Science.gov

Sample records for reduced basal atp

  1. Basal Release of ATP: An Autocrine-Paracrine Mechanism for Cell Regulation

    PubMed Central

    Corriden, Ross; Insel, Paul A.

    2011-01-01

    Cells release adenosine triphosphate (ATP), which activates plasma membrane–localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed “the set point”) for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional and evolutionarily conserved, and they provide an economical means for the modulation of cell, tissue, and organismal biology. PMID:20068232

  2. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    NASA Astrophysics Data System (ADS)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  3. Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels

    PubMed Central

    Bartolome, Fernando; Wu, Hsiu-Chuan; Burchell, Victoria S.; Preza, Elisavet; Wray, Selina; Mahoney, Colin J.; Fox, Nick C.; Calvo, Andrea; Canosa, Antonio; Moglia, Cristina; Mandrioli, Jessica; Chiò, Adriano; Orrell, Richard W.; Houlden, Henry; Hardy, John; Abramov, Andrey Y.; Plun-Favreau, Helene

    2013-01-01

    Summary Valosin-containing protein (VCP) is a highly expressed member of the type II AAA+ ATPase family. VCP mutations are the cause of inclusion body myopathy, Paget’s disease of the bone, and frontotemporal dementia (IBMPFD) and they account for 1%–2% of familial amyotrophic lateral sclerosis (ALS). Using fibroblasts from patients carrying three independent pathogenic mutations in the VCP gene, we show that VCP deficiency causes profound mitochondrial uncoupling leading to decreased mitochondrial membrane potential and increased mitochondrial oxygen consumption. This mitochondrial uncoupling results in a significant reduction of cellular ATP production. Decreased ATP levels in VCP-deficient cells lower their energy capacity, making them more vulnerable to high energy-demanding processes such as ischemia. Our findings propose a mechanism by which pathogenic VCP mutations lead to cell death. PMID:23498975

  4. Reduced activity of ATP synthase in mitochondria causes cytoplasmic male sterility in chili pepper.

    PubMed

    Li, Jinjie; Pandeya, Devendra; Jo, Yeong Deuk; Liu, Wing Yee; Kang, Byoung-Cheorl

    2013-04-01

    Cytoplasmic male sterility (CMS) is a maternally inherited trait characterized by the inability to produce functional pollen. The CMS-associated protein Orf507 (reported as Orf456 in previous researches) was previously identified as a candidate gene for mediating male sterility in pepper. Here, we performed yeast two-hybrid analysis to screen for interacting proteins, and found that the ATP synthase 6 kDa subunit containing a mitochondrial signal peptide (MtATP6) specifically interacted with Orf507. In addition, the two proteins were found to be interacted in vivo using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Further functional characterization of Orf507 revealed that the encoded protein is toxic to bacterial cells. Analysis of tissue-specific expression of ATP synthase 6 kDa showed that the transcription level was much lower in anthers of the CMS line than in their wild type counterparts. In CMS plants, ATP synthase activity and content were reduced by more than half compared to that of the normal plants. Taken together, it can be concluded that reduced ATP synthase activity and ATP content might have affected pollen development in CMS plants. Here, we hypothesize that Orf507 might cause MtATP6 to be nonfunctional by changing the latter's conformation or producing an inhibitor that prevents the normal functioning of MtATP6. Thus, further functional analysis of mitochondrial Orf507 will provide insights into the mechanisms underlying CMS in plants. PMID:23274393

  5. ATP-Dependent Binding Cassette Transporter G Family Member 16 Increases Plant Tolerance to Abscisic Acid and Assists in Basal Resistance against Pseudomonas syringae DC30001[W][OPEN

    PubMed Central

    Ji, Hao; Peng, Yanhui; Meckes, Nicole; Allen, Sara; Stewart, C. Neal; Traw, M. Brian

    2014-01-01

    Plants have been shown previously to perceive bacteria on the leaf surface and respond by closing their stomata. The virulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 (PstDC3000) responds by secreting a virulence factor, coronatine, which blocks the functioning of guard cells and forces stomata to reopen. After it is inside the leaf, PstDC3000 has been shown to up-regulate abscisic acid (ABA) signaling and thereby suppress salicylic acid-dependent resistance. Some wild plants exhibit resistance to PstDC3000, but the mechanisms by which they achieve this resistance remain unknown. Here, we used genome-wide association mapping to identify an ATP-dependent binding cassette transporter gene (ATP-dependent binding cassette transporter G family member16) in Arabidopsis (Arabidopsis thaliana) that contributes to wild plant resistance to PstDC3000. Through microarray analysis and β-glucuronidase reporter lines, we showed that the gene is up-regulated by ABA, bacterial infection, and coronatine. We also used a green fluorescent protein fusion protein and found that transporter is more likely to localize on plasma membranes than in cell walls. Transferred DNA insertion lines exhibited consistent defective tolerance of exogenous ABA and reduced resistance to infection by PstDC3000. Our conclusion is that ATP-dependent binding cassette transporter G family member16 is involved in ABA tolerance and contributes to plant resistance against PstDC3000. This is one of the first examples, to our knowledge, of ATP-dependent binding cassette transporter involvement in plant resistance to infection by a bacterial pathogen. It also suggests a possible mechanism by which plants reduce the deleterious effects of ABA hijacking during pathogen attack. Collectively, these results improve our understanding of basal resistance in Arabidopsis and offer unique ABA-related targets for improving the innate resistance of plants to bacterial infection. PMID:25146567

  6. Chronic 5-HT transporter blockade reduces DA signaling to elicit basal ganglia dysfunction.

    PubMed

    Morelli, Emanuela; Moore, Holly; Rebello, Tahilia J; Gray, Neil; Steele, Kelly; Esposito, Ennio; Gingrich, Jay A; Ansorge, Mark S

    2011-11-01

    Serotonin (5-HT)-selective reuptake inhibitors (SSRIs) are widely administered for the treatment of depression, anxiety, and other neuropsychiatric disorders, but response rates are low, and side effects often lead to discontinuation. Side effect profiles suggest that SSRIs inhibit dopaminergic activity, but mechanistic insight remains scarce. Here we show that in mice, chronic 5-HT transporter (5-HTT) blockade during adulthood but not during development impairs basal ganglia-dependent behaviors in a dose-dependent and reversible fashion. Furthermore, chronic 5-HTT blockade reduces striatal dopamine (DA) content and metabolism. A causal relationship between reduced DA signaling and impaired basal ganglia-dependent behavior is indicated by the reversal of behavioral deficits through L-DOPA administration. Our data suggest that augmentation of DA signaling would reduce side effects and increase efficacies of SSRI-based therapy. PMID:22049417

  7. Reducing the uncertainty in projections of future ice shelf basal melting

    NASA Astrophysics Data System (ADS)

    Timmermann, Ralph; Kauker, Frank

    2014-05-01

    Simulations of ice shelf basal melting in future climate scenarios from the IPCC's Fourth Assessment Report (AR4) have revealed a large uncertainty and the potential of a rapidly increasing basal mass loss particularly for the large cold-water ice shelves in the Ross and Weddell Seas. The large spread in model results was traced back to uncertainties in the freshwater budget on the continental shelf, which is governed by sea ice formation. Differences in sea ice formation, in turn, follow the regional differences between the atmospheric heat fluxes imprinted by the climate models. A more recent suite of BRIOS and FESOM model experiments was performed with output from two members of the newer generation of climate models enganged in the IPCC's Fifth Assessment Report (AR5). Comparing simulations forced with output from the AR5/CMIP5 models HadGem2 and MPI-ESM, we find that uncertainties arising from inter-model differences in high latitudes have reduced considerably. Projected heat fluxes and thus sea ice formation over the Southern Ocean continental shelves have converged to an ensemble with a much smaller spread than between the AR4 experiments. For most of the ten larger ice shelves in Antarctica, a gradual (but accelerating) increase of basal melt rates during the 21st century is a robust feature throughout the various realisations. Both with HadGem2 and with MPI-ESM forcing, basal melt rates for Filchner-Ronne Ice Shelf in FESOM increase by a factor of two by the end of the 21st century in the RCP85 scenario. For the smaller, warm-water ice shelves, inter-model differences in ice shelf basal mass loss projections are still slightly larger than differences between the scenarios RCP45 and RCP85; compared to AR4 projections, however, the model-dependent spread has been strongly reduced.

  8. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production.

    PubMed

    Ghanizadeh Kazerouni, Ensiyeh; Franklin, Craig E; Seebacher, Frank

    2016-01-01

    Ultraviolet B radiation (UV-B) can reduce swimming performance by increasing reactive oxygen species (ROS) formation. High concentrations of ROS can damage mitochondria, resulting in reduced ATP production. ROS can also damage muscle proteins, thereby leading to impaired muscle contractile function. We have shown previously that UV-B exposure reduces locomotor performance in mosquitofish (Gambusia holbrooki) without affecting metabolic scope. Our aim was therefore to test whether UV-B influences swimming performance of mosquitofish by ROS-induced damage to muscle proteins without affecting mitochondrial function. In a fully factorial design, we exposed mosquitofish to UV-B and no-UV-B controls in combination with exposure to N-acetylcysteine (NAC) plus no-NAC controls. We used NAC, a precursor of glutathione, as an antioxidant to test whether any effects of UV-B on swimming performance were at least partly due to UV-B-induced ROS. UV-B significantly reduced critical sustained swimming performance and tail beat frequencies, and it increased ROS-induced damage (protein carbonyl concentrations and lipid peroxidation) in muscle. However, UV-B did not affect the activity of sarco-endoplasmic reticulum ATPase (SERCA), an enzyme associated with muscle calcium cycling and muscle relaxation. UV-B did not affect ADP phosphorylation (state 3) rates of mitochondrial respiration, and it did not alter the amount of ATP produced per atom of oxygen consumed (P:O ratio). However, UV-B reduced the mitochondrial respiratory control ratio. Under UV-B exposure, fish treated with NAC showed greater swimming performance and tail beat frequencies, higher glutathione concentrations, and lower protein carbonyl concentrations and lipid peroxidation than untreated fish. Tail beat amplitude was not affected by any treatment. Our results showed, firstly, that the effects of UV-B on locomotor performance were mediated by ROS and, secondly, that reduced swimming performance was not caused by

  9. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain

    PubMed Central

    Cannon, Ronald E.; Peart, John C.; Hawkins, Brian T.; Campos, Christopher R.; Miller, David S.

    2012-01-01

    P-glycoprotein, an ATP-driven drug efflux pump, is a major obstacle to the delivery of small-molecule drugs across the blood-brain barrier and into the CNS. Here we test a unique signaling-based strategy to overcome this obstacle. We used a confocal microscopy-based assay with isolated rat brain capillaries to map a signaling pathway that within minutes abolishes P-glycoprotein transport activity without altering transporter protein expression or tight junction permeability. This pathway encompasses elements of proinflammatory- (TNF-α) and sphingolipid-based signaling. Critical to this pathway was signaling through sphingosine-1-phosphate receptor 1 (S1PR1). In brain capillaries, S1P acted through S1PR1 to rapidly and reversibly reduce P-glycoprotein transport activity. Sphingosine reduced transport by a sphingosine kinase-dependent mechanism. Importantly, fingolimod (FTY720), a S1P analog recently approved for treatment of multiple sclerosis, also rapidly reduced P-glycoprotein activity; similar effects were found with the active, phosphorylated metabolite (FTY720P). We validated these findings in vivo using in situ brain perfusion in rats. Administration of S1P, FTY720, or FTY729P increased brain uptake of three radiolabeled P-glycoprotein substrates, 3H-verapamil (threefold increase), 3H-loperamide (fivefold increase), and 3H-paclitaxel (fivefold increase); blocking S1PR1 abolished this effect. Tight junctional permeability, measured as brain 14C-sucrose accumulation, was not altered. Therefore, targeting signaling through S1PR1 at the blood-brain barrier with the sphingolipid-based drugs, FTY720 or FTY720P, can rapidly and reversibly reduce basal P-glycoprotein activity and thus improve delivery of small-molecule therapeutics to the brain. PMID:22949658

  10. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors.

    PubMed

    Corso, Lucia; Cavallero, Anna; Baroni, Debora; Garbati, Patrizia; Prestipino, Gianfranco; Bisti, Silvia; Nobile, Mario; Picco, Cristiana

    2016-03-01

    P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases. PMID:26739703

  11. Evaluation of an ATP Assay to Quantify Bacterial Attachment to Surfaces in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; Roberson, Luke B.; Roberts, Michael S.

    2010-01-01

    Aim: To develop an assay to quantify the biomass of attached cells and biofilm formed on wetted surfaces in variable-gravity environments. Methods and Results: Liquid cultures of Pseudomonas aeruginosa were exposed to 30-35 brief cycles of hypergravity (< 2-g) followed by free fall (i.e., reduced gravity) equivalent to either lunar-g (i.e., 0.17 normal Earth gravity) or micro-g (i.e., < 0.001 normal Earth gravity) in an aircraft flying a series of parabolas. Over the course of two days of parabolic flight testing, 504 polymer or metal coupons were exposed to a stationary-phase population of P. aeruginosa strain ERC1 at a concentration of 1.0 x 10(exp 5) cells per milliliter. After the final parabola on each flight test day, half of the material coupon samples were treated with either 400 micro-g/L ionic silver fluoride (microgravity-exposed cultures) or 1% formalin (lunar-gravity-exposed cultures). The remaining sample coupons from each flight test day were not treated with a fixative. All samples were returned to the laboratory for analysis within 2 hours of landing, and all biochemical assays were completed within 8 hours of exposure to variable gravity. The intracellular ATP luminescent assay accurately reflected cell physiology compared to both cultivation-based and direct-count microscopy analyses. Cells exposed to variable gravity had more than twice as much intracellular ATP as control cells exposed only to normal Earth gravity.

  12. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand

    PubMed Central

    Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E.; Spurgeon, Harold A.; Sollott, Steven J.; Lakatta, Edward G.

    2011-01-01

    Rationale In sinoatrial node cells (SANC), Ca2+ activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca2+ cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca2+ oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca2+ to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Objective Since a negative feedback mechanism links ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca2+-cAMP/PKA dependent; and (2) due to its feed–forward nature, a decrease in flux through the Ca2+-cAMP/PKA signaling axis will reduce the basal ATP production rate. Methods and Results O2 consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca2+-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r2=0.96), and reduced O2 consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca2+ flux reduced the ATP level. Conclusions Feed-forward basal Ca2+-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca2+-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. PMID:21835182

  13. Anti-ATP synthase autoantibodies from patients with Alzheimer's disease reduce extracellular HDL level.

    PubMed

    Vacirca, Davide; Barbati, Cristiana; Scazzocchio, Beatrice; Masella, Roberta; Rosano, Giuseppe; Malorni, Walter; Ortona, Elena

    2011-01-01

    Aside from being an integral protein involved in the synthesis and hydrolysis of ATP, Ecto-F1-ATPase plays a role in cholesterol homeostasis. We demonstrated the presence of autoantibodies to ecto-F1-ATPase (ASabs) in sera and cerebrospinal fluids from patients with Alzheimer's disease (AD). Herein we show that ASabs, unlike irrelevant antibodies, can increase cellular uptake of HDL, a risk factor for the development of AD, via a mechanism involving the prototypical function of ecto-F1-ATPase: the generation of ADP due to the hydrolysis of ATP. Piceatannol, a specific inhibitor ecto-F1-ATPase, completely hindered these effects. We hypothesize that ASabs could exert a pathogenetic role in AD. PMID:21677380

  14. Combined use of basal insulin analog and acarbose reduces postprandial glucose in patients with uncontrolled type 2 diabetes

    PubMed Central

    Kim, Ji-Hyun; Ahn, Ji-Hyun; Kim, Soo-Kyung; Lee, Dae-Ho; Kim, Hye-Soon; Shon, Ho-Sang; Jeon, Hyun-Jeong; Kim, Tae-Hwa; Cho, Yong-Wook; Kim, Jae-Taek; Han, Sung-Min; Chung, Choon-Hee; Ryu, Ohk-Hyun; Lee, Jae-Min; Lee, Soon-Hee; Kwon, Min-Jeong; Kim, Tae-kyun; Namgoong, Il-Seong; Kim, Eun-Sook; Jung, In-Kyung; Moon, Sung-Dae; Han, Je-Ho; Kim, Chong-Hwa; Cho, Eun-Hee; Kim, Ki-Young; Park, Hee-Baek; Lee, Ki-Sang; Lee, Sung-Woo; Lee, Sang-Cheol; Kang, Cheol-Min; Jeon, Byung-Sook; Song, Min-Seop; Yun, Seung-Baik; Chung, Hyung-Keun; Seong, Jong-Ho; Jeong, Jin-Yi; Cha, Bong-Yun

    2015-01-01

    Aims/Introduction Early initiation of basal insulin therapy is recommended for normalizing fasting blood glucose in type 2 diabetes mellitus. However, basal insulin treatment might not adequately control postprandial glucose levels. The present study evaluated whether the combination of the α-glucosidase inhibitor, acarbose, and basal insulin improved blood glucose control under daily-life treatment conditions in a large sample of Korean patients. Materials and Methods The present study was a multicenter, prospective, observational study under daily-life treatment conditions. A total of 539 patients with type 2 diabetes who were treated with basal insulin and additional acarbose were enrolled and followed up for 20 weeks. Changes in hemoglobin A1c, fasting and postprandial blood glucose were evaluated at baseline and at the end of the observation period. The physician and patient satisfaction of the combination treatment and safety were assessed. Results Hemoglobin A1c decreased by 0.55 ± 1.05% from baseline (P < 0.0001). Fasting and postprandial blood glucose levels were reduced by 0.89 ± 3.79 and 2.59 ± 4.77 mmol/L (both P < 0.0001). The most frequently reported adverse drug reactions were flatulence (0.37%) and abnormal gastrointestinal sounds (0.37%), and all were mild in intensity and transient. In the satisfaction evaluation, 79.0% of physicians and 77.3% of patients were ‘very satisfied’ or ‘satisfied’ with the combined basal insulin and acarbose therapy. Conclusions Combination therapy of basal insulin and acarbose in patients with type 2 diabetes improved glucose control, and had no drug-specific safety concerns, suggesting that the treatment might benefit individuals who cannot control blood glucose with basal insulin alone. PMID:25802730

  15. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel.

    PubMed

    Chi, L; Black, S C; Kuo, P I; Fagbemi, S O; Lucchesi, B R

    1993-02-01

    We investigated the effects of the ATP-dependent K+ channel antagonist glyburide and the ATP-dependent K+ channel agonist pinacidil in a Langendorff-perfused rabbit isolated heart subjected to a period of global hypoxia. A class III antiarrhythmic drug, E-4031, also was studied in this model. These studies aimed to define the mechanism of action of putative profibrillatory actions of pinacidil and the mechanism for the antifibrillatory effect of the class III antiarrhythmic drug, E-4031, in the hypoxic heart. After stabilization and determination of baseline functional parameters under normoxic perfusion conditions (95% O2/5% CO2), hearts were subjected to global hypoxia by switching to a 95% N2/5% CO2 saturated perfusion medium for a period of 12 min. After the hypoxic period, normoxia was re-established by switching to the oxygen-carbon dioxide saturated buffer medium for a period of 40 min. The oxygen tension of the perfusion buffer was reduced from approximately 400 mm Hg to below 50 mm Hg during the hypoxic period. All hearts subjected to hypoxia had reduced function: the left ventricular developed pressure and +/- dP/dt were reduced significantly. Myocardial tissue ATP concentrations were reduced (> 50%) in hearts subjected to hypoxia. Under conditions of hypoxic/reoxygenation and in the presence of a low (2.5 mM) potassium concentration ([K+]0), pinacidil (1.25 microM) facilitated the induction of ventricular fibrillation (80% fibrillation in the presence of pinacidil vs. 20% in the absence of pinacidil). Glyburide (10 microM) and E-4031 (1 and 10 microM) significantly reduced the incidence of ventricular fibrillation associated with pinacidil (20% fibrillation in the presence of hypoxia, pinacidil, and glyburide or 10 microM E-4031). Opening of the ATP-dependent K+ channel by pinacidil under normoxia and low K+ also facilitated the induction of ventricular fibrillation (60% ventricular fibrillation). Pinacidil failed to induce ventricular fibrillation under

  16. Reduced cardiolipin content decreases respiratory chain capacities and increases ATP synthesis yield in the human HepaRG cells.

    PubMed

    Peyta, Laure; Jarnouen, Kathleen; Pinault, Michelle; Guimaraes, Cyrille; Pais de Barros, Jean-Paul; Chevalier, Stephan; Dumas, Jean-François; Maillot, François; Hatch, Grant M; Loyer, Pascal; Servais, Stephane

    2016-04-01

    Cardiolipin (CL) is a unique mitochondrial phospholipid potentially affecting many aspects of mitochondrial function/processes, i.e. energy production through oxidative phosphorylation. Most data focusing on implication of CL content and mitochondrial bioenergetics were performed in yeast or in cellular models of Barth syndrome. Previous work reported that increase in CL content leads to decrease in liver mitochondrial ATP synthesis yield. Therefore the aim of this study was to determine the effects of moderate decrease in CL content on mitochondrial bioenergetics in human hepatocytes. For this purpose, we generated a cardiolipin synthase knockdown (shCLS) in HepaRG hepatoma cells showing bioenergetics features similar to primary human hepatocytes. shCLS cells exhibited a 55% reduction in CLS gene and a 40% decrease in protein expression resulting in a 45% lower content in CL compared to control (shCTL) cells. Oxygen consumption was significantly reduced in shCLS cells compared to shCTL regardless of substrate used and energy state analyzed. Mitochondrial low molecular weight supercomplex content was higher in shCLS cells (+60%) compared to shCTL. Significant fragmentation of the mitochondrial network was observed in shCLS cells compared to shCTL cells. Surprisingly, mitochondrial ATP synthesis was unchanged in shCLS compared to shCTL cells but exhibited a higher ATP:O ratio (+46%) in shCLS cells. Our results suggest that lowered respiratory chain activity induced by moderate reduction in CL content may be due to both destabilization of supercomplexes and mitochondrial network fragmentation. In addition, CL content may regulate mitochondrial ATP synthesis yield. PMID:26768115

  17. Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle

    NASA Technical Reports Server (NTRS)

    Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.

    1992-01-01

    When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.

  18. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    SciTech Connect

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-03-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects.

  19. Vesicular Nucleotide Transporter-Mediated ATP Release Regulates Insulin Secretion

    PubMed Central

    Geisler, Jessica C.; Corbin, Kathryn L.; Li, Qin; Feranchak, Andrew P.; Nunemaker, Craig S.

    2013-01-01

    Extracellular ATP plays a critical role in regulating insulin secretion in pancreatic β cells. The ATP released from insulin secretory vesicles has been proposed to be a major source of extracellular ATP. Currently, the mechanism by which ATP accumulates into insulin secretory granules remains elusive. In this study, the authors identified the expression of a vesicular nucleotide transporter (VNUT) in mouse pancreas, isolated mouse islets, and MIN6 cells, a mouse β cell line. Immunohistochemistry and immunofluorescence revealed that VNUT colocalized extensively with insulin secretory granules. Functional studies showed that suppressing endogenous VNUT expression in β cells by small hairpin RNA knockdown greatly reduced basal- and glucose-induced ATP release. Importantly, knocking down VNUT expression by VNUT small hairpin RNA in MIN6 cells and isolated mouse islets dramatically suppressed basal insulin release and glucose-stimulated insulin secretion (GSIS). Moreover, acute pharmacologic blockade of VNUT with Evans blue, a VNUT antagonist, greatly attenuated GSIS in a dose-dependent manner. Exogenous ATP treatment effectively reversed the insulin secretion defect induced by both VNUT knockdown and functional inhibition, indicating that VNUT-mediated ATP release is essential for maintaining normal insulin secretion. In contrast to VNUT knockdown, overexpression of VNUT in β cells resulted in excessive ATP release and enhanced basal insulin secretion and GSIS. Elevated insulin secretion induced by VNUT overexpression was reversed by pharmacologic inhibition of P2X but not P2Y purinergic receptors. This study reveals VNUT is expressed in pancreatic β cells and plays an essential and novel role in regulating insulin secretion through vesicular ATP release and extracellular purinergic signaling. PMID:23254199

  20. Basal dendritic length is reduced in the rat hippocampus following bilateral vestibular deafferentation.

    PubMed

    Balabhadrapatruni, Sangeeta; Zheng, Yiwen; Napper, Ruth; Smith, Paul F

    2016-05-01

    Some previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients' spatial memory deficits. By contrast, studies in rats have failed to detect any changes in hippocampal volume following bilateral vestibular loss. Therefore, in this study we investigated whether bilateral vestibular deafferentation (BVD) might result in more subtle morphological changes in the rat hippocampus, involving alterations in dendritic intersections, using Golgi staining and Sholl analysis. We found that at 1month following BVD, there was a significant decrease in basal (P⩽0.0001) but not apical dendritic intersections in the CA1 region of the hippocampus compared to sham-operated animals and anaesthetic controls. However, dendritic branching was not significantly affected. These results suggest that the rat hippocampus does undergo subtle morphological changes following bilateral vestibular loss, and that they may be in the form of alterations in dendritic structure. PMID:26976094

  1. Fish oil supplementation reduces cortisol basal levels and perceived stress: a randomized, placebo-controlled trial in abstinent alcoholics.

    PubMed

    Barbadoro, Pamela; Annino, Isidoro; Ponzio, Elisa; Romanelli, Roberto M L; D'Errico, Marcello M; Prospero, Emilia; Minelli, Andrea

    2013-06-01

    Behavioral distress and dysfunctions of hypothalamic-pituitary-adrenocortical (HPA) axis play a central role in alcohol abuse. Omega-3 fatty acids are proposed as having antistress, regulatory effects on HPA responsiveness, but a possible protective role in ethanol addiction is unexplored.A randomized, doubleblind, placebo-controlled trial was performed in male alcoholics undergoing residential rehabilitation program, to evaluate the effects of 3-week supplementation with fish-oil providing eicosapentaenoic (60 mg/day) and docosahexaenoic acid (252 mg/day) on perceived stress/anxiety and HPA activity, assessed by measuring saliva basal cortisol levels at various daytimes (0730 h, 1130 h, 1600 h, 2000 h, and 2400 h) and the acute cortisol response to Trier Social Stress Test.Results showed that in supplemented subjects, before versus after decrease of stress/anxiety ratings was accompanied by reduction of cortisol basal levels throughout the day; no changes were observed in placebo group. At the end of intervention, amplitude, and duration of stress-evoked cortisol response did not differ between groups; however, the peak of cortisol response was temporally anticipated in supplemented subjects. In conclusion, an elevated omega-3 intake may reduce distress symptoms and basal cortisol secretion in abstinent alcoholics, thus providing a valid subsidiary measure to increase the efficacy of rehabilitation programs in ethanol addicts. PMID:23390041

  2. Insights into the Mechanisms of Basal Coordination of Transcription Using a Genome-Reduced Bacterium.

    PubMed

    Junier, Ivan; Unal, E Besray; Yus, Eva; Lloréns-Rico, Verónica; Serrano, Luis

    2016-06-22

    Coordination of transcription in bacteria occurs at supra-operonic scales, but the extent, specificity, and mechanisms of such regulation are poorly understood. Here, we tackle this problem by profiling the transcriptome of the model organism Mycoplasma pneumoniae across 115 growth conditions. We identify three qualitatively different levels of co-expression corresponding to distinct relative orientations and intergenic properties of adjacent genes. We reveal that the degree of co-expression between co-directional adjacent operons, and more generally between genes, is tightly related to their capacity to be transcribed en bloc into the same mRNA. We further show that this genome-wide pervasive transcription of adjacent genes and operons is specifically repressed by DNA regions preferentially bound by RNA polymerases, by intrinsic terminators, and by large intergenic distances. Taken together, our findings suggest that the basal coordination of transcription is mediated by the physical entities and mechanical properties of the transcription process itself, and that operon-like behaviors may strongly vary from condition to condition. PMID:27237741

  3. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive

    PubMed Central

    Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  4. Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive.

    PubMed

    Fiore, Vincenzo G; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J

    2016-01-01

    Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson's disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463

  5. Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand

    PubMed Central

    Yaniv, Yael; Spurgeon, Harold A.; Ziman, Bruce D.; Lyashkov, Alexey E.

    2013-01-01

    The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca2+-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca2+ cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g., in response to β-adrenergic receptor activation, the resultant increase in spontaneous AP firing rate increases the demand for ATP. We hypothesized that an increase of ATP production to match the increased ATP demand is achieved via a direct effect of increased mitochondrial Ca2+ (Ca2+m) and an indirect effect via enhanced Ca2+-cAMP/PKA-CaMKII signaling to mitochondria. To increase ATP demand, single isolated rabbit SANCs were superfused by physiological saline at 35 ± 0.5°C with isoproterenol, or by phosphodiesterase or protein phosphatase inhibition. We measured cytosolic and mitochondrial Ca2+ and flavoprotein fluorescence in single SANC, and we measured cAMP, ATP, and O2 consumption in SANC suspensions. Although the increase in spontaneous AP firing rate was accompanied by an increase in O2 consumption, the ATP level and flavoprotein fluorescence remained constant, indicating that ATP production had increased. Both Ca2+m and cAMP increased concurrently with the increase in AP firing rate. When Ca2+m was reduced by Ru360, the increase in spontaneous AP firing rate in response to isoproterenol was reduced by 25%. Thus, both an increase in Ca2+m and an increase in Ca2+ activated cAMP-PKA-CaMKII signaling regulate the increase in ATP supply to meet ATP demand above the basal level. PMID:23604710

  6. Histone deacetylase (HDAC) Inhibitors Preserve White Matter Structure and Function During Ischemia by Conserving ATP and Reducing Excitotoxicity

    PubMed Central

    Baltan, Selva; Murphy, Sean P.; Danilov, Camelia A.; Bachleda, Amelia; Morrison, Richard S.

    2011-01-01

    The importance of white matter (WM) injury to stroke pathology has been underestimated in experimental animal models and this may have contributed to the failure to translate potential therapeutics into the stroke clinic. Histone deacetylase (HDAC) inhibitors are neuroprotective and also promote neurogenesis. These properties make them ideal candidates for stroke therapy. In a pure WM tract (isolated mouse optic nerve) we show that pan- and Class I specific HDAC inhibitors, administered before or after a period of oxygen and glucose deprivation (OGD), promote functional recovery of axons and preserve WM cellular architecture. This protection correlates with the up-regulation of an astrocyte glutamate transporter, delayed and reduced glutamate accumulation during OGD, preservation of axonal mitochondria and oligodendrocytes, and maintenance of ATP levels. Interestingly, the expression of HDACs 1, 2 and 3 is localized to astrocytes, suggesting that changes in glial cell gene transcription and/or protein acetylation may confer protection to axons. Our findings suggest that a therapeutic opportunity exists for the use of HDAC inhibitors, targeting mitochondrial energy regulation and excitotoxicity in ischemic WM injury. PMID:21411642

  7. Ethanol and Reactive Species Increase Basal Sequence Heterogeneity of Hepatitis C Virus and Produce Variants with Reduced Susceptibility to Antivirals

    PubMed Central

    Seronello, Scott; Montanez, Jessica; Presleigh, Kristen; Barlow, Miriam; Park, Seung Bum; Choi, Jinah

    2011-01-01

    Hepatitis C virus (HCV) exhibits a high level of genetic variability, and variants with reduced susceptibility to antivirals can occur even before treatment begins. In addition, alcohol decreases efficacy of antiviral therapy and increases sequence heterogeneity of HCV RNA but how ethanol affects HCV sequence is unknown. Ethanol metabolism and HCV infection increase the level of reactive species that can alter cell metabolism, modify signaling, and potentially act as mutagen to the viral RNA. Therefore, we investigated whether ethanol and reactive species affected the basal sequence variability of HCV RNA in hepatocytes. Human hepatoma cells supporting a continuous replication of genotype 1b HCV RNA (Con1, AJ242652) were exposed to ethanol, acetaldehyde, hydrogen peroxide, or L-buthionine-S,R-sulfoximine (BSO) that decreases intracellular glutathione as seen in patients. Then, NS5A region was sequenced and compared with genotype 1b HCV sequences in the database. Ethanol and BSO elevated nucleotide and amino acid substitution rates of HCV RNA by 4–18 folds within 48 hrs which were accompanied by oxidative RNA damage. Iron chelator and glutathione ester decreased both RNA damage and mutation rates. Furthermore, infectious HCV and HCV core gene were sufficient to induce oxidative RNA damage even in the absence of ethanol or BSO. Interestingly, the dn/ds ratio and percentage of sites undergoing positive selection increased with ethanol and BSO, resulting in an increased detection of NS5A variants with reduced susceptibility to interferon alpha, cyclosporine, and ribavirin and others implicated in immune tolerance and modulation of viral replication. Therefore, alcohol is likely to synergize with virus-induced oxidative/nitrosative stress to modulate the basal mutation rate of HCV. Positive selection induced by alcohol and reactive species may contribute to antiviral resistance. PMID:22087316

  8. Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study

    PubMed Central

    2012-01-01

    Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system. PMID:23006894

  9. Downregulation of the δ-Subunit Reduces Mitochondrial ATP Synthase Levels, Alters Respiration, and Restricts Growth and Gametophyte Development in Arabidopsis[W][OA

    PubMed Central

    Geisler, Daniela A.; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L.; Fernie, Alisdair R.; Persson, Staffan

    2012-01-01

    The mitochondrial ATP synthase (F1Fo complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded Fo part to the matrix-facing central stalk of F1. We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development. PMID:22805435

  10. Downregulation of the δ-subunit reduces mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte development in Arabidopsis.

    PubMed

    Geisler, Daniela A; Päpke, Carola; Obata, Toshihiro; Nunes-Nesi, Adriano; Matthes, Annemarie; Schneitz, Kay; Maximova, Eugenia; Araújo, Wagner L; Fernie, Alisdair R; Persson, Staffan

    2012-07-01

    The mitochondrial ATP synthase (F(1)F(o) complex) is an evolutionary conserved multimeric protein complex that synthesizes the main bulk of cytosolic ATP, but the regulatory mechanisms of the subunits are only poorly understood in plants. In yeast, the δ-subunit links the membrane-embedded F(o) part to the matrix-facing central stalk of F(1). We used genetic interference and an inhibitor to investigate the molecular function and physiological impact of the δ-subunit in Arabidopsis thaliana. Delta mutants displayed both male and female gametophyte defects. RNA interference of delta resulted in growth retardation, reduced ATP synthase amounts, and increased alternative oxidase capacity and led to specific long-term increases in Ala and Gly levels. By contrast, inhibition of the complex using oligomycin triggered broad metabolic changes, affecting glycolysis and the tricarboxylic acid cycle, and led to a successive induction of transcripts for alternative respiratory pathways and for redox and biotic stress-related transcription factors. We conclude that (1) the δ-subunit is essential for male gametophyte development in Arabidopsis, (2) a disturbance of the ATP synthase appears to lead to an early transition phase and a long-term metabolic steady state, and (3) the observed long-term adjustments in mitochondrial metabolism are linked to reduced growth and deficiencies in gametophyte development. PMID:22805435

  11. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling

    PubMed Central

    Nadjar, Agnes; Layé, Sophie; Leyrolle, Quentin; Gómez-Nicola, Diego; Domercq, María; Pérez-Samartín, Alberto; Sánchez-Zafra, Víctor; Savage, Julie C.; Hui, Chin-Wai; Deudero, Juan J. P.; Brewster, Amy L.; Anderson, Anne E.; Zaldumbide, Laura; Galbarriatu, Lara; Marinas, Ainhoa; Vivanco, Maria dM.; Matute, Carlos; Maletic-Savatic, Mirjana

    2016-01-01

    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance

  12. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling.

    PubMed

    Abiega, Oihane; Beccari, Sol; Diaz-Aparicio, Irune; Nadjar, Agnes; Layé, Sophie; Leyrolle, Quentin; Gómez-Nicola, Diego; Domercq, María; Pérez-Samartín, Alberto; Sánchez-Zafra, Víctor; Paris, Iñaki; Valero, Jorge; Savage, Julie C; Hui, Chin-Wai; Tremblay, Marie-Ève; Deudero, Juan J P; Brewster, Amy L; Anderson, Anne E; Zaldumbide, Laura; Galbarriatu, Lara; Marinas, Ainhoa; Vivanco, Maria dM; Matute, Carlos; Maletic-Savatic, Mirjana; Encinas, Juan M; Sierra, Amanda

    2016-05-01

    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance

  13. Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco.

    PubMed

    Tu, Yayi; Jin, Yongsheng; Ma, Dongyuan; Li, Heng; Zhang, Zhenqian; Dong, Jiangli; Wang, Tao

    2015-01-01

    The photosynthetic rate of virus-infected plants is always reduced. However, the molecular mechanism underlying this phenomenon remains unclear. The helper component-proteinase (HC-Pro) of Potato virus Y (PVY) was found in the chloroplasts of PVY-infected tobacco, indicating some new function of HC-Pro in the chloroplasts. We generated HC-Pro transgenic plants with a transit peptide to target the protein to chloroplast. The HC-Pro transgenic tobacco showed a decreased photosynthetic rate by 25% at the light intensity of 600 μmol m(-2) s(-1). Using a yeast two-hybrid screening assay to search for chloroplast proteins interacting with HC-Pro, we identified that PVY HC-Pro can interact with the chloroplast ATP synthase NtCF1β-subunit. This interaction was confirmed by GST pull-down and co-immunoprecipitation assays. HC-Pro didn't interfere with the activity of assembled ATP synthase in vitro. The HC-Pro/NtCF1β-subunit interaction might affect the assembly of ATP synthase complex. Quantitative western blot and immunogold labeling of the ATP synthase indicated that the amount of ATP synthase complex was decreased in both the HC-Pro transgenic and the PVY-infected tobacco. These results demonstrate that HC-Pro plays an important role in reducing the photosynthetic rate of PVY-infected plants, which is a completely new role of HC-Pro besides its multiple known functions. PMID:26499367

  14. Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco

    PubMed Central

    Tu, Yayi; Jin, Yongsheng; Ma, Dongyuan; Li, Heng; Zhang, Zhenqian; Dong, Jiangli; Wang, Tao

    2015-01-01

    The photosynthetic rate of virus-infected plants is always reduced. However, the molecular mechanism underlying this phenomenon remains unclear. The helper component-proteinase (HC-Pro) of Potato virus Y (PVY) was found in the chloroplasts of PVY-infected tobacco, indicating some new function of HC-Pro in the chloroplasts. We generated HC-Pro transgenic plants with a transit peptide to target the protein to chloroplast. The HC-Pro transgenic tobacco showed a decreased photosynthetic rate by 25% at the light intensity of 600 μmol m−2 s−1. Using a yeast two-hybrid screening assay to search for chloroplast proteins interacting with HC-Pro, we identified that PVY HC-Pro can interact with the chloroplast ATP synthase NtCF1β-subunit. This interaction was confirmed by GST pull-down and co-immunoprecipitation assays. HC-Pro didn’t interfere with the activity of assembled ATP synthase in vitro. The HC-Pro/NtCF1β-subunit interaction might affect the assembly of ATP synthase complex. Quantitative western blot and immunogold labeling of the ATP synthase indicated that the amount of ATP synthase complex was decreased in both the HC-Pro transgenic and the PVY-infected tobacco. These results demonstrate that HC-Pro plays an important role in reducing the photosynthetic rate of PVY-infected plants, which is a completely new role of HC-Pro besides its multiple known functions. PMID:26499367

  15. The sonic hedgehog-induced type 3 deiodinase facilitates tumorigenesis of basal cell carcinoma by reducing Gli2 inactivation.

    PubMed

    Luongo, Cristina; Ambrosio, Raffaele; Salzano, Salvatore; Dlugosz, Andrzej A; Missero, Caterina; Dentice, Monica

    2014-06-01

    Thyroid hormone (TH) is an important regulator of growth, development, and metabolism. Most of the active TH T3 is generated by peripheral TH metabolism mediated by the iodothyronine deiodinases. Type 3 deiodinase (D3) inactivates T3 via specific deiodination reactions. It is an oncofetal protein frequently expressed in neoplastic tissues and is a direct target of the sonic hedgehog (Shh) pathway in basal cell carcinomas (BCCs). However, the molecular mechanisms triggered by T3 in BCC are still mostly unrevealed. Here, we demonstrate that D3 action is critical in the proliferation and survival of BCC cells. D3 depletion or T3 treatment induce apoptosis of BCC cells and attenuate Shh signaling. This is achieved through a direct impairment of Gli2 protein stability by T3. T3 induces protein kinase A, which in turn destabilizes Gli2 protein via its C-terminal degron. Finally, in a mouse model of BCC, T3-topical treatment significantly reduces tumor growth. These results demonstrate the existence of a previously unrecognized cross talk between TH and Gli2 oncogene, providing functional and mechanistic evidence of the involvement of TH metabolism in Shh-induced cancer. TH-mediated Gli2 inactivation would be beneficial for therapeutically purposes, because the inhibition of Shh-Gli2 signaling is an attractive target for several anticancer drugs, currently in clinical trials. PMID:24693967

  16. Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium

    PubMed Central

    2013-01-01

    Introduction Early pregnancy has a strong protective effect against breast cancer in humans and rodents, but the underlying mechanism is unknown. Because breast cancers are thought to arise from specific cell subpopulations of mammary epithelia, we studied the effect of parity on the transcriptome and the differentiation/proliferation potential of specific luminal and basal mammary cells in mice. Methods Mammary epithelial cell subpopulations (luminal Sca1-, luminal Sca1+, basal stem/progenitor, and basal myoepithelial cells) were isolated by flow cytometry from parous and age-matched virgin mice and examined by using a combination of unbiased genomics, bioinformatics, in vitro colony formation, and in vivo limiting dilution transplantation assays. Specific findings were further investigated with immunohistochemistry in entire glands of parous and age-matched virgin mice. Results Transcriptome analysis revealed an upregulation of differentiation genes and a marked decrease in the Wnt/Notch signaling ratio in basal stem/progenitor cells of parous mice. Separate bioinformatics analyses showed reduced activity for the canonical Wnt transcription factor LEF1/TCF7 and increased activity for the Wnt repressor TCF3. This finding was specific for basal stem/progenitor cells and was associated with downregulation of potentially carcinogenic pathways and a reduction in the proliferation potential of this cell subpopulation in vitro and in vivo. As a possible mechanism for decreased Wnt signaling in basal stem/progenitor cells, we found a more than threefold reduction in the expression of the secreted Wnt ligand Wnt4 in total mammary cells from parous mice, which corresponded to a similar decrease in the proportion of Wnt4-secreting and estrogen/progesterone receptor-positive cells. Because recombinant Wnt4 rescued the proliferation defect of basal stem/progenitor cells in vitro, reduced Wnt4 secretion appears to be causally related to parity-induced alterations of basal stem

  17. Serum free light chains are reduced in endurance trained older adults: Evidence that exercise training may reduce basal inflammation in older adults.

    PubMed

    Heaney, Jennifer L J; Phillips, Anna C; Drayson, Mark T; Campbell, John P

    2016-05-01

    Traditionally, free light chains (FLCs) are used as key serum biomarkers in the diagnosis and monitoring of plasma cell malignancies, but polyclonal FLCs can also be used as an accurate real-time indicator of immune-activation and inflammation. The primary aim of the present study was to assess the effects of exercise training status on serum FLCs in older adults, and secondly, to examine if training status moderated serum FLC responses to acute exercise. Kappa and lambda serum FLC levels were measured in 45 healthy older adults (aged ≥ 60 years) who were either sedentary, physically active or endurance trained. FLCs were measured at baseline and in response to an acute bout of submaximal exercise. The endurance trained group had significantly lower levels of kappa and lambda serum FLCs compared with physically active or sedentary elderly adults; these effects were independent of age, BMI and renal function. There was no significant difference in whole immunoglobulins between groups. Exercise training status had no effect on serum FLC responses to acute exercise, which were marginal. In conclusion, endurance training was associated with lower FLC levels compared with less physically active individuals. These findings suggest that long-term endurance training may be beneficial in reducing basal inflammation in older adults as well as elevated FLCs present in inflammatory and autoimmune conditions, often associated with ageing. FLCs may serve as a useful biomarker for monitoring the efficacy of exercise intervention studies in healthy and clinical populations. PMID:26921802

  18. Exercise improves skeletal muscle insulin resistance without reduced basal mTOR/S6K1 signaling in rats fed a high-fat diet.

    PubMed

    Liao, Bagen; Xu, Yong

    2011-11-01

    Exercise improves high-fat diet (HFD)-induced skeletal muscle insulin resistance, but the mechanism is unresolved. This study aims to explore whether the improvement in response to exercise is associated with mTOR/S6K1 signaling and whether the signaling changes are muscle-specific. Male SD rats (150-180 g) were used for this study. After the experimental period, 6 weeks of exercise improved HFD-impaired intraperitoneal glucose tolerance and insulin-stimulated 2-deoxyglucose uptake in soleus (SOL) and extensor digitorum longus (EDL) muscles. Furthermore, 6 weeks of the HFD resulted in a reduced type I fiber ratio of SOL, an increased type I ratio of EDL, and a reduced fiber size of EDL, whereas exercise increased type I fiber ratio of SOL as well as type I fiber cross-sectional areas of EDL. However, the HFD had a main effect on basal cytosolic phosphorylation of S6K1 on Thr(389) content in SOL, which was also influenced by a significant interaction between the diet and exercise in EDL. Exercise had no direct effect on the basal phosphorylation of Akt on Ser(473), mTOR on Ser(2448), S6K1 on Thr(389) content in SOL. On the contrary, exercise prevented HFD-induced decrease in basal phosphorylation of S6K1 on Thr(389) content in EDL. These results indicate that 6 weeks of HFD and exercise lead to alterations in fiber type shift, fiber size, and basal phosphorylation of S6K1 on Thr(389) content in a muscle-specific pattern. Exercise prevents HFD-induced skeletal muscle insulin resistance, which is not associated with a reduced basal phosphorylation of mTOR/S6K1 alteration in the muscles. PMID:21404070

  19. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia.

    PubMed

    Zhou, Ran; Wang, Rong; Qin, Yufeng; Ji, Juan; Xu, Miaofei; Wu, Wei; Chen, Minjian; Wu, Di; Song, Ling; Shen, Hongbing; Sha, Jiahao; Miao, Dengshun; Hu, Zhibin; Xia, Yankai; Lu, Chuncheng; Wang, Xinru

    2015-01-01

    Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb. PMID:26626315

  20. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia

    PubMed Central

    Zhou, Ran; Wang, Rong; Qin, Yufeng; Ji, Juan; Xu, Miaofei; Wu, Wei; Chen, Minjian; Wu, Di; Song, Ling; Shen, Hongbing; Sha, Jiahao; Miao, Dengshun; Hu, Zhibin; Xia, Yankai; Lu, Chuncheng; Wang, Xinru

    2015-01-01

    Mitochondria, acting as the energy metabolism factory, participate in many key biological processes, including the maintenance of sperm viability. Mitochondria-related microRNA (miRNA), encoded by nuclear genome or mitochondrial genome, may play an important regulatory role in the control of mitochondrial function. To investigate the potential role of mitochondria-related miRNAs in asthenozoospermia, we adopted a strategy consisting of initial screening by TaqMan Low Density Array (TLDA) and further validation with quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Validation of the profiling results was conducted in two independent phases. Eventually, two seminal plasma miRNAs (sp-miRs) (miR-101-3p, let-7b-5p) were found to be significantly decreased, while sp-miR-151a-5p was significantly increased in severe asthenozoospermia cases compared with healthy controls. To further study their potential roles in asthenozoospermia, we then evaluated mitochondrial function of GC-2 cells transfected with these potentially functional miRNAs. Our results demonstrated that transfection with miR-151a-5p mimics decreased the mitochondrial respiratory activity. Besides, Adenosine Triphosphate (ATP) level was decreased when transfected with miR-151a-5p mimics. In addition, Cytochrome b (Cytb) mRNA and protein levels were also decreased when miR-151a-5p was overexpressed. These results indicate that miR-151a-5p may participate in the regulation of cellular respiration and ATP production through targeting Cytb. PMID:26626315

  1. How does environmental enrichment reduce repetitive motor behaviors? Neuronal activation and dendritic morphology in the indirect basal ganglia pathway of a mouse model.

    PubMed

    Bechard, Allison R; Cacodcar, Nadia; King, Michael A; Lewis, Mark H

    2016-02-15

    Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g., autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495

  2. Fasting induces anti-Warburg effect that increases respiration but reduces ATP-synthesis to promote apoptosis in colon cancer models

    PubMed Central

    Ravera, Silvia; Marini, Cecilia; Capitanio, Selene; Orengo, Annamaria; Emionite, Laura; Lavarello, Chiara; Amaro, Adriana; Petretto, Andrea; Pfeffer, Ulrich; Sambuceti, Gianmario; Pistoia, Vito

    2015-01-01

    Tumor chemoresistance is associated with high aerobic glycolysis rates and reduced oxidative phosphorylation, a phenomenon called “Warburg effect” whose reversal could impair the ability of a wide range of cancer cells to survive in the presence or absence of chemotherapy. In previous studies, Short-term-starvation (STS) was shown to protect normal cells and organs but to sensitize different cancer cell types to chemotherapy but the mechanisms responsible for these effects are poorly understood. We tested the cytotoxicity of Oxaliplatin (OXP) combined with a 48hour STS on the progression of CT26 colorectal tumors. STS potentiated the effects of OXP on the suppression of colon carcinoma growth and glucose uptake in both in vitro and in vivo models. In CT26 cells, STS down-regulated aerobic glycolysis, and glutaminolysis, while increasing oxidative phosphorylation. The STS-dependent increase in both Complex I and Complex II-dependent O2 consumption was associated with increased oxidative stress and reduced ATP synthesis. Chemotherapy caused additional toxicity, which was associated with increased succinate/Complex II-dependent O2 consumption, elevated oxidative stress and apoptosis. These findings indicate that the glucose and amino acid deficiency conditions imposed by STS promote an anti-Warburg effect characterized by increased oxygen consumption but failure to generate ATP, resulting in oxidative damage and apoptosis. PMID:25909219

  3. ATP secretion in the male reproductive tract: essential role of CFTR.

    PubMed

    Ruan, Ye Chun; Shum, Winnie W C; Belleannée, Clémence; Da Silva, Nicolas; Breton, Sylvie

    2012-09-01

    Extracellular ATP is essential for the function of the epididymis and spermatozoa, but ATP release in the epididymis remains uncharacterized. We investigated here whether epithelial cells release ATP into the lumen of the epididymis, and we examined the role of the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl(-) and HCO(3)(-) conducting ion channel known to be associated with male fertility, in this process. Immunofluorescence labelling of mouse cauda epididymidis showed expression of CFTR in principal cells but not in other epithelial cells. CFTR mRNA was not detectable in clear cells isolated by fluorescence-activated cell sorting (FACS) from B1-EGFP mice, which express enhanced green fluorescent protein (EGFP) exclusively in these cells in the epididymis. ATP release was detected from the mouse epididymal principal cell line (DC2) and increased by adrenaline and forskolin. Inhibition of CFTR with CFTR(inh172) and transfection with CFTR-specific siRNAs in DC2 cells reduced basal and forskolin-activated ATP release. CFTR-dependent ATP release was also observed in primary cultures of mouse epididymal epithelial cells. In addition, steady-state ATP release was detected in vivo in mice, by measuring ATP concentration in a solution perfused through the lumen of the cauda epididymidis tubule and collected by cannulation of the vas deferens. Luminal CFTR(inh172) reduced the ATP concentration detected in the perfusate. This study shows that CFTR is involved in the regulation of ATP release from principal cells in the cauda epididymidis. Given that mutations in CFTR are a leading cause of male infertility, we propose that defective ATP signalling in the epididymis might contribute to dysfunction of the male reproductive tract associated with these mutations. PMID:22711960

  4. ATP synthase.

    PubMed

    Junge, Wolfgang; Nelson, Nathan

    2015-01-01

    Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms. PMID:25839341

  5. 2-MeS-β,γ-CCl2-ATP is a Potent Agent for Reducing Intraocular Pressure†

    PubMed Central

    Eliahu, Shay; Martín-Gil, Alba; de Lara, María Jesús Perez; Pintor, Jesús; Camden, Jean; Weisman, Gary A.; Lecka, Joanna; Sévigny, Jean; Fischer, Bilha

    2015-01-01

    Extracellular nucleotides can modify the production or drainage of the aqueous humor via activation of P2 receptors and therefore affect the intraocular pressure (IOP). We have synthesized slowly hydrolyzable nucleoside di- and triphosphate analogues, 1, and 8–14. Analogues 8–14 were completely resistant to hydrolysis by alkaline phosphatase over 30 min at 37 °C. In human blood serum, analogues 8–14 exhibited high stability, e.g., analogues 9 and 10–14 were only 15% and 0% degraded after 24 h, respectively. Moreover, analogues 8–14 were highly stable at pH 1.4 (t1/21 h–30 days). Analogues 8–14 were agonists of the P2Y1 receptor (EC50 0.57–9.54μM). Ocular administration of most analogues into rabbits reduced IOP, e.g., analogue 9 reduced IOP by 32% (EC50 95.5 nM). Analogue 9 was more effective at reducing IOP than several common glaucoma drugs and represents a promising alternative to timolol maleate, which cannot be used for the treatment of patients suffering from asthma or cardiac problems. PMID:20337495

  6. Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774

    SciTech Connect

    Gavel, Olga Yu.; Kladova, Anna V.; Bursakov, Sergey A.; Dias, João M.; Texeira, Susana; Shnyrov, Valery L.; Moura, José J. G.; Moura, Isabel; Romão, Maria J.; Trincão, José

    2008-07-01

    Native zinc-containing ATP sulfurylase from D. desulfuricans ATCC 27774 was purified to homogeneity and crystallized. Diffraction data were collected to 2.5 Å resolution. Native zinc/cobalt-containing ATP sulfurylase (ATPS; EC 2.7.7.4; MgATP:sulfate adenylyltransferase) from Desulfovibrio desulfuricans ATCC 27774 was purified to homogeneity and crystallized. The orthorhombic crystals diffracted to beyond 2.5 Å resolution and the X-ray data collected should allow the determination of the structure of the zinc-bound form of this ATPS. Although previous biochemical studies of this protein indicated the presence of a homotrimer in solution, a dimer was found in the asymmetric unit. Elucidation of this structure will permit a better understanding of the role of the metal in the activity and stability of this family of enzymes.

  7. Reduced insulin-receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia.

    PubMed

    Caravaggio, Fernando; Hahn, Margaret; Nakajima, Shinichiro; Gerretsen, Philip; Remington, Gary; Graff-Guerrero, Ariel

    2015-10-01

    Schizophrenia is a severe and chronic neuropsychiatric disorder which affects 1% of the world population. Using the brain imaging technique positron emission tomography (PET) it has been demonstrated that persons with schizophrenia have greater dopamine transmission in the striatum compared to healthy controls. However, little progress has been made as to elucidating other biological mechanisms which may account for this hyperdopaminergic state in this disease. Studies in animals have demonstrated that insulin receptors are expressed on midbrain dopamine neurons, and that insulin from the periphery acts on these receptors to modify dopamine transmission in the striatum. This is pertinent given that several lines of evidence suggest that insulin receptor functioning may be abnormal in the brains of persons with schizophrenia. Post-mortem studies have shown that persons with schizophrenia have less than half the number of cortical insulin receptors compared to healthy persons. Moreover, these post-mortem findings are unlikely due to the effects of antipsychotic treatment; studies in cell lines and animals suggest antipsychotics enhance insulin receptor functioning. Further, hyperinsulinemia - even prior to antipsychotic use - seems to be related to less psychotic symptoms in patients with schizophrenia. Collectively, these data suggest that midbrain insulin receptor functioning may be abnormal in persons with schizophrenia, resulting in reduced insulin-mediated regulation of dopamine transmission in the striatum. Such a deficit may account for the hyperdopaminergic state observed in these patients and would help guide the development of novel treatment strategies. We hypothesize that, (i) insulin receptor expression and/or function is reduced in midbrain dopamine neurons in persons with schizophrenia, (ii) basal insulin should reduce dopaminergic transmission in the striatum via these receptors, and (iii) this modulation of dopaminergic transmission by basal insulin

  8. Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1).

    PubMed

    Cho, Wonkyoung; Kang, Jihee Lee; Park, Young Mi

    2015-01-01

    Atherosclerosis, the major pathology of cardiovascular disease, is caused by multiple factors involving psychological stress. Corticotropin-releasing hormone (CRH), which is released by neurosecretory cells in the hypothalamus, peripheral nerve terminals and epithelial cells, regulates various stress-related responses. Our current study aimed to verify the role of CRH in macrophage foam cell formation, the initial critical stage of atherosclerosis. Our quantitative real-time reverse transcriptase PCR (qRT-PCR), semi-quantitative reverse transcriptase PCR, and Western blot results indicate that CRH down-regulates ATP-binding cassette transporter-1 (ABCA1) and liver X receptor (LXR)-α, a transcription factor for ABCA1, in murine peritoneal macrophages and human monocyte-derived macrophages. Oil-red O (ORO) staining and intracellular cholesterol measurement of macrophages treated with or without oxidized LDL (oxLDL) and with or without CRH (10 nM) in the presence of apolipoprotein A1 (apoA1) revealed that CRH treatment promotes macrophage foam cell formation. The boron-dipyrromethene (BODIPY)-conjugated cholesterol efflux assay showed that CRH treatment reduces macrophage cholesterol efflux. Western blot analysis showed that CRH-induced down-regulation of ABCA1 is dependent on phosphorylation of Akt (Ser473) induced by interaction between CRH and CRH receptor 1(CRHR1). We conclude that activation of this pathway by CRH accelerates macrophage foam cell formation and may promote stress-related atherosclerosis. PMID:26110874

  9. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    PubMed

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment. PMID:25492807

  10. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium

    PubMed Central

    Nemutlu, Emirhan; Gupta, Anu; Zhang, Song; Viqar, Maria; Holmuhamedov, Ekhson; Terzic, Andre; Jahangir, Arshad; Dzeja, Petras

    2015-01-01

    Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK), creatine kinase (CK), and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2), third (18O3), and fourth (18O4) positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic vulnerability of aging

  11. The influence of beta subunit structure on the interaction of Na+/K(+)-ATPase complexes with Na+. A chimeric beta subunit reduces the Na+ dependence of phosphoenzyme formation from ATP.

    PubMed

    Eakle, K A; Lyu, R M; Farley, R A

    1995-06-01

    chimeric beta subunit reduces or eliminates the role of Na+ in phosphoenzyme formation from ATP, but Na+ binding or release by the enzyme is still required for ATP hydrolysis and release of phosphate. PMID:7775454

  12. Caveolar disruption causes contraction of rat femoral arteries via reduced basal NO release and subsequent closure of BKCa channels

    PubMed Central

    Al-Brakati, AY; Kamishima, T; Dart, C

    2015-01-01

    Background and Purpose. Caveolae act as signalling hubs in endothelial and smooth muscle cells. Caveolar disruption by the membrane cholesterol depleting agent methyl-β-cyclodextrin (M-β-CD) has various functional effects on arteries including (i) impairment of endothelium-dependent relaxation, and (ii) alteration of smooth muscle cell (SMC) contraction independently of the endothelium. The aim of this study was to explore the effects of M-β-CD on rat femoral arteries. Methods. Isometric force was measured in rat femoral arteries stimulated to contract with a solution containing 20 mM K+ and 200 nM Bay K 8644 (20 K/Bay K) or with one containing 80 mM K+(80 K). Results. Incubation of arteries with M-β-CD (5 mM, 60 min) increased force in response to 20 K/Bay K but not that induced by 80 K. Application of cholesterol saturated M-β-CD (Ch-MCD, 5 mM, 50 min) reversed the effects of M-β-CD. After mechanical removal of endothelial cells M-β-CD caused only a small enhancement of contractions to 20 K/Bay K. This result suggests M-β-CD acts via altering release of an endothelial-derived vasodilator or vasoconstrictor. When nitric oxide synthase was blocked by pre-incubation of arteries with L-NAME (250 µM) the contraction of arteries to 20 K/Bay K was enhanced, and this effect was abolished by pre-treatment with M-β-CD. This suggests M-β-CD is inhibiting endothelial NO release. Inhibition of large conductance voltage- and Ca2+-activated (BKCa) channels with 2 mM TEA+ or 100 nM Iberiotoxin (IbTX) enhanced 20 K/Bay K contractions. L-NAME attenuated the contractile effect of IbTX, as did endothelial removal. Conclusions. Our results suggest caveolar disruption results in decreased release of endothelial-derived nitric oxide in rat femoral artery, resulting in a reduced contribution of BKCa channels to the smooth muscle cell membrane potential, causing depolarisation and contraction. PMID:26038721

  13. Obesity-mediated regulation of HGF/c-Met is associated with reduced basal-like breast cancer latency in parous mice.

    PubMed

    Sundaram, Sneha; Freemerman, Alex J; Galanko, Joseph A; McNaughton, Kirk K; Bendt, Katharine M; Darr, David B; Troester, Melissa A; Makowski, Liza

    2014-01-01

    It is widely thought that pregnancy reduces breast cancer risk, but this lacks consideration of breast cancer subtypes. While a full term pregnancy reduces risk for estrogen receptor positive (ER+) and luminal breast cancers, parity is associated with increased risk of basal-like breast cancer (BBC) subtype. Basal-like subtypes represent less than 10% of breast cancers and are highly aggressive, affecting primarily young, African American women. Our previous work demonstrated that high fat diet-induced obesity in nulliparous mice significantly blunted latency in C3(1)-TAg mice, a model of BBC, potentially through the hepatocyte growth factor (HGF)/c-Met oncogenic pathway. Experimental studies have examined parity and obesity individually, but to date, the joint effects of parity and obesity have not been studied. We investigated the role of obesity in parous mice on BBC. Parity alone dramatically blunted tumor latency compared to nulliparous controls with no effects on tumor number or growth, while obesity had only a minor role in further reducing latency. Obesity-associated metabolic mediators and hormones such as insulin, estrogen, and progesterone were not significantly regulated by obesity. Plasma IL-6 was also significantly elevated by obesity in parous mice. We have previously reported a potential role for stromal-derived hepatocyte growth factor (HGF) via its cognate receptor c-Met in the etiology of obesity-induced BBC tumor onset and in both human and murine primary coculture models of BBC-aggressiveness. Obesity-associated c-Met concentrations were 2.5-fold greater in normal mammary glands of parous mice. Taken together, our studies demonstrate that, parity in C3(1)-TAg mice dramatically reduced BBC latency compared to nulliparous mice. In parous mice, c-Met is regulated by obesity in unaffected mammary gland and is associated with tumor onset. C3(1)-TAg mice recapitulate epidemiologic findings such that parity drives increased BBC risk and potential

  14. LMO4 mRNA stability is regulated by extracellular ATP in F11 cells

    SciTech Connect

    Chen, Hsiao-Huei . E-mail: hchen@uottawa.ca; Xu, Jin; Safarpour, Farzaneh; Stewart, Alexandre F.R.

    2007-05-25

    LIM only domain protein 4 (LMO4) interacts with many signaling and transcription factors to regulate cellular proliferation, differentiation and plasticity. In Drosophila, mutations in the 3' untranslated region (UTR) of the homologue dLMO cause a gain of function by increasing mRNA stability. LMO4 3'UTR contains several AU-rich elements (ARE) and is highly conserved among vertebrates, suggesting that RNA destabilizing mechanisms are evolutionarily conserved. Here, we found that extracellular ATP stabilized LMO4 mRNA in F11 cells. The LMO4 3'UTR added to a luciferase reporter markedly reduced reporter activity under basal conditions, but increased activity with ATP treatment. Two ARE motifs were characterized in the LMO4 3'UTR. ATP increased binding of HuD protein to ARE1. ARE1 conferred ATP and HuD-dependent mRNA stabilization. In contrast, sequences flanking ARE2 bound CUGBP1 and ATP destabilized this complex. Thus, our results suggest that ATP modulates recruitment of RNA-binding proteins to the 3'UTR to stabilize LMO4 mRNA.

  15. Age-Related Increases in Basal Ganglia Glutamate are Associated with TNF-Alpha, Reduced Motivation and Decreased Psychomotor Speed During IFN-alpha Treatment: Preliminary Findings

    PubMed Central

    Haroon, Ebrahim; Felger, Jennifer C.; Woolwine, Bobbi J.; Chen, Xiangchuan; Parekh, Samir; Spivey, James; Hu, Xiaoping; Miller, Andrew H.

