Science.gov

Sample records for reduced hot spot

  1. The Earth's Hot Spots.

    ERIC Educational Resources Information Center

    Vink, Gregory E.; And Others

    1985-01-01

    Hot spots are isolated areas of geologic activity where volcanic eruptions, earthquakes, and upwelling currents occur far from plate boundaries. These mantle plumes are relatively stable and crustal plates drift over them. The nature and location of hot spots (with particular attention to the Hawaiian Islands and Iceland) are discussed. (DH)

  2. Reactor hot spot analysis

    SciTech Connect

    Vilim, R.B.

    1985-08-01

    The principle methods for performing reactor hot spot analysis are reviewed and examined for potential use in the Applied Physics Division. The semistatistical horizontal method is recommended for future work and is now available as an option in the SE2-ANL core thermal hydraulic code. The semistatistical horizontal method is applied to a small LMR to illustrate the calculation of cladding midwall and fuel centerline hot spot temperatures. The example includes a listing of uncertainties, estimates for their magnitudes, computation of hot spot subfactor values and calculation of two sigma temperatures. A review of the uncertainties that affect liquid metal fast reactors is also presented. It was found that hot spot subfactor magnitudes are strongly dependent on the reactor design and therefore reactor specific details must be carefully studied. 13 refs., 1 fig., 5 tabs.

  3. Hot Spot Removal System: System description

    SciTech Connect

    1997-09-01

    Hazardous wastes contaminated with radionuclides, chemicals, and explosives exist across the Department of Energy complex and need to be remediated due to environmental concerns. Currently, an opportunity is being developed to dramatically reduce remediation costs and to assist in the acceleration of schedules associated with these wastes by deploying a Hot Spot Removal System. Removing the hot spot from the waste site will remove risk driver(s) and enable another, more cost effective process/option/remedial alternative (i.e., capping) to be applied to the remainder of the site. The Hot Spot Removal System consists of a suite of technologies that will be utilized to locate and remove source terms. Components of the system can also be used in a variety of other cleanup activities. This Hot Spot Removal System Description document presents technologies that were considered for possible inclusion in the Hot Spot Removal System, technologies made available to the Hot Spot Removal System, industrial interest in the Hot Spot Removal System`s subsystems, the schedule required for the Hot Spot Removal System, the evaluation of the relevant technologies, and the recommendations for equipment and technologies as stated in the Plan section.

  4. Hot Spot Cosmic Accelerators

    NASA Astrophysics Data System (ADS)

    2002-11-01

    length of more than 3 million light-years, or no less than one-and-a-half times the distance from the Milky Way to the Andromeda galaxy, this structure is indeed gigantic. The region where the jets collide with the intergalactic medium are known as " hot spots ". Superposing the intensity contours of the radio emission from the southern "hot spot" on a near-infrared J-band (wavelength 1.25 µm) VLT ISAAC image ("b") shows three distinct emitting areas; they are even better visible on the I-band (0.9 µm) FORS1 image ("c"). This emission is obviously associated with the shock front visible on the radio image. This is one of the first times it has been possible to obtain an optical/near-IR image of synchrotron emission from such an intergalactic shock and, thanks to the sensitivity and image sharpness of the VLT, the most detailed view of its kind so far . The central area (with the strongest emission) is where the plasma jet from the galaxy centre hits the intergalactic medium. The light from the two other "knots", some 10 - 15,000 light-years away from the central "hot spot", is also interpreted as synchrotron emission. However, in view of the large distance, the astronomers are convinced that it must be caused by electrons accelerated in secondary processes at those sites . The new images thus confirm that electrons are being continuously accelerated in these "knots" - hence called "cosmic accelerators" - far from the galaxy and the main jets, and in nearly empty space. The exact physical circumstances of this effect are not well known and will be the subject of further investigations. The present VLT-images of the "hot spots" near 3C 445 may not have the same public appeal as some of those beautiful images that have been produced by the same instruments during the past years. But they are not less valuable - their unusual importance is of a different kind, as they now herald the advent of fundamentally new insights into the mysteries of this class of remote and active

  5. Saturn's Hot Spot

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This is the sharpest image of Saturn's temperature emissions taken from the ground; it is a mosaic of 35 individual exposures made at the W.M. Keck I Observatory, Mauna Kea, Hawaii on Feb. 4, 2004.

    The images to create this mosaic were taken with infrared radiation. The mosaic was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The prominent hot spot at the bottom of the image is right at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The tropospheric temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole.

    Ring particles are not at a uniform temperature everywhere in their orbit around Saturn. The ring particles are orbiting clockwise in this image. Particles are coldest just after having cooled down in Saturn's shadow (lower left). As they orbit Saturn, the particles increase in temperature up to a maximum (lower right) just before passing behind Saturn again in shadow.

    A small section of the ring image is missing because of incomplete mosaic coverage during the observing sequence.

  6. Hot Spot at Yellowstone

    ERIC Educational Resources Information Center

    Dress, Abby

    2005-01-01

    Within this huge national park (over two million acres spread across Wyoming, Montana, and Idaho) are steaming geysers, hot springs, bubbling mudpots, and fumaroles, or steam vents. Drives on the main roads of Yellowstone take tourists through the major hot attractions, which also include Norris Geyser Basin, Upper and Lower Geyser Basin, West…

  7. Rocket engine hot-spot detector

    NASA Astrophysics Data System (ADS)

    Collamore, F. N.

    1985-04-01

    On high performance devices such as rocket engines it is desirable to know if local hot spots or areas of reduced cooling margin exist. The objective of this program is to design, fabricate and test an electronic hot spot detector capable of sensing local hot spot on the exterior circumference of a regeneratively cooled combustion chamber in order to avoid hardware damage. The electronic hot spot sensor consists of an array of 120 thermocouple elements which are bonded in a flexible belt of polyimide film. The design temperature range is from +30 F to +400 F continuously with an intermittent temperature of 500 F maximum. The thermocouple belt consists of 120 equally spaced copper-Constantan thermocouple junctions which is wrapped around the OMS liquid rocket engine combustion chamber, to monitor temperatures of individual cooling channels. Each thermocouple is located over a cooling channel near the injector end of the combustion chamber. The thermocouple array sensor is held in place by a spring loaded clamp band. Analyses show that in the event of a blocked cooling channel the surface temperature of the chamber over the blocked channel will rise from a normal operating temperature of approx. 300 F to approx. 600 F. The hot spot detector will respond quickly to this change with a response time constant less than 0.05 seconds. The hot spot sensor assembly is fabricated with a laminated construction of layers of Kapton film and an outer protective layer of fiberglass reinforced silicone rubber.

  8. Concentrator hot-spot testing, phase 1

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1987-01-01

    Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.

  9. Amorphous-silicon module hot-spot testing

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.

  10. Numerical simulations of hot spots

    NASA Astrophysics Data System (ADS)

    Norman, Michael L.

    Numerical simulations of hot spots and their associated jets are examined with emphasis on their dynamical variability. Attention is given to two-dimensional simulations, which incorporate dynamically passive and important magnetic fields in the ideal MHD limit. Distributions of total and polarized radio brightness have been derived for comparison with observations. The move toward three-dimensional simulations is documented, and hydrodynamical models for multiple hot spots are discussed. It is suggested that useful insights can be obtained from two-dimensional slab jet simulation, which relax the axisymmetric constraints while allowing high numerical resolution. In particular the dentist-drill model of Scheuer (1982) for working-surface variability is substantiated, and it is shown to result from self-excited jet instabilities near the working surface.

  11. ESA uncovers Geminga's `hot spot'

    NASA Astrophysics Data System (ADS)

    2004-07-01

    16 July 2004 Astronomers using ESA’s X-ray observatory XMM-Newton have detected a small, bright ‘hot spot’ on the surface of the neutron star called Geminga, 500 light-years away. The hot spot is the size of a football field and is caused by the same mechanism producing Geminga’s X-ray tails. This discovery identifies the missing link between the X-ray and gamma-ray emission from Geminga. hi-res Size hi-res: 1284 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot This figure shows the effects of charged particles accelerated in the magnetosphere of Geminga. Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of particles kicked out by Geminga’s strong magnetic field, trail the neutron star as it moves about in space. Panel (b) shows how electrically charged particles interact with Geminga’s magnetic field. For example, if electrons (blue) are kicked out by the star, positrons (in red) hit the star’s magnetic poles like in an ‘own goal’. Panel (c) illustrates the size of Geminga’s magnetic field (blue) compared to that of the star itself at the centre (purple). The magnetic field is tilted with respect to Geminga’s rotation axis (red). Panel (d) shows the magnetic poles of Geminga, where charged particles hit the surface of the star, creating a two-million degrees hot spot, a region much hotter than the surroundings. As the star spins on its rotation axis, the hot spot comes into view and then disappears, causing the periodic colour change seen by XMM-Newton. An animated version of the entire sequence can be found at: Click here for animated GIF [low resolution, animated GIF, 5536 KB] Click here for AVI [high resolution, AVI with DIVX compression, 19128 KB] hi-res Size hi-res: 371 kb Credits: ESA, P. Caraveo (IASF, Milan) Geminga's hot spot, panel (a) Panel (a) shows an image taken with the EPIC instrument on board the XMM-Newton observatory. The bright tails, made of

  12. Sustainability of Public Health Interventions to Reduce the Risk of Dioxin Exposure at Severe Dioxin Hot Spots in Vietnam.

    PubMed

    Tuyet-Hanh, Tran Thi; Vu-Anh, Le; Dunne, Michael; Toms, Leisa-Maree; Tenkate, Thomas; Harden, Fiona

    2015-08-01

    Severe dioxin contamination at Bien Hoa and Da Nang airbases, Vietnam is of international concern. Public Health risk reduction programs were implemented in Bien Hoa in 2007-2009 and in Da Nang in 2009-2011. In 2009 and 2011 we reported the encouraging results of these interventions in improving the knowledge, attitude and practices (KAP) of local residents in reducing the dioxin exposure risk through foods. In 2013 we revisited these dioxin hot spots, aimed to evaluate whether the results of the intervention were maintained and to identify factors affecting the sustainability of the programs. To assess this, 16 in-depth interviews, six focus group discussions, and pre and post intervention KAP surveys were undertaken. 800 respondents from six intervention wards and 200 respondents from Buu Long Ward (the control site) were randomly selected to participate in the surveys. The results showed that as of 2013, the programs were rated as "moderately sustained" with a score of 3.3 out of 5.0 (cut off points 2.5 to <3.5) for Bien Hoa, and "well sustained" with a score of 3.8 out of 5.0 (cut off points 3.5 to <4.5) for Da Nang. Most formal intervention program activities had ceased and dioxin risk communication activities were no longer integrated into local routine health education programs. However, the main outcomes were maintained and were better than that in the control ward. Migration, lack of official guidance from City People's Committees and local authorities as well as the politically sensitive nature of dioxin issues were the main challenges for the sustainability of the programs. PMID:25524211

  13. Hot spot and trench volcano separations

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1974-01-01

    It is suggested that the distribution of separations between trench volcanos located along subduction zones reflects the depth of partial melting, and that the separation distribution for hot spot volcanoes near spreading centers provides a measure of the depth of mantle convection cells. It is further proposed that the lateral dimensions of mantle convection cells are also represented by the hot-spot separations (rather than by ridge-trench distances) and that a break in the distribution of hot spot separations at 3000 km is evidence for both whole mantle convection and a deep thermal plume origin of hot spots.

  14. HotSpot Software Configuration Management Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Configuration Management Plan (SCMP) describes the software configuration management procedures used to ensure that the HotSpot dispersion model meets the requirements of its user base, which includes: (1) Users of the PC version of HotSpot for consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. This plan is intended to meet Critical Recommendations 1 and 3 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  15. HotSpot Software Test Plan

    SciTech Connect

    Walker, H; Homann, S G

    2009-03-12

    This Software Test Plan (STP) describes the procedures used to verify and validate that the HotSpot Health Physics Codes meet the requirements of its user base, which includes: (1) Users of the PC version of HotSpot conducting consequence assessment, hazard assessment and safety analysis calculations; and (2) Users of the NARAC Web and iClient software tools, which allow users to run HotSpot for consequence assessment modeling. This plan is intended to meet Critical Recommendation 2 from the Software Evaluation of HotSpot and DOE Safety Software Toolbox Recommendation for inclusion of HotSpot in the Department of Energy (DOE) Safety Software Toolbox. These users and sponsors of the HotSpot software and the organizations they represent constitute the intended audience for this document. HotSpot software is maintained for the Department of Energy Office of Emergency Operations by the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory (LLNL). An overview of HotSpot and NARAC are provided.

  16. Ultrasonic hammer produces hot spots in solids

    NASA Astrophysics Data System (ADS)

    You, Sizhu; Chen, Ming-Wei; Dlott, Dana D.; Suslick, Kenneth S.

    2015-04-01

    Mechanical action can produce dramatic physical and mechanochemical effects when the energy is spatially or temporally concentrated. An important example of such phenomena in solids is the mechanical initiation of explosions, which has long been speculated to result from ‘hot spot’ generation at localized microstructures in the energetic material. Direct experimental evidence of such hot spots, however, is exceptionally limited; mechanisms for their generation are poorly understood and methods to control their locations remain elusive. Here we report the generation of intense, localized microscale hot spots in solid composites during mild ultrasonic irradiation, directly visualized by a thermal imaging microscope. These ultrasonic hot spots, with heating rates reaching ~22,000 K s-1, nucleate exclusively at interfacial delamination sites in composite solids. Introducing specific delamination sites by surface modification of embedded components provides precise and reliable control of hot spot locations and permits microcontrol of the initiation of reactions in energetic materials including fuel/oxidizer explosives.

  17. Hot-spot durability testing of amorphous cells and modules

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles; Jetter, Elizabeth

    1985-01-01

    This paper discusses the results of a study to determine the hot-spot susceptibility of amorphous-silicon (a-Si) cells and modules, and to provide guidelines for reducing that susceptibility. Amorphous-Si cells are shown to have hot-spot susceptibility levels similar to crystalline-silicon (C-Si) cells. This premise leads to the fact that the same general guidelines must apply to protecting a-Si cells from hot-spot stressing that apply to C-Si cells. Recommendations are made on ways of reducing a-Si module hot-spot susceptibility including the traditional method of using bypass diodes and a new method unique to thin-film cells, limiting the string current by limiting cell area.

  18. The hot spot of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Kanemasu, Edward T.

    1988-01-01

    A conventional radiometer is used to identify the hot spot (the peak in reflected radiation in the retrosolar direction) of vegetation. A multiwavelength-band radiometer collected radiances on fully grown dense wheat and maize canopies on several clear sunny days. It is noted that the hot spot is difficult to detect in the near IR wavelengths because the shadows are much darker. In general, the retrosolar brightness is found to be higher for smaller sun polar angles than for larger angles.

  19. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2013-04-18

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating insidents involving redioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  20. HotSpot Health Physics Codes

    Energy Science and Technology Software Center (ESTSC)

    2010-03-02

    The HotSpot Health Physics Codes were created to provide emergency response personnel and emergency planners with a fast, field-portable set of software tools for evaluating incidents involving radioactive material. The software is also used for safety-analysis of facilities handling nuclear material. HotSpot provides a fast and usually conservative means for estimation the radiation effects associated with the short-term (less than 24 hours) atmospheric release of radioactive materials.

  1. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes. PMID:17808242

  2. Hot Water Treatment to Reduce Angular Leaf Spot of Strawberry, Caused by Xanthomonas fragariae, in Nursery Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Angular leaf spot is an important disease in strawberry nursery production. The European and Mediterranean Plant Protection Organization (EPPO) lists X. fragariae as an A2 quarantine pathogen. Therefore, nurseries wishing to export plants to European countries must maintain certain phytosanitary sta...

  3. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols, III, A L

    2005-07-14

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a non-local equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  4. Statistical Hot Spot Model for Explosive Detonation

    SciTech Connect

    Nichols III, A L

    2004-05-10

    The Non-local Thermodynamic Equilibrium Statistical Hot Spot Model (NLTE SHS), a new model for explosive detonation, is described. In this model, the formation, ignition, propagation, and extinction of hot spots is explicitly modeled. The equation of state of the explosive mixture is treated with a nonlocal equilibrium thermodynamic assumption. A methodology for developing the parameters for the model is discussed, and applied to the detonation velocity diameter effect. Examination of these results indicates where future improvements to the model can be made.

  5. Hot-spot tectonics on Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1985-01-01

    The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.

  6. Two New Hot Spots on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Near-Infrared Mapping Spectrometer (NIMS) on Galileo obtained this image of half of Io's disk in darkness on September 19, 1997. This image, at 5 microns, shows several hot spots on Io, which are volcanic regions of enhanced thermal emission. The area shown is part of the leading hemisphere of Io.

    Two new hot spots are shown and indicated in the image (New, and Shamshu). Neither of these hot spots were seen by NIMS or the Solid State Imaging Experiment, (SSI) prior to this observation, becoming only recently active. Several other previously known hot spots are labelled in the image. Galileo was at a distance of 342,000 km from Io when this observation was made.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  7. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.

  8. Photovoltaic module hot spot durability design and test methods

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Gonzalez, C. C.

    1981-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, the susceptibility of fat-plate modules to hot-spot problems is investigated. Hot-spot problems arise in modules when the cells become back-biased and operate in the negative-voltage quadrant, as a result of short-circuit current mismatch, cell cracking or shadowing. The details of a qualification test for determining the capability of modules of surviving field hot-spot problems and typical results of this test are presented. In addition, recommended circuit-design techniques for improving the module and array reliability with respect to hot-spot problems are presented.

  9. Structural hot spots for the solubility of globular proteins.

    PubMed

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  10. Structural hot spots for the solubility of globular proteins

    PubMed Central

    Ganesan, Ashok; Siekierska, Aleksandra; Beerten, Jacinte; Brams, Marijke; Van Durme, Joost; De Baets, Greet; Van der Kant, Rob; Gallardo, Rodrigo; Ramakers, Meine; Langenberg, Tobias; Wilkinson, Hannah; De Smet, Frederik; Ulens, Chris; Rousseau, Frederic; Schymkowitz, Joost

    2016-01-01

    Natural selection shapes protein solubility to physiological requirements and recombinant applications that require higher protein concentrations are often problematic. This raises the question whether the solubility of natural protein sequences can be improved. We here show an anti-correlation between the number of aggregation prone regions (APRs) in a protein sequence and its solubility, suggesting that mutational suppression of APRs provides a simple strategy to increase protein solubility. We show that mutations at specific positions within a protein structure can act as APR suppressors without affecting protein stability. These hot spots for protein solubility are both structure and sequence dependent but can be computationally predicted. We demonstrate this by reducing the aggregation of human α-galactosidase and protective antigen of Bacillus anthracis through mutation. Our results indicate that many proteins possess hot spots allowing to adapt protein solubility independently of structure and function. PMID:26905391

  11. Transport implications of hydrodynamic mix on hot-spot performance in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Tang, Xianzhu

    2014-10-01

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to the Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. We quantify this mix-enhanced transport effect on hot-spot fusion-performance degradation using contrasting 1-D and 2-D hydrodynamic simulations, and identify its dependence on effective acceleration, Atwood number, and ablation speed. In the presence of magnetic fields, the thermal conduction is reduced which reduces the effect of ablative stabilization on mix mitigation while also reducing the amount of cold fuel being ablated into the hot-spot. A characterization of the transport enhanced mix characteristics with and without magnetic fields is performed to identify a regime where fusion-performance degradation is reduced by mix mitigation, through which the amount of cold fuel being ablated into the hot-spot is minimized.

  12. High-resolution melting analysis of the single nucleotide polymorphism hot-spot region in the rpoB gene as an indicator of reduced susceptibility to rifaximin in Clostridium difficile.

    PubMed

    Pecavar, Verena; Blaschitz, Marion; Hufnagl, Peter; Zeinzinger, Josef; Fiedler, Anita; Allerberger, Franz; Maass, Matthias; Indra, Alexander

    2012-06-01

    Clostridium difficile, a Gram-positive, spore-forming, anaerobic bacterium, is the main causative agent of hospital-acquired diarrhoea worldwide. In addition to metronidazole and vancomycin, rifaximin, a rifamycin derivative, is a promising antibiotic for the treatment of recurring C. difficile infections (CDI). However, exposure of C. difficile to this antibiotic has led to the development of rifaximin-resistance due to point mutations in the β-subunit of the RNA polymerase (rpoB) gene. In the present study, 348 C. difficile strains with known PCR-ribotypes were investigated for respective single nucleotide polymorphisms (SNPs) within the proposed rpoB hot-spot region by using high-resolution melting (HRM) analysis. This method allows the detection of SNPs by comparing the altered melting behaviour of dsDNA with that of wild-type DNA. Discrimination between wild-type and mutant strains was enhanced by creating heteroduplexes by mixing sample DNA with wild-type DNA, leading to characteristic melting curve shapes from samples containing SNPs in the respective rpoB section. In the present study, we were able to identify 16 different rpoB sequence-types (ST) by sequencing analysis of a 325 bp fragment. The 16 PCR STs displayed a total of 24 different SNPs. Fifteen of these 24 SNPs were located within the proposed 151 bp SNP hot-spot region, resulting in 11 different HRM curve profiles (CP). Eleven SNPs (seven of which were within the proposed hot-spot region) led to amino acid substitutions associated with reduced susceptibility to rifaximin and 13 SNPs (eight of which were within the hot-spot region) were synonymous. This investigation clearly demonstrates that HRM analysis of the proposed SNP hot-spot region in the rpoB gene of C. difficile is a fast and cost-effective method for the identification of C. difficile samples with reduced susceptibility to rifaximin and even allows simultaneous SNP subtyping of the respective C. difficile isolates. PMID:22361457

  13. KFC Server: interactive forecasting of protein interaction hot spots.

    PubMed

    Darnell, Steven J; LeGault, Laura; Mitchell, Julie C

    2008-07-01

    The KFC Server is a web-based implementation of the KFC (Knowledge-based FADE and Contacts) model-a machine learning approach for the prediction of binding hot spots, or the subset of residues that account for most of a protein interface's; binding free energy. The server facilitates the automated analysis of a user submitted protein-protein or protein-DNA interface and the visualization of its hot spot predictions. For each residue in the interface, the KFC Server characterizes its local structural environment, compares that environment to the environments of experimentally determined hot spots and predicts if the interface residue is a hot spot. After the computational analysis, the user can visualize the results using an interactive job viewer able to quickly highlight predicted hot spots and surrounding structural features within the protein structure. The KFC Server is accessible at http://kfc.mitchell-lab.org. PMID:18539611

  14. An approach for addressing hard-to-detect hot spots.

    PubMed

    Abelquist, Eric W; King, David A; Miller, Laurence F; Viars, James A

    2013-05-01

    The Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) survey approach is comprised of systematic random sampling coupled with radiation scanning to assess acceptability of potential hot spots. Hot spot identification for some radionuclides may not be possible due to the very weak gamma or x-ray radiation they emit-these hard-to-detect nuclides are unlikely to be identified by field scans. Similarly, scanning technology is not yet available for chemical contamination. For both hard-to-detect nuclides and chemical contamination, hot spots are only identified via volumetric sampling. The remedial investigation and cleanup of sites under the Comprehensive Environmental Response, Compensation, and Liability Act typically includes the collection of samples over relatively large exposure units, and concentration limits are applied assuming the contamination is more or less uniformly distributed. However, data collected from contaminated sites demonstrate contamination is often highly localized. These highly localized areas, or hot spots, will only be identified if sample densities are high or if the environmental characterization program happens to sample directly from the hot spot footprint. This paper describes a Bayesian approach for addressing hard-to-detect nuclides and chemical hot spots. The approach begins using available data (e.g., as collected using the standard approach) to predict the probability that an unacceptable hot spot is present somewhere in the exposure unit. This Bayesian approach may even be coupled with the graded sampling approach to optimize hot spot characterization. Once the investigator concludes that the presence of hot spots is likely, then the surveyor should use the data quality objectives process to generate an appropriate sample campaign that optimizes the identification of risk-relevant hot spots. PMID:23528274

  15. Meteorology of Jupiter's Equatorial Hot Spots and Plumes from Cassini

    NASA Technical Reports Server (NTRS)

    Choi, David Sanghun; Showman, Adam P.; Vasavada, Ashwin R.; Simon-Miller, Amy A.

    2013-01-01

    We present an updated analysis of Jupiter's equatorial meteorology from Cassini observations. For two months preceding the spacecraft's closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like 'scooter' clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150-200 m/s, much faster than the 100 m/s hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed.

  16. Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content

    NASA Astrophysics Data System (ADS)

    Henrich, D.; Dörner, S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M.

    2012-10-01

    The spectral detection efficiency and the dark count rate of superconducting nanowire single-photon detectors (SNSPD) have been studied systematically on detectors made from thin NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm thick NbN films results in a decrease of the dark count rates more than two orders of magnitude and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed phenomena are explained by an improvement of uniformity of NbN films that has been confirmed by a decrease of resistivity and an increase of the ratio of the measured critical current to the depairing current. The latter factor is considered as the most crucial for both the cut-off wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria for material properties to optimize SNSPD in the infrared spectral region.

  17. ''Hot spots'': Subnanometer femtosecond energy localization

    SciTech Connect

    Karo, A.M.; Hardy, J.R.

    1986-12-01

    In a condensed energetic material an understanding of the dynamics and microscopic mechanisms underlying energy transfer between a shock front and various defects is of prime importance for a realistic description of ''hot spot'' formation and explosives initiation. A wide variety of simulations using the well-established technique of computer molecular dynamics has enabled us to obtain a general and very useful microscopic description of the processes beneath the macroscopic behavior of shocked systems. The calculation of the influence of heterogeneities such as point and line defects, voids, and grain boundaries is made possible by computer codes that can handle totally heterogeneous dynamical systems and track the dynamics of energy concentration and partitioning among the molecular bonds in the defect and the nearby region. One and two-dimensional calculations will be discussed in which the spatial and temporal dependence of the energy flux in a general lattice-defect system is calculated quantitatively as a function of shock strength, initial temperature, and initial parameters defining the lattice and defect.

  18. Hot spot-ridge crest convergence in the northeast Pacific

    SciTech Connect

    Karsten, J.L.; Delaney, J.R. )

    1989-01-10

    Evolution of the Juan de Fuca Ridge during the past 7 m.y. has been reconstructed taking into account both the propagating rift history and migration of the spreading center in the 'absolute' (fixed hot spot) reference frame. Northwestward migration of the spreading center (at a rate of 30 km/m.y.) has resulted in progressive encroachment of the ridge axis on the Cobb Hot Spot and westward jumping of the central third of the ridge axis more recently than 0.5 Ma. Seamounts in the Cobb-Eickelberg chain are predicted to display systematic variations in morphology and petrology, and a reduction in the age contrast between the edifice and underlying crust, as a result of the ridge axis approach. Relative seamount volumes also indicate that magmatic output of the hot spot varied during this interval, with a reduction in activity between 2.5 and 4.5 Ma, compared with relatively more robust activity before and after this period. Spatial relationships determined in this reconstruction allow hypotheses relating hot spot activity and rift propagation to be evaluated. In most cases, rift propagation has been directed away from the hot spot during the time period considered. Individual propagators show some reduction in propagation rate as separation between the propagating rift tip and hot spot increases, but cross comparison of multiple propagators does not uniformly display the same relationship. No obvious correlation exists between propagation rate and increasing proximity of the hot spot to the ridge axis or increasing hot spot output. Taken together, these observations do not offer compelling support for the concept of hot spot driven rift propagation. However, short-term reversals in propagation direction at the Cobb Offset coincide with activity of the Heckle melting anomaly, suggesting that local propagation effects may be related to excess magma supply at the ridge axis.

  19. The evolutionary turnover of recombination hot spots contributes to speciation in mice.

    PubMed

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R Daniel; Petukhova, Galina V

    2016-02-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728

  20. The evolutionary turnover of recombination hot spots contributes to speciation in mice

    PubMed Central

    Smagulova, Fatima; Brick, Kevin; Pu, Yongmei; Camerini-Otero, R. Daniel; Petukhova, Galina V.

    2016-01-01

    Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation. PMID:26833728

  1. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    PubMed

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100. PMID:25353903

  2. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie; Liu, Bin; Yu, Chengxin; He, X. T.

    2016-01-01

    Fusion ignition experiments on the National Ignition Facility have demonstrated >5 keV hot spot with ρRh lower than 0.3 g/cm2 [Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot ρR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot ρR requirement is remarkably reduced for achieving self-heating.

  3. Ridges and Hot Spots: Reconciling Isotopes and Major Elements

    NASA Astrophysics Data System (ADS)

    Albarede, F.; Lee, C.; Agranier, A.; Blichert-Toft, J.

    2008-12-01

    Meyzen et al. (2007) combined the radiogenic isotope data of several hundred MORB samples along a single mid-ocean ridge profile extending from the northernmost Atlantic to the Indian over to the Pacific Ocean covering >400 degrees. A remarkable finding was that the total reduced variance on Sr-Nd-Hf-Pb data, hereafter referred to as "isotopic variance", showed conspicuous maxima and that a harmonic analysis of this variance showed a periodic spacing of the maxima with a mean value of ~35° (actually a doublet, which is a consequence of modulation by a hemispheric contrast). The strong but unexpected hint was that hot spots are nearly periodically spaced along the ridge systems. To explore whether the isotopic variations in the mantle are controlled by physical properties of the mantle source, such as its thermal state and major element composition, we estimated the apparent temperatures and pressures of equilibration using newly calibrated thermometers and barometers of Lee et al. (submitted) based on the most recent compilation of experimental data. We calculated T-P couples for over 3000 MORB samples after correcting for olivine fractionation. Peaks appear for pressure and even stronger for temperature at the precise same localities along the ridges where the presence of hot spots has been inferred. Periodograms of temperature estimates were calculated which produced a spectrum similar to that of the isotopic variance with the same conspicuous doublet and the same mean spacing of ~35° with a total power >40%. Pressure estimates show similar features with a lesser signal/noise ratio but we suspect that these features may largely reflect the rather strong correlation between errors on Tand P. These results, based on two independent data sets, leave little doubt about deep mantle upwellings with high potential temperatures underpinning mid-ocean ridges. However, the regular spacing of hot spots along mid-ocean ridges remains an unsolved conundrum. Meyzen etal

  4. On the burn topology of hot-spot-initiated reactions

    SciTech Connect

    Hill, Larry G; Zimmermann, Bjorn; Nichols, Albert L

    2009-01-01

    We determine the reaction progress function for an ideal hot spot model problem. The considered problem has an exact analytic solution that can derived from a reduction of Nichols statistical hot spot model. We perform numerical calculations to verify the analytic solution and to illustrate the error realized in real, finite systems. We show how the baseline problem, which does not distinguish between the reactant and product densities, can be scaled to handle general cases for which the two densities differ.

