    To develop protective immune responses against mucosal pathogens, the delivery route and adjuvants for vaccination are important. The host, however, strives to maintain mucosal homeostasis by responding to mucosal antigens with tolerance, instead of immune activation. Thus, induction of mucosal immunity through vaccination is a rather difficult task, and potent mucosal adjuvants, vectors or other special delivery systems are often used, especially in the elderly. By taking advantage of the common mucosal immune system, the targeting of mucosal dendritic cells and microfold epithelial cells may facilitate the induction of effective mucosal immunity. Thus, novel routes of immunization and antigen delivery systems also show great potential for the development of effective and safe mucosal vaccines against various pathogens. The purpose of this review is to introduce several recent approaches to induce mucosal immunity to vaccines, with an emphasis on mucosal tissue targeting, new immunization routes and delivery systems. Defining the mechanisms of mucosal vaccines is as important as their efficacy and safety, and in this article, examples of recent approaches, which will likely accelerate progress in mucosal vaccine development, are discussed. PMID:22380827

  2. Morphine mouthwash for the management of oral mucositis in patients with head and neck cancer

    PubMed Central

    Sarvizadeh, Mostafa; Hemati, Simin; Meidani, Mohsen; Ashouri, Moghtada; Roayaei, Mahnaz; Shahsanai, Armindokht

    2015-01-01

    Background: Oral mucositis is a debilitating side effect of cancer treatment for which there is not much successful treatments at yet. We evaluated the effectiveness of topical morphine compared with a routine mouthwash in managing cancer treatment-induced mucositis. Materials and Methods: Thirty head and neck cancer patients with severe mucositis (World Health Organization Grade III or IV) were randomized into the morphine and magic mouthwash groups. Patients received morphine sulfate 2% or magic solution (contained magnesium aluminum hydroxide, viscous lidocaine, and diphenhydramine), 10 ml for every 3 h, six times a day, for 6 days. Both groups received same dietary and oral hygiene instructions and care. Mucositis was graded at baseline and every 3 days after treatment. Patients’ satisfaction and drug effect maintenance were also evaluated. Results: Twenty-eight patients (mean age of 49.5 ± 13.2 years, 63.3% female) completed the trial; 15 in the morphine group and 13 in the magic group. There was a decrease in mucositis severity in both of the morphine (P < 0.001) and magic (P = 0.049) groups. However, at the 6th day, more reduction was observed in mucositis severity in the morphine compared with magic group (P = 0.045). Drug effect maintenance was similar between the two groups, but patients in the morphine group were more satisfied by their treatments than those in the magic group (P = 0.008). Conclusions: Topical morphine is more effective and more satisfactory to patients than the magic mouthwash in reducing severity of cancer treatment-induced oral mucositis. More studies with larger sample size and longer follow-up are required in this regard. PMID:25789270

  3. Effects of chronic nitric oxide synthase inhibition in cold-restraint and ethanol-induced gastric mucosal damage in rats.

    PubMed

    Qiu, B S; Pfeiffer, C J; Cho, C H

    1996-01-01

    Gastric actions of Nw-nitro-1-arginine methyl ester (L-NAME) were investigated in rats, as this agent is a reliable nitric oxide synthase inhibitor L-NAME solutions were placed in subcutaneous osmotic minipumps which continuously released L-NAME at 0.1, 1.0, 10, or 40 mg/kg/day. L-NAME dose and time-dependently enhanced stress-induced gastric ulceration but did not affect mucosal mast cell population. Ulcerogenic actions of L-NAME were reversed by L-arginine but not by D-arginine. Ten L-NAME treatment also enhanced the ethanol-induced gastric mucosal damage, depressed gastric mucosal blood flow but did not alter gastric mucus, secretory volume, or acid output. It is concluded that in the present models, chronic nitric oxide synthase inhibition enhanced ulcerogenesis by decreasing mucosal resistance due to reduced mucosal blood perfusion. This implicates nitric oxide as a mucosal defense factor which acts in part by maintaining mucosal blood flow. PMID:8626050