    2014-01-01

    Inflammation-induced alterations in central nervous system (CNS) metabolism have focused on glutamate. At excessive concentrations, glutamate is toxic to glia and neurons, and inflammatory cytokines have been shown to influence glutamate metabolism by blocking glutamate reuptake and increasing glutamate release. Increased glutamate has also been found in depression, a disorder associated with increased inflammation. Data by our group have shown increased glutamate as measured by magnetic resonance spectroscopy (MRS) in basal ganglia and dorsal anterior cingulate cortex of patients administered the inflammatory cytokine interferon (IFN)-alpha. Given data that increasing age is associated with an exaggerated CNS inflammatory response, we examined whether older age (>55 years) would be associated with a greater IFN-alpha-induced increase in CNS glutamate. Using a longitudinal design, 31 patients with hepatitis C virus (HCV) underwent MRS, blood sampling for inflammatory markers, and behavioral assessments before (Visit1) and after four weeks (Visit 2) of either IFN-alpha (n=17) or no treatment (n=14). Older patients treated with IFN-alpha exhibited a significantly increased glutamate from Visit 1 to Visit 2 as reflected by the glutamate/creatine ratio (Glu/Cr) in left basal ganglia compared to older controls and younger IFN-alpha-treated and untreated subjects. In addition, increased Glu/Cr in older but not younger IFN-alpha-treated and untreated patients was associated with increased tumor necrosis factor, reduced motivation as measured by the Multidimensional Fatigue Inventory and increased choice movement time on the Cambridge Neuropsychological Test Automated Battery. Taken together, these preliminary data support the notion that older age may interact with inflammation to exaggerate the effects of inflammatory stimuli on CNS glutamate and behavior. PMID:25500218

  16. The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome.

    PubMed

    Peth, Andreas; Nathan, James A; Goldberg, Alfred L

    2013-10-01

    The degradation of ubiquitinated proteins by 26 S proteasomes requires ATP hydrolysis. To investigate if the six proteasomal ATPases function independently or in a cyclic manner, as proposed recently, we used yeast mutants that prevent ATP binding to Rpt3, Rpt5, or Rpt6. Although proteasomes contain six ATPase subunits, each of these single mutations caused a 66% reduction in basal ATP hydrolysis, and each blocked completely the 2-3-fold stimulation of ATPase activity induced by ubiquitinated substrates. Therefore, the ATPase subunits must function in a ordered manner, in which each is required for the stimulation of ATPase activity by substrates. Although ATP is essential for multiple steps in proteasome function, when the rate of ATP hydrolysis was reduced incrementally, the degradation of Ub5-DHFR (where Ub is ubiquitin and DHFR is dihydrofolate reductase) decreased exactly in parallel. This direct proportionality implies that a specific number of ATPs is consumed in degrading a ubiquitinated protein. When the ubiquitinated DHFR was more tightly folded (upon addition of the ligand folate), the rate of ATP hydrolysis was unchanged, but the time to degrade a Ub5-DHFR molecule (∼13 s) and the energy expenditure (50-80 ATPs/Ub5-DHFR) both increased by 2-fold. With a mutation in the ATPase C terminus that reduced gate opening into the 20 S proteasome, the energy costs and time required for conjugate degradation also increased. Thus, different ubiquitin conjugates activate similarly the ATPase subunit cycle that drives proteolysis, but polypeptide structure determines the time required for degradation and thus the energy cost. PMID:23965995

  17. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    PubMed

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  18. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

  19. Adolescent binge-like ethanol exposure reduces basal α-MSH expression in the hypothalamus and the amygdala of adult rats

    PubMed Central

    Lerma-Cabrera, Jose Manuel; Carvajal, Francisca; Alcaraz-Iborra, Manuel; de la Fuente, Leticia; Navarro, Montserrat; Thiele, Todd E.; Cubero, Inmaculada

    2013-01-01

    Melanocortins (MC) are central peptides that have been implicated in the modulation of ethanol consumption. There is experimental evidence that chronic ethanol exposure reduces α-MSH expression in limbic and hypothalamic brain regions and alters central pro-opiomelanocortin (POMC) mRNA activity in adult rats. Adolescence is a critical developmental period of high vulnerability in which ethanol exposure alters corticotropin releasing factor, neuropeptide Y, substance P and neurokinin neuropeptide activities, all of which have key roles in ethanol consumption. Given the involvement of MC and the endogenous inverse agonist AgRP in ethanol drinking, here we evaluate whether a binge-like pattern of ethanol treatment during adolescence has a relevant impact on basal and/or ethanol-stimulated α-MSH and AgRP activities during adulthood. To this end, adolescent Sprague-Dawley rats (beginning at PND25) were pre-treated with either saline (SP group) or binge-like ethanol exposure (BEP group; 3.0 g/kg given in intraperitoneal (i.p.) injections) of one injection per day over two consecutive days, followed by 2 days without injections, repeated for a total of 8 injections. Following 25 ethanol-free days, we evaluated α-MSH and AgRP immunoreactivity (IR) in the limbic and hypothalamic nuclei of adult rats (PND63) in response to ethanol (1.5 or 3.0 g/kg i.p.) and saline. We found that binge-like ethanol exposure during adolescence significantly reduced basal α-MSH IR in the central nucleus of the amygdala (CeA), the arcuate nucleus (Arc) and the paraventricular nucleus of the hypothalamus (PVN) during adulthood. Additionally, acute ethanol elicited AgRP IR in the Arc. Rats given the adolescent ethanol treatment required higher doses of ethanol than saline-treated rats to express AgRP. In light of previous evidence that endogenous MC and AgRP regulate ethanol intake through MC-receptor signaling, we speculate that the α-MSH and AgRP disturbances induced by binge-like ethanol

  20. Basal Cell Carcinoma (BCC)

    MedlinePlus

    ... carcinomas: Infiltrating basal cell carcinomas can be more aggressive and locally destructive than other types of basal ... to treat them early and with slightly more aggressive techniques. Excision – The basal cell carcinoma is cut ...

  1. Increased Intracellular [dATP] Enhances Cardiac Contraction in Embryonic Chick Cardiomyocytes

    PubMed Central

    Schoffstall, Brenda; Chase, P. Bryant

    2016-01-01

    Although ATP is the physiological substrate for cardiac contraction, cardiac contractility is significantly enhanced in vitro when only 10% of ATP substrate is replaced with 2’-deoxy-ATP (dATP). To determine the functional effects of increased intracellular [dATP] ([dATP]i) within living cardiac cells, we used hypertonic loading with varying exogenous dATP/ATP ratios, but constant total nucleotide concentration, to elevate [dATP]i in contractile monolayers of embryonic chick cardiomyocytes. The increase in [dATP]i was estimated from dilution of dye added in parallel with dATP. Cell viability, average contractile amplitude, rates of contraction/relaxation, spontaneous beat frequency, and Ca2+ transient amplitude and kinetics were examined. At total [dATP]i above ~70 μM, spontaneous contractions ceased, and above ~100 μM [dATP]i, membrane blebbing was also observed, consistent with apoptosis. Interestingly, [dATP]i of ~60 μM (~40% increase over basal [dATP]i levels) enhanced both amplitude of contraction and the rates of contraction and relaxation without affecting beat frequency. With total [dATP]i of ~60 μM or less, we found no significant change in Ca2+ transients. These data indicate that there is an “optimal” concentration of exogenously loaded [dATP]i that under controlled conditions can enhance contractility in living cardiomyocytes without affecting beat frequency or Ca2+ transients. PMID:18452163

  2. Preservation of ATP in Hypersaline Environments

    PubMed Central

    Tuovila, Bruce J.; Dobbs, Fred C.; LaRock, Paul A.; Siegel, B. Z.

    1987-01-01

    High concentrations of particulate ATP were found in the anoxic brines of the Orca Basin and East Flower Garden, Gulf of Mexico. Other measurements indicative of growth and respiration suggested that the microbial community in the brines was inactive, but somehow the ATP associated with the cells persisted. Conceivably, when cells growing just above the interface sank into the brine, the increased osmotic stress could elicit an osmoregulatory response resulting in increased ATP. It was also possible that hydrolytic enzymes were inactivated, resulting in the preservation of ATP. Experiments in which a culture of marine bacteria was suspended in menstrua of different salinities comparable to those found across the Orca Basin interface revealed that as salinity increased, ATP increased three- to sixfold. Within 24 h the ATP fell to its initial level and remained at that concentration for 3 days, at which time the experiment was terminated. In contrast, the control suspensions, at a salinity of 28% (grams per liter) had 1/10th of the initial ATP concentration when the experiment was ended. Cells were also exposed to killing UV irradiation, enabling us to demonstrate with absolute certainty that cellular ATP could be preserved. At the end of the experiment, the viable component of the population was reduced by orders of magnitude by UV irradiation, but the ATP levels of the cells suspended in brine did not decrease. In certain environments it appears that the conventional analytical tools of the microbial ecologist must be interpreted with caution. PMID:16347491

  3. Preservation of ATP in hypersaline environments.

    PubMed

    Tuovila, B J; Dobbs, F C; Larock, P A; Siegel, B Z

    1987-12-01

    High concentrations of particulate ATP were found in the anoxic brines of the Orca Basin and East Flower Garden, Gulf of Mexico. Other measurements indicative of growth and respiration suggested that the microbial community in the brines was inactive, but somehow the ATP associated with the cells persisted. Conceivably, when cells growing just above the interface sank into the brine, the increased osmotic stress could elicit an osmoregulatory response resulting in increased ATP. It was also possible that hydrolytic enzymes were inactivated, resulting in the preservation of ATP. Experiments in which a culture of marine bacteria was suspended in menstrua of different salinities comparable to those found across the Orca Basin interface revealed that as salinity increased, ATP increased three- to sixfold. Within 24 h the ATP fell to its initial level and remained at that concentration for 3 days, at which time the experiment was terminated. In contrast, the control suspensions, at a salinity of 28% (grams per liter) had 1/10th of the initial ATP concentration when the experiment was ended. Cells were also exposed to killing UV irradiation, enabling us to demonstrate with absolute certainty that cellular ATP could be preserved. At the end of the experiment, the viable component of the population was reduced by orders of magnitude by UV irradiation, but the ATP levels of the cells suspended in brine did not decrease. In certain environments it appears that the conventional analytical tools of the microbial ecologist must be interpreted with caution. PMID:16347491

  4. D1-like dopamine receptors selectively block P/Q-type calcium channels to reduce glutamate release onto cholinergic basal forebrain neurones of immature rats

    PubMed Central

    Momiyama, Toshihiko; Fukazawa, Yugo

    2007-01-01

    Whole-cell patch-clamp recordings of non-NMDA glutamatergic EPSCs were made from identified cholinergic neurones in slices of basal forebrain (BF) of young rats (P13–P18), to investigate the subtypes of calcium channels involved in dopamine D1-like receptor-mediated presynaptic inhibition of the EPSCs. The BF cholinergic neurones were pre-labelled by intracerebroventricular injection of a fluorescent marker, Cy3-192IgG. A D1-like receptor agonist, SKF 81297 (30 μm) suppressed the EPSCs reversibly by about 30%, and this inhibition was reproducible. Calcium channel subtypes involved in the glutamatergic transmission were elucidated using selective Ca2+ channel blockers. The N-type Ca2+ channel blocker ω-conotoxin (ω-CgTX, 3 μm) suppressed the EPSCs by 57.5%, whereas the P/Q-type channel selective blocker ω-agatoxin-TK (ω-Aga-TK, 200 nm) suppressed the EPSCs by 68.9%. Simultaneous application of both blockers suppressed the EPSCs by 96.1%. The R-type Ca2+ channel blocker SNX-482 (300 nm) suppressed the EPSCs by 18.4%, whereas nifedipine, the L-type Ca2+ channel blocker (10 μm), had little effect. In the presence of ω-Aga-TK, SKF 81297, a dopamine D1-like receptor agonist, had no effect on the EPSCs. On the other hand, SKF 81297 could still inhibit the EPSCs in the presence of either ω-CgTX, SNX-482 or nifedipine. SKF 81297 had no further effect on the EPSCs when external Ca2+ concentration was raised to 7.2 mm in the presence of ω-Aga-TK, but could still inhibit the EPSCs in high Ca2+ solution after ω-CgTX application. Forskolin (FK, 10 μm), an activator of adenylyl cyclase pathway, suppressed the EPSCs, and the FK-induced effect was mostly blocked in the presence of ω-Aga-TK but not that of ω-CgTX. These results suggest that D1-like receptor activation selectively blocks P/Q-type calcium channels to reduce glutamate release onto BF cholinergic neurones. PMID:17234695

  5. Evaluation of Optical Coherence Tomography as a Means of Identifying Earlier Stage Basal Cell Carcinomas while Reducing the Use of Diagnostic Biopsy

    PubMed Central

    Schwartz, Michelle; Feldman, Eleanor; Bienenfeld, Amanda; Bieber, Amy K.; Ellis, Jeffery; Alapati, Usha; Lebwohl, Mark; Siegel, Daniel M.

    2015-01-01

    Objective: To determine the diagnostic accuracy of optical coherence tomography for basal cell carcinoma and the proportion of biopsies that could be avoided if optical coherence tomography is used to rule-in surgery. Design: Multicenter, prospective, observational study. Setting: Dermatology clinics. Participants: Consecutive patients with clinically challenging pink lesions suspicious for basal cell carcinoma. Measurements: Clinical, dermoscopic, and optical coherence tomography images were obtained for all subjects. At each stage, the clinician made a diagnosis (pathology + subtype if applicable), and assessed his/her own confidence in the diagnosis. Results: Optical coherence tomography significantly (p<0.01) improved sensitivity and specificity over clinical or dermoscopic evaluation. The percentage of correct diagnoses was 57.4 percent (clinical), 69.6 percent (dermoscopy), and 87.8 percent (optical coherence tomography). Optical coherence tomography significantly increased the certainty of diagnosis; clinicians indicated they were certain (>95% confident) in 17 percent of lesions examined clinically, in 38.6 percent examined with dermoscopy, and in 70 percent examined with optical coherence tomography. With the use of optical coherence tomography in the diagnosis of basal cell carcinoma, more than 1 in 3 patients could avoid a diagnostic biopsy. Conclusion: In a population of clinically challenging lesions, optical coherence tomography improved diagnostic certainty by a factor of four over clinical examination alone and improved diagnostic accuracy by 50 percent (57-88%). The addition of optical coherence tomography to other standard assessments can improve the false-positive rate and give a high degree of certainty for ruling in a positive diagnosis for basal cell carcinoma. A reduction of 36 percent in overall biopsies could be achieved by sending high certainty basal cell carcinoma positive optical coherence tomography diagnoses straight to surgery. PMID

  6. Reduced Basal and LPS-Stimulated A1AR Expression in the Brain of NF-κB p50−/− Mice

    PubMed Central

    Jhaveri, Krishna A.; Reichensperger, Joel; Toth, Linda A.; Sekino, Yuko; Ramkumar, Vickram

    2007-01-01

    Adenosine promotes cytoprotection under condition of infection, ischemic preconditioning and oxidative stress. Previous studies from our laboratory indicate that the expression of the adenosine A1 receptor (A1AR) is induced by oxidative stress via activation of nuclear factor (NF)-κB. The prototypic transcription factor is comprised of homo- or heterodimers of p50 and p65 subunits. To determine the role of NF-κB in the regulation of the A1AR in vivo, we compared the A1AR RNA and protein levels in the brains of mice lacking the p50 subunit of NF-κB (p50−/− mice) and age-matched B6129PF2/J (F2) controls. Radioligand binding assays in the cortex revealed a significantly lower number of A1AR (Bmax) in the cortex of p50−/− mice (151 ± 62 fmol/mg protein) versus 479 ± 181 fmol/mg protein in the F2 (N=5 per strain, p < 0.05), but no change in Kd. Similar reductions in A1AR were measured in the hippocampus, brain stem and hypothalamus and in peripheral tissues, such as the adrenal gland, kidney and spleen. Estimation of the A1AR following purification by antibody affinity columns also indicated reduced A1AR in the p50−/− mice cortex, as compared to the F2 mice. A1AR immunocytochemistry indicates distinct neuronal labeling in the F2 cortex, which was substantially reduced in similar sections obtained from p50−/− mice. p50−/− mice expressed lower levels of A1AR mRNA than F2 mice, as determined by real time PCR. Quantitation of the A1AR transducing G proteins by Western blotting show significantly less Gαi3, no change in Gαi1, but higher levels of Gαo and Gβ in the cortices of p50−/−, as compared to F2 mice. Administration of bacterial lipopolysaccharide (LPS), an activator of NF-κB, increased A1AR expression in the cortices of F2 mice but not p50−/− mice. Cortical neurons cultures prepared from p50−/− mice showed a greater degree of apoptosis, compared to neurons from F2 mice. Activation of the A1AR reduced apoptosis with greater

  7. Cellular Pathophysiology of an Adrenal Adenoma-Associated Mutant of the Plasma Membrane Ca(2+)-ATPase ATP2B3.

    PubMed

    Tauber, Philipp; Aichinger, B; Christ, C; Stindl, J; Rhayem, Y; Beuschlein, F; Warth, R; Bandulik, S

    2016-06-01

    Adrenal aldosterone-producing adenomas (APAs) are a main cause for primary aldosteronism leading to arterial hypertension. Physiologically, aldosterone production in the adrenal gland is stimulated by angiotensin II and high extracellular potassium. These stimuli lead to a depolarization of the plasma membrane and, as a consequence, an increase of intracellular Ca(2+). Mutations of the plasma membrane Ca(2+)-ATPase ATP2B3 have been found in APAs with a prevalence of 0.6%-3.1%. Here, we investigated the effects of the APA-associated ATP2B3(Leu425_Val426del) mutation in adrenocortical NCI-H295R and human embryonic kidney (HEK-293) cells. Ca(2+) measurements revealed a higher basal Ca(2+) level in cells expressing the mutant ATP2B3. This rise in intracellular Ca(2+) was even more pronounced under conditions with high extracellular Ca(2+) pointing to an increased Ca(2+) influx associated with the mutated protein. Furthermore, cells with the mutant ATP2B3 appeared to have a reduced capacity to export Ca(2+) suggesting a loss of the physiological pump function. Surprisingly, expression of the mutant ATP2B3 caused a Na(+)-dependent inward current that strongly depolarized the plasma membrane and compromised the cytosolic cation composition. In parallel to these findings, mRNA expression of the cytochrome P450, family 11, subfamily B, polypeptide 2 (aldosterone synthase) was substantially increased and aldosterone production was enhanced in cells overexpressing mutant ATP2B3. In summary, the APA-associated ATP2B3(Leu425_Val426del) mutant promotes aldosterone production by at least 2 different mechanisms: 1) a reduced Ca(2+) export due to the loss of the physiological pump function; and 2) an increased Ca(2+) influx due to opening of depolarization-activated Ca(2+) channels as well as a possible Ca(2+) leak through the mutated pump. PMID:27035656

  8. External Dentin Stimulation Induces ATP Release in Human Teeth.

    PubMed

    Liu, X; Wang, C; Fujita, T; Malmstrom, H S; Nedergaard, M; Ren, Y F; Dirksen, R T

    2015-09-01

    ATP is involved in neurosensory processing, including nociceptive transduction. Thus, ATP signaling may participate in dentin hypersensitivity and dental pain. In this study, we investigated whether pannexins, which can form mechanosensitive ATP-permeable channels, are present in human dental pulp. We also assessed the existence and functional activity of ecto-ATPase for extracellular ATP degradation. We further tested if ATP is released from dental pulp upon dentin mechanical or thermal stimulation that induces dentin hypersensitivity and dental pain and if pannexin or pannexin/gap junction channel blockers reduce stimulation-dependent ATP release. Using immunofluorescence staining, we demonstrated immunoreactivity of pannexin 1 and 2 in odontoblasts and their processes extending into the dentin tubules. Using enzymatic histochemistry staining, we also demonstrated functional ecto-ATPase activity within the odontoblast layer, subodontoblast layer, dental pulp nerve bundles, and blood vessels. Using an ATP bioluminescence assay, we found that mechanical or cold stimulation to the exposed dentin induced ATP release in an in vitro human tooth perfusion model. We further demonstrated that blocking pannexin/gap junction channels with probenecid or carbenoxolone significantly reduced external dentin stimulation-induced ATP release. Our results provide evidence for the existence of functional machinery required for ATP release and degradation in human dental pulp and that pannexin channels are involved in external dentin stimulation-induced ATP release. These findings support a plausible role for ATP signaling in dentin hypersensitivity and dental pain. PMID:26130258

  9. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression.

    PubMed

    Henry, Anastasia G; Aghamohammadzadeh, Soheil; Samaroo, Harry; Chen, Yi; Mou, Kewa; Needle, Elie; Hirst, Warren D

    2015-11-01

    Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD. PMID:26251043

  10. ATP release, generation and hydrolysis in exocrine pancreatic duct cells.

    PubMed

    Kowal, J M; Yegutkin, G G; Novak, I

    2015-12-01

    Extracellular adenosine triphosphate (ATP) regulates pancreatic duct function via P2Y and P2X receptors. It is well known that ATP is released from upstream pancreatic acinar cells. The ATP homeostasis in pancreatic ducts, which secrete bicarbonate-rich fluid, has not yet been examined. First, our aim was to reveal whether pancreatic duct cells release ATP locally and whether they enzymatically modify extracellular nucleotides/sides. Second, we wished to explore which physiological and pathophysiological factors may be important in these processes. Using a human pancreatic duct cell line, Capan-1, and online luminescence measurement, we detected fast ATP release in response to pH changes, bile acid, mechanical stress and hypo-osmotic stress. ATP release following hypo-osmotic stress was sensitive to drugs affecting exocytosis, pannexin-1, connexins, maxi-anion channels and transient receptor potential cation channel subfamily V member 4 (TRPV4) channels, and corresponding transcripts were expressed in duct cells. Direct stimulation of intracellular Ca(2+) and cAMP signalling and ethanol application had negligible effects on ATP release. The released ATP was sequentially dephosphorylated through ecto-nucleoside triphosphate diphosphohydrolase (NTPDase2) and ecto-5'-nucleotidase/CD73 reactions, with respective generation of adenosine diphosphate (ADP) and adenosine and their maintenance in the extracellular medium at basal levels. In addition, Capan-1 cells express counteracting adenylate kinase (AK1) and nucleoside diphosphate kinase (NDPK) enzymes (NME1, 2), which contribute to metabolism and regeneration of extracellular ATP and other nucleotides (ADP, uridine diphosphate (UDP) and uridine triphosphate (UTP)). In conclusion, we illustrate a complex regulation of extracellular purine homeostasis in a pancreatic duct cell model involving: ATP release by several mechanisms and subsequent nucleotide breakdown and ATP regeneration via counteracting nucleotide

  11. Cardiovascular effects of basal insulins.

    PubMed

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  12. Cardiovascular effects of basal insulins

    PubMed Central

    Mannucci, Edoardo; Giannini, Stefano; Dicembrini, Ilaria

    2015-01-01

    Basal insulin is an important component of treatment for both type 1 and type 2 diabetes. One of the principal aims of treatment in patients with diabetes is the prevention of diabetic complications, including cardiovascular disease. There is some evidence, although controversial, that attainment of good glycemic control reduces long-term cardiovascular risk in both type 1 and type 2 diabetes. The aim of this review is to provide an overview of the potential cardiovascular safety of the different available preparations of basal insulin. Current basal insulin (neutral protamine Hagedorn [NPH], or isophane) and basal insulin analogs (glargine, detemir, and the more recent degludec) differ essentially by various measures of pharmacokinetic and pharmacodynamic effects in the bloodstream, presence and persistence of peak action, and within-subject variability in the glucose-lowering response. The currently available data show that basal insulin analogs have a lower risk of hypoglycemia than NPH human insulin, in both type 1 and type 2 diabetes, then excluding additional harmful effects on the cardiovascular system mediated by activation of the adrenergic system. Given that no biological rationale for a possible difference in cardiovascular effect of basal insulins has been proposed so far, available meta-analyses of publicly disclosed randomized controlled trials do not show any signal of increased risk of major cardiovascular events between the different basal insulin analogs. However, the number of available cardiovascular events in these trials is very small, preventing any clear-cut conclusion. The results of an ongoing clinical trial comparing glargine and degludec with regard to cardiovascular safety will provide definitive evidence. PMID:26203281

  13. [Determination of the optimal proportions as regards toxicity of AET, ATP and serotonin used in combination].

    PubMed

    Benova, D K; Ptev, I Kh

    1985-01-01

    In experiments on mice, a study was made of the quantitative dependence of toxicity of AET, ATP and serotonin applied in combinations. The toxicity decreased when ATP was combined with AET and increased when ATP of AET were combined with serotonin. The toxicity of a combination of all three substances was reduced by introducing high doses of ATP. PMID:3975373

  14. ATP stimulates pannexin 1 internalization to endosomal compartments.

    PubMed

    Boyce, Andrew K J; Kim, Michelle S; Wicki-Stordeur, Leigh E; Swayne, Leigh Anne

    2015-09-15

    The ubiquitous pannexin 1 (Panx1) ion- and metabolite-permeable channel mediates the release of ATP, a potent signalling molecule. In the present study, we provide striking evidence that ATP, in turn, stimulates internalization of Panx1 to intracellular membranes. These findings hold important implications for understanding the regulation of Panx1 when extracellular ATP is elevated. In the nervous system, this includes phenomena such as synaptic plasticity, pain, precursor cell development and stroke; outside of the nervous system, this includes things like skeletal and smooth muscle activity and inflammation. Within 15 min, ATP led to significant Panx1-EGFP internalization. In a series of experiments, we determined that hydrolysable ATP is the most potent stimulator of Panx1 internalization. We identified two possible mechanisms for Panx1 internalization, including activation of ionotropic purinergic (P2X) receptors and involvement of a putative ATP-sensitive residue in the first extracellular loop of Panx1 (Trp(74)). Internalization was cholesterol-dependent, but clathrin, caveolin and dynamin independent. Detailed analysis of Panx1 at specific endosome sub-compartments confirmed that Panx1 is expressed in endosome membranes of the classical degradation pathway under basal conditions and that elevation of ATP levels diverts a sub-population to recycling endosomes. This is the first report detailing endosome localization of Panx1 under basal conditions and the potential for ATP regulation of its surface expression. Given the ubiquitous expression profile of Panx1 and the importance of ATP signalling, these findings are of critical importance for understanding the role of Panx1 in health and disease. PMID:26195825

  15. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility

    PubMed Central

    Plaza Davila, María; Martin Muñoz, Patricia; Tapia, Jose A.; Ortega Ferrusola, Cristina; Balao da Silva C, Carolina; Peña, Fernando J.

    2015-01-01

    Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37°C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence. PMID:26407142

  16. Characterisation of ATP analogues to cross-link and label P2X receptors

    PubMed Central

    Agboh, Kelvin C.; Powell, Andrew J.; Evans, Richard J.

    2009-01-01

    P2X receptors are a distinct family of ATP-gated ion channels with a number of physiological roles ranging from smooth muscle contractility to the regulation of blood clotting. In this study we determined whether the UV light-reactive ATP analogues 2-azido ATP, ATP azidoanilide (ATP-AA) and 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) can be used to label the ATP binding site of P2X1 receptors. These analogues were agonists, and in patch clamp studies evoked inward currents from HEK293 cells stably expressing the P2X1 receptor. Following irradiation in the presence of these compounds subsequent responses to an EC50 concentration of ATP were reduced by >65%. These effects were partially reversed by co-application of ATP or suramin with the photo-reactive ATP analogue at the time of irradiation. In autoradiographic studies radiolabelled 2-azido [γ32P] ATP and ATP-AA-[γ32P] cross-linked to P2X1 receptors and this binding was reduced by co-incubation with ATP. These studies demonstrate that photo-reactive ATP analogues can be used to label P2X receptor and may prove useful in elucidating the ATP binding site at this novel class of ATP binding proteins. PMID:18599093

  17. Inhibition of ATPase activity of the recA protein by ATP ribose-modified analogs.

    PubMed

    Karasaki, Y; Higashi, K

    1984-09-01

    The single-stranded, DNA-dependent ATPase activity of purified recA protein was found to be inhibited competitively by ribose-modified analogs of ATP, 3'-O-anthraniloyl-ATP (Ant-ATP), and 3'-O-(N-methylanthraniloyl)-ATP (Mant-ATP). The Ki values for Ant-ATP and Mant-ATP were around 7 and 3 microM at pH 7.5, respectively. The inhibitions by these analogs were much stronger than that by ADP, which is also a competitive inhibitor for the ATPase activity of the recA protein. The Ki value for ADP is 76 microM. Ant-ATP and Mant-ATP reduced the Hill coefficient for ATP hydrolysis and thus contributed to the cooperative effect of ATP. PMID:6237610

  18. Modern basal insulin analogs: An incomplete story

    PubMed Central

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another outcome measure has not only clouded the assessment of basal insulin but has also polarized opinion worldwide about the utility of the newer basal insulin. A critical review of both the pre and post FDA analysis of all the basal insulin in this article attempts to clear some of the confusion surrounding the issues of hypoglycemia and glycemic control. This article also discusses all the trials and meta-analysis done on all the current basal insulin available along with their head-to-head comparison with particular attention to glycemic control and hypoglycemic events including severe and nocturnal hypoglycemia. This in-depth analysis hopes to provide a clear interpretation of the various analyses available in literature at this point of time thereby acting as an excellent guide to the readers in choosing the most appropriate basal insulin for their patient. PMID:25364672

  19. Modern basal insulin analogs: An incomplete story.

    PubMed

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-11-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another outcome measure has not only clouded the assessment of basal insulin but has also polarized opinion worldwide about the utility of the newer basal insulin. A critical review of both the pre and post FDA analysis of all the basal insulin in this article attempts to clear some of the confusion surrounding the issues of hypoglycemia and glycemic control. This article also discusses all the trials and meta-analysis done on all the current basal insulin available along with their head-to-head comparison with particular attention to glycemic control and hypoglycemic events including severe and nocturnal hypoglycemia. This in-depth analysis hopes to provide a clear interpretation of the various analyses available in literature at this point of time thereby acting as an excellent guide to the readers in choosing the most appropriate basal insulin for their patient. PMID:25364672

  20. Effect of Acute Xanthine Oxidase Inhibition on Myocardial Energetics During Basal and Very High Cardiac Workstates

    PubMed Central

    Lee, Joseph; Hu, Qingsong; Mansoor, Abdul; Kamdar, Forum

    2014-01-01

    Myocardial ischemia is associated with reduced myocardial adenosine triphosphate (ATP) and increased free adenosine diphosphate (ADP) similar to the normal heart at very high cardiac workstates (HCW). We examined whether acute xanthine oxidase inhibition (XOI) in vivo can decrease myocardial free ADP in normal hearts functioning at basal cardiac workstates (BCW) or very HCW (catecholamine-induced). Myocardial high-energy phosphate (31P magnetic resonance spectroscopy), blood flow (radioactive microspheres), and oxygen consumption (MVO2) were measured in an open-chest canine model before and after infusion of vehicle or an XO inhibitor (allopurinol or febuxostat; n= 10 in each group) during BCW and infusion of dobutamine + dopamine to induce a very HCW. During BCW, both allopurinol and febuxostat resulted in higher phosphocreatine (PCr)/ATP, corresponding to lower ADP levels. During vehicle infusion, HCW caused a decrease of PCr/ATP and an increase in myocardial free ADP. Although XOI did not prevent an increase in free ADP during catecholamine infusion, the values in the allopurinol or febuxostat groups (0.141±0.012 and 0.136±0.011 μmol/g dry wt, respectively) remained significantly less than in the vehicle group (0.180±0.017; P<0.05). Thus, at a given rate of ATP synthesis, XOI decreased the free ADP level needed to drive ATP synthesis, suggesting a more energy-efficient status. As contractile dysfunction in ischemia is characterized by increase of myocardial free ADP and energy deficiency, the data suggest that XOI might be a potential therapy for improving energy efficiency during myocardial ischemia. PMID:21584861

  1. Reinterpreting the action of ATP analogs on K(ATP) channels.

    PubMed

    Ortiz, David; Gossack, Lindsay; Quast, Ulrich; Bryan, Joseph

    2013-06-28

    Neuroendocrine-type K(ATP) channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K(+), and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes. A current regulatory model proposes that ATP hydrolysis is required to switch SUR1 into post-hydrolytic conformations able to antagonize the inhibitory action of nucleotide binding at the Kir6.2 pore, thus coupling enzymatic and channel activities. Alterations in SUR1 ATPase activity are proposed to contribute to neonatal diabetes and type 2 diabetes risk. The regulatory model is partly based on the reduced ability of ATP analogs such as adenosine 5'-(β,γ-imino)triphosphate (AMP-PNP) and adenosine 5'-O-(thiotriphosphate) (ATPγS) to stimulate channel activity, presumably by reducing hydrolysis. This study uses a substitution at the catalytic glutamate, SUR(1E1507Q), with a significantly increased affinity for ATP, to probe the action of these ATP analogs on conformational switching. ATPγS, a slowly hydrolyzable analog, switches SUR1 conformations, albeit with reduced affinity. Nonhydrolyzable AMP-PNP and adenosine 5'-(β,γ-methylenetriphosphate) (AMP-PCP) alone fail to switch SUR1, but do reverse ATP-induced switching. AMP-PCP displaces 8-azido-[(32)P]ATP from the noncanonical NBD1 of SUR1. This is consistent with structural data on an asymmetric bacterial ABC protein that shows that AMP-PNP binds selectively to the noncanonical NBD to prevent conformational switching. The results imply that MgAMP-PNP and MgAMP-PCP (AMP-PxP) fail to activate K(ATP) channels because they do not support NBD dimerization and conformational switching, rather than by limiting enzymatic activity. PMID:23665564

  2. Activated Acinus boosts basal autophagy

    PubMed Central

    Nandi, Nilay; Tyra, Lauren K; Krämer, Helmut

    2015-01-01

    Acinus (Acn) is a nuclear protein that participates in the regulation of autophagy. Loss of Acn function prevents autophagy in starving cells. Conversely, Acn activation induces basal autophagy. This enhances the quality control functions of autophagy such as the removal of misfolded proteins, thereby reducing neurodegeneration and prolonging lifespan. Acn activity is enhanced by Akt1-mediated phosphorylation, which counteracts the cleavage of Acn by a caspase-3 homolog. PMID:27308482

  3. Protease La from Escherichia coli Hydrolyzes ATP and Proteins in a Linked Fashion

    NASA Astrophysics Data System (ADS)

    Waxman, Lloyd; Goldberg, Alfred L.

    1982-08-01

    The energy requirement for protein breakdown in Escherichia coli results from an ATP requirement for the function of protease La, the product of the lon gene. This novel serine protease contains an ATPase activity that is essential for proteolysis. ATP and protein hydrolysis show the same Km for ATP (30-40 μ M) and are affected similarly by various inhibitors, activators, and ATP analogs. Vanadate inhibited ATP cleavage and caused a proportionate reduction in casein hydrolysis, and inhibitors of serine proteases reduced ATP cleavage. Thus, ATP and protein hydrolysis appear to be linked stoichiometrically. Furthermore, ATP hydrolysis is stimulated two- to threefold by polypeptides that are substrates for the protease (casein, glucagon) but not by nonhydrolyzed polypeptides (insulin, RNase). Unlike hemoglobin or native albumin, globin and denatured albumin stimulated ATP hydrolysis and were substrates for proteolysis. It is suggested that the stimulation of ATP hydrolysis by potential substrates triggers activation of the proteolytic function.

  4. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.

    PubMed

    Johansson, Renzo; Jonna, Venkateswara Rao; Kumar, Rohit; Nayeri, Niloofar; Lundin, Daniel; Sjöberg, Britt-Marie; Hofer, Anders; Logan, Derek T

    2016-06-01

    Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone. PMID:27133024

  5. Autoimmune basal ganglia disorders.

    PubMed

    Dale, Russell C; Brilot, Fabienne

    2012-11-01

    The basal ganglia are deep nuclei in the brain that include the caudate, putamen, globus pallidus, and substantia nigra. Pathological processes involving the basal ganglia often result in disorders of movement and behavior. A number of different autoimmune disorders predominantly involve the basal ganglia and can result in movement and psychiatric disorders. The classic basal ganglia autoimmune disorder is Sydenham chorea, a poststreptococcal neuropsychiatric disorder. Resurgence in the interest in Sydenham chorea is the result of the descriptions of other poststreptococcal neuropsychiatric disorders including tics and obsessive-compulsive disorder, broadly termed pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Encephalitic processes affecting the basal ganglia are also described including the syndromes basal ganglia encephalitis, encephalitis lethargica, and bilateral striatal necrosis. Last, systemic autoimmune disorders such as systemic lupus erythematosus and antiphospholipid syndrome can result in chorea or parkinsonism. Using paradigms learned from other autoantibody associated disorders, the authors discuss the autoantibody hypothesis and the role of systemic inflammation in autoimmune basal ganglia disorders. Identification of these entities is important as the clinician has an increasing therapeutic repertoire to modulate or suppress the aberrant immune system. PMID:22832771

  6. Electron transfer precedes ATP hydrolysis during nitrogenase catalysis.

    PubMed

    Duval, Simon; Danyal, Karamatullah; Shaw, Sudipta; Lytle, Anna K; Dean, Dennis R; Hoffman, Brian M; Antony, Edwin; Seefeldt, Lance C

    2013-10-01

    The biological reduction of N2 to NH3 catalyzed by Mo-dependent nitrogenase requires at least eight rounds of a complex cycle of events associated with ATP-driven electron transfer (ET) from the Fe protein to the catalytic MoFe protein, with each ET coupled to the hydrolysis of two ATP molecules. Although steps within this cycle have been studied for decades, the nature of the coupling between ATP hydrolysis and ET, in particular the order of ET and ATP hydrolysis, has been elusive. Here, we have measured first-order rate constants for each key step in the reaction sequence, including direct measurement of the ATP hydrolysis rate constant: kATP = 70 s(-1), 25 °C. Comparison of the rate constants establishes that the reaction sequence involves four sequential steps: (i) conformationally gated ET (kET = 140 s(-1), 25 °C), (ii) ATP hydrolysis (kATP = 70 s(-1), 25 °C), (iii) Phosphate release (kPi = 16 s(-1), 25 °C), and (iv) Fe protein dissociation from the MoFe protein (kdiss = 6 s(-1), 25 °C). These findings allow completion of the thermodynamic cycle undergone by the Fe protein, showing that the energy of ATP binding and protein-protein association drive ET, with subsequent ATP hydrolysis and Pi release causing dissociation of the complex between the Fe(ox)(ADP)2 protein and the reduced MoFe protein. PMID:24062462

  7. BIOGENESIS FACTOR REQUIRED FOR ATP SYNTHASE 3 Facilitates Assembly of the Chloroplast ATP Synthase Complex.

    PubMed

    Zhang, Lin; Duan, Zhikun; Zhang, Jiao; Peng, Lianwei

    2016-06-01

    Thylakoid membrane-localized chloroplast ATP synthases use the proton motive force generated by photosynthetic electron transport to produce ATP from ADP. Although it is well known that the chloroplast ATP synthase is composed of more than 20 proteins with α3β3γ1ε1δ1I1II1III14IV1 stoichiometry, its biogenesis process is currently unclear. To unravel the molecular mechanisms underlying the biogenesis of chloroplast ATP synthase, we performed extensive screening for isolating ATP synthase mutants in Arabidopsis (Arabidopsis thaliana). In the recently identified bfa3 (biogenesis factors required for ATP synthase 3) mutant, the levels of chloroplast ATP synthase subunits were reduced to approximately 25% of wild-type levels. In vivo labeling analysis showed that assembly of the CF1 component of chloroplast ATP synthase was less efficient in bfa3 than in the wild type, indicating that BFA3 is required for CF1 assembly. BFA3 encodes a chloroplast stromal protein that is conserved in higher plants, green algae, and a few species of other eukaryotic algae, and specifically interacts with the CF1β subunit. The BFA3 binding site was mapped to a region in the catalytic site of CF1β. Several residues highly conserved in eukaryotic CF1β are crucial for the BFA3-CF1β interaction, suggesting a coevolutionary relationship between BFA3 and CF1β. BFA3 appears to function as a molecular chaperone that transiently associates with unassembled CF1β at its catalytic site and facilitates subsequent association with CF1α during assembly of the CF1 subcomplex of chloroplast ATP synthase. PMID:27208269

  8. The energetic state within hibernating myocardium is normal during dobutamine despite inhibition of ATP-dependent potassium channel opening with glibenclamide.

    PubMed

    McFalls, Edward O; Kelly, Rosemary F; Hu, Qingsong; Mansoor, Abdul; Lee, Joseph; Kuskowski, Michael; Sikora, Joseph; Ward, Herbert B; Zhang, Jianyi

    2007-11-01

    Within hibernating myocardium, it is uncertain whether a normal energetic state is present at baseline and whether maintaining that energy state during a catecholamine challenge is dependent on ATP-dependent potassium channel opening. In this study, 16 swine underwent a thoracotomy with placement of an external constrictor on the left anterior descending coronary artery (LAD) (hibernation model). Seven additional swine underwent a sham operation. At 10 wk, the myocardial energetic state in the LAD region was assessed by (31)P-NMR spectroscopy, and the ratio of phosphocreatine to ATP (PCr/ATP) was determined at baseline, during glibenclamide treatment (0.5 mg/kg bolus with 50 microg/min iv), and during addition of dobutamine (40 microg x kg(-1) x min(-1) iv). At baseline, transmural blood flow in the LAD and remote region was 0.75 +/- 0.11 and 0.88 +/- 0.09 ml x min(-1) x g(-1), respectively (P < 0.01), in hibernating hearts and 0.83 +/- 0.12 and 0.88 +/- 0.15 ml x min(-1) x g(-1), respectively (not significant), in sham-operated hearts. Under basal conditions, PCr/ATP in the LAD region of hibernating and sham pigs was 2.15 +/- 0.04 and 2.11 +/- 0.05, respectively (not significant). In sham pigs, addition of dobutamine to glibenclamide increased the double product from 10.4 +/- 0.8 to 23.9 +/- 4.0 mmHg x beats x min(-1) x 1,000 (P < 0.05) and decreased transmural PCr/ATP from 2.06 +/- 0.06 to 1.69 +/- 0.06 (P < 0.05). Dobutamine increased the double product in hibernating pigs in a similar fashion and, despite a 40% lower blood flow response, induced an equivalent decrease in PCr/ATP from 2.04 +/- 0.04 to 1.73 +/- 0.08 (P < 0.05). In conclusion, we found that, in chronic hibernating swine myocardium with reduced basal blood flow and perfusion reserve, the transmural energetic state, defined by PCr/ATP, is normal during addition of dobutamine, despite inhibition of ATP-dependent potassium channel opening with glibenclamide. These data suggest that important

  9. ATP13A2 regulates mitochondrial bioenergetics through macroautophagy

    PubMed Central

    Gusdon, Aaron M.; Zhu, Jianhui; Van Houten, Bennett; Chu, Charleen T.

    2012-01-01

    Mitochondrial dysfunction and autophagy are centrally implicated in Parkinson’s disease (PD). Mutations in ATP13A2, which encodes a lysosomal P-type ATPase of unknown function, cause a rare, autosomal recessive parkinsonian syndrome. Lysosomes are essential for autophagy, and autophagic clearance of dysfunctional mitochondria represents an important element of mitochondrial quality control. In this study, we tested the hypothesis that loss of ATP13A2 function will affect mitochondrial function. Knockdown of ATP13A2 led to an increase in mitochondrial mass in primary mouse cortical neurons and SH-SY5Y cells forced into mitochondrial dependence. ATP13A2-deficient cells exhibited increased oxygen consumption without a significant change in steady-state levels of ATP. Mitochondria in knockdown cells exhibited increased fragmentation and increased production of reactive oxygen species (ROS). Basal levels of the autophagosome marker LC3-II were not significantly changed, however, ATP13A2 knockdown cells exhibited decreased autophagic flux, associated with increased levels of phospho-mTOR, and resistance to autophagy induction by rapamycin. The effects of ATP13A2 siRNA on oxygen consumption, mitochondrial mass and ROS production could be mimicked by inhibiting autophagy induction using siRNA to Atg7. We propose that decreased autophagy associated with ATP13A2 deficiency affects mitochondrial quality control, resulting in increased ROS production. These data are the first to implicate loss of ATP13A2 function in mitochondrial maintenance and oxidative stress, lending further support to converging genetic and environmental evidence for mitochondrial dysregulation in PD pathogenesis. PMID:22198378

  10. Basal cell cancer (image)

    MedlinePlus

    ... is needed to prove the diagnosis of basal cell carcinoma. Treatment varies depending on the size, depth, and location of the cancer. Early treatment by a dermatologist may result in a cure rate of more than 95%, but regular examination ...

  11. Basal cell skin cancer

    MedlinePlus

    ... occur in younger people who have had extensive sun exposure. You are more likely to get basal cell ... severe sunburns early in life Long-term daily sun exposure (such as the sun exposure received by people ...

  12. Basal Cell Carcinoma

    PubMed Central

    Lanoue, Julien

    2016-01-01

    Basal cell carcinoma is the most commonly occurring cancer in the world and overall incidence is still on the rise. While typically a slow-growing tumor for which metastases is rare, basal cell carcinoma can be locally destructive and disfiguring. Given the vast prevalence of this disease, there is a significant overall burden on patient well-being and quality of life. The current mainstay of basal cell carcinoma treatment involves surgical modalities, such as electrodessication and curettage, excision, cryosurgery, and Mohs micrographic surgery. Such methods are typically reserved for localized basal cell carcinoma and offer high five-year cure rates, but come with the risk of functional impairment, disfigurement, and scarring. Here, the authors review the evidence and indications for nonsurgical treatment modalities in cases where surgery is impractical, contraindicated, or simply not desired by the patient. PMID:27386043

  13. ATP: The crucial component of secretory vesicles.

    PubMed

    Estévez-Herrera, Judith; Domínguez, Natalia; Pardo, Marta R; González-Santana, Ayoze; Westhead, Edward W; Borges, Ricardo; Machado, José David

    2016-07-12

    The colligative properties of ATP and catecholamines demonstrated in vitro are thought to be responsible for the extraordinary accumulation of solutes inside chromaffin cell secretory vesicles, although this has yet to be demonstrated in living cells. Because functional cells cannot be deprived of ATP, we have knocked down the expression of the vesicular nucleotide carrier, the VNUT, to show that a reduction in vesicular ATP is accompanied by a drastic fall in the quantal release of catecholamines. This phenomenon is particularly evident in newly synthesized vesicles, which we show are the first to be released. Surprisingly, we find that inhibiting VNUT expression also reduces the frequency of exocytosis, whereas the overexpression of VNUT drastically increases the quantal size of exocytotic events. To our knowledge, our data provide the first demonstration that ATP, in addition to serving as an energy source and purinergic transmitter, is an essential element in the concentration of catecholamines in secretory vesicles. In this way, cells can use ATP to accumulate neurotransmitters and other secreted substances at high concentrations, supporting quantal transmission. PMID:27342860

  14. Pathway of processive ATP hydrolysis by kinesin

    PubMed Central

    Gilbert, Susan P.; Webb, Martin R.; Brune, Martin; Johnson, Kenneth A.

    2007-01-01

    Direct measurement of the kinetics of kinesin dissociation from microtubules, the release of phosphate and ADP from kinesin, and rebinding of kinesin to the microtubule have defined the mechanism for the kinesin ATPase cycle. The processivity of ATP hydrolysis is ten molecules per site at low salt concentration but is reduced to one ATP per site at higher salt concentration. Kinesin dissociates from the microtubule after ATP hydrolysis. This step is rate-limiting. The subsequent rebinding of kinesin · ADP to the microtubule is fast, so kinesin spends only a small fraction of its duty cycle in the dissociated state. These results provide an explanation for the motility differences between skeletal myosin and kinesin. PMID:7854446

  15. Polarized ATP distribution in urothelial mucosal and serosal space is differentially regulated by stretch and ectonucleotidases.

    PubMed

    Yu, Weiqun

    2015-11-15

    Purinergic signaling is a major pathway in regulating bladder function, and mechanical force stimulates urothelial ATP release, which plays an important role in bladder mechanotransduction. Although urothelial ATP release was first reported almost 20 years ago, the way in which release is regulated by mechanical force, and the presence of ATP-converting enzymes in regulating the availability of released ATP is still not well understood. Using a set of custom-designed Ussing chambers with the ability to manipulate mechanical forces applied on the urothelial tissue, we have demonstrated that it is stretch and not hydrostatic pressure that induces urothelial ATP release. The experiments reveal that urothelial ATP release is tightly controlled by stretch speed, magnitude, and direction. We have further shown that stretch-induced urothelial ATP release is insensitive to temperature (4°C). Interestingly, stretch-induced ATP release shows polarized distribution, with the ATP concentration in mucosal chamber (nanomolar level) about 10 times higher than the ATP concentration in serosal chamber (subnanomolar level). Furthermore, we have consistently observed differential ATP lifetime kinetics in the mucosal and serosal chambers, which is consistent with our immunofluorescent localization data, showing that ATP-converting enzymes ENTPD3 and alkaline phosphatase are expressed on urothelial basal surface, but not on the apical membrane. In summary, our data indicate that urothelial ATP release is finely regulated by stretch speed, magnitude, and direction, and extracellular ATP signaling is likely to be differentially regulated by ectonucleotidase, which results in temporally and spatially distinct ATP kinetics in response to mechanical stretch. PMID:26336160

  16. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  17. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed

    Jensen, P R; Michelsen, O

    1992-12-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  18. Carbon and energy metabolism of atp mutants of Escherichia coli.

    PubMed Central

    Jensen, P R; Michelsen, O

    1992-01-01

    The membrane-bound H(+)-ATPase plays a key role in free-energy transduction of biological systems. We report how the carbon and energy metabolism of Escherichia coli changes in response to deletion of the atp operon that encodes this enzyme. Compared with the isogenic wild-type strain, the growth rate and growth yield were decreased less than expected for a shift from oxidative phosphorylation to glycolysis alone as a source of ATP. Moreover, the respiration rate of a atp deletion strain was increased by 40% compared with the wild-type strain. This result is surprising, since the atp deletion strain is not able to utilize the resulting proton motive force for ATP synthesis. Indeed, the ratio of ATP concentration to ADP concentration was decreased from 19 in the wild type to 7 in the atp mutant, and the membrane potential of the atp deletion strain was increased by 20%, confirming that the respiration rate was not controlled by the magnitude of the opposing membrane potential. The level of type b cytochromes in the mutant cells was 80% higher than the level in the wild-type cells, suggesting that the increased respiration was caused by an increase in the expression of the respiratory genes. The atp deletion strain produced twice as much by-product (acetate) and exhibited increased flow through the tricarboxylic acid cycle and the glycolytic pathway. These three changes all lead to an increase in substrate level phosphorylation; the first two changes also lead to increased production of reducing equivalents. We interpret these data as indicating that E. coli makes use of its ability to respire even if it cannot directly couple this ability to ATP synthesis; by respiring away excess reducing equivalents E. coli enhances substrate level ATP synthesis. PMID:1447134

  19. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  20. Life beyond the Basal.

    ERIC Educational Resources Information Center

    Grey, Jeanne; Carbone, Carole

    1987-01-01

    Reading is a tool for learning. The goal for the teaching of reading must be to produce lovers of reading. A holistic approach should replace exclusive dependence on basal readers. Effective methods are the following: (1) language experience approach; (2) word banks; (3) pattern books; (4) sustained silent reading; and (5) directed…

  1. ATP release through pannexon channels

    PubMed Central

    Dahl, Gerhard

    2015-01-01

    Extracellular adenosine triphosphate (ATP) serves as a signal for diverse physiological functions, including spread of calcium waves between astrocytes, control of vascular oxygen supply and control of ciliary beat in the airways. ATP can be released from cells by various mechanisms. This review focuses on channel-mediated ATP release and its main enabler, Pannexin1 (Panx1). Six subunits of Panx1 form a plasma membrane channel termed ‘pannexon’. Depending on the mode of stimulation, the pannexon has large conductance (500 pS) and unselective permeability to molecules less than 1.5 kD or is a small (50 pS), chloride-selective channel. Most physiological and pathological stimuli induce the large channel conformation, whereas the small conformation so far has only been observed with exclusive voltage activation of the channel. The interaction between pannexons and ATP is intimate. The pannexon is not only the conduit for ATP, permitting ATP efflux from cells down its concentration gradient, but the pannexon is also modulated by ATP. The channel can be activated by ATP through both ionotropic P2X as well as metabotropic P2Y purinergic receptors. In the absence of a control mechanism, this positive feedback loop would lead to cell death owing to the linkage of purinergic receptors with apoptotic processes. A control mechanism preventing excessive activation of the purinergic receptors is provided by ATP binding (with low affinity) to the Panx1 protein and gating the channel shut. PMID:26009770

  2. Epidemiology of basal-like breast cancer

    PubMed Central

    Millikan, Robert C.; Newman, Beth; Tse, Chiu-Kit; Moorman, Patricia G.; Conway, Kathleen; Smith, Lisa V.; Labbok, Miriam H.; Geradts, Joseph; Bensen, Jeannette T.; Jackson, Susan; Nyante, Sarah; Livasy, Chad; Carey, Lisa; Earp, H. Shelton; Perou, Charles M.

    2008-01-01

    Risk factors for the newly identified “intrinsic” breast cancer subtypes (luminal A, luminal B, basal-like and human epidermal growth factor receptor 2-positive/estrogen receptor-negative) were determined in the Carolina Breast Cancer Study, a population-based, case–control study of African-American and white women. Immunohistochemical markers were used to subtype 1,424 cases of invasive and in situ breast cancer, and case subtypes were compared to 2,022 controls. Luminal A, the most common subtype, exhibited risk factors typically reported for breast cancer in previous studies, including inverse associations for increased parity and younger age at first full-term pregnancy. Basal-like cases exhibited several associations that were opposite to those observed for luminal A, including increased risk for parity and younger age at first term full-term pregnancy. Longer duration breastfeeding, increasing number of children breastfed, and increasing number of months breastfeeding per child were each associated with reduced risk of basal-like breast cancer, but not luminal A. Women with multiple live births who did not breastfeed and women who used medications to suppress lactation were at increased risk of basal-like, but not luminal A, breast cancer. Elevated waist-hip ratio was associated with increased risk of luminal A in postmenopausal women, and increased risk of basal-like breast cancer in pre- and postmenopausal women. The prevalence of basal-like breast cancer was highest among premenopausal African-American women, who also showed the highest prevalence of basal-like risk factors. Among younger African-American women, we estimate that up to 68% of basal-like breast cancer could be prevented by promoting breastfeeding and reducing abdominal adiposity. PMID:17578664

  3. ATP-sulfurylase, sulfur-compounds, and plant stress tolerance.

    PubMed

    Anjum, Naser A; Gill, Ritu; Kaushik, Manjeri; Hasanuzzaman, Mirza; Pereira, Eduarda; Ahmad, Iqbal; Tuteja, Narendra; Gill, Sarvajeet S

    2015-01-01

    Sulfur (S) stands fourth in the list of major plant nutrients after N, P, and K. Sulfate (SO4 (2-)), a form of soil-S taken up by plant roots is metabolically inert. As the first committed step of S-assimilation, ATP-sulfurylase (ATP-S) catalyzes SO4 (2-)-activation and yields activated high-energy compound adenosine-5(')-phosphosulfate that is reduced to sulfide (S(2-)) and incorporated into cysteine (Cys). In turn, Cys acts as a precursor or donor of reduced S for a range of S-compounds such as methionine (Met), glutathione (GSH), homo-GSH (h-GSH), and phytochelatins (PCs). Among S-compounds, GSH, h-GSH, and PCs are known for their involvement in plant tolerance to varied abiotic stresses, Cys is a major component of GSH, h-GSH, and PCs; whereas, several key stress-metabolites such as ethylene, are controlled by Met through its first metabolite S-adenosylmethionine. With the major aim of briefly highlighting S-compound-mediated role of ATP-S in plant stress tolerance, this paper: (a) overviews ATP-S structure/chemistry and occurrence, (b) appraises recent literature available on ATP-S roles and regulations, and underlying mechanisms in plant abiotic and biotic stress tolerance, (c) summarizes ATP-S-intrinsic regulation by major S-compounds, and (d) highlights major open-questions in the present context. Future research in the current direction can be devised based on the discussion outcomes. PMID:25904923

  4. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    PubMed Central

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop

  5. Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport

    NASA Technical Reports Server (NTRS)

    Tang, Wenqiang; Brady, Shari R.; Sun, Yu; Muday, Gloria K.; Roux, Stanley J.

    2003-01-01

    Raising the level of extracellular ATP to mM concentrations similar to those found inside cells can block gravitropism of Arabidopsis roots. When plants are grown in Murashige and Skoog medium supplied with 1 mM ATP, their roots grow horizontally instead of growing straight down. Medium with 2 mM ATP induces root curling, and 3 mM ATP stimulates lateral root growth. When plants are transferred to medium containing exogenous ATP, the gravity response is reduced or in some cases completely blocked by ATP. Equivalent concentrations of ADP or inorganic phosphate have slight but usually statistically insignificant effects, suggesting the specificity of ATP in these responses. The ATP effects may be attributable to the disturbance of auxin distribution in roots by exogenously applied ATP, because extracellular ATP can alter the pattern of auxin-induced gene expression in DR5-beta-glucuronidase transgenic plants and increase the response sensitivity of plant roots to exogenously added auxin. The presence of extracellular ATP also decreases basipetal auxin transport in a dose-dependent fashion in both maize (Zea mays) and Arabidopsis roots and increases the retention of [(3)H]indole-3-acetic acid in root tips of maize. Taken together, these results suggest that the inhibitory effects of extracellular ATP on auxin distribution may happen at the level of auxin export. The potential role of the trans-plasma membrane ATP gradient in auxin export and plant root gravitropism is discussed.

  6. Mitochondrial ATP synthase activity is impaired by suppressed O-GlcNAcylation in Alzheimer's disease.

    PubMed

    Cha, Moon-Yong; Cho, Hyun Jin; Kim, Chaeyoung; Jung, Yang Ouk; Kang, Min Jueng; Murray, Melissa E; Hong, Hyun Seok; Choi, Young-Joo; Choi, Heesun; Kim, Dong Kyu; Choi, Hyunjung; Kim, Jisoo; Dickson, Dennis W; Song, Hyun Kyu; Cho, Jin Won; Yi, Eugene C; Kim, Jungsu; Jin, Seok Min; Mook-Jung, Inhee

    2015-11-15

    Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc) is one of the protein glycosylations affecting various intracellular events. However, the role of O-GlcNAcylation in neurodegenerative diseases such as Alzheimer's disease (AD) is poorly understood. Mitochondrial adenosine 5'-triphosphate (ATP) synthase is a multiprotein complex that synthesizes ATP from ADP and Pi. Here, we found that ATP synthase subunit α (ATP5A) was O-GlcNAcylated at Thr432 and ATP5A O-GlcNAcylation was decreased in the brains of AD patients and transgenic mouse model, as well as Aβ-treated cells. Indeed, Aβ bound to ATP synthase directly and reduced the O-GlcNAcylation of ATP5A by inhibition of direct interaction between ATP5A and mitochondrial O-GlcNAc transferase, resulting in decreased ATP production and ATPase activity. Furthermore, treatment of O-GlcNAcase inhibitor rescued the Aβ-induced impairment in ATP production and ATPase activity. These results indicate that Aβ-mediated reduction of ATP synthase activity in AD pathology results from direct binding between Aβ and ATP synthase and inhibition of O-GlcNAcylation of Thr432 residue on ATP5A. PMID:26358770

  7. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    SciTech Connect

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  8. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.

    PubMed

    Ikuma, M; Welsh, M J

    2000-07-18

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg(2+) prevents hydrolysis. We found that even in the absence of Mg(2+), ATP could support channel activity, albeit at a reduced level compared with the presence of Mg(2+). Application of ATP with a divalent cation, including the poorly hydrolyzed CaATP complex, increased the rate of opening. Moreover, in CFTR variants with mutations that disrupt hydrolysis, ATP alone opened the channel and Mg(2+) further enhanced ATP-dependent opening. These data suggest that ATP alone can open the channel and that divalent cations increase ATP binding. Consistent with this conclusion, when we mutated an aspartate thought to bind Mg(2+), divalent cations failed to increase activity compared with ATP alone. Two observations suggested that divalent cations also stabilize the open state. In wild-type CFTR, CaATP generated a long duration open state, whereas ATP alone did not. With a CFTR variant in which hydrolysis was disrupted, MgATP, but not ATP alone, produced long openings. These results suggest a gating cycle for CFTR in which ATP binding opens the channel and either hydrolysis or dissociation leads to channel closure. In addition, the data suggest that ATP binding and hydrolysis by either NBD can gate the channel. PMID:10880569

  9. Regulation of CFTR Cl− channel gating by ATP binding and hydrolysis

    PubMed Central

    Ikuma, Mutsuhiro; Welsh, Michael J.

    2000-01-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel is regulated by the interaction of ATP with its two cytoplasmic nucleotide-binding domains (NBD). Although ATP hydrolysis by the NBDs is required for normal gating, the influence of ATP binding versus hydrolysis on specific steps in the gating cycle remains uncertain. Earlier work showed that the absence of Mg2+ prevents hydrolysis. We found that even in the absence of Mg2+, ATP could support channel activity, albeit at a reduced level compared with the presence of Mg2+. Application of ATP with a divalent cation, including the poorly hydrolyzed CaATP complex, increased the rate of opening. Moreover, in CFTR variants with mutations that disrupt hydrolysis, ATP alone opened the channel and Mg2+ further enhanced ATP-dependent opening. These data suggest that ATP alone can open the channel and that divalent cations increase ATP binding. Consistent with this conclusion, when we mutated an aspartate thought to bind Mg2+, divalent cations failed to increase activity compared with ATP alone. Two observations suggested that divalent cations also stabilize the open state. In wild-type CFTR, CaATP generated a long duration open state, whereas ATP alone did not. With a CFTR variant in which hydrolysis was disrupted, MgATP, but not ATP alone, produced long openings. These results suggest a gating cycle for CFTR in which ATP binding opens the channel and either hydrolysis or dissociation leads to channel closure. In addition, the data suggest that ATP binding and hydrolysis by either NBD can gate the channel. PMID:10880569

  10. Nevoid basal cell carcinoma syndrome

    MedlinePlus

    ... of this disorder is a type of skin cancer called basal cell carcinoma , that develops around the time of puberty. Other ... if: You or any family members have nevoid basal cell carcinoma syndrome, especially if you are planning to have ...

  11. ATP sensitive K(+) channels are critical for maintaining myocardial perfusion and high energy phosphates in the failing heart.