  5. Modelling propagation of deflagration waves out of hot spots

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2015-06-01

    It is widely accepted that shock initiation and detonation of heterogeneous explosives come about by a two-step process known as ignition and growth. In the first step a shock sweeping an explosive cell (control volume) creates hot spots that become ignition sites. In the second step deflagration waves (or burn waves) propagate out of those hot spots and transform the reactant in the cell into reaction products. The macroscopic (or average) reaction rate of the reactant in a cell depends on the speed of those deflagration waves and on the average distance between neighbouring hot spots. Here we simulate the propagation of deflagration waves out of hot spots on the mesoscale in axial symmetry using a 2D hydrocode, to which we add heat conduction and bulk reaction. The propagation speed of the deflagration wave depends on both pressure and temperature, where pressure dependence is dominant at low shock level, and temperature dependence is dominant at a higher shock level. From the simulation we obtain deflagration (or burn) fronts emanating out of the hot spots. For intermediate shock levels the deflagration waves consume the explosive between hot spots. For higher shock levels the deflagration waves strengthen to become detonation waves on the mesoscale. From the simulation results we extract average deflagration wave speeds and show how they depend on reaction rate and on other material parameters.

  6. A measurement concept for hot-spot BRDFs from space

    SciTech Connect

    Gerstl, S.A.W.

    1996-09-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  7. Process window limiting hot spot monitoring for high-volume manufacturing

    NASA Astrophysics Data System (ADS)

    Jochemsen, Marinus; Anunciado, Roy; Timoshkov, Vadim; Hunsche, Stefan; Zhou, Xinjian; Jones, Chris; Callan, Neal

    2016-03-01

    As process window margins for cutting edge DUV lithography continue to shrink, the impact of systematic patterning defects on final yield increases. Finding process window limiting hot spot patterns and monitoring them in high volume manufacturing (HVM) is increasingly challenging with conventional methods, as the size of critical defects can be below the resolution of traditional HVM inspection tools. We utilize a previously presented computational method of finding hot spot patterns by full chip simulation and use this to guide high resolution review tools by predicting the state of the hot spots on all fields of production wafers. In experiments with a 10nm node Metal LELELE vehicle we show a 60% capture rate of after-etch defects down to 3nm in size, at specific hot spot locations. By using the lithographic focus and dose correction knobs we can reduce the number of patterning defects for this test case by ~60%.

  8. Determination of hot-spot susceptibility of multistring photovoltaic modules in a central-station application

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.

    1984-01-01

    Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.

  9. ``Hot spots'' growth on single nanowire controlled by electric charge

    NASA Astrophysics Data System (ADS)

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    ``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials.``Hot spots'' - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. ``hot spots'' on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag+ to form the ``hot spots'' on the nanowire during the GRR. The appearance probability of ``hot spots'' is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent ``hot spots'' is also controlled by the charge, and obeys a

  10. Hot Spot Detection System Using Landsat 8/OLI Data

    NASA Astrophysics Data System (ADS)

    Kato, S.; Nakamura, R.; Oda, A.; Iijima, A.; Kouyama, T.; Iwata, T.

    2015-12-01

    We developed a simple algorithm and a Web-based visualizing system to detect hot spots using Landsat 8 OLI multispectral data as one of the applications of the real-time processing of Landsat 8 data. An empirical equation and radiometric and reflective thresholds were derived to detect hot spots using the OLI data at band 5 (0.865 μm) and band 7 (2.200 μm) based on the increase in spectral radiance at shortwave infrared (SWIR) region due to the emission from objects with high surface temperature. We surveyed typical patterns of surface spectra using the ASTER spectral library to delineate a threshold to distinguish hot spots from background surfaces. To adjust the empirical coefficients of our detection algorithm, we visually inspected the detected hot spots using 6593 Landsat 8 scenes, which cover eastern part of East Asia, taken from January 1, 2014 to December 31, 2014, displayed on a dedicated Web GIS system. Eventually we determined threshold equations which can theoretically detect hot spots at temperatures above 230 °C over isothermal pixels and hot spots as small as 1 m2 at temperatures of 1000 °C as the lowest temperature and the smallest subpixel coverage, respectively, for daytime scenes. The algorithm detected hot spots including wildfires, volcanos, open burnings and factories. 30-m spatial resolution of Landsat 8 enabled to detect wild fires and open burnings accompanied by clearer shapes of fire front lines than MODIS and VIIRS fire products. Although the 16-day revisit cycle of Landsat 8 is too long to effectively find unexpected wildfire or outbreak of eruption, the revisit cycle is enough to monitor temporally stable heat sources, such as continually erupting volcanos and factories. False detection was found over building rooftops, which have relatively smooth surfaces at longer wavelengths, when specular reflection occurred at the satellite overpass.

  11. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles

    PubMed Central

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-01

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172

  12. Integrating Sustainable Hunting in Biodiversity Protection in Central Africa: Hot Spots, Weak Spots, and Strong Spots

    PubMed Central

    Fa, John E.; Olivero, Jesús; Farfán, Miguel Ángel; Márquez, Ana Luz; Vargas, Juan Mario; Real, Raimundo; Nasi, Robert

    2014-01-01

    Wild animals are a primary source of protein (bushmeat) for people living in or near tropical forests. Ideally, the effect of bushmeat harvests should be monitored closely by making regular estimates of offtake rate and size of stock available for exploitation. However, in practice, this is possible in very few situations because it requires both of these aspects to be readily measurable, and even in the best case, entails very considerable time and effort. As alternative, in this study, we use high-resolution, environmental favorability models for terrestrial mammals (N = 165) in Central Africa to map areas of high species richness (hot spots) and hunting susceptibility. Favorability models distinguish localities with environmental conditions that favor the species' existence from those with detrimental characteristics for its presence. We develop an index for assessing Potential Hunting Sustainability (PHS) of each species based on their ecological characteristics (population density, habitat breadth, rarity and vulnerability), weighted according to restrictive and permissive assumptions of how species' characteristics are combined. Species are classified into five main hunting sustainability classes using fuzzy logic. Using the accumulated favorability values of all species, and their PHS values, we finally identify weak spots, defined as high diversity regions of especial hunting vulnerability for wildlife, as well as strong spots, defined as high diversity areas of high hunting sustainability potential. Our study uses relatively simple models that employ easily obtainable data of a species' ecological characteristics to assess the impacts of hunting in tropical regions. It provides information for management by charting the geography of where species are more or less likely to be at risk of extinction from hunting. PMID:25372705

  13. Integrating sustainable hunting in biodiversity protection in Central Africa: hot spots, weak spots, and strong spots.

    PubMed

    Fa, John E; Olivero, Jesús; Farfán, Miguel Ángel; Márquez, Ana Luz; Vargas, Juan Mario; Real, Raimundo; Nasi, Robert

    2014-01-01

    Wild animals are a primary source of protein (bushmeat) for people living in or near tropical forests. Ideally, the effect of bushmeat harvests should be monitored closely by making regular estimates of offtake rate and size of stock available for exploitation. However, in practice, this is possible in very few situations because it requires both of these aspects to be readily measurable, and even in the best case, entails very considerable time and effort. As alternative, in this study, we use high-resolution, environmental favorability models for terrestrial mammals (N = 165) in Central Africa to map areas of high species richness (hot spots) and hunting susceptibility. Favorability models distinguish localities with environmental conditions that favor the species' existence from those with detrimental characteristics for its presence. We develop an index for assessing Potential Hunting Sustainability (PHS) of each species based on their ecological characteristics (population density, habitat breadth, rarity and vulnerability), weighted according to restrictive and permissive assumptions of how species' characteristics are combined. Species are classified into five main hunting sustainability classes using fuzzy logic. Using the accumulated favorability values of all species, and their PHS values, we finally identify weak spots, defined as high diversity regions of especial hunting vulnerability for wildlife, as well as strong spots, defined as high diversity areas of high hunting sustainability potential. Our study uses relatively simple models that employ easily obtainable data of a species' ecological characteristics to assess the impacts of hunting in tropical regions. It provides information for management by charting the geography of where species are more or less likely to be at risk of extinction from hunting. PMID:25372705

  14. An automated decision-tree approach to predicting protein interaction hot spots.

    PubMed

    Darnell, Steven J; Page, David; Mitchell, Julie C

    2007-09-01

    Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. PMID:17554779

  15. Lawrence Livermore National Laboratory hot spot mobile laboratory

    SciTech Connect

    Buddemeier, B

    1999-08-27

    Gross alpha/beta/tritium liquid The Hot Spot Mobile Laboratory is an asset used to analyze samples (some high hazard) from the field. Field laboratories allow the quick turnaround of samples needed to establish weapon condition and hazard assessment for the protection of responders and the public. The Hot Spot Lab is configured to fly anywhere in the world and is staffed by expert scientists and technicians from Lawrence Livermore National Laboratory who perform similar functions in their routine jobs. The Hot Spot Team carries sample control kits to provide responding field teams with the procedures, tools, and equipment for sample collection and field measurements. High-hazard samples brought back from the field are prepared for analysis in HEPA-filtered gloveboxes staffed by technicians from LLNL's Plutonium Facility. The samples are passed on to the Mobile Laboratory which carries a variety of radiological and chemical analytical equipment in portable configuration for use in the field. Equipment and personnel can also deploy special assets to local hospitals or the field for detection of plutonium in a lung or wound. Quick assessment of personnel contamination is essential for time-critical medical intervention. In addition to pulling the trailer, the Hot Spot Truck also stores some of the equipment, consumables, and a PTO generator. The Hot Spot Laboratory has the capability to be self-sufficient for several weeks when deployed to determine Pu uptake.

  16. "Hot spots" growth on single nanowire controlled by electric charge.

    PubMed

    Xi, Shaobo; Liu, Xuehua; He, Ting; Tian, Lei; Wang, Wenhui; Sun, Rui; He, Weina; Zhang, Xuetong; Zhang, Jinping; Ni, Weihai; Zhou, Xiaochun

    2016-06-01

    "Hot spots" - a kind of highly active site, which are usually composed of some unique units, such as defects, interfaces, catalyst particles or special structures - can determine the performance of nanomaterials. In this paper, we study a model system, i.e. "hot spots" on a single Ag nanowire in the galvanic replacement reaction (GRR), by dark-field microscopy. The research reveals that electric charge can be released by the formation reaction of AgCl, and consequently the electrochemical potential on Ag nanowire drops. The electric charge could induce the reduction of Ag(+) to form the "hot spots" on the nanowire during the GRR. The appearance probability of "hot spots" is almost even along the Ag nanowire, while it is slightly lower near the two ends. The spatial distance between adjacent "hot spots" is also controlled by the charge, and obeys a model based on Boltzmann distribution. In addition, the distance distribution here has an advantage in electron transfer and energy saving. Therefore, it's necessary to consider the functions of electric charge during the synthesis or application of nanomaterials. PMID:27240743

  17. Hot SPOT Generation in Energetic Materials by Applying Weak Energies

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D.

    2013-06-01

    Hot spot generation in energetic materials is an important process to initiate the exothermic chemical reaction, but the details of the fundamental science behind this process is still less-known. Although the response of energetic materials to low velocity impact have been heavily studied with high speed imaging, the response to the IR and acoustic is still not known. A high-speed thermal imaging microscopy apparatus was constructed to observe hot spot generation by weak energies (˜30 THz optical frequency or 20 kHz acoustic frequency), to develop the fundamental science needed to understand energy concentration mechanisms leading to hot spot generation. Inhomogeneous crystals with defects and polymer binders were used in the experiments, with weak energies it is possible to detect the hot spot generation without destruction and deflagration-to-detonation transitions. We have successfully recorded the hot spot grown in the 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) crystal and polymer-bonded sugar simulant by applying Far-IR radiation (˜30 THz) and acoustic sonication (20 kHz) respectively, and proceeded preliminary analysis to investigate the mechanism.

  18. Hot spot conditions achieved in DT implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Patel, P. K.; Callahan, D. A.; Cerjan, C.; Clark, D. S.; Dittrich, T. R.; Doeppner, T.; Edwards, M. J.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Kritcher, A. L.; Lindl, J. D.; Ma, T.; Macphee, A. G.; Pak, A. E.; Park, H. S.; Robey, H. F.; Salmonson, J. D.; Spears, B.; Springer, P. T.; Izumi, N.; Khan, S.

    2014-10-01

    We describe a 1D model that uses experimentally measured data to derive the thermodynamic conditions at stagnation of the hot spot, dense fuel, and ablator, in deuterium-tritium (DT) layered implosions on the National Ignition Facility (NIF). Neutron measurements--spectrally, spatially and temporally resolved--are used to infer the hot spot burn-averaged pressure, density, areal density, ion temperature, volume, and internal energy. X-ray spectral measurements are used to infer electron temperature, radiative energy loss, and the presence of ablator mix in the hot spot. In addition, we can calculate the fraction of alpha-particle energy trapped in the hot spot and, hence, estimate the degree of self-heating. Recent DT layered implosions using the high-foot design [Hurricane et al., Nature 506, 343 (2014)] have achieved areal densities and temperatures in the hot spot whereby a significant fraction of the internal energy at stagnation can be attributed to alpha-particle self-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Thermal Infrared Hot Spot and Dependence on Canopy Geometry

    NASA Technical Reports Server (NTRS)

    Smith, James A.; Ballard, Jerrell R., Jr.; Smith, David E. (Technical Monitor)

    2001-01-01

    We perform theoretical calculations of the canopy thermal infrared (TIR) hot spot using a first principles 3-D model described earlier. Various theoretical canopies of varying leaf size and for differing canopy height are used to illustrate the magnitude of the TIR effect. Our results are similar to predicted behavior in the reflective hot spot as a function of canopy geometry and comparable to TIR measurements from the literature and our own simple ground experiments. We apply the MODTRAN atmospheric code to estimate the at-sensor variation in brightness temperature with view direction in the solar principal plane. For simple homogeneous canopies, we predict canopy thermal infrared hot spot variations of 2 degrees C at the surface with respect to nadir viewing. Dependence on leaf size is weak as long as the ratio of leaf size to canopy height is maintained. However, the angular width of the hot spot increases as the ratio of leaf diameter to canopy height increases. Atmospheric effects minimize but do not eliminate the TIR hot spot at satellite altitudes.

  20. The Measurement of Hot-Spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, W. G.

    2002-07-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world namely, ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen positive explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes high-speed image-intensified photography study in which the number and growth of hot spots in granular AN are monitored for a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  1. The Measurement of Hot-spots in Granulated Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Proud, William; Field, John

    2001-06-01

    Ammonium Nitrate (AN) is one of the components of the most widely used explosive in the world ammonium nitrate: fuel oil mixtures (ANFO). By itself, it is an oxygen negative explosive with a large critical diameter. Hot-spots are produced in explosives by various means including gas space collapse, localised shear or friction. If these hot-spots reach critical conditions of size, temperature and duration size reaction can grow. This deflagration stage may eventually transition to detonation. This paper describes a system and presents results where high-speed image intensified photography is used to monitor the number and growth of hot spots in granular AN under a range of different impact pressures. The results can be used in detonation codes to provide a more accurate and realistic description of the initiation process.

  2. Kilauea volcano: the degassing of a hot spot

    SciTech Connect

    Gerlach, T.M.

    1986-03-01

    Hot spots such as Kilauea volcano can degas by a one-stage eruptive process or a two-stage process involving eruptive and noneruptive degassing. One stage degassing occurs during sustained summit eruptions and causes a direct environmental impact. Although generally less efficient than the one-stage degassing process, two stage degassing can cause 1 to 2 orders of magnitude greater impact in just a few hours during flank eruptions. Hot spot volcanos with resupplied crustal magma chambers may be capable of maintaining an equivalent impact from CO/sub 2/ and S outgassing during both eruptive and noneruptive periods. On average, a hot spot volcano such as Kilauea is a minor polluter compared to man.

  3. New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Gowen, Molly D.; Colwell, Lauren E.; Gee, Jeffrey S.; Lonsdale, Peter F.; Mahoney, John J.; Duncan, Robert A.

    2011-12-01

    In this study we present 42 new 40Ar/39Ar incremental heating age determinations that contribute to an updated age progression for the Louisville seamount trail. Louisville is the South Pacific counterpart to the Hawaiian-Emperor seamount trail, both trails representing intraplate volcanism over the same time interval (˜80 Ma to present) and being examples of primary hot spot lineaments. Our data provide evidence for an age-progressive trend from 71 to 21 Ma. Assuming fixed hot spots, this makes possible a direct comparison to the Hawaiian-Emperor age progression and the most recent absolute plate motion (APM) model (WK08G) of Wessel and Kroenke (2008). We observe that for the Louisville seamount trail the measured ages are systematically older relative to both the WK08G model predictions and Hawaiian seamount ages, with offsets ranging up to 6 Myr. Taking into account the uncertainty about the duration of eruption and magmatic succession at individual Louisville volcanoes, these age offsets should be considered minimum estimates, as our sampling probably tended to recover the youngest lava flows. These large deviations point to either a contribution of inter-hot spot motion between the Louisville and Hawaiian hot spots or to a more easterly location of the Louisville hot spot than the one inferred in the WK08G model. Both scenarios are investigated in this paper, whereby the more eastern hot spot location (52.0°S, 134.5°W versus 52.4°S, 137.2°W) reduces the average age offset, but still results in a relatively large maximum offset of 3.7 Myr. When comparing the new ages to the APM models (S04P, S04G) by Steinberger et al. (2004) that attempt to compensate for the motion of hot spots in the Pacific (Hawaii) or globally (Hawaii, Louisville, Reunion and Walvis), the measured and predicted ages are more in agreement, showing only a maximum offset of 2.3 Myr with respect to the S04G model. At face value these more advanced APM models, which consider both plate and

  4. Plasmonic electromagnetic hot spots temporally addressed by photoinduced molecular displacement.

    SciTech Connect

    Juan, M. L.; Plain, J.; Bachelot, R.; Vial, A.; Royer, P.; Gray, S. K.; Montgomery, J. M.; Wiederrecht, G. P.; Univ. de Technologie de Troyes

    2009-04-23

    We report the observation of temporally varying electromagnetic hot spots in plasmonic nanostructures. Changes in the field amplitude, position, and spatial features are induced by embedding plasmonic silver nanorods in the photoresponsive azo-polymer. This polymer undergoes cis?trans isomerization and wormlike transport within resonant optical fields, producing a time-varying local dielectric environment that alters the locations where electromagnetic hot spots are produced. Finite-difference time-domain and Monte Carlo simulations that model the induced field and corresponding material response are presented to aid in the interpretation of the experimental results. Evidence for propagating plasmons induced at the ends of the rods is also presented.

  5. Factors Influencing Phosphorous Cycling in Biogeochemical 'Hot Spots'

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Walter, M. T.; Buda, A. R.; Carrick, H. J.; Regan, J. M.

    2015-12-01

    Anthropogenic alteration of the phosphorus (P) cycle has led to subsequent soil and water quality issues. For example, P build up in soils due to historic fertilizer application may become biologically available and exacerbate eutrophication and anoxia in nearby water bodies. In the humid Northeastern United States, storm runoff transports P and also stimulates biogeochemical processes, these locations are termed biogeochemical 'hot spots'. Many studies have looked at nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesize the periodic wetting and drying of biogeochemical hot spots promotes a combination of abiotic and biotic processes that influence the mobility of P. To test this hypothesis, we took monthly soil samples (5 cm deep) from May to October in forest, pasture, and cropped land near Ithaca, NY. In-situ measurements taken with each sample included volumetric soil moisture and soil temperature. We also analyzed samples for 'runoff generated' phosphate, nitrate, and sulfate (from 0.01 M CaCl2 extraction), Fe(II), percent organic matter, pH, as well as oxalate extractable and total P, Al, and Fe. We used linear mixed effects models to test how runoff generated phosphate concentrations vary with soil moisture and whether other environmental factors strengthen/weaken this relationship. The knowledge gained from this study will improve our understanding of P cycling in biogeochemical hot spots and can be used to improve the effectiveness of agricultural management practices in the Northeastern United States.

  6. Friction stir spot welding of hot-stamped boron steel

    SciTech Connect

    Hovanski, Yuri; Santella, M. L.; Grant, Glenn J.

    2007-11-01

    Hot-stamped, boron steel was successfully joined via friction stir spot welding using polycrystalline cubic boron nitride tooling. The resulting microstructure, microhardness and mechanical properties are reported, including a brief look into failure mechanisms. Relationships between the unique mechanical mixing, phase transformations and failure initiation sites associated with joining martensitic steels are characterized.

  7. Simulations of Electron Transport in Laser Hot Spots

    SciTech Connect

    S. Brunner; E. Valeo

    2001-08-30

    Simulations of electron transport are carried out by solving the Fokker-Planck equation in the diffusive approximation. The system of a single laser hot spot, with open boundary conditions, is systematically studied by performing a scan over a wide range of the two relevant parameters: (1) Ratio of the stopping length over the width of the hot spot. (2) Relative importance of the heating through inverse Bremsstrahlung compared to the thermalization through self-collisions. As for uniform illumination [J.P. Matte et al., Plasma Phys. Controlled Fusion 30 (1988) 1665], the bulk of the velocity distribution functions (VDFs) present a super-Gaussian dependence. However, as a result of spatial transport, the tails are observed to be well represented by a Maxwellian. A similar dependence of the distributions is also found for multiple hot spot systems. For its relevance with respect to stimulated Raman scattering, the linear Landau damping of the electron plasma wave is estimated for such VD Fs. Finally, the nonlinear Fokker-Planck simulations of the single laser hot spot system are also compared to the results obtained with the linear non-local hydrodynamic approach [A.V. Brantov et al., Phys. Plasmas 5 (1998) 2742], thus providing a quantitative limit to the latter method: The hydrodynamic approach presents more than 10% inaccuracy in the presence of temperature variations of the order delta T/T greater than or equal to 1%, and similar levels of deformation of the Gaussian shape of the Maxwellian background.

  8. POTENTIAL AIR TOXICS HOT SPOTS IN TRUCK TERMINALS AND CABS

    EPA Science Inventory

    All three types of testing sites — upwind and downwind traffic — met the established definition for a hot spot by having periods with concentrations of pollutants that exceeded the EPA’s screening values. Most frequently, the pollutants with concentrations...

  9. Variability of Jupiter's Five-Micron Hot Spot Inventory

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-01-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-micron hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5degN (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-microns thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-micron hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-micron radiances correlate well but not perfectly with high 8.57-micron radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-m maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-m hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possit.le re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  10. Venusian "hot spots": physical phenomenon and its quantification.

    PubMed

    Goncharov, V P; Gryanik, V M; Pavlov, V I

    2002-12-01

    An overall picture of the Venusian hot spots phenomenon is considered in the framework of the simplest conceptual models that admit the solutions in the form of steadily rotating "hot" vortices. Model assumptions take into account only those features of the middle atmosphere in the polar region of Venus that are supported by observational data and are essential for understanding the physical mechanism initiating similar vortices. The problem is analyzed in the framework of both the pointlike and petal-like models of cyclostrophic vortices. Interpretation of these models as an upper and lower bound of a complete theory allows one to find the region of existence of the regimes responsible for the Venusian hot spots and also to establish and assess numerically conditions under which such vortices can be formed. The emphasis is on a comparison of the theoretically established results with the observational data. PMID:12513399

  11. Spatial distributions of sulphur species and sulphate-reducing bacteria provide insights into sulphur redox cycling and biodegradation hot-spots in a hydrocarbon-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Einsiedl, Florian; Pilloni, Giovanni; Ruth-Anneser, Bettina; Lueders, Tillman; Griebler, Christian

    2015-05-01

    Dissimilatory sulphate reduction (DSR) has been proven to be one of the most relevant redox reactions in the biodegradation of contaminants in groundwater. However, the possible role of sulphur species of intermediate oxidation state, as well as the role of potential re-oxidative sulphur cycling in biodegradation particularly at the groundwater table are still poorly understood. Here we used a combination of stable isotope measurements of SO42-, H2S, and S0 as well as geochemical profiling of sulphur intermediates with special emphasis on SO32-, S2O32-, and S0 to unravel possible sulphur cycling in the biodegradation of aromatics in a hydrocarbon-contaminated porous aquifer. By linking these results to the quantification of total bacterial rRNA genes and respiratory genes of sulphate reducers, as well as pyrotag sequencing of bacterial communities over depth, light is shed on possible key-organisms involved. Our results substantiate the role of DSR in biodegradation of hydrocarbons (mainly toluene) in the highly active plume fringes above and beneath the plume core. In both zones the concentration of sulphur intermediates (S0, SO32- and S2O32-) was almost twice that of other sampling-depths, indicating intense sulphur redox cycling. The dual isotopic fingerprint of oxygen and sulphur in dissolved sulphate suggested a re-oxidation of reduced sulphur compounds to sulphate especially at the upper fringe zone. An isotopic shift in δ34S of S0 of nearly +4‰ compared to the δ34S values of H2S from the same depth linked to a high abundance (∼10%) of sequence reads related to Sulphuricurvum spp. (Epsilonproteobacteria) in the same depth were indicative of intensive oxidation of S0 to sulphate in this zone. At the lower plume fringe S0 constituted the main inorganic sulphur species, possibly formed by abiotic re-oxidation of H2S with Fe(III)oxides subsequent to sulphate reduction. These results provide first insights into intense sulphur redox cycling in a hydrocarbon

  12. Hot/Cold Spots in Italian Macroseismic Data

    NASA Astrophysics Data System (ADS)

    Molchan, G.; Kronrod, T.; Panza, G. F.

    2011-03-01

    Site effect is usually associated with local geological conditions, which increase or decrease the level of shaking compared with standard attenuation relations. We made an attempt to see in the macroseismic data of Italy some other effects, namely, hot/cold spots in the terminology of O lsen (in Bull. Seismol. Soc. Am. 90, 6B, 577-594, 2000), which are related to local fault geometry rather than to soil conditions. We give a list of towns and villages liable to amplify (+) or to reduce (-) the level of shaking in comparison with the nearby settlements. Relief and soil conditions cannot always account for the anomalous sites. Further, there are sites where both (+) and (-) effects are observed depending on the earthquake. The opposite effects can be generated by events from the same seismotectonic zone and along the same direction to the site. Anomalous sites may group themselves into clusters of different scales. All isolated anomalous patterns presented in this paper can be used in hazard analysis, in particular, for the modeling and testing of seismic effects.

  13. Hot spot management through design based metrology: measurement and filtering

    NASA Astrophysics Data System (ADS)

    Lee, Taehyeong; Yang, Hyunjo; Kim, Jungchan; Jung, Areum; Yoo, Gyun; Yim, Donggyu; Park, Sungki; Ishikawa, Akio; Yamamoto, Masahiro; Vikram, Abhishek

    2009-12-01

    Recently several Design Based Metrologies (DBMs) are introduced and being in use for wafer verification. The major applications of DBM are OPC accuracy improvement, DFM feed-back through Process Window Qualification (PWQ) and advanced process control. In general, however, the amount of output data from DBM is normally so large that it is very hard to handle the data for valuable feed-back. In case of PWQ, more than thousands of hot spots are detected on a single chip at the edge of process window. So, it takes much time and labor to review and analyze all the hot spots detected at PWQ. Design-related systematic defects, however, will be found repeatedly and if they can be classified into groups, it would be possible to save a lot of time for the analysis. We have demonstrated an EDA tool which can handle the large amount of output data from DBM by classifying pattern defects into groups. It can classify millions of patterns into less than thousands of pattern groups. It has been evaluated on the analysis of PWQ of metal layer in NAND Flash memory device and random contact hole patterns in a DRAM device. Also, verification was tuned to specific needs of the designer as well as defect analysis engineers by use of EDA tool's 'Pattern Matching Function'. The verification result was well within the required specification of the designer as well as the analysis engineer. The procedures of Hot Spot Management through Design Based Metrology are presented in detail.

  14. Distinguishing black holes and wormholes with orbiting hot spots

    NASA Astrophysics Data System (ADS)

    Li, Zilong; Bambi, Cosimo

    2014-07-01

    The supermassive black hole candidates at the center of every normal galaxy might be wormholes created in the early Universe and connecting either two different regions of our Universe or two different universes in a multiverse model. Indeed, the origin of these supermassive objects is not well understood; topological nontrivial structures like wormholes are allowed both in general relativity and in alternative theories of gravity, and current observations cannot rule out such a possibility. In a few years, the VLTI instrument GRAVITY will have the capability to image blobs of plasma orbiting near the innermost stable circular orbit of SgrA*, the supermassive black hole candidate in the Milky Way. The secondary image of a hot spot orbiting around a wormhole is substantially different from that of a hot spot around a black hole, because the photon capture sphere of the wormhole is much smaller. The radius of the photon capture sphere is independent of the hot spot model, and therefore its possible detection, which is observationally challenging but not out of reach, can unambiguously test if the center of our Galaxy harbors a wormhole rather than a black hole.

  15. A pulsating auroral X-ray hot spot on Jupiter.

    PubMed

    Gladstone, G R; Waite, J H; Grodent, D; Lewis, W S; Crary, F J; Elsner, R F; Weisskopf, M C; Majeed, T; Jahn, J-M; Bhardwaj, A; Clarke, J T; Young, D T; Dougherty, M K; Espinosa, S A; Cravens, T E

    2002-02-28

    Jupiter's X-ray aurora has been thought to be excited by energetic sulphur and oxygen ions precipitating from the inner magnetosphere into the planet's polar regions. Here we report high-spatial-resolution observations that demonstrate that most of Jupiter's northern auroral X-rays come from a 'hot spot' located significantly poleward of the latitudes connected to the inner magnetosphere. The hot spot seems to be fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. We infer from the data that the particles that excite the aurora originate in the outer magnetosphere. The hot spot X-rays pulsate with an approximately 45-min period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian auroral X-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the inner magnetosphere. Instead, the X-rays seem to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths. PMID:11875561

  16. Real-time satellite monitoring of volcanic hot spots

    NASA Astrophysics Data System (ADS)

    Harris, Andrew J. L.; Flynn, Luke P.; Dean, Ken; Pilger, Eric; Wooster, Martin; Okubo, Chris; Mouginis-Mark, Peter; Garbeil, Harold; Thornber, Carl; De la Cruz-Reyna, Servando; Rothery, Dave; Wright, Robert

    Direct satellite data reception at high temporal frequencies and automated processing enable near-real-time, near-continuous thermal monitoring of volcanoes. We review what has been achieved in terms of turning this capability into real-time tools of use to volcano monitoring agencies. Current capabilities focus on 2 instruments: the advanced very high resolution radiometer (AVHRR) and the Geostationary Operational Environmental Satellite (GOES) imager. Collection of lO AVHRR images per day covering Alaska, the Aleutians, and Kamchatka allows routine, on-reception analysis of volcanic hot spots across this region. Data collected between 1996 and 1998 detected 302 hot spots due to lava flows, lava domes, pyroclastic flows, fumaroles, and geothermally heated lakes at 12 different volcanoes. Information was used for hazard mitigation by the Alaskan Volcano Observatory. GOES provides data for North and South American volcanoes every 15-30 minutes. Automated processing allows eruption information and alerts to be posted on the Internet within 15-60 minutes of reception. We use June 1998 to demonstrate the frequency of data acquisition. During this month 2879 GOES images were collected from which 14,832 sub-images of 6 active volcanoes were processed. Although 82% (12,200) of these sub-images were cloud covered, hot spots were still evident on 11% (1634) of the sub-images. Analysis of GOES data for 1998 identified hot spots due to (1) lava flows at Kilauea and Cerro Azul, (2) dome extrusion and explosive activity at Lascar, Popocatepetl, Colima and Pacaya, and (3) dome cooling and collapse at Soufriere Hills. We were also able to suggest that reports of lava flow activity at Cerro Negro were false. This information was supplied to, and used by, various agencies whose task it is to monitor these volcanoes. Global thermal monitoring will become a reality with the launch of the Earth Observing System's moderate resolution imaging spectrometer (MODIS). An automated thermal

  17. Hot Spot in Eclipsing Dwarf Nova IY Ursae Majoris during Quiescence and Normal Outburst

    NASA Astrophysics Data System (ADS)

    Bąkowska, K.; Olech, A.

    2015-12-01

    We present the analysis of hot spot brightness in light curves of the eclipsing dwarf nova IY UMa during its normal outburst in March 2013 and in quiescence in April 2012 and in October 2015. Examination of four reconstructed light curves of the hot spot eclipses showed directly that the brightness of the hot spot changed significantly only during the outburst. The brightness of the hot spot, before and after the outburst, was on the same level. Thus, based on the behavior of the hot spot, IY UMa during its normal outburst follows the disk-instability model.

  18. Analyses on the effect of hot spot density on material consumption rate

    NASA Astrophysics Data System (ADS)

    Levesque, G. A., Iv; Vitello, P.; Nichols, A. L., Iii; Tarver, C.; Willey, T.; Friedman, G.; Oppelstrup, T.

    2014-05-01

    There is an observed effect of an explosive's constituent grain size and density on its performance. At the mesoscale, it is the outward burning of hot spots that controls observed performance. While statistical hot spot models can integrate the mesoscale behaviour to macroscale simulations, it is unknown what the density of created hot spots is as a function of grain size and porosity. Simulating mesoscale hot spot distributions and varying hot spot density, we discuss the resultant performance as influenced by inter-pore distance and pore distribution.

  19. Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor.

    PubMed

    Garrah, Evelyn; Danby, Ryan K; Eberhardt, Ewen; Cunnington, Glenn M; Mitchell, Scott

    2015-10-01

    Strategies to reduce wildlife road mortality have become a significant component of many conservation efforts. However, their success depends on knowledge of the temporal and spatial patterns of mortality. We studied these patterns along the 1000 Islands Parkway in Ontario, Canada, a 37 km road that runs adjacent to the St. Lawrence River and bisects the Algonquin-to-Adirondacks international conservation corridor. Characteristics of all vertebrate road kill were recorded during 209 bicycle surveys conducted from 2008 to 2011. We estimate that over 16,700 vertebrates are killed on the road from April to October each year; most are amphibians, but high numbers of birds, mammals, and reptiles were also found, including six reptiles considered at-risk in Canada. Regression tree analysis was used to assess the importance of seasonality, weather, and traffic on road kill magnitude. All taxa except mammals exhibited distinct temporal peaks corresponding to phases in annual life cycles. Variations in weather and traffic were only important outside these peak times. Getis-Ord analysis was used to identify spatial clusters of mortality. Hot spots were found in all years for all taxa, but locations varied annually. A significant spatial association was found between multiyear hot spots and wetlands. The results underscore the notion that multi-species conservation efforts must account for differences in the seasonality of road mortality among species and that multiple years of data are necessary to identify locations where the greatest conservation good can be achieved. This information can be used to inform mitigation strategies with implications for conservation at regional scales. PMID:26108412

  20. Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor

    NASA Astrophysics Data System (ADS)

    Garrah, Evelyn; Danby, Ryan K.; Eberhardt, Ewen; Cunnington, Glenn M.; Mitchell, Scott

    2015-10-01

    Strategies to reduce wildlife road mortality have become a significant component of many conservation efforts. However, their success depends on knowledge of the temporal and spatial patterns of mortality. We studied these patterns along the 1000 Islands Parkway in Ontario, Canada, a 37 km road that runs adjacent to the St. Lawrence River and bisects the Algonquin-to-Adirondacks international conservation corridor. Characteristics of all vertebrate road kill were recorded during 209 bicycle surveys conducted from 2008 to 2011. We estimate that over 16,700 vertebrates are killed on the road from April to October each year; most are amphibians, but high numbers of birds, mammals, and reptiles were also found, including six reptiles considered at-risk in Canada. Regression tree analysis was used to assess the importance of seasonality, weather, and traffic on road kill magnitude. All taxa except mammals exhibited distinct temporal peaks corresponding to phases in annual life cycles. Variations in weather and traffic were only important outside these peak times. Getis-Ord analysis was used to identify spatial clusters of mortality. Hot spots were found in all years for all taxa, but locations varied annually. A significant spatial association was found between multiyear hot spots and wetlands. The results underscore the notion that multi-species conservation efforts must account for differences in the seasonality of road mortality among species and that multiple years of data are necessary to identify locations where the greatest conservation good can be achieved. This information can be used to inform mitigation strategies with implications for conservation at regional scales.

  1. Variation in the Deep Gas Composition in Hot Spots on Jupiter

    NASA Astrophysics Data System (ADS)

    Bjoraker, Gordon; de Pater, Imke; Wong, Michael H.; Adamkovics, Mate; Hewagama, Tilak; Hesman, Brigette

    2015-11-01

    We used CSHELL on NASA’s Infrared Telescope Facility and NIRSPEC on the Keck telescope in the last two years to spectrally resolve line profiles of CH3D, NH3, PH3, and H2O in 5-micron Hot Spots on Jupiter. The profile of the CH3D lines at 4.66 microns is very broad in both NEB and SEB Hot Spots due to collisions with up to 8 bars of H2, where unit optical depth occurs due to collision-induced H2 opacity. The extreme width of these CH3D features implies that the Hot Spots that we observed do not have significant cloud opacity for P > 2 bars. We retrieved NH3, PH3, and gaseous H2O within Hot Spots in both the NEB and SEB. We had dry nights on Mauna Kea and a sufficient Doppler shift to detect H2O. We will compare line wings to derive H2O profiles in the 2 to 6-bar region. NEB Hot Spots are depleted in NH3 with respect to adjacent regions. Interestingly, SEB Hot Spots exhibit stronger NH3 absorption than NEB Hot Spots. In addition, SEB Hot Spots have very similar 5-micron spectra as neighboring longitudes in the SEB, implying similar deep gas composition. The dynamical origin of SEB Hot Spots is much less studied than that of NEB Hot Spots, so our observations of gas composition in both regions may constrain mechanisms for forming Hot Spots.

  2. Hot spot mitigation in microprocessors by application of single phase microchannel heat sink and microprocessor floor planning

    NASA Astrophysics Data System (ADS)

    Chauhan, Anjali

    Poor thermal management in high frequency microprocessors results in thermal and mechanical stresses in the chip due to leakage losses, occurrence of hot spots and large temperature gradients. A micro-fluidics based cooling scheme of single phase microchannel heat sinks is found to be most promising cooling solution. Microchannel heat sinks have high cooling capability because of its high surface area to volume ratio and high heat transfer coefficient. Besides the fluid flow, heat transfer mechanism in microchannel heat sinks is affected by its installation on the microprocessor chip. Since microchannel heat sinks are capable of reducing only the average temperature rise of the microprocessor chip, technique of microprocessor floor planning can be applied to reduce hot spot temperature, mitigate multiple hot spots and reduce large temperature gradients on the surface of microprocessor chip. In this study, adequate installation of the microchannel heat sink on the processor chip has been proposed to extract maximum heat from the device. Microprocessor floor planning has also been explored to obtain an optimum chip floor plan on grounds of low performance penalty, low hot spot temperature and minimum number hot spots. The dependence of maximum hot spot temperature of the chip on pressure gradient across the microchannels has also been discussed.

  3. GEOMETRICAL CONSTRAINTS ON THE HOT SPOT IN BETA LYRAE

    SciTech Connect

    Lomax, Jamie R.; Hoffman, Jennifer L.; Elias II, Nicholas M.; Bastien, Fabienne A.; Holenstein, Bruce D. E-mail: Jennifer.Hoffman@du.edu E-mail: fabienne.a.bastien@vanderbilt.edu

    2012-05-01

    We present results from six years of recalibrated and new spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and six years of new data taken with the photoelastic modulating polarimeter at the Flower and Cook Observatory of beta Lyrae. Combining these data with polarimetric data from the literature allows us to characterize the intrinsic BVRI polarized light curves. A repeatable discrepancy of 0.245 days (approximately 6 hr) between the secondary minima in the total light curve and the polarization curve in the V band, with similar behavior in the other bands, may represent the first direct evidence for an accretion hot spot on the disk edge.

  4. Hot spots and dark current in advanced plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Manahan, G. G.; Deng, A.; Karger, O.; Xi, Y.; Knetsch, A.; Litos, M.; Wittig, G.; Heinemann, T.; Smith, J.; Sheng, Z. M.; Jaroszynski, D. A.; Andonian, G.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.

    2016-01-01

    Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.

  5. PEBBED ANALYSIS OF HOT SPOTS IN PEBBLE-BED REACTORS

    SciTech Connect

    Abderrafi M. Ougouag; Hans D. Gougar; William K. Terry; Frederik Reitsma; Wessel Joubert

    2005-09-01

    The Idaho National Laboratory’s PEBBED code and simple probability considerations are used to estimate the likelihood and consequences of the accumulation of highly reactive pebbles in the region of peak power in a pebble-bed reactor. The PEBBED code is briefly described, and the logic of the probability calculations is presented in detail. The results of the calculations appear to show that hot-spot formation produces only moderate increases in peak accident temperatures, and no increases at all in normal operating temperatures.

  6. Omar field discovery confirms Syria as exploration hot spot

    SciTech Connect

    Not Available

    1988-06-20

    Syria is proving to be one of the Mediterranean's exploration hot spots. The discovery of Omar field by a Shell-led exploration group earlier this year confirmed Syria as a prime exploration prospect. For years Syria produced small volumes of heavy, high-sulfur crude mainly for refining and use in the domestic market and found it difficult to attract foreign explorers. Industry sources say there is now no shortage of outside industry interest in taking new exploration concessions. Over the last 6 months much of the available prospective acreage has been taken up as industry interest in Syria reached nee heights.

  7. Current-induced forces and hot spots in biased nanojunctions.

    PubMed

    Lü, Jing-Tao; Christensen, Rasmus B; Wang, Jian-Sheng; Hedegård, Per; Brandbyge, Mads

    2015-03-01

    We investigate theoretically the interplay of current-induced forces (CIFs), Joule heating, and heat transport inside a current-carrying nanoconductor. We find that the CIFs, due to the electron-phonon coherence, can control the spatial heat dissipation in the conductor. This yields a significant asymmetric concentration of excess heating (hot spot) even for a symmetric conductor. When coupled to the electrode phonons, CIFs drive different phonon heat flux into the two electrodes. First-principles calculations on realistic biased nanojunctions illustrate the importance of the effect. PMID:25793838

  8. Geometrical Constraints on the Hot Spot in Beta Lyrae

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Hoffman, Jennifer L.; Elias, Nicholas M., II; Bastien, Fabienne A.; Holenstein, Bruce D.

    2012-05-01

    We present results from six years of recalibrated and new spectropolarimetric data taken with the University of Wisconsin's Half-Wave Spectropolarimeter and six years of new data taken with the photoelastic modulating polarimeter at the Flower and Cook Observatory of beta Lyrae. Combining these data with polarimetric data from the literature allows us to characterize the intrinsic BVRI polarized light curves. A repeatable discrepancy of 0.245 days (approximately 6 hr) between the secondary minima in the total light curve and the polarization curve in the V band, with similar behavior in the other bands, may represent the first direct evidence for an accretion hot spot on the disk edge.

  9. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    PubMed

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations. PMID:26479195

  10. Detecting traffic hot spots using vehicle tracking data

    NASA Astrophysics Data System (ADS)

    Xu, Zhimin; Lin, Zhiyong; Zhou, Cheng; Huang, Changqing

    2016-03-01

    Vehicle tracking data for thousands of urban vehicles and the availability of digital map provide urban planners unprecedented opportunities for better understanding urban transportation. In this paper, we aim to detect traffic hot spots on urban road networks using vehicle tracking data. Our approach first proposes an integrated map-matching algorithm based on the road buffer and vehicle driving direction, to find out which road segment the vehicle is travelling on. Then, we estimate travel speed by calculating the average the speed of every vehicle on a certain road segment, which indicates traffic status, and create the spatial weights matrices based on the connectivity of road segments, which expresses the spatial dependence between each road segment. Finally, the measure of global and local spatial autocorrelation is used to evaluate the spatial distribution of the traffic condition and reveal the traffic hot spots on the road networks. Experiments based on the taxi tracking data and urban road network data from Wuhan have been performed to validate the detection effectiveness.

  11. Hot spot temperature measurements in DT layered implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Ma, T.; Macphee, A.; Callahan, D.; Chen, H.; Cerjan, C.; Clark, D.; Edgell, D.; Hurricane, O.; Izumi, N.; Khan, S.; Jarrott, L.; Kritcher, A.; Springer, P.

    2015-11-01

    The temperature of the burning DT hot spot in an ICF implosion is a crucial parameter in understanding the thermodynamic conditions of the fuel at stagnation and and the performance of the implosion in terms of alpha-particle self-heating and energy balance. The continuum radiation spectrum emitted from the hot spot provides an accurate measure of the emissivity-weighted electron temperature. Absolute measurements of the emitted radiation are made with several independent instruments including spatially-resolved broadband imagers, and space- and time-integrated monochromatic detectors. We present estimates of the electron temperature in DT layered implosions derived from the radiation spectrum most consistent with the available measurements. The emissivity-weighted electron temperatures are compared to the neutron-averaged apparent ion temperatures inferred from neutron time-of-flight detectors. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. AY Ceti - A flaring, spotted star with a hot companion

    NASA Technical Reports Server (NTRS)

    Simon, T.; Fekel, F. C., Jr.; Gibson, D. M.

    1985-01-01

    AY Ceti is a late-type single-line spectroscopic binary, a bright X-ray source (L/x/ equal to about 1.5 x 10 to the 31st ergs/s), and a spotted star, as evidenced by its prominent photometric wave. In this paper, observations made with the IUE satellite and the VLA radio interferometer are reported. The 1200-2000 A UV spectrum of AY Cet shows a hot stellar continuum and a very broad Ly-alpha absorption line from a previously unobserved white dwarf secondary. The UV spectrum can be matched to the energy distribution of a (T/eff/ = 18,000 K, log g = 8) model atmosphere. Superposed on this hot continuum are high-excitation emission lines typical of chromospheres and transition regions of active late-type stars, e.g., the spotted RS CVn binaries. It is concluded that the bright lines and soft X-ray emission of AY Cet arise from the cool primary star, rather than from mass transfer and accretion onto the secondary as has recently been proposed for the similar system 56 Peg. Two strong radio flares on AY Cet were observed. The second was rapidly variable and left-hand circularly polarized at levels up to pi(c) = 86 + or - 5 percent at 20 cm wavelength. The most likely emission mechanism is an electron-cyclotron maser.

  13. Hot spot-derived shock initiation phenomena in heterogeneous nitromethane

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B; Dattelbaum, Andrew M

    2009-01-01

    The addition of solid silica particles to gelled nitromethane offers a tractable model system for interrogating the role of impedance mismatches as one type of hot spot 'seed' on the initiation behaviors of explosive formulations. Gas gun-driven plate impact experiments are used to produce well-defined shock inputs into nitromethane-silica mixtures containing size-selected silica beads at 6 wt%. The Pop-plots or relationships between shock input pressure and rundistance (or time)-to-detonation for mixtures containing small (1-4 {micro}m) and large (40 {micro}m) beads are presented. Overall, the addition of beads was found to influence the shock sensitivity of the mixtures, with the smaller beads being more sensitizing than the larger beads, lowering the shock initiation threshold for the same run distance to detonation compared with neat nitromethane. In addition, the use of embedded electromagnetic gauges provides detailed information pertaining to the mechanism of the build-up to detonation and associated reactive flow. Of note, an initiation mechanism characteristic of homogeneous liquid explosives, such as nitromethane, was observed in the nitromethane-40 {micro}m diameter silica samples at high shock input pressures, indicating that the influence of hot spots on the initiation process was minimal under these conditions.

  14. Evidence of Hot Spot Activity on BH Virginis

    NASA Astrophysics Data System (ADS)

    Xiang, Fuyuan; Tao, Xia; Tian, Yongpo

    2007-10-01

    Photoelectric light curves of BH Vir in the UBVRI bands observed by Arévalo et al. in 1986 were analyzed by using the latest version of the Wilson-Devinney program and to investigate the photometric parameters and spot activity. Satisfactory fits were obtained by assuming a hot spot only on the secondary star. The results show that the temperature of the spotted region relative to the photosphere, Ts / Tph, is 1.13 ± 0.027. The active region tends to occur at low latitude (near 81°). The results also show that the mass ratio obtained from the photoelectric light curves is q = m2 / m1 = 0.971. It is close to the spectroscopic value of 0.968 obtained by Zhai et al. (1990). The photosphere temperature of the primary is T1 = 5969 ± 11 K. After checking of the activity pattern from 1953 to 1991, the activity cycle is estimated to be about 10 yr.

  15. Hot spots and active longitudes: Organization of solar activity as a probe of the interior

    NASA Technical Reports Server (NTRS)

    Bai, Taeil; Hoeksema, J. Todd; Scherrer, Phil H.

    1995-01-01

    In order to investigate how solar activity is organized in longitude, major solar flares, large sunspot groups, and large scale photospheric magnetic field strengths were analyzed. The results of these analyses are reported. The following results are discussed: hot spots, initially recognized as areas of high concentration of major flares, are the preferred locations for the emergence of big sunspot groups; double hot spots appear in pairs that rotate at the same rate separated by about 180 deg in longitude, whereas, single hot spots have no such companions; the northern and southern hemispheres behave differently in organizing solar activity in longitude; the lifetime of hot spots range from one to several solar cycles; a hot spot is not always active throughout its lifetime, but goes through dormant periods; and hot spots with different rotational periods coexist in the same hemisphere during the same solar cycle.

  16. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    PubMed

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals. PMID:24593369

  17. ALE3D Statistical Hot Spot Model Results for LX-17

    SciTech Connect

    Nichols, A L III; Tarver, C M; McGuire, E M

    2003-07-11

    The Statistical Hot Spot shock initiation and detonation reactive flow model for solid explosives in the ALE3D hydrodynamic computer code provides physically realistic descriptions of: hot spot formation; ignition (or failure to ignite); growth of reaction (or failure to grow) into surrounding particles; coalescence of reacting hot spots; transition to detonation; and self-sustaining detonation. The model has already successfully modeled several processes in HMX-based explosives, such as shock desensitization, that can not predicted by other reactive flow models. In this paper, the Statistical Hot Spot model is applied to experimental embedded gauge data on the insensitive triaminotrintrobenzene (TATB) based explosive LX-17.

  18. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  19. Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer

    NASA Astrophysics Data System (ADS)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-02-01

    Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.

  20. Multifrequency multi-qubit entanglement based on plasmonic hot spots

    PubMed Central

    Ren, Jun; Wu, Tong; Zhang, Xiangdong

    2015-01-01

    The theoretical method to study strong coupling between an ensemble of quantum emitters (QEs) and surface plasmons excited by the nanoparticle cluster has been presented by using a rigorous first-principles electromagnetic Green’s tensor technique. We have demonstrated that multi-qubit entanglements for two-level QEs can be produced at different coupling resonance frequencies, when they locate in the hot spots of the metallic nanoparticle cluster. The duration of quantum beats for such an entanglement can reach two orders longer than that for the entanglement in a photonic cavity. The phenomenon originates from collective coupling resonance excitation of the cluster. At the frequency of single scattering resonance, the entanglement cannot be produced although the single QE spontaneous decay rate is very big. PMID:26350051

  1. Hot spot formation in electron-doped PCCO nanobridges

    NASA Astrophysics Data System (ADS)

    Charpentier, S.; Arpaia, R.; Gaudet, J.; Matte, D.; Baghdadi, R.; Löfwander, T.; Golubev, D.; Fournier, P.; Bauch, T.; Lombardi, F.

    2016-08-01

    We have investigated the transport properties of optimally doped Pr2 -xCexCuO4 -δ (PCCO) nanobridges with width down to 100 nm. The critical current density of the nanobridges approaches the Ginzburg-Landau theoretical limit, which demonstrates nanostructures with properties close to the as-grown films. The current voltage characteristics are hysteretic with a sharp voltage switch, of the order of a few millivolts, that we interpret with the occurrence of a hot spot formation. The values of the retrapping current and the voltage switch obtained by modeling the heat transport in the nanobridges are very close to the experimental ones. This feature, together with the extremely short recombination times, make PCCO nanostructures attractive candidates for ultrafast single photon detectors.

  2. Imaging dissipation and hot spots in carbon nanotube network transistors

    NASA Astrophysics Data System (ADS)

    Estrada, David; Pop, Eric

    2011-02-01

    We use infrared thermometry of carbon nanotube network (CNN) transistors and find the formation of distinct hot spots during operation. However, the average CNN temperature at breakdown is significantly lower than expected from the breakdown of individual nanotubes, suggesting extremely high regions of power dissipation at the CNN junctions. Statistical analysis and comparison with a thermal model allow the estimate of an upper limit for the average tube-tube junction thermal resistance, ˜4.4×1011 K/W (thermal conductance of ˜2.27 pW/K). These results indicate that nanotube junctions have a much greater impact on CNN transport, dissipation, and reliability than extrinsic factors such as low substrate thermal conductivity.

  3. A feature-based approach to modeling protein-protein interaction hot spots.

    PubMed

    Cho, Kyu-il; Kim, Dongsup; Lee, Doheon

    2009-05-01

    Identifying features that effectively represent the energetic contribution of an individual interface residue to the interactions between proteins remains problematic. Here, we present several new features and show that they are more effective than conventional features. By combining the proposed features with conventional features, we develop a predictive model for interaction hot spots. Initially, 54 multifaceted features, composed of different levels of information including structure, sequence and molecular interaction information, are quantified. Then, to identify the best subset of features for predicting hot spots, feature selection is performed using a decision tree. Based on the selected features, a predictive model for hot spots is created using support vector machine (SVM) and tested on an independent test set. Our model shows better overall predictive accuracy than previous methods such as the alanine scanning methods Robetta and FOLDEF, and the knowledge-based method KFC. Subsequent analysis yields several findings about hot spots. As expected, hot spots have a larger relative surface area burial and are more hydrophobic than other residues. Unexpectedly, however, residue conservation displays a rather complicated tendency depending on the types of protein complexes, indicating that this feature is not good for identifying hot spots. Of the selected features, the weighted atomic packing density, relative surface area burial and weighted hydrophobicity are the top 3, with the weighted atomic packing density proving to be the most effective feature for predicting hot spots. Notably, we find that hot spots are closely related to pi-related interactions, especially pi . . . pi interactions. PMID:19273533

  4. Dynamic programming-based hot spot identification approach for pedestrian crashes.

    PubMed

    Medury, Aditya; Grembek, Offer

    2016-08-01

    Network screening techniques are widely used by state agencies to identify locations with high collision concentration, also referred to as hot spots. However, most of the research in this regard has focused on identifying highway segments that are of concern to automobile collisions. In comparison, pedestrian hot spot detection has typically focused on analyzing pedestrian crashes in specific locations, such as at/near intersections, mid-blocks, and/or other crossings, as opposed to long stretches of roadway. In this context, the efficiency of the some of the widely used network screening methods has not been tested. Hence, in order to address this issue, a dynamic programming-based hot spot identification approach is proposed which provides efficient hot spot definitions for pedestrian crashes. The proposed approach is compared with the sliding window method and an intersection buffer-based approach. The results reveal that the dynamic programming method generates more hot spots with a higher number of crashes, while providing small hot spot segment lengths. In comparison, the sliding window method is shown to suffer from shortcomings due to a first-come-first-serve approach vis-à-vis hot spot identification and a fixed hot spot window length assumption. PMID:27209154

  5. Hot Spots on Io: Correlation of Infrared Emission and Visible Reflectance

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L.; Matson, D. L.; Johnson, T. V.

    1985-01-01

    The Voyager 1 infrared spectrometer (IRIS) data and two recently compiled data sets (Voyager imaging mosaics and measurements of Io's thermal emission from the NASA Infrared Telescope Facility) are correlated. These data were used to refine the correlation between dark spot optical properties (albedo and color) and thermal emission, to examine this correspondence on a satellite-wide scale, and to identify additional hot spots not included in the IRIS inventory. The results suggest the hot spots are liquid sulfur lava lakes, for the following reasons: (1) the melting point of sulfur is 390 K, and the model hot spot temperatures range from approximately 200 to 450 K; (2) the albedos and color of the dark spots, measured from the global mosaics, are consistent with laboratory measurements for liquid sulfur; (3) high resolution images of the dark features show morphologies suggestive of lava lakes; and (4) this hypothesis provides a simple and direct explanation for why dark spots are hot on Io.

  6. Hot Spots on Io: Initial Results From Galileo's Near Infrared Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Lopes-Gautier, Rosaly; Davies, A. G.; Carlson, R.; Smythe, W.; Kamp, L.; Soderblom, L.; Leader, F. E.; Mehlman, R.

    1997-01-01

    The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Io's surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots scan to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism.

  7. Hot spots on Io: Initial results from Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    Lopes-Gautier, R.; Davies, A.G.; Carlson, R.; Smythe, W.; Kamp, L.; Soderblom, L.; Leader, F.E.; Mehlman, R.

    1997-01-01

    The Near-Infrared Mapping Spectrometer on Galileo has monitored the volcanic activity on Io since June 28, 1996. This paper presents preliminary analysis of NIMS thermal data for the first four orbits of the Galileo mission. NIMS has detected 18 new hot spots and 12 others which were previously known to be active. The distribution of the hot spots on Io's surface may not be random, as hot spots surround the two bright, SO2-rich regions of Bosphorus Regio and Colchis Regio. Most hot spots seem to be persistently active from orbit to orbit and 10 of those detected were active in 1979 during the Voyager encounters. We report the distribution of hot spot temperatures and find that they are consistent with silicate volcanism. Copyright 1997 by the American Geophysical Union.

  8. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  9. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films.

    PubMed

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales. PMID:26296132

  10. Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Klemm, Philippe; Bange, Sebastian; Lupton, John M.

    2015-08-01

    Disordered noble-metal nanoparticle films exhibit highly localized and stable nonlinear light emission from subdiffraction regions upon illumination by near-infrared femtosecond pulses. Such hot spot emission spans a continuum in the visible and near-infrared spectral range. Strong plasmonic enhancement of light-matter interaction and the resulting complexity of experimental observations have prevented the development of a universal understanding of the origin of light emission. Here, we study the dependence of emission spectra on excitation irradiance and provide the most direct evidence yet that the continuum emission observed from both silver and gold nanoparticle aggregate surfaces is caused by recombination of hot electrons within the conduction band. The electron gas in the emitting particles, which is effectively decoupled from the lattice temperature for the duration of emission, reaches temperatures of several thousand Kelvin and acts as a subdiffraction incandescent light source on subpicosecond time scales.

  11. Methodology and software to detect viral integration site hot-spots

    PubMed Central

    2011-01-01

    Background Modern gene therapy methods have limited control over where a therapeutic viral vector inserts into the host genome. Vector integration can activate local gene expression, which can cause cancer if the vector inserts near an oncogene. Viral integration hot-spots or 'common insertion sites' (CIS) are scrutinized to evaluate and predict patient safety. CIS are typically defined by a minimum density of insertions (such as 2-4 within a 30-100 kb region), which unfortunately depends on the total number of observed VIS. This is problematic for comparing hot-spot distributions across data sets and patients, where the VIS numbers may vary. Results We develop two new methods for defining hot-spots that are relatively independent of data set size. Both methods operate on distributions of VIS across consecutive 1 Mb 'bins' of the genome. The first method 'z-threshold' tallies the number of VIS per bin, converts these counts to z-scores, and applies a threshold to define high density bins. The second method 'BCP' applies a Bayesian change-point model to the z-scores to define hot-spots. The novel hot-spot methods are compared with a conventional CIS method using simulated data sets and data sets from five published human studies, including the X-linked ALD (adrenoleukodystrophy), CGD (chronic granulomatous disease) and SCID-X1 (X-linked severe combined immunodeficiency) trials. The BCP analysis of the human X-linked ALD data for two patients separately (774 and 1627 VIS) and combined (2401 VIS) resulted in 5-6 hot-spots covering 0.17-0.251% of the genome and containing 5.56-7.74% of the total VIS. In comparison, the CIS analysis resulted in 12-110 hot-spots covering 0.018-0.246% of the genome and containing 5.81-22.7% of the VIS, corresponding to a greater number of hot-spots as the data set size increased. Our hot-spot methods enable one to evaluate the extent of VIS clustering, and formally compare data sets in terms of hot-spot overlap. Finally, we show that the

  12. Mutation hot spots in the canine herpesvirus thymidine kinase gene.

    PubMed

    Yamada, Shinya; Matsumoto, Yasunobu; Takashima, Yasuhiro; Otsuka, Haruki

    2005-08-01

    The guanine and cytosine content (GC-content) of alpha-herpesvirus genes are highly variable despite similar genome structures. It is known that drug resistant HSV, which has the genome with a high GC-content (approximately 70%), commonly includes frameshift mutations in homopolymer stretches of guanine (G) and cytosine (C) within the thymidine kinase (TK) gene. However, whether such mutation hotspots exist in the TK gene of canine herpesvirus (CHV) which has a low GC-content was unknown. In this study, we investigated mutations in the TK gene of CHV. CHV was passaged in the presence of iodo-deoxyuridine (IDU), and IDU-resistant clones were isolated. In all IDU-resistant virus clones, mutations in the TK gene were observed. The majority of these mutations were frameshift mutations of an adenine (A) insertion or deletion within either of 2 stretches of eight A's in the TK gene. It was demonstrated that CHV TK mutations frequently occur at a limited number of hot spots within long homopolymer nucleotide stretches. PMID:15965615

  13. Concentration of Strontium-90 at Selected Hot Spots in Japan

    PubMed Central

    Steinhauser, Georg; Schauer, Viktoria; Shozugawa, Katsumi

    2013-01-01

    This study is dedicated to the environmental monitoring of radionuclides released in the course of the Fukushima nuclear accident. The activity concentrations of β− -emitting 90Sr and β−/γ-emitting 134Cs and 137Cs from several hot spots in Japan were determined in soil and vegetation samples. The 90Sr contamination levels of the samples were relatively low and did not exceed the Bq⋅g−1 range. They were up four orders of magnitude lower than the respective 137Cs levels. This study, therefore, experimentally confirms previous predictions indicating a low release of 90Sr from the Fukushima reactors, due to its low volatility. The radiocesium contamination could be clearly attributed to the Fukushima nuclear accident via its activity ratio fingerprint (134Cs/137Cs). Although the correlation between 90Sr and 137Cs is relatively weak, the data set suggests an intrinsic coexistence of both radionuclides in the contaminations caused by the Fukushima nuclear accident. This observation is of great importance not only for remediation campaigns but also for the current food monitoring campaigns, which currently rely on the assumption that the activity concentrations of β−-emitting 90Sr (which is relatively laborious to determine) is not higher than 10% of the level of γ-emitting 137Cs (which can be measured quickly). This assumption could be confirmed for the samples investigated herein. PMID:23505440

  14. On the difficulty to delimit disease risk hot spots

    NASA Astrophysics Data System (ADS)

    Charras-Garrido, M.; Azizi, L.; Forbes, F.; Doyle, S.; Peyrard, N.; Abrial, D.