    PubMed

    Jameel, Mohammad N; Xiong, Qiang; Mansoor, Abdul; Bache, Robert J; Zhang, Jianyi

    2016-03-01

    Congestive heart failure (CHF) is associated with intrinsic alterations of mitochondrial oxidative phosphorylation which lead to increased myocardial cytosolic free ADP. ATP sensitive K(+) channels (KATP) act as metabolic sensors that are important for maintaining coronary blood flow (MBF) and in mediating the response of the myocardium to stress. Coronary adenosine receptors (AdR) are not normally active but cause vasodilation during myocardial ischemia. This study examined the myocardial energetic response to inhibition of KATP and AdR in CHF. CHF (as evidenced by LVEDP>20mmHg) was produced in adult mongrel dogs (n=12) by rapid ventricular pacing for 4weeks. MBF was measured with radiolabeled microspheres during baseline (BL), AdR blockade with 8-phenyltheophylline (8-PT; 5mg/kg iv), and KATP blockade with glibenclamide (GLB; 20μg/kg/min ic). High energy phosphates were examined with (31)P magnetic resonance spectroscopy (MRS) while myocardial oxygenation was assessed from the deoxymyoglobin signal (Mb-δ) using (1)H MRS. During basal conditions the phosphocreatine (PCr)/ATP ratio (1.73±0.15) was significantly lower than in previously studied normal dogs (2.42±0.11) although Mb-δ was undetectable. 8-PT caused ≈21% increase in MBF with no change in PCr/ATP. GLB caused a 33±0.1% decrease in MBF with a decrease in PCr/ATP from 1.65±0.17 to 1.11±0.11 (p<0.0001). GLB did not change the pseudo-first-order rate constant of ATP production via CK (kf), but the ATP production rate via CK was reduced by 35±0.08%; this was accompanied by an increase in Pi/PCr and appearance of a Mb-δ signal indicating tissue hypoxia. Thus, in the failing heart the balance between myocardial ATP demands and oxygen delivery is critically dependent on functioning KATP channels. PMID:26854629

  12. Cortical basal ganglionic degeneration.

    PubMed

    Scarmeas, N; Chin, S S; Marder, K

    2001-10-01

    In this case study, we describe the symptoms, neuropsychological testing, and brain pathology of a retired mason's assistant with cortical basal ganglionic degeneration (CBGD). CBGD is an extremely rare neurodegenerative disease that is categorized under both Parkinsonian syndromes and frontal lobe dementias. It affects men and women nearly equally, and the age of onset is usually in the sixth decade of life. CBGD is characterized by Parkinson's-like motor symptoms and by deficits of movement and cognition, indicating focal brain pathology. Neuronal cell loss is ultimately responsible for the neurological symptoms. PMID:14602941

  13. Paramecium tetraurelia basal body structure.

    PubMed

    Tassin, Anne-Marie; Lemullois, Michel; Aubusson-Fleury, Anne

    2015-01-01

    Paramecium is a free-living unicellular organism, easy to cultivate, featuring ca. 4000 motile cilia emanating from longitudinal rows of basal bodies anchored in the plasma membrane. The basal body circumferential polarity is marked by the asymmetrical organization of its associated appendages. The complex basal body plus its associated rootlets forms the kinetid. Kinetids are precisely oriented within a row in correlation with the cell polarity. Basal bodies also display a proximo-distal polarity with microtubule triplets at their proximal ends, surrounding a permanent cartwheel, and microtubule doublets at the transition zone located between the basal body and the cilium. Basal bodies remain anchored at the cell surface during the whole cell cycle. On the opposite to metazoan, there is no centriolar stage and new basal bodies develop anteriorly and at right angle from the base of the docked ones. Ciliogenesis follows a specific temporal pattern during the cell cycle and both unciliated and ciliated docked basal bodies can be observed in the same cell. The transition zone is particularly well organized with three distinct plates and a maturation of its structure is observed during the growth of the cilium. Transcriptomic and proteomic analyses have been performed in different organisms including Paramecium to understand the ciliogenesis process. The data have incremented a multi-organism database, dedicated to proteins involved in the biogenesis, composition and function of centrosomes, basal bodies or cilia. Thanks to its thousands of basal bodies and the well-known choreography of their duplication during the cell cycle, Paramecium has allowed pioneer studies focusing on the structural and functional processes underlying basal body duplication. Proteins involved in basal body anchoring are sequentially recruited to assemble the transition zone thus indicating that the anchoring process parallels the structural differentiation of the transition zone. This feature

  14. Human basal body basics.

    PubMed

    Vertii, Anastassiia; Hung, Hui-Fang; Hehnly, Heidi; Doxsey, Stephen

    2016-01-01

    In human cells, the basal body (BB) core comprises a ninefold microtubule-triplet cylindrical structure. Distal and subdistal appendages are located at the distal end of BB, where they play indispensable roles in cilium formation and function. Most cells that arrest in the G0 stage of the cell cycle initiate BB docking at the plasma membrane followed by BB-mediated growth of a solitary primary cilium, a structure required for sensing the extracellular environment and cell signaling. In addition to the primary cilium, motile cilia are present in specialized cells, such as sperm and airway epithelium. Mutations that affect BB function result in cilia dysfunction. This can generate syndromic disorders, collectively called ciliopathies, for which there are no effective treatments. In this review, we focus on the features and functions of BBs and centrosomes in Homo sapiens. PMID:26981235

  15. Basal aurora kinase B activity is sufficient for histone H3 phosphorylation in prophase

    PubMed Central

    Le, Ly-Thuy-Tram; Vu, Hong-Lien; Nguyen, Chi-Hung; Molla, Annie

    2013-01-01

    Summary Histone H3 phosphorylation is the hallmark of mitosis deposited by aurora kinase B. Benzo[e]pyridoindoles are a family of potent, broad, ATP-competitive aurora kinase inhibitors. However, benzo[e]pyridoindole C4 only inhibits histone H3 phosphorylation in prophase but not in metaphase. Under the C4 treatment, the cells enter into mitosis with dephosphorylated histone H3, assemble chromosomes normally and progress to metaphase, and then to anaphase. C4 also induces lagging chromosome in anaphase but we demonstrated that these chromosome compaction defects are not related to the absence of H3 phosphorylation in prophase. As a result of C4 action, mitosis lasts longer and the cell cycle is slowed down. We reproduced the mitotic defects with reduced concentrations of potent pan aurora kinase as well as with a specific aurora B ATP-competitive inhibitor; we therefore propose that histone H3 phosphorylation and anaphase chromosome compaction involve the basal activity of aurora kinase B. Our data suggest that aurora kinase B is progressively activated at mitosis entry and at anaphase onset. The full activation of aurora kinase B by its partners, in prometaphase, induces a shift in the catalytic domain of aurora B that modifies its affinity for ATP. These waves of activation/deactivation of aurora B correspond to different conformations of the chromosomal complex revealed by FRAP. The presence of lagging chromosomes may have deleterious consequences on the daughter cells and, unfortunately, the situation may be encountered in patients receiving treatment with aurora kinase inhibitors. PMID:23616922

  16. ATP citrate lyase improves mitochondrial function in skeletal muscle.

    PubMed

    Das, Suman; Morvan, Frederic; Jourde, Benjamin; Meier, Viktor; Kahle, Peter; Brebbia, Pascale; Toussaint, Gauthier; Glass, David J; Fornaro, Mara

    2015-06-01

    Mitochondrial dysfunction is associated with skeletal muscle pathology, including cachexia, sarcopenia, and the muscular dystrophies. ATP citrate lyase (ACL) is a cytosolic enzyme that catalyzes mitochondria-derived citrate into oxaloacetate and acetyl-CoA. Here we report that activation of ACL in skeletal muscle results in improved mitochondrial function. IGF1 induces activation of ACL in an AKT-dependent fashion. This results in an increase in cardiolipin, thus increasing critical mitochondrial complexes and supercomplex activity, and a resultant increase in oxygen consumption and cellular ATP levels. Conversely, knockdown of ACL in myotubes not only reduces mitochondrial complex I, IV, and V activity but also blocks IGF1-induced increases in oxygen consumption. In vivo, ACL activity is associated with increased ATP. Activation of this IGF1/ACL/cardiolipin pathway combines anabolic signaling with induction of mechanisms needed to provide required ATP. PMID:26039450

  17. Loss of LRPPRC causes ATP synthase deficiency.

    PubMed

    Mourier, Arnaud; Ruzzenente, Benedetta; Brandt, Tobias; Kühlbrandt, Werner; Larsson, Nils-Göran

    2014-05-15

    Defects of the oxidative phosphorylation system, in particular of cytochrome-c oxidase (COX, respiratory chain complex IV), are common causes of Leigh syndrome (LS), which is a rare neurodegenerative disorder with severe progressive neurological symptoms that usually present during infancy or early childhood. The COX-deficient form of LS is commonly caused by mutations in genes encoding COX assembly factors, e.g. SURF1, SCO1, SCO2 or COX10. However, other mutations affecting genes that encode proteins not directly involved in COX assembly can also cause LS. The leucine-rich pentatricopeptide repeat containing protein (LRPPRC) regulates mRNA stability, polyadenylation and coordinates mitochondrial translation. In humans, mutations in Lrpprc cause the French Canadian type of LS. Despite the finding that LRPPRC deficiency affects the stability of most mitochondrial mRNAs, its pathophysiological effect has mainly been attributed to COX deficiency. Surprisingly, we show here that the impaired mitochondrial respiration and reduced ATP production observed in Lrpprc conditional knockout mouse hearts is caused by an ATP synthase deficiency. Furthermore, the appearance of inactive subassembled ATP synthase complexes causes hyperpolarization and increases mitochondrial reactive oxygen species production. Our findings shed important new light on the bioenergetic consequences of the loss of LRPPRC in cardiac mitochondria. PMID:24399447

  18. Restoration of intracellular ATP production in banked red blood cells improves inducible ATP export and suppresses RBC-endothelial adhesion

    PubMed Central

    Kirby, Brett S.; Hanna, Gabi; Hendargo, Hansford C.

    2014-01-01

    Transfusion of banked red blood cells (RBCs) has been associated with poor cardiovascular outcomes. Storage-induced alterations in RBC glycolytic flux, attenuated ATP export, and microvascular adhesion of transfused RBCs in vivo could contribute, but the underlying mechanisms have not been tested. We tested the novel hypothesis that improving deoxygenation-induced metabolic flux and the associated intracellular ATP generation in stored RBCs (sRBCs) results in an increased extracellular ATP export and suppresses microvascular adhesion of RBCs to endothelium in vivo following transfusion. We show deficient intracellular ATP production and ATP export by human sRBCs during deoxygenation (impairments ∼42% and 49%, respectively). sRBC pretreatment with a solution containing glycolytic intermediate/purine/phosphate precursors (i.e., “PIPA”) restored deoxygenation-induced intracellular ATP production and promoted extracellular ATP export (improvement ∼120% and 50%, respectively). In a nude mouse model of transfusion, adhesion of human RBCs to the microvasculature in vivo was examined. Only 2% of fresh RBCs (fRBCs) transfused adhered to the vascular wall, compared with 16% of sRBCs transfused. PIPA pretreatment of sRBCs significantly reduced adhesion to just 5%. In hypoxia, adhesion of sRBCs transfused was significantly augmented (up to 21%), but not following transfusion of fRBCs or PIPA-treated sRBCs (3.5% or 6%). Enhancing the capacity for deoxygenation-induced glycolytic flux within sRBCs increases their ability to generate intracellular ATP, improves the inducible export of extracellular anti-adhesive ATP, and consequently suppresses adhesion of stored, transfused RBCs to the vascular wall in vivo. PMID:25305182

  19. Fluorescent ATP analog mant-ATP reports dynein activity in the isolated Chlamydomonas axoneme

    NASA Astrophysics Data System (ADS)

    Feofilova, Maria; Howard, Jonathon

    Eukaryotic flagella are long rod-like extensions of cells, which play a fundamental role in single cell movement, as well as in fluid transport. Flagella contain a highly evolutionary conserved mechanical structure called the axoneme. The motion of the flagellum is generated by dynein motor proteins located all along the length of the axoneme. How the force production of motors is controlled spatially and temporally is still an open question. Therefore, monitoring dynein activity in the axonemal structure is expected to provide novel insights in regulation of the beat. We use high sensitivity fluorescence microscopy to monitor the binding and hydrolysis kinetics of the fluorescently labeled ATP analogue mant-ATP (2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate), which is known to support dynein activity. By studying the kinetics of mant-ATP fluorescence, we identified distinct mant-ATP binding sites in the axoneme. The application of this method to axonemes with reduced amounts of dynein, showed evidence that one of the sites is associated with binding to dynein. In the future, we would like to use this method to find the spatial distribution of dynein activity in the axoneme.

  20. Molecular mechanism of sulphonylurea block of K(ATP) channels carrying mutations that impair ATP inhibition and cause neonatal diabetes.

    PubMed

    Proks, Peter; de Wet, Heidi; Ashcroft, Frances M

    2013-11-01

    Sulphonylurea drugs are the therapy of choice for treating neonatal diabetes (ND) caused by mutations in the ATP-sensitive K(+) channel (KATP channel). We investigated the interactions between MgATP, MgADP, and the sulphonylurea gliclazide with KATP channels expressed in Xenopus oocytes. In the absence of MgATP, gliclazide block was similar for wild-type channels and those carrying the Kir6.2 ND mutations R210C, G334D, I296L, and V59M. Gliclazide abolished the stimulatory effect of MgATP on all channels. Conversely, high MgATP concentrations reduced the gliclazide concentration, producing a half-maximal block of G334D and R201C channels and suggesting a mutual antagonism between nucleotide and gliclazide binding. The maximal extent of high-affinity gliclazide block of wild-type channels was increased by MgATP, but this effect was smaller for ND channels; channels that were least sensitive to ATP inhibition showed the smallest increase in sulphonylurea block. Consequently, G334D and I296L channels were not fully blocked, even at physiological MgATP concentrations (1 mmol/L). Glibenclamide block was also reduced in β-cells expressing Kir6.2-V59M channels. These data help to explain why patients with some mutations (e.g., G334D, I296L) are insensitive to sulphonylurea therapy, why higher drug concentrations are needed to treat ND than type 2 diabetes, and why patients with severe ND mutations are less prone to drug-induced hypoglycemia. PMID:23835339

  1. Activation of ATP binding for the autophosphorylation of DosS, a Mycobacterium tuberculosis histidine kinase lacking an ATP lid motif.

    PubMed

    Cho, Ha Yeon; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Eungbin; Kang, Beom Sik

    2013-05-01

    The sensor histidine kinases of Mycobacterium tuberculosis, DosS and DosT, are responsible for sensing hypoxic conditions and consist of sensor and kinase cores responsible for accepting signals and phosphorylation activity, respectively. The kinase core contains a dimerization and histidine phosphate-accepting (DHp) domain and an ATP binding domain (ABD). The 13 histidine kinase genes of M. tuberculosis can be grouped based on the presence or absence of the ATP lid motif and F box (elements known to play roles in ATP binding) in their ABDs; DosS and DosT have ABDs lacking both these elements, and the crystal structures of their ABDs indicated that they were unsuitable for ATP binding, as a short loop covers the putative ATP binding site. Although the ABD alone cannot bind ATP, the kinase core is functional in autophosphorylation. Appropriate spatial arrangement of the ABD and DHp domain within the kinase core is required for both autophosphorylation and ATP binding. An ionic interaction between Arg(440) in the DHp domain and Glu(537) in the short loop of the ABD is available and may open the ATP binding site, by repositioning the short loop away from the site. Mutations at Arg(440) and Glu(537) reduce autophosphorylation activity. Unlike other histidine kinases containing an ATP lid, which protects bound ATP, DosS is unable to accept ATP until the ABD is properly positioned relative to the histidine; this may prevent unexpected ATP reactions. ATP binding can, therefore, function as a control mechanism for histidine kinase activity. PMID:23486471

  2. Blockade of adenosine receptors unmasks a stimulatory effect of ATP on cardiac contractility.

    PubMed Central

    Mantelli, L.; Amerini, S.; Filippi, S.; Ledda, F.

    1993-01-01

    1. The effects of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP on the contractile tension of guinea-pig isolated left atria were evaluated. 2. ATP (1-100 microM) produced a concentration-dependent negative inotropic effect; this response was converted to a positive inotropic effect in the presence of the antagonist of adenosine A1 receptors, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 0.1 microM), and in the presence of 8-phenyltheophylline (10 microM), an antagonist of A1 and A2 receptors. 3. The positive inotropic effect of ATP was antagonized by the P2 receptor antagonist, suramin (500 microM). Reactive blue 2 (30-500 microM), a putative P2y receptor antagonist, concentration-dependently reduced and finally abolished the effect of ATP. 4. In the presence of 8-phenyltheophylline, the stable analogues of ATP, alpha,beta-methylene ATP and beta,gamma-methylene ATP (1-30 microM), produced a concentration-dependent increase in atrial contractility of a lesser degree than that induced by ATP. 5. The results suggest that when inhibitory adenosine receptors are blocked, ATP produces a positive inotropic effect, probably mediated by P2y receptor stimulation. PMID:8401938

  3. Site-specific basal body duplication in Chlamydomonas.

    PubMed

    O'Toole, Eileen T; Dutcher, Susan K

    2014-02-01

    Correct centriole/basal body positioning is required for numerous biological processes, yet how the cell establishes this positioning is poorly understood. Analysis of centriolar/basal body duplication provides a key to understanding basal body positioning and function. Chlamydomonas basal bodies contain structural features that enable specific triplet microtubules to be specified. Electron tomography of cultures enriched in mitotic cells allowed us to follow basal body duplication and identify a specific triplet at which duplication occurs. Probasal bodies elongate in prophase, assemble transitional fibers (TF) and are segregated with a mature basal body near the poles of the mitotic spindle. A ring of nine-singlet microtubules is initiated at metaphase, orthogonal to triplet eight. At telophase/cytokinesis, triplet microtubule blades assemble first at the distal end, rather than at the proximal cartwheel. The cartwheel undergoes significant changes in length during duplication, which provides further support for its scaffolding role. The uni1-1 mutant contains short basal bodies with reduced or absent TF and defective transition zones, suggesting that the UNI1 gene product is important for coordinated probasal body elongation and maturation. We suggest that this site-specific basal body duplication ensures the correct positioning of the basal body to generate landmarks for intracellular patterning in the next generation. PMID:24166861

  4. Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water.

    PubMed

    Vang, Óluva K; Corfitzen, Charlotte B; Smith, Christian; Albrechtsen, Hans-Jørgen

    2014-11-01

    Fast and reliable methods are required for monitoring of microbial drinking water quality in order to protect public health. Adenosine triphosphate (ATP) was investigated as a potential real-time parameter for detecting microbial ingress in drinking water contaminated with wastewater or surface water. To investigate the ability of the ATP assay in detecting different contamination types, the contaminant was diluted with non-chlorinated drinking water. Wastewater, diluted at 10(4) in drinking water, was detected with the ATP assay, as well as 10(2) to 10(3) times diluted surface water. To improve the performance of the ATP assay in detecting microbial ingress in drinking water, different approaches were investigated, i.e. quantifying microbial ATP or applying reagents of different sensitivities to reduce measurement variations; however, none of these approaches contributed significantly in this respect. Compared to traditional microbiological methods, the ATP assay could detect wastewater and surface water in drinking water to a higher degree than total direct counts (TDCs), while both heterotrophic plate counts (HPC 22 °C and HPC 37 °C) and Colilert-18 (Escherichia coli and coliforms) were more sensitive than the ATP measurements, though with much longer response times. Continuous sampling combined with ATP measurements displays definite monitoring potential for microbial drinking water quality, since microbial ingress in drinking water can be detected in real-time with ATP measurements. The ability of the ATP assay to detect microbial ingress is influenced by both the ATP load from the contaminant itself and the ATP concentration in the specific drinking water. Consequently, a low ATP concentration of the specific drinking water facilitates a better detection of a potential contamination of the water supply with the ATP assay. PMID:25086698

  5. Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells.

    PubMed

    Graham, A; McLees, A; Kennedy, C; Gould, G W; Plevin, R

    1996-03-01

    1. We have investigated the characteristics of activation of the 42kDa isoform of mitogen-activated protein (MAP) kinase in response to various nucleotides in the endothelial cell line EAhy 926. 2. Adenosine 5'-triphosphate (ATP) in the concentration range 0.1-100 microM stimulated the rapid and transient tyrosine phosphorylation and activation of the 42 kDa isoform of MAP kinase in EAhy 926 endothelial cells which peaked at 2 min and returned to basal values by 60 min. ATP also stimulated a similar response in primary cultured bovine aortic endothelial cells. 3. Uridine 5' triphosphate (UTP) also stimulated the 42 kDa isoform of MAP kinase with similar potency to ATP (EC50 values 5.1 +/- 0.2 microM for UTP; 2.9 +/- 0.8 microM for ATP), whilst the selective P2Y-purinoceptor agonist, 2-methylthioATP (2-meSATP) was without effect up to concentrations of 100 microM. In bovine aortic endothelial cells however, UTP and 2-meSATP both stimulated MAP kinase. 4. Pretreatment of cells for 24 h with 12-O tetradecanoyl phorbol 13-acetate resulted in the loss of the alpha and epsilon isoforms of protein kinase C (PKC) and virtual abolition of nucleotide-stimulated MAP kinase activity (> 90% inhibition). 5. Preincubation for 30 min with the PKC inhibitor, Ro-31 8220 (10 microM) reduced MAP-kinase activation at 2 min but potentiated the response at 60 min. 6. Removal of extracellular calcium in the presence of EGTA reduced the MAP kinase activation in response to UTP by approximately 30-50%. 7. Pretreatment with pertussis toxin (18 h, 50 ng ml-1) did not significantly affect the UTP-mediated activation of pp42 MAP kinase. 8. These results show that in the EAhy 926 endothelial cell line, nucleotides stimulate activation of MAP kinase in a protein kinase C-dependent manner through interaction with a P2U-purinoceptor. PMID:8882634

  6. Stimulation by the nucleotides, ATP and UTP of mitogen-activated protein kinase in EAhy 926 endothelial cells.

    PubMed Central

    Graham, A.; McLees, A.; Kennedy, C.; Gould, G. W.; Plevin, R.

    1996-01-01

    1. We have investigated the characteristics of activation of the 42kDa isoform of mitogen-activated protein (MAP) kinase in response to various nucleotides in the endothelial cell line EAhy 926. 2. Adenosine 5'-triphosphate (ATP) in the concentration range 0.1-100 microM stimulated the rapid and transient tyrosine phosphorylation and activation of the 42 kDa isoform of MAP kinase in EAhy 926 endothelial cells which peaked at 2 min and returned to basal values by 60 min. ATP also stimulated a similar response in primary cultured bovine aortic endothelial cells. 3. Uridine 5' triphosphate (UTP) also stimulated the 42 kDa isoform of MAP kinase with similar potency to ATP (EC50 values 5.1 +/- 0.2 microM for UTP; 2.9 +/- 0.8 microM for ATP), whilst the selective P2Y-purinoceptor agonist, 2-methylthioATP (2-meSATP) was without effect up to concentrations of 100 microM. In bovine aortic endothelial cells however, UTP and 2-meSATP both stimulated MAP kinase. 4. Pretreatment of cells for 24 h with 12-O tetradecanoyl phorbol 13-acetate resulted in the loss of the alpha and epsilon isoforms of protein kinase C (PKC) and virtual abolition of nucleotide-stimulated MAP kinase activity (> 90% inhibition). 5. Preincubation for 30 min with the PKC inhibitor, Ro-31 8220 (10 microM) reduced MAP-kinase activation at 2 min but potentiated the response at 60 min. 6. Removal of extracellular calcium in the presence of EGTA reduced the MAP kinase activation in response to UTP by approximately 30-50%. 7. Pretreatment with pertussis toxin (18 h, 50 ng ml-1) did not significantly affect the UTP-mediated activation of pp42 MAP kinase. 8. These results show that in the EAhy 926 endothelial cell line, nucleotides stimulate activation of MAP kinase in a protein kinase C-dependent manner through interaction with a P2U-purinoceptor. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8882634

  7. Basal cell skin cancer

    MedlinePlus

    ... occur on skin that is regularly exposed to sunlight or other ultraviolet radiation. This type of skin ... skin cancer is to reduce your exposure to sunlight . Always use sunscreen: Apply sunscreen with sun protection ...

  8. Role of aryl hydrocarbon receptor nuclear translocator in K{sub ATP} channel-mediated insulin secretion in INS-1 insulinoma cells

    SciTech Connect

    Kim, Ji-Seon; Zheng Haifeng; Kim, Sung Joon; Ho, Won-Kyung; Chun, Yang-Sook

    2009-02-20

    Aryl hydrocarbon receptor nuclear translocator (ARNT) has been known to participate in cellular responses to xenobiotic and hypoxic stresses, as a common partner of aryl hydrocarbon receptor and hypoxia inducible factor-1/2{alpha}. Recently, it was reported that ARNT is essential for adequate insulin secretion in response to glucose input and that its expression is downregulated in the pancreatic islets of diabetic patients. In the present study, the authors addressed the mechanism by which ARNT regulates insulin secretion in the INS-1 insulinoma cell line. In ARNT knock-down cells, basal insulin release was elevated, but insulin secretion was not further stimulated by a high-glucose challenge. Electrophysiological analyses revealed that glucose-dependent membrane depolarization was impaired in these cells. Furthermore, K{sub ATP} channel activity and expression were reduced. Of two K{sub ATP} channel subunits, Kir6.2 was found to be positively regulated by ARNT at the mRNA and protein levels. Based on these results, the authors suggest that ARNT expresses K{sub ATP} channel and by so doing regulates glucose-dependent insulin secretion.

  9. Copper transport during lactation in transgenic mice expressing the human ATP7A protein

    PubMed Central

    Llanos, Roxana M.; Michalczyk, Agnes A.; Freestone, David J.; Currie, Scott; Linder, Maria C.; Ackland, M. Leigh; Mercer, Julian F.B.

    2008-01-01

    Both copper transporting ATPases, ATP7A and ATP7B, are expressed in mammary epithelial cells but their role in copper delivery to milk has not been clarified. We investigated the role of ATP7A in delivery of copper to milk using transgenic mice that over-express human ATP7A. In mammary gland of transgenic mice, human ATP7A protein was 10- to 20-fold higher than in control mice, and was localized to the basolateral membrane of mammary epithelial cells in lactating mice. The copper concentration in the mammary gland of transgenic dams and stomach contents of transgenic pups was significantly reduced compared to non-transgenic mice. The mRNA levels of endogenous Atp7a, Atp7b, and Ctr1 copper transporters in the mammary gland were not altered by the expression of the ATP7A transgene, and the protein levels of Atp7b and ceruloplasmin were similar in transgenic and non-transgenic mice. These data suggest that ATP7A plays a role in removing excess copper from the mammary epithelial cells rather than supplying copper to milk. PMID:18515074

  10. [Basal and spinous cell epitheliomas].

    PubMed

    Shaw, M; Sanguinetti, O; de Kaminsky, A R; Kaminsky, C A

    1975-01-01

    A study on 502 epithelial cutaneous cancers was carried out by the authors. The study included 377 basal cell carcinomas (57,5% in males and 42,4% in females) and 125 squamous cell carcinomas (78,4% in males and 21,6% in females). The basal cell carcinomas in both sexs had an earlier onset than the squamous cell carcinomas. PMID:1241706

  11. Potentiation of disease-associated cystic fibrosis transmembrane conductance regulator mutants by hydrolyzable ATP analogs.

    PubMed

    Miki, Haruna; Zhou, Zhen; Li, Min; Hwang, Tzyh-Chang; Bompadre, Silvia G

    2010-06-25

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and DeltaF508. Previously we found that the ATP analog N(6)-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by approximately 7-fold. Here we show that 2'-deoxy-ATP (dATP), but not 3'-deoxy-ATP, increases the activity of G551D-CFTR by approximately 8-fold. We custom synthesized N(6)-(2-phenylethyl)-2'-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 +/- 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of DeltaF508-CFTR by increasing its activity by 19.5 +/- 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with DeltaF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable. PMID:20406820

  12. Potentiation of Disease-associated Cystic Fibrosis Transmembrane Conductance Regulator Mutants by Hydrolyzable ATP Analogs*

    PubMed Central

    Miki, Haruna; Zhou, Zhen; Li, Min; Hwang, Tzyh-Chang; Bompadre, Silvia G.

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the ATP-binding cassette transporter superfamily. CFTR is gated by ATP binding and hydrolysis at its two nucleotide-binding domains (NBDs), which dimerize in the presence of ATP to form two ATP-binding pockets (ABP1 and ABP2). Mutations reducing the activity of CFTR result in the genetic disease cystic fibrosis. Two of the most common mutations causing a severe phenotype are G551D and ΔF508. Previously we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) potentiates the activity of G551D by ∼7-fold. Here we show that 2′-deoxy-ATP (dATP), but not 3′-deoxy-ATP, increases the activity of G551D-CFTR by ∼8-fold. We custom synthesized N6-(2-phenylethyl)-2′-deoxy-ATP (P-dATP), an analog combining the chemical modifications in dATP and P-ATP. This new analog enhances G551D current by 36.2 ± 5.4-fold suggesting an independent but energetically additive action of these two different chemical modifications. We show that P-dATP binds to ABP1 to potentiate the activity of G551D, and mutations in both sides of ABP1 (W401G and S1347G) decrease its potentiation effect, suggesting that the action of P-dATP takes place at the interface of both NBDs. Interestingly, P-dATP completely rectified the gating abnormality of ΔF508-CFTR by increasing its activity by 19.5 ± 3.8-fold through binding to both ABPs. This result highlights the severity of the gating defect associated with ΔF508, the most prevalent disease-associated mutation. The new analog P-dATP can be not only an invaluable tool to study CFTR gating, but it can also serve as a proof-of-principle that, by combining elements that potentiate the channel activity independently, the increase in chloride transport necessary to reach a therapeutic target is attainable. PMID:20406820

  13. Metallothionein prevents cardiac pathological changes in diabetes by modulating nitration and inactivation of cardiac ATP synthase.

    PubMed

    Cong, Weitao; Zhao, Ting; Zhu, Zhongxin; Huang, Binbin; Ma, Weide; Wang, Yuehui; Tan, Yi; Chakrabarti, Subrata; Li, Xiaokun; Jin, Litai; Cai, Lu

    2014-04-01

    Mitochondrial ATP production is the main energy source for the cell. Diabetes reduces the efficient generation of ATP, possibly due to the inactivation of ATP synthase. However, the exact mechanism by which diabetes induces inactivation of ATP synthase remains unknown, as well as whether such inactivation has a role in the development of pathological abnormalities of the diabetic heart. To address these issues, we used cardiac metallothionein-transgenic (MT-TG) and wild-type (WT) mice with streptozotocin-induced diabetes, since we have demonstrated previously that diabetes-induced cardiac damage and remodeling were found in WT diabetic mice, but not in MT-TG diabetic mice. Immunohistochemical and biochemical assays were used to compare pathological and biochemical changes of the heart between MT-TG and WT diabetic mice, and a proteomic assay to evaluate ATP synthase expression and tyrosine nitration, with its activity. LC/MS analysis revealed that diabetes increased tyrosine nitration of the ATP synthase α subunit at Tyr(271), Tyr(311), and Tyr(476), and the β subunit at Tyr(269) and Tyr(508), and also significantly reduced ATP synthase activity by ~32%. These changes were not observed in MT-TG diabetic mice. Furthermore, parallel experiments with induced expression of cardiac MT by zinc supplementation in diabetic mice produced similar effects. These results suggest that MT can preserve ATP synthase activity in streptozotocin-induced diabetes, probably through the inhibition of ATP synthase nitration. PMID:24629910

  14. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK).

    PubMed

    Kleszczyński, Konrad; Zillikens, Detlef; Fischer, Tobias W

    2016-09-01

    Melatonin is an ubiquitous molecule with a variety of functions including potent antioxidative properties. Due to its lipophilic character, it easily crosses cellular and intracellular membranes and reaches all subcellular organelles. Because of its ability to scavenge free radicals, melatonin protects against oxidative stress, for example, induced by ultraviolet radiation (UVR). Here, we investigated, in a dose-dependent (0, 10, 25, and 50 mJ/cm(2) ) and time-dependent (0, 4, 24, 48 hr post-UVR) manner, whether melatonin prevents the UVR-mediated alterations in ATP synthesis and the generation of reactive oxygen species (ROS) in normal human epidermal keratinocytes (NHEK). Additionally, we evaluated the molecular mechanism of action of melatonin with regard to activation of phase-2 antioxidative enzymes via nuclear erythroid 2-related factor (Nrf2). We found that (i) melatonin counteracted UVR-induced alterations in the ATP synthesis and reduced free radical formation; (ii) melatonin induced the translocation of Nrf2 transcription factor from the cytosol into the nucleus resulting in, (iii) melatonin enhanced gene expression of phase-2 antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) representing an elevated antioxidative response of keratinocytes. These results suggest that melatonin not only directly scavenges ROS, but also significantly induces the activation of phase-2 antioxidative enzymes via the Nrf2 pathway uncovering a new action mechanism that supports the ability of keratinocytes to protect themselves from UVR-mediated oxidative stress. PMID:27117941

  15. [Anti-basal ganglia antibody].

    PubMed

    Hayashi, Masaharu

    2013-04-01

    Sydenham's chorea (SC) is a major manifestation of rheumatic fever, and the production of anti-basal ganglia antibodies (ABGA) has been proposed in SC. The pathogenesis is hypothesized as autoimmune targeting of the basal ganglia via molecular mimicry, triggered by streptococcal infection. The spectrum of diseases in which ABGA may be involved has been broadened to include other extrapyramidal movement disorders, such as tics, dystonia, and Parkinsonism, as well as other psychiatric disorders. The autoimmune hypothesis in the presence and absence of ABGA has been suggested in Tourette's syndrome (TS), early onset obsessive-compulsive disorders (OCD), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). Recently, the relationship between ABGA and dopamine neurons in the basal ganglia has been examined, and autoantibodies against dopamine receptors were detected in the sera from patients with basal ganglia encephalitis. In Japan, the occurrence of subacute encephalitis, where patients suffer from episodes of altered behavior and involuntary movements, has increased. Immune-modulating treatments are effective, indicating the involvement of an autoimmune mechanism. We aimed to detect the anti-neuronal autoantibodies in such encephalitis, using immunohistochemical assessment of patient sera. The sera from patients showing involuntary movements had immunoreactivity for basal ganglia neurons. Further epitopes for ABGA will be investigated in basal ganglia disorders other than SC, TS, OCD, and PANDAS. PMID:23568985

  16. Detection of ATP and NADH: A Bioluminescent Experience.

    ERIC Educational Resources Information Center

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  17. Cardiomyocyte ATP Production, Metabolic Flexibility, and Survival Require Calcium Flux through Cardiac Ryanodine Receptors in Vivo*

    PubMed Central

    Bround, Michael J.; Wambolt, Rich; Luciani, Dan S.; Kulpa, Jerzy E.; Rodrigues, Brian; Brownsey, Roger W.; Allard, Michael F.; Johnson, James D.

    2013-01-01

    Ca2+ fluxes between adjacent organelles are thought to control many cellular processes, including metabolism and cell survival. In vitro evidence has been presented that constitutive Ca2+ flux from intracellular stores into mitochondria is required for basal cellular metabolism, but these observations have not been made in vivo. We report that controlled in vivo depletion of cardiac RYR2, using a conditional gene knock-out strategy (cRyr2KO mice), is sufficient to reduce mitochondrial Ca2+ and oxidative metabolism, and to establish a pseudohypoxic state with increased autophagy. Dramatic metabolic reprogramming was evident at the transcriptional level via Sirt1/Foxo1/Pgc1α, Atf3, and Klf15 gene networks. Ryr2 loss also induced a non-apoptotic form of programmed cell death associated with increased calpain-10 but not caspase-3 activation or endoplasmic reticulum stress. Remarkably, cRyr2KO mice rapidly exhibited many of the structural, metabolic, and molecular characteristics of heart failure at a time when RYR2 protein was reduced 50%, a similar degree to that which has been reported in heart failure. RYR2-mediated Ca2+ fluxes are therefore proximal controllers of mitochondrial Ca2+, ATP levels, and a cascade of transcription factors controlling metabolism and survival. PMID:23678000

  18. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.

    PubMed

    Bompadre, Silvia G; Li, Min; Hwang, Tzyh-Chang

    2008-02-29

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel gated by ATP binding and hydrolysis at its nucleotide binding domains (NBD). The NBDs dimerize in a head-to-tail configuration, forming two ATP binding pockets (ABP) with the ATP molecules buried at the dimer interface. Previous studies have indicated that ABP2, formed by the Walker A and B motifs of NBD2 and the signature sequence of NBD1, is the site critical for the ATP-dependent opening of CFTR. The G551D mutation in ABP2, the third most common cystic fibrosis-associated mutation, abolishes ATP-dependent gating, resulting in an open probability that is approximately 100-fold lower than that of wild-type channels. Interestingly, we found that the ATP analog N6-(2-phenylethyl)-ATP (P-ATP) increases G551D currents mainly by increasing the open time of the channel. This effect is reduced when P-ATP is applied together with ATP, suggesting a competition between ATP and P-ATP for a common binding site. Introducing mutations that lower the nucleotide binding affinity at ABP2 did not alter significantly the effects of P-ATP on G551D-CFTR, whereas an equivalent mutation at ABP1 (consisting of the Walker A and B motifs of NBD1 and the signature sequence of NBD2) dramatically decreased the potency of P-ATP, indicating that ABP1 is the site where P-ATP binds to increase the activity of G551D-CFTR. These results substantiate the idea that nucleotide binding at ABP1 stabilizes the open channel conformation. Our observation that P-ATP enhances the G551D activity by binding at ABP1 implicates that ABP1 can potentially be a target for drugs to bind and increase the channel activity. PMID:18167357

  19. Near-infrared light increases ATP, extends lifespan and improves mobility in aged Drosophila melanogaster

    PubMed Central

    Begum, Rana; Calaza, Karin; Kam, Jaimie Hoh; Salt, Thomas E.; Hogg, Chris; Jeffery, Glen

    2015-01-01

    Ageing is an irreversible cellular decline partly driven by failing mitochondrial integrity. Mitochondria accumulate DNA mutations and reduce ATP production necessary for cellular metabolism. This is associated with inflammation. Near-infrared exposure increases retinal ATP in old mice via cytochrome c oxidase absorption and reduces inflammation. Here, we expose fruitflies daily to 670 nm radiation, revealing elevated ATP and reduced inflammation with age. Critically, there was a significant increase in average lifespan: 100–175% more flies survived into old age following 670 nm exposure and these had significantly improved mobility. This may be a simple route to extending lifespan and improving function in old age. PMID:25788488

  20. Multiple pigmented basal cell carcinomas.

    PubMed

    Shoji, T; Lee, J; Hong, S H; Oh, C H; Kim, W K; Bhawan, J

    1998-04-01

    Basal cell carcinoma is the most common of all skin cancers and the most prevalent one among Caucasians. Rarely, these tumors are seen in other races. We report a 77-year-old Korean woman who presented with multiple darkly pigmented enlarging nodules on her scalp, face, trunk, and extremities. The patient had first noted a 6-mm pigmented lesion on her left eyebrow 10 years previously. Since then, other lesions had appeared in many locations on her body. She had been otherwise healthy and without a history of exposure to arsenic or radiation. There was no family history of skin cancer, xeroderma pigmentosum, or basal cell nevus syndrome. On physical examination, multiple darkly pigmented dome-shaped papules and nodules were present on her scalp, face, right forearm, lower abdomen, and inguinal areas. They ranged in size from 0.5 mm to 2 cm. The larger ones showed central ulceration. Multiple biopsy specimens from different sites showed pigmented basal cell carcinomas. Clinically, there was no evidence of nevus sebaceus, xeroderma pigmentosum, basal cell nevus syndrome, or immunodeficiency. Clinical workup including chest radiography, abdominal ultrasound, bone scan, and brain computerized axial tomography scan did not demonstrate primary or secondary tumors. The results of serologic and hematologic tests were also within normal limits. This is an unusual case report of multiple pigmented basal cell carcinomas in an Asian woman without any predisposing risk factors. PMID:9557792

  1. Phosphate exchange and ATP synthesis by DMSO-pretreated purified bovine mitochondrial ATP synthase.

    PubMed Central

    Beharry, S; Bragg, P D

    2001-01-01

    Purified soluble bovine mitochondrial F(1)F(o)-ATP synthase contained 2 mol of ATP, 2 mol of ADP and 6 mol of P(i)/mol. Incubation of this enzyme with 1 mM [(32)P]P(i) caused the exchange of 2 mol of P(i)/mol of F(1)F(o)-ATP synthase. The labelled phosphates were not displaced by ATP. Transfer of F(1)F(o)-ATP synthase to a buffer containing 30% (v/v) DMSO and 1 mM [(32)P]P(i) resulted in the loss of bound nucleotides with the retention of 1 mol of ATP/mol of F(1)F(o)-ATP synthase. Six molecules of [(32)P]P(i) were incorporated by exchange with the existing bound phosphate. Removal of the DMSO by passage of the enzyme through a centrifuged column of Sephadex G-50 resulted in the exchange of one molecule of bound [(32)P]P(i) into the bound ATP. Azide did not prevent this [(32)P]P(i)<-->ATP exchange reaction. The bound labelled ATP could be displaced from the enzyme by exogenous ATP. Addition of ADP to the DMSO-pretreated F(1)F(o)-ATP synthase in the original DMSO-free buffer resulted in the formation of an additional molecule of bound ATP. It was concluded that following pretreatment with and subsequent removal of DMSO the F(1)F(o)-ATP synthase contained one molecule of ATP at a catalytic site which was competent to carry out a phosphate-ATP exchange reaction using enzyme-bound inorganic radiolabelled phosphate. In the presence of ADP an additional molecule of labelled ATP was formed from enzyme-bound P(i) at a second catalytic site. The bound phosphate-ATP exchange reaction is not readily accommodated by current mechanisms for the ATP synthase. PMID:11139383

  2. Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release

    PubMed Central

    Forsyth, Alison M.; Wan, Jiandi; Owrutsky, Philip D.; Abkarian, Manouk; Stone, Howard A.

    2011-01-01

    RBCs are known to release ATP, which acts as a signaling molecule to cause dilation of blood vessels. A reduction in the release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. Furthermore, reduced deformation of RBCs has been correlated with myocardial infarction and coronary heart disease. Because ATP release has been linked to cell deformation, we undertook a multiscale approach to understand the links between single RBC dynamics, ATP release, and macroscopic viscosity all at physiological shear rates. Our experimental approach included microfluidics, ATP measurements using a bioluminescent reaction, and rheology. Using microfluidics technology with high-speed imaging, we visualize the deformation and dynamics of single cells, which are known to undergo motions such as tumbling, swinging, tanktreading, and deformation. We report that shear thinning is not due to cellular deformation as previously believed, but rather it is due to the tumbling-to-tanktreading transition. In addition, our results indicate that ATP release is constant at shear stresses below a threshold (3 Pa), whereas above the threshold ATP release is increased and accompanied by large cellular deformations. Finally, performing experiments with well-known inhibitors, we show that the Pannexin 1 hemichannel is the main avenue for ATP release both above and below the threshold, whereas, the cystic fibrosis transmembrane conductance regulator only contributes to deformation-dependent ATP release above the stress threshold. PMID:21690355

  3. Age-related changes of myocardial ATP supply and demand mechanisms

    PubMed Central

    Yaniv, Yael; Juhaszova, Magdalena; Sollott, Steven J.

    2013-01-01

    In advanced age, the resting myocardial oxygen consumption (M V̇O2) and cardiac work (CW) in the rat remain intact. However, M V̇O2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them, remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy demand levels. PMID:23845538

  4. Circadian regulation of ATP release in astrocytes.

    PubMed

    Marpegan, Luciano; Swanstrom, Adrienne E; Chung, Kevin; Simon, Tatiana; Haydon, Philip G; Khan, Sanjoy K; Liu, Andrew C; Herzog, Erik D; Beaulé, Christian

    2011-06-01

    Circadian clocks sustain daily oscillations in gene expression, physiology, and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high-level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP(3) signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP(3) signaling to express daily rhythms in ATP release. PMID:21653839

  5. Circadian regulation of ATP release in astrocytes

    PubMed Central

    Marpegan, Luciano; Swanstrom, Adrienne E.; Chung, Kevin; Simon, Tatiana; Haydon, Philip G.; Khan, Sanjoy K.; Liu, Andrew C.; Herzog, Erik D.; Beaulé, Christian

    2011-01-01

    Circadian clocks sustain daily oscillations in gene expression, physiology and behavior, relying on transcription-translation feedback loops of clock genes for rhythm generation. Cultured astrocytes display daily oscillations of extracellular ATP, suggesting that ATP release is a circadian output. We hypothesized that the circadian clock modulates ATP release via mechanisms that regulate acute ATP release from glia. To test the molecular basis for circadian ATP release, we developed methods to measure in real-time ATP release and Bmal1::dLuc circadian reporter expression in cortical astrocyte cultures from mice of different genotypes. Daily rhythms of gene expression required functional Clock and Bmal1, both Per1 and Per2, and both Cry1 and Cry2 genes. Similarly, high level, circadian ATP release also required a functional clock mechanism. Whereas blocking IP3 signaling significantly disrupted ATP rhythms with no effect on Bmal1::dLuc cycling, blocking vesicular release did not alter circadian ATP release or gene expression. We conclude that astrocytes depend on circadian clock genes and IP3 signaling to express daily rhythms in ATP release. PMID:21653839

  6. Basal cell carcinoma – diagnosis

    PubMed Central

    Bowszyc-Dmochowska, Monika; Strzelecka-Węklar, Daria; Dańczak-Pazdrowska, Aleksandra; Adamski, Zygmunt

    2013-01-01

    Basal cell carcinoma is the most common skin cancer in the Caucasian population. The cancer arises in sun exposed areas of the skin. The incidence of morbidity is high and it is still growing. The metastatic rate is low, but the enlarging tumor may cause severe tissue disfigurement and a poor cosmetic outcome. The diagnosis is usually clinical but there are many subtypes of this carcinoma and correct diagnosis is the clue to appropriate treatment of the lesion. The main problem in basal cell carcinoma management is the high recurrence rate. PMID:24592119

  7. A psittacosaurid-like basal neoceratopsian from the Upper Cretaceous of central China and its implications for basal ceratopsian evolution.

    PubMed

    Zheng, Wenjie; Jin, Xingsheng; Xu, Xing

    2015-01-01

    Psittacosauridae (parrot-beaked dinosaurs) represents the first major radiation of ceratopsians (horned dinosaurs). However, psittacosaurids are divergent from the general morphology found in other ceratopsians, and this has resulted in their uncertain systematic position among ceratopsians. Here we describe a new basal neoceratopsian dinosaur, Mosaiceratops azumai gen. et sp. nov. based on a partial semi-articulated skeleton recovered from the Upper Cretaceous Xiaguan Formation of Neixiang County, Henan Province, China. Although our phylogenetic analysis supports this taxon as the most basal neoceratopsian, Mosaiceratops exhibits many features previously considered unique to the Psittacosauridae among the basal Ceratopsia. These include a relatively highly positioned external naris, a proportionally large premaxilla, the nasal extending ventral to the external naris, slender postorbital and temporal bars, a large notch between the basal tubera, and the edentulous premaxilla. Thus, the discovery of Mosaiceratops reduces the morphological disparity between the Psittacosauridae and other basal ceratopsians. Character optimization suggests that basal neoceratopsians have re-evolved premaxillary teeth; a major reversal previously unknown in any dinosaur clade. The new specimen also highlights the mosaic nature of evolution among early ceratopsians and supports the phylogenetic hypothesis that the Psittacosauridae is a relatively derived clade, rather than the most basal group of the Ceratopsia. PMID:26388024

  8. Structural, Biochemical and Genetic Characterization of Dissimilatory ATP Sulfurylase from Allochromatium vinosum

    PubMed Central

    Parey, Kristian; Demmer, Ulrike; Warkentin, Eberhard; Wynen, Astrid; Ermler, Ulrich; Dahl, Christiane

    2013-01-01

    ATP sulfurylase (ATPS) catalyzes a key reaction in the global sulfur cycle by reversibly converting inorganic sulfate (SO42−) with ATP to adenosine 5′-phosphosulfate (APS) and pyrophosphate (PPi). In this work we report on the sat encoded dissimilatory ATP sulfurylase from the sulfur-oxidizing purple sulfur bacterium Allochromatium vinosum. In this organism, the sat gene is located in one operon and co-transcribed with the aprMBA genes for membrane-bound APS reductase. Like APS reductase, Sat is dispensible for growth on reduced sulfur compounds due to the presence of an alternate, so far unidentified sulfite-oxidizing pathway in A. vinosum. Sulfate assimilation also proceeds independently of Sat by a separate pathway involving a cysDN-encoded assimilatory ATP sulfurylase. We produced the purple bacterial sat-encoded ATP sulfurylase as a recombinant protein in E. coli, determined crucial kinetic parameters and obtained a crystal structure in an open state with a ligand-free active site. By comparison with several known structures of the ATPS-APS complex in the closed state a scenario about substrate-induced conformational changes was worked out. Despite different kinetic properties ATPS involved in sulfur-oxidizing and sulfate-reducing processes are not distinguishable on a structural level presumably due to the interference between functional and evolutionary processes. PMID:24073218

  9. Diverse Functional Properties of Wilson Disease ATP7B Variants

    PubMed Central

    Huster, Dominik; Kühne, Angelika; Bhattacharjee, Ashima; Raines, Lily; Jantsch, Vanessa; Noe, Johannes; Schirrmeister, Wiebke; Sommerer, Ines; Sabri, Osama; Berr, Frieder; Mössner, Joachim; Stieger, Bruno; Caca, Karel; Lutsenko, Svetlana

    2012-01-01

    BACKGROUND & AIMS Wilson disease is a severe disorder of copper metabolism caused by mutations in ATP7B, which encodes a copper-transporting adenosine triphosphatase. The disease presents with a variable phenotype that complicates the diagnostic process and treatment. Little is known about the mechanisms that contribute to the different phenotypes of the disease. METHODS We analyzed 28 variants of ATP7B from patients with Wilson disease that affected different functional domains; the gene products were expressed using the baculovirus expression system in Sf9 cells. Protein function was analyzed by measuring catalytic activity and copper (64Cu) transport into vesicles. We studied intracellular localization of variants of ATP7B that had measurable transport activities and were tagged with green fluorescent protein in mammalian cells using confocal laser scanning microscopy. RESULTS Properties of ATP7B variants with pathogenic amino-acid substitution varied greatly even if substitutions were in the same functional domain. Some variants had complete loss of catalytic and transport activity, whereas others lost transport activity but retained phosphor-intermediate formation or had partial losses of activity. In mammalian cells, transport-competent variants differed in stability and subcellular localization. CONCLUSIONS Variants in ATP7B associated with Wilson disease disrupt the protein’s transport activity, result in its mislocalization, and reduce its stability. Single assays are insufficient to accurately predict the effects of ATP7B variants the function of its product and development of Wilson disease. These findings will contribute to our understanding of genotype–phenotype correlation and mechanisms of disease pathogenesis. PMID:22240481

  10. Abiogenic photophosphorylation of ADP to ATP sensitized by flavoproteinoid microspheres.

    PubMed

    Kolesnikov, Michael P; Telegina, Taisiya A; Lyudnikova, Tamara A; Kritsky, Mikhail S

    2008-06-01

    A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10-20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer (F1H*) and ADP are involved. PMID:18386156

  11. Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice.

    PubMed

    Altamirano, Francisco; Valladares, Denisse; Henríquez-Olguín, Carlos; Casas, Mariana; López, Jose R; Allen, Paul D; Jaimovich, Enrique

    2013-01-01

    Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca(2+)]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca(2+)]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca(2+)]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91(phox)/p47(phox) NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca(2+)]r in mdx skeletal muscle cells. The results in this work open new perspectives

  12. Nifedipine Treatment Reduces Resting Calcium Concentration, Oxidative and Apoptotic Gene Expression, and Improves Muscle Function in Dystrophic mdx Mice

    PubMed Central

    Henríquez-Olguín, Carlos; Casas, Mariana; López, Jose R.; Allen, Paul D.; Jaimovich, Enrique

    2013-01-01

    Duchenne Muscular Dystrophy (DMD) is a recessive X-linked genetic disease, caused by mutations in the gene encoding dystrophin. DMD is characterized in humans and in mdx mice by a severe and progressive destruction of muscle fibers, inflammation, oxidative/nitrosative stress, and cell death. In mdx muscle fibers, we have shown that basal ATP release is increased and that extracellular ATP stimulation is pro-apoptotic. In normal fibers, depolarization-induced ATP release is blocked by nifedipine, leading us to study the potential therapeutic effect of nifedipine in mdx muscles and its relation with extracellular ATP signaling. Acute exposure to nifedipine (10 µM) decreased [Ca2+]r, NF-κB activity and iNOS expression in mdx myotubes. In addition, 6-week-old mdx mice were treated with daily intraperitoneal injections of nifedipine, 1 mg/Kg for 1 week. This treatment lowered the [Ca2+]r measured in vivo in the mdx vastus lateralis. We demonstrated that extracellular ATP levels were higher in adult mdx flexor digitorum brevis (FDB) fibers and can be significantly reduced after 1 week of treatment with nifedipine. Interestingly, acute treatment of mdx FDB fibers with apyrase, an enzyme that completely degrades extracellular ATP to AMP, reduced [Ca2+]r to a similar extent as was seen in FDB fibers after 1-week of nifedipine treatment. Moreover, we demonstrated that nifedipine treatment reduced mRNA levels of pro-oxidative/nitrosative (iNOS and gp91phox/p47phox NOX2 subunits) and pro-apoptotic (Bax) genes in mdx diaphragm muscles and lowered serum creatine kinase (CK) levels. In addition, nifedipine treatment increased muscle strength assessed by the inverted grip-hanging test and exercise tolerance measured with forced swimming test in mdx mice. We hypothesize that nifedipine reduces basal ATP release, thereby decreasing purinergic receptor activation, which in turn reduces [Ca2+]r in mdx skeletal muscle cells. The results in this work open new perspectives towards

  13. Teachers Reflect Standards in Basals

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    Dozens of teachers and literacy specialists from across the country hunkered down in Baltimore at round tables, with laptops, pens, and paper, intent on rewriting the collections that wield tremendous influence over the way millions of U.S. children learn literacy skills: the big-name basal readers. Hailing from 18 school districts in 11 states,…

  14. Thiol modulation of the chloroplast ATP synthase is dependent on the energization of thylakoid membranes.

    PubMed

    Konno, Hiroki; Nakane, Takeshi; Yoshida, Masasuke; Ueoka-Nakanishi, Hanayo; Hara, Satoshi; Hisabori, Toru

    2012-04-01

    Thiol modulation of the chloroplast ATP synthase γ subunit has been recognized as an important regulatory system for the activation of ATP hydrolysis activity, although the physiological significance of this regulation system remains poorly characterized. Since the membrane potential required by this enzyme to initiate ATP synthesis for the reduced enzyme is lower than that needed for the oxidized form, reduction of this enzyme was interpreted as effective regulation for efficient photophosphorylation. However, no concrete evidence has been obtained to date relating to the timing and mode of chloroplast ATP synthase reduction and oxidation in green plants. In this study, thorough analysis of the redox state of regulatory cysteines of the chloroplast ATP synthase γ subunit in intact chloroplasts and leaves shows that thiol modulation of this enzyme is pivotal in prohibiting futile ATP hydrolysis activity in the dark. However, the physiological importance of efficient ATP synthesis driven by the reduced enzyme in the light could not be demonstrated. In addition, we investigated the significance of the electrochemical proton gradient in reducing the γ subunit by the reduced form of thioredoxin in chloroplasts, providing strong insights into the molecular mechanisms underlying the formation and reduction of the disulfide bond on the γ subunit in vivo. PMID:22362842

  15. On the ATP binding site of the ε subunit from bacterial F-type ATP synthases.

    PubMed

    Krah, Alexander; Takada, Shoji

    2016-04-01

    F-type ATP synthases are reversible machinery that not only synthesize adenosine triphosphate (ATP) using an electrochemical gradient across the membrane, but also can hydrolyze ATP to pump ions under certain conditions. To prevent wasteful ATP hydrolysis, subunit ε in bacterial ATP synthases changes its conformation from the non-inhibitory down- to the inhibitory up-state at a low cellular ATP concentration. Recently, a crystal structure of the ε subunit in complex with ATP was solved in a non-biologically relevant dimeric form. Here, to derive the functional ATP binding site motif, we carried out molecular dynamics simulations and free energy calculations. Our results suggest that the ATP binding site markedly differs from the experimental resolved one; we observe a reorientation of several residues, which bind to ATP in the crystal structure. In addition we find that an Mg(2+) ion is coordinated by ATP, replacing interactions of the second chain in the crystal structure. Thus we demonstrate more generally the influence of crystallization effects on ligand binding sites and their respective binding modes. Furthermore, we propose a role for two highly conserved residues to control the ATP binding/unbinding event, which have not been considered before. Additionally our results provide the basis for the rational development of new biosensors based on subunit ε, as shown previously for novel sensors measuring the ATP concentration in cells. PMID:26780667

  16. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    PubMed

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose. PMID:27250218

  17. Mitochondrial ATP synthase is dispensable in blood-stage Plasmodium berghei rodent malaria but essential in the mosquito phase

    PubMed Central

    Sturm, Angelika; Mollard, Vanessa; Cozijnsen, Anton; Goodman, Christopher D.; McFadden, Geoffrey I.

    2015-01-01

    Mitochondrial ATP synthase is driven by chemiosmotic oxidation of pyruvate derived from glycolysis. Blood-stage malaria parasites eschew chemiosmosis, instead relying almost solely on glycolysis for their ATP generation, which begs the question of whether mitochondrial ATP synthase is necessary during the blood stage of the parasite life cycle. We knocked out the mitochondrial ATP synthase β subunit gene in the rodent malaria parasite, Plasmodium berghei, ablating the protein that converts ADP to ATP. Disruption of the β subunit gene of the ATP synthase only marginally reduced asexual blood-stage parasite growth but completely blocked mouse-to-mouse transmission via Anopheles stephensi mosquitoes. Parasites lacking the β subunit gene of the ATP synthase generated viable gametes that fuse and form ookinetes but cannot progress beyond this stage. Ookinetes lacking the β subunit gene of the ATP synthase had normal motility but were not viable in the mosquito midgut and never made oocysts or sporozoites, thereby abrogating transmission to naive mice via mosquito bite. We crossed the self-infertile ATP synthase β subunit knockout parasites with a male-deficient, self-infertile strain of P. berghei, which restored fertility and production of oocysts and sporozoites, which demonstrates that mitochondrial ATP synthase is essential for ongoing viability through the female, mitochondrion-carrying line of sexual reproduction in P. berghei malaria. Perturbation of ATP synthase completely blocks transmission to the mosquito vector and could potentially be targeted for disease control. PMID:25831536

  18. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis.

    PubMed

    Koprivova, Anna; Giovannetti, Marco; Baraniecka, Patrycja; Lee, Bok-Rye; Grondin, Cécile; Loudet, Olivier; Kopriva, Stanislav

    2013-11-01

    Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels. PMID:24027241

  19. Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes.

    PubMed Central

    Qu, Y; Campbell, D L; Strauss, H C

    1993-01-01

    1. The effects of extracellular adenosine triphosphate (ATP) on the basal L-type Ca2+ current (ICa) were investigated in ferret isolated right ventricular myocytes using the gigaohm seal voltage clamp in the whole-cell and cell-attached configurations. 2. Micromolar levels of extracellular ATP reversibly inhibited ICa in a concentration-dependent manner, without any significant changes in the voltage dependence of either the peak ICa I-V relationship or steady-state activation curve. 3. In contrast, micromolar levels of extracellular ATP did significantly alter the inactivation characteristics of ICa. Ten micromolar ATP: (i) increased the degree of steady-state inactivation of ICa; (ii) altered the time constants of ICa inactivation at 0 mV; and (iii) decreased the time constant of ICa recovery from inactivation at -70 mV. 4. The inhibitory effect of ATP on ICa was not blocked by atropine, a muscarinic cholinergic receptor antagonist, or CPDPX (8-cyclopentyl-3,4-dipropylxanthine), an A1 adenosine receptor antagonist. In contrast, the inhibitory effect of 10 microM ATP could be nearly completely antagonized by 100 microM suramin, a purinergic P2 receptor antagonist. 5. The potency order of ATP analogues in inhibiting ICa was 2-methyl-thio-ATP > ATP > alpha,beta-methylene-ATP, indicating involvement of a P2Y-type ATP receptor. 6. Pretreatment of cells with pertussis toxin (PTX) did not prevent the ATP-induced decrease in ICa. However, (i) ATP produced an irreversible decrease of ICa in the presence of intracellular GTP gamma S, and (ii) the inhibitory effect was significantly attenuated in the presence of intracellular GDP beta S, indicating the involvement of a PTX-insensitive G protein in the P2Y receptor-coupling process. 7. Neither (i) replacing extracellular Ca2+ with 1 mM Ba2+, nor (ii) intracellular perfusion of 10 mM BAPTA for at least 30 min attenuated the inhibitory effect of ATP on the current through Ca2+ channels, suggesting that the inhibitory effect

  20. Activation by ATP of a P2U 'nucleotide' receptor in an exocrine cell.

    PubMed Central

    Martin, S. C.; Shuttleworth, T. J.

    1995-01-01

    1. We employed the perforated patch whole-cell technique to investigate the effects of ATP and other related nucleotides on membrane conductances in avian exocrine salt gland cells. 2. ATP (10 microM-1 mM) evoked an increase in maxi-K+ and Cl- conductances with a reversal potential of -35 mV. At lower concentrations of ATP (< or = 100 microM) responses were generally oscillatory with a sustained response observed at higher concentrations (> or = 200 microM). 3. Both oscillatory and sustained responses were abolished by the removal of bath Ca2+. In cells preincubated in extracellular saline containing reduced Ca2+, the application of ATP resulted in a transient increase in current. 4. As increasing concentrations of ATP (and related nucleotides) evoked a graded sequence of events with little run-down we were able to establish a rank order of potency in single cells. The order of potency of ATP analogues and agonists of the various P2-receptor subtypes was UTP > ATP = 2-methylthio-ATP > ADP. Adenosine (1 microM-1 mM), AMP (1 microM-1 mM), alpha,beta-methylene-ATP (1 microM-1 mM) and beta,gamma-methylene-ATP (1 microM-1 mM) were without effect. 5. In conclusion, although unable to preclude a role for a P2Y-receptor, our results suggest that ATP binds to a P2U-receptor increasing [Ca2+]i and subsequently activating Ca(2+)-sensitive K+ and Cl- currents. PMID:7670734

  1. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit.

    PubMed

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. PMID:27240166

  2. A lipid switch unlocks Parkinson’s disease-associated ATP13A2

    PubMed Central

    Holemans, Tine; Sørensen, Danny Mollerup; van Veen, Sarah; Martin, Shaun; Hermans, Diane; Kemmer, Gerdi Christine; Van den Haute, Chris; Baekelandt, Veerle; Günther Pomorski, Thomas; Agostinis, Patrizia; Wuytack, Frank; Palmgren, Michael; Eggermont, Jan; Vangheluwe, Peter

    2015-01-01

    ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor–Rakeb syndrome and Parkinson’s disease (PD), providing protection against α-synuclein, Mn2+, and Zn2+ toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders. PMID:26134396

  3. ATP Binding Turns Plant Cryptochrome Into an Efficient Natural Photoswitch

    NASA Astrophysics Data System (ADS)

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D.; Ritz, Thorsten; Brettel, Klaus

    2014-06-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH. radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD.-, from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396-. Its negative charge could trigger conformational changes necessary for signal transduction.

  4. ATP binding turns plant cryptochrome into an efficient natural photoswitch.

    PubMed

    Müller, Pavel; Bouly, Jean-Pierre; Hitomi, Kenichi; Balland, Véronique; Getzoff, Elizabeth D; Ritz, Thorsten; Brettel, Klaus

    2014-01-01

    Cryptochromes are flavoproteins that drive diverse developmental light-responses in plants and participate in the circadian clock in animals. Plant cryptochromes have found application as photoswitches in optogenetics. We have studied effects of pH and ATP on the functionally relevant photoreduction of the oxidized FAD cofactor to the semi-reduced FADH(·) radical in isolated Arabidopsis cryptochrome 1 by transient absorption spectroscopy on nanosecond to millisecond timescales. In the absence of ATP, the yield of light-induced radicals strongly decreased with increasing pH from 6.5 to 8.5. With ATP present, these yields were significantly higher and virtually pH-independent up to pH 9. Analysis of our data in light of the crystallographic structure suggests that ATP-binding shifts the pKa of aspartic acid D396, the putative proton donor to FAD·(-), from ~7.4 to >9, and favours a reaction pathway yielding long-lived aspartate D396(-). Its negative charge could trigger conformational changes necessary for signal transduction. PMID:24898692

  5. ATP-triggered anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Mo, Ran; Jiang, Tianyue; Disanto, Rocco; Tai, Wanyi; Gu, Zhen

    2014-03-01

    Stimuli-triggered drug delivery systems have been increasingly used to promote physiological specificity and on-demand therapeutic efficacy of anticancer drugs. Here we utilize adenosine-5'-triphosphate (ATP) as a trigger for the controlled release of anticancer drugs. We demonstrate that polymeric nanocarriers functionalized with an ATP-binding aptamer-incorporated DNA motif can selectively release the intercalating doxorubicin via a conformational switch when in an ATP-rich environment. The half-maximal inhibitory concentration of ATP-responsive nanovehicles is 0.24 μM in MDA-MB-231 cells, a 3.6-fold increase in the cytotoxicity compared with that of non-ATP-responsive nanovehicles. Equipped with an outer shell crosslinked by hyaluronic acid, a specific tumour-targeting ligand, the ATP-responsive nanocarriers present an improvement in the chemotherapeutic inhibition of tumour growth using xenograft MDA-MB-231 tumour-bearing mice. This ATP-triggered drug release system provides a more sophisticated drug delivery system, which can differentiate ATP levels to facilitate the selective release of drugs.