    2013-06-01

    Representing the health state of a region is a helpful tool to highlight spatial heterogeneity and localize high risk areas. For ease of interpretation and to determine where to apply control procedures, we need to clearly identify and delineate homogeneous regions in terms of disease risk, and in particular disease risk hot spots. However, even if practical purposes require the delineation of different risk classes, such a classification does not correspond to a reality and is thus difficult to estimate. Working with grouped data, a first natural choice is to apply disease mapping models. We apply a usual disease mapping model, producing continuous estimations of the risks that requires a post-processing classification step to obtain clearly delimited risk zones. We also apply a risk partition model that build a classification of the risk levels in a one step procedure. Working with point data, we will focus on the scan statistic clustering method. We illustrate our article with a real example concerning the bovin spongiform encephalopathy (BSE) an animal disease whose zones at risk are well known by the epidemiologists. We show that in this difficult case of a rare disease and a very heterogeneous population, the different methods provide risk zones that are globally coherent. But, related to the dichotomy between the need and the reality, the exact delimitation of the risk zones, as well as the corresponding estimated risks are quite different.

  15. Hot spot generation in energetic materials created by long-wavelength infrared radiation

    SciTech Connect

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S.; Dlott, Dana D.

    2014-02-10

    Hot spots produced by long-wavelength infrared (LWIR) radiation in an energetic material, crystalline RDX (1,3,5-trinitroperhydro-1,3,5-triazine), were studied by thermal-imaging microscopy. The LWIR source was a CO{sub 2} laser operating in the 28-30 THz range. Hot spot generation was studied using relatively low intensity (∼100 W cm{sup −2}), long-duration (450 ms) LWIR pulses. The hot spots could be produced repeatedly in individual RDX crystals, to investigate the fundamental mechanisms of hot spot generation by LWIR, since the peak hot-spot temperatures were kept to ∼30 K above ambient. Hot spots were generated preferentially beneath RDX crystal planes making oblique angles with the LWIR beam. Surprisingly, hot spots were more prominent when the LWIR wavelength was tuned to be weakly absorbed (absorption depth ∼30 μm) than when the LWIR wavelength was strongly absorbed (absorption depth ∼5 μm). This unexpected effect was explained using a model that accounts for LWIR refraction and RDX thermal conduction. The weakly absorbed LWIR is slightly focused underneath the oblique crystal planes, and it penetrates the RDX crystals more deeply, increasing the likelihood of irradiating RDX defect inclusions that are able to strongly absorb or internally focus the LWIR beam.

  16. Hot spot detection for breast cancer in Ki-67 stained slides: image dependent filtering approach

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Downs-Kelly, Erinn; Gurcan, Metin N.

    2014-03-01

    We present a new method to detect hot spots from breast cancer slides stained for Ki67 expression. It is common practice to use centroid of a nucleus as a surrogate representation of a cell. This often requires the detection of individual nuclei. Once all the nuclei are detected, the hot spots are detected by clustering the centroids. For large size images, nuclei detection is computationally demanding. Instead of detecting the individual nuclei and treating hot spot detection as a clustering problem, we considered hot spot detection as an image filtering problem where positively stained pixels are used to detect hot spots in breast cancer images. The method first segments the Ki-67 positive pixels using the visually meaningful segmentation (VMS) method that we developed earlier. Then, it automatically generates an image dependent filter to generate a density map from the segmented image. The smoothness of the density image simplifies the detection of local maxima. The number of local maxima directly corresponds to the number of hot spots in the breast cancer image. The method was tested on 23 different regions of interest images extracted from 10 different breast cancer slides stained with Ki67. To determine the intra-reader variability, each image was annotated twice for hot spots by a boardcertified pathologist with a two-week interval in between her two readings. A computer-generated hot spot region was considered a true-positive if it agrees with either one of the two annotation sets provided by the pathologist. While the intra-reader variability was 57%, our proposed method can correctly detect hot spots with 81% precision.

  17. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    NASA Astrophysics Data System (ADS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-01

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  18. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    SciTech Connect

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-21

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  19. Calculation of TIR Canopy Hot Spot and Implications for Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Smith, J. A.; Ballard, J. R., Jr.

    2000-01-01

    Using a 3-D model for thermal infrared exitance and the Lowtran 7 atmospheric radiative transfer model, we compute the variation in brightness temperature with view direction and, in particular, the canopy thermal hot spot. We then perform a sensitivity analysis of surface energy balance components for a nominal case using a simple SVAT model given the uncertainty in canopy temperature arising from the thermal hot spot effect. Canopy thermal hot spot variations of two degrees C lead to differences of plus or minus 24% in the midday available energy.

  20. Ring of nine Gamma Ray Burst overlap with the hot spot of my hypothesis

    NASA Astrophysics Data System (ADS)

    Cao, Dayong

    2016-03-01

    During 2004 to 2014, a symmetry axis and a cold spot (a structure of one billion light years across) of CMB were observed, and I supposed there is a hot spot, and there is a symmetry between the cold spot and the hot spot of CMB. http://www.dailymail.co.uk/sciencetech/article-2430415 http://meetings.aps.org/link/BAPS.2014.MAR.Y33.9 In 2015, a Ring of Nine Gamma Ray Burst (a structure of FIVE BILLION light years across) which is a part of structure of double helix and overlap with the hot spot was observed. http://www.dailymail.co.uk/sciencetech/article-3185193 The Ring of Nine Gamma Ray Burst could be explained by the hot spot. There is a balance systemic model with structure of double helix of the flat universe between cold spot and hot spot-a balance between stellar matter and dark massenergy (include dark matter and dark energy). The model can explain of the Hubble's redshift. There is a larger dark hole instead of the huge black hole of the center of the Milky Way galaxy, and a dark hole builds up a balance system with sun. This model should explain of the seasonal Extinctions. http://meetings.aps.org/link/BAPS.2015.APR.H14.8

  1. Magnetised accretion discs in Kerr spacetimes. II. Hot spots

    NASA Astrophysics Data System (ADS)

    García, Federico; Ranea-Sandoval, Ignacio F.; Johannsen, Tim

    2016-03-01

    Context. Quasi-periodic variability has been observed in a number of X-ray binaries that harbor black hole candidates. In general relativity, black holes are uniquely described by the Kerr metric and, according to the cosmic censorship conjecture, curvature singularities always have to be clothed by an event horizon. Aims: In this paper, we study the observed light curves that arise from orbiting hotspots in thin accretion discs around Kerr black holes and naked singularities, and the effect introduced by the presence of an external magnetic field. Methods: We employ a ray-tracing algorithm to calculate the light curves and power spectra of these hot spots as seen by a distant observer for uniform and dipolar magnetic field configurations, assuming a weak coupling between the magnetic field and the disc matter. Results: We show that the presence of an external dipolar magnetic field leads to potentially observable modifications of these light curves for both Kerr black holes and naked singularities, while an external uniform magnetic field has practically no effect. In particular, we demonstrate that the emission from a hotspot, which is orbiting near the innermost stable circular orbit of a naked singularity in a dipolar magnetic field, can be significantly harder than the emission of the same hotspot in the absence of this type of magnetic field. Conclusions: The comparison of our model with observational data may allow us to study the geometry of magnetic fields around compact objects and to test the cosmic censorship conjecture in conjunction with other observables, such as thermal continuum spectra and iron line profiles.

  2. Hot spot assisted blinking suppression of CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Lu, Liu; Tong, Xuan; Zhang, Xu; Ren, Naifei; Jiang, Bo; Lu, Haifei

    2016-05-01

    This work compares the blinking of CdSe QDs on glass, single silver nanowire, and double aligned nanowires. The corresponding on-time fractions of these three cases are 50%, 70% and 85% respectively, which indicates that aligned double nanowires shows more efficient suppression than that of single nanowire. This phenomenon is attributed to the higher concentration of hot electron from hot spot between nanowires. Occupation of the non-radiative recombination centers by hot electrons from silver nanowires can be explained for the suppressed blinking behavior. The result has provided a novel pathway of suppressing the blinking behavior of QDs through plasmonic hot spot.

  3. Strong superchiral field in hot spots and its interaction with chiral molecules

    NASA Astrophysics Data System (ADS)

    Liu, Yineng

    We have found that strong superchiral fields created by surface plasmon resonance exist in hot spots of nonchiral plasmonic structure, which showed a chiral density greater than that of circularly polarized light by hundreds of times. We have demonstrated a direct correlation between the chirality of the local field and the circular dichroism (CD) response at the plasmon resonance bands induced by chiral molecules in the hot spots. Our results reveal that the wavelength-dependent superchiral fields in the hot spots can play a crucial role in the determination of the plasmonic CD effect. This finding is in contrast to the currently accepted physical model in which the electromagnetic field intensity in hot spots is a key factor to determine the peak intensity of the plasmonic CD spectrum. Some related experimental phenomena have been explained by using our theoretical analysis. The work was supported by the China National Natural Science Foundation (Grant No. 11504306).

  4. [Assessment of solitary hot spots of bone scintigraphy in patients with extraskeletal malignancies].

    PubMed

    Tomoda, Y; Ishino, Y; Nakata, H

    2001-11-01

    Bone scintigraphy is widely used to detect bone metastasis owing to its high sensitivity, but solitary focus of increased uptake often causes diagnostic problem because of its low specificity. The purpose of this study was to assess the significance of solitary hot spot detected in patients with extraskeletal malignancies. We reviewed 1,167 consecutive bone scintigraphies of patients with history of lung, breast or prostatic cancer. There was 185 bone scans showing solitary hot spot (lung; 121, breast; 36, prostate; 28). Of the solitary hot spots, 30 (24.8%) in lung cancer, 8 (22.2%) in breast cancer, and 4 (14.3%) in prostatic cancer were a result of metastatic disease. There was no significant difference in the frequency of bone metastasis according to the site of primary tumor. It was relatively higher in the location of pelvis, scapula and thoracic spine. Clinical symptoms, particularly local bone pain, were helpful to diagnose the solitary hot spot. PMID:11806083

  5. Hot-spot mix in ignition-scale inertial confinement fusion targets.

    PubMed

    Regan, S P; Epstein, R; Hammel, B A; Suter, L J; Scott, H A; Barrios, M A; Bradley, D K; Callahan, D A; Cerjan, C; Collins, G W; Dixit, S N; Döppner, T; Edwards, M J; Farley, D R; Fournier, K B; Glenn, S; Glenzer, S H; Golovkin, I E; Haan, S W; Hamza, A; Hicks, D G; Izumi, N; Jones, O S; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Ma, T; MacFarlane, J J; MacKinnon, A J; Mancini, R C; McCrory, R L; Meezan, N B; Meyerhofer, D D; Nikroo, A; Park, H-S; Ralph, J; Remington, B A; Sangster, T C; Smalyuk, V A; Springer, P T; Town, R P J

    2013-07-26

    Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50)  ng and 4000(-2970,+17 160)  ng are observed. PMID:23931375

  6. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    SciTech Connect

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-15

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  7. Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Obenschain, Stephen P.

    2016-05-01

    We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.

  8. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure.

    PubMed

    Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2016-09-23

    Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits. PMID:27533591

  9. Characterizing Hot-Spot Dynamics of Direct-Drive Cryogenic Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; McKenty, P. W.; Shvydky, A.; Knauer, J. P.; Collins, T. J. B.; Delettrez, J. A.; Keller, D.; Marinak, M. M.

    2015-11-01

    In direct-drive inertial confinement fusion, nonuniformities in laser drive, capsule manufacture, and target positioning lead to non-radial hydrodynamic flow in the hot spot at stagnation. Characterizing such flow in the hot spot requires simulating the entire capsule in three dimensions to remove symmetry boundary conditions, which artificially constrain hot-spot flow. This paper will present results from 3-D simulations of cryogenic implosions on OMEGA using HYDRA. Low-mode asymmetries and their contributions to residual hot-spot kinetic energy will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and performed under the auspices of LLNL under Contract No. DE-AC52-07NA27344.

  10. Fireball ejection from a molten hot spot to air by localized microwaves.

    PubMed

    Dikhtyar, Vladimir; Jerby, Eli

    2006-02-01

    A phenomenon of fireball ejection from hot spots in solid materials (silicon, germanium, glass, ceramics, basalt, etc.) to the atmosphere is presented. The hot spot is created in the substrate material by the microwave-drill mechanism [Jerby, Science 298, 587 (2002)10.1126/science.1077062]. The vaporized drop evolved from the hot spot is blown up, and forms a stable fireball buoyant in the air. The experimental observations of fireball ejection from silicate hot spots are referred to the Abrahamson-Dinniss theory [Nature (London) 403, 519 (2000)10.1038/35000525] suggesting a mechanism for ball-lightning initiation in nature. The fireballs observed in our experiments tend to absorb the available microwave power entirely, similarly to the plasmon resonance effect in submicron wavelengths [Nie and Emory, Science 275, 1102 (1997)10.1126/science.275.5303.1102]. PMID:16486835

  11. Calculation of the fast ion tail distribution for a spherically symmetric hot spot

    NASA Astrophysics Data System (ADS)

    McDevitt, C. J.; Tang, X.-Z.; Guo, Z.; Berk, H. L.

    2014-10-01

    The fast ion tail for a spherically symmetric hot spot is computed via the solution of a simplified Fokker-Planck collision operator. Emphasis is placed on describing the energy scaling of the fast ion distribution function in the hot spot as well as the surrounding cold plasma throughout a broad range of collisionalities and temperatures. It is found that while the fast ion tail inside the hot spot is significantly depleted, leading to a reduction of the fusion yield in this region, a surplus of fast ions is observed in the neighboring cold plasma region. The presence of this surplus of fast ions in the neighboring cold region is shown to result in a partial recovery of the fusion yield lost in the hot spot.

  12. Ion distribution in the hot spot of an inertial confinement fusion plasma

    NASA Astrophysics Data System (ADS)

    Tang, Xianzhu; Guo, Zehua; Berk, Herb

    2012-10-01

    Maximizing the fusion gain of inertial confinement fusion (ICF) for inertial fusion energy (IFE) applications leads to the standard scenario of central hot spot ignition followed by propagating burn wave through the cold/dense assembled fuel. The fact that the hot spot is surrounded by cold but dense fuel layer introduces subtle plasma physics which requires a kinetic description. Here we perform Fokker-Planck calculations and kinetic PIC simulations for an ICF plasma initially in pressure balance but having large temperature gradient over a narrow transition layer. The loss of the fast ion tail from the hot spot, which is important for fusion reactivity, is quantified by Fokker-Planck models. The role of electron energy transport and the ambipolar electric field is investigated via kinetic simulations and the fluid moment models. The net effect on both hot spot ion temperature and the ion tail distribution, and hence the fusion reactivity, is elucidated.

  13. Analysis of microstructure-dependent shock dissipation and hot-spot formation in granular metalized explosive

    NASA Astrophysics Data System (ADS)

    Chakravarthy, Sunada; Gonthier, Keith A.

    2016-07-01

    Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.

  14. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    SciTech Connect

    Nick Soelberg; Joe Enneking

    2011-05-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  15. Acoustic timescale characterization of hot spot ignition in thermally stratified mixtures

    NASA Astrophysics Data System (ADS)

    Reinbacher, Fynn; Regele, Jonathan

    2015-11-01

    Thermal stratification and the formation of hot spots in reactive mixtures are of key interest to characterize the autoignition behavior of charges in internal combustion engines. Critical gradient conditions and local maximum sizes of a finite hot spot centers can be used to describe such a hot spot. In previous work, one- and two-dimensional hot spots consisting of a linear temperature gradient and constant plateau have been characterized on an acoustic timescale. In the present work, random one-dimensional temperature fields, derived from Fourier superposition for temperature fluctuations with a temperature spectrum similar to Passot-Pouquet kinetic energy spectrum, are analyzed. The linear gradient constant plateau model is compared to a more realistic hot spot temperature profile. Hot spots in the one-dimensional temperature fields are modeled with linear gradients and constant plateaus in order to be characterized with acoustic time scale analysis. Probability distributions for different excitation-to-acoustic timescale ratios are calculated for a range of engine conditions.

  16. Exotic plant species invade hot spots of native plant diversity

    USGS Publications Warehouse

    Stohlgren, T.J.; Binkley, D.; Chong, G.W.; Kalkhan, M.A.; Schell, L.D.; Bull, K.A.; Otsuki, Y.; Newman, G.; Bashkin, M.; Yowhan, S.

    1999-01-01

    Some theories and experimental studies suggest that areas of low plant species richness may be invaded more easily than areas of high plant species richness. We gathered nested-scale vegetation data on plant species richness, foliar cover, and frequency from 200 1-m2 subplots (20 1000-m2 modified-Whittaker plots) in the Colorado Rockies (USA), and 160 1-m2 subplots (16 1000-m2 plots) in the Central Grasslands in Colorado, Wyoming, South Dakota, and Minnesota (USA) to test the generality of this paradigm. At the 1-m2 scale, the paradigm was supported in four prairie types in the Central Grasslands, where exotic species richness declined with increasing plant species richness and cover. At the 1-m2 scale, five forest and meadow vegetation types in the Colorado Rockies contradicted the paradigm; exotic species richness increased with native-plant species richness and foliar cover. At the 1000-m2 plot scale (among vegetation types), 83% of the variance in exotic species richness in the Central Grasslands was explained by the total percentage of nitrogen in the soil and the cover of native plant species. In the Colorado Rockies, 69% of the variance in exotic species richness in 1000-m2 plots was explained by the number of native plant species and the total percentage of soil carbon. At landscape and biome scales, exotic species primarily invaded areas of high species richness in the four Central Grasslands sites and in the five Colorado Rockies vegetation types. For the nine vegetation types in both biomes, exotic species cover was positively correlated with mean foliar cover, mean soil percentage N, and the total number of exotic species. These patterns of invasibility depend on spatial scale, biome and vegetation type, spatial autocorrelation effects, availability of resources, and species-specific responses to grazing and other disturbances. We conclude that: (1) sites high in herbaceous foliar cover and soil fertility, and hot spots of plant diversity (and

  17. On the generation of pre-trap hot spot tracks: history of La Réunion hot spot

    NASA Astrophysics Data System (ADS)

    Kumagai, I.; Davaille, A. B.; Kurita, K.

    2012-12-01

    Recent observations made on La Réunion hot spot (Mahoney et al. EPSL 2002) documented the existence of a Réunion hotspot track before the Deccan traps. Based on the location, ages, and geochemical signatures of marine volcanic rocks preserved in the South Tethian suture zone of Pakistan, they suggested that the Réunion hotspot was active off northwestern Greater India well before the emplacement, far to the South, of the Deccan flood basalts. However, in the classical "Plume's head and tail" framework, the Deccan traps, emplaced 65-66 Myr ago, would represent the signature of the plume head reaching the lithosphere. A pre-trap track, i.e. a pre-head event, remains therefore to be explained. We show here that it could be generated by the filtering effect of the 660-km depth endothermic phase transition, which is expected to delay upwelling plumes and modify their morphology. We investigated experimentally the interaction of thermal starting plumes with a density boundary by using simultaneous visualizations of temperature, composition and velocity fields. In a tank initially stratified with two viscous fluids with different densities and viscosities, a thermal starting plume was generated by using a circular plate heater at the bottom of the tank. Its interaction mode with the inner interface depends on the local buoyancy number (BL: the ratio of the stabilizing chemical buoyancy to the plume thermal buoyancy at the interface), the Rayleigh number (Ra), the viscosity contrast between the chemical layers (γ), and the local viscosity ratio of the ambient material to the plume head (γp). For BL < 0.6, the "Pass-through mode" develops, whereby a large volume of the lower material rises through the upper layer and reaches the top surface, since the plume head has a large thermal buoyancy compared to the stabilizing density contrast between the two layers. When BL > 0.6, the "Rebirth mode" occurs, where the thermal plume ponds and spreads under the chemical boundary

  18. SU-E-T-393: Investigation of Hot Spots in Tomotherapy 3D Conformal Breast Plan

    SciTech Connect

    Chen, Q; Siebers, J; Khandelwal, S

    2014-06-01

    Purpose: The purpose of this study is to determine the root-cause of hotspots inherent to Tomotherapy static beam 3D conformal radiotherapy (3DCRT) for breast treatment. ASTRO (ref here) recommends that IMRT be avoided for breast treatments. Despite Tomotherapy's inherent IMRT-like optimization and delivery, our experience at a Tomotherapy-only site has been that Tomotherapy 3DCRT fail to produce a clinically acceptable plan for 79% of our breast patients. Hot-spots have been one of the major obstacles. Methods: Eight lumpectomy patients were planned according to RTOG-1005 specification. Two or four tangential beams were used for 3DCRT breast planning. To spare the contralateral breast and ipsilateral lung, part of the PTV was not covered by the primary beam, yielding adjacent hot-spots. We hypothesize that the planning system creates hotspots adjacent to the cold spots to yield scatter radiation dose compensation in the blocked region. Various phantom and patient setup were used to test the hypothesis. Results: Hot spots outside of PTV in the range of 135% - 174% were observed for patient plan. It is confirmed that the PTV partial block causes the adjacent hot spot. The root cause is the optimizer quadratic objective function over- weighs improving the cold spot. The IMRT flexibility offered by Tomotherapy is counter-productive in static-beam 3DCRT breast treatment. For phantom case, as the Modulation-Factor increases from 1.1 to 5, the hot spot increases from 110% to 300%. Limiting the 3DCRT intensity modulation is shown to produce clinically acceptable plan. Conclusion: Most of the hot spots in Tomotherapy 3DCRT breast plan originate from the planning-system optimizer attempting to cover PTV cold spots rather than from the beam energy. Altering the objective function could improve clinical acceptability of static beam Tomotherapy 3DCRT.

  19. Accounting for "hot spots" and "hot moments" in soil carbon models for water-limited ecosystems

    NASA Astrophysics Data System (ADS)

    O'Donnell, Frances; Caylor, Kelly

    2010-05-01

    Soil organic carbon (SOC) dynamics in water-limited ecosystems are complicated by the stochastic nature of rainfall and patchy structure of vegetation, which can lead to "hot spots" and "hot moments" of high biological activity. Non-linear models that use spatial and temporal averages of forcing variables are unable to account for these phenomena and are likely to produce biased results. In this study we present a model of SOC abundance that accounts for spatial heterogeneity at the plant scale and temporal variability in soil moisture content at the daily scale. We approximated an existing simulation-based model of SOC dynamics as a stochastic differential equation driven by multiplicative noise that can be solved numerically for steady-state sizes of three SOC pools. We coupled this to a model of water balance and SOC input rate at a point for a given cover type, defined by the number of shrub and perennial grass root systems and canopies overlapping the point. Using a probabilistic description of vegetation structure based on a two dimensional Poisson process, we derived analytical expressions for the distribution of cover types across a landscape and produced weighted averages of SOC stocks. An application of the model to a shortgrass steppe ecosystem in Colorado, USA, replicated empirical data on spatial patterns and average abundance of SOC, whereas a version of the model using spatially averaged forcing variables overestimated SOC stocks by 12%. The model also successfully replicated data from paired desert grassland sites in New Mexico, USA, that had and had not been affected by woody plant encroachment, indicating that the model could be a useful tool for understanding and predicting the effect of woody plant encroachment on regional carbon budgets. We performed a theoretical analysis of a simplified version of the model to estimate the bias introduced by using spatial averages of forcing variables to model SOC stocks across a range of climatic conditions

  20. Prediction of hot spots in protein interfaces using a random forest model with hybrid features.

    PubMed

    Wang, Lin; Liu, Zhi-Ping; Zhang, Xiang-Sun; Chen, Luonan

    2012-03-01

    Prediction of hot spots in protein interfaces provides crucial information for the research on protein-protein interaction and drug design. Existing machine learning methods generally judge whether a given residue is likely to be a hot spot by extracting features only from the target residue. However, hot spots usually form a small cluster of residues which are tightly packed together at the center of protein interface. With this in mind, we present a novel method to extract hybrid features which incorporate a wide range of information of the target residue and its spatially neighboring residues, i.e. the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). We provide a novel random forest (RF) model to effectively integrate these hybrid features for predicting hot spots in protein interfaces. Our method can achieve accuracy (ACC) of 82.4% and Matthew's correlation coefficient (MCC) of 0.482 in Alanine Scanning Energetics Database, and ACC of 77.6% and MCC of 0.429 in Binding Interface Database. In a comparison study, performance of our RF model exceeds other existing methods, such as Robetta, FOLDEF, KFC, KFC2, MINERVA and HotPoint. Of our hybrid features, three physicochemical features of target residues (mass, polarizability and isoelectric point), the relative side-chain accessible surface area and the average depth index of mirror-contact residues are found to be the main discriminative features in hot spots prediction. We also confirm that hot spots tend to form large contact surface areas between two interacting proteins. Source data and code are available at: http://www.aporc.org/doc/wiki/HotSpot. PMID:22258275

  1. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    NASA Astrophysics Data System (ADS)

    Melvin, J.; Lim, H.; Rana, V.; Cheng, B.; Glimm, J.; Sharp, D. H.; Wilson, D. C.

    2015-02-01

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  2. Sensitivity of inertial confinement fusion hot spot properties to the deuterium-tritium fuel adiabat

    SciTech Connect

    Melvin, J.; Lim, H.; Rana, V.; Glimm, J.; Cheng, B.; Sharp, D. H.; Wilson, D. C.

    2015-02-15

    We determine the dependence of key Inertial Confinement Fusion (ICF) hot spot simulation properties on the deuterium-tritium fuel adiabat, here modified by addition of energy to the cold shell. Variation of this parameter reduces the simulation to experiment discrepancy in some, but not all, experimentally inferred quantities. Using simulations with radiation drives tuned to match experimental shots N120321 and N120405 from the National Ignition Campaign (NIC), we carry out sets of simulations with varying amounts of added entropy and examine the sensitivities of important experimental quantities. Neutron yields, burn widths, hot spot densities, and pressures follow a trend approaching their experimentally inferred quantities. Ion temperatures and areal densities are sensitive to the adiabat changes, but do not necessarily converge to their experimental quantities with the added entropy. This suggests that a modification to the simulation adiabat is one of, but not the only explanation of the observed simulation to experiment discrepancies. In addition, we use a theoretical model to predict 3D mix and observe a slight trend toward less mixing as the entropy is enhanced. Instantaneous quantities are assessed at the time of maximum neutron production, determined dynamically within each simulation. These trends contribute to ICF science, as an effort to understand the NIC simulation to experiment discrepancy, and in their relation to the high foot experiments, which features a higher adiabat in the experimental design and an improved neutron yield in the experimental results.

  3. Intense nitrogen cycling in permeable intertidal sediment revealed by a nitrous oxide hot spot

    NASA Astrophysics Data System (ADS)

    Schutte, Charles A.; Joye, Samantha B.; Wilson, Alicia M.; Evans, Tyler; Moore, Willard S.; Casciotti, Karen

    2015-10-01

    Approximately 40% of the total global rate of nitrogen fixation is the result of human activities, and most of this anthropogenic nitrogen is used to fertilize agricultural fields. Approximately 23% of the applied agricultural nitrogen is delivered to the coastal zone, often reducing water quality and driving eutrophication. Nitrogen cycling in coastal sediments can mitigate eutrophication by removing bioavailable nitrogen. However, some of these processes generate nitrous oxide, a potent greenhouse gas, as a by-product. Here we report the discovery of a nitrous oxide production hot spot in shallow barrier island sands. Nitrous oxide concentrations, production and consumption rates, vertical diffusion fluxes, and flux to the atmosphere were measured across triplicate depth profiles. Using a mass balance approach, rates of net nitrous oxide production were estimated to be 40 µmol m-2 d-1. This production was driven by a hot spot of nitrate consumption that removed bioavailable nitrogen from the coastal environment at a rate of 10 mmol m-2 d-1, a rate that is comparable with the highest rates of denitrification reported for coastal sediments.

  4. The Median Isn't the Message: Elucidating Nutrient Hot spots and Hot Moments in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Hart, S. C.; Meadows, M. W.; Johnson, D. W.

    2014-12-01

    Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring (post-snowmelt) than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites that allow us to better delineate between nutrient hot spots and hot moments. Overall, our results suggest that microbial-mediated nutrients (e.g., NH4+, NO3-, and PO43-) occur frequently as both hot spots and hot moments within soil, while those that are more abiotically controlled (e.g., Ca2+, Mg2+, and Na+) occur predominately as hot spots. Further elucidation of the mechanisms responsible for nutrient hot spot-hot moment phenomena within soil should be invaluable for improving the

  5. Global hot spots of biological invasions: evaluating options for ballast-water management.

    PubMed

    Drake, John M; Lodge, David M

    2004-03-22

    Biological invasions from ballast water are a severe environmental threat and exceedingly costly to society. We identify global hot spots of invasion based on worldwide patterns of ship traffic. We then estimate the rate of port-to-port invasion using gravity models for spatial interactions, and we identify bottlenecks to the regional exchange of species using the Ford-Fulkerson algorithm for network flows. Finally, using stochastic simulations of different strategies for controlling ballast-water introductions, we find that reducing the per-ship-visit chance of causing invasion is more effective in reducing the rate of biotic homogenization than eliminating key ports that are the epicentres for global spread. PMID:15156914

  6. Global hot spots of biological invasions: evaluating options for ballast-water management.

    PubMed Central

    Drake, John M.; Lodge, David M.

    2004-01-01

    Biological invasions from ballast water are a severe environmental threat and exceedingly costly to society. We identify global hot spots of invasion based on worldwide patterns of ship traffic. We then estimate the rate of port-to-port invasion using gravity models for spatial interactions, and we identify bottlenecks to the regional exchange of species using the Ford-Fulkerson algorithm for network flows. Finally, using stochastic simulations of different strategies for controlling ballast-water introductions, we find that reducing the per-ship-visit chance of causing invasion is more effective in reducing the rate of biotic homogenization than eliminating key ports that are the epicentres for global spread. PMID:15156914

  7. Characterization of plasma and laser conditions for single hot spot interaction experiments

    SciTech Connect

    Montgomery, D.S.; Johnson, R.P.; Cobble, J.A.; Fernandez, J.C.; Lindman, E.L.; Rose, H.A.; Estabrook, K.G.

    1998-11-01

    The LANL TRIDENT laser system is being used for fundamental experiments which study the interaction of self-focusing, stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) in a single (diffraction limited) laser hot spot in order to better understand the coupling between these plasma instabilities. The diffraction limited beam mimics a single hot spot found in speckle distributions that are typical of random or kinoform phase plate (RPP or KPP) smoothing. A long scale length, hot plasma ({approximately} 1 mm, {approximately} 0.5 keV) is created by a separate heater beam, and the single hot spot beam is used to drive parametric instabilities. The focal plane distribution and wavefront of the single hot spot beam are characterized, and the intensity of the single hot spot can be varied between 10{sup 14}--10{sup 16} W/cm{sup 2}. The plasma density, temperature, and flow profiles are measured using gated imaging spectroscopy of collective Thomson scattering. Results of the laser and plasma characterization, and initial results of backscattered SRS, SBS, and beam steering in a flowing plasma are presented.

  8. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    SciTech Connect

    Olson, R. E.; Leeper, R. J.

    2013-09-15

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ∼34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the “fast formed liquid” (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  9. Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.

    2013-09-01

    The baseline DT ice layer inertial confinement fusion (ICF) ignition capsule design requires a hot spot convergence ratio of ˜34 with a hot spot that is formed from DT mass originally residing in a very thin layer at the inner DT ice surface. In the present paper, we propose alternative ICF capsule designs in which the hot spot is formed mostly or entirely from mass originating within a spherical volume of DT vapor. Simulations of the implosion and hot spot formation in two DT liquid layer ICF capsule concepts—the DT wetted hydrocarbon (CH) foam concept and the "fast formed liquid" (FFL) concept—are described and compared to simulations of standard DT ice layer capsules. 1D simulations are used to compare the drive requirements, the optimal shock timing, the radial dependence of hot spot specific energy gain, and the hot spot convergence ratio in low vapor pressure (DT ice) and high vapor pressure (DT liquid) capsules. 2D simulations are used to compare the relative sensitivities to low-mode x-ray flux asymmetries in the DT ice and DT liquid capsules. It is found that the overall thermonuclear yields predicted for DT liquid layer capsules are less than yields predicted for DT ice layer capsules in simulations using comparable capsule size and absorbed energy. However, the wetted foam and FFL designs allow for flexibility in hot spot convergence ratio through the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density, with a potentially improved robustness to low-mode x-ray flux asymmetry.

  10. What controls the distribution and tectono-magmatic features of oceanic hot spot volcanoes

    NASA Astrophysics Data System (ADS)

    Acocella, Valerio; Vezzoli, Luigina

    2016-04-01

    Hot spot oceanic volcanoes worldwide show significant deviations from the classic Hawaiian reference model; these mainly concern the distribution of edifices and overall tectono-magmatic features, as the development of the volcanic rift zones and extent of flank instability. Here we try to explain these deviations investigating and comparing the best-known hot spot oceanic volcanoes. At a general scale, these volcanoes show an age-distance progression ranging from focused to scattered. This is here explained as due to several independent factors, as the thermal or mechanical weakening of the plate (due to the lithosphere thickness or regional structures, respectively), or the plume structure. At a more detailed scale, hot spot volcanoes show recurrent features, including mafic shield edifices with summit caldera and volcanic rift zones, often at the head of an unstable flank. However, despite this recurrence, a widespread tectono-magmatic variability is often found. Here we show how this variability depends upon the magma supply and age of the oceanic crust (influencing the thickness of the overlying pelagic sediments). Well-developed rift zones and larger collapses are found on hot spot volcanoes with higher supply rate and older crust, as Hawaii and Canary Islands. Poorly-developed rift zones and limited collapses occur on hot spot volcanoes with lower supply rate and younger crust, as Easter Island and Ascension. Transitional features are observed at hot spots with intermediate productivity (Cape Verde, Reunion, Society Islands and, to a minor extent, the Azores), whereas the scarcity or absence of pelagic sediments may explain the lack of collapses and developed rift zones in the productive Galapagos hot spot.

  11. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado

    SciTech Connect

    Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell R.; Long, Philip E.; Williams, Kenneth H.

    2014-09-02

    We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63

  12. Hydrologic indicators of hot spots and hot moments of mercury methylation along river corridors

    NASA Astrophysics Data System (ADS)

    Singer, Michael; Harrison, Lee; Donovan, Patrick; Blum, Joel; Marvin-DiPasquale, Mark

    2016-04-01

    The biogeochemical cycling of metals and other contaminants river-floodplain corridors is controlled by microbial activity is often affected by dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, flow history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this process within a Northern California river system that has a legacy of industrial-scale 19th century hydraulic gold mining. In the first known application of this methodology, we combine hydraulic modeling, measurements of Hg species in sediment and biota, and first-order calculations to assess the role of river floodplains in producing monomethylmercury (MMHg), which accumulates in local and migratory biota. We identify areas that represent 'hot spots' (frequently inundated areas of floodplains) and 'hot moments' (floodplain areas inundated for consecutive long periods). We show that the probability of MMHg production in each sector of the river system is dependent on the spatial patterns of overbank flow and drainage, which affect its long-term redox history. MMHg bioaccumulation within the aquatic food web may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn, and there appears to be no end to MMHg production under a regime of increasingly common large floods with extended duration. These findings identify river floodplains as periodic, temporary, yet important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the historical hydrologic record. We suggest that inundation is the primary driver of MMHg production in river corridors and that the entire flow history must be analyzed in terms of magnitude and frequency of inundation in order to accurately assess biogeochemical risks, rather than merely highlighting the

  13. NASA Spots "Hot Towers" in Intensifying Tropical Storm Frank

    NASA Video Gallery

    "Hot towers" (orange) were visible in this animated flyby of data from the Global Precipitation Measurement mission or GPM satellite. On July 21, the GPM Core satellite measured rainfall rates of o...

  14. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective

    NASA Astrophysics Data System (ADS)

    Palacios, Daniel M.; Bograd, Steven J.; Foley, David G.; Schwing, Franklin B.

    2006-02-01

    Biological hot spots in the ocean are likely created by physical processes and have distinct oceanographic signatures. Marine predators, including large pelagic fish, marine mammals, seabirds, and fishing vessels, recognize that prey organisms congregate at ocean fronts, eddies, and other physical features. Here we use remote sensing observations from multiple satellite platforms to characterize physical oceanographic processes in four regions of the North Pacific Ocean that are recognized as biological hot spots. We use data from the central North Pacific, the northeastern tropical Pacific, the California Current System, and the Galápagos Islands to identify and quantify dynamic features in terms of spatial scale, degree of persistence or recurrence, forcing mechanism, and biological impact. The dominant timescales of these processes vary from interannual (Rossby wave interactions in the central North Pacific) to annual (spring-summer intensification of alongshore winds in the California Current System; winter wind outflow events through mountain gaps into the northeastern tropical Pacific), to intraseasonal (high-frequency equatorial waves at the Galápagos). Satellite oceanographic monitoring, combined with data from large-scale electronic tagging experiments, can be used to conduct a census of biological hot spots, to understand behavioral changes and species interactions within hot spots, and to differentiate the preferred pelagic habitats of different species. The identification and monitoring of biological hot spots could constitute an effective approach to marine conservation and resource management.

  15. Analysis of recombinational hot spots associated with the p haplotype fo the mouse MHC

    SciTech Connect

    Heine, D.; Khambata, S.; Wydner, K.S.; Passmore, H.C.

    1994-09-01

    Most of the recombination events detected within the major histocompatibility complex (MHC) of the mouse fall into areas of limited physical size that have been designated recombinational hot spots. One of these hot spots, associated with the Ea gene, appears to be active only in the presence of the p haplotype of the MHC. To study the regulation of the Ea recombinational hot spot and its haplotype specificity, a high-resolution comparative map fo the MHC and adjacent regions was completed in four different backcrosses carrying the p haplotype. This mapping study utilized a total of 29 PCR-based molecular markers, including 7 newly developed markers spanning the region between Pim1 and D17Mit11 on Chromosome 17. The analysis of a total of 1093 backcross animals: (1) revealed that the presence of the p haplotype of the MHC is not sufficient to induce recombination at the Ea hot spot in a dominant manner, and (2) resulted in the definition of a new intra-MHC recombinational hot spot between the Tnfb and the H2-D genes.

  16. A novel approach for hot-spot removal for sub-100nm manufacturing

    NASA Astrophysics Data System (ADS)

    Ma, Melody; Anderson, Melissa; Lai, Weinong; Wu, Clive; Tsao, Becky; Chu, Chih-wei; Lin, Char; Chou, Jacky; Tsai, Sidney

    2006-10-01

    Recent advances in lithography simulation have made full-chip lithography rule checking (LRC) practical and even mandatory for many fabs, especially those operating with half-pitches under 100nm. These LRCs routinely identify marginal or even fatal manufacturability problems (hot-spots), especially when simulated through process corners. Until recently, when hot-spots were identified, the only options were to reject the tapeout for additional layout modifications, re-run OPC with a different recipe, or use a DRC-tool to do "blind" cut-and-paste repairs under the assumption that making fatal errors non-fatal is sufficient to make them "good." Using a commercial LRC tool, we will inspect OPC data on a production design to identify a typical volume of real and potential hot-spots. Next, using Halo-Fix from Aprio Technologies, we will apply local repairs, choosing rule-based or model-based repair strategies as appropriate for each type of hot-spot. Using this method, "intelligent" changes in the hot-spot areas can be made which accurately account for lithography interactions and process variations, in order to optimize for manufacturing robustness. To verify that the repairs are acceptable, LRCs will be performed and the results analyzed.

  17. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling

  18. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  19. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery.

    PubMed

    Hall, David R; Kozakov, Dima; Whitty, Adrian; Vajda, Sandor

    2015-11-01

    Analysis of binding energy hot spots at protein surfaces can provide crucial insights into the prospects for successful application of fragment-based drug discovery (FBDD), and whether a fragment hit can be advanced into a high-affinity, drug-like ligand. The key factor is the strength of the top ranking hot spot, and how well a given fragment complements it. We show that published data are sufficient to provide a sophisticated and quantitative understanding of how hot spots derive from a protein 3D structure, and how their strength, number, and spatial arrangement govern the potential for a surface site to bind to fragment-sized and larger ligands. This improved understanding provides important guidance for the effective application of FBDD in drug discovery. PMID:26538314

  20. Testing a class of non-Kerr metrics with hot spots orbiting SgrA*

    SciTech Connect

    Liu, Dan; Li, Zilong; Bambi, Cosimo E-mail: zilongli@fudan.edu.cn

    2015-01-01

    SgrA*, the supermassive black hole candidate at the Galactic Center, exhibits flares in the X-ray, NIR, and sub-mm bands that may be interpreted within a hot spot model. Light curves and images of hot spots orbiting a black hole are affected by a number of special and general relativistic effects, and they can be potentially used to check whether the object is a Kerr black hole of general relativity. However, in a previous study we have shown that the relativistic features are usually subdominant with respect to the background noise and the model-dependent properties of the hot spot, and eventually it is at most possible to estimate the frequency of the innermost stable circular orbit. In this case, tests of the Kerr metric are only possible in combination with other measurements. In the present work, we consider a class of non-Kerr spacetimes in which the hot spot orbit may be outside the equatorial plane. These metrics are difficult to constrain from the study of accretion disks and indeed current X-ray observations of stellar-mass and supermassive black hole candidates cannot put interesting bounds. Here we show that near future observations of SgrA* may do it. If the hot spot is sufficiently close to the massive object, the image affected by Doppler blueshift is brighter than the other one and this provides a specific observational signature in the hot spot's centroid track. We conclude that accurate astrometric observations of SgrA* with an instrument like GRAVITY should be able to test this class of metrics, except in the more unlikely case of a small viewing angle.

  1. Hot-Spot Mix in Ignition-Scale Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Regan, S. P.

    2011-10-01

    Ignition of an inertial confinement fusion target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume.The ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode (50 < λ < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and DT cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 100-ng allowance for hot-spot mix.1 Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results. The measured dependence of hot-spot mix on the implosion velocity and on the high-mode ablator-surface perturbations will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. In collaboration with the National Ignition Campaign Mix Working Group. S. W. Haan et. al., Phys. Plasmas 18, 051001 (2011>).

  2. A 3-D Model of Hot-Spot Formation in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Gong, X.; Goncharov, V. N.; Igumenshchev, I. V.

    2015-11-01

    A 3-D model describing the formation of a hot-spot in inertial confinement fusion (ICF) implosions is presented. The model includes thermal conduction and mass ablation effects in a 3-D distorted hot spot using an approach developed by Sanz. Evolution of the nonuniformity growth is calculated based on a sharp boundary model. The results of the model will be compared against 2-D DRACO and 3-D hydrodynamic code calculations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials

    NASA Astrophysics Data System (ADS)

    An, Qi; Zybin, Sergey V.; Goddard, William A., III; Jaramillo-Botero, Andres; Blanco, Mario; Luo, Sheng-Nian

    2011-12-01

    The fundamental processes in shock-induced instabilities of materials remain obscure, particularly for detonation of energetic materials. We simulated these processes at the atomic scale on a realistic model of a polymer-bonded explosive (3,695,375 atoms/cell) and observed that a hot spot forms at the nonuniform interface, arising from shear relaxation that results in shear along the interface that leads to a large temperature increase that persists long after the shock front has passed the interface. For energetic materials this temperature increase is coupled to chemical reactions that lead to detonation. We show that decreasing the density of the binder eliminates the hot spot.

  4. Hot spot analysis in integrated circuit substrates by laser mirage effect

    NASA Astrophysics Data System (ADS)

    Perpiñà, X.; Jordà, X.; Vellvehi, M.; Altet, J.

    2011-04-01

    This work shows an analytical and experimental technique for characterizing radial heat flow present in integrated circuits (ICs) when power is dissipated by integrated devices. The analytical model comes from the resolution of the Fermat equation for the trajectory of rays and supposing a spherical heat source dissipating a time-periodic power. An application example is presented; hence demonstrating how hot spots and heat transfer phenomena in the IC substrate can be characterized. The developed method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  5. Excess ellipticity of hot and cold spots in the WMAP data?

    SciTech Connect

    Berntsen, Eirik; Hansen, Frode K. E-mail: frodekh@astro.uio.no

    2013-12-10

    We investigate claims of excess ellipticity of hot and cold spots in the Wilkinson Microwave Anisotropy Probe (WMAP) data. Using the cosmic microwave background (CMB) data from 7 yr of observations by the WMAP satellite, we find, contrary to previous claims of a 10σ detection of excess ellipticity in the 3 yr data, that the ellipticity of hot and cold spots is perfectly consistent with simulated CMB maps based on the concordance cosmology. We further test for excess obliquity and excess skewness/kurtosis of ellipticity and obliquity and find the WMAP7 data consistent with Gaussian simulated maps.

  6. Cooling off health security hot spots: getting on top of it down under.

    PubMed

    Murray, Kris A; Skerratt, Lee F; Speare, Rick; Ritchie, Scott; Smout, Felicity; Hedlefs, Robert; Lee, Jonathan

    2012-11-01

    Australia is free of many diseases, pests and weeds found elsewhere in the world due to its geographical isolation and relatively good health security practices. However, its health security is under increasing pressure due to a number of ecological, climatic, demographic and behavioural changes occurring globally. North Queensland is a high risk area (a health security hot spot) for Australia, due in part to its connection to neighbouring countries via the Torres Strait and the Indo-Papuan conduit, its high diversity of wildlife reservoirs and its environmental characteristics. Major outbreaks of exotic diseases, pests and weeds in Australia can cost in excess of $1 billion; however, most expenditure on health security is reactive apart from preventive measures undertaken for a few high profile diseases, pests and weeds. Large gains in health security could therefore be made by spending more on pre-emptive approaches to reduce the risk of outbreaks, invasion/spread and establishment, despite these gains being difficult to quantify. Although biosecurity threats may initially have regional impacts (e.g. Hendra virus), a break down in security in health security hot spots can have national and international consequences, as has been seen recently in other regions with the emergence of SARS and pandemic avian influenza. Novel approaches should be driven by building research and management capacity, particularly in the regions where threats arise, a model that is applicable both in Australia and in other regions of the world that value and therefore aim to improve their strategies for maintaining health security. PMID:22836170

  7. Alternatives for reducing hot-water bills

    SciTech Connect

    Bennington, G.E.; Spewak, P.C.

    1981-06-01

    A two stage approach to reducing residential water heating bills is described. In Stage I, simple conservation measures were included to reduce the daily hot water energy consumption and the energy losses from the water tank. Once these savings are achieved, Stage II considers more costly options for further reducing the water heating bill. Four alternatives are considered in Stage II: gas water heaters; solar water heaters (two types); heat pump water heaters; and heat recovery from a heat pump or air conditioner. To account for variations within the MASEC region, information on water heating in Rapid City, Minneapolis, Chicago, Detroit, and Kansas City is presented in detail. Information on geography, major population centers, fuel prices, climate, and state solar incentives is covered. (MCW)

  8. Hot spot analysis applied to identify ecosystem services potential in Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Depellegrin, Daniel; Misiune, Ieva

    2016-04-01

    Hot spot analysis are very useful to identify areas with similar characteristics. This is important for a sustainable use of the territory, since we can identify areas that need to be protected, or restored. This is a great advantage in terms of land use planning and management, since we can allocate resources, reduce the economical costs and do a better intervention in the landscape. Ecosystem services (ES) are different according land use. Since landscape is very heterogeneous, it is of major importance understand their spatial pattern and where are located the areas that provide better ES and the others that provide less services. The objective of this work is to use hot-spot analysis to identify areas with the most valuable ES in Lithuania. CORINE land-cover (CLC) of 2006 was used as the main spatial information. This classification uses a grid of 100 m resolution and extracted a total of 31 land use types. ES ranking was carried out based on expert knowledge. They were asked to evaluate the ES potential of each different CLC from 0 (no potential) to 5 (very high potential). Hot spot analysis were evaluated using the Getis-ord test, which identifies cluster analysis available in ArcGIS toolbox. This tool identifies areas with significantly high low values and significant high values at a p level of 0.05. In this work we used hot spot analysis to assess the distribution of providing, regulating cultural and total (sum of the previous 3) ES. The Z value calculated from Getis-ord was used to statistical analysis to access the clusters of providing, regulating cultural and total ES. ES with high Z value show that they have a high number of cluster areas with high potential of ES. The results showed that the Z-score was significantly different among services (Kruskal Wallis ANOVA =834. 607, p<0.001). The Z score of providing services (0.096±2.239) were significantly higher than the total (0.093±2.045), cultural (0.080±1.979) and regulating (0.076±1.961). These

  9. On some necessary conditions for p-11B ignition in the hot spots of a plasma focus

    NASA Astrophysics Data System (ADS)

    Di Vita, Andrea

    2013-09-01

    Recently, it has been predicted that hydrogen-boron (p-11B) nuclear fusion may attain ignition in the hot spots observed in a plasma focus (PF) pinch, due to their huge values of particle density, magnetic field and (reportedly) ion temperature. Accordingly, large magnetic fields should raise electronic Landau levels, thus reducing collisional exchange of energy from ion to electrons and Bremsstrahlung losses. Moreover, large particle densities, together with ion viscous heating, should allow fulfilment of Lawson criterion and provide effective screening of cyclotron radiation. We invoke both well-known, empirical scaling laws of PF physics, Connor-Taylor scaling laws, Poynting balance of electromagnetic energy and the balance of generalised helicity. We show that the evolution of PF hot spots is a succession of relaxed states, described by the double Beltrami solutions of Hall-MHD equations of motion. We obtain some necessary conditions for ignition, which are violated in most realistic conditions. Large electromagnetic fields in the hot spot accelerate electrons at supersonic velocities and trigger turbulence, which raises electric resistivity and Joule heating, thus spoiling further compression. Ignition is only possible if a significant fraction of the Bremsstrahlung-radiated power is reflected back into the plasma. Injection of angular momentum decreases the required reflection coefficient.

  10. Radio lobes and X-ray hot spots of the extraordinary microquasar in NGC 7793

    NASA Astrophysics Data System (ADS)

    Soria, Roberto; Pakull, Manfred; Broderick, Jess; Corbel, Stephane; Motch, Christian

    2010-07-01

    We have studied the newly-discovered microquasar in NGC 7793 in radio, optical and X-ray bands. This system comprises a large (250×120 pc) line-emitting optical nebula, detected in Ha and HeII λ4686. The optical nebula coincides with a synchrotron-emitting radio cocoon, with a radio luminosity about 3 times that of Cas A. The central BH appears as a hard X-ray source with a point-like, blue optical counterpart. Two prominent radio lobes are located at the extremities of the cocoon. Just ahead of the radio hot spots, we found two X-ray hot spots, which we interpret as a signature of the bow shock into the interstellar medium. The X-ray hot spots, radio hot spots, X-ray core and major axis of the cocoon are well aligned, proving that the system is powered by a jet. From both the X-ray and optical data, we estimate a jet power ~a few×1040 erg s-1, active over a timescale ~105 yrs. This extraordinary system is a long-sought analog of the Galactic microquasar SS433 and may represent a new class of non-nuclear BHs dominated by mechanical power even at very high accretion rates.

  11. A Statistical Hot Spot Reactive Flow Model for Shock Initiation and Detonation of Solid High Explosives

    SciTech Connect

    Nichols, A L; Tarver, C M

    2002-07-01

    A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives developed in the ALE3D hydrodynamic computer code is presented. This model is intended to evolve into a physically correct description of the physical and chemical mechanisms that control the onset of shock initiation via hotspot formation, the growth (01 failure to grow) of these hotspots into the surrounding explosive particles, the rapid transition to detonation, and self-sustaining detonation. Mesoscale modeling of the shock compression and temperature dependent chemical decomposition of individual explosive particles are currently yielding accurate predictions of hot spot formation and the subsequent growth (or failure) of these hotspot reactions in the surrounding grains. For two- and three-dimensional simulations of larger scale explosive charges, a statistical hotspot model that averages over thousands of individual hotspot dimensions and temperatures and then allows exothermic chemical reactions to grow (or fail to grow) due to thermal conduction is required. This paper outlines a first approach to constructing a probabilistic hot spot formulation based on the number density of potential hotspot sites. These hotspots can then either ignite or die out if they do not exceed certain ignition criteria, which are based on physical properties of the explosive particles. The growing hot spots spread at burn velocities given by experimentally determined deflagration velocity versus pressure relationships. The mathematics and assumptions involved in formulating the model and practical examples of its usefulness are given.

  12. Piezo-Electric Hypothesis for Hot Spot Formation Leading to Detonation

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.; Cawkwell, M. J.; Ramos, K. J.

    2015-06-01

    The impact to detonation sequence has been a long standing mystery in high explosives (HE). It is widely recognized that detonation begins in spatially-localized ``hot spots'' where chemistry initiates, but the physical mechanisms leading to hot spot formation are unknown. Here we revisit an old hypothesis, first suggested by Maycock and Grabenstein, that piezo-electric effects may be the cause of hot spot formation since most solid HE materials are observed to be highly piezo-electric. In this scenario, shock-induced pressure leads to electric fields of 100's MV/m, sufficient for dielectric breakdown and breaking chemical bonds, rather than via thermal effects. Extrapolation of statically measured piezo-electric coefficients for several HE materials suggests that shock pressures > 100-kbar might lead to field strengths > 100 - 1000 MV/m, but no definitive experimental proof has been obtained to support this. Here we discuss possible experiments to test this hypothesis by measuring the electric field in dynamic HE experiments correlated with hot spot formation. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  13. Peripheral Hot Spots for Local Ca2+ Release after Single Action Potentials in Sympathetic Ganglion Neurons

    PubMed Central

    Cseresnyés, Zoltán; Schneider, Martin F.

    2004-01-01

    Ca2+ release from the endoplasmic reticulum (ER) contributes to Ca2+ transients in frog sympathetic ganglion neurons. Here we use video-rate confocal fluo-4 fluorescence imaging to show that single action potentials reproducibly trigger rapidly rising Ca2+ transients at 1–3 local hot spots within the peripheral ER-rich layer in intact neurons in fresh ganglia and in the majority (74%) of cultured neurons. Hot spots were located near the nucleus or the axon hillock region. Other regions exhibited either slower and smaller signals or no response. Ca2+ signals spread into the cell at constant velocity across the ER in nonnuclear regions, indicating active propagation, but spread with a (time)1/2 dependence within the nucleus, consistent with diffusion. 26% of cultured cells exhibited uniform Ca2+ signals around the periphery, but hot spots were produced by loading the cytosol with EGTA or by bathing such cells in low-Ca2+ Ringer's solution. Peripheral hot spots for Ca2+ release within the perinuclear and axon hillock regions provide a mechanism for preferential initiation of nuclear and axonal Ca2+ signals by single action potentials in sympathetic ganglion neurons. PMID:14695260

  14. Narrow-bandwidth high-order harmonics driven by long-duration hot spots

    NASA Astrophysics Data System (ADS)

    Kozlov, Maxim; Kfir, Ofer; Fleischer, Avner; Kaplan, Alex; Carmon, Tal; Schwefel, Harald G. L.; Bartal, Guy; Cohen, Oren

    2012-06-01

    We predict and investigate the emission of high-order harmonics by atoms that cross intense laser hot spots that last for a nanosecond or longer. An atom that moves through a nanometer-scale hot spot at characteristic thermal velocity can emit high-order harmonics in a similar fashion to an atom that is irradiated by a short-duration (picosecond-scale) laser pulse. We analyze the collective emission from a thermal gas and from a jet of atoms. In both cases, the line shape of a high-order harmonic exhibits a narrow spike with spectral width that is determined by the bandwidth of the driving laser. Finally, we discuss a scheme for producing long-duration laser hot spots with intensity in the range of the intensity threshold for high-harmonic generation. In the proposed scheme, the hot spot is produced by a long laser pulse that is consecutively coupled to a high-quality micro-resonator and a metallic nano-antenna. This system may be used for generating ultra-narrow bandwidth extreme-ultraviolet radiation through frequency up-conversion of a low-cost compact pump laser.

  15. Intrinsic detection efficiency of superconducting nanowire single photon detector in the modified hot spot model

    NASA Astrophysics Data System (ADS)

    Zotova, A. N.; Vodolazov, D. Yu

    2014-12-01

    We theoretically study the dependence of the intrinsic detection efficiency (IDE) of a superconducting nanowire single photon detector on the applied current, I, and magnetic field, H. We find that the current, at which the resistive state appears in the superconducting film, depends on the position of the hot spot (a region with suppressed superconductivity around the place where the photon has been absorbed) with respect to the edges of the film. This circumstance leads to inevitable smooth dependence IDE(I) when IDE ˜ 0.05-1, even for a homogenous straight superconducting film and in the absence of fluctuations. For IDE ≲ 0.05, a much sharper current dependence comes from the fluctuation-assisted vortex entry to the hot spot, which is located near the edge of the film. We find that a weak magnetic field strongly affects IDE when the photon detection is connected with fluctuation-assisted vortex entry to the hot spot (IDE \\ll 1), and it weakly affects IDE when the photon detection is connected with the current-induced vortex nucleation in the film with the hot spot (IDE ˜ 0.05-1).

  16. Hot Accretion Spots and Nitrogen Enhancement in Algol-Type Interacting Binary Systems

    NASA Astrophysics Data System (ADS)

    Peters, Geraldine J.

    2013-07-01

    The shock from the impact of a gas stream onto the photosphere of a mass gainer in an Algol system is expected to produce a hot spot and also heat circumstellar material that is splashed from the impact site. Furthermore in some cases we expect the stripped-down mass loser (a late-type subgiant) to be nitrogen rich and carbon poor if CNO-processed material is currently being transferred. I will present observational evidence from the Kepler and FUSE spacecrafts for the presence of hot spots and discuss their behavior. FUSE observations of Algols that convincingly show that the gas stream material from some Algol secondaries is N-enhanced and virtually devoid of carbon is also presented. From Kepler data we have identified a long-term phenomenon in which the relative brightness of the quadrature light varies by a few percent and numerically reverses over a time scale of about a 100-400 days. We call the systems T/L (trailing hemisphere/leading hemisphere) variables. Such behavior has never been identified from ground-based photometry. WX Draconis (A8 + K0 IV, P = 1.80 d), a system whose primary displays delta Scuti-like pulsations, is the prototype. The Kepler light curves are being modeled with the latest version of the Wilson-Devinney program that includes the capability of treating migrating hot/cool spots. I will discuss whether the T/L behavior is likely due to a migrating hot accretion spot on the primary or variability in a large cool-spotted area on the secondary. From archival FUSE data we have confirmed the presence of a hot accretion spot in the Algol system U Cephei and present information on the spot parameters/behavior and conditions in a splash plasma from the impact site. Kepler and archival FUSE observations continue to provide important information on the nature of the component stars in Algol systems and the detailed physics of mass transfer, especially the role of accretion hot spots. We are grateful for support from NASA grants NNX11AC78G and

  17. Searching for hot spots and hot moments of soil denitrification in northern hardwood forests

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Duran, J.; Morillas, L.; Roales, J.; Bailey, S. W.; McGuire, K. J.; Groffman, P. M.

    2014-12-01

    Denitrification is a key biogeochemical process that affects nitrogen (N) availability, N losses to aquatic systems, and atmospheric chemistry. In upland forests, denitrification has not been thought to be a major N pathway because it is an anaerobic microbial process that requires nitrate, labile carbon (C), and low oxygen (O2) conditions, which do not occur broadly or consistently throughout forest soils. However, there may be enough spatial and temporal heterogeneity at fine scales to support denitrification rates that are relevant at the landscape scale. To quantify the importance of spatial and temporal variability in soil denitrification in northern hardwood forests at the Hubbard Brook Experimental Forest (HBEF; New Hampshire, USA), we developed two related projects: 1) we sought to identify hot spots of biogeochemical activity, including soil denitrification potential, based on hydropedologic settings and flowpaths in a catchment during the growing season; and 2) we investigated the influence of simulated rainfall events on soil O2 and nitrous oxide concentrations, denitrification rates, and soil respiration during different seasons at HBEF. In the first study, we expected to find that sites dominated by soils with thick Bh horizons (zones of C accumulation) would have the highest denitrification rates. However, despite the variation among soil profiles found in different hydropedologic settings, we did not find significant differences in denitrification potential. Rather, when areal coverage and horizon thickness for the contrasting hydropedologic settings were accounted for, catchment-scale estimates of denitrification potential were about 1/3 higher than conventionally calculated estimates. In the second study, soil O2 in surface horizons only decreased following additions of labile C. Responses of soil respiration and denitrification to simulated rainfall were also influenced by season. While these studies highlight the complex heterogeneity in forest

  18. Hot-spot mix in ignition-scale implosions on the NIF

    SciTech Connect

    Regan, S. P.; Epstein, R.; McCrory, R. L.; Meyerhofer, D. D.; Sangster, T. C.; Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H.; and others

    2012-05-15

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode () ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011)]. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and deuterium-tritium (DT) cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The inferred amount of hot-spot-mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code [J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2006)], is typically below the 75-ng allowance for hot-spot mix [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.

  19. Hot-spot mix in ignition-scale implosions on the NIFa)

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Epstein, R.; Hammel, B. A.; Suter, L. J.; Ralph, J.; Scott, H.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Doeppner, T.; Edwards, M. J.; Farley, D. R.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Haan, S. W.; Hamza, A.; Hicks, D. G.; Izumi, N.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mancini, R. C.; McCrory, R. L.; Meezan, N. B.; Meyerhofer, D. D.; Nikroo, A.; Peterson, K. J.; Sangster, T. C.; Springer, P.; Town, R. P. J.

    2012-05-01

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraum x-ray drive [D. S. Clark et al., Phys. Plasmas 17, 052703 (2010)]. Richtmyer-Meshkov and Rayleigh-Taylor hydrodynamic instabilities seeded by high-mode (50<ℓ<200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase [B. A. Hammel et al., Phys. Plasmas 18, 056310 (2011)]. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium-hydrogen-deuterium (THD) and deuterium-tritium (DT) cryogenic targets and gas-filled plastic-shell capsules, which replace the THD layer with a mass-equivalent CH layer, was examined. The inferred amount of hot-spot-mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code [J. J. MacFarlane et al., High Energy Density Phys. 3, 181 (2006)], is typically below the 75-ng allowance for hot-spot mix [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.