  6. Basal body structure in Trichonympha.

    PubMed

    Guichard, Paul; Gönczy, Pierre

    2016-01-01

    Trichonympha is a symbiotic flagellate of many species of termites and of the wood-feeding cockroach. Remarkably, this unicellular organism harbors up to over ten thousand flagella on its surface, which serve to propel it through the viscous environment of the host hindgut. In the 1960s, analysis of resin-embedded Trichonympha samples by electron microscopy revealed that the basal bodies that give rise to these flagella are exceptionally long, with a proximal, cartwheel-bearing, region some 50 times longer than that of regular centrioles. In recent years, this salient feature has prompted the analysis of the 3D architecture of Trichonympha basal bodies in the native state using cryo-electron tomography. The resulting ~40 Å resolution map of the basal body proximal region revealed a number of novel features that may be conserved in centrioles of other systems. These include proximal-distal polarity of the pinhead structure that links the cartwheel to centriolar microtubules, as well as of the linker between the A and the C microtubules. Moreover, this work demonstrated that the cartwheel is made of stacked ring-like structures that likely each comprise 18 molecules of SAS-6 proteins. PMID:26937279

  7. ATP in human skin elicits a dose-related pain response which is potentiated under conditions of hyperalgesia.

    PubMed

    Hamilton, S G; Warburton, J; Bhattacharjee, A; Ward, J; McMahon, S B

    2000-06-01

    Despite the considerable interest in the possibility that ATP may function as a peripheral pain mediator, there has been little quantitative study of the pain-producing effects of ATP in humans. Here we have used iontophoresis to deliver ATP to the forearm skin of volunteers who rated the magnitude of the evoked pain on a visual analogue scale. ATP consistently produced a modest burning pain, which began within 20 s of starting iontophoresis and was maintained for several minutes. Persistent iontophoresis of ATP led to desensitization within 12 min but recovery from this was almost complete 1 h later. Different doses of ATP were delivered using different iontophoretic driving currents. Iontophoresis of ATP produced a higher pain rating than saline, indicating that the pain was specifically caused by ATP. The average pain rating for ATP, but not saline, increased with increasing current. Using an 0.8 mA current, subjects reported pain averaging 27.7 +/- 2.8 (maximum possible = 100). Iontophoresis of ATP caused an increase in blood flow, as assessed using a laser Doppler flow meter. The increase in blood flow was significantly greater using ATP than saline in both the iontophoresed skin (P < 0.01) and in the surrounding skin, 3 mm outside the iontophoresed area (P < 0.05). The pain produced by ATP was dependent on capsaicin-sensitive sensory neurons, since in skin treated repeatedly with topical capsaicin pain was reduced to less than 25% of that elicited on normal skin (2.1 +/- 0.4 compared with 9.3 +/- 1.5 on normal skin). Conversely, the pain-producing effects of ATP were greatly potentiated in several models of hyperalgesia. Thus, with acute capsaicin treatment when subjects exhibited touch-evoked hyperalgesia but no ongoing pain, there was a threefold increase in the average pain rating during ATP iontophoresis (22.7 +/- 3.1) compared with pre-capsaicin treatment (7.8 +/- 2.6). Moreover, ATP iontophoresed into skin 24 h after solar simulated radiation (2 x

  8. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid production from glycerol.

    PubMed

    Mienda, Bashir Sajo; Shamsir, Mohd Shahir; Md Illias, Rosli

    2016-08-01

    Succinic acid is an important platform chemical with a variety of applications. Model-guided metabolic engineering strategies in Escherichia coli for strain improvement to increase succinic acid production using glucose and glycerol remain largely unexplored. Herein, we report what are, to our knowledge, the first metabolic knockout of the atpE gene to have increased succinic acid production using both glucose and alternative glycerol carbon sources in E. coli. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic production of succinic acid by deleting the atpE gene, thereby generating additional reducing equivalents by blocking H(+) conduction across the mutant cell membrane. This strategy produced 1.58 and .49 g l(-1) of succinic acid from glycerol and glucose substrate, respectively. This work further elucidates a model-guided and/or system-based metabolic engineering, involving only a single-gene deletion strategy for enhanced succinic acid production in E. coli. PMID:26513379

  9. Concentrated insulins: the new basal insulins

    PubMed Central

    Lamos, Elizabeth M; Younk, Lisa M; Davis, Stephen N

    2016-01-01

    Introduction Insulin therapy plays a critical role in the treatment of type 1 and type 2 diabetes mellitus. However, there is still a need to find basal insulins with 24-hour coverage and reduced risk of hypoglycemia. Additionally, with increasing obesity and insulin resistance, the ability to provide clinically necessary high doses of insulin at low volume is also needed. Areas covered This review highlights the published reports of the pharmacokinetic (PK) and glucodynamic properties of concentrated insulins: Humulin-R U500, insulin degludec U200, and insulin glargine U300, describes the clinical efficacy, risk of hypoglycemic, and metabolic changes observed, and finally, discusses observations about the complexity of introducing a new generation of concentrated insulins to the therapeutic market. Conclusion Humulin-R U500 has a similar onset but longer duration of action compared with U100 regular insulin. Insulin glargine U300 has differential PK/pharmacodynamic effects when compared with insulin glargine U100. In noninferiority studies, glycemic control with degludec U200 and glargine U300 is similar to insulin glargine U100 and nocturnal hypoglycemia is reduced. Concentrated formulations appear to behave as separate molecular entities when compared with earlier U100 insulin analog compounds. In the review of available published data, newer concentrated basal insulins may offer an advantage in terms of reduced intraindividual variability as well as reducing the injection burden in individuals requiring high-dose and large volume insulin therapy. Understanding the PK and pharmacodynamic properties of this new generation of insulins is critical to safe dosing, dispensing, and administration. PMID:27022271

  10. Thermodynamics of proton transport coupled ATP synthesis.

    PubMed

    Turina, Paola; Petersen, Jan; Gräber, Peter

    2016-06-01

    The thermodynamic H(+)/ATP ratio of the H(+)-ATP synthase from chloroplasts was measured in proteoliposomes after energization of the membrane by an acid base transition (Turina et al. 2003 [13], 418-422). The method is discussed, and all published data obtained with this system are combined and analyzed as a single dataset. This meta-analysis led to the following results. 1) At equilibrium, the transmembrane ΔpH is energetically equivalent to the transmembrane electric potential difference. 2) The standard free energy for ATP synthesis (reference reaction) is ΔG°ref=33.8±1.3kJ/mol. 3) The thermodynamic H(+)/ATP ratio, as obtained from the shift of the ATP synthesis equilibrium induced by changing the transmembrane ΔpH (varying either pHin or pHout) is 4.0±0.1. The structural H(+)/ATP ratio, calculated from the ratio of proton binding sites on the c-subunit-ring in F0 to the catalytic nucleotide binding sites on the β-subunits in F1, is c/β=14/3=4.7. We infer that the energy of 0.7 protons per ATP that flow through the enzyme, but do not contribute to shifting the ATP/(ADP·Pi) ratio, is used for additional processes within the enzyme, such as activation, and/or energy dissipation, due e.g. to internal uncoupling. The ratio between the thermodynamic and the structural H(+)/ATP values is 0.85, and we conclude that this value represents the efficiency of the chemiosmotic energy conversion within the chloroplast H(+)-ATP synthase. PMID:26940516

  11. Homocysteine induces cardiac hypertrophy by up-regulating ATP7a expression

    PubMed Central

    Cao, Zhanwei; Zhang, Yanzhou; Sun, Tongwen; Zhang, Shuguang; Yu, Weiya; Zhu, Jie

    2015-01-01

    Aims: The aim of the study is to investigate the molecular mechanism by which homocysteine (Hcy) induces cardiac hypertrophy. Methods: Primary cardiomyocytes were obtained from baby Sprague-Dawley rats within 3 days after birth. Flow cytometry was used to measure cell sizes. Quantitative real-time polymerase chain reaction was performed to measure the expression of β-myosin heavy chain and atrial natriuretic peptide genes. Western blotting assay was employed to determine ATP7a protein expression. Cytochrome C oxidase (COX) activity test was used to evaluate the activity of COX. Atomic absorption spectroscopy was performed to determine copper content. siRNAs were used to target-silence the expression of ATP7a. Results: Hcy induced cardiac hypertrophy and increased the expression of cardiac hypertrophy-related genes. ATP7a was a key factor in cardiac hypertrophy induced by Hcy. Reduced ATP7a expression inhibited cardiac hypertrophy induced by Hcy. Elevated ATP7a expression induced by Hcy inhibited COX activity. Enhanced ATP7a expression inhibited COX activity by lowering intracellular copper content. Conclusions: Hcy elevates ATP7a protein expression, reduces copper content, and lowers COX activity, finally leading to cardiac hypertrophy. PMID:26722473

  12. Activated sludge optimization using ATP in pulp and paper industry.

    PubMed

    Bäckman, Göran; Gytel, Ulla

    2015-01-01

    The activated sludge process is an old technology, but still the most commonly used one for treatment of wastewater. Despite the wide spread usage the technology still suffers from instability (Tandoi et al. 2006) and high operating cost. Activated sludge processes often carry a large solids inventory. Managing the total inventory without interference is the key component of the optimization process described in this paper. Use of nutrients is common in pulp and paper effluent treatment. Feeding enough nutrients to support the biomass growth is a delicate balance. Overfeeding or underfeeding of nutrients can result in higher costs. Detrimental substances and toxic components in effluents entering a biological treatment system can cause severe, long lasting disturbances (Hynninen & Ingman 1998; Bergeron & Pelletier 2004). A LumiKem test kit is used to measure biological activity with adenosine triphosphate (ATP) in a pulp and paper mill. ATP data are integrated with other standardized mill parameters. Measurements of active volatile suspended solids based on ATP can be used to quantify the living biomass in the activated sludge process and to ensure that sufficient biomass is present in order to degrade the wastewater constituents entering the process. Information about active biomass will assist in optimizing sludge inventories and feeding of nutrients allowing the living biomass to re-populate to create optimal efficiency. ATP measurements can also be used to alert operators if any components toxic to bacteria are present in wastewater. The bio stress index represents the stress level experienced by the microbiological population. This parameter is very useful in monitoring toxicity in and around bioreactors. Results from the wastewater process optimization and ATP measurements showed that treatment cost could be reduced by approximately 20-30% with fewer disturbances and sustained biological activity compared to the reference period. This was mainly achieved by

  13. Discourse Types in Canadian Basal Reading Programs.

    ERIC Educational Resources Information Center

    Murphy, Sharon

    This study examined the authorship and discourse types of Canadian basal anthologies to determine whether the lingering centrality of the basal anthology in Canadian programs controls students and teachers by controlling language and reading. Each selection within five Canadian basal series (Gage Expressways II, Ginn Journeys, Holt Impressions,…

  14. Protection of the mouse from genetic radiation damage by an optimal-dose-ratio combination of ATP, AET, and serotonin.

    PubMed

    Benova, D; Baev, I

    1978-07-15

    The study concerned antiradiation effects in germ-cell genetic structures produced by a combination of ATP, AET, and serotonin at dose ratio optimal for lethality namely, 45:3:1, as arrived at in our previous work. Such a combination was found to reduce by a factor of 2 the translocation yields observed after 400 R X-rays to mouse spermatogonia. In terms of animal survival, ATP has been shown to contribute little to total protection achieved by the same combination; in terms of genetic damage; however, the role of ATP proved essential. Removal of ATP from the combination led to a significant reduction in protective effect. PMID:668857

  15. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents.

    PubMed

    Katchanov, G; Xu, J; Hurt, C M; Pelleg, A

    1996-05-01

    To test the hypothesis that the asymmetry in the afferent traffic of the intra-right atrium (RA) ATP-triggered vagal reflex is due to the stimulation by ATP of extrapulmonary (i.e., cardiac) vagal chemosensitive afferent terminals, ATP, adenosine, and capsaicin were given into the canine RA and the aortic root (AR; n = 12); ATP and adenosine were also administered into the left common carotid artery and the descending aorta (n = 6). The negative chronotropic action [i.e., suppression of sinus node (SN) automaticity] of the test compounds and time to peak effect (tp) were determined. Under baseline conditions, ATP given into the left common carotid artery had a relatively very small effect. ATP given into the descending aorta had no effect. In contrast, intra-RA and intra-AR ATP markedly suppressed SN automaticity, the former less than the latter; the opposite was true for capsaicin. Intra-RA adenosine was much less potent than intra-RA ATP. The tp of intra-RA ATP and intra-RA adenosine were larger than the tp of intra-AR ATP. Pulmonary denervation did not alter the effects of intra-RAATP, intra-ARATP, or intra-AR capsaicin but almost abolished the effect of intra-RA capsaicin. Subsequent bilateral, but not left, cervical vagotomy markedly reduce the effects of ATP and eliminated the difference between the effects of ATP and adenosine. In addition, tp of intra-RA ATP and intra-AR ATP increased substantially and were similar to tp of adenosine. It was concluded that 1) ATP can stimulate vagal afferent terminals not only in the lungs but also in the heart, 2) the latter constitutes the vagal component of the negative chronotropic action of intra-RA or intra-AR ATP on SN automatically, and 3) the asymmetry in the vagal afferent traffic elicited by ATP in the heart (i.e., right vagal dominance) supersedes the symmetrical vagal afferent traffic triggered by intrapulmonary ATP. PMID:8928887

  16. ATP responses in human C nociceptors.

    PubMed

    Hilliges, Marita; Weidner, Christian; Schmelz, Martin; Schmidt, Roland; Ørstavik, Kristin; Torebjörk, Erik; Handwerker, Hermann

    2002-07-01

    Microelectrode recordings of impulse activity in nociceptive C fibres were performed in cutaneous fascicles of the peroneal nerve at the knee level in healthy human subjects. Mechano-heat responsive C units (CMH), mechano-insensitive but heat-responsive (CH) as well as mechano-insensitive and heat-insensitive C units (CM(i)H(i)) were identified. A subgroup of the mechano-insensitive units was readily activated by histamine. We studied the responsiveness of these nociceptor classes to injection of 20 microl 5 mM adenosintriphosphate (ATP) using saline injections as control. Because of mechanical distension during injection, which typically activates mechano-responsive C fibres, interest was focused on responsiveness to ATP after withdrawal of the injection needle. Post-injection responses were observed in 17/27 (63%) mechano-responsive units and in 14/22 (64%) mechano-insensitive units. Excitation by ATP occurred in 9/11 CH units and in 5/11 CM(i)H(i) units. ATP responsive units were found both within the histamine-responsive and the histamine-insensitive group of mechano-insensitive fibres. ATP responses appeared with a delay of 0-180 s after completion of injection; responses were most pronounced during the first 1-3 min of activation, and irregular ongoing activity was observed for up to 10 or even 20 min. ATP responses were dose-dependent, concentrations lower than 5 mM gave weaker responses. No heat or mechanical sensitisation was observed in any of the major fibre classes. In conclusion, we have shown that ATP injections at high concentrations activate C-nociceptors in healthy human skin, without preference for mechano-responsive or mechano-insensitive units. ATP did not sensitise human C fibres for mechanical or heat stimuli. We discuss how various mechanisms might contribute to the observed responses to ATP. PMID:12098617

  17. Basal ganglia morphology links the metabolic syndrome and depressive symptoms

    PubMed Central

    Onyewuenyi, Ikechukwu C.; Muldoon, Matthew F.; Christie, Israel C.; Erickson, Kirk I.; Gianaros, Peter J.

    2014-01-01

    The metabolic syndrome (MetS) is a clustering of cardiovascular and cerebrovascular risk factors that are often comorbid with depressive symptoms. Individual components of the MetS also covary with the morphology of basal ganglia regions that are altered by depression. However, it remains unknown whether the covariation between the MetS and depressive symptomatology can be accounted for in part by morphological changes in the basal ganglia. Accordingly, we tested the hypothesis that increased depressive symptoms among individuals with the MetS might be statistically mediated by reduced grey matter volume in basal ganglia regions. The presence of the MetS was determined in 147 middle-aged adults using the criteria of the National Cholesterol Education Program, Adult Treatment Panel III. Basal ganglia volumes were determined on an a priori basis by automated segmentation of high-resolution magnetic resonance images. Depressive symptoms were assessed using the Patient Health Questionnaire. Even after controlling for demographic and other confounding factors, having the MetS and meeting more MetS criteria covaried with reduced globus pallidus volume. Meeting more MetS criteria and reduced pallidal volume were also related to depressive symptoms. Moreover, the MetS-depression association was statistically mediated by pallidal volume. In summary, reduced globus pallidus volume is a neural correlate of the MetS that may partly account for its association with depressive symptoms. PMID:24096008

  18. "Basal Cell Blanche": A Diagnostic Maneuver to Increase Early Detection of Basal Cell Carcinomas.

    PubMed

    Quach, Olivia Leigh; Barry, Megan; Roberts Cruse, Allison; Wilson, Barbara B

    2016-01-01

    Basal cell carcinomas represent one of the most common skin cancers and often present initially in the primary care setting. Subtle basal cell carcinomas may be difficult to detect, and early detection of these carcinomas remains important in limiting patient morbidity. In this article, we present a simple diagnostic maneuver, "basal cell blanche," to increase early detection of basal cell carcinomas. PMID:27170799

  19. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures

    PubMed Central

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz; Jensen, Thomas G.; Møller, Lisbeth B.

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured the expression level of the two genes at various concentrations of iron, copper, and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and 10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency obtained by treatment with the copper chelator led to a downregulation of ATP7A in the control fibroblasts, but surprisingly not in the WD fibroblasts. In contrast, the addition of copper led to an increased expression of ATP7A, but a decreased expression of ATP7B. Thus, whereas similar regulation patterns for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6–8 weeks led to clonal selection. Cells that express the normal ATP7A allele had a selective growth advantage at high copper concentrations, whereas more surprisingly, cells that express the mutant ATP7A allele had a selective growth advantage at low copper concentrations. Thus, although the transcription of ATP7A is regulated by copper, clonal growth selection in mosaic cell cultures is affected by the level of copper. Female carriers of MD are rarely affected probably due to a skewed inactivation of the X-chromosome bearing the ATP7A mutation. PMID:27587995

  20. Metal-Dependent Regulation of ATP7A and ATP7B in Fibroblast Cultures.

    PubMed

    Lenartowicz, Malgorzata; Moos, Torben; Ogórek, Mateusz; Jensen, Thomas G; Møller, Lisbeth B

    2016-01-01

    Deficiency of one of the copper transporters ATP7A and ATP7B leads to the rare X-linked disorder Menkes Disease (MD) or the rare autosomal disorder Wilson disease (WD), respectively. In order to investigate whether the ATP7A and the ATP7B genes may be transcriptionally regulated, we measured the expression level of the two genes at various concentrations of iron, copper, and insulin. Treating fibroblasts from controls or from individuals with MD or WD for 3 and 10 days with iron chelators revealed that iron deficiency led to increased transcript levels of both ATP7A and ATP7B. Copper deficiency obtained by treatment with the copper chelator led to a downregulation of ATP7A in the control fibroblasts, but surprisingly not in the WD fibroblasts. In contrast, the addition of copper led to an increased expression of ATP7A, but a decreased expression of ATP7B. Thus, whereas similar regulation patterns for the two genes were observed in response to iron deficiency, different responses were observed after changes in the access to copper. Mosaic fibroblast cultures from female carriers of MD treated with copper or copper chelator for 6-8 weeks led to clonal selection. Cells that express the normal ATP7A allele had a selective growth advantage at high copper concentrations, whereas more surprisingly, cells that express the mutant ATP7A allele had a selective growth advantage at low copper concentrations. Thus, although the transcription of ATP7A is regulated by copper, clonal growth selection in mosaic cell cultures is affected by the level of copper. Female carriers of MD are rarely affected probably due to a skewed inactivation of the X-chromosome bearing the ATP7A mutation. PMID:27587995

  1. The basal bodies of Chlamydomonas reinhardtii.

    PubMed

    Dutcher, Susan K; O'Toole, Eileen T

    2016-01-01

    The unicellular green alga, Chlamydomonas reinhardtii, is a biflagellated cell that can swim or glide. C. reinhardtii cells are amenable to genetic, biochemical, proteomic, and microscopic analysis of its basal bodies. The basal bodies contain triplet microtubules and a well-ordered transition zone. Both the mother and daughter basal bodies assemble flagella. Many of the proteins found in other basal body-containing organisms are present in the Chlamydomonas genome, and mutants in these genes affect the assembly of basal bodies. Electron microscopic analysis shows that basal body duplication is site-specific and this may be important for the proper duplication and spatial organization of these organelles. Chlamydomonas is an excellent model for the study of basal bodies as well as the transition zone. PMID:27252853

  2. Migraine attacks the Basal Ganglia

    PubMed Central

    2011-01-01

    Background With time, episodes of migraine headache afflict patients with increased frequency, longer duration and more intense pain. While episodic migraine may be defined as 1-14 attacks per month, there are no clear-cut phases defined, and those patients with low frequency may progress to high frequency episodic migraine and the latter may progress into chronic daily headache (> 15 attacks per month). The pathophysiology of this progression is completely unknown. Attempting to unravel this phenomenon, we used high field (human) brain imaging to compare functional responses, functional connectivity and brain morphology in patients whose migraine episodes did not progress (LF) to a matched (gender, age, age of onset and type of medication) group of patients whose migraine episodes progressed (HF). Results In comparison to LF patients, responses to pain in HF patients were significantly lower in the caudate, putamen and pallidum. Paradoxically, associated with these lower responses in HF patients, gray matter volume of the right and left caudate nuclei were significantly larger than in the LF patients. Functional connectivity analysis revealed additional differences between the two groups in regard to response to pain. Conclusions Supported by current understanding of basal ganglia role in pain processing, the findings suggest a significant role of the basal ganglia in the pathophysiology of the episodic migraine. PMID:21936901

  3. Bioluminescence microscopy: application to ATP measurements in single living cells

    NASA Astrophysics Data System (ADS)

    Brau, Frederic; Helle, Pierre; Bernengo, Jean C.

    1997-12-01

    Bioluminescence microscopy can be used to measure intracellular cofactors and ionic concentrations (Ca2+, K+, ATP, NADH), as an alternative to micro- spectrophotometry and micro-fluorimetry, due to the development of sensitive detectors (cooled photomultipliers tubes and CCD). The main limitation comes from the very small and brief intensity of the emitted light. Our instrumentation based on an inverted microscope, equipped with high aperture immersion lenses is presented. Light intensity measurements are carried out through a photomultiplier sorted for low dark current and cooled at -5 degree(s)C to reduce thermal noise. Our first aim is to quantify ATP on single living cells using the firefly luciferin-luciferase couple. Experimental and kinetic aspects are presented to emphasize the potentialities of the technique.

  4. Synchronizing activity of basal ganglia and pathophysiology of Parkinson's disease.

    PubMed

    Heimer, G; Rivlin, M; Israel, Z; Bergman, H

    2006-01-01

    Early physiological studies emphasized changes in the discharge rate of basal ganglia in the pathophysiology of Parkinson's disease (PD), whereas recent studies stressed the role of the abnormal oscillatory activity and neuronal synchronization of pallidal cells. However, human observations cast doubt on the synchronization hypothesis since increased synchronization may be an epi-phenomenon of the tremor or of independent oscillators with similar frequency. Here, we show that modern actor/ critic models of the basal ganglia predict the emergence of synchronized activity in PD and that significant non-oscillatory and oscillatory correlations are found in MPTP primates. We conclude that the normal fluctuation of basal ganglia dopamine levels combined with local cortico-striatal learning rules lead to noncorrelated activity in the pallidum. Dopamine depletion, as in PD, results in correlated pallidal activity, and reduced information capacity. We therefore suggest that future deep brain stimulation (DBS) algorithms may be improved by desynchronizing pallidal activity. PMID:17017503

  5. Customized ATP towpreg. [Automated Tow Placement

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A.; Marchello, Joseph M.; Baucom, Robert M.; Johnston, Norman J.

    1992-01-01

    Automated tow placement (ATP) utilizes robotic technology to lay down adjacent polymer-matrix-impregnated carbon fiber tows on a tool surface. Consolidation and cure during ATP requires that void elimination and polymer matrix adhesion be accomplished in the short period of heating and pressure rolling that follows towpreg ribbon placement from the robot head to the tool. This study examined the key towpreg ribbon properties and dimensions which play a significant role in ATP. Analysis of the heat transfer process window indicates that adequate heating can be achieved at lay down rates as high as 1 m/sec. While heat transfer did not appear to be the limiting factor, resin flow and fiber movement into tow lap gaps could be. Accordingly, consideration was given to towpreg ribbon having uniform yet non-rectangular cross sections. Dimensional integrity of the towpreg ribbon combined with customized ribbon architecture offer great promise for processing advances in ATP of high performance composites.

  6. The Role of ATP in Sleep Regulation

    PubMed Central

    Chikahisa, Sachiko; Séi, Hiroyoshi

    2011-01-01

    One of the functions of sleep is to maintain energy balance in the brain. There are a variety of hypotheses related to how metabolic pathways interact with sleep/wake regulation. A major finding that demonstrates an interaction between sleep and metabolic homeostasis is the involvement of adenosine in sleep homeostasis. An accumulation of adenosine is supplied from ATP, which can act as an energy currency in the cell. Extracellularly, ATP can act as an activity-dependent signaling molecule, especially in regard to communication between neurons and glia, including astrocytes. Furthermore, the intracellular AMP/ATP ratio controls the activity of AMP-activated protein kinase, which is a potent energy regulator and is recently reported to play a role in the regulation of sleep homeostasis. Brain ATP may support multiple functions in the regulation of the sleep/wake cycle and sleep homeostasis. PMID:22207863

  7. Binding of ATP to the progesterone receptor.

    PubMed Central

    Moudgil, V K; Toft, D O

    1975-01-01

    The possible interaction of progesterone--receptor complexes with nucleotides was tested by affinity chromatography. The cytosol progesterone receptor from hen oviduct was partially purified by ammonium sulfate precipitation before use. When progesterone was bound to the receptor, the resulting complex could be selectively adsorbed onto columns of ATP-Sepharose. This interaction was reversible and of an ionic nature since it could be disrupted by high-salt conditions. A competitive binding assay was used to test the specificity of receptor binding to several other nucleotides, including ADP, AMP, and cAMP. A clear specificity for binding ATP was evident from these studies. When ATP was added to receptor preparations, the nucleotide did not affect the sedimentation properties or hormone binding characteristics of the receptor. Although the function of ATP remains unknown, these studies indicate a role of this nucleotide in some aspect of hormone receptor activity. PMID:165493

  8. Cleanup MAC and MBA code ATP

    SciTech Connect

    Russell, V.K.

    1994-10-17

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system had some minor code cleanup performed to its code. This ATP describes how the code was to be tested to verify its correctness.

  9. An RNA motif that binds ATP

    NASA Technical Reports Server (NTRS)

    Sassanfar, M.; Szostak, J. W.

    1993-01-01

    RNAs that contain specific high-affinity binding sites for small molecule ligands immobilized on a solid support are present at a frequency of roughly one in 10(10)-10(11) in pools of random sequence RNA molecules. Here we describe a new in vitro selection procedure designed to ensure the isolation of RNAs that bind the ligand of interest in solution as well as on a solid support. We have used this method to isolate a remarkably small RNA motif that binds ATP, a substrate in numerous biological reactions and the universal biological high-energy intermediate. The selected ATP-binding RNAs contain a consensus sequence, embedded in a common secondary structure. The binding properties of ATP analogues and modified RNAs show that the binding interaction is characterized by a large number of close contacts between the ATP and RNA, and by a change in the conformation of the RNA.

  10. Enhanced inhibitory neurotransmission in the cerebellar cortex of Atp1a3-deficient heterozygous mice

    PubMed Central

    Ikeda, Keiko; Satake, Shin'Ichiro; Onaka, Tatsushi; Sugimoto, Hiroki; Takeda, Naoki; Imoto, Keiji; Kawakami, Kiyoshi

    2013-01-01

    Dystonia is characterized by excessive involuntary and prolonged simultaneous contractions of both agonist and antagonist muscles. Although the basal ganglia have long been proposed as the primary region, recent studies indicated that the cerebellum also plays a key role in the expression of dystonia. One hereditary form of dystonia, rapid-onset dystonia with parkinsonism (RDP), is caused by loss of function mutations of the gene for the Na pump α3 subunit (ATP1A3). Little information is available on the affected brain regions and mechanism for dystonia by the mutations in RDP. The Na pump is composed of α and β subunits and maintains ionic gradients of Na+ and K+ across the cell membrane. The gradients are utilized for neurotransmitter reuptake and their alteration modulates neural excitability. To provide insight into the molecular aetiology of RDP, we generated and analysed knockout heterozygous mice (Atp1a3+/−). Atp1a3+/− showed increased symptoms of dystonia that is induced by kainate injection into the cerebellar vermis. Atp1a3 mRNA was highly expressed in Purkinje cells and molecular-layer interneurons, and its product was concentrated at Purkinje cell soma, the site of abundant vesicular γ-aminobutyric acid transporter (VGAT) signal, suggesting the presynaptic localization of the α3 subunit in the inhibitory synapse. Electrophysiological studies showed that the inhibitory neurotransmission at molecular-layer interneuron–Purkinje cell synapses was enhanced in Atp1a3+/− cerebellar cortex, and that the enhancement originated via a presynaptic mechanism. Our results shed light on the role of Atp1a3 in the inhibitory synapse, and potential involvement of inhibitory synaptic dysfunction for the pathophysiology of dystonia. PMID:23652595

  11. The phospholipid flippase ATP8B1 mediates apical localization of the cystic fibrosis transmembrane regulator.

    PubMed

    van der Mark, Vincent A; de Jonge, Hugo R; Chang, Jung-Chin; Ho-Mok, Kam S; Duijst, Suzanne; Vidović, Dragana; Carlon, Marianne S; Oude Elferink, Ronald P J; Paulusma, Coen C

    2016-09-01

    Progressive familial intrahepatic cholestasis type 1 (PFIC1) is caused by mutations in the gene encoding the phospholipid flippase ATP8B1. Apart from severe cholestatic liver disease, many PFIC1 patients develop extrahepatic symptoms characteristic of cystic fibrosis (CF), such as pulmonary infection, sweat gland dysfunction and failure to thrive. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel essential for epithelial fluid transport. Previously it was shown that CFTR transcript levels were strongly reduced in livers of PFIC1 patients. Here we have investigated the hypothesis that ATP8B1 is important for proper CFTR expression and function. We analyzed CFTR expression in ATP8B1-depleted intestinal and pulmonary epithelial cell lines and assessed CFTR function by measuring short-circuit currents across transwell-grown ATP8B1-depleted intestinal T84 cells and by a genetically-encoded fluorescent chloride sensor. In addition, we studied CFTR surface expression upon induction of CFTR transcription. We show that CFTR protein levels are strongly reduced in the apical membrane of human ATP8B1-depleted intestinal and pulmonary epithelial cell lines, a phenotype that coincided with reduced CFTR activity. Apical membrane insertion upon induction of ectopically-expressed CFTR was strongly impaired in ATP8B1-depleted cells. We conclude that ATP8B1 is essential for correct apical localization of CFTR in human intestinal and pulmonary epithelial cells, and that impaired CFTR localization underlies some of the extrahepatic phenotypes observed in ATP8B1 deficiency. PMID:27301931

  12. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation.

    PubMed Central

    Koizumi, Schuichi; Fujishita, Kayoko; Inoue, Kaori; Shigemoto-Mogami, Yukari; Tsuda, Makoto; Inoue, Kazuhide

    2004-01-01

    ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a co-culture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP. PMID:14967069

  13. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase

    SciTech Connect

    Penefsky, H.S.

    1985-11-05

    Incubation of (gamma-TSP)ATP with a molar excess of the membrane-bound form of mitochondrial ATPase (F1) results in binding of the bulk of the radioactive nucleotide in high affinity catalytic sites (Ka = 10(12) M-1). Subsequent initiation of respiration by addition of succinate or NADH is accompanied by a profound decrease in the affinity for ATP. About one-third of the bound radioactive ATP appears to dissociate, that is, the (gamma-TSP)ATP becomes accessible to hexokinase. The NADH-stimulated dissociation of (gamma-TSP)ATP is energy-dependent since the stimulation is inhibited by uncouplers of oxidative phosphorylation and is prevented by respiratory chain inhibitors. The rate of the energy-dependent dissociation of ATP that occurs in the presence of NADH, ADP, and Pi is commensurate with the measured initial rate of ATP synthesis in NADH-supported oxidative phosphorylation catalyzed by the same submitochondrial particles. Thus, the rate of dissociation of ATP from the high affinity catalytic site of submitochondrial particles meets the criterion of kinetic competency under the conditions of oxidative phosphorylation. These experiments provide evidence in support of the argument that energy conserved during the oxidation of substrates by the respiratory chain can be utilized to reduce the very tight binding of product ATP in high affinity catalytic sites and to promote dissociation of the nucleotide.

  14. Extracellular ATP inhibits chloride channels in mature mammalian skeletal muscle by activating P2Y1 receptors.

    PubMed

    Voss, Andrew A

    2009-12-01

    ATP is released from skeletal muscle during exercise, a discovery dating back to 1969. Surprisingly, few studies have examined the effects of extracellular ATP on mature mammalian skeletal muscle. This electrophysiological study examined the effects of extracellular ATP on fully innervated rat levator auris longus using two intracellular microelectrodes. The effects of ATP were determined by measuring the relative changes of miniature endplate potentials (mEPPs) and voltage responses to step current pulses in individual muscle fibres. Exposure to ATP (20 microm) prolonged the mEPP falling phase by 31 +/- 7.5% (values +/- s.d., n = 3 fibres). Concurrently, the input resistance increased by 31 +/- 2.0% and the time course of the voltage responses increased by 59 +/- 3.0%. Analogous effects were observed using 2 and 5 microm ATP, and on regions distal from the neuromuscular junction, indicating that physiologically relevant levels of ATP enhanced electrical signalling over the entire muscle fibre. The effects of extracellular ATP were blocked by 200 microm anthracene-9-carboxylic acid, a chloride channel inhibitor, and reduced concentrations of extracellular chloride, indicating that ATP inhibited chloride channels. A high affinity agonist for P2Y receptors, 2-methylthioadenosine-5-O-diphosphate (2MeSADP), induced similar effects to ATP with an EC(50) of 160 +/- 30 nm. The effects of 250 nm2MeSADP were blocked by 500 nmMRS2179, a specific P2Y(1) receptor inhibitor, suggesting that ATP acts on P2Y(1) receptors to inhibit chloride channels. The inhibition of chloride channels by extracellular ATP has implications for muscle excitability and fatigue, and the pathophysiology of myotonias. PMID:19805741

  15. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. V. Role of purinergic receptors.

    PubMed

    Xu, Jiang; Kussmaul, William; Kurnik, Peter B; Al-Ahdav, Mohamad; Pelleg, Amir

    2005-03-01

    The mechanism of extracellular ATP-triggered vagal depressor reflex was further studied in a closed-chest canine model. Adenosine and ATP were administered individually in equimolar doses (0.01-1.0 mumol/kg) into the right coronary artery (RCA) and left circumflex coronary artery (LCA). When administered into the RCA, adenosine and ATP exerted an identical and relatively small negative chronotropic effect on sinus node automaticity; the time to peak negative chronotropic effect was >/=7 s. When administered into the LCA, adenosine had no effect on sinus node automaticity, whereas ATP markedly suppressed sinus node automaticity. This effect of ATP 1) reached its peak in <2 s after its administration, 2) was short lasting, and 3) was completely abolished by either intravenous administration of the muscarinic cholinergic blocker atropine (0.2 mg/kg) or intra-LCA administration of 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), a potent P2X(2/3) purinergic receptor (P2X(2/3)R) antagonist, but not by diinosine pentaphosphate (Ip(5)I), a potent inhibitor of P2X(1)R and P2X(3)R. Repetitive administrations of ATP were not associated with reduced effects, indicative of receptor desensitization, thereby excluding the involvement of the rapidly desensitized P2X(1)R in the action of ATP. It was concluded that ATP triggers a cardio-cardiac vagal depressor reflex by activating P2X(2/3)R located on vagal sensory nerve terminals localized in the left ventricle. Because these terminals mediate vasovagal syncope, these data could suggest a mechanistic role of extracellular ATP in this syndrome and, in addition, give further support to the hypothesis that endogenous ATP released from ischemic myocytes is a mediator of atropine-sensitive bradyarrhythmias associated with left ventricular myocardial infarction. PMID:15539614

  16. Loss of apical monocilia on collecting duct principal cells impairs ATP secretion across the apical cell surface and ATP-dependent and flow-induced calcium signals.

    PubMed

    Hovater, Michael B; Olteanu, Dragos; Hanson, Elizabeth L; Cheng, Nai-Lin; Siroky, Brian; Fintha, Attila; Komlosi, Peter; Liu, Wen; Satlin, Lisa M; Bell, P Darwin; Yoder, Bradley K; Schwiebert, Erik M

    2008-06-01

    Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and

  17. Dihydrolipoic acid activates oligomycin-sensitive thiol groups and increases ATP synthesis in mitochondria.

    PubMed

    Zimmer, G; Mainka, L; Krüger, E

    1991-08-01

    Investigations with dihydrolipoic acid in rat heart mitochondria and mitoplasts reveal an activation of ATP-synthase up to 45%, whereas ATPase activities decrease by 36%. In parallel with an increase in ATP synthesis oligomycin-sensitive mitochondrial -SH groups are activated at 2-4 nmol dihydrolipoic acid/mg protein. ATPase activation by the uncouplers carbonylcyanide-p-trifluoromethoxyphenylhydrazone and oleate is diminished by dihydrolipoic acid, and ATP synthesis depressed by oleate is partially restored. No such efficiency of dihydrolipoic acid is seen with palmitate-induced ATPase activation or decrease of ATP synthesis. This indicates different interference of oleate and palmitate with mitochondria. In addition to its known coenzymatic properties dihydrolipoic acid may act as a substitute for coenzyme A, thereby diminishing the uncoupling efficiency of oleate. Furthermore, dihydrolipoic acid is a very potent antioxidant, shifting the -SH-S-S- equilibrium in mitochondria to the reduced state and improving the energetic state of cells. PMID:1832845

  18. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird

    PubMed Central

    Bennison, Clair; Brookes, Lola; Slate, Jon; Birkhead, Tim

    2016-01-01

    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata. We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece). PMID:27559067

  19. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird.

    PubMed

    Bennison, Clair; Hemmings, Nicola; Brookes, Lola; Slate, Jon; Birkhead, Tim

    2016-08-31

    The relationship between sperm energetics and sperm function is poorly known, but is central to our understanding of the evolution of sperm traits. The aim of this study was to examine how sperm morphology and ATP content affect sperm swimming velocity in the zebra finch Taeniopygia guttata We exploited the high inter-male variation in this species and created extra experimental power by increasing the number of individuals with very long or short sperm through artificial selection. We found a pronounced quadratic relationship between total sperm length and swimming velocity, with velocity increasing with length up to a point, but declining in the very longest sperm. We also found an unexpected negative association between midpiece length and ATP content: sperm with a short midpiece generally contained the highest concentration of ATP. Low intracellular ATP is therefore unlikely to explain reduced swimming velocity among the very longest sperm (which tend to have a shorter midpiece). PMID:27559067

  20. The interference of HEPES buffer during amperometric detection of ATP in clinical applications.

    PubMed

    Masson, Jean-Francois; Gauda, Estelle; Mizaikoff, Boris; Kranz, Christine

    2008-04-01

    HEPES-based biological buffer is subject to photooxidation upon exposure to fluorescent illumination. Thereby hydrogen peroxide is generated, which interferes with amperometric oxidoreductase-based biosensors for glucose or adenosine triphosphate (ATP). These biosensors operate at an oxidation potential above 500 mV vs. the standard calomel electrode (SCE) and involve hydrogen peroxide as the electroactive molecule detected at the electrode surface. False-positive detection of ATP was observed in HEPES buffer utilizing an amperometric microbiosensor based on the co-immobilization of glucose oxidase and hexokinase for detection of ATP in biological specimens. Electrochemical, mass spectrometric, (31)P NMR, and (1)H NMR studies indicate that complexation of ATP and HEPES induced by the presence of Ca(2+) in HEPES buffer decreases the photooxidation of HEPES. Consequently, the hydrogen peroxide background concentration is reduced, thereby leading to erroneous ATP detection at the dual-enzyme microbiosensor, which determines an increase in ATP via a reduced hydrogen peroxide signal. PMID:18368390

  1. ATP Synthesis in the Extremely Halophilic Bacteria

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Morrison, David (Technical Monitor)

    1994-01-01

    The proton-translocating ATPases are multimeric enzymes that carry out a multitude of essential functions. Their origin and evolution represent a seminal event in the early evolution of life. Amino acid sequences of the two largest subunits from archaeal ATPases (A-ATPases), vacuolar ATPases (V-ATPases), and FOF1-ATP syntheses (FATPases) suggest these ATPases evolved from an ancestral vacuolar-like ATP syntheses. A necessary consequence of this notion is that the A-ATPases are ATP syntheses. With the possible exception of the A-ATPase from Halobacterium salinarium. no A-ATPase has been demonstrated to synthesize ATP. The evidence for this case is dubious since ATP synthesis occurs only when conditions are distinctively unphysiological. We demonstrated that ATP synthesis in H.saccharovorum is inconsistent with the operation of an A-type ATPase. In order to determine if this phenomenon was unique to H. saccharovorum, ATP synthesis was examined in various extremely halophilic bacteria with the goal of ascertaining if it resembled what occurred in a. saccharovorum, or was consistent with the operation of an A-type ATPase. A-, V-, and F-type ATPases respond singularly to certain inhibitors. Therefore, the effect of these inhibitors on ATP synthesis in several extreme halophiles was determined. Inhibitors that either blocked or collapsed proton-gradients inhibited the steady state synthesis of ATP thus verifying that synthesis took place at the expense of a proton gradient. Azide, an inhibitor of F-ATPases inhibited ATP synthesis. Since the arginine-dependent synthesis of ATP, which occurs by way of substrate-level phosphorylation, was unaffected by azide, it was unlikely that azide acted as an "uncoupler." N -ethylmaleimide and nitrate, which inhibit V- and A-ATPases, either did not inhibit ATP synthesis or resulted in higher steady-state levels of ATP. These results suggest there are two types of proton-motive ATPases in the extreme halophiles (and presumably in other

  2. Rates of various reactions catalyzed by ATP synthase as related to the mechanism of ATP synthesis

    SciTech Connect

    Berkich, D.A.; Williams, G.D.; Masiakos, P.T.; Smith, M.B.; Boyer, P.D.; LaNoue, K.F. )

    1991-01-05

    The forward and reverse rates of the overall reaction catalyzed by the ATP synthase in intact rat heart mitochondria, as measured with 32P, were compared with the rates of two partial steps, as measured with 18O. Such rates have been measured previously, but their relationship to one another has not been determined, nor have the partial reactions been measured in intact mitochondria. The partial steps measured were the rate of medium Pi formation from bound ATP (in state 4 this also equals the rate of medium Pi into bound ATP) and the rate of formation of bound ATP from bound Pi within the catalytic site. The rates of both partial reactions can be measured by 31P NMR analysis of the 18O distribution in Pi and ATP released from the enzyme during incubation of intact mitochondria with highly labeled (18O)Pi. Data were obtained in state 3 and 4 conditions with variation in substrate concentrations, temperature, and mitochondrial membrane electrical potential gradient (delta psi m). Although neither binding nor release of ATP is necessary for phosphate/H2O exchange, in state 4 the rate of incorporation of at least one water oxygen atom into phosphate is approximately twice the rate of the overall reaction rate under a variety of conditions. This can be explained if the release of Pi or ATP at one catalytic site does not occur, unless ATP or Pi is bound at another catalytic site. Such coupling provides strong support for the previously proposed alternating site mechanism. In state 3 slow reversal of ATP synthesis occurs within the mitochondrial matrix and can be detected as incorporation of water oxygen atoms into medium Pi even though medium (32P)ATP does not give rise to 32Pi in state 3. These data can be explained by lack of translocation of ATP from the medium to the mitochondrial matrix.

  3. Compartmentalized ATP synthesis in skeletal muscle triads.

    PubMed

    Han, J W; Thieleczek, R; Varsányi, M; Heilmeyer, L M

    1992-01-21

    Isolated skeletal muscle triads contain a compartmentalized glycolytic reaction sequence catalyzed by aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, and phosphoglycerate kinase. These enzymes express activity in the structure-associated state leading to synthesis of ATP in the triadic junction upon supply of glyceraldehyde 3-phosphate or fructose 1,6-bisphosphate. ATP formation occurs transiently and appears to be kinetically compartmentalized, i.e., the synthesized ATP is not in equilibrium with the bulk ATP. The apparent rate constants of the aldolase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase reaction are significantly increased when fructose 1,6-bisphosphate instead of glyceraldehyde 3-phosphate is employed as substrate. The observations suggest that fructose 1,6-bisphosphate is especially effectively channelled into the junctional gap. The amplitude of the ATP transient is decreasing with increasing free [Ca2+] in the range of 1 nM to 30 microM. In the presence of fluoride, the ATP transient is significantly enhanced and its declining phase is substantially retarded. This observation suggests utilization of endogenously synthesized ATP in part by structure associated protein kinases and phosphatases which is confirmed by the detection of phosphorylated triadic proteins after gel electrophoresis and autoradiography. Endogenous protein kinases phosphorylate proteins of apparent Mr 450,000, 180,000, 160,000, 145,000, 135,000, 90,000, 54,000, 51,000, and 20,000, respectively. Some of these phosphorylated polypeptides are in the Mr range of known phosphoproteins involved in excitation-contraction coupling of skeletal muscle, which might give a first hint at the functional importance of the sequential glycolytic reactions compartmentalized in triads. PMID:1731894

  4. Functional Neuroanatomy of the Basal Ganglia

    PubMed Central

    Lanciego, José L.; Luquin, Natasha; Obeso, José A.

    2012-01-01

    The “basal ganglia” refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field. PMID:23071379

  5. Striatal plasticity and basal ganglia circuit function.

    PubMed

    Kreitzer, Anatol C; Malenka, Robert C

    2008-11-26

    The dorsal striatum, which consists of the caudate and putamen, is the gateway to the basal ganglia. It receives convergent excitatory afferents from cortex and thalamus and forms the origin of the direct and indirect pathways, which are distinct basal ganglia circuits involved in motor control. It is also a major site of activity-dependent synaptic plasticity. Striatal plasticity alters the transfer of information throughout basal ganglia circuits and may represent a key neural substrate for adaptive motor control and procedural memory. Here, we review current understanding of synaptic plasticity in the striatum and its role in the physiology and pathophysiology of basal ganglia function. PMID:19038213

  6. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain.

    PubMed

    Berger, Allan L; Ikuma, Mutsuhiro; Welsh, Michael J

    2005-01-11

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [alpha-(32)P]8-N(3)-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  7. Normal gating of CFTR requires ATP binding to both nucleotide-binding domains and hydrolysis at the second nucleotide-binding domain

    PubMed Central

    Berger, Allan L.; Ikuma, Mutsuhiro; Welsh, Michael J.

    2005-01-01

    ATP interacts with the two nucleotide-binding domains (NBDs) of CFTR to control gating. However, it is unclear whether gating involves ATP binding alone, or also involves hydrolysis at each NBD. We introduced phenylalanine residues into nonconserved positions of each NBD Walker A motif to sterically prevent ATP binding. These mutations blocked [α-32P]8-N3-ATP labeling of the mutated NBD and reduced channel opening rate without changing burst duration. Introducing cysteine residues at these positions and modifying with N-ethylmaleimide produced the same gating behavior. These results indicate that normal gating requires ATP binding to both NBDs, but ATP interaction with one NBD is sufficient to support some activity. We also studied mutations of the conserved Walker A lysine residues (K464A and K1250A) that prevent hydrolysis. By combining substitutions that block ATP binding with Walker A lysine mutations, we could differentiate the role of ATP binding vs. hydrolysis at each NBD. The K1250A mutation prolonged burst duration; however, blocking ATP binding prevented the long bursts. These data indicate that ATP binding to NBD2 allowed channel opening and that closing was delayed in the absence of hydrolysis. The corresponding NBD1 mutations showed relatively little effect of preventing ATP hydrolysis but a large inhibition of blocking ATP binding. These data suggest that ATP binding to NBD1 is required for normal activity but that hydrolysis has little effect. Our results suggest that both NBDs contribute to channel gating, NBD1 binds ATP but supports little hydrolysis, and ATP binding and hydrolysis at NBD2 are key for normal gating. PMID:15623556

  8. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. PMID:26686578

  9. Blockade of Extracellular ATP Effect by Oxidized ATP Effectively Mitigated Induced Mouse Experimental Autoimmune Uveitis (EAU)

    PubMed Central

    Zhao, Ronglan; Liang, Dongchun; Sun, Deming

    2016-01-01

    Various pathological conditions are accompanied by ATP release from the intracellular to the extracellular compartment. Extracellular ATP (eATP) functions as a signaling molecule by activating purinergic P2 purine receptors. The key P2 receptor involved in inflammation was identified as P2X7R. Recent studies have shown that P2X7R signaling is required to trigger the Th1/Th17 immune response, and oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study we investigated the effect of oxATP on mouse experimental autoimmune uveitis (EAU). Our results demonstrated that induced EAU in B6 mice was almost completely abolished by the administration of small doses of oxATP, and the Th17 response, but not the Th1 response, was significantly weakened in the treated mice. Mechanistic studies showed that the therapeutic effects involve the functional change of a number of immune cells, including dendritic cells (DCs), T cells, and regulatory T cells. OxATP not only directly inhibits the T cell response; it also suppresses T cell activation by altering the function of DCs and Foxp3+ T cell. Our results demonstrated that inhibition of P2X7R activation effectively exempts excessive autoimmune inflammation, which may indicate a possible therapeutic use in the treatment of autoimmune diseases. PMID:27196432

  10. Synthetic peptides target ATP translocase of ‘Candidatus Liberibacter asiaticus’ to block ATP uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As an obligate intracellular pathogen, ‘Candidatus Liberibacter asiaticus’ (Las) may act as an “energy parasite” by importing ATP from its host’s cells. We previously demonstrated that the Las translocase NttA (gb|ACX71867.1) is functional in Escherichia coli and enables the direct import of ATP/ADP...

  11. Magnetic field affects enzymatic ATP synthesis.

    PubMed

    Buchachenko, Anatoly L; Kuznetsov, Dmitry A

    2008-10-01

    The rate of ATP synthesis by creatine kinase extracted from V. xanthia venom was shown to depend on the magnetic field. The yield of ATP produced by enzymes with 24Mg2+ and 26Mg2+ ions in catalytic sites increases by 7-8% at 55 mT and then decreases at 80 mT. For enzyme with 25Mg2+ ion in a catalytic site, the ATP yield increases by 50% and 70% in the fields 55 and 80 mT, respectively. In the Earth field the rate of ATP synthesis by enzyme, in which Mg2+ ion has magnetic nucleus 25Mg, is 2.5 times higher than that by enzymes, in which Mg2+ ion has nonmagnetic, spinless nuclei 24Mg or 26Mg. Both magnetic field effect and magnetic isotope effect demonstrate that the ATP synthesis is an ion-radical process, affected by Zeeman interaction and hyperfine coupling in the intermediate ion-radical pair. PMID:18774801

  12. Insulin Inhibits Low Oxygen-Induced ATP Release from Human Erythrocytes: Implication for Vascular Control

    PubMed Central

    Hanson, Madelyn S.; Ellsworth, Mary L.; Achilleus, David; Stephenson, Alan H.; Bowles, Elizabeth A.; Sridharan, Meera; Adderley, Shaquria; Sprague, Randy S.

    2010-01-01

    Objective ATP released from human erythrocytes in response to reduced oxygen tension (pO2) participates in the matching of oxygen (O2) supply with need in skeletal muscle by stimulating increases in blood flow to areas with increased O2 demand. Here we investigated the hypothesis that hyperinsulinemia inhibits ATP release from erythrocytes and impairs their ability to stimulate dilation of isolated arterioles exposed to decreased extra-luminal pO2. Methods Erythrocyte ATP release was stimulated pharmacologically (mastoparan 7) and physiologically (reduced pO2) in the absence or presence of insulin. We also examined the ability of isolated skeletal muscle arterioles perfused with buffer containing erythrocytes treated with insulin or its vehicle (saline) to dilate in response to decreased extra-luminal pO2. Results Insulin significantly attenuated mastoparan 7– and reduced pO2–induced ATP release. In vessels perfused with untreated erythrocytes, low extra-luminal pO2 resulted in an increase in vessel diameter. In contrast, when erythrocytes were treated with insulin, no vasodilation occurred. Conclusions These studies demonstrate that insulin inhibits ATP release from erythrocytes in response to reduced pO2 and impairs their ability to stimulate dilation of skeletal muscle arterioles. These results suggest that hyperinsulinemia could hinder the matching of O2 supply with need in skeletal muscle. PMID:19412833

  13. ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage.

    PubMed

    Kaim, G; Dimroth, P

    1999-08-01

    ATP synthase is the universal enzyme that manufactures cellular ATP using the energy stored in a transmembrane ion gradient. This energy gradient has two components: the concentration difference (DeltapH or DeltapNa(+)) and the electrical potential difference DeltaPsi, which are thermodynamically equivalent. However, they are not kinetically equivalent, as the mitochondrial and bacterial ATP synthases require a transmembrane potential, DeltaPsi, but the chloroplast enzyme has appeared to operate on DeltapH alone. Here we show that, contrary to the accepted wisdom, the 'acid bath' procedure used to study the chloroplast enzyme develops not only a DeltapH but also a membrane potential, and that this potential is essential for ATP synthesis. Thus, for the chloroplast and other ATP synthases, the membrane potential is the fundamental driving force for their normal operation. We discuss the biochemical reasons for this phenomenon and a model that is consistent with these new experimental facts. PMID:10428951

  14. Pannexin1 channels dominate ATP release in the cochlea ensuring endocochlear potential and auditory receptor potential generation and hearing

    PubMed Central

    Chen, Jin; Zhu, Yan; Liang, Chun; Chen, Jing; Zhao, Hong-Bo

    2015-01-01

    Pannexin1 (Panx1) is a gap junction gene in vertebrates whose proteins mainly function as non-junctional channels on the cell surface. Panx1 channels can release ATP under physiological conditions and play critical roles in many physiological and pathological processes. Here, we report that Panx1 deficiency can reduce ATP release and endocochlear potential (EP) generation in the cochlea inducing hearing loss. Panx1 extensively expresses in the cochlea, including the cochlear lateral wall. We found that deletion of Panx1 in the cochlear lateral wall almost abolished ATP release under physiological conditions. Positive EP is a driving force for current through hair cells to produce auditory receptor potential. EP generation requires ATP. In the Panx1 deficient mice, EP and auditory receptor potential as measured by cochlear microphonics (CM) were significantly reduced. However, no apparent hair cell loss was detected. Moreover, defect of connexin hemichannels by deletion of connexin26 (Cx26) and Cx30, which are predominant connexin isoforms in the cochlea, did not reduce ATP release under physiological conditions. These data demonstrate that Panx1 channels dominate ATP release in the cochlea ensuring EP and auditory receptor potential generation and hearing. Panx1 deficiency can reduce ATP release and EP generation causing hearing loss. PMID:26035172

  15. sine oculis in basal Metazoa.

    PubMed

    Bebenek, Ilona G; Gates, Ruth D; Morris, Joshua; Hartenstein, Volker; Jacobs, David K

    2004-07-01

    We report the recovery of homologs of Six1/2/sine oculis (so), a homeodomain-containing member of the Six-gene family, from a diverse set of basal Metazoa, including representatives of the poriferan classes Demospongia, Calcarea and Hexactinellida, the cnidarian classes Hydrozoa, Scyphozoa and Anthozoa, as well as a ctenophore. so sequences were also recovered from a platyhelminth, an echiurid and two bivalve molluscs, members of the super-phyletic group Lophotrochozoa. In the case of the platyhelminth, multiple distinct so sequences were recovered, as well as a member of the related group Six4/5/D-Six4. Extended sequences of the so gene were recovered from the demosponge, Haliclona sp., and the scyphozoan Aurelia aurita via PCR, and 3' RACE. The affinities of all recovered sequences were assessed using a parsimony analysis based on both nucleic and amino acid sequence and using successive character weighting. Our results indicate that so is highly conserved across the animal kingdom. Preliminary expression data for Aurelia reveal that transcripts of the so homolog are present in the manubrium as well as in the rhopalia, which contain the statocyst and eyes, in the free-swimming ephyra and juvenile stages of these jellyfish. PMID:15221378

  16. Pyruvate kinase and the "high ATP syndrome".

    PubMed Central

    Staal, G E; Jansen, G; Roos, D

    1984-01-01

    The erythrocytes of a patient with the so-called "high ATP syndrome" were characterized by a high ATP content and low 2,3-diphosphoglycerate level. The pyruvate kinase activity was specifically increased (about twice the normal level). After separation of the erythrocytes according to age by discontinuous Percoll density centrifugation, the pyruvate kinase activity was found to be increased in all Percoll fractions. Pyruvate kinase of the patient's cells was characterized by a decreased K0.5 for the substrate phosphoenolpyruvate and no inhibition by ATP. The Michaelis constant (Km) value for ADP, the nucleotide specificity, the thermostability, pH optimum, and immunological specific activity were normal. It is concluded that the high pyruvate kinase activity is due to a shift in the R(elaxed) in equilibrium T(ight) equilibrium to the R(elaxed) form. PMID:6736249

  17. Inhibition of ATP Synthase by Chlorinated Adenosine Analogue

    PubMed Central

    Chen, Lisa S.; Nowak, Billie J.; Ayres, Mary L.; Krett, Nancy L.; Rosen, Steven T.; Zhang, Shuxing; Gandhi, Varsha

    2009-01-01

    8-Chloroadenosine (8-Cl-Ado) is a ribonucleoside analogue that is currently in clinical trial for chronic lymphocytic leukemia. Based on the decline in cellular ATP pool following 8-Cl-Ado treatment, we hypothesized that 8-Cl-ADP and 8-Cl-ATP may interfere with ATP synthase, a key enzyme in ATP production. Mitochondrial ATP synthase is composed of two major parts; FO intermembrane base and F1 domain, containing α and β subunits. Crystal structures of both α and β subunits that bind to the substrate, ADP, are known in tight binding (αdpβdp) and loose binding (αtpβtp) states. Molecular docking demonstrated that 8-Cl-ADP/8-Cl-ATP occupied similar binding modes as ADP/ATP in the tight and loose binding sites of ATP synthase, respectively, suggesting that the chlorinated nucleotide metabolites may be functional substrates and inhibitors of the enzyme. The computational predictions were consistent with our whole cell biochemical results. Oligomycin, an established pharmacological inhibitor of ATP synthase, decreased both ATP and 8-Cl-ATP formation from exogenous substrates, however, did not affect pyrimidine nucleoside analogue triphosphate accumulation. Synthesis of ATP from ADP was inhibited in cells loaded with 8-Cl-ATP. These biochemical studies are in consent with the computational modeling; in the αtpβtp state 8-Cl-ATP occupies similar binding as ANP, a non-hydrolyzable ATP mimic that is a known inhibitor. Similarly, in the substrate binding site (αdpβdp) 8-Cl-ATP occupies a similar position as ATP mimic ADP-BeF3 −. Collectively, our current work suggests that 8-Cl-ADP may serve as a substrate and the 8-Cl-ATP may be an inhibitor of ATP synthase. PMID:19477165

  18. Readiness in the Basal Reader: An Update.

    ERIC Educational Resources Information Center

    Perkins, Pamela

    A study examined two 1989 basal reading series' (published by McGraw Hill and Holt) readiness/priming sequences in order to ascertain the theoretical bases of each and then compared the findings with those of an earlier study. All pages of the readiness/priming sequence student texts and workbooks of both basal reading series were analyzed using…

  19. The basal ganglia communicate with the cerebellum.

    PubMed

    Bostan, Andreea C; Dum, Richard P; Strick, Peter L

    2010-05-01

    The basal ganglia and cerebellum are major subcortical structures that influence not only movement, but putatively also cognition and affect. Both structures receive input from and send output to the cerebral cortex. Thus, the basal ganglia and cerebellum form multisynaptic loops with the cerebral cortex. Basal ganglia and cerebellar loops have been assumed to be anatomically separate and to perform distinct functional operations. We investigated whether there is any direct route for basal ganglia output to influence cerebellar function that is independent of the cerebral cortex. We injected rabies virus (RV) into selected regions of the cerebellar cortex in cebus monkeys and used retrograde transneuronal transport of the virus to determine the origin of multisynaptic inputs to the injection sites. We found that the subthalamic nucleus of the basal ganglia has a substantial disynaptic projection to the cerebellar cortex. This pathway provides a means for both normal and abnormal signals from the basal ganglia to influence cerebellar function. We previously showed that the dentate nucleus of the cerebellum has a disynaptic projection to an input stage of basal ganglia processing, the striatum. Taken together these results provide the anatomical substrate for substantial two-way communication between the basal ganglia and cerebellum. Thus, the two subcortical structures may be linked together to form an integrated functional network. PMID:20404184

  20. Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells.

    PubMed

    Takahara, Norihiro; Ito, Satoru; Furuya, Kishio; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-12-01

    Airway smooth muscle (ASM) cells within the airway walls are continually exposed to mechanical stimuli, and exhibit various functions in response to these mechanical stresses. ATP acts as an extracellular mediator in the airway. Moreover, extracellular ATP is considered to play an important role in the pathophysiology of asthma and chronic obstructive pulmonary disease. However, it is not known whether ASM cells are cellular sources of ATP secretion in the airway. We therefore investigated whether mechanical stretch induces ATP release from ASM cells. Mechanical stretch was applied to primary human ASM cells cultured on a silicone chamber coated with type I collagen using a stretching apparatus. Concentrations of ATP in cell culture supernatants measured by luciferin-luciferase bioluminescence were significantly elevated by cyclic stretch (12 and 20% strain). We further visualized the stretch-induced ATP release from the cells in real time using a luminescence imaging system, while acquiring differential interference contrast cell images with infrared optics. Immediately after a single uniaxial stretch for 1 second, strong ATP signals were produced by a certain population of cells and spread to surrounding spaces. The cyclic stretch-induced ATP release was significantly reduced by inhibitors of Ca(2+)-dependent vesicular exocytosis, 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester, monensin, N-ethylmaleimide, and bafilomycin. In contrast, the stretch-induced ATP release was not inhibited by a hemichannel blocker, carbenoxolone, or blockade of transient receptor potential vanilloid 4 by short interfering RNA transfection or ruthenium red. These findings reveal a novel property of ASM cells: mechanically induced ATP release may be a cellular source of ATP in the airway. PMID:24885163

  1. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).

    PubMed

    Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R

    2016-06-01

    Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy. PMID:26971503

  2. Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase.

    PubMed

    Böckmann, Rainer A; Grubmüller, Helmut

    2002-03-01

    The mitochondrial membrane protein FoF1-ATP synthase synthesizes adenosine triphosphate (ATP), the universal currency of energy in the cell. This process involves mechanochemical energy transfer from a rotating asymmetric gamma-'stalk' to the three active sites of the F1 unit, which drives the bound ATP out of the binding pocket. Here, the primary structural changes associated with this energy transfer in F1-ATP synthase were studied with multi-nanosecond molecular dynamics simulations. By forced rotation of the gamma-stalk that mimics the effect of proton motive Fo-rotation during ATP synthesis, a time-resolved atomic model for the structural changes in the F1 part in terms of propagating conformational motions is obtained. For these, different time scales are found, which allows the separation of nanosecond from microsecond conformational motions. In the simulations, rotation of the gamma-stalk lowers the ATP affinity of the betaTP binding pocket and triggers fast, spontaneous closure of the empty betaE subunit. The simulations explain several mutation studies and the reduced hydrolysis rate of gamma-depleted F1-ATPase. PMID:11836535

  3. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption.

    PubMed

    Miyazaki, Tsuyoshi; Iwasawa, Mitsuyasu; Nakashima, Tomoki; Mori, Shuuichi; Shigemoto, Kazuhiro; Nakamura, Hiroaki; Katagiri, Hideki; Takayanagi, Hiroshi; Tanaka, Sakae

    2012-11-01

    Osteoclasts, highly differentiated bone-resorbing cells of hematopoietic origin, have two conflicting tendencies: a lower capacity to survive and a higher capacity to execute energy-consuming activities such as bone resorption. Here, we report that when compared with their precursors, mature mitochondria-rich osteoclasts have lower levels of intracellular ATP, which is associated with receptor activator of nuclear factor κ-B ligand (RANKL)-induced Bcl-x(L) down-regulation. Severe ATP depletion, caused by disrupting mitochondrial transcription factor A (Tfam) gene, leads to increased bone-resorbing activity despite accelerated apoptosis. Although AMP-activated protein kinase (AMPK) activation by ATP depletion is not involved in the regulation of osteoclast function, the release of ATP from intracellular stores negatively regulates bone-resorbing activity through an autocrine/paracrine feedback loop by altering cytoskeletal structures. Furthermore, osteoclasts derived from aged mice exhibit reduced mitochondrial DNA (mtDNA) and intracellular ATP levels with increased bone-resorbing activity, implicating the possible involvement of age-related mitochondrial dysfunction in osteoporosis. Thus, our study provides evidence for a mechanism underlying the control of cellular functions by reciprocal changes in intracellular and extracellular ATP, which regulate the negative correlation between osteoclast survival and bone resorption. PMID:22988253

  4. Antinociceptive effect of a new P(2Z)/P2X7 antagonist, oxidized ATP, in arthritic rats.

    PubMed

    Dell'Antonio, Giacomo; Quattrini, Angelo; Dal Cin, Elena; Fulgenzi, Alessandro; Ferrero, Maria Elena

    2002-07-19

    The neurotransmitter adenosine triphosphate (ATP) is released from sensory nerve endings during inflammation and acts at the level of P2X receptors. We used the irreversible inhibitor of P2z/P2X7 receptor, designated oxidized ATP (oATP), to test its possible antinociceptive activity in arthritic rats. We induced unilateral inflammation of the rat hind paw by local injection of Freund's complete adjuvant. Administration of the adjuvant resulted in a significant reduction of paw pressure threshold (PPT). Injection of oATP into inflamed paws significantly increased, in a dose-dependent manner, PPT values to levels comparable with or higher than those evaluated in control uninflamed paws. The data indicate that the P2z/P2X7 receptor system exerts a role in nociception and that oATP, by inhibiting such a receptor, reduces the nociceptive signal in the course of peripheral inflammation. PMID:12098642

  5. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia.