  20. The Median Isn't the Message: Elucidating Nutrient Hot spots and Hot Moments in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Barnes, M. E.; Hart, S. C.; Johnson, D. W.; Meadows, M. W.

    2015-12-01

    Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites. Over the entire 3-year study, nutrient fluxes were greater in the fall for all mineral soil nutrients except Ca2+ and Mg2+. Calcium fluxes were consistent with previous results; however, Mg2+ demonstrated no statistical significance between fall and spring sampling dates. Generally, the number of high statistical outliers persisted through time for Ca2+ and Mg2+, suggesting hot spots for these nutrients. In contrast, large seasonal and annual changes in the number of high statistical outliers occurred for

  1. Co-Occurring Atomic Contacts for the Characterization of Protein Binding Hot Spots

    PubMed Central

    Liu, Qian; Ren, Jing; Song, Jiangning; Li, Jinyan

    2015-01-01

    A binding hot spot is a small area at a protein-protein interface that can make significant contribution to binding free energy. This work investigates the substantial contribution made by some special co-occurring atomic contacts at a binding hot spot. A co-occurring atomic contact is a pair of atomic contacts that are close to each other with no more than three covalent-bond steps. We found that two kinds of co-occurring atomic contacts can play an important part in the accurate prediction of binding hot spot residues. One is the co-occurrence of two nearby hydrogen bonds. For example, mutations of any residue in a hydrogen bond network consisting of multiple co-occurring hydrogen bonds could disrupt the interaction considerably. The other kind of co-occurring atomic contact is the co-occurrence of a hydrophobic carbon contact and a contact between a hydrophobic carbon atom and a π ring. In fact, this co-occurrence signifies the collective effect of hydrophobic contacts. We also found that the B-factor measurements of several specific groups of amino acids are useful for the prediction of hot spots. Taking the B-factor, individual atomic contacts and the co-occurring contacts as features, we developed a new prediction method and thoroughly assessed its performance via cross-validation and independent dataset test. The results show that our method achieves higher prediction performance than well-known methods such as Robetta, FoldX and Hotpoint. We conclude that these contact descriptors, in particular the novel co-occurring atomic contacts, can be used to facilitate accurate and interpretable characterization of protein binding hot spots. PMID:26675422

  2. Role of hydrodynamic instability growth in hot-spot mass gain and fusion performance of inertial confinement fusion implosions

    SciTech Connect

    Srinivasan, Bhuvana; Tang, Xian-Zhu

    2014-10-15

    In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. Here, this mix-enhanced transport effect on hot-spot fusion-performance degradation is quantified using contrasting 1D and 2D hydrodynamic simulations, and its dependence on effective acceleration, Atwood number, and ablation speed is identified.

  3. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE PAGESBeta

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; et al

    2016-07-07

    A record fuel hot-spot pressure Phs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is ~40%more » lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  4. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; Sangster, T. C.; Betti, R.; Bose, A.; Boehly, T. R.; Bonino, M. J.; Campbell, E. M.; Cao, D.; Collins, T. J. B.; Craxton, R. S.; Davis, A. K.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Frenje, J. A.; Froula, D. H.; Gatu Johnson, M.; Glebov, V. Yu.; Harding, D. R.; Hohenberger, M.; Hu, S. X.; Jacobs-Perkins, D.; Janezic, R.; Karasik, M.; Keck, R. L.; Kelly, J. H.; Kessler, T. J.; Knauer, J. P.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Obenschain, S. P.; Petrasso, R. D.; Radha, P. B.; Rice, B.; Rosenberg, M. J.; Schmitt, A. J.; Schmitt, M. J.; Seka, W.; Shmayda, W. T.; Shoup, M. J.; Shvydky, A.; Skupsky, S.; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Ulreich, J.; Wittman, M. D.; Woo, K. M.; Yaakobi, B.; Zuegel, J. D.

    2016-07-01

    A record fuel hot-spot pressure Phs=56 ±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ˜60 % of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

  5. A 'hot-spot' mutation alters the mechanical properties of keratin filament networks.

    PubMed

    Ma, L; Yamada, S; Wirtz, D; Coulombe, P A

    2001-05-01

    Keratins 5 and 14 polymerize to form the intermediate filament network in the progenitor basal cells of many stratified epithelia including epidermis, where it provides crucial mechanical support. Inherited mutations in K5 or K14 result in epidermolysis bullosa simplex (EBS), a skin-fragility disorder. The impact that such mutations exert on the intrinsic mechanical properties of K5/K14 filaments is unknown. Here we show, by using differential interference contrast microscopy, that a 'hot-spot' mutation in K14 greatly reduces the ability of reconstituted mutant filaments to bundle under crosslinking conditions. Rheological assays measure similar small-deformation mechanical responses for crosslinked solutions of wild-type and mutant keratins. The mutation, however, markedly reduces the resilience of crosslinked networks against large deformations. Single-particle tracking, which probes the local organization of filament networks, shows that the mutant polymer exhibits highly heterogeneous structures compared to those of wild-type filaments. Our results indicate that the fragility of epithelial cells expressing mutant keratin may result from an impaired ability of keratin polymers to be crosslinked into a functional network. PMID:11331879

  6. Structural basis for human PRDM9 action at recombination hot spots

    PubMed Central

    Patel, Anamika; Horton, John R.; Wilson, Geoffrey G.; Zhang, Xing; Cheng, Xiaodong

    2016-01-01

    The multidomain zinc finger (ZnF) protein PRDM9 (PRD1–BF1–RIZ1 homologous domain-containing 9) is thought to influence the locations of recombination hot spots during meiosis by sequence-specific DNA binding and trimethylation of histone H3 Lys4. The most common variant of human PRDM9, allele A (hPRDM9A), recognizes the consensus sequence 5′-NCCNCCNTNNCCNCN-3′. We cocrystallized ZnF8–12 of hPRDM9A with an oligonucleotide representing a known hot spot sequence and report the structure here. ZnF12 was not visible, but ZnF8–11, like other ZnF arrays, follows the right-handed twist of the DNA, with the α helices occupying the major groove. Each α helix makes hydrogen-bond (H-bond) contacts with up to four adjacent bases, most of which are purines of the complementary DNA strand. The consensus C:G base pairs H-bond with conserved His or Arg residues in ZnF8, ZnF9, and ZnF11, and the consensus T:A base pair H-bonds with an Asn that replaces His in ZnF10. Most of the variable base pairs (N) also engage in H bonds with the protein. These interactions appear to compensate to some extent for changes from the consensus sequence, implying an adaptability of PRDM9 to sequence variations. We investigated the binding of various alleles of hPRDM9 to different hot spot sequences. Allele C was found to bind a C-specific hot spot with higher affinity than allele A bound A-specific hot spots, perhaps explaining why the former is dominant in A/C heterozygotes. Allele L13 displayed higher affinity for several A-specific sequences, allele L9/L24 displayed lower affinity, and allele L20 displayed an altered sequence preference. These differences can be rationalized structurally and might contribute to the variation observed in the locations and activities of meiotic recombination hot spots. PMID:26833727

  7. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species▿

    PubMed Central

    Johnson, Michael E.; Katiyar, Santosh K.; Edlind, Thomas D.

    2011-01-01

    Echinocandins represent a new antifungal group with potent activity against Candida species. These lipopeptides inhibit the synthesis of β-1,3-glucan, the major cell wall polysaccharide. Acquired resistance or reduced echinocandin susceptibility (RES) is rare and associated with mutations in two “hot spot” regions of Fks1 or Fks2, the probable β-1,3-glucan synthases. In contrast, many fungi demonstrate intrinsic RES for reasons that remain unclear. We are using Saccharomyces cerevisiae to understand the basis for RES by modeling echinocandin-Fks interaction. Previously characterized mutations confer cross-RES; we screened for mutations conferring differential RES, implying direct interaction of that Fks residue with a variable echinocandin side chain. One mutant (in an fks1Δ background) exhibited ≥16-fold micafungin and anidulafungin versus caspofungin RES. Sequencing identified a novel Fks2 mutation, W714L/Y715N. Equivalent W695L/Y696N and related W695L/F/C mutations in Fks1 generated by site-directed mutagenesis and the isolation of a W695L-equivalent mutation in Candida glabrata confirmed the role of the new “hot spot 3” in RES. Further mutagenesis expanded hot spot 3 to Fks1 residues 690 to 700, yielding phenotypes ranging from cross-RES to differential hypersusceptibility. Fks1 sequences from intrinsically RES Scedosporium species revealed W695F-equivalent substitutions; Fks1 hybrids expressing Scedosporium prolificans hot spot 3 confirmed that this substitution imparts RES. PMID:21576441

  8. High-temperature hot spots on Io as seen by the Galileo solid state imaging (SSI) experiment

    USGS Publications Warehouse

    McEwen, A.S.; Simonelli, D.P.; Senske, D.R.; Klaasen, K.P.; Keszthelyi, L.; Johnson, T.V.; Geissler, P.E.; Carr, M.H.; Belton, M.J.S.

    1997-01-01

    High-temperature hot spots on Io have been imaged at ???50 km spatial resolution by Galileo's CCD imaging system (SSI). Images were acquired during eclipses (Io in Jupiter's shadow) via the SSI clear filter (???0.4-1.0 ??m), detecting emissions from both small intense hot spots and diffuse extended glows associated with Io's atmosphere and plumes. A total of 13 hot spots have been detected over ???70% of Io's surface. Each hot spot falls precisely on a low-albedo feature corresponding to a caldera floor and/or lava flow. The hot-spot temperatures must exceed ???700 K for detection by SSI. Observations at wavelengths longer than those available to SSI require that most of these hot spots actually have significantly higher temperatures (???1000 K or higher) and cover small areas. The high-temperature hot spots probably mark the locations of active silicate volcanism, supporting suggestions that the eruption and near-surface movement of silicate magma drives the heat flow and volcanic activity of Io. Copyright 1997 by the American Geophysical Union.

  9. Synthesis study of an erosion hot spot, Ocean Beach, California

    USGS Publications Warehouse

    Barnard, Patrick L.; Hansen, Jeff E.; Erikson, Li H.

    2012-01-01

    A synthesis of multiple coastal morphodynamic research efforts is presented to identify the processes responsible for persistent erosion along a 1-km segment of 7-km-long Ocean Beach in San Francisco, California. The beach is situated adjacent to a major tidal inlet and in the shadow of the ebb-tidal delta at the mouth of San Francisco Bay. Ocean Beach is exposed to a high-energy wave climate and significant alongshore variability in forcing introduced by varying nearshore bathymetry, tidal forcing, and beach morphology (e.g., beach variably backed by seawall, dunes, and bluffs). In addition, significant regional anthropogenic factors have influenced sediment supply and tidal current strength. A variety of techniques were employed to investigate the erosion at Ocean Beach, including historical shoreline and bathymetric analysis, monthly beach topographic surveys, nearshore and regional bathymetric surveys, beach and nearshore grain size analysis, two surf-zone hydrodynamic experiments, four sets of nearshore wave and current experiments, and several numerical modeling approaches. Here, we synthesize the results of 7 years of data collection to lay out the causes of persistent erosion, demonstrating the effectiveness of integrating an array of data sets covering a huge range of spatial scales. The key findings are as follows: anthropogenic influences have reduced sediment supply from San Francisco Bay, leading to pervasive contraction (i.e., both volume and area loss) of the ebb-tidal delta, which in turn reduced the regional grain size and modified wave focusing patterns along Ocean Beach, altering nearshore circulation and sediment transport patterns. In addition, scour associated with an exposed sewage outfall pipe causes a local depression in wave heights, significantly modifying nearshore circulation patterns that have been shown through modeling to be key drivers of persistent erosion in that area.

  10. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quality models, data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  11. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  12. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  13. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  14. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quality models, data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  15. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  16. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quality models, data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on... CO, PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of... concentrations (hot-spot analysis). (a) CO hot-spot analysis. (1) The demonstrations required by §...

  17. 40 CFR 93.116 - Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PM10, and PM2.5 violations (hot-spots). 93.116 Section 93.116 Protection of Environment ENVIRONMENTAL....116 Criteria and procedures: Localized CO, PM10, and PM2.5 violations (hot-spots). (a) This paragraph... hot-spot analysis in PM10 and PM2.5 nonattainment and maintenance areas for FHWA/FTA projects that...

  18. Timing of hot spot--related volcanism and the breakup of madagascar and India.

    PubMed

    Storey, M; Mahoney, J J; Saunders, A D; Duncan, R A; Kelley, S P; Coffin, M F

    1995-02-10

    Widespread basalts and rhyolites were erupted in Madagascar during the Late Cretaceous. These are considered to be related to the Marion hot spot and the breakup of Madagascar and Greater India. Seventeen argon-40/argon-39 age determinations reveal that volcanic rocks and dikes from the 1500-kilometer-long rifted eastern margin of Madagascar were emplaced rapidly (mean age = 87.6 +/- 0.6 million years ago) and that the entire duration of Cretaceous volcanism on the island was no more than 6 million years. The evidence suggests that the thick lava pile at Volcan de l'Androy in the south of the island marks the focal point of the Marion hot spot at approximately 88 million years ago and that this mantle plume was instrumental in causing continental breakup. PMID:17813912

  19. A DLR small satellite mission for the investigation of hot spots, vegetation and clouds

    NASA Astrophysics Data System (ADS)

    Brieβ, K.; Jahn, H.; Röser, H. P.

    1996-11-01

    Starting from their FIRES proposal [1]the DLR makes a new approach in the design of a small satellite mission dedicated to hot spot detection and evaluation: the BIRD mission. The new approach is characterized by a strict design-to-cost philosophy. A two-channel infrared sensor system in combination with a Wide-Angle Optoelectronic Stereo Scanner (WAOSS) shall be the payload of a small satellite (80kg) considered for piggyback launch. So the launch is not a main cost driver as for other small satellite missions with dedicated launchers. The paper describes the mission objectives, the scientific payload, the spacecraft bus, and the mission architecture of a small satellite mission dedicated to the investigation of hot spots (forest fires, volcanic activities, burning oil wells or coal seams), of vegetation condition and changes and of clouds. The paper represents some results of a phase A study and of the progressing phase B.

  20. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  1. Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B; Dattelbaum, Andrew M; Engelke, Ray

    2010-01-01

    To gain insights into the critical hot spot features influencing energetic materials initiation characteristics, well-defined micron-scale particles have been intentionally introduced into the homogeneous explosive nitromethane (NM). Two types of potential hot spot origins have been examined - shock impedance mismatches using solid silica beads, and porosity using hollow microballoons - as well as their sizes and inter-particle separations. Here, we present the results of several series of gas gun-driven plate impact experiments on NM/particle mixtures with well-controlled shock inputs. Detailed insights into the nature of the reactive flow during the build-up to detonation have been obtained from the response of in-situ electromagnetic gauges, and the data have been used to establish Pop-plots (run-distance-to-detonation vs. shock input pressure) for the mixtures. Comparisons of sensitization effects and energy release characteristics relative to the initial shock front between the solid and hollow beads are presented.

  2. Hot-spot model for calculating the threshold for shock initiation of pyrotechnic mixtures

    SciTech Connect

    Maiden, D.E.; Nutt, G.L.

    1986-05-14

    A model for predicting the pressure required to initiate a reaction in pyrotechnic mixtures is described. The pore temperature is determined by calculating the dynamics of pore collapse. An approximate solution for the motion of the pore radius is determined as a function of the pore size, viscosity, yield stress and pressure. The heating of the material surrounding the pore is given by an approximate solution of the heat conduction equation with a source term accounting for viscoplastic heating as a function of the pore motion. Ignition occurs when the surface temperature of the pore matches the hot-spot ignition criterion. The hot-spot ignition temperatures for 2Al/Fe/sub 2/O/sub 3/, Ti/2B, and Ti/C are determined. Predictions for the ignition pressure of 2Al/Fe/sub 2/O/sub 3/ (thermite) are in resonable agreement with experiment. 18 refs.

  3. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots

    PubMed Central

    Alonso-González, P.; Albella, P.; Schnell, M.; Chen, J.; Huth, F.; García-Etxarri, A.; Casanova, F.; Golmar, F.; Arzubiaga, L.; Hueso, L.E.; Aizpurua, J.; Hillenbrand, R.

    2012-01-01

    Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering. PMID:22353715

  4. ELIPGRID-PC: A PC program for calculating hot spot probabilities

    SciTech Connect

    Davidson, J.R.

    1994-10-01

    ELIPGRID-PC, a new personal computer program has been developed to provide easy access to Singer`s 1972 ELIPGRID algorithm for hot-spot detection probabilities. Three features of the program are the ability to determine: (1) the grid size required for specified conditions, (2) the smallest hot spot that can be sampled with a given probability, and (3) the approximate grid size resulting from specified conditions and sampling cost. ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-sheets or graphics software. The program has been successfully tested using Singer`s published ELIPGRID results. An apparent error in the original ELIPGRID code has been uncovered and an appropriate modification incorporated into the new program.

  5. Mantle shear-wave velocity structure beneath the Hawaiian hot spot.

    PubMed

    Wolfe, Cecily J; Solomon, Sean C; Laske, Gabi; Collins, John A; Detrick, Robert S; Orcutt, John A; Bercovici, David; Hauri, Erik H

    2009-12-01

    Defining the mantle structure that lies beneath hot spots is important for revealing their depth of origin. Three-dimensional images of shear-wave velocity beneath the Hawaiian Islands, obtained from a network of sea-floor and land seismometers, show an upper-mantle low-velocity anomaly that is elongated in the direction of the island chain and surrounded by a parabola-shaped high-velocity anomaly. Low velocities continue downward to the mantle transition zone between 410 and 660 kilometers depth, a result that is in agreement with prior observations of transition-zone thinning. The inclusion of SKS observations extends the resolution downward to a depth of 1500 kilometers and reveals a several-hundred-kilometer-wide region of low velocities beneath and southeast of Hawaii. These images suggest that the Hawaiian hot spot is the result of an upwelling high-temperature plume from the lower mantle. PMID:19965755

  6. Identifying and retargeting transcriptional hot spots in the human genome.

    PubMed

    Cheng, Joseph K; Lewis, Amanda M; Kim, Do Soon; Dyess, Timothy; Alper, Hal S

    2016-08-01

    Mammalian cell line development requires streamlined methodologies that will reduce both the cost and time to identify candidate cell lines. Improvements in site-specific genomic editing techniques can result in flexible, predictable, and robust cell line engineering. However, an outstanding question in the field is the specific site of integration. Here, we seek to identify productive loci within the human genome that will result in stable, high expression of heterologous DNA. Using an unbiased, random integration approach and a green fluorescent reporter construct, we identify ten single-integrant, recombinant human cell lines that exhibit stable, high-level expression. From these cell lines, eight unique corresponding integration loci were identified. These loci are concentrated in non-protein coding regions or intronic regions of protein coding genes. Expression mapping of the surrounding genes reveals minimal disruption of endogenous gene expression. Finally, we demonstrate that targeted de novo integration at one of the identified loci, the 12(th) exon-intron region of the GRIK1 gene on chromosome 21, results in superior expression and stability compared to the standard, illegitimate integration approach at levels approaching 4-fold. The information identified here along with recent advances in site-specific genomic editing techniques can lead to expedited cell line development. PMID:27311394

  7. Non-LTE modeling of the structure and spectra of hot accretion spots on the surface of young stars

    NASA Astrophysics Data System (ADS)

    Dodin, A. V.

    2015-05-01

    The results of modeling the structure and spectra of hot accretion spots on the surface of young stars with allowance made for the departures from LTE for hydrogen and helium are presented. The existence of ram pressure of the infalling gas at the outer boundary of the hot spot has been found to lead to Stark broadening of the hydrogen line profiles to ˜1000 km s-1 at the accretion parameters considered. It is shown that allowance for the departures from LTE for carbon and oxygen atoms and ions does not lead to noticeable changes in the structure of the hot spot.

  8. Feature-enhancing zoom to facilitate Ki-67 hot spot detection

    NASA Astrophysics Data System (ADS)

    Molin, Jesper; Shaga Devan, Kavitha; Wârdell, Karin; Lundström, Claes

    2014-03-01

    Image processing algorithms in pathology commonly include automated decision points such as classifications. While this enables efficient automation, there is also a risk that errors are induced. A different paradigm is to use image processing for enhancements without introducing explicit classifications. Such enhancements can help pathologists to increase efficiency without sacrificing accuracy. In our work, this paradigm has been applied to Ki-67 hot spot detection. Ki-67 scoring is a routine analysis to quantify the proliferation rate of tumor cells. Cell counting in the hot spot, the region of highest concentration of positive tumor cells, is a method increasingly used in clinical routine. An obstacle for this method is that while hot spot selection is a task suitable for low magnification, high magnification is needed to discern positive nuclei, thus the pathologist must perform many zooming operations. We propose to address this issue by an image processing method that increases the visibility of the positive nuclei at low magnification levels. This tool displays the modified version at low magnification, while gradually blending into the original image at high magnification. The tool was evaluated in a feasibility study with four pathologists targeting routine clinical use. In a task to compare hot spot concentrations, the average accuracy was 75+/-4.1% using the tool and 69+/-4.6% without it (n=4). Feedback on the system, gathered from an observer study, indicate that the pathologists found the tool useful and fitting in their existing diagnostic process. The pathologists judged the tool to be feasible for implementation in clinical routine.

  9. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    PubMed Central

    Buhrman, Greg; O’Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla

    2011-01-01

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the “off” and “on” allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target. PMID:21945529

  10. Wood ant nests as hot spots of carbon dioxide production and cold spots of methane oxidation in temperate forests

    NASA Astrophysics Data System (ADS)

    Jilkova, Veronika; Picek, Tomas; Cajthaml, Tomas; Frouz, Jan

    2016-04-01

    Wood ant nests are known as hot spots of carbon dioxide (CO2) production and are also thought to affect methane (CH4) flux. Stable high temperatures are maintained in ant nests even in cold environments. Here we focused on quantification of CO2 and CH4 flux in wood ant nests, contribution of ants and microbes to CO2 production, properties of nest material that affect CO2 production and the role of ants and microbes in the maintenance of nest temperature. The research was conducted in temperate and boreal forests inhabited by wood ants (Formica s. str.). Gas fluxes were measured either by an infrared gas analyser or a static chamber technique. Ants and nest materials were also incubated in a laboratory. Material properties potentially influencing CO2 flux, such as moisture, nutrient content or temperature were determined. According to the results, CH4 oxidation was lower in wood ant nests than in the surrounding forest soil suggesting that some characteristics of ant nests hinder CH4 oxidation or promote CH4 production. These characteristics were mainly available carbon and nitrogen contents. Wood ant nests clearly are hot spots of CO2 production in temperate forests originating mainly from ant and also from microbial metabolism. Most important properties positively affecting CO2 production were found to be moisture, nutrient content and temperature. Nest temperature is maintained by ant and microbial metabolism; nests from colder environments produce more metabolic heat to maintain similar temperature as nests from warmer environments. In conclusion, as the abundance of wood ant nests in some forests can be very high, ant nests may largely increase heterogeneity in greenhouse gas fluxes in forest ecosystems.

  11. 2-(N-acetoxy-N-acetylamino)fluorene mutagenesis in mammalian cells: sequence-specific hot spot.

    PubMed Central

    Gentil, A; Margot, A; Sarasin, A

    1986-01-01

    Mutations induced by 2-(N-acetoxy-N-acetylamino)fluorene were studied using temperature-sensitive simian virus 40 (SV40) mutants as probe in monkey kidney cells. In vitro treatment of the SV40 virions with 2-(N-acetoxy-N-acetylamino)fluorene increased mutagenesis and decreased survival in the viral progeny. A lethal hit of approximately 85 acetylaminofluorene adducts per SV40 genome was calculated. UV irradiation of cells prior to infection did not modify the results. Molecular analysis of independent SV40 revertants showed that 2-(N-acetoxy-N-acetylamino)fluorene induces base substitutions that are located not opposite putative acetylaminofluorene adducts but next to them. Moreover, a hot spot of mutation restoring a true wild-type genotype was observed in 10 of the 16 revertants analyzed. This hot spot, not targeted opposite a major DNA lesion, was not observed using UV light as damaging agent in the same genetic assay. Two models involving the stabilization, by acetylaminofluorene adducts, of the secondary structure of a specific quasipalindromic SV40 sequence are proposed to explain this sequence-specific hot spot. PMID:3025845

  12. Hot spot activity and tectonic settings near Amsterdam-St. Paul plateau (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Janin, M.; HéMond, C.; Guillou, H.; Maia, M.; Johnson, K. T. M.; Bollinger, C.; Liorzou, C.; Mudholkar, A.

    2011-05-01

    The Amsterdam-St. Paul (ASP) plateau is located in the central part of the Indian Ocean and results from the interaction between the ASP hot spot and the Southeast Indian Ridge (SEIR). It is located near the diffuse boundary between the Capricorn and Australian plates. The seamount chain of the Dead Poets (CDP) is northeast of the ASP plateau and may represent older volcanism related to the ASP hot spot; this chain consists of two groups of seamounts: (1) large flat-topped seamounts formed 8-10 Ma and (2) smaller conical seamounts formed during the last 2 Myr. The ASP hot spot has produced two pulses of magmatism that have been ponded under the ASP plateau and erupted along the divergent boundary between the Capricorn and Australian plates. The N65° orientation of the CDP as well as the seamount's elongated shapes support an opening motion between the Capricorn and Australian plates along a suture oriented in the N155° direction. This motion compared to the Antarctic plate amounts to an apparent velocity of 7.7 cm/yr northeastward for the Capricorn-Australian block. This motion does not fit with a fixed plume model. We suggest, therefore, that the ASP plume experienced a motion of about 1-2 cm/yr to the SW, which is opposite to the asthenospheric flow in this region and suggests a deep-seated plume.

  13. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis

    PubMed Central

    Yelina, Nataliya E.; Lambing, Christophe; Hardcastle, Thomas J.; Zhao, Xiaohui; Santos, Bruno; Henderson, Ian R.

    2015-01-01

    During meiosis, homologous chromosomes undergo crossover recombination, which is typically concentrated in narrow hot spots that are controlled by genetic and epigenetic information. Arabidopsis chromosomes are highly DNA methylated in the repetitive centromeres, which are also crossover-suppressed. Here we demonstrate that RNA-directed DNA methylation is sufficient to locally silence Arabidopsis euchromatic crossover hot spots and is associated with increased nucleosome density and H3K9me2. However, loss of CG DNA methylation maintenance in met1 triggers epigenetic crossover remodeling at the chromosome scale, with pericentromeric decreases and euchromatic increases in recombination. We used recombination mutants that alter interfering and noninterfering crossover repair pathways (fancm and zip4) to demonstrate that remodeling primarily involves redistribution of interfering crossovers. Using whole-genome bisulfite sequencing, we show that crossover remodeling is driven by loss of CG methylation within the centromeric regions. Using cytogenetics, we profiled meiotic DNA double-strand break (DSB) foci in met1 and found them unchanged relative to wild type. We propose that met1 chromosome structure is altered, causing centromere-proximal DSBs to be inhibited from maturation into interfering crossovers. These data demonstrate that DNA methylation is sufficient to silence crossover hot spots and plays a key role in establishing domains of meiotic recombination along chromosomes. PMID:26494791

  14. The Canary and Cape Verde hot spots: morphological and geological links

    NASA Astrophysics Data System (ADS)

    Patriat, M.; Olivet, J. L.; Sahabi, M.; Aslanian, D.; Géli, L.

    2003-04-01

    The Canary and Cape-Verde achipelagoes are two groups of volcanic islands, 1400 km apart, located along the African margin of the Central Atlantic Ocean. They are often cited as case examples of the surface expression of two distinct hot-spot plumes. Their distribution, which does not define a line as much oceanic islands of the Pacific Ocean do, but a cluster, is considered as an indication of the steadiness of the African plate in the hot spots reference frame. From a bibliographic review and an examination of existing seismic profiles we emphasize the similarities existing between these two archipelagoes. - A continuous morphological basement ridge does exist along the margin that links the two archipelagoes. - An almost synchronous geological evolution is deduced from the stratigraphy of Fuerteventura island (Canary), Maio island (Cape-Verde), and the few DSDP holes in the area. The stratigraphic record evidences a Late Cretaceous/early Tertiary uplift following the classical oceanic subsidence but pre-dating the Tertiary volcanism that made the islands, or at least their aerial part. These geological arguments induces us to contest the relevance to put two distinct hot spot plumes forward to explain the evolution of such closely related geological structures.

  15. The FTMap family of web servers for determining and characterizing ligand binding hot spots of proteins

    PubMed Central

    Kozakov, Dima; Grove, Laurie E.; Hall, David R.; Bohnuud, Tanggis; Mottarella, Scott; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor

    2016-01-01

    FTMap is a computational mapping server that identifies binding hot spots of macromolecules, i.e., regions of the surface with major contributions to the ligand binding free energy. To use FTMap, users submit a protein, DNA, or RNA structure in PDB format. FTMap samples billions of positions of small organic molecules used as probes and scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots, in good agreement with experimental data. FTMap serves as basis for other servers, namely FTSite to predict ligand binding sites, FTFlex to account for side chain flexibility, FTMap/param to parameterize additional probes, and FTDyn to map ensembles of protein structures. Applications include determining druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures, and providing input for fragment based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and is much faster than the more recent approaches to protein mapping based on mixed molecular dynamics. Using 16 probe molecules, the FTMap server finds the hot spots of an average size protein in less than an hour. Since FTFlex performs mapping for all low energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957

  16. Aquatic Ecosystem Exposure Associated with Atmospheric Mercury Deposition: Importance of Watershed and Water Body Hot Spots and Hot Moments

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Golden, H. E.

    2008-12-01

    Atmospheric deposition of divalent mercury (Hg(II)) is the often the primary driving force for mercury contamination in fish tissue, resulting in mercury exposure to wildlife and humans. In lake systems associated with small watersheds, direct deposition to the water surface is typically the dominant mercury loading source; however, in lake systems with large watersheds and river systems, these inputs may be relatively small compared to loadings from the watershed via erosion and surface runoff. Within each system, transformation of the deposited mercury into the environmentally relevant form, methylmercury (MeHg), proceeds at different rates largely regulated by physical characteristics such as watershed land use types and water body hydraulic residence times, as water body chemistry, such as pH and trophic status Therefore, to fully represent mercury exposure in aquatic ecosystems, we must couple watershed models with water body models and explore where, why, and when hot spots and hot moments of transformation and transport occur. Here we link the simulated atmospheric mercury deposition results from the Community Multi-Scale Air Quality (CMAQ) model, a spatially distributed grid-based watershed mercury (Hg) model (GBMM), and the Water Quality Analysis Simulation Program (WASP). We use this multi-media modeling framework to simulate mercury species cycling over time for the different river reaches and watersheds within the Cape Fear River Basin, North Carolina. Through these simulations we investigate the importance of specific watershed and surface water system characteristics in simulating MeHg exposure concentrations. Because GBMM is a spatially-distributed model we are able to investigate the importance of such factors (i.e., watershed area, land-use types, and land-use percentages) in transporting and transforming deposited mercury. We present how particular land-use types and land-use change influence total loading and total mercury concentrations, how

  17. Variability of Jupiter’s Five-Micron Hot Spot Inventory

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.; Orton, G. S.; Wakefield, L.; Rogers, J. H.; Simon-Miller, A. A.; Boydstun, K.