    PubMed

    Walentek, Peter; Beyer, Tina; Hagenlocher, Cathrin; Müller, Christina; Feistel, Kerstin; Schweickert, Axel; Harland, Richard M; Blum, Martin

    2015-12-15

    Proton pump inhibitors (PPIs), which target gastric H(+)/K(+)ATPase (ATP4), are among the most commonly prescribed drugs. PPIs are used to treat ulcers and as a preventative measure against gastroesophageal reflux disease in hospitalized patients. PPI treatment correlates with an increased risk for airway infections, i.e. community- and hospital-acquired pneumonia. The cause for this correlation, however, remains elusive. The Xenopus embryonic epidermis is increasingly being used as a model to study airway-like mucociliary epithelia. Here we use this model to address how ATP4 inhibition may affect epithelial function in human airways. We demonstrate that atp4a knockdown interfered with the generation of cilia-driven extracellular fluid flow. ATP4a and canonical Wnt signaling were required in the epidermis for expression of foxj1, a transcriptional regulator of motile ciliogenesis. The ATP4/Wnt module activated foxj1 downstream of ciliated cell fate specification. In multiciliated cells (MCCs) of the epidermis, ATP4a was also necessary for normal myb expression, apical actin formation, basal body docking and alignment of basal bodies. Furthermore, ATP4-dependent Wnt/β-catenin signaling in the epidermis was a prerequisite for foxa1-mediated specification of small secretory cells (SSCs). SSCs release serotonin and other substances into the medium, and thereby regulate ciliary beating in MCCs and protect the epithelium against infection. Pharmacological inhibition of ATP4 in the mature mucociliary epithelium also caused a loss of MCCs and led to impaired mucociliary clearance. These data strongly suggest that PPI-associated pneumonia in human patients might, at least in part, be linked to dysfunction of mucociliary epithelia of the airways. PMID:25848696

  6. Sliding distance per ATP molecule hydrolyzed by myosin heads during isotonic shortening of skinned muscle fibers.

    PubMed Central

    Higuchi, H; Goldman, Y E

    1995-01-01

    We measured isotonic sliding distance of single skinned fibers from rabbit psoas muscle when known and limited amounts of ATP were made available to the contractile apparatus. The fibers were immersed in paraffin oil at 20 degrees C, and laser pulse photolysis of caged ATP within the fiber initiated the contraction. The amount of ATP released was measured by photolyzing 3H-ATP within fibers, separating the reaction products by high-pressure liquid chromatography, and then counting the effluent peaks by liquid scintillation. The fiber stiffness was monitored to estimate the proportion of thick and thin filament sites interacting during filament sliding. The interaction distance, Di, defined as the sliding distance while a myosin head interacts with actin in the thin filament per ATP molecule hydrolyzed, was estimated from the shortening distance, the number of ATP molecules hydrolyzed by the myosin heads, and the stiffness. Di increased from 11 to 60 nm as the isotonic tension was reduced from 80% to 6% of the isometric tension. Velocity and Di increased with the concentration of ATP available. As isotonic load was increased, the interaction distance decreased linearly with decrease of the shortening velocity and extrapolated to 8 nm at zero velocity. Extrapolation of the relationship between Di and velocity to saturating ATP concentration suggests that Di reaches 100-190 nm at high shortening velocity. The interaction distance corresponds to the sliding distance while cross-bridges are producing positive (working) force plus the distance while they are dragging (producing negative forces). The results indicate that the working and drag distances increase as the velocity increases. Because Di is larger than the size of either the myosin head or the actin monomer, the results suggest that for each ATPase cycle, a myosin head interacts mechanically with several actin monomers either while working or while producing drag. PMID:8534820

  7. The ADP/ATP Carrier and Its Relationship to Oxidative Phosphorylation in Ancestral Protist Trypanosoma brucei

    PubMed Central

    Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius

    2015-01-01

    The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281

  8. The structural basis of ATP as an allosteric modulator.

    PubMed

    Lu, Shaoyong; Huang, Wenkang; Wang, Qi; Shen, Qiancheng; Li, Shuai; Nussinov, Ruth; Zhang, Jian

    2014-09-01

    Adenosine-5'-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP to exert distinct biological functions: ATP molecules adopt both compact and extended conformations in the allosteric binding sites but conserve extended conformations in the substrate binding sites. Nudged elastic band simulations unveiled the distinct dynamic processes of ATP binding to the corresponding allosteric and substrate binding sites of uridine monophosphate kinase, and suggested that in solution ATP preferentially binds to the substrate binding sites of proteins. When the ATP molecules occupy the allosteric binding sites, the allosteric trigger from ATP to fuel allosteric communication between allosteric and functional sites is stemmed mainly from the triphosphate part of ATP, with a small number from the adenine part of ATP. Taken together, our results provide overall understanding of ATP allosteric functions responsible for regulation in biological systems. PMID:25211773

  9. Distinct Conformation of ATP Molecule in Solution and on Protein

    PubMed Central

    Kobayashi, Eri; Yura, Kei; Nagai, Yoshinori

    2013-01-01

    Adenosine triphosphate (ATP) is a versatile molecule used mainly for energy and a phosphate source. The hydrolysis of γ phosphate initiates the reactions and these reactions almost always start when ATP binds to protein. Therefore, there should be a mechanism to prevent spontaneous hydrolysis reaction and a mechanism to lead ATP to a pure energy source or to a phosphate source. To address these questions, we extensively analyzed the effect of protein to ATP conformation based on the sampling of the ATP solution conformations obtained from molecular dynamics simulation and the sampling of ATP structures bound to protein found in a protein structure database. The comparison revealed mainly the following three points; 1) The ribose ring in ATP molecule, which puckers in many ways in solution, tends to assume either C2′ exo or C2′ endo when it binds to protein. 2) The adenine ring in ATP molecule, which takes open-book motion with the two ring structures, has two distinct structures when ATP binds to protein. 3) The glycosyl-bond and the bond between phosphate and the ribose have unique torsion angles, when ATP binds to protein. The combination of torsion angles found in protein-bound forms is under-represented in ATP molecule in water. These findings suggest that ATP-binding protein exerts forces on ATP molecule to assume a conformation that is rarely found in solution, and that this conformation change should be a trigger for the reactions on ATP molecule. PMID:27493535

  10. The Structural Basis of ATP as an Allosteric Modulator

    PubMed Central

    Wang, Qi; Shen, Qiancheng; Li, Shuai; Nussinov, Ruth; Zhang, Jian

    2014-01-01

    Adenosine-5’-triphosphate (ATP) is generally regarded as a substrate for energy currency and protein modification. Recent findings uncovered the allosteric function of ATP in cellular signal transduction but little is understood about this critical behavior of ATP. Through extensive analysis of ATP in solution and proteins, we found that the free ATP can exist in the compact and extended conformations in solution, and the two different conformational characteristics may be responsible for ATP to exert distinct biological functions: ATP molecules adopt both compact and extended conformations in the allosteric binding sites but conserve extended conformations in the substrate binding sites. Nudged elastic band simulations unveiled the distinct dynamic processes of ATP binding to the corresponding allosteric and substrate binding sites of uridine monophosphate kinase, and suggested that in solution ATP preferentially binds to the substrate binding sites of proteins. When the ATP molecules occupy the allosteric binding sites, the allosteric trigger from ATP to fuel allosteric communication between allosteric and functional sites is stemmed mainly from the triphosphate part of ATP, with a small number from the adenine part of ATP. Taken together, our results provide overall understanding of ATP allosteric functions responsible for regulation in biological systems. PMID:25211773

  11. Mephedrone alters basal ganglia and limbic neurotensin systems

    PubMed Central

    German, Christopher L.; Hoonakker, Amanda H.; Fleckenstein, Annette E.; Hanson, Glen R.

    2014-01-01

    Mephedrone (4-methylmethcathinone) is a synthetic cathinone designer drug that alters presynaptic dopamine (DA) activity like many psychostimulants. However, little is known about the postsynaptic dopaminergic impacts of mephedrone. The neuropeptide neurotensin (NT) provides inhibitory feedback for basal ganglia and limbic DA pathways, and postsynaptic D1-like and D2-like receptor activity affects NT tissue levels. This study evaluated how mephedrone alters basal ganglia and limbic system NT content and the role of NT receptor activation in drug consumption behavior. Four 25 mg/kg injections of mephedrone increased NT content in basal ganglia (striatum, substantia nigra and globus pallidus) and the limbic regions (nucleus accumbens core), while a lower dosage (5 mg/kg/injection) only increased striatal NT content. Mephedrone-induced increases in basal ganglia NT levels were mediated by D1-like receptors in the striatum and the substantia nigra by both D1-like and D2-like receptors in the globus pallidus. Mephedrone increased substance P content, another neuropeptide, in the globus pallidus, but not in the dorsal striatum or substantia nigra. Finally, the NT receptor agonist PD149163 blocked mephedrone self-administration, suggesting reduced NT release, as indicated by increased tissue levels, likely contributing to patterns of mephedrone consumption. PMID:24678634

  12. TmcN is involved in ATP regulation of tautomycetin biosynthesis in Streptomyces griseochromogenes.

    PubMed

    Li, Ming; Chen, Yang; Wu, Sijin; Tang, Yan; Deng, Ying; Yuan, Jieli; Dong, Jianyi; Li, Huajun; Tang, Li

    2016-09-01

    The regulatory mechanism of tautomycetin (TMC) biosynthesis remains largely unknown, although it has been of great interest to the pharmaceutical industry. Our previous study showed that intracellular adenosine triphosphate (inATP) level is negatively correlated with secondary metabolite biosynthesis in various Streptomyces spp. In this study, by exogenous treatment of ATP, we also found a negative correlation between TMC biosynthesis and inATP level in Streptomyces griseochromogenes (S. griseochromogenes). However, the underlying mechanism remains unclear. TmcN, a pathway-specific transcriptional regulator of TMC biosynthetic genes, was previously revealed as a large ATP-binding LuxR (LAL) family protein. The predicted amino acid sequence of TmcN shows highly conserved Walker A and B binding motifs, which suggest an ATPase function of TmcN. We therefore hypothesized that the ATPase domain of TmcN may play a role in sensing endogenous pool of ATP, and is thus involved in the ATP regulation of TMC biosynthesis. To test the hypothesis, we first explored the key residue that affects the ATPase activity of TmcN by amino acid sequence alignment and structural simulation. After that, we disrupted tmcN gene in S. griseochromogenes, and the tmcN or site-direct-mutated tmcN were re-introduced to get the complementary and ATPase domain disrupted strains. The transcription level of tmcN, TMC yield, and inATP, as well as the effect of ATP on TMC production of different mutants were evaluated. Deletion of tmcN or site-direct mutation of ATPase domain of TmcN in S. griseochromogenes significantly reduced the TMC production, and it was not affected by exogenous ATP treatment. In addition, a relatively high level of inATP was detected in tmcN deletion and site-direct mutation strains. Our results here suggested that TmcN, especially its ATPase domain, is involved in consuming of endogenous ATP pool and thus plays pivotal role in connecting the primary and secondary metabolite

  13. Activation of the phospholipase C pathway by ATP is mediated exclusively through nucleotide type P2-purinoceptors in C2C12 myotubes.

    PubMed Central

    Henning, R. H.; Duin, M.; den Hertog, A.; Nelemans, A.

    1993-01-01

    1. The presence of a nucleotide receptor and a discrete ATP-sensitive receptor on C2C12 myotubes has been shown by electrophysiological experiments. In this study, the ATP-sensitive receptors of C2C12 myotubes were further characterized by measuring the formation of inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and internal Ca2+. 2. The nucleotides ATP and UTP caused a concentration-dependent increase in Ins(1,4,5)P3 content with comparable time courses (EC50: ATP 33 +/- 2 microM, UTP 80 +/- 4 microM). ADP was less effective in increasing Ins(1,4,5)P3 content of the cells, while selective agonists for P1-, P2X- and P2Y-purinoceptors, adenosine, alpha,beta-methylene ATP and 2-methylthio ATP, appeared to be ineffective. 3. Under Ca(2+)-free conditions, the basal level of Ins(1,4,5)P3 was lower than in the presence of Ca2+, and the ATP- and UTP-induced formation of Ins(1,4,5)P3 was diminished. 4. The Ins(1,4,5)P3 formation induced by optimal ATP and UTP concentrations was not additive. ATP- and UTP-induced Ins(1,4,5)P3 formation showed cross-desensitization, whereas cross-desensitization was absent in responses elicited by one of the nucleotides and bradykinin. 5. The change in Ins(1,4,5)P3 content induced by effective nucleotides was inhibited by suramin. Schild plots for suramin inhibition of Ins(1,4,5)P3 formation in ATP- and UTP-stimulated myotubes showed slopes greater than unity (1.63 +/- 0.09 and 1.37 +/- 0.11, respectively). Apparent pA2 values were 4.50 +/- 0.48 and 4.41 +/- 0.63 for ATP and UTP, respectively. 6. Stimulation of the cells with ATP or UTP induced a rapid increase in intracellular Ca2+, followed by a slow decline to basal levels. Ca2+ responses reached lower maximal values and did not show the slow phase in the absence of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8242247

  14. Firefly bioluminescent assay of ATP in the presence of ATP extractant by using liposomes.

    PubMed

    Kamidate, Tamio; Yanashita, Kenji; Tani, Hirofumi; Ishida, Akihiko; Notani, Mizuyo

    2006-01-01

    Liposomes containing phosphatidylcholine (PC) and cholesterol (Chol) were applied to the enhancer for firefly bioluminescence (BL) assay for ATP in the presence of cationic surfactants using as an extractant for the release of ATP from living cells. Benzalkonium chloride (BAC) was used as an ATP extractant. However, BAC seriously inhibited the activity of luciferase, thus resulting in the remarkable decrease in the sensitivity of the BL assay for ATP. On the other hand, we found that BAC was associated with liposomes to form cationic liposomes containing BAC. The association rate of BAC with liposomes was faster than that of BAC with luciferase. As a result, the inhibitory effect of BAC on luciferase was eliminated in the presence of liposomes. In addition, cationic liposomes thus formed enhanced BL emission. BL measurement conditions were optimized in terms of liposome charge type, liposome size, and total concentration of PC and Chol. ATP can be sensitively determined without dilution of analytical samples by using liposomes. The detection limit of ATP with and without liposomes was 100 amol and 25 fmol in aqueous ATP standard solutions containing 0.06% BAC, respectively. The method was applied to the determination of ATP in Escherichia coli extracts. The BL intensity was linear from 4 x 10(4) to 1 x 10(7) cells mL(-1) in the absence of liposomes. On the other hand, the BL intensity was linear from 4 x 10(3) to 4 x 10(6) cells mL(-1) in the presence of liposomes. The detection limit of ATP in E. coli extracts was improved by a factor of 10 via use of liposomes. PMID:16383346

  15. Impaired ATP6V0A2 expression contributes to Golgi dispersion and glycosylation changes in senescent cells

    PubMed Central

    Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori

    2015-01-01

    Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program. PMID:26611489

  16. Basal nucleotide levels, release, and metabolism in normal and cystic fibrosis airways.

    PubMed Central

    Donaldson, S. H.; Lazarowski, E. R.; Picher, M.; Knowles, M. R.; Stutts, M. J.; Boucher, R. C.

    2000-01-01

    BACKGROUND: Cystic fibrosis (CF) is a syndrome caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. Despite advances in our understanding of the molecular pathogenesis of CF, the link between CFTR gene mutations and the pathogenesis of CF lung disease remains poorly defined. CFTR has been assigned a number of putative functions that may contribute to innate airway defense, including the regulation of adenosine 5'-triphosphate (ATP) release into the extracellular environment. Because extracellular ATP and uridine 5'-triphosphate (UTP) may regulate airway mucociliary clearance via interaction with luminal P2Y2 receptors, the loss of CFTR-mediated nucleotide release could explain the defect in CF airway defense. MATERIALS AND METHODS: We tested the physiologic importance of CFTR-mediated nucleotide release in vivo by directly measuring levels of ATP and UTP in nasal airway surface liquid from normal and CF subjects. Because these basal nucleotide levels reflect the net activities of nucleotide release and metabolic pathways, we also measured constitutive rates of nucleotide release and metabolism on well-differentiated normal and CF airway cultures in vitro. The measurement of ATP release rates were paralleled by in vivo studies employing continuous nasal perfusion in normal and CF subjects. Finally, the regulation of ATP release by isoproterenol and methacholine-stimulated submucosal gland secretion was tested. RESULTS: These studies revealed that steady-state ATP and UTP levels were similar in normal (470 +/- 131 nM and 37 +/- 7 nM, respectively) and CF (911 +/- 199 nM and 33 +/- 12 nM, respectively) subjects. The rates of both ATP release and metabolism were also similar in normal and CF airway epithelia both in vitro and in vivo. Airway submucosal glands did not secrete nucleotides, but rather, secreted a soluble nucleotidase in response to cholinergic stimuli. CONCLUSION: The concentration of ATP in airway surface liquid is in a range

  17. Relationship of tightly bound ADP and ATP to control and catalysis by chloroplast ATP synthase

    SciTech Connect

    Zhou, J.; Xue, Z.; Du, Z.; Melese, T.; Boyer, P.D.

    1988-07-12

    Whether the tightly bound ADP that can cause a pronounced inhibition of ATP hydrolysis by the chloroplast ATP synthase and F/sub 1/ ATPase (CF/sub 1/) is bound at catalytic sites or at noncatalytic regulatory sites or both has been uncertain. The authors have used photolabeling by 2-azido-ATP and 2-azido-ADP to ascertain the location, with Mg/sup 2 +/ activation, of tightly bound ADP (a) that inhibits the hydrolysis of ATP by chloroplast ATP synthase, (b) that can result in an inhibited form of CF/sub 1/ that slowly regains activity during ATP hydrolysis, and (c) that arises when low concentrations of ADP markedly inhibit the hydrolysis of GTP by CF/sub 1/. The data show that in all instances the inhibition is associated with ADP binding without inorganic phosphate (P/sub i/) at catalytic sites. After photophosphorylation of ADP or 2-azido-ADP with (/sup 32/P)P/sub i/, similar amounts of the corresponding triphosphates are present on washed thylakoid membranes. Trials with appropriately labeled substrates show that a small portion of the tightly bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling with an ATP moiety at noncatalytic sites but that most of the bound 2-azido-ATP gives rise to covalent labeling by an ADP moiety at a catalytic site. They also report the occurrence of a 1-2-min delay in the onset of the Mg/sup 2 +/-induced inhibition after addition of CF/sub 1/ to solutions containing Mg/sup 2 +/ and ATP, and that this delay is not associated with the filling of noncatalytic sites. A rapid burst of P/sub i/ formation is followed by a much lower, constant steady-state rate. The burst is not observed with GTP as a substrate or with Ca/sup 2 +/ as the activating cation.

  18. Study of the Effects of ATP Suppliers and Thiol Reductants on Toxicity of Pioglitazone in Isolated Rat Liver Mitochondria

    PubMed Central

    Rezaiean Mehrabadi, Abbas; Jamshidzadeh, Akram; Rashedinia, Marzieh; Niknahad, Hossein

    2015-01-01

    Pioglitazone (PG) is one of thiazolidinediones used for the treatment of type II diabetes mellitus. Some reports of its hepatotoxicity exist, but the mechanism of its hepatotoxicity is not well known. In the present study, the protective effect of some ATP suppliers are investigated against mitochondrial toxicity of PG in isolated rat mitochondria. Mitochondrial viability was investigated by MTT assay. The effects of PG on superoxide dismutase activity, ATP production, mitochondrial swelling and oxidative stress were also investigated. PG reduced mitochondrial viability with an LC50 of 880±32 µM. It reduced ATP production and superoxide dismutase activity in mitochondria and increased mitochondrial swelling, but no oxidant effect was present as measured by TBARS formation. Fructose, dihydroxyacetone, dithioteritol, and N-acetylcysteine reduced mitochondrial toxicity of PG. Therefore, PG toxicity may be due to its mitochondrial toxicity and energy depletion, and ATP suppliers could be effective in preventing its toxicity. PMID:26330870

  19. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    PubMed Central

    Bilir, Yeliz; Gokce, Erkan; Ozturk, Banu; Deresoy, Faik Alev; Yuksekkaya, Ruken; Yaman, Emel

    2014-01-01

    Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts), the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome. PMID:25506011

  20. The Basal Ganglia-Circa 1982

    NASA Technical Reports Server (NTRS)

    Mehler, William R.

    1981-01-01

    Our review has shown that recent studies with the new anterograde and retrograde axon transport methods have confirmed and extended our knowledge of the projection of the basal ganglia and clarified their sites of origin. They have thrown new light on certain topographic connectional relationships and revealed several new reciprocal connections between constituent nuclei of the basal ganglia. Similarly, attention has been drawn to the fact that there have also been many new histochemical techniques introduced in recent years that are now providing regional biochemical overlays for connectional maps of the central nervous system, especially regions in, or interconnecting with, the basal ganglia. However, although these new morphological biochemical maps are very complex and technically highly advanced, our understanding of the function controlled by the basal ganglia still remains primitive. The reader who is interested in some new ideas of the functional aspects of the basal ganglia is directed to Nauta's proposed conceptual reorganization of the basal ganglia telencephalon and to Marsden's more clinically orientated appraisal of the unsolved mysteries of the basal ganglia participation in the control of movement.

  1. /sup 31/P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium

    SciTech Connect

    Kingsley-Hickman, P.B.; Sako, E.Y.; Mohanakrishnan, P.; Robitaille, P.M.L.; From, A.H.L.; Foker, J.E.; Ugurbil, K.

    1987-11-17

    The origin of the nuclear magnetic resonance (NMR)-measurable ATP in equilibrium P/sub i/ exchange and whether it can be used to determine net oxidative ATP synthesis rates in the intact myocardium were examined by detailed measurements of ATP in equilibrium P/sub i/ exchange rates in both directions as a function of the myocardial oxygen consumption rate (MVO/sub 2/) in (1) glucose-perfused, isovolumic rat hearts with normal glycolytic activity and (2) pyruvate-perfused hearts where glycolytic activity was reduced or eliminated either by depletion of their endogenous glycogen or by use of the inhibitor iodoacetate. In glucose-perfused hearts, the P/sub i/ ..-->.. ATP rate measured by the conventional two-site saturation transfer (CST) technique remained constant while MVO2 was increased approximately 2-fold. When the glycolytic activity was reduced, the P/sub i/ ..-->.. ATP rate decreased significantly, demonstrating the existence of a significant glycolytic contribution. The ATP ..-->.. P/sub i/ rates and rate:MVO ratios measured by the multiple-site saturation transfer method at two MVO/sub 2/ levels were equal to the corresponding P/sub i/..-->.. ATP rates and rate:MVO ratios obtained in the absence of a glycolytic contribution. The following conclusions are drawn from these studies: (1) unless the glycolytic contribution to the ATP in equilibrium P/sub i/ exchange is inhibited or is specifically shown not to exist, the myocardial P/sub i/ in equilibrium ATP exchange due to oxidative phosphorylation cannot be studied by NMR; (2) at moderate MVO/sub 2/ levels, the reaction catalyzed by the two glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase is near equilibrium; (3) the ATP synthesis by the mitochondrial H/sup +/-ATPase occurs unidirectionally (i.e., the reaction is far out of equilibrium); (4) the operative P:O ratio in the intact myocardium under our conditions is significantly less than the canonically accepted value

  2. Torque generation mechanism of ATP synthase

    NASA Astrophysics Data System (ADS)

    Miller, John; Maric, Sladjana; Scoppa, M.; Cheung, M.

    2010-03-01

    ATP synthase is a rotary motor that produces adenosine triphosphate (ATP), the chemical currency of life. Our proposed electric field driven torque (EFT) model of FoF1-ATP synthase describes how torque, which scales with the number of c-ring proton binding sites, is generated by the proton motive force (pmf) across the mitochondrial inner membrane. When Fo is coupled to F1, the model predicts a critical pmf to drive ATP production. In order to fully understand how the electric field resulting from the pmf drives the c-ring to rotate, it is important to examine the charge distributions in the protonated c-ring and a-subunit containing the proton channels. Our calculations use a self-consistent field approach based on a refinement of reported structural data. The results reveal changes in pKa for key residues on the a-subunit and c-ring, as well as titration curves and protonation state energy diagrams. Health implications will be briefly discussed.

  3. Calcium and ATP control multiple vital functions

    PubMed Central

    Verkhratsky, Alexei

    2016-01-01

    Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca2+ concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca2+ concentration (which in all life forms is kept around 50–100 nM) forms the basis for a universal intracellular signalling system in which Ca2+ acts as a second messenger. Maintenance of transmembrane Ca2+ gradients, in turn, requires ATP-dependent Ca2+ transport, thus further emphasizing the inseparable links between these two substances. Ca2+ signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca2+ signalling relies on cell specific Ca2+ signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca2+ signalling toolkits lead to aberrant Ca2+ signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377728

  4. Effect of ATP on actin filament stiffness.

    PubMed

    Janmey, P A; Hvidt, S; Oster, G F; Lamb, J; Stossel, T P; Hartwig, J H

    1990-09-01

    Actin is an adenine nucleotide-binding protein and an ATPase. The bound adenine nucleotide stabilizes the protein against denaturation and the ATPase activity, although not required for actin polymerization, affects the kinetics of this assembly Here we provide evidence for another effect of adenine nucleotides. We find that actin filaments made from ATP-containing monomers, the ATPase activity of which hydrolyses ATP to ADP following polymerization, are stiff rods, whereas filaments prepared from ADP-monomers are flexible. ATP exchanges with ADP in such filaments and stiffens them. Because both kinds of actin filaments contain mainly ADP, we suggest the alignment of actin monomers in filaments that have bound and hydrolysed ATP traps them conformationally and stores elastic energy. This energy would be available for release by actin-binding proteins that transduce force or sever actin filaments. These data support earlier proposals that actin is not merely a passive cable, but has an active mechanochemical role in cell function. PMID:2168523

  5. Calcium and ATP control multiple vital functions.

    PubMed

    Petersen, Ole H; Verkhratsky, Alexei

    2016-08-01

    Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca(2+) concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca(2+) concentration (which in all life forms is kept around 50-100 nM) forms the basis for a universal intracellular signalling system in which Ca(2+) acts as a second messenger. Maintenance of transmembrane Ca(2+) gradients, in turn, requires ATP-dependent Ca(2+) transport, thus further emphasizing the inseparable links between these two substances. Ca(2+) signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca(2+) signalling relies on cell specific Ca(2+) signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca(2+) signalling toolkits lead to aberrant Ca(2+) signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'. PMID:27377728

  6. Electric Field Driven Torque in ATP Synthase

    PubMed Central

    Miller, John H.; Rajapakshe, Kimal I.; Infante, Hans L.; Claycomb, James R.

    2013-01-01

    FO-ATP synthase (FO) is a rotary motor that converts potential energy from ions, usually protons, moving from high- to low-potential sides of a membrane into torque and rotary motion. Here we propose a mechanism whereby electric fields emanating from the proton entry and exit channels act on asymmetric charge distributions in the c-ring, due to protonated and deprotonated sites, and drive it to rotate. The model predicts a scaling between time-averaged torque and proton motive force, which can be hindered by mutations that adversely affect the channels. The torque created by the c-ring of FO drives the γ-subunit to rotate within the ATP-producing complex (F1) overcoming, with the aid of thermal fluctuations, an opposing torque that rises and falls with angular position. Using the analogy with thermal Brownian motion of a particle in a tilted washboard potential, we compute ATP production rates vs. proton motive force. The latter shows a minimum, needed to drive ATP production, which scales inversely with the number of proton binding sites on the c-ring. PMID:24040370

  7. A reusable prepositioned ATP reaction chamber

    NASA Technical Reports Server (NTRS)

    Hoffman, D. G.

    1972-01-01

    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life.

  8. A basal carbon concentrating mechanism in plants?

    PubMed

    Zabaleta, Eduardo; Martin, M Victoria; Braun, Hans-Peter

    2012-05-01

    Many photosynthetic organisms have developed inorganic carbon (Ci) concentrating mechanisms (CCMs) that increase the CO₂ concentration within the vicinity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Several CCMs, such as four carbon (C4) and crassulacean acid metabolism (CAM), bicarbonate accumulation systems and capsular structures around RubisCO have been described in great detail. These systems are believed to have evolved several times as mechanisms that acclimate organisms to unfavourable growth conditions. Based on recent experimental evidence we propose the occurrence of another more general CCM system present in all plants. This basal CCM (bCCM) is supposed to be composed of mitochondrial carbonic anhydrases (a β-type carbonic anhydrase and the γ-type carbonic anhydrase domain of the mitochondrial NADH dehydrogenase complex) and probably further unknown components. The bCCM is proposed to reduce leakage of CO₂ from plant cells and allow efficient recycling of mitochondrial CO₂ for carbon fixation in chloroplasts. PMID:22404837

  9. Thermodynamic significance of human basal metabolism

    NASA Astrophysics Data System (ADS)

    Wang, Cuncheng

    1993-06-01

    The human basal state, a non-equilibrium steady state, is analysed in this paper in the light of the First and Second Laws of Thermodynamics whereby the thermodynamic significance of the basal metabolic rate and its distinction to the dissipation function and exergy loss are identified. The analysis demonstrates the correct expression of the effects of the blood flow on the heat balance in a human-body bio-heat model and the relationship between the basal metabolic rate and the blood perfusion.

  10. Basal encephalocele and morning glory syndrome.

    PubMed Central

    Caprioli, J; Lesser, R L

    1983-01-01

    Basal encephaloceles are often associated with other midline anomalies such as hypertelorism, broad nasal root, cleft lip, and cleft palate. Optic disc anomalies such as pallor, dysplasia, optic pit, coLoboma, and megalopapilla have been reported to occur in patients with basal encephalocele We report a case of a child with a sphenoethmoidal encephalocele and morning glory syndrome of the optic nerve. The presence of such optic nerve anomalies with facial midline anomalies should alert the clinician to the possible presence of a basal encephalocele. Images PMID:6849854

  11. Channelised Subglacial Hydrology Modulates West Antarctic Ice Stream Basal Conditions and Flow

    NASA Astrophysics Data System (ADS)

    Siegert, M. J.; Ross, N.; Schroeder, D. M.

    2014-12-01

    Ice-sheet models show a coincidence between ice flux and basal water-flow maxima, as water at the bed of an ice sheets acts generally to lubricate the basal interface. Hydrological flow paths support this view with ice and basal-water drainage basins being well-aligned. At the scale of an individual ice stream, however, we reveal a significant offset of this alignment. Airborne geophysical data across the trunk of the Institute Ice Stream reveal how subglacial hydrology acts to subdue ice flow in two ways: first, by removing basal sediment, which decreases opportunity for the deformation of basal material and increases basal roughness; and, second, by reducing basal water pressures. The macro flow of basal water beneath the ice stream is known well from high-resolution bed elevation data and satellite imagery, which reveal well-organised water flow along the Robin Subglacial Basin, terminating at the grounding line as a channel carving upwards into the adjacent ice shelf. The highest ice flow is offset from this channelized zone, however. Maximum velocities are located where the bed is very smooth and radio-echo returns are strong; consistent with a dilated weak sedimentary material at the ice stream bed. The geophysical evidence is consistent with the removal of basal sediment from the deepest regions of the Robin Subglacial Basin by the action of water and illustrates how accumulation of sedimentary material from ice streams is not necessary a precise locator for maximum ice-flow velocities at the scale of individual ice streams. The figure shows a radar section across the Institute Ice Stream, West Antarctica, revealing two modes of basal environment. One is flat and smooth, indicative of a soft wet bed. The other is rougher, as a consequence of the removal of basal material and water channelisation. This latter region is located in the deepest regions of the Robin Subglacial Basin. The former region is located beneath the highest ice flow speeds.

  12. Plasticity of basal cells during postnatal development in the rat epididymis

    PubMed Central

    Shum, Winnie W C; Hill, Eric; Brown, Dennis; Breton, Sylvie

    2014-01-01

    Our previous study has shown that basal cells sense luminal factors by forming a narrow body projection that can cross epithelial tight junctions. As a first step toward characterizing the structural plasticity of basal cells, in this study, we followed their appearance and morphology in the rat epididymis and vas deferens (VD) during postnatal development and examined their modulation by androgens in adulthood. Immunofluorescence labeling for cytokeratin 5 showed that basal cells are absent at birth. They progressively appear in a retrograde manner from the VD and cauda epididymis to the initial segments during the postnatal weeks PNW1–3. At the onset of differentiation, basal cells are in contact with the lumen and their nucleus is located at the same level as that of adjacent epithelial cells. Basal cells then position their nucleus to the base of the epithelium, and while some are still in contact with the lumen, others have a ‘dome-shaped’ appearance. At PNW5–6, basal cells form a loose network at the base of the epithelium, and luminal-reaching basal cells are rarely detected. The arrival of spermatozoa during PNW7–8 did not trigger the development of projections in basal cells. However, cells with a narrow luminal-reaching projection began to reappear between PNW8 and PNW12 in the corpus and the cauda. Treatment with flutamide from PNW10 to PNW12 significantly reduced the number of luminal-reaching basal cell projections. In summary, basal cells exhibit significant structural plasticity during differentiation. Fewer apical-reaching projections were detected after flutamide treatment in adulthood, indicating the role of androgens in the luminal-sensing function of basal cells. PMID:23960170

  13. Mitochondrial membrane potential and ATP production in primary disorders of ATP synthase.

    PubMed

    Vojtísková, Alena; Jesina, Pavel; Kalous, Martin; Kaplanová, Vilma; Houstek, Josef; Tesarová, Markéta; Fornůsková, Daniela; Zeman, Jirí; Dubot, Audrey; Godinot, Catherine

    2004-01-01

    Studies of fibroblasts with primary defects in mitochondrial ATP synthase (ATPase) due to heteroplasmic mtDNA mutations in the ATP6 gene, affecting protonophoric function or synthesis of subunit a, show that at high mutation loads, mitochondrial membrane potential DeltaPsi(m) at state 4 is normal, but ADP-induced discharge of DeltaPsi(m) is impaired and ATP synthesis at state 3-ADP is decreased. Increased DeltaPsi(m) and low ATP synthesis is also found when the ATPase content is diminished by altered biogenesis of the enzyme complex. Irrespective of the different pathogenic mechanisms, elevated DeltaPsi(m) in primary ATPase disorders could increase mitochondrial production of reactive oxygen species and decrease energy provision. PMID:20021115

  14. Conversion to Paradox 4.02 ATP`s for MAC and mass balance programs

    SciTech Connect

    Russell, V.K.

    1994-10-17

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system were converted from Paradox 3.5 to Paradox 4.0. The ATP describes how the code was to be tested to verify its corrections.

  15. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants.

    PubMed

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-09-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg(2+) as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  16. Populus euphratica APYRASE2 Enhances Cold Tolerance by Modulating Vesicular Trafficking and Extracellular ATP in Arabidopsis Plants1[OPEN

    PubMed Central

    Deng, Shurong; Sun, Jian; Zhao, Rui; Ding, Mingquan; Zhang, Yinan; Sun, Yuanling; Wang, Wei; Tan, Yeqing; Liu, Dandan; Ma, Xujun; Hou, Peichen; Wang, Meijuan; Lu, Cunfu; Shen, Xin; Chen, Shaoliang

    2015-01-01

    Apyrase and extracellular ATP play crucial roles in mediating plant growth and defense responses. In the cold-tolerant poplar, Populus euphratica, low temperatures up-regulate APYRASE2 (PeAPY2) expression in callus cells. We investigated the biochemical characteristics of PeAPY2 and its role in cold tolerance. We found that PeAPY2 predominantly localized to the plasma membrane, but punctate signals also appeared in the endoplasmic reticulum and Golgi apparatus. PeAPY2 exhibited broad substrate specificity, but it most efficiently hydrolyzed purine nucleotides, particularly ATP. PeAPY2 preferred Mg2+ as a cofactor, and it was insensitive to various, specific ATPase inhibitors. When PeAPY2 was ectopically expressed in Arabidopsis (Arabidopsis thaliana), cold tolerance was enhanced, based on root growth measurements and survival rates. Moreover, under cold stress, PeAPY2-transgenic plants maintained plasma membrane integrity and showed reduced cold-elicited electrolyte leakage compared with wild-type plants. These responses probably resulted from efficient plasma membrane repair via vesicular trafficking. Indeed, transgenic plants showed accelerated endocytosis and exocytosis during cold stress and recovery. We found that low doses of extracellular ATP accelerated vesicular trafficking, but high extracellular ATP inhibited trafficking and reduced cell viability. Cold stress caused significant increases in root medium extracellular ATP. However, under these conditions, PeAPY2-transgenic lines showed greater control of extracellular ATP levels than wild-type plants. We conclude that Arabidopsis plants that overexpressed PeAPY2 could increase membrane repair by accelerating vesicular trafficking and hydrolyzing extracellular ATP to avoid excessive, cold-elicited ATP accumulation in the root medium and, thus, reduced ATP-induced inhibition of vesicular trafficking. PMID:26224801

  17. Molecular Physiological Analysis of the Two Plastidic ATP/ADP Transporters from Arabidopsis12

    PubMed Central

    Reiser, Jens; Linka, Nicole; Lemke, Lilia; Jeblick, Wolfgang; Neuhaus, H. Ekkehard

    2004-01-01

    Arabidopsis (Arabidopsis thaliana) possesses two isoforms of plastidic ATP/ADP transporters (AtNTT1 and AtNTT2) exhibiting similar biochemical properties. To analyze the function of both isoforms on the molecular level, we examined the expression pattern of both genes by northern-blot analysis and promoter-β-glucuronidase fusions. AtNTT1 represents a sugar-induced gene mainly expressed in stem and roots, whereas AtNTT2 is expressed in several Arabidopsis tissues with highest accumulation in developing roots and young cotyledons. Developing lipid-storing seeds hardly contained AtNTT1 or -2 transcripts. The absence of a functional AtNTT1 gene affected plant development only slightly, whereas AtNTT2∷T-DNA, AtNTT1-2∷T-DNA, and RNA interference (RNAi) plants showed retarded plant development, mainly characterized by a reduced ability to generate primary roots and a delayed chlorophyll accumulation in seedlings. Electron microscopic examination of chloroplast substructure also revealed an impaired formation of thylakoids in RNAi seedlings. Moreover, RNAi- and AtNTT1-2∷T-DNA plants showed reduced accumulation of the nuclear-encoded protein CP24 during deetiolation. Under short-day conditions reduced plastidic ATP import capacity correlates with a substantially reduced plant growth rate. This effect is absent under long-day conditions, strikingly indicating that nocturnal ATP import into chloroplasts is important. Plastidic ATP/ADP transport activity exerts significant control on lipid synthesis in developing Arabidopsis seeds. In total we made the surprising observation that plastidic ATP/ADP transport activity is not required to pass through the complete plant life cycle. However, plastidic ATP/ADP-transporter activity is required for both an undisturbed development of young tissues and a controlled cellular metabolism in mature leaves. PMID:15516503

  18. ON POSSIBLE VARIATIONS OF BASAL Ca II K CHROMOSPHERIC LINE PROFILES WITH THE SOLAR CYCLE

    SciTech Connect

    Pevtsov, Alexei A.; Uitenbroek, Han; Bertello, Luca E-mail: huitenbroek@nso.edu

    2013-04-10

    We use daily observations of the Ca II K line profiles of the Sun-as-a-star taken with the Integrated Sunlight Spectrometer from 2006 December through 2011 July to deconvolve the contributions from the quiet (basal) chromosphere and with magnetic network/plage areas. The 0.5 A emission index computed from basal profiles shows a significantly reduced modulation (as compared with one derived from the observed profiles) corresponding to the Sun's rotation. For basal contribution of the Ca II K line, the peak in power spectrum corresponding to solar rotation is broad and not well defined. Power spectra for the plage contribution show two narrow well-defined peaks corresponding to solar rotation at two distinct latitudes, in agreement with the latitudinal distribution of activity on the Sun at the end of Cycle 23 and beginning of Cycle 24. We use the lack of a signature of solar rotation in the basal (quiet Sun) component as an indication of a successful removal of the active Sun (plage) component. Even though the contribution from solar activity is removed from the basal line profiles, we find a weak dependency of intensity in the line core (K3) of basal profiles with the phase of the solar cycle. Such dependency could be the result of changes in thermal properties of basal chromosphere with the solar cycle. As an alternative explanation, we also discuss a possibility that the basal component does not change with the phase of the solar cycle.

  19. Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery.

    PubMed

    Mo, Ran; Jiang, Tianyue; Gu, Zhen

    2014-06-01

    A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo. PMID:24764317

  20. A label-free electrochemiluminescent sensor for ATP detection based on ATP-dependent ligation.

    PubMed

    Zhao, Tingting; Lin, Chunshui; Yao, Qiuhong; Chen, Xi

    2016-07-01

    In this work, we describe a new label-free, sensitive and highly selective strategy for the electrochemiluminescent (ECL) detection of ATP at the picomolar level via ATP-induced ligation. The molecular-beacon like DNA probes (P12 complex) are self-assembled on a gold electrode. The presence of ATP leads to the ligation of P12 complex which blocks the digestion by Exonuclease III (Exo III). The protected P12 complex causes the intercalation of numerous ECL indicators (Ru(phen)3(2+)) into the duplex DNA grooves, resulting in significantly amplified ECL signal output. Since the ligating site of T4 DNA ligase and the nicking site of Exo III are the same, it involves no long time of incubation for conformation change. The proposed strategy combines the amplification power of enzyme and the inherent high sensitivity of the ECL technique and enables picomolar detection of ATP. The developed strategy also shows high selectivity against ATP analogs, which makes our new label-free and highly sensitive ligation-based method a useful addition to the amplified ATP detection arena. PMID:27154705

  1. Altered potassium ATP channel signaling in mesenteric arteries of old high salt-fed rats

    PubMed Central

    Whidden, Melissa A.; Basgut, Bilgen; Kirichenko, Nataliya; Erdos, Benedek; Tümer, Nihal

    2016-01-01

    [Purpose] Both aging and the consumption of a high salt diet are associated with clear changes in the vascular system that can lead to the development of cardiovascular disease; however the mechanisms are not clearly understood. Therefore, we examined whether aging and the consumption of excess salt alters the function of potassium ATP-dependent channel signaling in mesenteric arteries [Methods] Young (7 months) and old (29 months) Fischer 344 x Brown Norway rats were fed a control or a high salt diet (8% NaCl) for 12 days and mesenteric arteries were utilized for vascular reactivity measurements. [Results] Acetylcholine-induced endothelium relaxation was significantly reduced in old arteries (81 ± 4%) when compared with young arteries (92 ± 2%). Pretreatment with the potassium-ATP channel blocker glibenclamide reduced relaxation to acetylcholine in young arteries but did not alter dilation in old arteries. On a high salt diet, endothelium dilation to acetylcholine was significantly reduced in old salt arteries (60 ± 3%) when compared with old control arteries (81 ± 4%). Glibenclamide reduced acetylcholine-induced dilation in young salt arteries but had no effect on old salt arteries. Dilation to cromakalim, a potassium-ATP channel opener, was reduced in old salt arteries when compared with old control arteries. [Conclusion] These findings demonstrate that aging impairs endothelium-dependent relaxation in mesenteric arteries. Furthermore, a high salt diet alters the function of potassium-ATP-dependent channel signaling in old isolated mesenteric arteries and affects the mediation of relaxation stimuli. PMID:27508155

  2. Plant basal resistance to nematodes: an update.

    PubMed

    Holbein, Julia; Grundler, Florian M W; Siddique, Shahid

    2016-03-01

    Most plant-parasitic nematodes are obligate biotrophs feeding on the roots of their hosts. Whereas ectoparasites remain on the root surface and feed on the outer cell layers, endoparasitic nematodes enter the host to parasitize cells around or within the central cylinder. Nematode invasion and feeding causes tissue damage which may, in turn, lead to the activation of host basal defence responses. Hitherto, research interests in plant-nematode interaction have emphasized effector-triggered immunity rather than basal plant defence responses. However, some recent investigations suggest that basal defence pathways are not only activated but also play an important role in determining interaction outcomes. In this review we discuss the major findings and point out future directions to dissect the molecular mechanisms underlying plant basal defence to nematodes further. PMID:26842982

  3. Transcription Start Site Scanning and the Requirement for ATP during Transcription Initiation by RNA Polymerase II.

    PubMed

    Fishburn, James; Galburt, Eric; Hahn, Steven

    2016-06-17

    Saccharomyces cerevisiae RNA polymerase (Pol) II locates transcription start sites (TSS) at TATA-containing promoters by scanning sequences downstream from the site of preinitiation complex formation, a process that involves the translocation of downstream promoter DNA toward Pol II. To investigate a potential role of yeast Pol II transcription in TSS scanning, HIS4 promoter derivatives were generated that limited transcripts in the 30-bp scanned region to two nucleotides in length. Although we found that TSS scanning does not require RNA synthesis, our results revealed that transcription in the purified yeast basal system is largely ATP-independent despite a requirement for the TFIIH DNA translocase subunit Ssl2. This result is rationalized by our finding that, although they are poorer substrates, UTP and GTP can also be utilized by Ssl2. ATPγS is a strong inhibitor of rNTP-fueled translocation, and high concentrations of ATPγS make transcription completely dependent on added dATP. Limiting Pol II function with low ATP concentrations shifted the TSS position downstream. Combined with prior work, our results show that Pol II transcription plays an important role in TSS selection but is not required for the scanning reaction. PMID:27129284

  4. Automatic basal slice detection for cardiac analysis

    NASA Astrophysics Data System (ADS)

    Paknezhad, Mahsa; Marchesseau, Stephanie; Brown, Michael S.

    2016-03-01

    Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction (EF) of the left ventricle (LV). Despite research on cardiac segmentation, basal slice identification is routinely performed manually. Manual identification, however, has been shown to have high inter-observer variability, with a variation of the EF by up to 8%. Therefore, an automatic way of identifying the basal slice is still required. Prior published methods operate by automatically tracking the mitral valve points from the long-axis view of the LV. These approaches assumed that the basal slice is the first short-axis slice below the mitral valve. However, guidelines published in 2013 by the society for cardiovascular magnetic resonance indicate that the basal slice is the uppermost short-axis slice with more than 50% myocardium surrounding the blood cavity. Consequently, these existing methods are at times identifying the incorrect short-axis slice. Correct identification of the basal slice under these guidelines is challenging due to the poor image quality and blood movement during image acquisition. This paper proposes an automatic tool that focuses on the two-chamber slice to find the basal slice. To this end, an active shape model is trained to automatically segment the two-chamber view for 51 samples using the leave-one-out strategy. The basal slice was detected using temporal binary profiles created for each short-axis slice from the segmented two-chamber slice. From the 51 successfully tested samples, 92% and 84% of detection results were accurate at the end-systolic and the end-diastolic phases of the cardiac cycle, respectively.

  5. Growth retardation of Escherichia coli by artificial increase of intracellular ATP.

    PubMed

    Na, Yoon-Ah; Lee, Joo-Young; Bang, Weon-Jeong; Lee, Hyo Jung; Choi, Su-In; Kwon, Soon-Kyeong; Jung, Kwang-Hwan; Kim, Jihyun F; Kim, Pil

    2015-06-01

    Overexpression of phosphoenolpyruvate carboxykinase (PCK) was reported to cause the harboring of higher intracellular ATP concentration in Escherichia coli, accompanied with a slower growth rate. For systematic determination of the relationship between the artificial increase of ATP and growth retardation, PCKWT enzyme was directly evolved in vitro and further overexpressed. The evolved PCK67 showed a 60% greater catalytic efficiency than that of PCKWT. Consequently, the PCK67-overexpressing E. coli showed the highest ATP concentration at the log phase of 1.45 μmol/gcell, with the slowest growth rate of 0.66 h(-1), while the PCKWT-overexpressing cells displayed 1.00 μmol/gcell ATP concentration with the growth rate of 0.84 h(-1) and the control had 0.28 μmol/gcell with 1.03 h(-1). To find a plausible reason, PCK-overexpressing cells in a steady state during chemostat growth were applied to monitor intracellular reactive oxygen species (ROS). Higher amount of intracellular ROS were observed as the ATP levels increased. To confirm the hypothesis of slower growth rate without perturbation of the carbon flux by PCK-overexpression, phototrophic Gloeobacter rhodopsin (GR) was expressed. The GR-expressing strain under illumination harbored 81% more ATP concentration along with 82% higher ROS, with a 54% slower maximum growth rate than the control, while both the GR-expressing strain under dark and dicarboxylate transporter (a control membrane protein)-expressing strain showed a lower ATP and increased ROS, and slower growth rate. Regardless of carbon flux changes, the artificial ATP increase was related to the ROS increase and it was reciprocally correlated to the maximum growth rate. To verify that the accumulated intracellular ROS were responsible for the growth retardation, glutathione was added to the medium to reduce the ROS. As a result, the growth retardation was restored by the addition of 0.1 mM glutathione. Anaerobic culture even enabled the artificial ATP

  6. Extracellular ATP and nitric oxide signaling pathways regulate redox-dependent responses associated to root hair growth in etiolated Arabidopsis seedlings

    PubMed Central

    Terrile, María Cecilia; Tonón, Claudia Virginia; Iglesias, María José; Lamattina, Lorenzo

    2010-01-01

    Extracellular ATP (eATP) and nitric oxide (NO) have emerged as crucial players in plant development, stress responses and cell viability. Glutathione (GSH) is an abundant reducing agent with proposed roles in plant growth, development and stress physiology. In a recent publication, we demonstrated that eATP and NO restore hypocotyl elongation of etiolated Arabidopsis seedlings treated with GSH. Here it is reported that exogenous ATP also restores root hair growth suggesting a role for ATP and NO in the regulation of redox balance associated to specific processes of plant morphogenesis. A tentative model integrating redox-, eATP- and NO-signaling pathways during root hair growth in Arabidopsis seedlings is presented. PMID:20404565

  7. Genomic Analysis of ATP Efflux in Saccharomyces cerevisiae

    PubMed Central

    Peters, Theodore W.; Miller, Aaron W.; Tourette, Cendrine; Agren, Hannah; Hubbard, Alan; Hughes, Robert E.

    2015-01-01

    Adenosine triphosphate (ATP) plays an important role as a primary molecule for the transfer of chemical energy to drive biological processes. ATP also functions as an extracellular signaling molecule in a diverse array of eukaryotic taxa in a conserved process known as purinergic signaling. Given the important roles of extracellular ATP in cell signaling, we sought to comprehensively elucidate the pathways and mechanisms governing ATP efflux from eukaryotic cells. Here, we present results of a genomic analysis of ATP efflux from Saccharomyces cerevisiae by measuring extracellular ATP levels in cultures of 4609 deletion mutants. This screen revealed key cellular processes that regulate extracellular ATP levels, including mitochondrial translation and vesicle sorting in the late endosome, indicating that ATP production and transport through vesicles are required for efflux. We also observed evidence for altered ATP efflux in strains deleted for genes involved in amino acid signaling, and mitochondrial retrograde signaling. Based on these results, we propose a model in which the retrograde signaling pathway potentiates amino acid signaling to promote mitochondrial respiration. This study advances our understanding of the mechanism of ATP secretion in eukaryotes and implicates TOR complex 1 (TORC1) and nutrient signaling pathways in the regulation of ATP efflux. These results will facilitate analysis of ATP efflux mechanisms in higher eukaryotes. PMID:26585826

  8. The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis

    PubMed Central

    Ding, Di; Enriquez-Algeciras, Mabel; Dave, Kunjan R; Perez-Pinzon, Miguel; Bhattacharya, Sanjoy K

    2012-01-01

    Deimination refers to conversion of protein-bound arginine into citrulline. An mRNA carrier, RNA binding export factor (REF), present on mitochondria undergoes loss of deimination with impaired ATP5b mRNA transport in ND4 mice (model of multiple sclerosis) compared with the controls. We present evidence of (1) reduced ATP5b mRNA binding strength of non-deiminated REF compared with deiminated REF, (2) impaired ATP5b mRNA transport in ND4 mice and (3) reduced mitochondrial ATP synthase activity on inhibition of deimination in PC12 cells. Impaired deimination of REF and defect in mitochondrial mRNA transport are critical factors in mitochondrial dysfunction in ND4 mice. PMID:22261716

  9. Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

    PubMed Central

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  10. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    PubMed

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  11. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B.

    PubMed

    Braiterman, Lelita; Nyasae, Lydia; Guo, Yan; Bustos, Rodrigo; Lutsenko, Svetlana; Hubbard, Ann

    2009-02-01

    ATP7B is a copper-transporting P-type ATPase present predominantly in liver. In basal copper, hepatic ATP7B is in a post-trans-Golgi network (TGN) compartment where it loads cytoplasmic Cu(I) onto newly synthesized ceruloplasmin. When copper levels rise, the protein redistributes via unique vesicles to the apical periphery where it exports intracellular Cu(I) into bile. We want to understand the mechanisms regulating the copper-sensitive trafficking of ATP7B. Earlier, our laboratory reported the presence of apical targeting/TGN retention information within residues 1-63 of human ATP7B; deletion of these residues resulted in a mutant protein that was not efficiently retained in the post-TGN in low copper and constitutively trafficked to the basolateral membrane of polarized, hepatic WIF-B cells with and without copper (13). In this study, we used mutagenesis and adenovirus infection of WIF-B cells followed by confocal immunofluorescence microscopy analysis to identify the precise retention/targeting sequences in the context of full-length ATP7B. We also analyzed the expression of selected mutants in livers of copper-deficient and -loaded mice. Our combined results clearly demonstrate that nine amino acids, F(37)AFDNVGYE(45), comprise an essential apical targeting determinant for ATP7B in elevated copper and participate in the TGN retention of the protein under low-copper conditions. The signal is novel, does not require phosphorylation, and is highly conserved in approximately 24 species of ATP7B. Furthermore, N41S, which is part of the signal we identified, is the first and only Wilson disease-causing missense mutation in residues 1-63 of ATP7B. Expression of N41S-ATP7B in WIF-B cells severely disabled the targeting and retention of the protein. We present a working model of how this physiologically relevant signal might work. PMID:19033537

  12. ATP hydrolysis catalyzed by human replication factor C requires participation of multiple subunits.

    PubMed

    Cai, J; Yao, N; Gibbs, E; Finkelstein, J; Phillips, B; O'Donnell, M; Hurwitz, J

    1998-09-29

    Human replication factor C (hRFC) is a five-subunit protein complex (p140, p40, p38, p37, and p36) that acts to catalytically load proliferating cell nuclear antigen onto DNA, where it recruits DNA polymerase delta or epsilon to the primer terminus at the expense of ATP, leading to processive DNA synthesis. We have previously shown that a subcomplex of hRFC consisting of three subunits (p40, p37, and p36) contained DNA-dependent ATPase activity. However, it is not clear which subunit(s) hydrolyzes ATP, as all five subunits include potential ATP binding sites. In this report, we introduced point mutations in the putative ATP-binding sequences of each hRFC subunit and examined the properties of the resulting mutant hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in any one of the ATP binding sites of the p36, p37, p40, or p140 subunits markedly reduced replication activity of the hRFC complex and the ATPase activity of the hRFC or the p40.p37.p36 complex. A mutation in the ATP binding site of the p38 subunit did not alter the replication activity of hRFC. These findings indicate that the replication activity of hRFC is dependent on efficient ATP hydrolysis contributed to by the action of four hRFC subunits. PMID:9751713

  13. Phosphate metabolite concentrations and ATP hydrolysis potential in normal and ischaemic hearts

    PubMed Central

    Wu, Fan; Zhang, Eric Y; Zhang, Jianyi; Bache, Robert J; Beard, Daniel A

    2008-01-01

    To understand how cardiac ATP and CrP remain stable with changes in work rate – a phenomenon that has eluded mechanistic explanation for decades – data from 31phosphate-magnetic resonance spectroscopy (31P-MRS) are analysed to estimate cytoplasmic and mitochondrial phosphate metabolite concentrations in the normal state, during high cardiac workstates, during acute ischaemia and reactive hyperaemic recovery. Analysis is based on simulating distributed heterogeneous oxygen transport in the myocardium integrated with a detailed model of cardiac energy metabolism. The model predicts that baseline myocardial free inorganic phosphate (Pi) concentration in the canine myocyte cytoplasm – a variable not accessible to direct non-invasive measurement – is approximately 0.29 mm and increases to 2.3 mm near maximal cardiac oxygen consumption. During acute ischaemia (from ligation of the left anterior descending artery) Pi increases to approximately 3.1 mm and ATP consumption in the ischaemic tissue is reduced quickly to less than half its baseline value before the creatine phosphate (CrP) pool is 18% depleted. It is determined from these experiments that the maximal rate of oxygen consumption of the heart is an emergent property and is limited not simply by the maximal rate of ATP synthesis, but by the maximal rate at which ATP can be synthesized at a potential at which it can be utilized. The critical free energy of ATP hydrolysis for cardiac contraction that is consistent with these findings is approximately −63.5 kJ mol−1. Based on theoretical findings, we hypothesize that inorganic phosphate is both the primary feedback signal for stimulating oxidative phosphorylation in vivo and also the most significant product of ATP hydrolysis in limiting the capacity of the heart to hydrolyse ATP in vivo. Due to the lack of precise quantification of Piin vivo, these hypotheses and associated model predictions remain to be carefully tested experimentally. PMID:18617566

  14. CrATP interferes in the promastigote-macrophage interaction in Leishmania amazonensis infection.

    PubMed

    Ennes-Vidal, V; Castro, R O S; Britto, C; Barrabin, H; D'Avila-Levy, C M; Moreira, O C

    2011-07-01

    Recent have shown the relationship between Ecto-Nucleoside-Triphosphate-Diphosphohydrolases (Ecto-NTPDases or ecto-nucleotidases) and virulence and infectivity in trypanosomatids. In this work, the inhibition of the ecto-ATPase activities and promastigote growth of Leishmania amazonensis by CrATP was characterized. Furthermore, this compound was used to investigate the role of ecto-nucleotidase in the interaction of L. amazonensis with resident peritoneal macrophages obtained from BALB/c mice. CrATP partially inhibits the ecto-ATPase activity, presenting Ki values of 575·7±199·1 and 383·5±79·0 μm, in the presence or absence of 5 mm MgCl2, respectively. The apparent Kms for ATP (2·9±0·5 mm to Mg2+-dependent ecto-ATPase and 0·4±0·2 mm to Mg2+-independent ecto-ATPase activities) are not significantly altered by CrATP, suggesting a reversible non-competitive inhibition of both enzymes. When CrATP was added to the cultivation medium at 500 μm, it drastically inhibited the cellular growth. The interaction of promastigote forms of L. amazonensis with BALB/c peritoneal macrophages is strongly affected by CrATP. When the parasites were treated with 500 μm CrATP before interacting with macrophages, the adhesion and endocytic indices were strongly reduced to 53·0±14·8% and 39·8±1·1%, respectively. These results indicate that ecto-nucleotidase plays an important role in the infection process caused by Leishmania amazonensis. PMID:21679488

  15. AMP kinase regulates ligand-gated K-ATP channels in substantia nigra dopamine neurons.

    PubMed

    Shen, Ke-Zhong; Wu, Yan-Na; Munhall, Adam C; Johnson, Steven W

    2016-08-25

    AMP-activated protein kinase (AMPK) is a master enzyme that regulates ATP-sensitive K(+) (K-ATP) channels in pancreatic beta-cells and cardiac myocytes. We used patch pipettes to record currents and potentials to investigate effects of AMPK on K-ATP currents in substantia nigra compacta (SNC) dopamine neurons in slices of rat midbrain. When slices were superfused repeatedly with the K-ATP channel opener diazoxide, we were surprised to find that diazoxide currents gradually increased in magnitude, reaching 300% of the control value 60min after starting whole-cell recording. However, diazoxide current increased significantly more, to 472% of control, when recorded in the presence of the AMPK activator A769662. Moreover, superfusing the slice with the AMPK blocking agent dorsomorphin significantly reduced diazoxide current to 38% of control. Control experiments showed that outward currents evoked by the K-ATP channel opener NN-414 also increased over time, but not currents evoked by the GABAB agonist baclofen. Delaying the application of diazoxide after starting whole-cell recording correlated with augmentation of current. Loose-patch recording showed that diazoxide produced a 34% slowing of spontaneous firing rate that did not intensify with repeated applications of diazoxide. However, superfusion with A769662 significantly augmented the inhibitory effect of diazoxide on firing rate. We conclude that K-ATP channel function is augmented by AMPK, which is activated during the process of making whole-cell recordings. Our results suggest that AMPK and K-ATP interactions may play an important role in regulating dopamine neuronal excitability. PMID:27267246

  16. Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

    PubMed

    Milne, N; Luttik, M A H; Cueto Rojas, H F; Wahl, A; van Maris, A J A; Pronk, J T; Daran, J M

    2015-07-01

    In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requires 1 ATP per incorporated NH3. Urea assimilation by this yeast is more energy efficient but still requires 0.5 ATP per NH3 produced. To decrease ATP costs for nitrogen assimilation, the S. cerevisiae gene encoding ATP-dependent urease (DUR1,2) was replaced by a Schizosaccharomyces pombe gene encoding ATP-independent urease (ure2), along with its accessory genes ureD, ureF and ureG. Since S. pombe ure2 is a Ni(2+)-dependent enzyme and Saccharomyces cerevisiae does not express native Ni(2+)-dependent enzymes, the S. pombe high-affinity nickel-transporter gene (nic1) was also expressed. Expression of the S. pombe genes into dur1,2Δ S. cerevisiae yielded an in vitro ATP-independent urease activity of 0.44±0.01 µmol min(-1) mg protein(-1) and restored growth on urea as sole nitrogen source. Functional expression of the Nic1 transporter was essential for growth on urea at low Ni(2+) concentrations. The maximum specific growth rates of the engineered strain on urea and ammonium were lower than those of a DUR1,2 reference strain. In glucose-limited chemostat cultures with urea as nitrogen source, the engineered strain exhibited an increased release of ammonia and reduced nitrogen content of the biomass. Our results indicate a new strategy for improving yeast-based production of nitrogen-containing chemicals and demonstrate that Ni(2+)-dependent enzymes can be functionally expressed in S. cerevisiae. PMID:26037463

  17. Space shuttle (ATP configuration) abort staging investigation

    NASA Technical Reports Server (NTRS)

    Rampy, J. M.; Blackwell, K. L.; Allen, E. C., Jr.; Fossler, I.

    1973-01-01

    A wind tunnel test conducted in a 14-inch trisonic wind tunnel to determine the force and moment characteristics of the ATP Orbiter and modified ATP External Tank/SRB combination during abort staging conditions is discussed. Six component aerodynamic force and moment data were recorded for the orbiter and ET/SRB combination. Pitch polars were obtained for an angle of attack range from minus 10 to plus 10 degrees and orbiter incidence angles (orbiter relative to the ET/SRB combination) of 0 and 2 degrees. A limited amount of yaw data were obtained at 0 degree angle of attack and beta range from minus 10 to plus 10 degrees. In addition, orbiter pitch control effectiveness was determined at several grid points. These force and moment data were obtained for Mach numbers of 0.9, 1.2 and 2.0.