    2012-10-01

    Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. We track the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images. Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. Ortiz et al. (1998, GRL, 103) characterized the latitude and drift rates of the hot spots, including the descent of the Galileo probe at the southern edge of a 5-μm hot spot, as the superposition of equatorial Rossby waves, with phase speeds between 99 - 103m/s, relative to System III. We note that the high 5-μm radiances correlate well but not perfectly with high 8.57-μm radiances. Because the latter are modulated primarily by changes in the upper ammonia (NH3) ice cloud opacity, this correlation implies that changes in the ammonia ice cloud field may be responsible for the variability seen in the 5-μm maps. During the NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were absent, an atmospheric state not seen in decades. The ongoing NEB revival indicates nascent 5-μm hot spots as early as April 2012, with corresponding visible dark spots. Their continuing growth through July 2012 indicates the possible re-establishment of Rossby waves. The South Equatorial Belt (SEB) and NEB revivals began similarly with an instability that developed into a major outbreak, and many similarities in the observed propagation of clear regions.

  18. Hot spots

    NASA Astrophysics Data System (ADS)

    Government officials in Montserrat and in Nicaragua spent the first week of December trying to usher residents out of their homes and away from simmering volcanoes in each of those nations. Some people cooperated, others decided to take their chances. On the tiny Caribbean island of Montserrat, about 3,500 people were ordered to vacate their homes for the second time in three months, as a lava dome in the Chances Peak volcano grew and threatened to erupt. In Leon, Nicaragua, at least a third of the 12,000 people ordered to evacuate their homes refused, choosing to protect their homes from looters rather than flee the gurgling Cerro Negro. The Nicaraguan volcano spewed ash and lava 900 m into the air on Dec. 2; the eruption was visible from Managua, 120 km to the southeast.

  19. Distribution of flares on the sun during 1955-1985 - 'Hot spots' (active zones) lasting for 30 years

    NASA Technical Reports Server (NTRS)

    Bai, Taeil

    1988-01-01

    The coordinates of 'major solar flares' observed during the period from January 1955 through August 1985 are analyzed. About 100 'superactive' regions (large, complex, active regions containing large sunspots) produced 46 percent of the major flares during the period. Superactive regions appeared more frequently in certain areas of the sun called 'hot spots' or 'active zones'. The synodic rotation periods of the northern and southern hemisphere hot spots were 26.72 d and 26.61 d, respectively. One of the two hot spots persisted through three solar cycles, and the other was active during cycles 19 and 21 but was dormant during cycle 20. These findings suggest that the mechanism producing hot spots must be stable for two or three solar cycles or longer.

  20. Time-domain interferometry of surface plasmons at nonlinear continuum hot spots in films of silver nanoparticles.

    PubMed

    Klemm, Philippe; Haug, Tobias; Bange, Sebastian; Lupton, John M

    2014-12-31

    Nonlinear continuum generation from diffraction-limited hot spots in rough silver films exhibits striking narrow-band intensity resonances in excitation wavelength. Time-domain Fourier spectroscopy uncovers how these resonances arise due to the formation of a "plasmon staircase", a discreteness in the fundamental oscillation of the plasmon excitations responsible for generating the white-light continuum. Whereas multiple scattering from discrete antennas can be invoked to explain hot spot formation in random assemblies of isolated particles, hot spots in films of fused nanoparticles are excited by interfering propagating surface plasmons, launched by scattering from individual nanoparticle antennas. For closed films, discrete propagating plasmons interact coherently over distances of tens of microns to pump the hot spot. PMID:25615373

  1. Results and analysis of the hot-spot temperature experiment for a cable-in-conduit conductor with thick conduit

    NASA Astrophysics Data System (ADS)

    Sedlak, Kamil; Bruzzone, Pierluigi

    2015-12-01

    In the design of future DEMO fusion reactor a long time constant (∼23 s) is required for an emergency current dump in the toroidal field (TF) coils, e.g. in case of a quench detection. This requirement is driven mainly by imposing a limit on forces on mechanical structures, namely on the vacuum vessel. As a consequence, the superconducting cable-in-conduit conductors (CICC) of the TF coil have to withstand heat dissipation lasting tens of seconds at the section where the quench started. During that time, the heat will be partially absorbed by the (massive) steel conduit and electrical insulation, thus reducing the hot-spot temperature estimated strictly from the enthalpy of the strand bundle. A dedicated experiment has been set up at CRPP to investigate the radial heat propagation and the hot-spot temperature in a CICC with a 10 mm thick steel conduit and a 2 mm thick glass epoxy outer electrical insulation. The medium size, ∅ = 18 mm, NbTi CICC was powered by the operating current of up to 10 kA. The temperature profile was monitored by 10 temperature sensors. The current dump conditions, namely the decay time constant and the quench detection delay, were varied. The experimental results show that the thick conduit significantly contributes to the overall enthalpy balance, and consequently reduces the amount of copper required for the quench protection in superconducting cables for fusion reactors.

  2. Characterization of hot spots for natural chloroform formation: Relevance for groundwater quality

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels

    2015-04-01

    Chloroform soil hot spot may deteriorate groundwater quality and may even result in chloroform concentration exceeding the Danish maximum limit of 1 µg/L in groundwater for potable use. In order to characterize the soil properties important for the chloroform production, various ecosystems were examined with respect to soil air chloroform and soil organic matter type and content. Coniferous forest areas, responsible for highest chloroform concentrations, were examined on widely different scales from km to cm scale. Furthermore, regular soil gas measurements including chloroform were performed during 4 seasons at various depths, together with various meteorological measurements and soil temperature recordings. Laboratory incubation experiments were also performed on undisturbed soil samples in order to examine the role of various microbiota, fungi and bacteria. To identify hot spots responsible for the natural contamination we have measured the production of chloroform in the upper soil from different terrestrial systems. Field measurements of chloroform in top soil air were used as production indicators. The production was however not evenly distributed at any scale. The ecosystems seem to have quite different net-productions of chloroform from very low in grassland to very high in some coniferous forests. Within the forest ecosystem we found large variation in chloroform concentrations depending on vegetation. In beech forest we found the lowest values, somewhat higher in an open pine forest, but the highest concentrations were detected in spruce forest without any vegetation beneath. Within this ecotype, it appeared that the variation was also large; hot spots with 2-4 decades higher production than the surrounding area. These hot spots were not in any way visually different from the surroundings and were of variable size from 3 to 20 meters in diameter. Besides this, measurements within a seemingly homogenous hot spot showed that there was still high

  3. Fossil hot spot-ridge interaction in the Musicians Seamount Province: Geophysical investigations of hot spot volcanism at volcanic elongated ridges

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Kopp, C.; Phipps Morgan, J.; Flueh, E. R.; Weinrebe, W.; Morgan, W. J.

    2003-03-01

    The Musicians Seamount Province is a group of volcanic elongated ridges (VERs) and single seamounts located north of the Hawaiian Chain. A 327° trending seamount chain defines the western part of the province and has been interpreted as the expression of a Cretaceous hot spot beneath the northward moving Pacific Plate. To the east, elongated E-W striking ridges dominate the morphology. In 1999, wide-angle seismic data were collected across two 400 km long VERs. We present tomographic images of the volcanic edifices, which indicate that crustal thickening occurs in oceanic layer 2 rather than in layer 3. This extrusive style of volcanism appears to strongly contrast with the formation processes of aseismic ridges, where crustal thickening is mostly accommodated by intrusive underplating. High-resolution bathymetry was also collected, which yields a detailed image of the morphology of the VERs. From the occurrence of flat-top guyots and from the unique geomorphologic setting, two independent age constraints for the Pacific crust during the Cretaceous "quiet" zone are obtained, allowing a tectonic reconstruction for the formation of the Musicians VERs. Hot spot-ridge interaction leads to asthenosphere channeling from the plume to the nearby spreading center over a maximum distance of 400 km. The Musicians VERs were formed by mainly extrusive volcanism on top of this melt-generating channel. The proposed formation model may be applicable to a number of observed volcanic ridges in the Pacific, including the Tuamotu Isles, the eastern portion of the Foundation chain, and the western termination of the Salas y Gomez seamount chain.

  4. Predicting hot spots in protein interfaces based on protrusion index, pseudo hydrophobicity and electron-ion interaction pseudopotential features

    PubMed Central

    Xia, Junfeng; Yue, Zhenyu; Di, Yunqiang; Zhu, Xiaolei; Zheng, Chun-Hou

    2016-01-01

    The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming more important for the research of drug design and cancer development. Based on our previous methods (APIS and KFC2), here we proposed a novel hot spot prediction method. For each hot spot residue, we firstly constructed a wide variety of 108 sequence, structural, and neighborhood features to characterize potential hot spot residues, including conventional ones and new one (pseudo hydrophobicity) exploited in this study. We then selected 3 top-ranking features that contribute the most in the classification by a two-step feature selection process consisting of minimal-redundancy-maximal-relevance algorithm and an exhaustive search method. We used support vector machines to build our final prediction model. When testing our model on an independent test set, our method showed the highest F1-score of 0.70 and MCC of 0.46 comparing with the existing state-of-the-art hot spot prediction methods. Our results indicate that these features are more effective than the conventional features considered previously, and that the combination of our and traditional features may support the creation of a discriminative feature set for efficient prediction of hot spots in protein interfaces. PMID:26934646

  5. Process window and defect monitoring using high-throughput e-beam inspection guided by computational hot spot detection

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Pengcheng; Fang, Wei; Liu, Kevin; Jau, Jack; Wang, Lester; Wan, Alex; Hunsche, Stefan; Halder, Sandip; Leray, Philippe

    2016-03-01

    As design rules for leading edge devices have shrunk to 1x nm size and below, device patterns have become sensitive to sub-10nm size defects. Additionally, defectivity and yield are now increasingly dominated by systematic patterning defects. A method for identifying and inspecting these hot spot (HS) locations is necessary for both technology development and High Volume Manufacturing (HVM). In order to achieve sufficient statistical significance across the wafer for a specific product and layer, a guided, high-speed e-beam inspection system is needed to cover a significant amount of high-volume hot spot locations for process window monitoring. In this paper, we explore the capabilities of a novel, highthroughput e-beam hot spot inspection tool, SkyScanTM 5000, on a 10nm back-end-of-line (BEOL) wafer patterned using a triple lithography-etch process. ASML's high-resolution, design-aware computational hot spot inspection is used to identify relevant hot spot locations, including overlay-sensitive patterns. We guide the e-beam tool to these Points of Interest (POI) and obtain experimental data from inspection of 430k wafer locations. The large amount of data allows detection of wafer-level and intra-field defect signatures for a large number of hot spot patterns.

  6. Role of microstructure and thermal transport in determining the rate of hot spot growth in aluminized PBX

    NASA Astrophysics Data System (ADS)

    Joshi, Kaushik; Chaudhuri, Santanu

    The mechanisms of initiation and propagation of a hot spot in non-ideal explosives with aluminum additives are poorly understood due to greater complexity introduced by the different thermal and mechanical behavior of the components. In aluminized composites such as PBXN-109, the binder, RDX and Aluminum phases have been studied separately. However, not much is known about deflection of hot spots in the microstructured composite. Especially, the role of adhesion, debonding and thermal conductivity of binder phase is critical in moderating the sensitivity of such interfaces. Using reactive molecular dynamics simulations, the primary binder interfaces in PBXN-109 was investigated. Depending on the temperature of the growing hot spot reaching an RDX or Al/Al2O3 grain, the thermal conductivity and viscoplastic behavior of the binder interface determine the attenuation of reaction front and thermal shock leading the hot spot. Different mechanisms like melt-dispersion and failure of oxide layer for the release of Al in the hot spot regions remain underexplored to connect the chemistry to the microstructure. Although Al/Al2O3/RDX and Al/Al2O3/HTPB interfaces are chemically stable, the hot spot melts the AlxOy layers and create shear bands in aluminum domain due to thermomechanical strain created due to different thermal environment. In a shock-compressed microstructure without voids, the cohesive interaction and chemical composition of such interfaces for different phases of RDX will be presented.

  7. The Effect of Particle Properties on Hot Particle Spot Fire Ignition

    NASA Astrophysics Data System (ADS)

    Zak, Casey David

    The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental

  8. Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall

    NASA Astrophysics Data System (ADS)

    Boschetti, Mirco; Nutini, Francesco; Brivio, Pietro Alessandro; Bartholomé, Etienne; Stroppiana, Daniela; Hoscilo, Agata

    2013-04-01

    Studies of the impact of human activity on vegetation dynamics of the Sahelian belt of Africa have been recently re-invigorated by new scientific findings that highlighted the primary role of climate in the drought crises of the 1970s-1980s. Time series of satellite observations revealed a re-greening of the Sahelian belt that indicates no noteworthy human effect on vegetation dynamics at sub continental scale from the 1980s to late 1990s. However, several regional/local crises related to natural resources occurred in the last decades despite the re-greening thus underlying that more detailed studies are needed. In this study we used time-series (1998-2010) of SPOT-VGT NDVI and FEWS-RFE rainfall estimates to analyse vegetation - rainfall correlation and to map areas of local environmental anomalies where significant vegetation variations (increase/decrease) are not fully explained by seasonal changes of rainfall. Some of these anomalous zones (hot spots) were further analysed with higher resolution images Landsat TM/ETM+ to evaluate the reliability of the identified anomalous behaviour and to provide an interpretation of some example hot spots. The frequency distribution of the hot spots among the land cover classes of the GlobCover map shows that increase in vegetation greenness is mainly located in the more humid southern part and close to inland water bodies where it is likely to be related to the expansion/intensification of irrigated agricultural activities. On the contrary, a decrease in vegetation greenness occurs mainly in the northern part (12°-15°N) in correspondence with herbaceous vegetation covers where pastoral and cropping practices are often critical due to low and very unpredictable rainfall. The results of this study show that even if a general positive re-greening due to increased rainfall is evident for the entire Sahel, some local anomalous hot spots exist and can be explained by human factors such as population growth whose level reaches the

  9. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L; Frederick, David Alan; Hovanski, Yuri; Grant, Glenn J

    2008-01-01

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  10. Friction Stir Spot Welding of DP780 and Hot-Stamp Boron Steels

    SciTech Connect

    Santella, Michael L.; Frederick, Alan; Hovanski, Yuri; Grant, Glenn J.

    2008-05-16

    Friction stir spot welds were made in two high-strength steels: DP780, and a hot-stamp-boron steel with tensile strength of 1500 MPa. The spot welds were made at either 800 or 1600 rpm using either of two polycrystalline boron nitride tools. One stir tool, BN77, had the relatively common pin-tool shape. The second tool, BN46, had a convex rather than a concave shoulder profile and a much wider and shorter pin. The tools were plunged to preprogrammed depths either at a continuous rate (1-step schedule) or in two segments consisting of a relatively high rate followed by a slower rate. In all cases, the welds were completed in 4s. The range of lap-shear values were compared to values required for resistance spot welds on the same steels. The minimum value of 10.3 kN was exceeded for friction stir spot welding of DP780 using a 2-step schedule and either the BN77- or the BN46-type stir tool. The respective minimum value of 12 kN was also exceeded for the HSB steel using the 2-step process and the BN46 stir tool.

  11. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging

    NASA Astrophysics Data System (ADS)

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bücker, Matthias; Dafflon, Baptiste; Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.

    2016-01-01

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this study, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys and drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.

  12. TERT promoter hot spot mutations are frequent in Indian cervical and oral squamous cell carcinomas.

    PubMed

    Vinothkumar, Vilvanathan; Arunkumar, Ganesan; Revathidevi, Sundaramoorthy; Arun, Kanagaraj; Manikandan, Mayakannan; Rao, Arunagiri Kuha Deva Magendhra; Rajkumar, Kottayasamy Seenivasagam; Ajay, Chandrasekar; Rajaraman, Ramamurthy; Ramani, Rajendren; Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan

    2016-06-01

    Squamous cell carcinoma (SCC) of the uterine cervix and oral cavity are most common cancers in India. Telomerase reverse transcriptase (TERT) overexpression is one of the hallmarks for cancer, and activation through promoter mutation C228T and C250T has been reported in variety of tumors and often shown to be associated with aggressive tumors. In the present study, we analyzed these two hot spot mutations in 181 primary tumors of the uterine cervix and oral cavity by direct DNA sequencing and correlated with patient's clinicopathological characteristics. We found relatively high frequency of TERT hot spot mutations in both cervical [21.4 % (30/140)] and oral [31.7 % (13/41)] squamous cell carcinomas. In cervical cancer, TERT promoter mutations were more prevalent (25 %) in human papilloma virus (HPV)-negative cases compared to HPV-positive cases (20.6 %), and both TERT promoter mutation and HPV infection were more commonly observed in advanced stage tumors (77 %). Similarly, the poor and moderately differentiated tumors of the uterine cervix had both the TERT hot spot mutations and HPV (16 and 18) at higher frequency (95.7 %). Interestingly, we observed eight homozygous mutations (six 228TT and two 250TT) only in cervical tumors, and all of them were found to be positive for high-risk HPV. To the best of our knowledge, this is the first study from India reporting high prevalence of TERT promoter mutations in primary tumors of the uterine cervix and oral cavity. Our results suggest that TERT reactivation through promoter mutation either alone or in association with the HPV oncogenes (E6 and E7) could play an important role in the carcinogenesis of cervical and oral cancers. PMID:26700669

  13. The effect of current flow direction on motor hot spot allocation by transcranial magnetic stimulation.

    PubMed

    Stephani, Caspar; Paulus, Walter; Sommer, Martin

    2016-01-01

    The objective of this study was to investigate the significance of pulse configurations and current direction for corticospinal activation using transcranial magnetic stimulation (TMS). In 11 healthy subjects (8 female), a motor map for the motor evoked potentials (MEPs) recorded from the first dorsal interosseus (FDI), abductor digiti minimi (ADM), extensor carpi radialis, and biceps brachii (BB) muscles of the dominant side was established. Starting from a manually determined hot spot of the FDI representation, we measured MEPs at equal oriented points on an hexagonal grid, with 7 MEPs recorded at each point, using the following pulse configurations: posteriorly directed monophasic (Mo-P), anteriorly directed monophasic (Mo-A), biphasic with the more relevant second cycle oriented posteriorly (Bi-P) as well as a reversed biphasic condition (Bi-A). For each pulse configuration, a hot spot was determined and a center of gravity (CoG) was calculated. We found that the factor current direction had an effect on location of the CoG-adjusted hot spot in the cranio-caudal axis but not in the latero-medial direction with anteriorly directed pulses locating the CoG more anteriorly and vice versa. In addition, the CoG for the FDI was more laterally than the cortical representations for the abductor digiti minimi (ADM) and extensor carpi radialis (ECR) which were registered as well. The results indicate that direction of the current pulse should be taken into account for determination of the motor representation of a muscle by TMS. PMID:26733248

  14. Modeling of two-dimensional effects in hot spot relaxation in laser-produced plasmas

    SciTech Connect

    Feugeas, J.-L.; Nicolaie, Ph.; Ribeyre, X.; Schurtz, G.; Tikhonchuk, V.; Grech, M.

    2008-06-15

    Two-dimensional numerical simulations of plasma heating and temperature hot spots relaxation are presented in the domain where the diffusive approximation for heat transport fails. Under relevant conditions for laser plasma interactions, the effects of the nonlocality of heat transport on the plasma response are studied comparing the Spitzer-Haerm model with several frequently used nonlocal models. The importance of using a high-order numerical scheme to correctly model nonlocal effects is discussed. A significant increase of the temperature relaxation time due to nonlocal heat transport is observed, accompanied by enhanced density perturbations. Applications to plasma-induced smoothing of laser beams are considered.

  15. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    PubMed Central

    Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy

    2016-01-01

    Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a ‘magic bullet’ that is capable of binding at many of the ligand ‘hot spots’ found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are ‘hidden’ in the unliganded crystal form, allowing rapid identification of these sites for in silico screening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals. PMID:26870381

  16. Effect of width, amplitude and position of a CMB hot spot on core convection and dynamo action

    NASA Astrophysics Data System (ADS)

    Dietrich, W.; Wicht, J.; Hori, K.

    2015-10-01

    Within the fluid iron cores of terrestrial planets, convection and hence the generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, like the thermal footprint of a giant impact or hot mantle plumes will reduce locally the heat flux through the core mantle boundary (CMB) and thereby weaken core convection and affect the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary size, amplitude and position affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric and axisymmetric (EAA) zonal flows. For pure hydrodynamic models the EAA symmetry scales almost linearly with its respective amplitude and size, whereas self-consistent dynamo simulations typically either suppress or drastically enhance EAA depending mainly on the length scale of the heat flux anomaly. Our results suggest, that the horizontal extent of the anomaly should be on the order of the outer core radius to significantly affect flow and field symmetries. As an implication to Mars, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heteroge- neously magnetise the crust to the present-day level of north-south asymmetry.

  17. Grain-Scale Simulations of Hot-Spot Initiation for Shocked TATB

    SciTech Connect

    Najjar, F; Howard, W; Fried, L

    2009-07-31

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating high-temperature regions leading to ignition. A computational study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing the thermohydrodynamics arbitrary-Lagrange-Eulerian code ALE3D. This initial study includes non-reactive dynamics to isolate the thermal and hydrodynamical effects. Two-dimensional high-resolution large-scale meso-scale simulations have been undertaken. We study an axisymmetric configuration for pore radii ranging from 0.5 to 2{micro}m, with initial shock pressures in the range from 3 to 11 GPa. A Mie-Gruneisen Equation of State (EOS) model is used for TATB, and includes a constant yield strength and shear modulus; while the air in the pore invokes a Livermore Equation of State (LEOS) model. The parameter space is systematically studied by considering various shock strengths, pore diameters and material properties. We find that thermal diffusion from the collapsed pores has an important effect in generating high-temperature hot spots in the TATB.

  18. Identifying geographic hot spots of reassortment in a multipartite plant virus.

    PubMed

    Savory, Fiona R; Varma, Varun; Ramakrishnan, Uma

    2014-05-01

    Reassortment between different species or strains plays a key role in the evolution of multipartite plant viruses and can have important epidemiological implications. Identifying geographic locations where reassortant lineages are most likely to emerge could be a valuable strategy for informing disease management and surveillance efforts. We developed a predictive framework to identify potential geographic hot spots of reassortment based upon spatially explicit analyses of genome constellation diversity. To demonstrate the utility of this approach, we examined spatial variation in the potential for reassortment among Cardamom bushy dwarf virus (CBDV; Nanoviridae, Babuvirus) isolates in Northeast India. Using sequence data corresponding to six discrete genome components for 163 CBDV isolates, a quantitative measure of genome constellation diversity was obtained for locations across the sampling region. Two key areas were identified where viruses with highly distinct genome constellations cocirculate, and these locations were designated as possible geographic hot spots of reassortment, where novel reassortant lineages could emerge. Our study demonstrates that the potential for reassortment can be spatially dependent in multipartite plant viruses and highlights the use of evolutionary analyses to identify locations which could be actively managed to facilitate the prevention of outbreaks involving novel reassortant strains. PMID:24944570

  19. Cortical hot spots and labyrinths: why cortical neuromodulation for episodic migraine with aura should be personalized

    PubMed Central

    Dahlem, Markus A.; Schmidt, Bernd; Bojak, Ingo; Boie, Sebastian; Kneer, Frederike; Hadjikhani, Nouchine; Kurths, Jürgen

    2015-01-01

    Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation. PMID:25798103

  20. Deep-sea hydrothermal vents: potential hot spots for natural products discovery?

    PubMed

    Thornburg, Christopher C; Zabriskie, T Mark; McPhail, Kerry L

    2010-03-26

    Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots. PMID:20099811

  1. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS.

    SciTech Connect

    Chen, A.; DePrince III, A. E.; Demortiere, A.; Joshi-Imre, A.; Shevchenko, E. V.; Gray, S.K.; Welp, U.; Vlasko-Vlasov, V. K.

    2011-08-22

    The cost-effective self-assembly of 80 nm Au nanoparticles (NPs) into large-domain, hexagonally close-packed arrays for high-sensitivity and high-fidelity surface-enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite-difference time-domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum-gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3-5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of {approx}10{sup 4} is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of {approx}10{sup 8} is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.

  2. Global apparent polar wander paths in a hot spot reference frame

    SciTech Connect

    Bocharova, N.Yu.; Scotese, C.R. . Dept. of Geology); Van Der Voo, R. . Dept. Geological Sciences)

    1992-01-01

    Paleomagnetic data provide the basis for plate tectonic reconstructions, especially for the Early mesozoic and Paleozoic. Nevertheless, paleomagnetic pole positions indicate only paleolatitudes of lithospheric blocks without any longitudinal control. If paleomagnetic data, however, are combined with plate motions predicted by the trajectory of hot spot tracks, it is possible to constrain both the latitudinal and longitudinal motion. Global apparent polar wander (GAPW) paths were calculated back to Devonian time (400 Ma), using the paleomagnetic pole summary of Van der Voo (1992) and the global plate tectonic model of the PALEOMAP Project. Only poles with reliability factor not less than 3 were used in the analysis. Individual paleomagnetic poles were rotated in the reference frames of North America, Europe, Siberia, Africa, india, and Australia, and mean poles were calculated at 10 million year intervals. The best results (alpha 95 = 5[degree]) were obtained for Early and Middle Permian. Good results (alpha 95 = 7[degree]) were obtained Early tertiary, Cretaceous, triassic and the Late Carboniferous. Global mean poles for the Early Carboniferous and Early and Middle Jurassic grouped poorly (alpha 95 = 9[degree]). The worst results were obtained for the Devonian (alpha 95 = 11[degree]) and Late Jurassic (alpha 95 = 15[degree]). As a final step, in order to combine the paleomagnetic information with the motions predicted from the hot spot trajectories, stage poles were calculated that fit both the improved GAWP paths and the trajectory of intraplate volcanic chains.

  3. The radio sources CTA 21 and OF+247: The hot spots of radio galaxies

    NASA Astrophysics Data System (ADS)

    Artyukh, V. S.; Tyul'bashev, S. A.; Chernikov, P. A.

    2013-06-01

    The physical conditions in the radio sources CTA 21 and OF+247 are studied assuming that the low-frequency spectral turnovers are due to synchrotron self-absorption. The physical parameters of the radio sources are estimated using a technique based on a nonuniform synchrotron source model. It is shown that the magnetic-field distributions in the dominant compact components of these radio sources are strongly inhomogeneous. The magnetic fields at the center of the sources are B ˜ 10-1 G, and the fields are two to three orders of magnitude weaker at the periphery. The magnetic field averaged over the compact component is B ˜ 10-3 G, and the density of relativistic electrons is n e ˜ 10-3 cm-3. Assuming that there is equipartition of the energies of the magnetic field and relativistic particles, averaged over the source, < E H > = < E e > ˜ 10-7-10-6 erg cm-3. The energy density of the magnetic field exceeds that of the relativistic electrons at the centers of the radio sources. The derived parameters of CTA 21 and OF+247 are close to those of the hot spots in the radio galaxy Cygnus A. On this basis, it is suggested that CTA 21 and OF+247 are radio galaxies at an early stage of their evolution, when the hot spots (dominant compact radio components) have appeared, and the radio lobes (weak extended components) are still being formed.

  4. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  5. Confining hot spots in 3C 196 - Implications for QSO-companion galaxies

    NASA Technical Reports Server (NTRS)

    Brown, R. L.; Broderick, J. J.; Mitchell, K. J.

    1986-01-01

    VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions.

  6. Confining hot spots in 3C 196 - implications for QSO-companion galaxies

    SciTech Connect

    Brown, R.L.; Broderick, J.J.; Mitchell, K.J.

    1986-07-01

    VLBI observations of the extremely compact hot spot in the northern radio lobe of the QSO 3C 196 reveal the angular size of its smallest substructure to be 0.065 arcsec x 0.045 arcsec or about 300 pc at the redshift distance. The morphology of the hot spot and its orientation relative to the more diffuse radio emission suggest that it is formed by an oblique interaction between the nuclear QSO jet and circum-QSO cloud. The inferred density in this cloud, together with its apparent size, imply that the cloud contains a galactic mass, greater than a billion solar masses of gas. The effect of the jet will be to hasten gravitational collapse of the cloud. If many QSOs such as 3C 196 are formed or found in gas-rich environments, the QSO radio phase may commonly stimulate the metamorphosis of circum-QSO gas to QSO-companion galaxies or it may play a significant part in catalyzing star formation in existing companions. 30 references.

  7. Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots

    PubMed Central

    Borys, Nicholas J.; Shafran, Eyal; Lupton, John M.

    2013-01-01

    The plasmonic resonances of nanostructured silver films produce exceptional surface enhancement, enabling reproducible single-molecule Raman scattering measurements. Supporting a broad range of plasmonic resonances, these disordered systems are difficult to investigate with conventional far-field spectroscopy. Here, we use nonlinear excitation spectroscopy and polarization anisotropy of single optical hot spots of supercontinuum generation to track the transformation of these plasmon modes as the mesoscopic structure is tuned from a film of discrete nanoparticles to a semicontinuous layer of aggregated particles. We demonstrate how hot spot formation from diffractively-coupled nanoparticles with broad spectral resonances transitions to that from spatially delocalized surface plasmon excitations, exhibiting multiple excitation resonances as narrow as 13 meV. Photon-localization microscopy reveals that the delocalized plasmons are capable of focusing multiple narrow radiation bands over a broadband range to the same spatial region within 6 nm, underscoring the existence of novel plasmonic nanoresonators embedded in highly disordered systems. PMID:23807624

  8. The Amsterdam-St. Paul Plateau: A complex hot spot/DUPAL-flavored MORB interaction

    NASA Astrophysics Data System (ADS)

    Janin, M.; HéMond, C.; Maia, M.; Nonnotte, P.; Ponzevera, E.; Johnson, K. T. M.

    2012-09-01

    The Amsterdam-St Paul (ASP) oceanic plateau results from the interaction between the ASP hot spot and the Southeast Indian ridge. A volcanic chain, named the Chain of the Dead Poets (CDP), lies to its northward tip and is related to the hot spot intraplate activity. The ASP plateau and CDP study reveals that ASP plume composition is inherited from oceanic crust and pelagic sediments recycled in the mantle through a 1.5 Ga subduction process. The ASP plateau lavas have a composition (major and trace elements and Sr-Nd-Pb-Hf isotopes) reflecting the interaction between ASP plume and the Indian MORB mantle, including some clear DUPAL input. The Indian upper mantle below ASP plateau is heterogeneous and made of a depleted mantle with lower continental crust (LCC) fragments probably delaminated during the Gondwana break-up. The lower continental crust is one of the possible reservoirs for the DUPAL anomaly origin that our data support. The range of magnitude of each end-member required in ASP plateau samples is (1) 45% to 75% of ASP plume and (2) 25% to 55% of Indian DM within 0% to a maximum of 6% of LCC layers included within. The three end-members involved (plume, upper mantle and lower continental crust) and their mixing in different proportions enhances the geochemical variability in the plateau lavas. Consequently, the apparent composition homogeneity of Amsterdam Island, an aerial summit of the plateau, may result from the presence of intermediate magmatic chambers into the plateau structure.

  9. Effects of Long- and Intermediate-Wavelength Nonuniformities on Hot-Spot Energetics of Hydrodynamic Equivalent Targets

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Woo, K. M.; Christopherson, A. R.; Shvarts, D.