  18. Regulation of mitochondrial translation of the ATP8/ATP6 mRNA by Smt1p

    PubMed Central

    Rak, Malgorzata; Su, Chen Hsien; Xu, Jonathan Tong; Azpiroz, Ricardo; Singh, Angela Mohan; Tzagoloff, Alexander

    2016-01-01

    Expression of the mitochondrially encoded ATP6 and ATP8 genes is translationally regulated by F1 ATPase. We report a translational repressor (Smt1p) of the ATP6/8 mRNA that, when mutated, restores translation of the encoded Atp6p and Atp8p subunits of the ATP synthase. Heterozygous smt1 mutants fail to rescue the translation defect, indicating that the mutations are recessive. Smt1p is an intrinsic inner membrane protein, which, based on its sedimentation, has a native size twice that of the monomer. Affinity purification of tagged Smt1p followed by reverse transcription of the associated RNA and PCR amplification of the resultant cDNA with gene-specific primers demonstrated the presence in mitochondria of Smt1p-ATP8/ATP6 and Smt1p-COB mRNA complexes. These results indicate that Smt1p is likely to be involved in translational regulation of both mRNAs. Applying Occam’s principle, we favor a mechanistic model in which translation of the ATP8/ATP6 bicistronic mRNA is coupled to the availability of F1 for subsequent assembly of the Atp6p and Atp8p products into the ATP synthase. The mechanism of this regulatory pathway is proposed to entail a displacement of the repressor from the translationally mute Smt1-ATP8/ATP6 complex by F1, thereby permitting the Atp22p activator to interact with and promote translation of the mRNA. PMID:26823015

  19. H+/ATP ratio during ATP hydrolysis by mitochondria: modification of the chemiosmotic theory.

    PubMed

    Brand, M D; Lehninger, A L

    1977-05-01

    The stoichiometry of H+ ejection by mitochondria during hydrolysis of a small pulse of ATP (the H+/ATP ratio) has been reexamined in the light of our recent observation that the stoichiometry of H+ ejection during mitochondrial electron transport (the H+/site ratio) was previously underestimated. We show that earlier estimates of the H+/ATP ratio in intact mitochondria were based upon an invalid correction for scaler H+ production and describe a modified method for determination of this ratio which utilizes mersalyl or N-ethylmaleimide to prevent complicating transmembrane movements of phosphate and H+. This method gives a value for the H+/ATP ratio of 2.0 without the need for questionable corrections, compared with a value of 3.0 for the H+/site ratio also obtained by pulse methods. A modified version of the chemiosmotic theory is presented, in which 3 H+ are ejected per pair of electrons traversing each energy-conserving site of the respiratory chain. Of these, 2 H+ return to the matrix through the ATPase to form ATP from ADP and phosphate, and 1 H+ returns through the combined action of the phosphate and adenine nucleotide exchange carriers of the inner membrane to allow the energy-requiring influx of Pi and ADP3- and efflux of ATP4-. Thus, up to one-third of the energy input into synthesis of extramitochondrial ATP may be required for transport work. Since other methods suggest that the H+/site significantly exceeds 3.0, an alternative possibility is that 4 h+ are ejected per site, followed by return of 3 H+ through the ATPase and 1 H+ through the operation of the proton-coupled membrane transport systems. PMID:17116

  20. Nordihydroguaiaretic acid depletes ATP and inhibits a swelling-activated, ATP-sensitive taurine channel.

    PubMed

    Ballatori, N; Wang, W

    1997-05-01

    The mechanism by which nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, prevents swelling-activated organic osmolyte efflux was examined in the human hepatoma cell line Hep G2. When swollen in hypotonic medium, Hep G2 cell exhibited a regulatory volume decrease that was associated with the release of intracellular taurine, an amino acid found at a concentrations of 22.0 +/- 2.5 nmol/mg protein (approximately 5 mM) in these cells. Rate coefficients for swelling-activated [3H]taurine uptake and efflux were unaffected when extracellular taurine was increased from 0.1 to 25 mM, indicating that taurine is released via a channel. Taurine efflux was rapidly activated after cell swelling and immediately inactivated when cells were returned to normal size by restoration of isotonicity. Swelling-activated taurine efflux was not altered by replacement of extracellular Na+ with choline+ or K+ but was inhibited when cellular ATP levels were decreased with a variety of chemical agents, consistent with an ATP-regulated channel previously described in other cell types. NDGA inhibited swelling-activated [3H]taurine efflux in Hep G2 cells at concentrations of 50-150 microM; however, these same concentrations of NDGA also lowered cell ATP levels. Likewise, ketoconazole, an inhibitor of cytochrome P-450 monoxygenases, inhibited [3H]taurine efflux only at concentrations at which cell ATP levels were also lowered. In contrast, other inhibitors of cyclooxygenase (indomethacin, 100 microM) or of lipoxygenases (caffeic acid, 100 microM), as well as arachidonic acid itself (100 microM), had no effect on either taurine efflux or cell ATP. The present findings characterize a swelling-activated, ATP-sensitive osmolyte channel in Hep G2 cells and demonstrate that inactivation of the channel by NDGA is related to the ability of this drug to deplete cellular ATP. PMID:9176131

  1. Continuous measurements of ATP secretion in vivo.

    PubMed

    Smith, J B; Burke, S E; Lefer, A M; Freilich, A

    1984-01-01

    Blood was withdrawn continuously from femoral veins of anesthetized rabbits at a rate of 0.07 ml/min. Sodium citrate was pumped into the blood to prevent coagulation, and luciferin-luciferase reagent was added to permit the continuous detection of extracellular ATP. Subsequently, the red blood cells were lysed and the platelet count was recorded continuously. Injection of platelet activating factor or collagen into rabbit ear veins caused an almost immediate but short-lived increase in extracellular ATP with a simultaneous but more prolonged decrease in the platelet count. Although both the endoperoxide analog 9,11-azo-PGH2 and ADP also decreased the platelet count, little extracellular ATP was detected after the azo-PGH2 and none after ADP. These studies demonstrate that those agents that cause platelet secretion from rabbit platelets in vitro also cause secretion in vivo. The method described should be useful in evaluating the capacity of antithrombotic drugs to modify platelet secretion in vivo. PMID:24277184

  2. ATP synthase: a tentative structural model.

    PubMed

    Engelbrecht, S; Junge, W

    1997-09-15

    Adenosine triphosphate (ATP) synthase produces ATP from ADP and inorganic phosphate at the expense of proton- or sodium-motive force across the respective coupling membrane in Archaea, Bacteria and Eucarya. Cation flow through the intrinsic membrane portion of this enzyme (Fo, subunits ab2c9-12) and substrate turnover in the headpiece (F1, subunits alpha3beta3 gammadeltaepsilon) are mechanically coupled by the rotation of subunit gamma in the center of the catalytic hexagon of subunits (alphabeta)3 in F1. ATP synthase is the smallest rotatory engine in nature. With respect to the headpiece alone, it probably operates with three steps. Partial structures of six out of its at least eight different subunits have been published and a 3-dimensional structure is available for the assembly (alphabeta)3gamma. In this article, we review the available structural data and build a tentative topological model of the holoenzyme. The rotor portion is proposed to consist of a wheel of at least nine copies of subunits c, epsilon and a portion of gamma as a spoke, and another portion of gamma as a crankshaft. The stator is made up from a, the transmembrane portion of b2, delta and the catalytic hexagon of (alphabeta)3. As an educated guess, the model may be of heuristic value for ongoing studies on this fascinating electrochemical-to-mechanical-to-chemical transducer. PMID:9323021

  3. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  4. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  5. Adenosine triphosphate (ATP) as a possible indicator of extraterrestrial biology

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.

    1974-01-01

    The ubiquity of adenosine triphosphate (ATP) in terrestrial organisms provides the basis for proposing the assay of this vital metabolic intermediate for detecting extraterrestrial biological activity. If an organic carbon chemistry is present on the planets, the occurrence of ATP is possible either from biosynthetic or purely chemical reactions. However, ATP's relative complexity minimizes the probability of abiogenic synthesis. A sensitive technique for the quantitative detection of ATP was developed using the firefly bioluminescent reaction. The procedure was used successfully for the determination of the ATP content of soil and bacteria. This technique is also being investigated from the standpoint of its application in clinical medicine.

  6. Intracellular disassembly and activity of pertussis toxin require interaction with ATP.

    PubMed

    Plaut, Roger D; Scanlon, Karen M; Taylor, Michael; Teter, Ken; Carbonetti, Nicholas H

    2016-08-01

    The active subunit (S1) of pertussis toxin (PT), a major virulence factor of Bordetella pertussis, ADP-ribosylates Gi proteins in the mammalian cell cytosol to inhibit GPCR signaling. The intracellular pathway of PT includes endocytosis and retrograde transport to the trans-Golgi network (TGN) and endoplasmic reticulum (ER). Subsequent translocation of S1 to the cytosol is presumably preceded by dissociation from the holotoxin. In vitro, such dissociation is stimulated by interaction of PT with ATP. To investigate the role of this interaction in cellular events, we engineered a form of PT (PTDM) with changes to two amino acids involved in the interaction with ATP. PTDM was reduced in (1) binding to ATP, (2) dissociability by interaction with ATP, (3) in vitro enzymatic activity and (4) cellular ADP-ribosylation activity. In cells treated with PTDM carrying target sequences for organelle-specific modifications, normal transport to the TGN and ER occurred, but N-glycosylation patterns of the S1 and S4 subunits were consistent with an inability of PTDM to dissociate in the ER. These results indicate a requirement for interaction with ATP for PT dissociation in the ER and cellular activity. They also indicate that the retrograde transport route is the cellular intoxication pathway for PT. PMID:27369899

  7. Overexpression of ATP Sulfurylase in Indian Mustard Leads to Increased Selenate Uptake, Reduction, and Tolerance1

    PubMed Central

    Pilon-Smits, Elizabeth A.H.; Hwang, Seongbin; Mel Lytle, C.; Zhu, Yongliang; Tai, Jenny C.; Bravo, Rogelio C.; Chen, Yichang; Leustek, Tom; Terry, Norman

    1999-01-01

    In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher in shoots and roots of transgenic seedlings, and 1.5- to 2-fold higher in shoots but not roots of selenate-supplied mature ATP-sulfurylase-overexpressing (APS) plants. The APS plants showed increased selenate reduction: x-ray absorption spectroscopy showed that root and shoot tissues of mature APS plants contained mostly organic Se (possibly selenomethionine), whereas wild-type plants accumulated selenate. The APS plants were not able to reduce selenate when shoots were removed immediately before selenate was supplied. In addition, Se accumulation in APS plants was 2- to 3-fold higher in shoots and 1.5-fold higher in roots compared with wild-type plants, and Se tolerance was higher in both seedlings and mature APS plants. These studies show that ATP sulfurylase not only mediates selenate reduction in plants, but is also rate limiting for selenate uptake and assimilation. PMID:9880353

  8. Urothelial ATP exocytosis: regulation of bladder compliance in the urine storage phase.

    PubMed

    Nakagomi, Hiroshi; Yoshiyama, Mitsuharu; Mochizuki, Tsutomu; Miyamoto, Tatsuya; Komatsu, Ryohei; Imura, Yoshio; Morizawa, Yosuke; Hiasa, Miki; Miyaji, Takaaki; Kira, Satoru; Araki, Isao; Fujishita, Kayoko; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Youichi; Ichikawa, Reiko; Uneyama, Hisayuki; Iwatsuki, Ken; Nomura, Masatoshi; de Groat, William C; Moriyama, Yoshinori; Takeda, Masayuki; Koizumi, Schuichi

    2016-01-01

    The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wild-type male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling. PMID:27412485

  9. Urothelial ATP exocytosis: regulation of bladder compliance in the urine storage phase

    PubMed Central

    Nakagomi, Hiroshi; Yoshiyama, Mitsuharu; Mochizuki, Tsutomu; Miyamoto, Tatsuya; Komatsu, Ryohei; Imura, Yoshio; Morizawa, Yosuke; Hiasa, Miki; Miyaji, Takaaki; Kira, Satoru; Araki, Isao; Fujishita, Kayoko; Shibata, Keisuke; Shigetomi, Eiji; Shinozaki, Youichi; Ichikawa, Reiko; Uneyama, Hisayuki; Iwatsuki, Ken; Nomura, Masatoshi; de Groat, William C.; Moriyama, Yoshinori; Takeda, Masayuki; Koizumi, Schuichi

    2016-01-01

    The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wild-type male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling. PMID:27412485

  10. The ectoenzyme E-NPP3 negatively regulates ATP-dependent chronic allergic responses by basophils and mast cells.

    PubMed

    Tsai, Shih Han; Kinoshita, Makoto; Kusu, Takashi; Kayama, Hisako; Okumura, Ryu; Ikeda, Kayo; Shimada, Yosuke; Takeda, Akira; Yoshikawa, Soichiro; Obata-Ninomiya, Kazushige; Kurashima, Yosuke; Sato, Shintaro; Umemoto, Eiji; Kiyono, Hiroshi; Karasuyama, Hajime; Takeda, Kiyoshi

    2015-02-17

    Crosslinking of the immunoglobulin receptor FcεRI activates basophils and mast cells to induce immediate and chronic allergic inflammation. However, it remains unclear how the chronic allergic inflammation is regulated. Here, we showed that ecto-nucleotide pyrophosphatase-phosphodiesterase 3 (E-NPP3), also known as CD203c, rapidly induced by FcεRI crosslinking, negatively regulated chronic allergic inflammation. Basophil and mast cell numbers increased in Enpp3(-/-) mice with augmented serum ATP concentrations. Enpp3(-/-) mice were highly sensitive to chronic allergic pathologies, which was reduced by ATP blockade. FcεRI crosslinking induced ATP secretion from basophils and mast cells, and ATP activated both cells. ATP clearance was impaired in Enpp3(-/-) cells. Enpp3(-/-)P2rx7(-/-) mice showed decreased responses to FcεRI crosslinking. Thus, ATP released by FcεRI crosslinking stimulates basophils and mast cells for further activation causing allergic inflammation. E-NPP3 decreases ATP concentration and suppresses basophil and mast cell activity. PMID:25692702

  11. Disruption of copper homeostasis due to a mutation of Atp7a delays the onset of prion disease

    PubMed Central

    Siggs, Owen M.; Cruite, Justin T.; Du, Xin; Rutschmann, Sophie; Masliah, Eliezer; Beutler, Bruce; Oldstone, Michael B. A.

    2012-01-01

    Copper influences the pathogenesis of prion disease, but whether it is beneficial or detrimental remains controversial. Copper homeostasis is also essential for normal physiology, as highlighted by the spectrum of diseases caused by disruption of the copper transporting enzymes ATP7A and ATP7B. Here, by using a forward genetics approach in mice, we describe the isolation of three alleles of Atp7a, each with different phenotypic consequences. The mildest of the three, Atp7abrown, was insufficient to cause lethality in hemizygotes or mottling of the coat in heterozygotes, but did lead to coat hypopigmentation and reduced copper content in the brains of hemizygous males. When challenged with Rocky Mountain Laboratory scrapie, the onset of prion disease was delayed in Atp7abrown mice, and significantly less proteinase-resistant prion protein was found in the brains of moribund Atp7abrown mice compared with WT littermates. Our results establish that ATP7A-mediated copper homeostasis is important for the formation of pathogenic proteinase-resistant prion protein. PMID:22869751

  12. Effect of vanadate on ATP-induced increase in intracellular calcium ion levels in human umbilical vein endothelial cells.

    PubMed

    Nejime, Namie; Tada, Yukari; Kagota, Satomi; Kubota, Yoko; Shibuichi, Ikuo; Shinoda, Yuki; Yamamoto, Tomohiro; Watanabe, Yasuo; Shinozuka, Kazumasa

    2010-01-01

    We investigated the effect of ammonium vanadate (vanadate) on ATP-induced increases in intracellular calcium ion level ([Ca(2+)](i)) of human umbilical vein endothelial cells (HUVEC) by fluorescence confocal microscopic imaging using the Ca(2+)-sensitive probe Calcium Green 1/AM. The ATP analogue 2-methylthio-ATP (2meS-ATP), at 10 microM, significantly increased the [Ca(2+)](i) of HUVEC, and this was abolished by 1 microM thapsigargin (a calcium pump inhibitor), whereas extracellular free calcium had no effect. Vanadate at 10 microM also significantly increased the [Ca(2+)](i) of HUVEC, which was abolished by 1 microM thapsigargin. However, vanadate at 1 microM did not exert such a significant effect. We thus examined the influence of < or =1 microM vanadate for 24 h on 2meS-ATP-induced increase in [Ca(2+)](i). Vanadate significantly reduced the action of 2meS-ATP at 1 microM but not at 0.1 microM. Endogenously released ATP is known to induce various actions on endothelial cells. The present results suggest that vanadate exerts a regulatory influence on the function of vascular endothelial cells. PMID:20522978

  13. Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser

    SciTech Connect

    Passarella, S.; Ostuni, A.; Atlante, A.; Quagliariello, E.

    1988-10-31

    To gain some insight into the mechanism of cell photostimulation by laser light, measurements were made of the rate of ADP/ATP exchange in mitochondria irradiated with the low power continuous wave Helium Neon laser (energy dose 5 Joules/cm2). To do this a method has been developed to continuously monitor ATP efflux from phosphorylating mitochondria caused by externally added ADP, by photometrically following the NADP+ reduction which occurs in the presence of glucose, hexokinase, glucose-6-phosphate dehydrogenase and effluxed ATP. The NADP+ reduction rate shows hyperbolic dependence on ADP concentration (Km and Vmax values 8.5 +/- 0.87 microM and 20.7 +/- 0.49 nmoles NADP+ reduced/min x mg mitochondrial protein, respectively), and proves to measure the activity of the ADP/ATP translocator as shown by inhibition experiments using atracyloside, powerful inhibitor of this carrier. Irradiation was found to enhance the rate of ADP/ATP antiport, with externally added ADP ranging between 5 and 100 microM. As a result of experiments carried out with mitochondria loaded with either ATP or ADP, the increase in the activity of the ADP/ATP translocator is here proposed to depend on the increase in the electrochemical proton gradient which occurs owing to irradiation of mitochondria.

  14. Extracellular ATP stimulates exocytosis via localized Ca(2+) release from acidic stores in rat pancreatic beta cells.

    PubMed

    Xie, Li; Zhang, Ming; Zhou, Wei; Wu, Zhengxing; Ding, Jiuping; Chen, Liangyi; Xu, Tao

    2006-04-01

    Three different methods, membrane capacitance (C(m)) measurement, amperometry and FM dye labeling were used to investigate the role of extracellular ATP in insulin secretion from rat pancreatic beta cells. We found that extracellular application of ATP mobilized intracellular Ca(2+) stores and synchronously triggered vigorous exocytosis. No influence of ATP on the readily releasable pool of vesicles was observed, which argues against a direct modulation of the secretory machinery at a level downstream of Ca(2+) elevation. The stimulatory effects of ATP were greatly reduced by intracellular perfusion of BAPTA but not EGTA, suggesting a close spatial association of fusion sites with intracellular Ca(2+) releasing sites. ATP-induced Ca(2+) transients and exocytosis were not blocked by thapsigargin (TG), by a ryanodine receptor antagonist or by dissipation of pH in acidic stores by monensin alone, but they were greatly attenuated by IP(3) receptor inhibition as well as ionomycin plus monensin, suggesting involvement of IP(3)-sensitive acidic Ca(2+) stores. Taken together, our data suggest that extracellular ATP triggers exocytosis by mobilizing spatially limited acidic Ca(2+) stores through IP(3) receptors. This mechanism may explain how insulin secretion from the pancreas is coordinated through diffusible ATP that is co-released with insulin. PMID:16536741

  15. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle

    PubMed Central

    Tu, Jie; Le, Gengyun; Ballard, Heather J

    2010-01-01

    The present study was performed to investigate the effect of acidosis on the efflux of ATP from skeletal muscle. Infusion of lactic acid to the perfused hindlimb muscles of anaesthetised rats produced dose-dependent decreases in pH and increases in the interstitial ATP of extensor digitorum longus (EDL) muscle: 10 mm lactic acid reduced the venous pH from 7.22 ± 0.04 to 6.97 ± 0.02 and increased interstitial ATP from 38 ± 8 to 67 ± 11 nm. The increase in interstitial ATP was well-correlated with the decrease in pH (r2 = 0.93; P < 0.05). Blockade of cellular uptake of lactic acid using α-cyano-hydroxycinnamic acid abolished the lactic acid-induced ATP release, whilst infusion of sodium lactate failed to depress pH or increase interstitial ATP, suggesting that intracellular pH depression, rather than lactate, stimulated the ATP efflux. Incubation of cultured skeletal myoblasts with 10 mm lactic acid significantly increased the accumulation of ATP in the bathing medium from 0.46 ± 0.06 to 0.76 ± 0.08 μm, confirming the skeletal muscle cells as the source of the released ATP. Acidosis-induced ATP efflux from the perfused muscle was abolished by CFTRinh-172, a specific inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), or glibenclamide, an inhibitor of both KATP channels and CFTR, but it was not affected by atractyloside, an inhibitor of the mitochondrial ATP transporter. Silencing of the CFTR gene using an siRNA abolished the acidosis-induced increase in ATP release from cultured myoblasts. CFTR expression on skeletal muscle cells was confirmed using immunostaining in the intact muscle and Western blotting in the cultured cells. These data suggest that depression of the intracellular pH of skeletal muscle cells stimulates ATP efflux, and that CFTR plays an important role in the release mechanism. PMID:20819945

  16. Schwann cell basal lamina and nerve regeneration.

    PubMed

    Ide, C; Tohyama, K; Yokota, R; Nitatori, T; Onodera, S

    1983-12-12

    Nerve segments approximately 7 mm long were excised from the predegenerated sciatic nerves of mice, and treated 5 times by repetitive freezing and thawing to kill the Schwann cells. Such treated nerve segments were grafted into the original places so as to be in contact with the proximal stumps. The animals were sacrificed 1, 2, 3, 5, 7 and 10 days after the grafting. The grafts were examined by electron microscopy in the middle part of the graft, i.e. 3-4 mm distal to the proximal end and/or near the proximal and distal ends of the graft. In other instances, the predegenerated nerve segments were minced with a razor blade after repetitive freezing and thawing. Such minced nerves were placed in contact with the proximal stumps of the same nerves. The animals were sacrificed 10 days after the grafting. Within 1-2 days after grafting, the dead Schwann cells had disintegrated into fragments. They were then gradually phagocytosed by macrophages. The basal laminae of Schwann cells, which were not attacked by macrophages, remained as empty tubes (basal lamina scaffolds). In the grafts we examined, no Schwann cells survived the freezing and thawing process. The regenerating axons always grew out through such basal lamina scaffolds, being in contact with the inner surface of the basal lamina (i.e. the side originally facing the Schwann cell plasma membrane). No axons were found outside of the scaffolds. One to two days after grafting, the regenerating axons were not associated with Schwann cells, but after 5-7 days they were accompanied by Schwann cells which were presumed to be migrating along axons from the proximal stumps. Ten days after grafting, proliferating Schwann cells observed in the middle part of the grafts had begun to sort out axons. In the grafts of minced nerves, the fragmented basal laminae of the Schwann cells re-arranged themselves into thicker strands or small aggregations of basal laminae. The regenerating axons, without exception, attached to one side

  17. Extrastriatal Dopaminergic Circuits of the Basal Ganglia

    PubMed Central

    Rommelfanger, Karen S.; Wichmann, Thomas

    2010-01-01

    The basal ganglia are comprised of the striatum, the external and internal segment of the globus pallidus (GPe and GPi, respectively), the subthalamic nucleus (STN), and the substantia nigra pars compacta and reticulata (SNc and SNr, respectively). Dopamine has long been identified as an important modulator of basal ganglia function in the striatum, and disturbances of striatal dopaminergic transmission have been implicated in diseases such as Parkinson's disease (PD), addiction and attention deficit hyperactivity disorder. However, recent evidence suggests that dopamine may also modulate basal ganglia function at sites outside of the striatum, and that changes in dopaminergic transmission at these sites may contribute to the symptoms of PD and other neuropsychiatric disorders. This review summarizes the current knowledge of the anatomy, functional effects and behavioral consequences of the dopaminergic innervation to the GPe, GPi, STN, and SNr. Further insights into the dopaminergic modulation of basal ganglia function at extrastriatal sites may provide us with opportunities to develop new and more specific strategies for treating disorders of basal ganglia dysfunction. PMID:21103009

  18. Mitochondrial Hyperpolarization and ATP Depletion in Patients With Systemic Lupus Erythematosus

    PubMed Central

    Gergely, Peter; Grossman, Craig; Niland, Brian; Puskas, Ferenc; Neupane, Hom; Allam, Fatme; Banki, Katalin; Phillips, Paul E.; Perl, Andras

    2014-01-01

    Objective Peripheral blood lymphocytes (PBLs) from systemic lupus erythematosus (SLE) patients exhibit increased spontaneous and diminished activation-induced apoptosis. We tested the hypothesis that key biochemical checkpoints, the mitochondrial transmembrane potential (ΔΨm) and production of reactive oxygen intermediates (ROIs), mediate the imbalance of apoptosis in SLE. Methods We assessed the ΔΨm with potentiometric dyes, measured ROI production with oxidation-sensitive fluorochromes, and monitored cell death by annexin V and propidium iodide staining of lymphocytes, using flow cytometry. Intracellular glutathione levels were measured by high-performance liquid chromatography, while ATP and ADP levels were assessed by the luciferin–luciferase assay. Results Both ΔΨm and ROI production were elevated in the 25 SLE patients compared with the 25 healthy subjects and the 10 rheumatoid arthritis patients. Intracellular glutathione contents were diminished, suggesting increased utilization of reducing equivalents in SLE. H2O2, a precursor of ROIs, increased ΔΨm and caused apoptosis in normal PBLs. In contrast, H2O2-induced apoptosis and ΔΨm elevation were diminished, particularly in T cells, and the rate of necrotic cell death was increased in patients with SLE. The intracellular ATP content and the ATP:ADP ratio were reduced and correlated with the ΔΨm elevation in lupus. CD3:CD28 costimulation led to transient elevation of the ΔΨm, followed by ATP depletion, and sensitization of normal PBLs to H2O2-induced necrosis. Depletion of ATP by oligomycin, an inhibitor of F0F1–ATPase, had similar effects. Conclusion T cell activation and apoptosis are mediated by ΔΨm elevation and increased ROI production. Mitochondrial hyperpolarization and the resultant ATP depletion sensitize T cells for necrosis, which may significantly contribute to inflammation in patients with SLE. PMID:11817589

  19. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism

    PubMed Central

    2012-01-01

    Background B cell lymphoma 2 (Bcl-2) proteins are the central regulators of apoptosis. The two bcl-2 genes in Drosophila modulate the response to stress-induced cell death, but not developmental cell death. Because null mutants are viable, Drosophila provides an optimum model system to investigate alternate functions of Bcl-2 proteins. In this report, we explore the role of one bcl-2 gene in nutrient stress responses. Results We report that starvation of Drosophila larvae lacking the bcl-2 gene, buffy, decreases survival rate by more than twofold relative to wild-type larvae. The buffy null mutant reacted to starvation with the expected responses such as inhibition of target of rapamycin (Tor) signaling, autophagy initiation and mobilization of stored lipids. However, the autophagic response to starvation initiated faster in larvae lacking buffy and was inhibited by ectopic buffy. We demonstrate that unusually high basal Tor signaling, indicated by more phosphorylated S6K, was detected in the buffy mutant and that removal of a genomic copy of S6K, but not inactivation of Tor by rapamycin, reverted the precocious autophagy phenotype. Instead, Tor inactivation also required loss of a positive nutrient signal to trigger autophagy and loss of both was sufficient to activate autophagy in the buffy mutant even in the presence of enforced phosphoinositide 3-kinase (PI3K) signaling. Prior to starvation, the fed buffy mutant stored less lipid and glycogen, had high lactate levels and maintained a reduced pool of cellular ATP. These observations, together with the inability of buffy mutant larvae to adapt to nutrient restriction, indicate altered energy metabolism in the absence of buffy. Conclusions All animals in their natural habitats are faced with periods of reduced nutrient availability. This study demonstrates that buffy is required for adaptation to both starvation and nutrient restriction. Thus, Buffy is a Bcl-2 protein that plays an important non-apoptotic role to

  20. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP.

    PubMed

    Gkotsi, Despoina; Begum, Rana; Salt, Thomas; Lascaratos, Gerassimos; Hogg, Chris; Chau, Kai-Yin; Schapira, Anthony H V; Jeffery, Glen

    2014-05-01

    Progressive accumulation of age related mitochondrial DNA mutations reduce ATP production and increase reactive oxygen species output, leading to oxidative stress, inflammation and degradation. The pace of this is linked to metabolic demand. The retina has the greatest metabolic demand and mitochondrial density in the body and displays progressive age related inflammation and marked cell loss. Near infra-red (670 nm) is thought to be absorbed by cytochrome c oxidase (COX), a key element in mitochondrial respiration and it has been demonstrated that it improves mitochondrial membrane potentials in aged eyes. It also significantly reduces the impact of experimental pathology and ameliorates age related retinal inflammation. We show ATP decline with ageing in mouse retina and brain. Also, in these tissues that ATP is significantly increased by 670 nm exposure in old mice. In the retina this was associated with increased COX and reduced acrolein expression. Acrolein, being a free radical marker of retinal oxidative stress, is up regulated in Alzheimer's and retinal degeneration. This is the first demonstration of ATP manipulation in vivo and may provide a simple non-invasive route to combating age related tissue decline. PMID:24631333

  1. Epithelial-Mesenchymal Transition Protein Expression in Basal Cell Adenomas and Basal Cell Adenocarcinomas.

    PubMed

    Tesdahl, Brennan A; Wilson, Thomas C; Hoffman, Henry T; Robinson, Robert A

    2016-06-01

    Basal cell adenomas and basal cell adenocarcinomas show marked histomorphologic similarity and are separated microscopically primarily by the invasive characteristics of the adenocarcinomas. We wished to explore potential differences in the expression of epithelial-mesenchymal transition associated proteins in these two tumor types. A tissue microarray was constructed utilizing 29 basal cell adenomas and 16 basal cell adenocarcinomas. Immunohistochemical expression of E-cadherin, beta-catenin, Twist 1 and vimentin were investigated. Both tumors expressed all proteins in a relatively similar manner. Nuclear beta-catenin was essentially limited to the abluminal cell populations in both tumor types. E-cadherin was limited largely to luminal locations but was more prevalent in the adenocarcinomas as compared to the adenomas. Primarily abluminal expression for vimentin was seen, sometimes present in an apical dot-like pattern. Distinct populations of cellular expression of these four markers of epithelial mesenchymal transition were present but were similar in locations in both tumors with no patterns discerned to separate basal cell adenoma from basal cell adenocarcinoma. Given these findings, the mechanisms by which basal cell adenocarcinoma is able to invade while its counterpart, basal cell adenoma can not, may be more complex than in other tumor types. PMID:26442856

  2. From ATP to PTP and back. A dual function for the mitochondrial ATP synthase

    PubMed Central

    Bernardi, Paolo; Di Lisa, Fabio; Fogolari, Federico; Lippe, Giovanna

    2015-01-01

    Mitochondria play a fundamental role in heart physiology, but are also key effectors of dysfunction and death. This dual role assumes a new meaning following recent advances on the nature and regulation of the permeability transition pore, an inner membrane channel whose opening requires matrix Ca2+ and is modulated by many effectors including reactive oxygen species, matrix cyclophilin D, Pi and matrix pH. The recent demonstration that the F-ATP synthase can reversibly undergo a Ca2+-dependent transition to form a channel that mediates the permeability transition opens new perspectives to the field. These findings demand a reassessment of the modifications of F-ATP synthase that take place in the heart under pathological conditions and of their potential role in determining the transition of F-ATP synthase from and energy-conserving into an energy-dissipating device. PMID:25999424

  3. ATP excites mouse vomeronasal sensory neurons through activation of P2X receptors.

    PubMed

    Vick, J S; Delay, R J

    2012-09-18

    Purinergic signaling through activation of P2X and P2Y receptors is critically important in the chemical senses. In the mouse main olfactory epithelium (MOE), adenosine 5'-triphosphate (ATP) elicits an increase in intracellular calcium ([Ca(2+)](I)) and reduces the responsiveness of olfactory sensory neurons to odorants through activation of P2X and P2Y receptors. We investigated the role of purinergic signaling in vomeronasal sensory neuron (VSN)s from the mouse vomeronasal organ (VNO), an olfactory organ distinct from the MOE that responds to many conspecific chemical cues. Using a combination of calcium imaging and patch-clamp electrophysiology with isolated VSNs, we demonstrated that ATP elicits an increase in [Ca(2+)](I) and an inward current with similar EC(50)s. Neither adenosine nor the P2Y receptor ligands adenosine 5'-diphosphate, uridine 5'-triphosphate, and uridine-5'-disphosphate could mimic either effect of ATP. Moreover, the increase in [Ca(2+)](I) required the presence of extracellular calcium and the inward current elicited by ATP was partially blocked by the P2X receptor antagonists pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate and 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate. Consistent with the activation of P2X receptors, we detected gene expression of the P2X1 and 3 receptors in the VNO by Reverse transcription polymerase chain reaction (RT-PCR). When co-delivered with dilute urine, a natural stimulus, ATP significantly increased the inward current above that elicited by dilute urine or ATP alone. Mechanical stimulation of the VNO induced the release of ATP, detected by luciferin-luciferase luminometry, and this release of ATP was completely abolished in the presence of the connexin/pannexin hemichannel blocker, carbenoxolone. We conclude that the release of ATP could occur during the activity of the vasomotor pump that facilitates the movement of chemicals into the VNO for detection by VSNs. This mechanism could lead to a

  4. Shaping Action Sequences in Basal Ganglia Circuits

    PubMed Central

    Jin, Xin; Costa, Rui M

    2015-01-01

    Many behaviors necessary for organism survival are learned anew and become organized as complex sequences of actions. Recent studies suggest that cortico-basal ganglia circuits are important for chunking isolated movements into precise and robust action sequences that permit the achievement of particular goals. During sequence learning many neurons in the basal ganglia develop sequence-related activity - related to the initiation, execution, and termination of sequences - suggesting that action sequences are processed as action units. Corticostriatal plasticity is critical for the crystallization of action sequences, and for the development of sequence-related neural activity. Furthermore, this sequence-related activity is differentially expressed in direct and indirect basal ganglia pathways. These findings have implications for understanding the symptoms associated with movement and psychiatric disorders. PMID:26189204

  5. Protection against Mitochondrial and Metal Toxicity Depends on Functional Lipid Binding Sites in ATP13A2

    PubMed Central

    Martin, Shaun; van Veen, Sarah; Holemans, Tine; Demirsoy, Seyma; van den Haute, Chris; Baekelandt, Veerle; Agostinis, Patrizia; Eggermont, Jan; Vangheluwe, Peter

    2016-01-01

    The late endo-/lysosomal P-type ATPase ATP13A2 (PARK9) is implicated in Parkinson's disease (PD) and Kufor-Rakeb syndrome, early-onset atypical Parkinsonism. ATP13A2 interacts at the N-terminus with the signaling lipids phosphatidic acid (PA) and phosphatidylinositol (3,5) bisphosphate (PI(3,5)P2), which modulate ATP13A2 activity under cellular stress conditions. Here, we analyzed stable human SHSY5Y cell lines overexpressing wild-type (WT) or ATP13A2 mutants in which three N-terminal lipid binding sites (LBS1–3) were mutated. We explored the regulatory role of LBS1–3 in the cellular protection by ATP13A2 against mitochondrial stress induced by rotenone and found that the LBS2-3 mutants displayed an abrogated protective effect. Moreover, in contrast to WT, the LBS2 and LBS3 mutants responded poorly to pharmacological inhibition of, respectively, PI(3,5)P2 and PA formation. We further demonstrate that PA and PI(3,5)P2 are also required for the ATP13A2-mediated protection against the toxic metals Mn2+, Zn2+, and Fe3+, suggesting a general lipid-dependent activation mechanism of ATP13A2 in various PD-related stress conditions. Our results indicate that the ATP13A2-mediated protection requires binding of PI(3,5)P2 to LBS2 and PA to LBS3. Thus, targeting the N-terminal lipid binding sites of ATP13A2 might offer a therapeutic approach to reduce cellular toxicity of various PD insults including mitochondrial stress. PMID:27073711

  6. Can basal magma oceans generate magnetic fields?

    NASA Astrophysics Data System (ADS)

    Stegman, D. R.; Ziegler, L. B.; Davies, C.

    2015-12-01

    Earth's magnetic field is very old, with recent data now showing the field possibly extended back to 4.1 billion years ago (Tarduno et al., Science, 2015). Yet, based upon our current knowledge there are difficulties in sustained a core dynamo over most of Earth's history. Moreover, recent estimates of thermal and electrical conductivity of liquid iron at core conditions from mineral physics experiments indicate that adiabatic heat flux is approximately 15 TW, nearly 3 times larger than previously thought, exacerbating difficulties for driving a core dynamo by convective core cooling alone throughout Earth history. A long-lived basal magma ocean in the lowermost mantle has been proposed to exist in the early Earth, surviving perhaps into the Archean. While the modern, solid lower mantle is an electromagnetic insulator, electrical conductivities of silicate melts are known to be higher, though as yet they are unconstrained for lowermost mantle conditions. Here we explore the geomagnetic consequences of a basal magma ocean layer for a range of possible electrical conductivities. For the highest electrical conductivities considered, we find a basal magma ocean could be a primary dynamo source region. This would suggest the proposed three magnetic eras observed in paleomagnetic data originate from distinct sources for dynamo generation: from 4.5-2.45 Ga within a basal magma ocean, from 2.25-0.4 Ga within a superadiabatically cooled liquid core, and from 0.4-present within a quasi-adiabatic core that includes a solidifying inner core. We have extended this work by developing a new code, Dynamantle, which is a model with an entropy-based approach, similar to those commonly used in core dynamics models. We present new results using this code to assess the conditions under which basal magma oceans can generate positive ohmic dissipation. This is more generally useful than just considering the early Earth, but also for many silicate exoplanets in which basal magma oceans

  7. The connectome of the basal ganglia.

    PubMed

    Schmitt, Oliver; Eipert, Peter; Kettlitz, Richard; Leßmann, Felix; Wree, Andreas

    2016-03-01

    The basal ganglia of the laboratory rat consist of a few core regions that are specifically interconnected by efferents and afferents of the central nervous system. In nearly 800 reports of tract-tracing investigations the connectivity of the basal ganglia is documented. The readout of connectivity data and the collation of all the connections of these reports in a database allows to generate a connectome. The collation, curation and analysis of such a huge amount of connectivity data is a great challenge and has not been performed before (Bohland et al. PloS One 4:e7200, 2009) in large connectomics projects based on meta-analysis of tract-tracing studies. Here, the basal ganglia connectome of the rat has been generated and analyzed using the consistent cross-platform and generic framework neuroVIISAS. Several advances of this connectome meta-study have been made: the collation of laterality data, the network-analysis of connectivity strengths and the assignment of regions to a hierarchically organized terminology. The basal ganglia connectome offers differences in contralateral connectivity of motoric regions in contrast to other regions. A modularity analysis of the weighted and directed connectome produced a specific grouping of regions. This result indicates a correlation of structural and functional subsystems. As a new finding, significant reciprocal connections of specific network motifs in this connectome were detected. All three principal basal ganglia pathways (direct, indirect, hyperdirect) could be determined in the connectome. By identifying these pathways it was found that there exist many further equivalent pathways possessing the same length and mean connectivity weight as the principal pathways. Based on the connectome data it is unknown why an excitation pattern may prefer principal rather than other equivalent pathways. In addition to these new findings the local graph-theoretical features of regions of the connectome have been determined. By

  8. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    SciTech Connect

    Jason Alan Gruenhagen

    2003-12-12

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca{sup 2+} imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca{sup 2+} signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K{sup +} and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol functionalized Cd

  9. Tumor suppression in basal keratinocytes via dual non-cell-autonomous functions of a Na,K-ATPase beta subunit

    PubMed Central

    Hatzold, Julia; Beleggia, Filippo; Herzig, Hannah; Altmüller, Janine; Nürnberg, Peter; Bloch, Wilhelm; Wollnik, Bernd; Hammerschmidt, Matthias

    2016-01-01

    The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression. DOI: http://dx.doi.org/10.7554/eLife.14277.001 PMID:27240166

  10. Functional domains of an ATP-dependent DNA ligase.

    PubMed

    Doherty, A J; Wigley, D B

    1999-01-01

    The crystal structure of an ATP-dependent DNA ligase from bacteriophage T7 revealed that the protein comprised two structural domains. In order to investigate the biochemical activities of these domains, we have overexpressed them separately and purified them to homogeneity. The larger N-terminal domain retains adenylation and ligase activities, though both at a reduced level. The adenylation activity of the large domain is stimulated by the presence of the smaller domain, suggesting that a conformational change is required for adenylation in the full length protein. The DNA binding properties of the two fragments have also been studied. The larger domain is able to band shift both single and double-stranded DNA, while the smaller fragment is only able to bind to double-stranded DNA. These data suggest that the specificity of DNA ligases for nick sites in DNA is produced by a combination of these different DNA binding activities in the intact enzyme. PMID:9878388

  11. Release of extracellular ATP by bacteria during growth

    PubMed Central

    2013-01-01

    Background Adenosine triphosphate (ATP) is used as an intracellular energy source by all living organisms. It plays a central role in the respiration and metabolism, and is the most important energy supplier in many enzymatic reactions. Its critical role as the energy storage molecule makes it extremely valuable to all cells. Results We report here the detection of extracellular ATP in the cultures of a variety of bacterial species. The levels of the extracellular ATP in bacterial cultures peaked around the end of the log phase and decreased in the stationary phase of growth. Extracellular ATP levels were dependent on the cellular respiration as bacterial mutants lacking cytochrome bo oxidase displayed lower extracellular ATP levels. We have also shown that Escherichia coli (E. coli) and Salmonella actively depleted extracellular ATP and an ATP supplement in culture media enhanced the stationary survival of E. coli and Salmonella. In addition to E. coli and Salmonella the presence of the extracellular ATP was observed in a variety of bacterial species that contain human pathogens such as Acinetobacter, Pseudomonas, Klebsiella and Staphylococcus. Conclusion Our results indicate that extracellular ATP is produced by many bacterial species during growth and extracellular ATP may serve a role in the bacterial physiology. PMID:24364860

  12. Understanding Parkinsonian handwriting through a computational model of basal ganglia.

    PubMed

    Gangadhar, Garipelli; Joseph, Denny; Chakravarthy, V Srinivasa

    2008-10-01

    Handwriting in Parkinson's disease (PD) is typically characterized by micrographia, jagged line contour, and unusual fluctuations in pen tip velocity. Although PD handwriting features have been used for diagnostics, they are not based on a signaling model of basal ganglia (BG). In this letter, we present a computational model of handwriting generation that highlights the role of BG. When PD conditions like reduced dopamine and altered dynamics of the subthalamic nucleus and globus pallidus externa subsystems are simulated, the handwriting produced by the model manifested characteristic PD handwriting distortions like micrographia and velocity fluctuations. Our approach to PD modeling is in tune with the perspective that PD is a dynamic disease. PMID:18386983

  13. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. PMID:23000204

  14. Basal foot MTOC organizes pillar MTs required for coordination of beating cilia

    PubMed Central

    Clare, Daniel K.; Magescas, Jérémy; Piolot, Tristan; Dumoux, Maud; Vesque, Christine; Pichard, Evelyne; Dang, Tien; Duvauchelle, Boris; Poirier, Françoise; Delacour, Delphine

    2016-01-01

    Coordination of ciliary beating is essential to ensure mucus clearance in the airway tract. The orientation and synchronization of ciliary motion responds in part to the organization of the underlying cytoskeletal networks. Using electron tomography on mouse trachea, we show that basal bodies are collectively hooked at the cortex by a regular microtubule array composed of 4-5 microtubules. Removal of Galectin-3, one of basal body components, provokes misrecruitment of γ-tubulin, disorganization of this microtubule framework emanating from the basal foot cap, together with loss of basal body alignment and cilium orientation, defects in cilium organization and reduced fluid flow in the tracheal lumen. We conclude that Galectin-3 plays a crucial role in the maintenance of the microtubule organizing center of the cilium and the “pillar” microtubules, and that this network is instrumental for the coordinated orientation and stabilization of motile cilia. PMID:25215410

  15. Cytokine Effects on the Basal Ganglia and Dopamine Function: the Subcortical Source of Inflammatory Malaise

    PubMed Central

    Felger, Jennifer C.; Miller, Andrew H.

    2012-01-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. PMID:23000204

  16. Basal ganglia germinoma with progressive cerebral hemiatrophy.

    PubMed

    Liu, E; Robertson, R L; du Plessis, A; Pomeroy, S L

    1999-04-01

    The authors describe a 7-year-old Chinese-American female with a germinoma of the basal ganglia who presented with progressive hemiparesis and cerebral hemiatrophy. The additional finding of markedly elevated antiphospholipid antibodies suggests the possibility of an autoimmune pathogenesis for the progressive cerebral atrophy, as well as the later development of cognitive decline, tics, and obsessive-compulsive behaviors. PMID:10328283

  17. Basal Ganglia Germinoma in an Adult.

    PubMed

    Vialatte de Pémille, Clément; Bielle, Franck; Mokhtari, Karima; Kerboua, Esma; Alapetite, Claire; Idbaih, Ahmed

    2016-08-01

    Intracranial germinoma is a rare primary brain cancer, usually located within the midline and mainly affecting Asian pediatric patients. Interestingly, we report here the peculiar case of a young North-African adult patient suffering from a basal ganglia germinoma without the classical ipsilateral cerebral hemiatrophy associated with this location. PMID:27241091

  18. Reward functions of the basal ganglia.

    PubMed

    Schultz, Wolfram

    2016-07-01

    Besides their fundamental movement function evidenced by Parkinsonian deficits, the basal ganglia are involved in processing closely linked non-motor, cognitive and reward information. This review describes the reward functions of three brain structures that are major components of the basal ganglia or are closely associated with the basal ganglia, namely midbrain dopamine neurons, pedunculopontine nucleus, and striatum (caudate nucleus, putamen, nucleus accumbens). Rewards are involved in learning (positive reinforcement), approach behavior, economic choices and positive emotions. The response of dopamine neurons to rewards consists of an early detection component and a subsequent reward component that reflects a prediction error in economic utility, but is unrelated to movement. Dopamine activations to non-rewarded or aversive stimuli reflect physical impact, but not punishment. Neurons in pedunculopontine nucleus project their axons to dopamine neurons and process sensory stimuli, movements and rewards and reward-predicting stimuli without coding outright reward prediction errors. Neurons in striatum, besides their pronounced movement relationships, process rewards irrespective of sensory and motor aspects, integrate reward information into movement activity, code the reward value of individual actions, change their reward-related activity during learning, and code own reward in social situations depending on whose action produces the reward. These data demonstrate a variety of well-characterized reward processes in specific basal ganglia nuclei consistent with an important function in non-motor aspects of motivated behavior. PMID:26838982

  19. How Basal Reading Texts Affect Children's Writing.

    ERIC Educational Resources Information Center

    Eckhoff, Barbara L.

    A study investigated how children's writing reflects the syntactic complexity, style, and format of their basal readers. Subjects were 116 students drawn from 10 second, third, and fourth grade classrooms in two different schools located near Boston, Massachusetts. A matched group design was used, and students using a form of the "Ginn" basal…

  20. TEMPORAL VARIABILITY IN BASAL ISOPRENE EMISSION FACTOR

    EPA Science Inventory

    Seasonal variability in basal isoprene emission factor (micrograms C /g hr or nmol/ m2 sec, leaf temperature at 30 degrees C and photosynthetically active radiation (PAR) at 1000 micromol/ m2 sec) was studied during the 1998 growing season at Duke Forest in the North Carolina Pie...

  1. Enhancing Basal Vocabulary Instruction in Kindergarten

    ERIC Educational Resources Information Center

    Lenfest, Ashleigh; Reed, Deborah K.

    2015-01-01

    To enhance the basal vocabulary instruction for kindergarten students at risk for reading difficulties, lessons provided in typical curricular materials can be supplemented with instructional elements derived from research. This article addresses how teachers can add 15 minutes of higher order instructional activities to daily reading lessons to…

  2. ATP Released by Electrical Stimuli Elicits Calcium Transients and Gene Expression in Skeletal Muscle*

    PubMed Central

    Buvinic, Sonja; Almarza, Gonzalo; Bustamante, Mario; Casas, Mariana; López, Javiera; Riquelme, Manuel; Sáez, Juan Carlos; Huidobro-Toro, Juan Pablo; Jaimovich, Enrique

    2009-01-01

    ATP released from cells is known to activate plasma membrane P2X (ionotropic) or P2Y (metabotropic) receptors. In skeletal muscle cells, depolarizing stimuli induce both a fast calcium signal associated with contraction and a slow signal that regulates gene expression. Here we show that nucleotides released to the extracellular medium by electrical stimulation are partly involved in the fast component and are largely responsible for the slow signals. In rat skeletal myotubes, a tetanic stimulus (45 Hz, 400 1-ms pulses) rapidly increased extracellular levels of ATP, ADP, and AMP after 15 s to 3 min. Exogenous ATP induced an increase in intracellular free Ca2+ concentration, with an EC50 value of 7.8 ± 3.1 μm. Exogenous ADP, UTP, and UDP also promoted calcium transients. Both fast and slow calcium signals evoked by tetanic stimulation were inhibited by either 100 μm suramin or 2 units/ml apyrase. Apyrase also reduced fast and slow calcium signals evoked by tetanus (45 Hz, 400 0.3-ms pulses) in isolated mouse adult skeletal fibers. A likely candidate for the ATP release pathway is the pannexin-1 hemichannel; its blockers inhibited both calcium transients and ATP release. The dihydropyridine receptor co-precipitated with both the P2Y2 receptor and pannexin-1. As reported previously for electrical stimulation, 500 μm ATP significantly increased mRNA expression for both c-fos and interleukin 6. Our results suggest that nucleotides released during skeletal muscle activity through pannexin-1 hemichannels act through P2X and P2Y receptors to modulate both Ca2+ homeostasis and muscle physiology. PMID:19822518

  3. The metabolite alpha-ketoglutarate extends lifespan by inhibiting the ATP synthase and TOR

    PubMed Central

    Chin, Randall M.; Fu, Xudong; Pai, Melody Y.; Vergnes, Laurent; Hwang, Heejun; Deng, Gang; Diep, Simon; Lomenick, Brett; Meli, Vijaykumar S.; Monsalve, Gabriela C.; Hu, Eileen; Whelan, Stephen A.; Wang, Jennifer X.; Jung, Gwanghyun; Solis, Gregory M.; Fazlollahi, Farbod; Kaweeteerawat, Chitrada; Quach, Austin; Nili, Mahta; Krall, Abby S.; Godwin, Hilary A.; Chang, Helena R.; Faull, Kym F.; Guo, Feng; Jiang, Meisheng; Trauger, Sunia A.; Saghatelian, Alan; Braas, Daniel; Christofk, Heather R.; Clarke, Catherine F.; Teitell, Michael A.; Petrascheck, Michael; Reue, Karen; Jung, Michael E.; Frand, Alison R.; Huang, Jing

    2014-01-01

    Metabolism and ageing are intimately linked. Compared to ad libitum feeding, dietary restriction (DR) or calorie restriction (CR) consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms1,2. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits3,4. Recently, several metabolites have been identified that modulate ageing5,6 with largely undefined molecular mechanisms. Here we show that the tricarboxylic acid (TCA) cycle intermediate α-ketoglutarate (α-KG) extends the lifespan of adult C. elegans. ATP synthase subunit beta is identified as a novel binding protein of α-KG using a small-molecule target identification strategy called DARTS (drug affinity responsive target stability)7. The ATP synthase, also known as Complex V of the mitochondrial electron transport chain (ETC), is the main cellular energy-generating machinery and is highly conserved throughout evolution8,9. Although complete loss of mitochondrial function is detrimental, partial suppression of the ETC has been shown to extend C. elegans lifespan10–13. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit beta and is dependent on the target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased upon starvation and α-KG does not extend the lifespan of DR animals, indicating that α-KG is a key metabolite that mediates longevity by DR. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator, and DR in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases. PMID:24828042

  4. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain

    PubMed Central

    Ho, Tracy; Jobling, Andrew I.; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L.; Vessey, Kirstan A.

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  5. Vesicular expression and release of ATP from dopaminergic neurons of the mouse retina and midbrain.

    PubMed

    Ho, Tracy; Jobling, Andrew I; Greferath, Ursula; Chuang, Trinette; Ramesh, Archana; Fletcher, Erica L; Vessey, Kirstan A

    2015-01-01

    Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons. PMID:26500494

  6. Exocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex

    PubMed Central

    Rasooli-Nejad, Seyed; Andrew, Jemma; Haydon, Philip G.; Pankratov, Yuriy

    2014-01-01

    Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca2+-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca2+-waves and purinergic modulation of neuronal activity and sleep homeostasis. The mechanisms underlying release of gliotransmitters remain uncertain, and exocytosis is the most intriguing and debated pathway. We investigated release of ATP from acutely dissociated cortical astrocytes using “sniff-cell” approach and demonstrated that release is vesicular in nature and can be triggered by elevation of intracellular Ca2+ via metabotropic and ionotropic receptors or direct UV-uncaging. The exocytosis of ATP from neocortical astrocytes occurred in the millisecond time scale contrasting with much slower nonvesicular release of gliotransmitters via Best1 and TREK-1 channels, reported recently in hippocampus. Furthermore, we discovered that elevation of cytosolic Ca2+ in cortical astrocytes triggered the release of ATP that directly activated quantal purinergic currents in the pyramidal neurons. The glia-driven burst of purinergic currents in neurons was followed by significant attenuation of both synaptic and tonic inhibition. The Ca2+-entry through the neuronal P2X purinoreceptors led to phosphorylation-dependent down-regulation of GABAA receptors. The negative purinergic modulation of postsynaptic GABA receptors was accompanied by small presynaptic enhancement of GABA release. Glia-driven purinergic modulation of inhibitory transmission was not observed in neurons when astrocytes expressed dn-SNARE to impair exocytosis. The astrocyte-driven purinergic currents and glia-driven modulation of GABA receptors were significantly reduced in the P2X4 KO mice. Our data provide a key evidence to support the physiological importance of exocytosis of ATP from astrocytes

  7. Walker-A Motif Acts to Coordinate ATP Hydrolysis with Motor Output in Viral DNA Packaging.

    PubMed

    delToro, Damian; Ortiz, David; Ordyan, Mariam; Sippy, Jean; Oh, Choon-Seok; Keller, Nicholas; Feiss, Michael; Catalano, Carlos E; Smith, Douglas E

    2016-07-01

    During the assembly of many viruses, a powerful ATP-driven motor translocates DNA into a preformed procapsid. A Walker-A "P-loop" motif is proposed to coordinate ATP binding and hydrolysis with DNA translocation. We use genetic, biochemical, and biophysical techniques to survey the roles of P-loop residues in bacteriophage lambda motor function. We identify 55 point mutations that reduce virus yield to below detectable levels in a highly sensitive genetic complementation assay and 33 that cause varying reductions in yield. Most changes in the predicted conserved residues K76, R79, G81, and S83 produce no detectable yield. Biochemical analyses show that R79A and S83A mutant proteins fold, assemble, and display genome maturation activity similar to wild-type (WT) but exhibit little ATPase or DNA packaging activity. Kinetic DNA cleavage and ATPase measurements implicate R79 in motor ring assembly on DNA, supporting recent structural models that locate the P-loop at the interface between motor subunits. Single-molecule measurements detect no translocation for K76A and K76R, while G81A and S83A exhibit strong impairments, consistent with their predicted roles in ATP binding. We identify eight residue changes spanning A78-K84 that yield impaired translocation phenotypes and show that Walker-A residues play important roles in determining motor velocity, pausing, and processivity. The efficiency of initiation of packaging correlates strongly with motor velocity. Frequent pausing and slipping caused by changes A78V and R79K suggest that these residues are important for ATP alignment and coupling of ATP binding to DNA gripping. Our findings support recent structural models implicating the P-loop arginine in ATP hydrolysis and mechanochemical coupling. PMID:27139643

  8. Paradox applications integration ATP`s for MAC and mass balance programs

    SciTech Connect

    Russell, V.K.; Mullaney, J.E.

    1994-10-17

    The K Basins Materials Accounting (MAC) and Material Balance (MBA) database system were set up to run under one common applications program. This Acceptance Test Plan (ATP) describes how the code was to be tested to verify its correctness. The scope of the tests is minimal, since both MAC and MBA have already been tested in detail as stand-alone programs.

  9. Comparison of the H+/ATP ratios of the H+-ATP synthases from yeast and from chloroplast

    PubMed Central

    Petersen, Jan; Förster, Kathrin; Turina, Paola; Gräber, Peter

    2012-01-01

    F0F1-ATP synthases use the free energy derived from a transmembrane proton transport to synthesize ATP from ADP and inorganic phosphate. The number of protons translocated per ATP (H+/ATP ratio) is an important parameter for the mechanism of the enzyme and for energy transduction in cells. Current models of rotational catalysis predict that the H+/ATP ratio is identical to the stoichiometric ratio of c-subunits to β-subunits. We measured in parallel the H+/ATP ratios at equilibrium of purified F0F1s from yeast mitochondria (c/β = 3.3) and from spinach chloroplasts (c/β = 4.7). The isolated enzymes were reconstituted into liposomes and, after energization of the proteoliposomes with acid–base transitions, the initial rates of ATP synthesis and hydrolysis were measured as a function of ΔpH. The equilibrium ΔpH was obtained by interpolation, and from its dependency on the stoichiometric ratio, [ATP]/([ADP]·[Pi]), finally the thermodynamic H+/ATP ratios were obtained: 2.9 ± 0.2 for the mitochondrial enzyme and 3.9 ± 0.3 for the chloroplast enzyme. The data show that the thermodynamic H+/ATP ratio depends on the stoichiometry of the c-subunit, although it is not identical to the c/β ratio. PMID:22733773

  10. ATP-independent contractile proteins from plants

    NASA Astrophysics Data System (ADS)

    Knoblauch, Michael; Noll, Gundula A.; Müller, Torsten; Prüfer, Dirk; Schneider-Hüther, Ingrid; Scharner, Dörte; van Bel, Aart J. E.; Peters, Winfried S.

    2003-09-01

    Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical environments can be disadvantagous. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality, but they are rare. Protein bodies from sieve elements of higher plants provide a novel example. sieve elements form microfluidics systems for pressure-driven transport of photo-assimilates throughout the plant. Unique protein bodies in the sieve elements of legumes act as cellular stopcocks, by undergoing a Ca2+-dependent conformational switch in which they plug the sieve element. In living cells, this reaction is probably controlled by Ca2+-transporters in the cell membrane. Here we report the rapid, reversible, anisotropic and ATP-independent contractility in these protein bodies in vitro. Considering the unique biological function of the legume 'crystalloid' protein bodies and their contractile properties, we suggest to give them the distinctive name forisome ('gate-body'; from the Latin foris, the wing of a gate).

  11. Human ATP-Binding Cassette Transporter ABCB1 Confers Resistance to Volasertib (BI 6727), a Selective Inhibitor of Polo-like Kinase 1.

    PubMed

    Wu, Chung-Pu; Hsieh, Chia-Hung; Hsiao, Sung-Han; Luo, Shi-Yu; Su, Ching-Ya; Li, Yan-Qing; Huang, Yang-Hui; Huang, Chiun-Wei; Hsu, Sheng-Chieh

    2015-11-01

    The overexpression of the serine/threonine specific polo-like kinase 1 (Plk1) is associated with poor prognosis in many types of cancer. Consequently, Plk1 has emerged as a valid therapeutic target for anticancer drug design. Volasertib is a potent inhibitor of Plk1 that inhibits the proliferation of multiple human cancer cell lines by promoting cell cycle arrest at nanomolar concentrations. However, the risk of developing drug resistance, which is often associated with the overexpression of the ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein), can present a therapeutic challenge for volasertib and many other therapeutic drugs. Although volasertib is highly effective against the proliferation of numerous cancer cell lines, we found that the overexpression of ABCB1 in cancer cells leads to cellular resistance to volasertib and reduces the level of volasertib-stimulated G2/M cell cycle arrest and subsequent onset of apoptosis. Furthermore, we demonstrate that volasertib competitively inhibits the function of ABCB1 and stimulates the basal ATPase activity of ABCB1 in a concentration-dependent manner, which is consistent with substrate transport by ABCB1. More importantly, we discovered that the coadministration of an inhibitor or drug substrate of ABCB1 restored the anticancer activity of volasertib in ABCB1-overexpressing cancer cells. In conclusion, the results of our study reveal that ABCB1 negatively affects the efficacy of volasertib and supports its combination with a modulator of ABCB1 to improve clinical responses. PMID:26412161

  12. Single molecule thermodynamics of ATP synthesis by F1-ATPase

    NASA Astrophysics Data System (ADS)

    Toyabe, Shoichi; Muneyuki, Eiro

    2015-01-01

    FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. The isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ -shaft. When a strong opposing torque is imposed, the γ -shaft rotates in the opposite direction and drives the F1-motor to synthesize ATP. This mechanical-to-chemical free-energy transduction is the final and central step of the multistep cellular ATP-synthetic pathway. Here, we determined the amount of mechanical work exploited by the F1-motor to synthesize an ATP molecule during forced rotations using a methodology combining a nonequilibrium theory and single molecule measurements of responses to external torque. We found that the internal dissipation of the motor is negligible even during rotations far from a quasistatic process.

  13. Snapshots of the maltose transporter during ATP hydrolysis

    SciTech Connect

    Oldham, Michael L.; Chen, Jue

    2011-12-05

    ATP-binding cassette transporters are powered by ATP, but the mechanism by which these transporters hydrolyze ATP is unclear. In this study, four crystal structures of the full-length wild-type maltose transporter, stabilized by adenosine 5{prime}-({beta},{gamma}-imido)triphosphate or ADP in conjunction with phosphate analogs BeF{sub 3}{sup -}, VO{sub 4}{sup 3-}, or AlF{sub 4}{sup -}, were determined to 2.2- to 2.4-{angstrom} resolution. These structures led to the assignment of two enzymatic states during ATP hydrolysis and demonstrate specific functional roles of highly conserved residues in the nucleotide-binding domain, suggesting that ATP-binding cassette transporters catalyze ATP hydrolysis via a general base mechanism.

  14. ATP transport in saccular cerebral aneurysms at arterial bends.

    PubMed

    Imai, Yohsuke; Sato, Kodai; Ishikawa, Takuji; Comerford, Andrew; David, Tim; Yamaguchi, Takami

    2010-03-01

    ATP acts as an extracellular signaling molecule in purinergic signaling that regulates vascular tone. ATP binds purinergic P2 nucleotide receptors on endothelial cells. Understanding the mass transport of ATP to endothelial cells by blood flow is thus important to predict functional changes in aneurysmal walls. While some clinical observations indicate a difference of wall pathology between ruptured and unruptured aneurysms, no study has focused on the mass transport in aneurysms. We investigated the characteristics of ATP concentration at aneurysmal wall using a numerical model of ATP transport in aneurysms formed at arterial bends. The magnitude of ATP concentration at the aneurysmal wall was significantly smaller than that at the arterial wall. In particular, significantly low concentration was predicted at the proximal side of the aneurysmal sac. A strong correlation was revealed between the inflow flux at the aneurysmal neck and the resultant concentration at the aneurysmal wall. PMID:20012692

  15. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane

    PubMed Central

    Strauss, Mike; Hofhaus, Götz; Schröder, Rasmus R; Kühlbrandt, Werner

    2008-01-01

    ATP synthase converts the electrochemical potential at the inner mitochondrial membrane into chemical energy, producing the ATP that powers the cell. Using electron cryo-tomography we show that the ATP synthase of mammalian mitochondria is arranged in long ∼1-μm rows of dimeric supercomplexes, located at the apex of cristae membranes. The dimer ribbons enforce a strong local curvature on the membrane with a 17-nm outer radius. Calculations of the electrostatic field strength indicate a significant increase in charge density, and thus in the local pH gradient of ∼0.5 units in regions of high membrane curvature. We conclude that the mitochondrial cristae act as proton traps, and that the proton sink of the ATP synthase at the apex of the compartment favours effective ATP synthesis under proton-limited conditions. We propose that the mitochondrial ATP synthase organises itself into dimer ribbons to optimise its own performance. PMID:18323778

  16. ATP7B detoxifies silver in ciliated airway epithelial cells

    SciTech Connect

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-03-15

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B{sup -/-} mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag{sup +}/Cu{sup +} transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  17. Binding of ATP by pertussis toxin and isolated toxin subunits

    SciTech Connect

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. )

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  18. Diversity and regulation of ATP sulfurylase in photosynthetic organisms

    PubMed Central

    Prioretti, Laura; Gontero, Brigitte; Hell, Ruediger; Giordano, Mario

    2014-01-01

    ATP sulfurylase (ATPS) catalyzes the first committed step in the sulfate assimilation pathway, the activation of sulfate prior to its reduction. ATPS has been studied in only a few model organisms and even in these cases to a much smaller extent than the sulfate reduction and cysteine synthesis enzymes. This is possibly because the latter were considered of greater regulatory importance for sulfate assimilation. Recent evidences (reported in this paper) challenge this view and suggest that ATPS may have a crucial regulatory role in sulfate assimilation, at least in algae. In the ensuing text, we summarize the current knowledge on ATPS, with special attention to the processes that control its activity and gene(s) expression in algae. Special attention is given to algae ATPS proteins. The focus on algae is the consequence of the fact that a comprehensive investigation of ATPS revealed that the algal enzymes, especially those that are most likely involved in the pathway of sulfate reduction to cysteine, possess features that are not present in other organisms. Remarkably, algal ATPS proteins show a great diversity of isoforms and a high content of cysteine residues, whose positions are often conserved. According to the occurrence of cysteine residues, the ATPS of eukaryotic algae is closer to that of marine cyanobacteria of the genera Synechococcus and Prochlorococcus and is more distant from that of freshwater cyanobacteria. These characteristics might have evolved in parallel with the radiation of algae in the oceans and the increase of sulfate concentration in seawater. PMID:25414712

  19. Understanding structure, function, and mutations in the mitochondrial ATP synthase

    PubMed Central

    Xu, Ting; Pagadala, Vijayakanth; Mueller, David M.

    2015-01-01

    The mitochondrial ATP synthase is a multimeric enzyme complex with an overall molecular weight of about 600,000 Da. The ATP synthase is a molecular motor composed of two separable parts: F1 and Fo. The F1 portion contains the catalytic sites for ATP synthesis and protrudes into the mitochondrial matrix. Fo forms a proton turbine that is embedded in the inner membrane and connected to the rotor of F1. The flux of protons flowing down a potential gradient powers the rotation of the rotor driving the synthesis of ATP. Thus, the flow of protons though Fo is coupled to the synthesis of ATP. This review will discuss the structure/function relationship in the ATP synthase as determined by biochemical, crystallographic, and genetic studies. An emphasis will be placed on linking the structure/function relationship with understanding how disease causing mutations or putative single nucleotide polymorphisms (SNPs) in genes encoding the subunits of the ATP synthase, will affect the function of the enzyme and the health of the individual. The review will start by summarizing the current understanding of the subunit composition of the enzyme and the role of the subunits followed by a discussion on known mutations and their effect on the activity of the ATP synthase. The review will conclude with a summary of mutations in genes encoding subunits of the ATP synthase that are known to be responsible for human disease, and a brief discussion on SNPs. PMID:25938092

  20. Application of luciferase assay for ATP to antimicrobial drug susceptibility

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Picciolo, G. L.; Vellend, H.; Tuttle, S. A.; Barza, M. J.; Weinstein, L. (Inventor)

    1977-01-01

    The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures.

  1. ATP25, a New Nuclear Gene of Saccharomyces cerevisiae Required for Expression and Assembly of the Atp9p Subunit of Mitochondrial ATPase

    PubMed Central

    Zeng, Xiaomei; Barros, Mario H.; Shulman, Theodore

    2008-01-01

    We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F0. Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure. PMID:18216280

  2. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis.

    PubMed

    Sawosz, Filip; Pineda, Lane; Hotowy, Anna; Jaworski, Sławomir; Prasek, Marta; Sawosz, Ewa; Chwalibog, André

    2013-01-01

    It has been suggested that the quantity and quality of nutrients stored in the egg might not be optimal for the fast rate of chicken embryo development in modern broilers, and embryos could be supplemented with nutrients by in ovo injection. Recent experiments showed that in ovo feeding reduces post-hatch mortality and skeletal disorders and increases muscle growth and breast meat yield. Adenosine triphosphate (ATP) is a "ready for use" energetic molecule, while nanoparticles of silver (Nano-Ag) may penetrate tissues as well as cells and localise inside cells. In this investigation, we hypothesised that silver nanoparticles could be used as a protective carrier for ATP as well as an active agent. ATP and/or an ATP complex with Nano-Ag would be delivered to the muscle cells as a gene expression regulator and promoter of growth and development of embryo breast muscle. A collection of 160 broiler eggs was randomly divided into a Control group without injection and injected groups with hydrocolloids of Nano-Ag, ATP or a complex of Nano-Ag and ATP (Nano-Ag/ATP). The embryos were evaluated on day 20 of incubation. The results indicate that the application of ATP to chicken embryos increases expression of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor (VEGF) and Na(+)/K(+) transporting ATPase (ATP1A1), which may indicate that an extra energy source can enhance molecular mechanisms of muscle cell proliferation. Nano-Ag also up-regulated expression of FGF2, VEGF, ATP1A1 and, also up-regulated expression of myogenic differentiation 1(MyoD1), affecting cell differentiation. The results indicate that ATP and Nano-Ag may accelerate growth and maturation of muscle cells. PMID:23952606

  3. Functional anatomy of thalamus and basal ganglia.

    PubMed

    Herrero, María-Trinidad; Barcia, Carlos; Navarro, Juana Mari

    2002-08-01

    THALAMUS: The human thalamus is a nuclear complex located in the diencephalon and comprising of four parts (the hypothalamus, the epythalamus, the ventral thalamus, and the dorsal thalamus). The thalamus is a relay centre subserving both sensory and motor mechanisms. Thalamic nuclei (50-60 nuclei) project to one or a few well-defined cortical areas. Multiple cortical areas receive afferents from a single thalamic nucleus and send back information to different thalamic nuclei. The corticofugal projection provides positive feedback to the "correct" input, while at the same time suppressing irrelevant information. Topographical organisation of the thalamic afferents and efferents is contralateral, and the lateralisation of the thalamic functions affects both sensory and motoric aspects. Symptoms of lesions located in the thalamus are closely related to the function of the areas involved. An infarction or haemorrhage thalamic lesion can develop somatosensory disturbances and/or central pain in the opposite hemibody, analgesic or purely algesic thalamic syndrome characterised by contralateral anaesthesia (or hypaesthesia), contralateral weakness, ataxia and, often, persistent spontaneous pain. BASAL GANGLIA: Basal ganglia form a major centre in the complex extrapyramidal motor system, as opposed to the pyramidal motor system (corticobulbar and corticospinal pathways). Basal ganglia are involved in many neuronal pathways having emotional, motivational, associative and cognitive functions as well. The striatum (caudate nucleus, putamen and nucleus accumbens) receive inputs from all cortical areas and, throughout the thalamus, project principally to frontal lobe areas (prefrontal, premotor and supplementary motor areas) which are concerned with motor planning. These circuits: (i) have an important regulatory influence on cortex, providing information for both automatic and voluntary motor responses to the pyramidal system; (ii) play a role in predicting future events

  4. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    NASA Astrophysics Data System (ADS)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  5. The c-ring stoichiometry of ATP synthase is adapted to cell physiological requirements of alkaliphilic Bacillus pseudofirmus OF4

    PubMed Central

    Preiss, Laura; Klyszejko, Adriana L.; Hicks, David B.; Liu, Jun; Fackelmayer, Oliver J.; Yildiz, Özkan; Krulwich, Terry A.; Meier, Thomas

    2013-01-01

    The c-rings of ATP synthases consist of individual c-subunits, all of which harbor a conserved motif of repetitive glycine residues (GxGxGxG) important for tight transmembrane α-helix packing. The c-ring stoichiometry determines the number of ions transferred during enzyme operation and has a direct impact on the ion-to-ATP ratio, a cornerstone parameter of cell bioenergetics. In the extreme alkaliphile Bacillus pseudofirmus OF4, the glycine motif is replaced by AxAxAxA. We performed a structural study on two mutants with alanine-to-glycine changes using atomic force microscopy and X-ray crystallography, and found that mutants form smaller c12 rings compared with the WT c13. The molar growth yields of B. pseudofirmus OF4 cells on malate further revealed that the c12 mutants have a considerably reduced capacity to grow on limiting malate at high pH. Our results demonstrate that the mutant ATP synthases with either c12 or c13 can support ATP synthesis, and also underscore the critical importance of an alanine motif with c13 ring stoichiometry for optimal growth at pH >10. The data indicate a direct connection between the precisely adapted ATP synthase c-ring stoichiometry and its ion-to-ATP ratio on cell physiology, and also demonstrate the bioenergetic challenges and evolutionary adaptation strategies of extremophiles. PMID:23613590

  6. Evidence for the Synthesis of ATP by an F0F1 ATP Synthase in Membrane Vesicles from Halorubrum Saccharovorum

    NASA Technical Reports Server (NTRS)

    Faguy, David; Lawson, Darion; Hochstein, Lawrence I.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Vesicles prepared in a buffer containing ADP, Mg(2+) and Pi synthesized ATP at an initial rate of 2 nmols/min/mg protein after acidification of the bulk medium (pH 8 (right arrow) 4). The intravesicular ATP concentration reached a steady state after about 30 seconds and slowly declined thereafter. ATP synthesis was inhibited by low concentrations of dicyclohexylcarbodiimide and m-chlorophenylhydrazone indicating that synthesis took place in response to the proton gradient. NEM and PCMS, which inhibit vacuolar ATPases and the vacuolar-like ATPases of extreme halophiles, did not affect ATP synthesis, and, in fact, produced higher steady state levels of ATP. This suggested that two ATPase activities were present, one which catalyzed ATP synthesis and one that caused its hydrolysis. Azide, a specific inhibitor of F0F1 ATP Synthases, inhibited halobacterial ATP synthesis. The distribution of acridine orange as imposed by a delta pH demonstrated that azide inhibition was not due to the collapse of the proton gradient due to azide acting as a protonophore. Such an effect was observed, but only at azide concentrations higher than those that inhibited ATP synthesis. These results confirm the earler observations with cells of H. saccharovorum and other extreme halophiles that ATP synthesis is inconsistent with the operation of a vacuolar-like ATPase. Therefore, the observation that a vacuolar-like enzyme is responsible for ATP synthesis (and which serves as the basis for imputing ATP synthesis to the vacuolar-like ATPases of the extreme halophiles, and the Archaea in general) should be taken with some degree of caution.

  7. Differential effects of cyclic and constant stress on ATP release and mucociliary transport by human airway epithelia.

    PubMed

    Button, Brian; Picher, Maryse; Boucher, Richard C

    2007-04-15

    In the lungs, the first line of defence against bacterial infection is the thin layer of airway surface liquid (ASL) lining the airway surface. The superficial airway epithelium exhibits complex regulatory pathways that blend ion transport to adjust ASL volume to maintain proper mucociliary clearance (MCC). We hypothesized that stresses generated by airflow and transmural pressures during breathing govern ASL volume by regulating the rate of epithelial ATP release. Luminal ATP, via interactions with apical membrane P2-purinoceptors, regulates the balance of active ion secretion versus absorption to maintain ASL volume at optimal levels for MCC. In this study we tested the hypothesis that cyclic compressive stress (CCS), mimicking normal tidal breathing, regulates ASL volume in airway epithelia. Polarized tracheobronchial epithelial cultures from normal and cystic fibrosis (CF) subjects responded to a range of CCS by increasing the rate of ATP release. In normal airway epithelia, the CCS-induced increase in ASL ATP concentration was sufficient to induce purinoceptor-mediated increases in ASL height and MCC, via inhibition of epithelial Na(+)-channel-mediated Na(+) absorption and stimulation of Cl(-) secretion through CFTR and the Ca(2+)-activated chloride channels. In contrast, static, non-oscillatory stress did not stimulate ATP release, ion transport or MCC, emphasizing the importance of rhythmic mechanical stress for airway defence. In CF airway cultures, which exhibit basal ASL depletion, CCS was partially effective, producing less ASL volume secretion than in normal cultures, but a level sufficient to restore MCC. The present data suggest that CCS may (1) regulate ASL volume in the normal lung and (2) improve clearance in the lungs of CF patients, potentially explaining the beneficial role of exercise in lung defence. PMID:17317749

  8. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders

    PubMed Central

    Ford, Anthony P.; Undem, Bradley J.

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral “hollow” organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  9. Expression and Function of K(ATP) Channels in Normal and Osteoarthritic Human Chondrocytes: Possible Role in Glucose Sensing

    PubMed Central

    Rufino, Ana T; Rosa, Susana C; Judas, Fernando; Mobasheri, Ali; Lopes, M Celeste; Mendes, Alexandrina F

    2013-01-01

    ATP-sensitive potassium [K(ATP)] channels sense intracellular ATP/ADP levels, being essential components of a glucose-sensing apparatus in various cells that couples glucose metabolism, intracellular ATP/ADP levels and membrane potential. These channels are present in human chondrocytes, but their subunit composition and functions are unknown. This study aimed at elucidating the subunit composition of K(ATP) channels expressed in human chondrocytes and determining whether they play a role in regulating the abundance of major glucose transporters, GLUT-1 and GLUT-3, and glucose transport capacity. The results obtained show that human chondrocytes express the pore forming subunits, Kir6.1 and Kir6.2, at the mRNA and protein levels and the regulatory sulfonylurea receptor (SUR) subunits, SUR2A and SUR2B, but not SUR1. The expression of these subunits was no affected by culture under hyperglycemia-like conditions. Functional impairment of the channel activity, using a SUR blocker (glibenclamide 10 or 20 nM), reduced the protein levels of GLUT-1 and GLUT-3 by approximately 30% in normal chondrocytes, while in cells from cartilage with increasing osteoarthritic (OA) grade no changes were observed. Glucose transport capacity, however, was not affected in normal or OA chondrocytes. These results show that K(ATP) channel activity regulates the abundance of GLUT-1 and GLUT-3, although other mechanisms are involved in regulating the overall glucose transport capacity of human chondrocytes. Therefore, K(ATP) channels are potential components of a broad glucose sensing apparatus that modulates glucose transporters and allows human chondrocytes to adjust to varying extracellular glucose concentrations. This function of K(ATP) channels seems to be impaired in OA chondrocytes. J. Cell. Biochem. 114: 1879–1889, 2013. © 2013 Wiley Periodicals, Inc. PMID:23494827

  10. Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity

    PubMed Central

    Huckstepp, Robert T R; id Bihi, Rachid; Eason, Robert; Spyer, K Michael; Dicke, Nikolai; Willecke, Klaus; Marina, Nephtali; Gourine, Alexander V; Dale, Nicholas

    2010-01-01

    Arterial , a major determinant of breathing, is detected by chemosensors located in the brainstem. These are important for maintaining physiological levels of in the blood and brain, yet the mechanisms by which the brain senses CO2 remain controversial. As ATP release at the ventral surface of the brainstem has been causally linked to the adaptive changes in ventilation in response to hypercapnia, we have studied the mechanisms of CO2-dependent ATP release in slices containing the ventral surface of the medulla oblongata. We found that CO2-dependent ATP release occurs in the absence of extracellular acidification and correlates directly with the level of . ATP release is independent of extracellular Ca2+ and may occur via the opening of a gap junction hemichannel. As agents that act on connexin channels block this release, but compounds selective for pannexin-1 have no effect, we conclude that a connexin hemichannel is involved in CO2-dependent ATP release. We have used molecular, genetic and immunocytochemical techniques to demonstrate that in the medulla oblongata connexin 26 (Cx26) is preferentially expressed near the ventral surface. The leptomeninges, subpial astrocytes and astrocytes ensheathing penetrating blood vessels at the ventral surface of the medulla can be loaded with dye in a CO2-dependent manner, suggesting that gating of a hemichannel is involved in ATP release. This distribution of CO2-dependent dye loading closely mirrors that of Cx26 expression and colocalizes to glial fibrillary acidic protein (GFAP)-positive cells. In vivo, blockers with selectivity for Cx26 reduce hypercapnia-evoked ATP release and the consequent adaptive enhancement of breathing. We therefore propose that Cx26-mediated release of ATP in response to changes in is an important mechanism contributing to central respiratory chemosensitivity. PMID:20736421

  11. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders.

    PubMed

    Ford, Anthony P; Undem, Bradley J

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral "hollow" organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  12. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft.

    PubMed

    Vroman, Rozan; Klaassen, Lauw J; Howlett, Marcus H C; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-05-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca²⁺ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic

  13. ATP flux through creatine kinase in the normal, stressed, and failing human heart.

    PubMed

    Weiss, Robert G; Gerstenblith, Gary; Bottomley, Paul A

    2005-01-18

    The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is "energy starved" has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 +/- 0.6 vs. 3.2 +/- 0.9 micromol/g of wet weight per sec, P <0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness. PMID:15647364

  14. ATP flux through creatine kinase in the normal, stressed, and failing human heart

    PubMed Central

    Weiss, Robert G.; Gerstenblith, Gary; Bottomley, Paul A.

    2005-01-01

    The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is “energy starved” has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 ± 0.6 vs. 3.2 ± 0.9 μmol/g of wet weight per sec, P < 0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness. PMID:15647364

  15. Extracellular ATP Hydrolysis Inhibits Synaptic Transmission by Increasing pH Buffering in the Synaptic Cleft

    PubMed Central

    Vroman, Rozan; Klaassen, Lauw J.; Howlett, Marcus H.C.; Cenedese, Valentina; Klooster, Jan; Sjoerdsma, Trijntje; Kamermans, Maarten

    2014-01-01

    Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation

  16. ATP synthesis in Halobacterium saccharovorum: evidence that synthesis may be catalysed by an F0F1-ATP synthase

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.

    1992-01-01

    Halobacterium saccharovorum synthesized ATP in response to a pH shift from 8 to 6.2. Synthesis was inhibited by carbonyl cyanide m-chloro-phenylhydrazone, dicyclohexylcarbodiimide, and azide. Nitrate, an inhibitor of the membrane-bound ATPase previously isolated from this organism, did not inhibit ATP synthesis. N-Ethymaleimide, which also inhibited this ATPase, stimulated the production of ATP. These observations suggested that H. saccharovorum synthesized and hydrolysed ATP using different enzymes and that the vacuolar-like ATPase activity previously described in H. saccharovorum was an ATPase whose function is yet to be identified.

  17. ATP7A trafficking and mechanisms underlying the distal motor neuropathy induced by mutations in ATP7A.

    PubMed

    Yi, Ling; Kaler, Stephen

    2014-05-01

    Diverse mutations in the gene encoding the copper transporter ATP7A lead to X-linked recessive Menkes disease or occipital horn syndrome. Recently, two unique ATP7A missense mutations, T994I and P1386S, were shown to cause isolated adult-onset distal motor neuropathy. These mutations induce subtle defects in ATP7A intracellular trafficking resulting in preferential accumulation at the plasma membrane compared to wild-type ATP7A. Immunoprecipitation assays revealed abnormal interaction between ATP7A(T994I) and p97/VCP, a protein mutated in two autosomal dominant forms of motor neuron disease. Small-interfering RNA knockdown of valosin-containing protein corrected ATP7A(T994I) mislocalization. For ATP7A(P1386S) , flow cytometry documented that nonpermeabilized fibroblasts bound a C-terminal ATP7A antibody, suggesting unstable insertion of the eighth transmembrane segment due to a helix-breaker effect of the amino acid substitution. This could sabotage interaction of ATP7A(P1386S) with adaptor protein complexes. These molecular events appear to selectively disturb normal motor neuron function and lead to neurologic illness that takes years and sometimes decades to develop. PMID:24754450

  18. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate

    PubMed Central

    Hackmann, Timothy J.; Firkins, Jeffrey L.

    2015-01-01

    From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio sp.), we have re-evaluated the contribution of electron transport phosphorylation (ETP) to ATP formation in this group. This group is unique in that most (76%) genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+), which drives ATP synthesis by ETP. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox) during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd (Fdred) and reduction of oxidized NAD. Further, 47 genomes possessed all six subunits of the Ech, which generates ΔμH+ from oxidation of Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ∼1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes). The total yield is ∼4.5 ATP/glucose after accounting for three ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation). Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein. PMID:26157432

  19. 2,2',4,4'-Tetrabromodiphenyl ether injures cell viability and mitochondrial function of mouse spermatocytes by decreasing mitochondrial proteins Atp5b and Uqcrc1.

    PubMed

    Huang, Shaoping; Wang, Jing; Cui, Yiqiang

    2016-09-01

    Our object was to explore direct effects and mechanism of BDE47 on GC2 (immortalized mouse spermatocyte). GC2 were exposed to DMSO, 0.1, 1, 10, 100μM BDE47 for 48h. Cell viability was detected by trypan-blue exclusion; ultrastructure by electron-microscopy; cell cycle, mitochondrial membrane motential (MMP), reactive oxygen species (ROS) by flow-cytometry; ATP production by luminometer; Atp5b, Uqcrc1, Bcl-2 level by WB. To explore whether the decreased mitochondrial proteins play an important role in apoptosis, MMP and apoptosis were detected after Atp5b or Uqcrc1 knockdown in GC2. Results showed BDE47 reduced cell viability, caused condensation of nuclear and vacuolated mitochondria, decreased MMP and ATP, induced ROS, cell cycle arrest at S and G2/M phase, reduced Atp5b, Uqcrc1, Bcl-2 in GC2. Knockdown of Atp5b or Uqcrc1 decreased MMP, induced apoptosis in GC2. Results suggested that BDE47 reduced cell viability, injured mitochondria in spermatocytes probably by decreasing mitochondrial protein Atp5b and Uqcrc1. PMID:27525561

  20. ATP technology, a tool for monitoring microbes in cooling systems

    SciTech Connect

    Czechowski, M.H.

    1996-11-01

    Rapid and accurate measurement of microbes is important for controlling the formation of troublesome microbial slimes in cooling water systems. One method for accomplishing this involves the measurement of Adenosine Triphosphate (ATP), a compound used to store and transfer energy in microbial cells. Cellular ATP is determined by chemically rupturing cells, which releases ATP that reacts with a luciferase reagent (the firefly enzyme). This reaction produces light which can be detected by a sensitive luminometer/photometer. The amount of light produced is proportional to the amount of ATP in the cell. A quantitative indication of biological activity is obtained in minutes, compared to traditional plating methods which often require days of incubation. The use of ATP for microbial detection has been available for many years; however, industrial usage was limited because the ATP procedure was neither easy to perform nor was it cost effective. Recently, advances in instrument technology, extractant chemistry and enzyme stability have made ATP detection more practical and less expensive. ATP technology can be used for determining microbial content in cooling water systems, predicting biocide effectiveness, and monitoring efficacy of biocides in cooling systems. A good correlation (0.85) was found between microbial ATP values and bacterial Colony Forming Units (CFU) in cooling waters. ATP technology was used to determine the effectiveness of different concentrations of a biocide in a test system within 1 hour after biocide addition. Test results accurately predicted the biocide efficacy in the cooling tower. Effectiveness of other biocides in cooling systems were monitored with results being obtained within minutes after sampling. These findings indicate the potential for ATP technology to be an effective tool in monitoring microbes in cooling water systems.

  1. ATP7B expression confers multidrug resistance through drug sequestration

    PubMed Central

    Moinuddin, F M; Shinsato, Yoshinari; Komatsu, Masaharu; Mitsuo, Ryoichi; Minami, Kentaro; Yamamoto, Masatatsu; Kawahara, Kohich; Hirano, Hirofumi; Arita, Kazunori; Furukawa, Tatsuhiko

    2016-01-01

    We previously reported that ATP7B is involved in cisplatin resistance and ATP7A confers multidrug resistance (MDR) in cancer cells. In this study, we show that ATP7B expressing cells also are resistant to doxorubicin, SN-38, etoposide, and paclitaxel as well as cisplatin. In ATP7B expressing cells, doxorubicin relocated from the nuclei to the late-endosome at 4 hours after doxorubicin exposure. EGFP-ATP7B mainly colocalized with doxorubicin. ATP7B has six metal binding sites (MBSs) in the N-terminal cytoplasmic region. To investigate the role of the MBSs of ATP7B in doxorubicin resistance, we used three mutant ATP7B (Cu0, Cu6 and M6C/S) expressing cells. Cu0 has no MBSs, Cu6 has only the sixth MBS and M6C/S carries CXXC to SXXS mutation in the sixth MBS. Cu6 expressing cells were less resistance to the anticancer agents than wild type ATP7B expressing cells, and had doxorubicin sequestration in the late-endosome. Cu0- and M6C/S-expressing cells were sensitive to doxorubicin. In these cells, doxorubicin did not relocalize to the late-endosome. EGFP-M6C/S mainly localized to the trans-Golgi network (TGN) even in the presence of copper. Thus the cysteine residues in the sixth MBS of ATP7B are essential for MDR phenotype. Finally, we found that ammonium chloride and tamoxifen suppressed late endosomal sequestration of doxorubicin, thereby attenuating drug resistance. These results suggest that the sequestration depends on the acidity of the vesicles partly. We here demonstrate that ATP7B confers MDR by facilitating nuclear drug efflux and late endosomal drug sequestration. PMID:26988911

  2. Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection.

    PubMed

    Nescerecka, Alina; Juhna, Talis; Hammes, Frederik

    2016-09-15

    Adenosine triphosphate (ATP) analysis is a cultivation-independent alternative method for the determination of bacterial viability in both chlorinated and non-chlorinated water. Here we investigated the behavior and stability of ATP during chlorination in detail. Different sodium hypochlorite doses (0-22.4 mg-Cl2 L(-1); 5 min exposure) were applied to an Escherichia coli pure culture suspended in filtered river water. We observed decreasing intracellular ATP with increasing chlorine concentrations, but extracellular ATP concentrations only increased when the chlorine dose exceeded 0.35 mg L(-1). The release of ATP from chlorine-damaged bacteria coincided with severe membrane damage detected with flow cytometry (FCM). The stability of extracellular ATP was subsequently studied in different water matrixes, and we found that extracellular ATP was stable in sterile deionized water and also in chlorinated water until extremely high chlorine doses (≤11.2 mg-Cl2 L(-1); 5 min exposure). In contrast, ATP decreased relatively slowly (k = 0.145 h(-1)) in 0.1 μm filtered river water, presumably due to degradation by either extracellular enzymes or the fraction of bacteria that were able to pass through the filter. Extracellular ATP decreased considerably faster (k = 0.368 h(-1)) during batch growth of a river water bacterial community. A series of growth potential tests showed that extracellular ATP molecules were utilized as a phosphorus source during bacteria proliferation. From the combined data we conclude that ATP released from bacteria at high chlorine doses could promote bacteria regrowth, contributing to biological instability in drinking water distribution systems. PMID:27295623

  3. Learning Reward Uncertainty in the Basal Ganglia.

    PubMed

    Mikhael, John G; Bogacz, Rafal

    2016-09-01

    Learning the reliability of different sources of rewards is critical for making optimal choices. However, despite the existence of detailed theory describing how the expected reward is learned in the basal ganglia, it is not known how reward uncertainty is estimated in these circuits. This paper presents a class of models that encode both the mean reward and the spread of the rewards, the former in the difference between the synaptic weights of D1 and D2 neurons, and the latter in their sum. In the models, the tendency to seek (or avoid) options with variable reward can be controlled by increasing (or decreasing) the tonic level of dopamine. The models are consistent with the physiology of and synaptic plasticity in the basal ganglia, they explain the effects of dopaminergic manipulations on choices involving risks, and they make multiple experimental predictions. PMID:27589489

  4. What do the basal ganglia do?

    PubMed

    Brown, P; Marsden, C D

    1998-06-13

    We propose that the basal ganglia support a basic attentional mechanism operating to bind input to output in the executive forebrain. Such focused attention provides the automatic link between voluntary effort, sensory input, and the calling up and operation of a sequence of motor programmes or thoughts. The physiological basis for this attentional mechanism may lie in the tendency of distributed, but related, cortical activities to synchronise in the gamma (30 to 50 Hz) band, as occurs in the visual cortex. Coherent and synchronised elements are more effective when convergence occurs during successive stages of processing, and in this way may come together to give the one gestalt or action. We suggest that the basal ganglia have a major role in facilitating this aspect of neuronal processing in the forebrain, and that loss of this function contributes to parkinsonism and abulia. PMID:9635969

  5. Increase in ATP consumption during shortening in skinned fibres from rabbit psoas muscle: effects of inorganic phosphate.

    PubMed Central

    Potma, E J; Stienen, G J

    1996-01-01

    1. The influence of inorganic phosphate (P(i)) on the relationship between ATP consumption and mechanical performance under isometric and dynamic conditions was investigated in chemically skinned single fibres or thin bundles from rabbit psoas muscle. Myofibrillar ATPase activity was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of NADH. NADH absorbance at 340 nm was determined inside a miniature (4 microliters) measuring chamber. 2. ATP consumption due to isovelocity shortenings was measured in the range between 0.0625 and 1 L0 s-1(L0: fibre length previous to shortening, corresponding to a sarcomere length of 2.64 microns), in solutions without added P(i) and with 30 mM P(i). To get an estimate of the amount of ATP utilized during the shortening phase, quick releases of various amplitudes were also performed. 3. After quick releases, sufficiently large that force dropped to zero, extra ATP was hydrolysed which was largely independent of the amplitude of the release and of the period of unloaded shortening. This extra amount, above the isometric ATP turnover, corresponded to about 0.7 and 0.5 ATP molecules per myosin head at 0 and 30 mM P(i), respectively. 4. ATP turnover during the isovelocity shortenings was higher than isometric turnover and increased with increasing shortening velocity up to about 2.7 times the isometric value. At low and moderate velocities of shortening (< 0.5 L0 s-1), P(i) reduced ATP turnover during isovelocity shortening and isometric ATP turnover to a similar extent, i.e. a decrease to about 77% between 0 and 30 mM added P(i). 5. The extra ATP turnover above the isometric value, resulting from isovelocity shortenings studied at different speeds, was proportional to the power output of the preparation, both in the absence and presence of added [P(i)]. 6. The effect of shortening velocity and [P(i)] on energy turnover can be understood in a cross-bridge model that consists of a detached, a non

  6. RFamide peptides in agnathans and basal chordates.

    PubMed

    Osugi, Tomohiro; Son, You Lee; Ubuka, Takayoshi; Satake, Honoo; Tsutsui, Kazuyoshi

    2016-02-01

    Since a peptide with a C-terminal Arg-Phe-NH2 (RFamide peptide) was first identified in the ganglia of the venus clam in 1977, RFamide peptides have been found in the nervous system of both invertebrates and vertebrates. In vertebrates, the RFamide peptide family includes gonadotropin-inhibitory hormone (GnIH), neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), pyroglutamylated RFamide peptide/26RFamide peptide (QRFP/26RFa), and kisspeptins (kiss1 and kiss2). They are involved in important functions such as the release of hormones, regulation of sexual or social behavior, pain transmission, reproduction, and feeding. In contrast to tetrapods and jawed fish, the information available on RFamide peptides in agnathans and basal chordates is limited, thus preventing further insights into the evolution of RFamide peptides in vertebrates. In this review, we focus on the previous research and recent advances in the studies on RFamide peptides in agnathans and basal chordates. In agnathans, the genes encoding GnIH, NPFF, and PrRP precursors and the mature peptides have been identified in lamprey (Petromyzon marinus) and hagfish (Paramyxine atami). Putative kiss1 and kiss2 genes have also been found in the genome database of lamprey. In basal chordates, namely, in amphioxus (Branchiostoma japonicum), a common ancestral form of GnIH and NPFF genes and their mature peptides, as well as the ortholog of the QRFP gene have been identified. The studies revealed that the number of orthologs of vertebrate RFamide peptides present in agnathans and basal chordates is greater than expected, suggesting that the vertebrate RFamide peptides might have emerged and expanded at an early stage of chordate evolution. PMID:26130238

  7. Active decorrelation in the basal ganglia.

    PubMed

    Wilson, C J

    2013-10-10

    The cytoarchitecturally-homogeneous appearance of the globus pallidus, subthalamic nucleus and substantia nigra has long been said to imply a high degree of afferent convergence and sharing of inputs by nearby neurons. Moreover, axon collaterals of neurons in the external segment of the globus pallidus and the substantia nigra pars reticulata arborize locally and make inhibitory synapses on other cells of the same type. These features suggest that the connectivity of the basal ganglia may impose spike-time correlations among the cells, and it has been puzzling that experimental studies have failed to demonstrate such correlations. One possible solution arises from studies of firing patterns in basal ganglia cells, which reveal that they are nearly all pacemaker cells. Their high rate of firing does not depend on synaptic excitation, but they fire irregularly because a dense barrage of synaptic inputs normally perturbs the timing of their autonomous activity. Theoretical and computational studies show that the responses of repetitively-firing neurons to shared input or mutual synaptic coupling often defy classical intuitions about temporal synaptic integration. The patterns of spike-timing among such neurons depend on the ionic mechanism of pacemaking, the level of background uncorrelated cellular and synaptic noise, and the firing rates of the neurons, as well as the properties of their synaptic connections. Application of these concepts to the basal ganglia circuitry suggests that the connectivity and physiology of these nuclei may be configured to prevent the establishment of permanent spike-timing relationships between neurons. The development of highly synchronous oscillatory patterns of activity in Parkinson's disease may result from the loss of pacemaking by some basal ganglia neurons, and accompanying breakdown of the mechanisms responsible for active decorrelation. PMID:23892007

  8. Basal hydraulic conditions of Ice Stream B

    NASA Technical Reports Server (NTRS)

    Engelhardt, Hermann; Kamb, Barclay

    1993-01-01

    Fifteen boreholes have been drilled to the base of Ice Stream B in the vicinity of UpB Camp. The boreholes are spread over an area of about 500 x 1000 m. Several till cores were retrieved from the bottom of the 1000-m-deep holes. Laboratory tests using a simple shear box revealed a yield strength of basal till of 2 kPa. This agrees well with in-situ measurements using a shear vane. Since the average basal shear stress of Ice Stream B with a surface slope of 0.1 degree is about 20 kPa, the ice stream cannot be supported by till that weak. Additional support for this conclusion comes from the basal water pressure that has been measured in all boreholes as soon as the hot water drill reached bottom. In several boreholes, the water pressure has been continuously monitored; in two of them, over several years. The water pressure varies but stays within 1 bar of flotation where ice overburden pressure and water pressure are equal. The ratio of water and overburden pressure lies between 0.986 and 1.002. This is an extremely high value as compared to other fast-moving ice masses; e.g., Variegated Glacier in surge has a ratio of 0.8, and Columbia Glacier - a fast-moving tidewater glacier - has a ratio of 0.9. It implies that water flow under the glacier occurs in a thin film and not in conduits that would drain away water too rapidly. It also implies that basal sliding must be very effective. Water flow under the glacier was measured in a salt-injection experiment where a salt pulse was released at the bottom of a borehole while 60 m down-glacier, the electrical resistance was measured between two other boreholes. A flow velocity of 7 mm/s was obtained.

  9. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca2+ signals and an IL-6 autocrine loop

    PubMed Central

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique

    2014-01-01

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  10. Electrical stimulation induces IL-6 in skeletal muscle through extracellular ATP by activating Ca(2+) signals and an IL-6 autocrine loop.

    PubMed

    Bustamante, Mario; Fernández-Verdejo, Rodrigo; Jaimovich, Enrique; Buvinic, Sonja

    2014-04-15

    Interleukin-6 (IL-6) is an important myokine that is highly expressed in skeletal muscle cells upon exercise. We assessed IL-6 expression in response to electrical stimulation (ES) or extracellular ATP as a known mediator of the excitation-transcription mechanism in skeletal muscle. We examined whether the canonical signaling cascade downstream of IL-6 (IL-6/JAK2/STAT3) also responds to muscle cell excitation, concluding that IL-6 influences its own expression through a positive loop. Either ES or exogenous ATP (100 μM) increased both IL-6 expression and p-STAT3 levels in rat myotubes, a process inhibited by 100 μM suramin and 2 U/ml apyrase. ATP also evoked IL-6 expression in both isolated skeletal fibers and extracts derived from whole FDB muscles. ATP increased IL-6 release up to 10-fold. STAT3 activation evoked by ATP was abolished by the JAK2 inhibitor HBC. Blockade of secreted IL-6 with a neutralizing antibody or preincubation with the STAT3 inhibitor VIII reduced STAT3 activation evoked by extracellular ATP by 70%. Inhibitor VIII also reduced by 70% IL-6 expression evoked by ATP, suggesting a positive IL-6 loop. In addition, ATP increased up to 60% the protein levels of SOCS3, a negative regulator of the IL-6 signaling pathway. On the other hand, intracellular calcium chelation or blockade of IP3-dependent calcium signals abolished STAT3 phosphorylation evoked by either extracellular ATP or ES. These results suggest that expression of IL-6 in stimulated skeletal muscle cells is mediated by extracellular ATP and nucleotide receptors, involving IP3-dependent calcium signals as an early step that triggers a positive IL-6 autocrine loop. PMID:24518675

  11. The azetidine derivative, KHG26792 protects against ATP-induced activation of NFAT and MAPK pathways through P2X7 receptor in microglia.

    PubMed

    Kim, Eun-A; Cho, Chang Hun; Kim, Jiae; Hahn, Hoh-Gyu; Choi, Soo Young; Yang, Seung-Ju; Cho, Sung-Woo

    2015-12-01

    Azetidine derivatives are of interest for drug development because they may be useful therapeutic agents. However, their mechanisms of action remain to be completely elucidated. Here, we have investigated the effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792) on ATP-induced activation of NFAT and MAPK through P2X7 receptor in the BV-2 mouse microglial cell line. KHG26792 decreased ATP-induced TNF-α release from BV-2 microglia by suppressing, at least partly, P2X7 receptor stimulation. KHG26792 also inhibited the ATP-induced increase in IL-6, PGE2, NO, ROS, CXCL2, and CCL3. ATP induced NFAT activation through P2X7 receptor, with KHG26792 reducing the ATP-induced NFAT activation. KHG26792 inhibited an ATP-induced increase in iNOS protein and ERK phosphorylation. KHG26792 prevented an ATP-induced increase in MMP-9 activity through the P2X7 receptor as a result of degradation of TIMP-1 by cathepsin B. Our data provide mechanistic insights into the role of KHG26792 in the inhibition of TNF-α produced via P2X7 receptor-mediated activation of NFAT and MAPK pathways in ATP-treated BV-2 cells. This study highlights the potential use of KHG26792 as a therapeutic agent for the many diseases of the CNS related to activated microglia. PMID:26522449

  12. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties

    PubMed Central

    Pitman, Melissa R.; Powell, Jason A.; Coolen, Carl; Moretti, Paul A.B.; Zebol, Julia R.; Pham, Duyen H.; Finnie, John W.; Don, Anthony S.; Ebert, Lisa M.; Bonder, Claudine S.; Gliddon, Briony L.; Pitson, Stuart M.

    2015-01-01

    The dynamic balance of cellular sphingolipids, the sphingolipid rheostat, is an important determinant of cell fate, and is commonly deregulated in cancer. Sphingosine 1-phosphate is a signaling molecule with anti-apoptotic, pro-proliferative and pro-angiogenic effects, while conversely, ceramide and sphingosine are pro-apoptotic. The sphingosine kinases (SKs) are key regulators of this sphingolipid rheostat, and are attractive targets for anti-cancer therapy. Here we report a first-in-class ATP-binding site-directed small molecule SK inhibitor, MP-A08, discovered using an approach of structural homology modelling of the ATP-binding site of SK1 and in silico docking with small molecule libraries. MP-A08 is a highly selective ATP competitive SK inhibitor that targets both SK1 and SK2. MP-A08 blocks pro-proliferative signalling pathways, induces mitochondrial-associated apoptosis in a SK-dependent manner, and reduces the growth of human lung adenocarcinoma tumours in a mouse xenograft model by both inducing tumour cell apoptosis and inhibiting tumour angiogenesis. Thus, this selective ATP competitive SK inhibitor provides a promising candidate for potential development as an anti-cancer therapy, and also, due to its different mode of inhibition to other known SK inhibitors, both validates the SKs as targets for anti-cancer therapy, and represents an important experimental tool to study these enzymes. PMID:25788259

  13. Dependence of structure stability and integrity of aerobic granules on ATP and cell communication.

    PubMed

    Jiang, Bo; Liu, Yu

    2013-06-01

    Aerobic granules are dense and compact microbial aggregates with various bacterial species. Recently, aerobic granulation technology has been extensively explored for treatment of municipal and industrial wastewaters. However, little information is currently available with regard to their structure stability and integrity at levels of energy metabolism and cell communication. In the present study, a typical chemical uncoupler, 3,3',4',5-tetrachlorosalicylanilide with the power to dissipate proton motive force and subsequently inhibit adenosine triphosphate (ATP) generation, was used to investigate possible roles of ATP and cell communication in maintaining the structure stability and integrity of aerobic granules. It was found that inhibited ATP synthesis resulted in the reduced production of autoinducer-2 and N-acylhomoserine lactones essential for cell communication, while lowered extracellular polymeric substance (EPS) production was also observed. As a consequence, aerobic granules appeared to break up. This study showed that ATP-dependent quorum sensing and EPS were essential for sustaining the structure stability and integrity of aerobic granules. PMID:23011346

  14. Role of erythrocyte-released ATP in the regulation of microvascular oxygen supply in skeletal muscle.

    PubMed

    Ellsworth, M L; Ellis, C G; Sprague, R S

    2016-03-01

    In a 1914 book entitled The Respiratory Function of the Blood, Joseph Barcroft stated that 'the cell takes what it needs and leaves the rest'. He postulated that there must be both a 'call for oxygen' and a 'mechanism by which the call elicits a response...' In the past century, intensive investigation has provided significant insights into the haemodynamic and biophysical mechanisms involved in supplying oxygen to skeletal muscle. However, the identification of the mechanism by which tissue oxygen needs are sensed and the affector responsible for altering the upstream vasculature to enable the need to be appropriately met has been a challenge. In 1995, Ellsworth et al. proposed that the oxygen-carrying erythrocyte, by virtue of its capacity to release the vasoactive mediator ATP in response to a decrease in oxygen saturation, could serve both roles. Several in vitro and in situ studies have established that exposure of erythrocytes to reduced oxygen tension induces the release of ATP which does result in a conducted arteriolar vasodilation with a sufficiently rapid time course to make the mechanism physiologically relevant. The components of the signalling pathway for the controlled release of ATP from erythrocytes in response to exposure to low oxygen tension have been determined. In addition, the implications of defective ATP release on human pathological conditions have been explored. This review provides a perspective on oxygen supply and the role that such a mechanism plays in meeting the oxygen needs of skeletal muscle. PMID:26336065

  15. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction1[OPEN

    PubMed Central

    Zhao, Guochao; Shi, Jianxin; Liang, Wanqi; Xue, Feiyang; Luo, Qian; Zhu, Lu; Qu, Guorun; Chen, Mingjiao; Schreiber, Lukas; Zhang, Dabing

    2015-01-01

    Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development. PMID:26392263

  16. Superstoichiometric Ca2+ uptake supported by hydrolysis of endogenous ATP in rat liver mitochondria.

    PubMed

    Brand, M D; Lehninger, A L

    1975-10-10

    The nature of the energy store causing rapid superstoichiometric leads to H+/2e minus ejection and leads to Ca2+/2e minus uptake ratios in rat liver mitochondria pulsed with Ca2+ has been investigated. The extent and the rate of the initial fast superstoichiometric phase of H plus ejection were greatly reduced by oligomycin and other ATPase inhibitors; the subsequent shoichiometric phase was unaffected. No such inhibition was seen with atractyloside. Similarly, the initial fast phase of Ca2+ uptake was reduced in extent by oligomycin, whereas the slower stoichiometric phase was unaffected. Moreover, the ATP content of mitochondria previously incubated with succinate decreased by about 80% within 5 s after pulsing with Ca2+. The energy store for superstoichiometric Ca2+ uptake and H plus injection is thus identified as endogenous ATP. PMID:1176454

  17. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy.

    PubMed

    Jonckheere, An I; Hogeveen, Marije; Nijtmans, Leo; van den Brand, Mariel; Janssen, Antoon; Diepstra, Heleen; van den Brandt, Frans; van den Heuvel, Bert; Hol, Frans; Hofste, Tom; Kapusta, Livia; Dillmann, U; Shamdeen, M; Smeitink, J; Smeitink, J; Rodenburg, Richard

    2009-01-01

    To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder.Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing.A homoplasmic nonsense mutation m.8529G→A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNAWe describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme. PMID:21686774

  18. Role of ATP-conductive anion channel in ATP release from neonatal rat cardiomyocytes in ischaemic or hypoxic conditions

    PubMed Central

    Dutta, Amal K; Sabirov, Ravshan Z; Uramoto, Hiromi; Okada, Yasunobu

    2004-01-01

    It is known that the level of ATP in the interstitial spaces within the heart during ischaemia or hypoxia is elevated due to its release from a number of cell types, including cardiomyocytes. However, the mechanism by which ATP is released from these myocytes is not known. In this study, we examined a possible involvement of the ATP-conductive maxi-anion channel in ATP release from neonatal rat cardiomyocytes in primary culture upon ischaemic, hypoxic or hypotonic stimulation. Using a luciferin–luciferase assay, it was found that ATP was released into the bulk solution when the cells were subjected to chemical ischaemia, hypoxia or hypotonic stress. The swelling-induced ATP release was inhibited by the carboxylate-and stilbene-derivative anion channel blockers, arachidonic acid and Gd3+, but not by glibenclamide. The local concentration of ATP released near the cell surface of a single cardiomyocyte, measured by a biosensor technique, was found to exceed the micromolar level. Patch-clamp studies showed that ischaemia, hypoxia or hypotonic stimulation induced the activation of single-channel events with a large unitary conductance (∼390 pS). The channel was selective to anions and showed significant permeability to ATP4− (PATP/PCl ∼ 0.1) and MgATP2− (PATP/PCl ∼ 0.16). The channel activity exhibited pharmacological properties essentially identical to those of ATP release. These results indicate that neonatal rat cardiomyocytes respond to ischaemia, hypoxia or hypotonic stimulation with ATP release via maxi-anion channels. PMID:15272030

  19. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells

    PubMed Central

    Ceddia, Rolando B; Sweeney, Gary

    2004-01-01

    Recent observations have suggested that creatine supplementation might have a beneficial effect on glucoregulation in skeletal muscle. However, conclusive studies on the direct effects of creatine on glucose uptake and metabolism are lacking. The objective of this study was to investigate the effects of creatine supplementation on basal and insulin-stimulated glucose transporter (GLUT4) translocation, glucose uptake, glycogen content, glycogen synthesis, lactate production, glucose oxidation and AMP-activated protein kinase (AMPK) phosphorylation in L6 rat skeletal muscle cells. Four treatment groups were studied: control, insulin (100 nm), creatine (0.5 mm) and creatine + insulin. After 48 h of creatine supplementation the creatine and phosphocreatine contents of L6 myoblasts increased by ∼9.3- and ∼5.1-fold, respectively, but the ATP content of the cells was not affected. Insulin significantly increased 2-deoxyglucose uptake (∼1.9-fold), GLUT4 translocation (∼1.8-fold), the incorporation of D-[U-14C]glucose into glycogen (∼2.3-fold), lactate production (∼1.5-fold) and 14CO2 production (∼1.5-fold). Creatine neither altered the glycogen and GLUT4 contents of the cells nor the insulin-stimulated rates of 2-DG uptake, GLUT4 translocation, glycogen synthesis and glucose oxidation. However, creatine significantly reduced by ∼42% the basal rate of lactate production and increased by ∼40% the basal rate of 14CO2 production. This is in agreement with the ∼35% increase in citrate synthase activity and also with the ∼2-fold increase in the phosphorylation of both α-1 and α-2 isoforms of AMPK after creatine supplementation. We conclude that 48 h of creatine supplementation does not alter insulin-stimulated glucose uptake and glucose metabolism; however, it activates AMPK, shifts basal glucose metabolism towards oxidation and reduces lactate production in L6 rat skeletal muscle cells. PMID:14724211

  20. Basal cell nevus syndrome - close-up of palm (image)

    MedlinePlus

    ... skeletal abnormalities. Skin manifestations include pits in the palms and soles, and numerous basal cell carcinomas. This ... close-up of the pits found in the palm of an individual with basal cell nevus syndrome.

  1. Effects of ATP7A overexpression in mice on copper transport and metabolism in lactation and gestation

    PubMed Central

    Wadwa, Jarrod; Chu, Yu‐Hsiang; Nguyen, Nhu; Henson, Thomas; Figueroa, Alyssa; Llanos, Roxana; Ackland, Margaret Leigh; Michalczyk, Agnes; Fullriede, Hendrik; Brennan, Grant; Mercer, Julian F. B.; Linder, Maria C.

    2014-01-01

    Abstract Placentae and mammary epithelial cells are unusual in robustly expressing two copper “pumps”, ATP7A and B, raising the question of their individual roles in these tissues in pregnancy and lactation. Confocal microscopic evidence locates ATP7A to the fetal side of syncytiotrophoblasts, suggesting a role in pumping Cu towards the fetus; and to the basolateral (blood) side of lactating mammary epithelial cells, suggesting a role in recycling Cu to the blood. We tested these concepts in wild‐type C57BL6 mice and their transgenic counterparts that expressed hATP7A at levels 10–20× those of endogenous mAtp7a. In lactation, overexpression of ATP7A reduced the Cu concentrations of the mammary gland and milk ~50%. Rates of transfer of tracer 64Cu to the suckling pups were similarly reduced over 30–48 h, as was the total Cu in 10‐day ‐old pups. During the early and middle periods of gestation, the transgenic litters had higher Cu concentrations than the wild‐type, placental Cu showing the reverse trend; but this difference was lost by the first postnatal day. The transgenic mice expressed ATP7A in some hepatocytes, so we investigated the possibility that metalation of ceruloplasmin (Cp) might be enhanced. Rates of 64Cu incorporation into Cp, oxidase activity, and ratios of holo to apoceruloplasmin were unchanged. We conclude that in the lactating mammary gland, the role of ATP7A is to return Cu to the blood, while in the placenta it mediates Cu delivery to the fetus and is the rate‐limiting step for fetal Cu nutrition during most of gestation in mice. PMID:24744874

  2. Potentiation by endogenously released ATP of spontaneous transmitter secretion at developing neuromuscular synapses in Xenopus cell cultures.

    PubMed Central

    Fu, W. M.; Huang, F. L.

    1994-01-01

    1. Previously we have shown that extracellular application of ATP, a substance co-stored and co-released with acetylcholine (ACh) in the peripheral nervous system, markedly potentiated the frequency of spontaneous synaptic currents (SSCs) produced by ACh. In the present study, we have further characterized the purinoceptor which mediates the potentiation effect of ATP and the role of endogenously released ATP. 2. Pretreatment with a P2-purinoceptor antagonist, suramin (0.3 mM), but not a P1-purinoceptor antagonist, 8-phenyltheophylline (0.1 mM), prevented the potentiating effect of ATP. 3. We studied the role of endogenously released ATP by examining the effect of a specific P2-purinoceptor antagonist on the frequency of spontaneous synaptic events at high-activity synapses (> or = 3 Hz) and found that suramin, but not 8-phenyltheophylline markedly reduced the frequency of SSCs at these high-activity synapses. In addition, desensitizing the P2-purinoceptor with alpha,beta-methylene ATP also produced similar effects to suramin. 4. Extracellular application of the L-type Ca2+ channel blockers, verapamil, nifedipine or diltiazem (10 microM each) reduced SSC frequency of high-activity synapses, while the N-type Ca2+ channel blocker, omega-conotoxin had no appreciable effect. The potentiating effect of ATP was further prevented by pretreatment with the L-type Ca2+ channel blockers. On the other hand, Bay K 8644, which is a depolarization-dependent L-type Ca2+ channel agonist, potentiated SSC frequency at these high-activity synapses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8019765

  3. Radioprotective effects of ATP in human blood ex vivo

    SciTech Connect

    Swennen, Els L.R. Dagnelie, Pieter C.; Van den Beucken, Twan; Bast, Aalt

    2008-03-07

    Damage to healthy tissue is a major limitation of radiotherapy treatment of cancer patients, leading to several side effects and complications. Radiation-induced release of pro-inflammatory cytokines is thought to be partially responsible for the radiation-associated complications. The aim of the present study was to investigate the protective effects of extracellular ATP on markers of oxidative stress, radiation-induced inflammation and DNA damage in irradiated blood ex vivo. ATP inhibited radiation-induced TNF-{alpha} release and increased IL-10 release. The inhibitory effect of ATP on TNF- {alpha} release was completely reversed by adenosine 5'-O-thiomonophosphate, indicating a P2Y{sub 11} mediated effect. Furthermore, ATP attenuated radiation-induced DNA damage immediate, 3 and 6 h after irradiation. Our study indicates that ATP administration alleviates radiation-toxicity to blood cells, mainly by inhibiting radiation-induced inflammation and DNA damage.

  4. Amperometric ATP biosensor based on polymer entrapped enzymes.

    PubMed

    Kueng, Angelika; Kranz, Christine; Mizaikoff, Boris

    2004-05-15

    A dual enzyme electrode for the detection of adenosine-5'-triphosphate (ATP) at physiologically relevant pH levels was developed by co-immobilization of the enzymes glucose oxidase (GOD) and hexokinase (HEX) using pH-shift induced deposition of enzyme containing polymer films. Application of a simple electrochemical procedure for the co-immobilization of the enzymes at electrode surfaces exhibits a major improvement of sensitivity, response time, reproducibility, and ease of fabrication of ATP biosensors. Competition between glucose oxidase and hexokinase for the substrate glucose involving ATP as a co-substrate allows the determination of ATP concentrations. Notable control on the immobilization process enables fabrication of micro biosensors with a diameter of 25 microm. The presented concept provides the technological basis for a new generation of fast responding, sensitive, and robust biosensors for the detection of ATP at physiological pH values with a detection limit of 10 nmol l(-1). PMID:15046763

  5. Regulation of ATP supply during muscle contraction: theoretical studies.

    PubMed Central

    Korzeniewski, B

    1998-01-01

    The dynamic computer model of oxidative phosphorylation developed previously and successfully tested for large-scale changes in fluxes and metabolite concentrations was used to study the question of how the rate of ATP production by oxidative phosphorylation is adjusted to meet the energy demand during muscle contraction, which causes a great increase in ATP consumption in relation to the resting state. The changes in the respiration rate and ATP/ADP ratio after the onset of maximal work measured experimentally were compared with simulated changes in the respiration rate and ATP/ADP in several different cases, assuming direct activation of different steps by an external effector. On the basis of the computer simulations performed, it was possible to conclude which enzymes/metabolic blocks should be directly activated to cause the experimentally observable changes in fluxes and metabolite concentrations. The theoretical results obtained suggest that the parallel direct activation of actinomyosin-ATP-ase and oxidative phosphorylation by an external effector (for example calcium ions) is the main mechanism responsible for fitting of ATP production to ATP consumption, while the negative feedback via an increase in ADP concentration (decrease in ATP/ADP), which indirectly activates the ATP supply, plays only a minor role. Additionally, the conclusion is drawn that most of the oxidative phosphorylation steps should be directly activated in order to explain the observed changes in the respiration rate and ATP/ADP ratio (and also in other parameters) during muscle contraction. It is suggested that there should exist a universal external activator/regulatory mechanism which causes a parallel stimulation of different enzymes/processes. A possible nature of such an activator is shortly discussed. PMID:9494084

  6. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-02-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  7. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    PubMed Central

    Scheyer, Torsten M; Sander, P.Martin

    2007-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, ‘aquatic’ turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record. PMID:17519193

  8. Energy intake and basal metabolic rate during maintenance chemotherapy.

    PubMed Central

    Bond, S A; Han, A M; Wootton, S A; Kohler, J A

    1992-01-01

    Energy intakes and basal metabolic rates were determined in 26 children receiving chemotherapy in remission from acute lymphoblastic leukaemia or solid tumours and 26 healthy controls matched for age and sex. Body weight and height on the two groups were comparable, although one patient was stunted (height for age) and three others wasted (weight for height). Energy intake in the patients at 7705 kJ/day (1842 kcal) and controls at 7773 kJ/day (1866 kcal)) and basal metabolic rate (BMR) in the patients at 4873 kJ/day (1172 kcal) and controls 4987 kJ/day (1196 kcal) for the two groups were not significantly different. Although the energy intake:BMR ratio for both groups was 1.59, the range of values for the patient group was large (0.96-2.73) and appeared to be greater than that observed in the control group (1.23-2.46). These results demonstrated that during this period of chemotherapy there was no evidence of raised energy expenditure at rest or reduced energy intake in the patient group. No indication of undernutrition in the patients as a group was evident, although some individuals might require further clinical nutritional assessment. PMID:1543386

  9. Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast

    SciTech Connect

    Choi, Joon-Seok; Lee, Cheol-Koo

    2013-09-13

    Highlights: •CR decreases total ROS and mitochondrial superoxide during the chronological aging. •CR does not affect the levels of oxidative damage on protein and DNA. •CR contributes extension of chronological lifespan by maintenance of ATP level -- Abstract: The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.

  10. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts

    PubMed Central

    O-Uchi, Jin; Jhun, Bong Sook; Hurst, Stephen; Bisetto, Sara; Gross, Polina; Chen, Ming; Kettlewell, Sarah; Park, Jongsun; Oyamada, Hideto; Smith, Godfrey L.; Murayama, Takashi

    2013-01-01

    Ca+ influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca2+ influx is mainly mediated by the mitochondrial Ca2+ uniporter (MCU). Growing evidence also indicates that mitochondrial Ca2+ influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca2+ uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca2+ influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca2+ transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca2+ elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca2+-induced ATP production in cardiac H9c2 myoblasts. PMID:24124188

  11. The modulatory effect of MgATP on heterotrimeric smooth muscle myosin phosphatase activity.

    PubMed

    Sato, O; Ogawa, Y

    1999-10-01

    Regulation of the enzymatic activity of heterotrimeric smooth muscle myosin phosphatase (SMMP) by MgATP was examined using phosphorylated myosin (P-myosin), heavy meromyosin (P-HMM), subfragment-1 (P-S1), and 20 kDa myosin light chain (P-MLC(20)) as substrates. The activity toward P-myosin and P-HMM was dose-dependently reduced by MgATP, whereas that toward P-S1 or P-MLC(20) was unchanged. The reduction was mainly due to a decrease in the affinity of SMMP for the substrate with the unchanged maximum activity. This regulation is entirely new in the respect that the responsible molecule is the substrate, not SMMP. Because P-myosin derived from myosin stored in 50% glycerol at -20 degrees C was insensitive to MgATP, the proper integrity of P-myosin is required. Coexisting myosin did not affect this regulation, but it inhibited the SMMP activity in the absence of MgATP. With P-myosin, the enzyme activity was biphasically steeply dependent on the ionic strength. This requires that determinations are conducted with a fixed ionic strength. The Q(10) value was about 2, which was quite similar to that for myosin light chain kinase. These results suggest that the rate of dephosphorylation of P-myosin is lowered at rest, but that it may reach a value comparable to the rate of phosphorylation of myosin in the sarcoplasm with the increased level of P-myosin during muscle activation. This regulation by MgATP may underlie the "latch mechanism" in some respects. PMID:10502690

  12. PGC-1α regulates the cell cycle through ATP and ROS in CH1 cells* #

    PubMed Central

    Fu, Xu-feng; Yao, Kun; Du, Xing; Li, Yan; Yang, Xiu-yu; Yu, Min; Li, Mei-zhang; Cui, Qing-hua

    2016-01-01

    Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a transcriptional co-activator involved in mitochondrial biogenesis, respiratory capacity, and oxidative phosphorylation (OXPHOS). PGC-1α plays an important role in cellular metabolism and is associated with tumorigenesis, suggesting an involvement in cell cycle progression. However, the underlying mechanisms mediating its involvement in these processes remain unclear. To elucidate the signaling pathways involved in PGC-1α function, we established a cell line, CH1 PGC-1α, which stably overexpresses PGC-1α. Using this cell line, we found that over-expression of PGC-1α stimulated extra adenosine triphosphate (ATP) and reduced reactive oxygen species (ROS) production. These effects were accompanied by up-regulation of the cell cycle checkpoint regulators CyclinD1 and CyclinB1. We hypothesized that ATP and ROS function as cellular signals to regulate cyclins and control cell cycle progression. Indeed, we found that reduction of ATP levels down-regulated CyclinD1 but not CyclinB1, whereas elevation of ROS levels down-regulated CyclinB1 but not CyclinD1. Furthermore, both low ATP levels and elevated ROS levels inhibited cell growth, but PGC-1α was maintained at a constant level. Together, these results demonstrate that PGC-1α regulates cell cycle progression through modulation of CyclinD1 and CyclinB1 by ATP and ROS. These findings suggest that PGC-1α potentially coordinates energy metabolism together with the cell cycle. PMID:26834014

  13. Uncoupling of ATP-depletion and cell death in human dopaminergic neurons.

    PubMed

    Pöltl, Dominik; Schildknecht, Stefan; Karreman, Christiaan; Leist, Marcel

    2012-08-01

    The mitochondrial inhibitor 1-methyl-4-phenylpyridinium (MPP(+)) is the toxicologically relevant metabolite of 1-methyl-4-phenyltetrahydropyridine (MPTP), which causes relatively selective degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic LUHMES cells were used to investigate whether ATP-depletion can be uncoupled from cell death as a downstream event in these fully post-mitotic human neurons. Biochemical assays indicated that in the homogeneously differentiated cell cultures, MPP(+) was taken up by the dopamine transporter (DAT). MPP(+) then triggered oxidative stress and caspase activation, as well as ATP-depletion followed by cell death. Enhanced survival of the neurons in the presence of agents interfering with mitochondrial pathology, such as the fission inhibitor Mdivi-1 or a Bax channel blocker suggested a pivotal role of mitochondria in this model. However, these compounds did not prevent cellular ATP-depletion. To further investigate whether cells could be rescued despite respiratory chain inhibition by MPP(+), we have chosen a diverse set of pharmacological inhibitors well-known to interfere with MPP(+) toxicity. The antioxidant ascorbate, the iron chelator desferoxamine, the stress kinase inhibitor CEP1347, and different caspase inhibitors reduced cell death, but allowed ATP-depletion in protected cells. None of these compounds interfered with MPP(+) accumulation in the cells. These findings suggest that ATP-depletion, as the initial mitochondrial effect of MPP(+), requires further downstream processes to result in neuronal death. These processes may form self-enhancing signaling loops, that aggravate an initial energetic impairment and eventually determine cell fate. PMID:22206971

  14. Inhibition of ATP synthesis by fenbufen and its conjugated metabolites in rat liver mitochondria.

    PubMed

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2016-03-01

    Fenbufen is an arylpropionic acid derivative belonging to the group of non-steroidal anti-inflammatory drugs (NSAIDs). Even though fenbufen is considered a safe drug, some adverse reactions including hepatic events have been reported. To investigate whether mitochondrial damage could be involved in the drug induced liver injury (DILI) by fenbufen, the inhibitory effect of fenbufen and its conjugated metabolites on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria was investigated. Fenbufen glucuronide (F-GlcA), fenbufen-N-acetyl cysteine-thioester (F-NAC) and fenbufen-S-glutathione thioester (F-SG) were found to be more potent inhibitors compared to parent fenbufen (F), whereas fenbufen-O-carnitine (F-carn), fenbufen-glycine (F-gly) and fenbufen-N-acetyl lysine amide (F-NAL) were less potent compared to fenbufen. Fenbufen-CoA thioester (F-CoA) was equally potent as fenbufen in inhibiting ATP synthesis. Fenbufen showed time and concentration dependent inhibition of ATP synthesis with Kinact of 4.4 min(-1) and KI of 0.88 μM and Kinact/KI ratio of 5.01 min(-1) μM(-1). Data show that fenbufen did not act through opening MPT pore, nor did incubation of mitochondria with reduced GSH and fenbufen show any protective effect on fenbufen mediated inhibition of oxidative phosphorylation. Inclusion of NADPH in mitochondrial preparations with fenbufen did not modulate the inhibitory effects, suggesting no role of CYP mediated oxidative metabolites on the ATP synthesis in isolated mitochondria. The results from the present experiments provide evidence that fenbufen and its metabolites could be involved in mitochondrial toxicity through inhibition of ATP synthesis. PMID:26612354

  15. Demonstration of a transitory tight binding of ATP and of committed Pi and ADP during ATP synthesis by chloroplasts

    PubMed Central

    Smith, Daniel J.; Boyer, Paul D.

    1976-01-01

    Rapid mixing, quenching, and filtration experiments with chloroplast thylakoid membranes, with energization by acid-base transition, demonstrate that an ATP tightly bound to the isolated membranes is a transient intermediate in the catalytic sequence for ATP synthesis. The experiments also show that most of the Pi and ADP bound at a catalytic site is committed to ATP formation without interchange with medium Pi or ADP. Other results give evidence that upon energization, the tightly bound ADP that is detectable in isolated thylakoid membranes or coupling factor ATPase is rapidly released to the medium from a catalytic site. These findings support an alternating site model in which an energy-requiring conformational transition loosens ATP binding at one site and simultaneously promotes Pi and ADP binding at the other site in a manner favoring ATP formation. PMID:16592374

  16. Comparison of computer-integrated patient-controlled epidural analgesia with no initial basal infusion versus moderate basal infusion for labor and delivery: A randomized controlled trial

    PubMed Central

    Sng, Ban Leong; Woo, David; Leong, Wan Ling; Wang, Hao; Assam, Pryseley Nkouibert; Sia, Alex TH

    2014-01-01

    Background and Aims: Computer-integrated patient-controlled epidural analgesia (CIPCEA) is a novel epidural drug delivery system. It automatically adjusts the basal infusion based on the individual's need for analgesia as labor progresses. Materials and Methods: This study compared the time-weighted local anesthetic (LA) consumption by comparing parturients using CIPCEA with no initial basal infusion (CIPCEA0) with CIPCEA with initial moderate basal infusion of 5 ml/H (CIPCEA5). We recruited 76 subjects after ethics approval. The computer integration of CIPCEA titrate the basal infusion to 5, 10, 15, or 20 ml/H if the parturient required respectively, one, two, three, or four patient demands in the previous hour. The basal infusion reduced by 5 ml/H if there was no demand in the previous hour. The sample size was calculated to show equivalence in LA consumption. Results: The time-weighted LA consumption between both groups were similar with CIPCEA0 group (mean [standard deviation (SD)] 8.9 [3.5] mg/H) compared to the CIPCEA5 group (mean [SD] 9.9 [3.5] mg/H), P = 0.080. Both groups had a similar incidence of breakthrough pain, duration of the second stage, mode of delivery, and patient satisfaction. However, more subjects in the CIPCEA0 group required patient self-bolus. There were no differences in fetal outcomes. Discussion: Both CIPCEA regimens had similar time-weighted LA consumption and initial moderate basal infusion with CIPCEA may not be required. PMID:25425774

  17. Fractionation of a Basal Magma Ocean

    NASA Astrophysics Data System (ADS)

    Laneuville, M.; Hernlund, J. W.; Labrosse, S.

    2014-12-01

    Earth's magnetic field is thought to be sustained by dynamo action in a convecting metallic outer core since at least 3.45 Ga (Tarduno et al., 2010). Convection induces an isentropic temperature gradient that drains 13±3 TW of heat from the core by thermal conduction (de Koker et al., 2012; Pozzo et al., 2012; Gomi et al., 2013), and suggests that Earth's core has cooled by ˜1,000 K or more since Earth's formation (Gomi et al., 2013). However, models of Earth's initial thermal evolution following a giant-impact predict rapid cooling to the mantle melting temperature (e.g., Solomatov, 2007). In order to understand how the core could have retained enough heat to explain the age of the geodynamo, we relax a key assumption of the basal magma ocean model of (Labrosse et al., 2007) to allow for the possibility that the magma is stably stratified. Recent giant impact simulations suggest extensive core-mantle mixing (Saitoh and Makino, 2013), which could have produced such a large stratified magma layer at the core-mantle boundary. In the presence of a stable density gradient, heat transfer through the basal magma ocean occurs through conduction and therefore delays heat loss from the core. Partitioning of iron in the liquid phase upon crystallization changes the density profile and triggers convection in the upper part of the basal magma ocean. Our hypothesis suggests that early core cooling is dominated by the diffusion timescale through the basal magma ocean, and predicts a delayed onset of the geodynamo (i.e, during the late Headean/early Archean). This model can therefore be falsified if the existence of a geomagnetic field can be inferred from magnetization of inclusions in Hadean zircons. N. de Koker et al., Proc. Natl. Acad. Sci. 190, 4070-4073 (2012).H. Gomi et al., Phys. Earth Planet. Inter. 224, 88-103 (2013).S. Labrosse et al., Nature 450, 866-869 (2007).M. Pozzo et al., Nature 485, 355-358 (2012).T. Saitoh and J. Makino. Astrophys. J. 768, 44 (2013).V

  18. Mössbauer spectroscopy of Basal Ganglia

    SciTech Connect

    Miglierini, Marcel; Lančok, Adriana; Kopáni, Martin; Boča, Roman

    2014-10-27

    Chemical states, structural arrangement, and magnetic features of iron deposits in biological tissue of Basal Ganglia are characterized. The methods of SQUID magnetometry and electron microscopy are employed. {sup 57}Fe Mössbauer spectroscopy is used as a principal method of investigation. Though electron microscopy has unveiled robust crystals (1-3 μm in size) of iron oxides, they are not manifested in the corresponding {sup 57}Fe Mössbauer spectra. The latter were acquired at 300 K and 4.2 K and resemble ferritin-like behavior.

  19. MR imaging and spectroscopy of the basal ganglia in chronic liver disease: correlation of T1-weighted contrast measurements with abnormalities in proton and phosphorus-31 MR spectra.

    PubMed

    Taylor-Robinson, S D; Sargentoni, J; Oatridge, A; Bryant, D J; Hajnal, J V; Marcus, C D; Seery, J P; Hodgson, H J; deSouza, N M

    1996-09-01

    The purpose of this study was to correlate the hyperintensity in the globus pallidus seen on T1-weighted magnetic resonance imaging (MRI) of the brain in chronic liver disease with changes in metabolite ratios measured from both proton and phosphorus-31 magnetic resonance spectroscopy (MRS) localised to the basal ganglia. T1-weighted spin echo (T1WSE) images were obtained in 21 patients with biopsy-proven cirrhosis (nine Child's grade A, eight Child's grade B and four Child's grade C). Four subjects showed no evidence of neuropsychiatric impairment on clinical, psychometric and electrophysiological testing, four showed evidence of subclinical hepatic encephalopathy and 13 had overt hepatic encephalopathy. Signal intensities of the globus pallidus and adjacent brain parenchyma were measured and contrast calculated, which correlated with the severity of the underlying liver disease, when graded according to the Pugh's score (p < 0.05). Proton MRS of the basal ganglia was performed in 12 patients and 14 healthy volunteers. Peak area ratios of choline (Cho), glutamine and glutamate (Glx) and N-acetylaspartate relative to creatine (Cr) were measured. Significant reductions in mean Cho/Cr and elevations in mean Glx/Cr ratios were observed in the patient population. Phosphorus-31 MRS of the basal ganglia was performed in the remaining nine patients and in 15 healthy volunteers. Peak area ratios of phosphomonoesters (PME), inorganic phosphate, phosphodiesters (PDE) and phosphocreatine relative to beta ATP (ATP) were then measured. Mean values of PME/ATP and PDE/ATP were significantly lower in the patient population. No correlation was found between the T1WSE MRI contrast measurements of the globus pallidus and the abnormalities in the metabolite ratios measured from either proton or phosphorus-31 MR spectra. Our results suggest that pallidal hyperintensity seen on T1WSE MR imaging of patients with chronic liver disease is not related to the functional abnormalities of the

  20. Basal Cell Carcinoma. Part 1: Basal Cell Carcinoma Has Come of Age.

    PubMed

    Deng, Min; Marsch, Amanda F; Petronic-Rosic, Vesna

    2015-01-01

    Almost 2 centuries after its recognition, basal cell carcinoma (BCC) remains the most common cancer worldwide, with a 30% overall lifetime risk in the United States and an incidence that continues to increase annually. The increasing incidence of BCC is multifactorial and likely correlates to multiple risk factors, including exposure to both ionizing and UV radiation. Despite its relatively indolent growth, what was once referred to as a rodent ulcer or basal cell epithelioma is now identified as a full-fledged malignancy. The authors describe the societal burden of this disease and characterize its malignant potential, emphasizing associated clinical and histopathologic prognostic features. PMID:26380507

  1. Authentic role of ATP signaling in micturition reflex

    PubMed Central

    Takezawa, Kentaro; Kondo, Makoto; Kiuchi, Hiroshi; Ueda, Norichika; Soda, Tetsuji; Fukuhara, Shinichiro; Takao, Tetsuya; Miyagawa, Yasushi; Tsujimura, Akira; Matsumoto-Miyai, Kazumasa; Ishida, Yusuke; Negoro, Hiromitsu; Ogawa, Osamu; Nonomura, Norio; Shimada, Shoichi

    2016-01-01

    Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2−/− and P2X3−/− mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex. PMID:26795755

  2. The origin of cytosolic ATP in photosynthetic cells.

    PubMed

    Gardeström, Per; Igamberdiev, Abir U

    2016-07-01

    In photosynthetically active cells, both chloroplasts and mitochondria have the capacity to produce ATP via photophosphorylation and oxidative phosphorylation, respectively. Thus, theoretically, both organelles could provide ATP for the cytosol, but the extent, to which they actually do this, and how the process is regulated, both remain unclear. Most of the evidence discussed comes from experiments with rapid fractionation of isolated protoplasts subjected to different treatments in combination with application of specific inhibitors. The results obtained indicate that, under conditions where ATP demand for photosynthetic CO2 fixation is sufficiently high, the mitochondria supply the bulk of ATP for the cytosol. In contrast, under stress conditions where CO2 fixation is severely limited, ATP will build up in chloroplasts and it can then be exported to the cytosol, by metabolite shuttle mechanisms. Thus, depending on the conditions, either mitochondria or chloroplasts can supply the bulk of ATP for the cytosol. This supply of ATP is discussed in relation to the idea that mitochondrial functions may be tuned to provide an optimal environment for the chloroplast. By balancing cellular redox states, mitochondria can contribute to an optimal photosynthetic capacity. PMID:27087668

  3. ATP and potassium ions: a deadly combination for astrocytes

    NASA Astrophysics Data System (ADS)

    Jackson, David G.; Wang, Junjie; Keane, Robert W.; Scemes, Eliana; Dahl, Gerhard

    2014-04-01

    The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K+]o) in a dose-dependent manner. Since increased [K+]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K+]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K+ ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.

  4. Authentic role of ATP signaling in micturition reflex.

    PubMed

    Takezawa, Kentaro; Kondo, Makoto; Kiuchi, Hiroshi; Ueda, Norichika; Soda, Tetsuji; Fukuhara, Shinichiro; Takao, Tetsuya; Miyagawa, Yasushi; Tsujimura, Akira; Matsumoto-Miyai, Kazumasa; Ishida, Yusuke; Negoro, Hiromitsu; Ogawa, Osamu; Nonomura, Norio; Shimada, Shoichi

    2016-01-01

    Adenosine triphosphate (ATP) is a signaling molecule that regulates cellular processes. Based on previous studies of bladder function over the past decade, bladder ATP signaling was thought to have an essential role in the normal micturition reflex. In this study, we performed detailed analyses of bladder function in purinergic receptor-deficient mice using the automated voided stain on paper method and video-urodynamics. Unexpectedly, a lack of P2X2 or P2X3 receptors did not affect bladder function under normal physiological conditions, indicating that bladder ATP signaling is not essential for normal micturition reflex. In contrast, we found that lipopolysaccharide (LPS) induced markedly high levels of ATP release from the urothelium. In addition, LPS-induced rapid bladder hyperactivity was attenuated in P2X2(-/-) and P2X3(-/-) mice. Contrary to the previous interpretation, our present findings indicate that bladder ATP signaling has a fundamental role in the micturition reflex, especially in bladder dysfunction, under pathological conditions. Therefore, the bladder ATP signaling pathway might be a highly promising therapeutic target for functional bladder disorders. This study newly defines an authentic role for bladder ATP signaling in the micturition reflex. PMID:26795755

  5. Synthesis and fluorescence characteristics of ATP-based FRET probes.

    PubMed

    Hardt, Norman; Hacker, Stephan M; Marx, Andreas

    2013-12-28

    Adenosine triphosphate (ATP) analogues labelled with two dyes suitable for undergoing Förster Resonance Energy Transfer (FRET) have the potential to be valuable tools to continuously study the enzymatic activity of ATP consuming enzymes. Here, we present a synthesis strategy that allows obtaining these ATP analogues in a straight-forward manner. Earlier studies indicate that modifying ATP at the O2'- and the γ-position is a very promising starting point for the design of these probes. We synthesized probes modified with five different combinations of dyes attached to these positions and investigated their fluorescence characteristics in the non-cleaved state as well as after enzymatic hydrolysis. All presented probes largely change their fluorescence characteristics upon cleavage. They include ratiometric FRET probes as well as dark quenched analogues. For typical in vitro applications a combination of the sulfonated polymethine dyes Sulfo-Cy3 and Sulfo-Cy5 seems to be most promising due to their excellent solubility in aqueous buffer and a large change of fluorescence characteristics upon cleavage. For this combination of dyes we also synthesized analogues modified at the γ- and the C2- or the O3'-position, respectively, as these attachment sites are also well accepted by certain ATP consuming enzymes. These analogues show comparably large changes in fluorescence characteristics. Overall, we present new ATP-based FRET probes that have the potential to enable monitoring the enzymatic activity of ATP consuming enzymes. PMID:24173528

  6. Modeling K,ATP-Dependent Excitability in Pancreatic Islets

    PubMed Central

    Silva, Jonathan R.; Cooper, Paige; Nichols, Colin G.

    2014-01-01

    In pancreatic β-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic β-cell excitability reproduces the β-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of β-cell excitability and suggests future experiments that will lead to improved characterization of β-cell excitability and the control of insulin secretion. PMID:25418087

  7. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-03-15

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  8. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis.

    PubMed Central

    Stefanelli, C; Bonavita, F; Stanic', I; Farruggia, G; Falcieri, E; Robuffo, I; Pignatti, C; Muscari, C; Rossoni, C; Guarnieri, C; Caldarera, C M

    1997-01-01

    In quiescent thymocytes, mitochondrial de-energization was not correlated to apoptotic death. In fact, thymocytes treated with oligomycin, a highly specific inhibitor of ATP synthase, alone or with atractyloside to block ATP translocation from the cytoplasm, were alive, even if their mitochondria were depolarized, as revealed by flow cytometry after Rhodamine 123 staining. Furthermore, oligomycin was a powerful inhibitor of apoptosis induced in rat thymocytes by dexamethasone and, to a lesser extent, by the calcium ionophore A23187 and etoposide, but was without effect when apoptosis was induced by staurosporine, and increased cell death in mitogen-treated thymocytes. The inhibition of apoptosis was confirmed by morphological criteria, inhibition of inter-nucleosomal DNA fragmentation and inhibition of the loss of membrane integrity. The anti-apoptotic effect of oligomycin in cells treated with A23187 or etoposide was correlated to the inhibition of protein synthesis, while inhibition of apoptosis induced by dexamethasone, already evident at an oligomycin concentration of 10 ng/ml, was instead strictly correlated to the effect exerted on the cellular ATP level. Thymocyte apoptosis triggered by dexamethasone was blocked or delayed by inhibitors of respiratory-chain uncouplers, inhibitors of ATP synthase and antioxidants: a lasting protection from dexamethasone-induced apoptosis was always correlated to a drastic and rapid reduction in ATP level (31-35% of control), while a delay in the death process was characterized by a moderate decrease in ATP (73-82% of control). Oligomycin inhibited the specific binding of radioactive corticosteroid to thymocyte nuclei, confirming the inhibitory effect of ATP depletion on glucocorticoid binding and suggesting that ATP depletion is a common mediator of the anti-apoptotic action of different effectors in glucocorticoid-induced apoptosis. In conclusion, the reported data indicate that ATP may act as a cellular modulator of some

  9. Basal body replication and cilogenesis in a suctorian, Tokophrya infusionum.

    PubMed

    Millecchia, L L; Rudzinska, M A

    1970-09-01

    Basal body replication and ciliogenesis in Tokophrya infusionum were studied in synchronized cultures. Basal body replication occurs during the 1st hr of reproduction, which in Tokophrya is by internal budding. The number of basal bodies increases from about 20 to over 300 within this period. New basal bodies develop in association with mature basal bodies; they are formed at right angles to the mature basal body as short "probasal" bodies, which elongate, slant upward, become parallel to the mature basal body, and elongate to the mature size. Ciliogenesis occurs only during reproduction; the nonreproducing adult is not ciliated, and has only 18-25 barren basal bodies. Cilia first appear as short bulges above the basal body. The axonemal structure is incomplete at first, with one or both central microtubules absent, and occasionally the B fibers of the outer doublets are missing. Several accessory fibers are associated with the basal bodies, both in the adult and during reproduction. One of the fibers appears only after the cilia have sprouted. The scheme of basal body replication and ciliogenesis in Tokophrya is compared to that reported in other organisms, and the role of the accessory fibers is discussed. PMID:4349131

  10. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP-Binding: Requirement for Establishing Chronic Persistent Infection

    PubMed Central

    Bilder, Patrick; Sun, Meihao; Lim, Jihyeon; Bielefeldt-Ohmann, Helle; Basaraba, Randall; So, Melvin; Zhu, Guofeng; Tufariello, JoAnn M.; Izzo, Angelo A.; Orme, Ian M.; Almo, Steve C.; Leyh, Thomas S.; Chan, John

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosis universal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-Å-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i) M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii) Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii) Rv2623 binds ATP; and iv) the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection. PMID:19478878

  11. Exchange of ATP for ADP on high-force cross-bridges of skinned rabbit muscle fibers.

    PubMed Central

    Seow, C Y; Ford, L E

    1997-01-01

    The contractile properties of rabbit skinned muscle fibers were studied at 1-2 degrees C in different concentrations of MgATP and MgADP. Double-reciprocal plots of maximum velocity against MgATP concentration at different MgADP concentrations all extrapolated to the same value. This finding suggests that MgATP and MgADP compete for the same site on the cross-bridge, and that the exchange of MgATP for MgADP occurs without a detectable step intervening. The K(m) for ATP was 0.32 mM. The K(i) for MgADP was 0.33 mM. Control experiments suggested that the tortuosity of diffusion paths within the fibers reduced the radial diffusion coefficients for reactants about sixfold. Increasing MgADP from 0.18 to 2 mM at 5 mM ATP or lowering MgATP from 10 to 2 mM at 0.18 mM MgADP, respectively, increased isometric force by 25% and 23%, increased stiffness by 10% and 20%, and decreased maximum velocity by 35% and 31%. Two mechanisms appeared to be responsible. One detained bridges in high-force states, where they recovered from a length step with a slower time course. The other increased the fraction of attached bridges without altering the kinetics of their responses, possibly by an increased activation resulting from cooperative effects of the detained, high-force bridges. The rigor bridge was more effective than the ADP-bound bridge in increasing the number of attached bridges with unaltered kinetics. PMID:9168047

  12. Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP Binding: Requirement for Establishing Chronic Persistent Infection

    SciTech Connect

    Drumm, J.; Mi, K; Bilder, P; Sun, M; Lim, J; Bielefeldt-Ohmann, H; Basaraba, R; So, M; Zhu, G; et. al.

    2009-01-01

    Tuberculous latency and reactivation play a significant role in the pathogenesis of tuberculosis, yet the mechanisms that regulate these processes remain unclear. The Mycobacterium tuberculosisuniversal stress protein (USP) homolog, rv2623, is among the most highly induced genes when the tubercle bacillus is subjected to hypoxia and nitrosative stress, conditions thought to promote latency. Induction of rv2623 also occurs when M. tuberculosis encounters conditions associated with growth arrest, such as the intracellular milieu of macrophages and in the lungs of mice with chronic tuberculosis. Therefore, we tested the hypothesis that Rv2623 regulates tuberculosis latency. We observed that an Rv2623-deficient mutant fails to establish chronic tuberculous infection in guinea pigs and mice, exhibiting a hypervirulence phenotype associated with increased bacterial burden and mortality. Consistent with this in vivo growth-regulatory role, constitutive overexpression of rv2623 attenuates mycobacterial growth in vitro. Biochemical analysis of purified Rv2623 suggested that this mycobacterial USP binds ATP, and the 2.9-A-resolution crystal structure revealed that Rv2623 engages ATP in a novel nucleotide-binding pocket. Structure-guided mutagenesis yielded Rv2623 mutants with reduced ATP-binding capacity. Analysis of mycobacteria overexpressing these mutants revealed that the in vitro growth-inhibitory property of Rv2623 correlates with its ability to bind ATP. Together, the results indicate that i M. tuberculosis Rv2623 regulates mycobacterial growth in vitro and in vivo, and ii Rv2623 is required for the entry of the tubercle bacillus into the chronic phase of infection in the host; in addition, iii Rv2623 binds ATP; and iv the growth-regulatory attribute of this USP is dependent on its ATP-binding activity. We propose that Rv2623 may function as an ATP-dependent signaling intermediate in a pathway that promotes persistent infection.

  13. High porosity of basal till at Burroughs glacier, southeastern Alaska

    SciTech Connect

    Ronnert, L.; Mickelson, D.M. )

    1992-09-01

    Debris-rich basal ice at Burroughs glacier, southeastern Alaska, has 60 vol% to 70 vol% debris. Recently deposited basal till exceeds 60 vol% sediment with 30% to almost 40% porosity. Where basal ice is very rich in debris, basal till is deposited through melt out with only slight compaction of the debris. Porosity this high in till is commonly associated with subglacially deforming and dilated sediment. However, the recently deposited basal melt-out till at Burroughs glacier has not been deformed after deposition, but has porosity values similar to tills elsewhere interpreted to be subglacially deforming and dilated in an unfrozen state. High porosity can occur in basal melt-out till deposited directly by basal melt out.

  14. Simulating feedback cycles induced by basal water in western Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kleiner, T.; Humbert, A.

    2013-12-01

    The occurrence of liquid water at the base of an ice sheet is believed to be a crucial component in its dynamic evolution. If temperatures at the base locally reach the pressure melting point, basal melt water lubricates the base and thus supports basal sliding. Faster basal sliding in turn reduces internal deformation and thus the internal heat production due to strain heating. If this loss of strain heating is not counterbalanced by frictional heat due to sliding or the advection of warm ice, the base of the ice will freeze to the bedrock again. Thus the presence of liquid water can lead to a cooling and a subsequent stagnation of fast ice flow, posing a negative feedback cycle. In addition, strain heating within a temperate ice layer generates a liquid water fraction in the ice, leading to a softer material and enhanced deformation. If the horizontal or vertical advection of cold ice to the base is weak, this will lead to a positive feedback. These feedback cycles are studied along numerical simulations of the present day ice flow in the area of the western Dronning Maud Land, Antarctica, including the adjacent Brunt and Riiser- Larsen ice shelves. To investigate the influence of basal water on basal sliding and ice rheology we use the three-dimensional thermo-coupled full-Stokes model TIM-FD3 on a 2.5 km horizontal grid. We use the enthalpy gradient method to compute the thermal evolution, including the microscopic water content, in temperate ice areas. Three different flux routing algorithms for the subglacial melt water and a modified Weertman-type sliding relation are implemented in the model to account for higher sliding velocities under wet basal conditions. We present our analysis of the involved feedback mechanisms between sliding, ice deformation, temperature and rheology, which are related to the occurrence of basal water.

  15. Lagrangian analysis of ICESat altimetry reveals patterns of ice shelf basal melting

    NASA Astrophysics Data System (ADS)

    Moholdt, G.; Fricker, H. A.; Padman, L.

    2012-12-01

    Iceberg calving and ice shelf basal melting are normal mass-loss processes that over time roughly balance the outflow of ice from the Antarctic Ice Sheet. Most basal melting is thus compensated by ice advection and is not detected by the traditional methods of analyzing surface elevation changes in a fixed geographic coordinate system (Eulerian). Here we present a new method that derive elevation changes in a "Lagrangian" sense from repeat-track ICESat laser altimetry, where specific locations are followed on the advancing ice shelf surface. We use a published ice shelf velocity field to correct for ice advection between consecutive repeats, and then convert the Lagrangian dh/dt estimates into ice thickness changes based on a model of the firn layer. In some locations, the derived ice thickness changes are much larger the Eulerian approach. The Lagrangian approach reduces the noise level of the derived ice thickness changes and reveals clear spatial patterns that we interpret as variations in basal melting. For the largest Antarctic ice shelves (Ross and Filchner-Ronne), we find that the Lagrangian thinning rates increase progressively towards the fronts, which is consistent with oceanographic models that suggest higher basal melt rates in the frontal zone. There are few examples of localized Lagrangian thickening, suggesting that basal melting is likely dominating over basal freezing in the interior of most ice shelves. Combined with data on surface mass balance and firn compaction, our Lagrangian approach can provide new insights into the magnitude and extent of basal melting, as well as being an important validation for models of ice-ocean interaction.

  16. The effect of loxiglumide (CR-1505) on basal and bombesin-stimulated gallbladder volume in man.

    PubMed

    Douglas, B R; Jebbink, M C; Tjon a Tham, R T; Jansen, J B; Lamers, C B

    1989-07-18

    This study was undertaken in 5 normal subjects to determine the role of cholecystokinin (CCK) in the regulation of basal gallbladder volume and gallbladder contraction stimulated by infusion of bombesin. Administration of the CCK-receptor antagonist, loxiglumide (CR-1505), led to doubling of the gallbladder volume (increase 104 +/- 26%; P less than 0.05) and reduced the bombesin-stimulated gallbladder contraction from 69 +/- 17 to 19 +/- 17% (P less than 0.05). The findings provide evidence suggesting that CCK plays an important role in the regulation of basal gallbladder tone and in mediating the gallbladder contraction induced by the administration of bombesin. PMID:2792196

  17. Effect of Photofrin on skin reflection of basal cell nevus syndrome patients

    NASA Astrophysics Data System (ADS)

    Grossweiner, Leonard I.; Jones, Linda R.; Koehler, Irmgard K.; Bilgin, Mehmet D.

    1996-04-01

    Skin reflection spectra were measured before and 24 hours after administration of Photofrin (Reg. TM) to basal cell nevus syndrome (BCNS) patients. The drug reduced the reflectivity of uninvolved BCNS skin and increased the reflectivity of basal cell cancers. Photofrin (Reg. TM) absorption in normal rat skin and uninvolved BCNS skin was resolved by the diffusion approximation. Optical constants calculated with a two-layer skin model indicate that the drug increased light scattering in tumor tissues. The possible use of reflection spectra for PDT light dosimetry is discussed.

  18. Evolution of sensory structures in basal metazoa.

    PubMed

    Jacobs, Dave K; Nakanishi, Nagayasu; Yuan, David; Camara, Anthony; Nichols, Scott A; Hartenstein, Volker

    2007-11-01

    Cnidaria have traditionally been viewed as the most basal animals with complex, organ-like multicellular structures dedicated to sensory perception. However, sponges also have a surprising range of the genes required for sensory and neural functions in Bilateria. Here, we: (1) discuss "sense organ" regulatory genes, including; sine oculis, Brain 3, and eyes absent, that are expressed in cnidarian sense organs; (2) assess the sensory features of the planula, polyp, and medusa life-history stages of Cnidaria; and (3) discuss physiological and molecular data that suggest sensory and "neural" processes in sponges. We then develop arguments explaining the shared aspects of developmental regulation across sense organs and between sense organs and other structures. We focus on explanations involving divergent evolution from a common ancestral condition. In Bilateria, distinct sense-organ types share components of developmental-gene regulation. These regulators are also present in basal metazoans, suggesting evolution of multiple bilaterian organs from fewer antecedent sensory structures in a metazoan ancestor. More broadly, we hypothesize that developmental genetic similarities between sense organs and appendages may reflect descent from closely associated structures, or a composite organ, in the common ancestor of Cnidaria and Bilateria, and we argue that such similarities between bilaterian sense organs and kidneys may derive from a multifunctional aggregations of choanocyte-like cells in a metazoan ancestor. We hope these speculative arguments presented here will stimulate further discussion of these and related questions. PMID:21669752

  19. Twisting and subunit rotation in single FOF1-ATP synthase

    PubMed Central

    Sielaff, Hendrik; Börsch, Michael

    2013-01-01

    FOF1-ATP synthases are ubiquitous proton- or ion-powered membrane enzymes providing ATP for all kinds of cellular processes. The mechanochemistry of catalysis is driven by two rotary nanomotors coupled within the enzyme. Their different step sizes have been observed by single-molecule microscopy including videomicroscopy of fluctuating nanobeads attached to single enzymes and single-molecule Förster resonance energy transfer. Here we review recent developments of approaches to monitor the step size of subunit rotation and the transient elastic energy storage mechanism in single FOF1-ATP synthases. PMID:23267178

  20. A new system for rapid measurement of ATP.

    PubMed

    Shu, B; Zhou, Y; Ren, S

    1997-01-01

    The paper introduces a new type instrument for rapid measuring ATP. The system consists of a micromodule ATP sensor and an instrument for measuring weak light transmitted by optic fiber. The micromodule ATP sensor mainly is composed of enzyme membrane, a probe and a bundle of optic fiber. The instrument measuring weak light consists of photomultiplier, high voltage power, pulse amplifier and counter. The instrument was characterized by simple structure, small size, rapid response time (< 5s), high sensitivity (10(-12) mol/L), stable performance (measuring the same sample for 50 times, CV < 5%), long enzyme storage time (> 3 months). PMID:9812776

  1. Sp1 and CREB regulate basal transcription of the human SNF2L gene

    SciTech Connect

    Xia Yu; Jiang Baichun; Zou Yongxin; Gao Guimin; Shang Linshan; Chen Bingxi; Liu Qiji; Gong Yaoqin

    2008-04-04

    Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which are involved in multiple nuclear functions, including transcriptional regulation, replication, and chromatin assembly. Mammalian genomes encode two ISWI orthologs, SNF2H and SNF2L. In order to clarify the molecular mechanisms governing the expression of human SNF2L gene, we functionally examined the transcriptional regulation of human SNF2L promoter. Reporter gene assays demonstrated that the minimal SNF2L promoter was located between positions -152 to -86 relative to the transcription start site. In this region we have identified a cAMP-response element (CRE) located at -99 to -92 and a Sp1-binding site at -145 to -135 that play a critical role in regulating basal activity of human SNF2L gene, which were proven by deletion and mutation of specific binding sites, EMSA, and down-regulating Sp1 and CREB via RNAi. This study provides the first insight into the mechanisms that control basal expression of human SNF2L gene.

  2. Novel Hedgehog pathway targets against basal cell carcinoma

    SciTech Connect

    Tang, Jean Y. So, P.-L.; Epstein, Ervin H.

    2007-11-01

    The Hedgehog signaling pathway plays a key role in directing growth and patterning during embryonic development and is required in vertebrates for the normal development of many structures, including the neural tube, axial skeleton, skin, and hair. Aberrant activation of the Hedgehog (Hh) pathway in adult tissue is associated with the development of basal cell carcinoma (BCC), medulloblastoma, and a subset of pancreatic, gastrointestinal, and other cancers. This review will provide an overview of what is known about the mechanisms by which activation of Hedgehog signaling leads to the development of BCCs and will review two recent papers suggesting that agents that modulate sterol levels might influence the Hh pathway. Thus, sterols may be a new therapeutic target for the treatment of BCCs, and readily available agents such as statins (HMG-CoA reductase inhibitors) or vitamin D might be helpful in reducing BCC incidence.

  3. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium

    PubMed Central

    Akki, Ashwin; Su, Jason; Yano, Toshiyuki; Gupta, Ashish; Wang, Yibin; Leppo, Michelle K.; Chacko, Vadappuram P.; Steenbergen, Charles

    2012-01-01

    Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored. A combination of 31P-nuclear magnetic resonance experiments at 11.7T and biochemical assays was used to measure the myocardial rate of ATP synthesis via CK (CK flux) and intracellular pH (pHi). Baseline CK flux was severalfold higher in CKM hearts (8.1 ± 1.0 vs. 32.9 ± 3.8, mM/s, control vs. CKM; P < 0.001) with no differences in phosphocreatine concentration [PCr] and RPP. End-ischemic pHi was higher in CKM hearts than in control hearts (6.04 ± 0.12 vs. 6.37 ± 0.04, control vs. CKM; P < 0.05) with no differences in [PCr] and [ATP] between the two groups. Post-ischemic PCr (66.2 ± 1.3 vs. 99.1 ± 8.0, %preischemic levels; P < 0.01), CK flux (3.2 ± 0.4 vs. 14.0 ± 1.2 mM/s; P < 0.001) and functional recovery (13.7 ± 3.4 vs. 64.9 ± 13.2%preischemic RPP; P < 0.01) were significantly higher and lactate dehydrogenase release was lower in CKM than in control hearts. Thus augmenting cardiac CKM expression attenuates ischemic acidosis, reduces injury, and improves not only high-energy phosphate content and the rate of CK ATP synthesis in postischemic myocardium but also recovery of contractile function. PMID:22886411

  4. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak

    PubMed Central

    Polymeropoulos, E. T.; Heldmaier, G.; Frappell, P. B.; McAllan, B. M.; Withers, K. W.; Klingenspor, M.; White, C. R.; Jastroch, M.

    2012-01-01

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence. PMID:21632624

  5. Muscle contraction: the step-size distance and the impulse-time per ATP.

    PubMed

    Worthington, C R; Elliott, G F

    1996-02-01

    We derive the step-size distance, and the impulse time per ATP split, from a consideration of Hill's energy rate equation coupled with the enthalpy available per ATP split. This definition of step-size distance is model-independent, and is calculated to have a maximum of 17 A at no load and to reduce to zero at isometric tension, since it will depend on the velocity of shortening. We revisit a derivation of Hill's force-velocity equation depending on impulsive forces working against frictional forces and show that this gives a physical meaning to Hill's constants a and b. This is particularly elegant for Hill's constant b, which is directly related to the impulse time; the value of this impulse time is 1/2 ms. The question that muscle contraction may involve overlapping interactions is considered. However, we find that the step-size distance is not dependent on the possibility of overlapping interactions. PMID:8852761

  6. A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement.

    PubMed

    Contreras-Vidal, J L; Stelmach, G E

    1995-10-01

    Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia-thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson's disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model's globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes. PMID:7578481

  7. Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel; Steffen, Konrad; Rajaram, Harihar; Scambos, Ted; Abdalati, Waleed; Rignot, Eric

    2012-08-01

    A key mechanism for the rapid collapse of both the Larsen A and B Ice Shelves was meltwater-driven crevasse propagation. Basal crevasses, large-scale structural features within ice shelves, may have contributed to this mechanism in three important ways: i) the shelf surface deforms due to modified buoyancy and gravitational forces above the basal crevasse, creating >10 m deep compressional surface depressions where meltwater can collect, ii) bending stresses from the modified shape drive surface crevassing, with crevasses reaching 40 m in width, on the flanks of the basal-crevasse-induced trough and iii) the ice thickness is substantially reduced, thereby minimizing the propagation distance before a full-thickness rift is created. We examine a basal crevasse (4.5 km in length, ∼230 m in height), and the corresponding surface features, in the Cabinet Inlet sector of the Larsen C Ice Shelf using a combination of high-resolution (0.5 m) satellite imagery, kinematic GPS and in situ ground penetrating radar. We discuss how basal crevasses may have contributed to the breakup of the Larsen B Ice Shelf by directly controlling the location of meltwater ponding and highlight the presence of similar features on the Amery and Getz Ice Shelves with high-resolution imagery.

  8. Ca2+-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga

    PubMed Central

    Chen, Hui; Hu, Jinlu; Qiao, Yaqin; Chen, Weixian; Rong, Junfeng; Zhang, Yunming; He, Chenliu; Wang, Qiang

    2015-01-01

    We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca2+ signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca2+-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca2+-regulated CEF also played a key role in protecting and sustaining photosystems. PMID:26450399

  9. The Tomato R Gene Products I-2 and Mi-1 Are Functional ATP Binding Proteins with ATPase Activity

    PubMed Central

    Tameling, Wladimir I. L.; Elzinga, Sandra D. J.; Darmin, Patricia S.; Vossen, Jack H.; Takken, Frank L. W.; Haring, Michel A.; Cornelissen, Ben J. C.

    2002-01-01

    Most plant disease resistance (R) genes known today encode proteins with a central nucleotide binding site (NBS) and a C-terminal Leu-rich repeat (LRR) domain. The NBS contains three ATP/GTP binding motifs known as the kinase-1a or P-loop, kinase-2, and kinase-3a motifs. In this article, we show that the NBS of R proteins forms a functional nucleotide binding pocket. The N-terminal halves of two tomato R proteins, I-2 conferring resistance to Fusarium oxysporum and Mi-1 conferring resistance to root-knot nematodes and potato aphids, were produced as glutathione S-transferase fusions in Escherichia coli. In a filter binding assay, purified I-2 was found to bind ATP rather than other nucleoside triphosphates. ATP binding appeared to be fully dependent on the presence of a divalent cation. A mutant I-2 protein containing a mutation in the P-loop showed a strongly reduced ATP binding capacity. Thin layer chromatography revealed that both I-2 and Mi-1 exerted ATPase activity. Based on the strong conservation of NBS domains in R proteins of the NBS-LRR class, we propose that they all are capable of binding and hydrolyzing ATP. PMID:12417711

  10. Variations of ATP and its metabolites in the hippocampus of rats subjected to pilocarpine-induced temporal lobe epilepsy.

    PubMed

    Doná, Flávia; Conceição, Isaltino Marcelo; Ulrich, Henning; Ribeiro, Eliane Beraldi; Freitas, Thalma Ariani; Nencioni, Ana Leonor Abrahao; da Silva Fernandes, Maria José

    2016-06-01

    Although purinergic receptor activity has lately been associated with epilepsy, little is known about the exact role of purines in epileptogenesis. We have used a rat model of temporal lobe epilepsy induced by pilocarpine to study the dynamics of purine metabolism in the hippocampus during different times of status epilepticus (SE) and the chronic phase. Concentrations of adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine in normal and epileptic rat hippocampus were determined by microdialysis in combination with high-performance liquid chromatography (HPLC). Extracellular ATP concentrations did not vary along 4 h of SE onset. However, AMP concentration was elevated during the second hour, whereas ADP and adenosine concentrations augmented during the third and fourth hour following SE. During chronic phase, extracellular ATP, ADP, AMP, and adenosine concentrations decreased, although these levels again increased significantly during spontaneous seizures. These results suggest that the increased turnover of ATP during the acute period is a compensatory mechanism able to reduce the excitatory role of ATP. Increased adenosine levels following 4 h of SE may contribute to block seizures. On the other hand, the reduction of purine levels in the hippocampus of chronic epileptic rats may result from metabolic changes and be part of the mechanisms involved in the onset of spontaneous seizures. This work provides further insights into purinergic signaling during establishment and chronic phase of epilepsy. PMID:26939579

  11. Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga.

    PubMed

    Chen, Hui; Hu, Jinlu; Qiao, Yaqin; Chen, Weixian; Rong, Junfeng; Zhang, Yunming; He, Chenliu; Wang, Qiang

    2015-01-01

    We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca(2+) signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca(2+)-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca(2+)-regulated CEF also played a key role in protecting and sustaining photosystems. PMID:26450399

  12. Variants in Genes Controlling Oxidative Metabolism Contribute to Lower Hepatic ATP Independent of Liver Fat Content in Type 1 Diabetes.

    PubMed

    Gancheva, Sofiya; Bierwagen, Alessandra; Kaul, Kirti; Herder, Christian; Nowotny, Peter; Kahl, Sabine; Giani, Guido; Klueppelholz, Birgit; Knebel, Birgit; Begovatz, Paul; Strassburger, Klaus; Al-Hasani, Hadi; Lundbom, Jesper; Szendroedi, Julia; Roden, Michael

    2016-07-01

    Type 1 diabetes has been recently linked to nonalcoholic fatty liver disease (NAFLD), which is known to associate with insulin resistance, obesity, and type 2 diabetes. However, the role of insulin resistance and hyperglycemia for hepatic energy metabolism is yet unclear. To analyze early abnormalities in hepatic energy metabolism, we examined 55 patients with recently diagnosed type 1 diabetes. They underwent hyperinsulinemic-normoglycemic clamps with [6,6-(2)H2]glucose to assess whole-body and hepatic insulin sensitivity. Hepatic γATP, inorganic phosphate (Pi), and triglyceride concentrations (hepatocellular lipid content [HCL]) were measured with multinuclei magnetic resonance spectroscopy ((31)P/(1)H-MRS). Glucose-tolerant humans served as control (CON) (n = 57). Whole-body insulin sensitivity was 44% lower in patients than in age- and BMI-matched CON. Hepatic γATP was 15% reduced (2.3 ± 0.6 vs. 2.7 ± 0.6 mmol/L, P < 0.001), whereas hepatic Pi and HCL were similar in patients when compared with CON. Across all participants, hepatic γATP correlated negatively with glycemia and oxidized LDL. Carriers of the PPARG G allele (rs1801282) and noncarriers of PPARGC1A A allele (rs8192678) had 21 and 13% lower hepatic ATP concentrations. Variations in genes controlling oxidative metabolism contribute to a reduction in hepatic ATP in the absence of NAFLD, suggesting that alterations in hepatic mitochondrial function may precede diabetes-related liver diseases. PMID:27207512

  13. Mass Spectrometry Imaging Reveals Elevated Glomerular ATP/AMP in Diabetes/obesity and Identifies Sphingomyelin as a Possible Mediator.

    PubMed

    Miyamoto, Satoshi; Hsu, Cheng-Chih; Hamm, Gregory; Darshi, Manjula; Diamond-Stanic, Maggie; Declèves, Anne-Emilie; Slater, Larkin; Pennathur, Subramaniam; Stauber, Jonathan; Dorrestein, Pieter C; Sharma, Kumar

    2016-05-01

    AMP-activated protein kinase (AMPK) is suppressed in diabetes and may be due to a high ATP/AMP ratio, however the quantitation of nucleotides in vivo has been extremely difficult. Via matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to localize renal nucleotides we found that the diabetic kidney had a significant increase in glomerular ATP/AMP ratio. Untargeted MALDI-MSI analysis revealed that a specific sphingomyelin species (SM(d18:1/16:0)) accumulated in the glomeruli of diabetic and high-fat diet-fed mice compared with wild-type controls. In vitro studies in mesangial cells revealed that exogenous addition of SM(d18:1/16:0) significantly elevated ATP via increased glucose consumption and lactate production with a consequent reduction of AMPK and PGC1α. Furthermore, inhibition of sphingomyelin synthases reversed these effects. Our findings suggest that AMPK is reduced in the diabetic kidney due to an increase in the ATP/AMP ratio and that SM(d18:1/16:0) could be responsible for the enhanced ATP production via activation of the glycolytic pathway. PMID:27322466

  14. Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating.

    PubMed

    Wang, Wuyang; Linsdell, Paul

    2012-03-01

    Opening and closing of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel are controlled by ATP binding and hydrolysis by its nucleotide binding domains (NBDs). This is presumed to control opening of a single "gate" within the permeation pathway, however, the location of such a gate has not been described. We used patch clamp recording to monitor access of cytosolic cysteine reactive reagents to cysteines introduced into different transmembrane (TM) regions in a cysteine-less form of CFTR. The rate of modification of Q98C (TM1) and I344C (TM6) by both [2-sulfonatoethyl] methanethiosulfonate (MTSES) and permeant Au(CN)(2)(-) ions was reduced when ATP concentration was reduced from 1mM to 10μM, and modification by MTSES was accelerated when 2mM pyrophosphate was applied to prevent channel closure. Modification of K95C (TM1) and V345C (TM6) was not affected by these manoeuvres. We also manipulated gating by introducing the mutations K464A (in NBD1) and E1371Q (in NBD2). The rate of modification of Q98C and I344C by both MTSES and Au(CN)(2)(-) was decreased by K464A and increased by E1371Q, whereas modification of K95C and V345C was not affected. These results suggest that access from the cytoplasm to K95 and V345 is similar in open and closed channels. In contrast, modifying ATP-dependent channel gating alters access to Q98 and I344, located further into the pore. We propose that ATP-dependent gating of CFTR is associated with the opening and closing of a gate within the permeation pathway at the level of these pore-lining amino acids. PMID:22234285

  15. Hypoxic HepG2 cell adaptation decreases ATP synthase dimers and ATP production in inflated cristae by mitofilin down-regulation concomitant to MICOS clustering.

    PubMed

    Plecitá-Hlavatá, Lydie; Engstová, Hana; Alán, Lukáš; Špaček, Tomáš; Dlasková, Andrea; Smolková, Katarína; Špačková, Jitka; Tauber, Jan; Strádalová, Vendula; Malínský, Jan; Lessard, Mark; Bewersdorf, Joerg; Ježek, Petr

    2016-05-01

    The relationship of the inner mitochondrial membrane (IMM) cristae structure and intracristal space (ICS) to oxidative phosphorylation (oxphos) is not well understood. Mitofilin (subunit Mic60) of the mitochondrial contact site and cristae organizing system (MICOS) IMM complex is attached to the outer membrane (OMM) via the sorting and assembly machinery/topogenesis of mitochondrial outer membrane β-barrel proteins (SAM/TOB) complex and controls the shape of the cristae. ATP synthase dimers determine sharp cristae edges, whereas trimeric OPA1 tightens ICS outlets. Metabolism is altered during hypoxia, and we therefore studied cristae morphology in HepG2 cells adapted to 5% oxygen for 72 h. Three dimensional (3D), super-resolution biplane fluorescence photoactivation localization microscopy with Eos-conjugated, ICS-located lactamase-β indicated hypoxic ICS expansion with an unchanged OMM (visualized by Eos-mitochondrial fission protein-1). 3D direct stochastic optical reconstruction microscopy immunocytochemistry revealed foci of clustered mitofilin (but not MICOS subunit Mic19) in contrast to its even normoxic distribution. Mitofilin mRNA and protein decreased by ∼20%. ATP synthase dimers vs monomers and state-3/state-4 respiration ratios were lower during hypoxia. Electron microscopy confirmed ICS expansion (maximum in glycolytic cells), which was absent in reduced or OMM-detached cristae of OPA1- and mitofilin-silenced cells, respectively. Hypoxic adaptation is reported as rounding sharp cristae edges and expanding cristae width (ICS) by partial mitofilin/Mic60 down-regulation. Mitofilin-depleted MICOS detaches from SAM while remaining MICOS with mitofilin redistributes toward higher interdistances. This phenomenon causes partial oxphos dormancy in glycolytic cells via disruption of ATP synthase dimers.-Plecitá-Hlavatá, L., Engstová, H., Alán, L., Špaček, T., Dlasková, A., Smolková, K., Špačková, J., Tauber, J., Strádalová, V., Malínský, J

  16. Mini review: ATP-dependent proteases in bacteria.

    PubMed

    Bittner, Lisa-Marie; Arends, Jan; Narberhaus, Franz

    2016-08-01

    AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016. PMID:26971705

  17. Distinct neurological disorders with ATP1A3 mutations

    PubMed Central

    Heinzen, Erin L.; Arzimanoglou, Alexis; Brashear, Allison; Clapcote, Steven J.; Gurrieri, Fiorella; Goldstein, David B.; Jóhannesson, Sigurður H.; Mikati, Mohamad A.; Neville, Brian; Nicole, Sophie; Ozelius, Laurie J.; Poulsen, Hanne; Schyns, Tsveta; Sweadner, Kathleen J.; van den Maagdenberg, Arn; Vilsen, Bente

    2014-01-01

    Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na+/K+-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in vitro and animal model systems, and the role of Na+/K+-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases. PMID:24739246

  18. Distinct neurological disorders with ATP1A3 mutations.

    PubMed

    Heinzen, Erin L; Arzimanoglou, Alexis; Brashear, Allison; Clapcote, Steven J; Gurrieri, Fiorella; Goldstein, David B; Jóhannesson, Sigurður H; Mikati, Mohamad A; Neville, Brian; Nicole, Sophie; Ozelius, Laurie J; Poulsen, Hanne; Schyns, Tsveta; Sweadner, Kathleen J; van den Maagdenberg, Arn; Vilsen, Bente

    2014-05-01

    Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases. PMID:24739246

  19. Thymoquinone Inhibits Escherichia coli ATP Synthase and Cell Growth

    PubMed Central

    Ahmad, Zulfiqar; Laughlin, Thomas F.; Kady, Ismail O.

    2015-01-01

    We examined the thymoquinone induced inhibition of purified F1 or membrane bound F1FO E. coli ATP synthase. Both purified F1 and membrane bound F1FO were completely inhibited by thymoquinone with no residual ATPase activity. The process of inhibition was fully reversible and identical in both membrane bound F1Fo and purified F1 preparations. Moreover, thymoquinone induced inhibition of ATP synthase expressing wild-type E. coli cell growth and non-inhibition of ATPase gene deleted null control cells demonstrates that ATP synthase is a molecular target for thymoquinone. This also links the beneficial dietary based antimicrobial and anticancer effects of thymoquinone to its inhibitory action on ATP synthase. PMID:25996607

  20. Basal area from photos.... Is it possible?

    NASA Astrophysics Data System (ADS)

    Sparrow, B.; Ward, B.; Armston, J.; Schaefer, M.; Thurgate, N.; van den Hengel, A.; Lowe, A.; Phinn, S. R.

    2013-12-01

    This paper describes collaborative work conducted between the Ausplots and AusCover facilities within Australia's Terrestrial Ecosystem Research Network (TERN) and the Australian Centre for Visual Technologies (ACVT) to develop new photopoint collection methodologies for use by terrestrial ecologists. These photopoints are being collected at Ausplots survey sites throughout rangeland environments across Australia along with a wide suite of environmental measures, including a range of soil, vegetation species and structure and genetics information, with currently around 270 sites out of 700 collected. These collections are intended to augment the ecological data collected at each site and provide a record of that time. Similar measures are also being collected at Auscover calibration and validation sites. Our photopoints incorporate three sets of overlapping photographs, each collected from exposure points at the vertices of an equilateral triangle with sides of 2.5 m located around the centre point of the field site. The photos from each exposure point typically overlap by 50% and at least one photo in each series include a calibration target mounted on a pole at the centre of the exposure points. These photographs are then processed to create a range of data products. Seamless photo panoramas are constructed for each field site and are stored with the relevant site data allowing ecologists utilising the ecological data to also include the environment in which that data were collected. Point clouds are also produced allowing a three dimensional view of the site and potentially allowing similar analysis, albeit at lower precision, to that of terrestrial Lidar systems. These three dimensional site reconstructions are used to measure stem diameters, and calculate basal area, which are summed for the site, providing a measure of basal area per hectare when the visible distance is taken into account. This method is potentially more accurate than rapid techniques such as

  1. Cervical anterior transpedicular screw fixation (ATPS)--Part II. Accuracy of manual insertion and pull-out strength of ATPS.

    PubMed

    Koller, Heiko; Acosta, Frank; Tauber, Mark; Fox, Michael; Martin, Hudelmaier; Forstner, Rosmarie; Augat, Peter; Penzkofer, Rainer; Pirich, Christian; Kässmann, H; Resch, Herbert; Hitzl, Wolfgang

    2008-04-01

    Reconstruction after multilevel decompression of the cervical spine, especially in the weakened osteoporotic, neoplastic or infectious spine often requires circumferential stabilization and fusion. To avoid the additional posterior surgery in these cases while increasing rigidity of anterior-only screw-plate constructs, the authors introduce the concept of anterior transpedicular screw (ATPS) fixation. We demonstrated its morphological feasibility as well as its indications in a previous study in Part I of our project. Consequently, the objectives of the current study were to assess the ex vivo accuracy of placing ATPS into the cervical vertebra as well as the biomechanical performance of ATPS in comparison to traditional vertebral body screws (VBS) in terms of pull-out strength (POS). Twenty-three ATPS were inserted alternately to two screws into the pedicles and vertebral bodies, respectively, of six cadaveric specimens from C3-T1. For insertion of ATPS, a manual fluoroscopically assisted technique was used. Pre- and post insertional CT-scans were used to assess accuracy of ATPS insertion in the axial and sagittal planes. A newly designed grading system and accuracy score were used to delineate accuracy of ATPS insertion. Following insertion of screws, 23 ATPS and 22 VBS were subjected to pull-out testing (POT). The bone mineral density (BMD) of each specimen was assessed prior to POT. Statistical analysis showed that the incidence of correctly placed screws and non-critical pedicles breaches in axial plane was 78.3%, and 95.7% in sagittal plane. Hence, according to our definition of "critical" pedicle breach that exposes neurovascular structures at risk, 21.7% (n = 5) of all ATPS inserted showed a critical pedicle breach in axial plane. Notably, no critical pedicle perforation occurred at the C6 to T1 levels. Pull-out testing of ATPS and VBS revealed that pull-out resistance of ATPS was 2.5-fold that of VBS. Mean POS of 23 ATPS with a mean BMD of 0.566 g/cm(2

  2. Control and monitoring the effectiveness of different biocides with the use of free ATP

    SciTech Connect

    Chalut, J.; Small, G.; Payton, J.

    1996-12-01

    The Adenosine Triphosphate (ATP) technology can be used as a measurement of the total living biomass. However, care must be exercised in its application and its interpretation. The use of this technique on samples from cooling water systems clearly indicate that there are three distinct pools of ATP, classified as bacterial ATP, free ATP and total ATP, the latter being the sum of the free ATP and bacterial ATP. The mode of action of certain biocidal agents is by disruption of cell membranes, a process which does not decrease the pool of total ATP, but does move ATP from the bacterial ATP pool to the free ATP pool. As a consequence, it is important that for a realistic interpretation to be made, it is necessary to know which biocidal agents are being used and to fully understand their mode of action.

  3. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  4. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR).

    PubMed

    Bompadre, Silvia G; Ai, Tomohiko; Cho, Jeong Han; Wang, Xiaohui; Sohma, Yoshiro; Li, Min; Hwang, Tzyh-Chang

    2005-04-01

    The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed DeltaR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the DeltaR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal DeltaR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of DeltaR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and DeltaR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the DeltaR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing. PMID:15767295

  5. Extracellular ATP drives systemic inflammation, tissue damage and mortality

    PubMed Central

    Cauwels, A; Rogge, E; Vandendriessche, B; Shiva, S; Brouckaert, P

    2014-01-01

    Systemic inflammatory response syndromes (SIRS) may be caused by both infectious and sterile insults, such as trauma, ischemia-reperfusion or burns. They are characterized by early excessive inflammatory cytokine production and the endogenous release of several toxic and damaging molecules. These are necessary to fight and resolve the cause of SIRS, but often end up progressively damaging cells and tissues, leading to life-threatening multiple organ dysfunction syndrome (MODS). As inflammasome-dependent cytokines such as interleukin-1β are critically involved in the development of MODS and death in SIRS, and ATP is an essential activator of inflammasomes in vitro, we decided to analyze the ability of ATP removal to prevent excessive tissue damage and mortality in a murine LPS-induced inflammation model. Our results indeed indicate an important pro-inflammatory role for extracellular ATP. However, the effect of ATP is not restricted to inflammasome activation at all. Removing extracellular ATP with systemic apyrase treatment not only prevented IL-1β accumulation but also the production of inflammasome-independent cytokines such as TNF and IL-10. In addition, ATP removal also prevented systemic evidence of cellular disintegration, mitochondrial damage, apoptosis, intestinal barrier disruption and even mortality. Although blocking ATP receptors with the broad-spectrum P2 purinergic receptor antagonist suramin imitated certain beneficial effects of apyrase treatment, it could not prevent morbidity or mortality at all. We conclude that removal of systemic extracellular ATP could be a valuable strategy to dampen systemic inflammatory damage and toxicity in SIRS. PMID:24603330

  6. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients. PMID:26521170

  7. Radiation-induced basal cell carcinoma

    PubMed Central

    Zargari, Omid

    2015-01-01

    Background: The treatment of tinea capitis using radiotherapy was introduced at the beginning of the twentieth century. A variety of cancers including basal cell carcinoma (BCC) are seen years after this treatment. Objective: We sought to determine the clinical characteristics of BCCs among irradiated patients. Methods: The clinical records of all patients with BCC in a clinic in north of Iran were reviewed. Results: Of the 58 cases of BCC, 29 had positive history for radiotherapy in their childhood. Multiple BCCs were seen in 79.3% and 10.3% of patients with history and without history of radiotherapy, respectively. Conclusions: X-ray radiation is still a major etiologic factor in developing BCC in northern Iran. Patients with positive history for radiotherapy have higher rate of recurrence. PMID:26114066

  8. High affinity ATP/ADP analogues as new tools for studying CFTR gating.

    PubMed

    Zhou, Zhen; Wang, Xiaohui; Li, Min; Sohma, Yoshiro; Zou, Xiaoqin; Hwang, Tzyh-Chang

    2005-12-01

    Previous studies using non-hydrolysable ATP analogues and hydrolysis-deficient cystic fibrosis transmembrane conductance regulator (CFTR) mutants have indicated that ATP hydrolysis precedes channel closing. Our recent data suggest that ATP binding is also important in modulating the closing rate. This latter hypothesis predicts that ATP analogues with higher binding affinities should stabilize the open state more than ATP. Here we explore the possibility of using N6-modified ATP/ADP analogues as high-affinity ligands for CFTR gating, since these analogues have been shown to be more potent than native ATP/ADP in other ATP-binding proteins. Among the three N6-modified ATP analogues tested, N6-(2-phenylethyl)-ATP (P-ATP) was the most potent, with a K(1/2) of 1.6 +/- 0.4 microm (>50-fold more potent than ATP). The maximal open probability (P(o)) in the presence of P-ATP was approximately 30% higher than that of ATP, indicating that P-ATP also has a higher efficacy than ATP. Single-channel kinetic analysis showed that as [P-ATP] was increased, the opening rate increased, whereas the closing rate decreased. The fact that these two kinetic parameters have different sensitivities to changes of [P-ATP] suggests an involvement of two different ATP-binding sites, a high-affinity site modulating channel closing and a low affinity site controlling channel opening. The effect of P-ATP on the stability of open states was more evident when ATP hydrolysis was abolished, either by mutating the nucleotide-binding domain 2 (NBD2) Walker B glutamate (i.e. E1371) or by using the non-hydrolysable ATP analogue AMP-PNP. Similar strategies to develop nucleotide analogues with a modified adenine ring could be valuable for future studies of CFTR gating. PMID:16223764

  9. High affinity ATP/ADP analogues as new tools for studying CFTR gating

    PubMed Central

    Zhou, Zhen; Wang, Xiaohui; Li, Min; Sohma, Yoshiro; Zou, Xiaoqin; Hwang, Tzyh-Chang

    2005-01-01

    Previous studies using non-hydrolysable ATP analogues and hydrolysis-deficient cystic fibrosis transmembrane conductance regulator (CFTR) mutants have indicated that ATP hydrolysis precedes channel closing. Our recent data suggest that ATP binding is also important in modulating the closing rate. This latter hypothesis predicts that ATP analogues with higher binding affinities should stabilize the open state more than ATP. Here we explore the possibility of using N6-modified ATP/ADP analogues as high-affinity ligands for CFTR gating, since these analogues have been shown to be more potent than native ATP/ADP in other ATP-binding proteins. Among the three N6-modified ATP analogues tested, N6-(2-phenylethyl)-ATP (P-ATP) was the most potent, with a K½ of 1.6 ± 0.4 μm (>50-fold more potent than ATP). The maximal open probability (Po) in the presence of P-ATP was ∼30% higher than that of ATP, indicating that P-ATP also has a higher efficacy than ATP. Single-channel kinetic analysis showed that as [P-ATP] was increased, the opening rate increased, whereas the closing rate decreased. The fact that these two kinetic parameters have different sensitivities to changes of [P-ATP] suggests an involvement of two different ATP-binding sites, a high-affinity site modulating channel closing and a low affinity site controlling channel opening. The effect of P-ATP on the stability of open states was more evident when ATP hydrolysis was abolished, either by mutating the nucleotide-binding domain 2 (NBD2) Walker B glutamate (i.e. E1371) or by using the non-hydrolysable ATP analogue AMP-PNP. Similar strategies to develop nucleotide analogues with a modified adenine ring could be valuable for future studies of CFTR gating. PMID:16223764

  10. Reaction Dynamics of ATP Hydrolysis Catalyzed by P-Glycoprotein

    PubMed Central

    2015-01-01

    P-glycoprotein (P-gp) is a member of the ABC transporter family that confers drug resistance to many tumors by catalyzing their efflux, and it is a major component of drug–drug interactions. P-gp couples drug efflux with ATP hydrolysis by coordinating conformational changes in the drug binding sites with the hydrolysis of ATP and release of ADP. To understand the relative rates of the chemical step for hydrolysis and the conformational changes that follow it, we exploited isotope exchange methods to determine the extent to which the ATP hydrolysis step is reversible. With γ18O4-labeled ATP, no positional isotope exchange is detectable at the bridging β-phosphorus–O−γ-phosphorus bond. Furthermore, the phosphate derived from hydrolysis includes a constant ratio of three 18O/two 18O/one 18O that reflects the isotopic composition of the starting ATP in multiple experiments. Thus, H2O-exchange with HPO42– (Pi) was negligible, suggesting that a [P-gp·ADP·Pi] is not long-lived. This further demonstrates that the hydrolysis is essentially irreversible in the active site. These mechanistic details of ATP hydrolysis are consistent with a very fast conformational change immediately following, or concomitant with, hydrolysis of the γ-phosphate linkage that ensures a high commitment to catalysis in both drug-free and drug-bound states. PMID:24506763

  11. ATP-dependent degradation of ubiquitin-protein conjugates.

    PubMed Central

    Hershko, A; Leshinsky, E; Ganoth, D; Heller, H

    1984-01-01

    Previous studies have indicated that the ATP-requiring conjugation of ubiquitin with proteins plays a role in the energy-dependent degradation of intracellular proteins. To examine whether such conjugates are indeed intermediates in protein breakdown, conjugates of 125I-labeled lysozyme with ubiquitin were isolated and incubated with a fraction of reticulocyte extract that lacks the enzymes that carry out ubiquitin-protein conjugation. ATP markedly stimulated degradation of the lysozyme moiety of ubiquitin conjugates to products soluble in trichloroacetic acid. By contrast, free 125I-labeled lysozyme was not degraded under these conditions, unless ubiquitin and the three enzymes required for ubiquitin conjugation were supplemented. Mg2+ was absolutely required for conjugate breakdown. Of various nucleotides, only CTP replaced ATP. Nonhydrolyzable analogs of ATP were not effective. In the absence of ATP, free lysozyme is released from ubiquitin-lysozyme conjugates by isopeptidases present in the extract. Thus, ATP is involved in both the formation and the breakdown of ubiquitin-protein conjugates. Images PMID:6324208

  12. Effect of glucose on ATP dephosphorylation in rat spermatids.

    PubMed

    Grootegoed, J A; Jansen, R; van der Molen, H J

    1986-05-01

    Round spermatids were isolated from rat testes and the effects of different energy-yielding substrates on the cellular ATP content were estimated. The ATP content was constant and high (6-8 nmol/10(6) cells) during metabolism of exogenous lactate. During incubation for 30 min in the absence of exogenous lactate, there was a remarkably slow decline of the ATP content, indicating ATP production from other substrates. It was shown that this could reflect beta-oxidation of fatty acids, but not the mobilization of an endogenous pool of acetylcarnitine. Glucose metabolism in the absence of exogenous lactate resulted in a rapid decline of the ATP content. This effect of glucose was correlated with a high fructose 1,6-biphosphate content (6-7 nmol/10(6) cells) and could be prevented by the addition of lactate. It is suggested that metabolism of glucose (and also mannose and fructose, but not galactose) in the absence of exogenous lactate can result in ATP dephosphorylation. PMID:3723480

  13. Catalytic Mechanism of the Maltose Transporter Hydrolyzing ATP.

    PubMed

    Huang, Wenting; Liao, Jie-Lou

    2016-01-12

    We use quantum mechanical and molecular mechanical (QM/MM) simulations to study ATP hydrolysis catalyzed by the maltose transporter. This protein is a prototypical member of a large family that consists of ATP-binding cassette (ABC) transporters. The ABC proteins catalyze ATP hydrolysis to perform a variety of biological functions. Despite extensive research efforts, the precise molecular mechanism of ATP hydrolysis catalyzed by the ABC enzymes remains elusive. In this work, the reaction pathway for ATP hydrolysis in the maltose transporter is evaluated using a QM/MM implementation of the nudged elastic band method without presuming reaction coordinates. The potential of mean force along the reaction pathway is obtained with an activation free energy of 19.2 kcal/mol in agreement with experiments. The results demonstrate that the reaction proceeds via a dissociative-like pathway with a trigonal bipyramidal transition state in which the cleavage of the γ-phosphate P-O bond occurs and the O-H bond of the lytic water molecule is not yet broken. Our calculations clearly show that the Walker B glutamate as well as the switch histidine stabilizes the transition state via electrostatic interactions rather than serving as a catalytic base. The results are consistent with biochemical and structural experiments, providing novel insight into the molecular mechanism of ATP hydrolysis in the ABC proteins. PMID:26666844

  14. Phospho-oligosaccharide dependent phosphorylation of ATP citrate lyase.

    PubMed

    Puerta, J; Mato, J M; Alemany, S

    1990-01-01

    The effect of insulin on ATP citrate lyase phosphorylation has been shown to be mimicked by a phospho-oligosaccharide in intact adipocytes. We demonstrate that the addition of phospho-oligosaccharide to intact adipocytes enhances the phosphorylation of ATP citrate lyase in the same tryptic peptide as insulin does. The addition of phospho-oligosaccharide to an adipocyte extract also results in an increase in ATP citrate lyase phosphorylation but in a different site than that observed in intact cells. The phospho-oligosaccharide-dependent incorporation of phosphate into ATP citrate lyase in intact cells is resistant to isopropanol and acetic acid, but the phosphoenzyme phosphorylated in cell extracts is acid labile. In cell extracts, the addition of phospho-oligosaccharide markedly inhibits ATP hydrolysis, which may explain the effect of this molecule on ATP citrate lyase phosphorylation in broken cells. These results support the hypothesis that this phospho-oligosaccharide mediates some of the effects of insulin on protein phosphorylation. They also indicate that caution should be exercised in interpreting the results obtained by adding phospho-oligosaccharide to broken cell preparations. PMID:2119547

  15. Structural basis for the ATP-induced isomerization of kinesin.

    PubMed

    Chang, Qing; Nitta, Ryo; Inoue, Shigeyuki; Hirokawa, Nobutaka

    2013-06-12

    Kinesin superfamily proteins (KIFs) are microtubule-based molecular motors driven by the energy derived from the hydrolysis of ATP. Previous studies have revealed that the ATP binding step is crucial both for the power stroke to produce motility and for the inter-domain regulation of ATPase activit