    2015-11-01

    The impact of intermediate- and low-mode nonuniformities on the performance of inertial confinement fusion (ICF) implosions is investigated by a detailed study of hot-spot energetics. It is found that low- (1 ~ 2) and intermediate-mode (1 >= 10) asymmetries affect the hot-spot hydrodynamics in very different ways. It is observed that for low-mode asymmetries, the fusion yield decreases because of a significant reduction in hot-spot pressure while the neutron-averaged hot-spot volume remains comparable to that of unperturbed (clean) simulations. On the other hand, implosions with moderate-amplitude, intermediate-wavelength modes, which are amplified by the Rayleigh-Taylor instability (RTI), exhibit a fusion-yield degradation primarily caused by a reduction in the burn volume without significant degradation of the pressure. For very large amplitudes, the intermediate modes show a ``secondary piston effect,'' where the converging RTI spikes compress a much smaller volume, allowing for a secondary conversion of the shell's kinetic energy to internal energy at a central region. Understanding the effects of nonuniformities on the hot-spot energetics provides valuable insight in determining the causes of performance degradation in current ICF experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  10. Experimental estimation of the hot spot size in Nb-based Josephson tunnel junctions using Abrikosov vortices

    SciTech Connect

    Cristiano, R.; Frunzio, L.; Pagano, S.; Palmieri, V.G.; Lisitskii, M.P.

    1997-11-01

    We report on a new experimental approach to the size estimation of the hot spot induced by ionizing particles in a Josephson tunnel junction. Here, in contrast to the case of a superconducting strip, it is possible to investigate the hot spot dynamics in absence of effects due to the heating induced by the bias current. The reported experiment is based on the motion of Abrikosov vortices, trapped in the thin films constituting the junction electrodes, under 5.6 MeV {alpha}-particle irradiation. The fast time evolution of a hot spot, combined with the presence of Abrikosov vortices, produces a change of the static magnetic field in the junction area and thus a change of the critical current value, I{sub c}. Measurements of I{sub c} during the {alpha}-particle irradiation and in presence of trapped Abrikosov vortices allow to determine the rate of appearance of those I{sub c} changes. The behavior of the average appearance rate as function of the Abrikosov vortices density provides a direct determination of the maximum hot spot area. The experiment is performed on a high quality Nb/Al{endash}AlO{sub x}/Nb junction of circular geometry and with {open_quotes}small{close_quotes} dimensions with respect to the Josephson penetration depth. A value of 4.7{plus_minus}1.2{mu}m{sup 2} is found for the maximum hot spot area. {copyright} {ital 1997 American Institute of Physics.}

  11. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering

    PubMed Central

    Bendl, Jaroslav; Stourac, Jan; Sebestova, Eva; Vavra, Ondrej; Musil, Milos; Brezovsky, Jan; Damborsky, Jiri

    2016-01-01

    HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins’ stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard. PMID:27174934

  12. HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering.

    PubMed

    Bendl, Jaroslav; Stourac, Jan; Sebestova, Eva; Vavra, Ondrej; Musil, Milos; Brezovsky, Jan; Damborsky, Jiri

    2016-07-01

    HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins' stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard. PMID:27174934

  13. KFC2: a knowledge-based hot spot prediction method based on interface solvation, atomic density, and plasticity features.

    PubMed

    Zhu, Xiaolei; Mitchell, Julie C

    2011-09-01

    Hot spots constitute a small fraction of protein-protein interface residues, yet they account for a large fraction of the binding affinity. Based on our previous method (KFC), we present two new methods (KFC2a and KFC2b) that outperform other methods at hot spot prediction. A number of improvements were made in developing these new methods. First, we created a training data set that contained a similar number of hot spot and non-hot spot residues. In addition, we generated 47 different features, and different numbers of features were used to train the models to avoid over-fitting. Finally, two feature combinations were selected: One (used in KFC2a) is composed of eight features that are mainly related to solvent accessible surface area and local plasticity; the other (KFC2b) is composed of seven features, only two of which are identical to those used in KFC2a. The two models were built using support vector machines (SVM). The two KFC2 models were then tested on a mixed independent test set, and compared with other methods such as Robetta, FOLDEF, HotPoint, MINERVA, and KFC. KFC2a showed the highest predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.85); however, the false positive rate was somewhat higher than for other models. KFC2b showed the best predictive accuracy for hot spot residues (True Positive Rate: TPR = 0.62) among all methods other than KFC2a, and the False Positive Rate (FPR = 0.15) was comparable with other highly predictive methods. PMID:21735484

  14. Liquid Metal Embrittlement in Resistance Spot Welding and Hot Tensile Tests of Surface-refined TWIP Steels

    NASA Astrophysics Data System (ADS)

    Barthelmie, J.; Schram, A.; Wesling, V.

    2016-03-01

    Automotive industry strives to reduce vehicle weight and therefore fuel consumption and carbon dioxide emissions. Especially in the auto body, material light weight construction is practiced, but the occupant safety must be ensured. These requirements demand high-strength steels with good forming and crash characteristics. Such an approach is the use of high- manganese-content TWIP steels, which achieve strengths of around 1,000 MPa and fracture strains of more than 60%. Welding surface-refined TWIP steels reduces their elongation at break and produces cracks due to the contact with liquid metal and the subsequent liquid metal embrittlement (LME). The results of resistance spot welds of mixed joints of high-manganese- content steel in combination with micro-alloyed ferritic steel and hot tensile tests are presented. The influence of different welding parameters on the sensitivity to liquid metal embrittlement is investigated by means of spot welding. In a high temperature tensile testing machine, the influence of different parameters is determined regardless of the welding process. Defined strains just below or above the yield point, and at 25% of elongation at break, show the correlation between the applied strain and liquid metal crack initiation. Due to the possibility to carry out tensile tests on a wide range of temperatures, dependencies of different temperatures of the zinc coating to the steel can be identified. Furthermore, the attack time of the zinc on the base material is investigated by defined heating periods.

  15. The Cause of the Hot Spot in Vegetation Canopies and Soils: Shadow-Hiding Versus Coherent Backscatter

    NASA Technical Reports Server (NTRS)

    Hapke, Bruce; DiMucci, Dominick; Nelson, Robert; Smythe, William

    1996-01-01

    Two different mechanisms, shadow-hiding and coherent backscatter, can cause a hot spot, or opposition effect, in the bidirectional reflectance of vegetation and soils. Because the two mechanisms sample different properties, it is important to know which one is primarily responsible in a given medium. This question can be answered by measuring the bidirectional reflectance in circularly polarized light. If the results of the limited experiments reported here can be extrapolated to a wider range of materials, it appears that the primary cause of the hot spot in most vegetation canopies and in moist, clumpy soils is shadow-hiding. However, in vegetation with large numbers of wavelength-sized structures, such as mosses, and in dry, fine-grained soils, the hot spot is dominated by coherent backscatter.

  16. PredHS: a web server for predicting protein-protein interaction hot spots by using structural neighborhood properties.

    PubMed

    Deng, Lei; Zhang, Qiangfeng Cliff; Chen, Zhigang; Meng, Yang; Guan, Jihong; Zhou, Shuigeng

    2014-07-01

    Identifying specific hot spot residues that contribute significantly to the affinity and specificity of protein interactions is a problem of the utmost importance. We present an interactive web server, PredHS, which is based on an effective structure-based hot spot prediction method. The PredHS prediction method integrates many novel structural and energetic features with two types of structural neighborhoods (Euclidian and Voronoi), and combines random forest and sequential backward elimination algorithms to select an optimal subset of features. PredHS achieved the highest performance identifying hot spots compared with other state-of-the-art methods, as benchmarked by using an independent experimentally verified dataset. The input to PredHS is protein structures in the PDB format with at least two chains that form interfaces. Users can visualize their predictions in an interactive 3D viewer and download the results as text files. PredHS is available at http://www.predhs.org. PMID:24852252

  17. A reactive burn model for shock initiation in a PBX: scaling and separability based on the hot spot concept

    SciTech Connect

    Show, Milton S; Menikoff, Ralph

    2010-01-01

    In the formulation of a reactive burn model for shock initiation, we endeavor to incorporate a number of effects based on the underlying physical concept of hot spot ignition followed by the growth of reaction due to diverging deflagration fronts. The passage of a shock front sets the initial condition for reaction, leading to a fraction of the hot spots that completely burn while others will quench. The form of the rate model is chosen to incorporate approximations based on the physical picture. In particular, the approximations imply scaling relations that are then used to mathematically separate various contributions. That is, the model is modular and refinements can be applied separately without changing the other contributions. For example, the effect of initial temperature, porosity, etc. predominantly enter the characterization of the non-quenching hot spot distribution. A large collection of velocity gauge data is shown to be well represented by the model with a very small number of parameters.

  18. Physical and chemical nature of sensitization centers left from hot spots caused in triaminotrinitrobenzene by shock or impact

    SciTech Connect

    Sharma, J.; Forbes, J.W.; Coffey, C.S.; Liddiard, T.P.

    1987-09-10

    Samples of triaminotrinitrobenzene (TATB), a well-known explosive, were taken to the brink of ignition by either underwater shock or impact and were investigated for the generation of hot spots. SEM was used for detecting, locating, and measuring the size of the hot spot remnants. These were found to be tiny ragged holes in the explosive with a fine deposit of debris near them. By use of XPS, a specially surface-sensitive technique, it was found that the debris consisted of furoxan and furazan derivatives of TATB produced from its decomposition. The furoxans are far more sensitive than TATB and constitute sensitization centers where reaction an easily restart during handling of the explosive. The hot spot sites were of micron size for the impacted samples and an order of magnitude smaller for the underwater-shocked samples.

  19. Deep structure under Yellowstone National Park U.S.A.: A continental "hot spot"

    USGS Publications Warehouse

    Iyer, H.M.

    1979-01-01

    In order to understand the origin of long-lived loci of volcanism (sometimes called "hot spots") and their possible role in global tectonic processes, it is essential to know their deep structure. Even though some work has been done on the crustal, upper-mantle, and deep-mantle structure under some of these "hot spots", the picture is far from clear. In an attempt to study the structure under the Yellowstone National Park U.S.A., which is considered to be such a "hot spot", we recorded teleseisms using 26 telemetered seismic stations and three groups of portable stations. The network was operated within a 150 km radius centered on the Yellowstone caldera, the major, Quaternary volcanic feature of the Yellowstone region. Teleseismic delays of about 1.5 sec are found inside the caldera, and the delays remain high over a 100 km wide area around the caldera. The spatial distribution and magnitude of the delays indicate the presence of a large body of low-velocity material with horizontal dimensions corresponding approximately to the caldera size (40 km ?? 80 km) near the surface and extending to a depth of 200-250 km under the caldera. Using ray-tracing and inversion techniques, it is estimated that the compressional velocity inside the anomalous body is lower than in the surrounding rock by about 15% in the upper crust and by 5% in the lower crust and upper mantle. It is postulated that the body is partly composed of molten rock with a high degree of partial melting at shallow depths and is responsible for the observed Yellowstone volcanism. The large size of the partially molten body, taken together with its location at the head of a 350 km zone of volcanic propagation along the axis of the Snake River Plain, indicates that the volcanism associated with Yellowstone has its origin below the lithosphere and is relatively stationary with respect to plate motion. Using our techniques, we are unable to detect any measurable velocity contrast in the mantle beneath the low

  20. Ion-microprobe dating of zircon from quartz-graphite veins at the Bristol, New Hampshire, metamorphic hot spot

    SciTech Connect

    Zeitler, P.K. ); Barreiro, B.; Chamberlain, C.P. ); Rumble, D. III )

    1990-07-01

    Detrital zircons entrained in hydrothermal quartz-graphite-rutile veins found near the Bristol, New Hampshire, metamorphic hot spot are overgrown by thin rims. Ion-microprobe analyses of these rims date their growth at 408 {plus minus} 6 Ma. These measurements quantitatively confirm textural evidence that the graphite veins were emplaced during peak metamorphism associated with the Acadian orogeny, and they provide a direct positive test of the hypothesis, based on petrological and stable-isotope evidence, that the hydrothermal systems responsible for the quartz-graphite veins were also responsible for the hot-spot metamorphism.

  1. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: A virtual modeling experiment

    NASA Astrophysics Data System (ADS)

    Frei, S.; Knorr, K. H.; Peiffer, S.; Fleckenstein, J. H.

    2012-12-01

    Wetlands provide important ecohydrological services by regulating fluxes of nutrients and pollutants to receiving waters, which can in turn mitigate adverse effects on water quality. Turnover of redox-sensitive solutes in wetlands has been shown to take place in distinct spatial and temporal patterns, commonly referred to as hot spots and hot moments. Despite the importance of such patterns for solute fluxes the mechanistic understanding of their formation is still weak and their existence is often explained by variations in soil properties and diffusive transport only. Here we show that surface micro-topography in wetlands can cause the formation of biogeochemical hot spots solely by the advective redistribution of infiltrating water as a result of complex subsurface flow patterns. Surface and subsurface flows are simulated for an idealized section of a riparian wetland using a fully integrated numerical code for coupled surface-subsurface systems. Biogeochemical processes and transport along advective subsurface flow paths are simulated kinetically using the biogeochemical code PHREEQC. Distinct patterns of biogeochemical activity (expressed as reaction rates) develop in response to micro-topography induced subsurface flow patterns. Simulated vertical pore water profiles for various redox-sensitive species resemble profiles observed in the field. This mechanistic explanation of hot spot formation complements the more static explanations that relate hot spots solely to spatial variability in soil characteristics and can account for spatial as well as temporal variability of biogeochemical activity, which is needed to assess future changes in the biogeochemical turnover of wetland systems.

  2. Are low temperature habitats hot spots of microbial evolution driven by viruses?

    PubMed

    Anesio, Alexandre M; Bellas, Christopher M

    2011-02-01

    There is an increasing body of evidence to show that viruses are important drivers of microbial evolution and that they can store a great deal of the Earth's microbial diversity in their genomes. Examination of microbial diversity in polar regions has revealed a higher than expected diversity of viruses, bacteria and eukaryotic microbes. Further, the few available studies in polar regions reveal that viral control of microbial mortality is important in these habitats. In this opinion article, we argue that strong relationships between viruses and their hosts in a range of polar habitats could be key in explaining why polar regions are in fact hot spots of microbial diversity and evolution. Further, we argue that periodic glaciations, and particularly the Neoproterozoic low-latitude glaciation, known as 'snowball Earth', could have been periods of intense diversification in aquatic refuges. PMID:21130655

  3. Current hot spot in the spin-valley blockade in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Széchenyi, Gábor; Pályi, András

    2013-12-01

    We present a theoretical study of the spin-valley blockade transport effect in a double quantum dot defined in a straight carbon nanotube. We find that intervalley scattering due to short-range impurities completely lifts the spin-valley blockade and induces a large leakage current in a certain confined range of the external magnetic field vector. This current hot spot emerges due to different effective magnetic fields acting on the spin-valley qubit states of the two quantum dots. Our predictions are compared to a recent measurement [F. Pei , Nat. Nanotech.1748-338710.1038/nnano.2012.160 7, 630 (2012)]. We discuss the implications for blockade-based schemes for qubit initialization/readout and motion sensing of nanotube-based mechanical resonators.

  4. Appearance of hot spots due to deposits in the JET MKII-HD outer divertor

    NASA Astrophysics Data System (ADS)

    van Rooij, G. J.; Brezinsek, S.; Coad, J. P.; Fundamenski, W.; Philipps, V.; Arnoux, G.; Stamp, M. F.; EFDA contributors, JET

    2009-06-01

    Deposited layers in the JET MKII-HD outer divertor have been investigated on the basis of their transient heating. The Planck radiation in the 400-600 nm wavelength range and IR thermography data were analyzed to correlate the appearance of the layers with plasma conditions. Both methods yielded significantly different surface temperatures: typically >2000 K for the visible light spectroscopy and down to 800 K for the thermography. This is explained by the existence of high temperature emission areas as small as 1-2 mm 2. Analysis of the reoccurrence of hot spots in the outer divertor throughout the 2006 campaigns indicated that the formation is determined by the combination of the outer strike point location and the plasma stored energy. The observations did not indicate any changes in thermal properties nor cyclic formation and disintegration of the layers, i.e. it was stable and so-called hard layers.

  5. Magnetic quadrupoles lens for hot spot proton imaging in inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Chen, J.; Zhu, B.; Zhang, B.; Zhang, T. K.; Tan, F.; Hong, W.; Zhang, B. H.; Wang, X. Q.

    2016-08-01

    Imaging of DD-produced protons from an implosion hot spot region by miniature permanent magnetic quadrupole (PMQ) lens is proposed. Corresponding object-image relation is deduced and an adjust method for this imaging system is discussed. Ideal point-to-point imaging demands a monoenergetic proton source; nevertheless, we proved that the blur of image induced by proton energy spread is a second order effect therefore controllable. A proton imaging system based on miniature PMQ lens is designed for 2.8 MeV DD-protons and the adjust method in case of proton energy shift is proposed. The spatial resolution of this system is better than 10 μm when proton yield is above 109 and the spectra width is within 10%.

  6. Experimental Active-Site Mapping by Fragments: Hot Spots Remote from the Catalytic Center of Endothiapepsin.

    PubMed

    Radeva, Nedyalka; Krimmer, Stefan G; Stieler, Martin; Fu, Kan; Wang, Xiaojie; Ehrmann, Frederik R; Metz, Alexander; Huschmann, Franziska U; Weiss, Manfred S; Mueller, Uwe; Schiebel, Johannes; Heine, Andreas; Klebe, Gerhard

    2016-08-25

    Successful optimization of a given lead scaffold requires thorough binding-site mapping of the target protein particular in regions remote from the catalytic center where high conservation across protein families is given. We screened a 361-entry fragment library for binding to the aspartic protease endothiapepsin by crystallography. This enzyme is frequently used as a surrogate for the design of renin and β-secretase inhibitors. A hit rate of 20% was achieved, providing 71 crystal structures. Here, we discuss 45 binding poses of fragments accommodated in pockets remote from the catalytic dyad. Three major hot spots are discovered in remote binding areas: Asp81, Asp119, and Phe291. Compared to the dyad binders, bulkier fragments occupy these regions. Many of the discovered fragments suggest an optimization concept on how to grow them into larger ligands occupying adjacent binding pockets that will possibly endow them with the desired selectivity for one given member of a protein family. PMID:27463859

  7. The Role of Water Occlusion for the Definition of a Protein Binding Hot-Spot.

    PubMed

    Moreira, Irina S

    2015-01-01

    Biological systems rely on the establishment of interactions between biomolecules, which take place in the aqueous environment of the cell. It was already demonstrated that a small set of residues at the interface, Hot-Spots(HS), contributes significantly to the binding free energy. However, these energetic determinants of affinity and specificity are still not fully understood. Moreover, the contribution of water to their HS character is also poorly characterized. In this review, we have focused on the structural data available that support the occlusion of HS from solvent, and therefore the "O-ring theory"not only on protein-protein but also on protein-DNA complexes. We also emphasized the use of Solvent Accessible Surface Area (SASA) features in a variety of machine-learning approaches that aim to detect binding HS. PMID:25986686

  8. Mapping the energy distribution of SERRS hot spots from anti-Stokes to Stokes intensity ratios.

    PubMed

    dos Santos, Diego P; Temperini, Marcia L A; Brolo, Alexandre G

    2012-08-15

    The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped. PMID:22804227

  9. Whole-genome sequencing in autism identifies hot spots for de novo germline mutation.

    PubMed

    Michaelson, Jacob J; Shi, Yujian; Gujral, Madhusudan; Zheng, Hancheng; Malhotra, Dheeraj; Jin, Xin; Jian, Minghan; Liu, Guangming; Greer, Douglas; Bhandari, Abhishek; Wu, Wenting; Corominas, Roser; Peoples, Aine; Koren, Amnon; Gore, Athurva; Kang, Shuli; Lin, Guan Ning; Estabillo, Jasper; Gadomski, Therese; Singh, Balvindar; Zhang, Kun; Akshoomoff, Natacha; Corsello, Christina; McCarroll, Steven; Iakoucheva, Lilia M; Li, Yingrui; Wang, Jun; Sebat, Jonathan

    2012-12-21

    De novo mutation plays an important role in autism spectrum disorders (ASDs). Notably, pathogenic copy number variants (CNVs) are characterized by high mutation rates. We hypothesize that hypermutability is a property of ASD genes and may also include nucleotide-substitution hot spots. We investigated global patterns of germline mutation by whole-genome sequencing of monozygotic twins concordant for ASD and their parents. Mutation rates varied widely throughout the genome (by 100-fold) and could be explained by intrinsic characteristics of DNA sequence and chromatin structure. Dense clusters of mutations within individual genomes were attributable to compound mutation or gene conversion. Hypermutability was a characteristic of genes involved in ASD and other diseases. In addition, genes impacted by mutations in this study were associated with ASD in independent exome-sequencing data sets. Our findings suggest that regional hypermutation is a significant factor shaping patterns of genetic variation and disease risk in humans. PMID:23260136

  10. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  11. Iridium-bearing sublimates at a hot-spot volcano (Piton de la Fournaise, Indian Ocean)

    SciTech Connect

    Toutain, J.P. ); Meyer, G.

    1989-12-01

    Sublimates and incrustations derived upon the cooling of volcanic gases have been collected on various sites (Piton de la Fournaise, Poas, Momotombo, Etna, Ardoukoba and Erta-Ale). They have been analyzed for Ir and other volatile elements (Se, As, Cu, Au, Ag, Pb, Tl) by means of instrumental neutron activation analysis (INAA) and proton induced X-Ray emission (PIXE). Among the investigated volcanoes, only Piton de la Fournaise is found to release detectable amounts of iridium. Ir in Piton de la Fournaise sublimates is associated with F-minerals. This confirms its gaseous transport as a volatile fluoride compound. Iridium seems to be preferentialy released by hot-spot type volcanoes, and its detection in Piton de la Fournaise sublimates provides a positive argument in favor of a volcanic hypothesis to explain the KTB events.

  12. Anatomy of a Venusian hot spot - Geology, gravity, and mantle dynamics of Eistla Regio

    NASA Technical Reports Server (NTRS)

    Grimm, Robert E.; Phillips, Roger J.

    1992-01-01

    Results of a study of the western and central portions of the Venusian hot spot Eistla Regio are presented. Magellan radar images were mapped to elucidate the general geologic history of the region. Radial fracture systems both on the rises and volcanoes indicate that uplift and associated faulting accompanied volcanic construction. Prominent fracture zones strike WNW to NW, parallel to the long axis of the highlands. The largest of these, Guor Linea, exhibits a progressive deformation history that may include minor clockwise rotation in addition to bulk NNE-SSW extension. Pioneer Venus line-of-sight accelerations were inverted for vertical gravity which, when combined with topography, were used to solve for mass anomalies on the crust-mantle boundary and in the upper levels of the mantle convective system.

  13. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons.

    PubMed

    King, S D; Ritsema, J

    2000-11-10

    Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere. PMID:11073447

  14. Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.

    PubMed

    Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz

    2002-10-01

    Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II). PMID:12364799

  15. Analytical criterion for shock ignition of fusion reaction in hot spot

    NASA Astrophysics Data System (ADS)

    Ribeyre, X.; Tikhonchuk, V. T.; Breil, J.; Lafon, M.; Vallet, A.; Le Bel, E.

    2013-11-01

    Shock ignition of DT capsules involves two major steps. First, the fuel is assembled by means of a low velocity conventional implosion. At stagnation, the central core has a temperature lower than the one needed for ignition. Then a second, strong spherical converging shock, launched from a high intensity laser spike, arrives to the core. This shock crosses the core, rebounds at the target center and increases the central pressure to the ignition conditions. In this work we consider this latter phase by using the Guderley self-similar solution for converging flows. Our model accounts for the fusion reaction energy deposition, thermal and radiation losses thus describing the basic physics of hot spot ignition. The ignition criterion derived from the analytical model is successfully compared with full scale hydrodynamic simulations.

  16. Recent Trident Single Hot Spot Experiments: Evidence for kinetic effects, and observation of LDI cascade

    NASA Astrophysics Data System (ADS)

    Montgomery, D. S.

    2001-10-01

    Single hot spot experiments offer several unique opportunities for developing a quantitative understanding of laser-plasma instabilities. These include the ability to perform direct numerical simulations of the experiment due to the finite interaction volume, isolation of instabilities due to the nearly ideal laser intensity distribution, and observation of fine structure due to the very homogeneous plasma conditions. Recent experiments have been performed in the single hot spot regime^1 using the Trident laser, and have focused on the following issues. First, the intensity scaling of stimulated Raman scattering (SRS) for classically large damping regimes (kλ_D=0.35) was examined, and compared to classical SRS theory. SRS onset was observed at intensities much lower than expected (2 x 10^15 W/cm^2), from which non-classical damping is inferred. Second, scattering from a plasma wave was observed whose frequency and phase velocity are between an ion acoustic wave and an electron plasma wave^2. The presence of this wave cannot be explained by linear Landau theory, and it is shown to be consistent with a BGK-like mode due to electron trapping^3. These waves have been observed in past laser-plasma experiments, but were previously misinterpreted^4,5. Finally, Thomson scattering was used to probe plasma waves driven by SRS, and structure was observed in the scattered spectra consistent with multiple steps of the Langmuir decay instability. 1. D.S. Montgomery et al., Phys. Rev. Lett. 84, 678 (2000). 2. D.S. Montgomery et al., to appear in Phys. Rev. Lett. (2001). 3. J.P. Holloway and J.J. Dorning, Phys. Lett. 138, 279 (1989). 4. D.S. Montgomery et al., Phys. Plasmas 3, 1728 (1996). 5. J.A. Cobble et al., Phys. Plasmas 7, 323 (2000). Work performed under the auspices of the U.S. D.O.E. by LANL under contract no. W-7405-ENG-36

  17. Monolithic nanoporous gold disks with large surface area and high-density plasmonic hot-spots

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zeng, Jianbo; Arnob, Md Masud Parvez; Santos, Greggy M.; Shih, Wei-Chuan

    2015-03-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to enhancement of the local electric field by light-excited surface plasmons, the collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3- dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks (NPGDs) not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interaction as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of NPGD can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. The coupling between external and internal nanoarchitecture provides a potential design dimension for plasmonic engineering. The synergy of large specific surface area, high-density hot spots, and tunable plasmonics would profoundly impact applications where plasmonic nanoparticles and non-plasmonic mesoporous nanoparticles are currently employed, e.g., in in-vitro and in-vivo biosensing, molecular imaging, photothermal contrast agents, and molecular cargos.

  18. Is the Juan Fernandez Ridge (nazca Plate) a Deep-Mantle Hot SPOT Trail?

    NASA Astrophysics Data System (ADS)

    Lara, L. E.; Selles, D.; Díaz, A.; Piña-Gauthier, M.

    2011-12-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. Geochronological data is still scarce to prove this is the case, and other hypothesis should be taken into account. There are a few constrains, like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages in Robinson Crusoe yield ca. 1-3 Ma, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. New geological mapping also shows a sharp unconformity between the older, strongly altered sequences and more recent, post-erosional volcanic piles, where only the vent facies have disappeared. A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. Fondecyt grant 110966 is acknowledged for financial support.

  19. Causes of hot-spot wetland loss in the Mississippi delta plain

    USGS Publications Warehouse

    Morton, R.A.; Tiling, G.; Ferina, N.F.

    2003-01-01

    Field surveys and sediment cores were used to estimate marsh erosion and land subsidence at Madison Bay, a well-known wetland loss hot spot in coastal Louisiana. Former marshes of Madison Bay are under about 1 m of water. Nearly two-thirds of the permanent flooding was caused by rapid subsidence in the late 1960s, whereas the other third was caused by subsequent erosion. Subsidence rates near Madison Bay since the 1960s (???20 mm/yr) are an order of magnitude greater than deltaic subsidence rates averaged for the past 400-4000 yr (???2 mm/yr). The rapid acceleration and unexpected decline in wetland losses in the Mississippi delta plain are difficult to explain on the basis of most physical and biogeochemical processes. There are, however, close temporal and spatial correlations among regional wetland loss, high subsidence rates, and large-volume fluid production from nearby hydrocarbon fields. The decreased rates of wetland loss since the 1970s may be related to decreased rates of subsidence caused by significantly decreased rates of subsurface fluid withdrawal. Annual fluid production from the Lapeyrouse, Lirette, and Bay Baptiste fields that encompass Madison Bay accelerated in the 1960s, peaked about 1970, and then declined abruptly. Large decreases in pore pressure in the Lapeyrouse field have likely altered subsurface stresses and reactivated a major fault that coincides with the wetland loss hot spot. Therefore, wetland losses at Madison Bay can be closely linked to rapid subsidence and possible fault reactivation induced by long-term, large-volume hydrocarbon production. ?? 2003. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  20. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  1. Probing the Hawaiian Hot Spot With New Broadband Ocean Bottom Instruments

    NASA Astrophysics Data System (ADS)

    Laske, Gabi; Collins, John A.; Wolfe, Cecily J.; Solomon, Sean C.; Detrick, Robert S.; Orcutt, John A.; Bercovici, David; Hauri, Erik H.

    2009-10-01

    The Hawaiian hot spot is regarded as the textbook example of the product of a deep-rooted mantle plume [Wilson, 1963; Morgan, 1971]. Its isolated location, far from any plate boundary, should provide an opportunity to test most basic hypotheses on the nature of plume-plate interaction and related magmatism [e.g., Ribe and Christensen, 1999]. Yet the lack of crucial geophysical data has sustained a debate about whether Hawaii's volcanism is plume-related or is instead the consequence of more shallow processes, such as the progressive fracturing of the plate in response to extensional stresses [Turcotte and Oxburgh, 1973]. In the plume model for Hawaii's volcanism, hot material is expected to ascend near vertically within the more viscous surrounding mantle before ponding and spreading laterally beneath the rigid lithosphere. Mantle convection in general, and the fast moving Pacific plate in particular, shear and tilt the rising plume. The plume top is dragged downstream by the plate, and this dragged material may give rise to an elongated bathymetric swell [Davies, 1988; Olson, 1990; Sleep, 1990; Phipps Morgan et al., 1995]. However, identifying the dominant cause of the swell remains elusive, and proposed mechanisms include thermal rejuvenation, dynamic support, compositional buoyancy, and mechanical erosion (see Li et al. [2004] for a summary). There is also considerable debate about the continuity of the plume within the mantle, how discrete islands are formed, and how a deep-rooted plume interacts with the mantle transition zone [e.g., van Keken and Gable, 1995].

  2. Nanopatterning and Hot Spot Modeling of YBCO Ultrathin Film Constrictions for THz Mixers

    NASA Astrophysics Data System (ADS)

    Ladret, Romain G.; Degardin, Annick F.; Kreisler, Alain J.

    2013-06-01

    High-TC hot electron bolometers (HEB) are promising THz mixers due to their expected wide bandwidth, large mixing gain, and low intrinsic noise. To achieve this goal, 0.6-μm-size constrictions were patterned on YBaCuO-based, 10-40-nm-thick films grown on (100) MgO substrates, which as previously reported, exhibited good DC superconducting properties. In this paper, we have simulated the DC and mixer characteristics of YBaCuO HEBs with a hot spot model usually dedicated to low-TC devices. For a 100 nm × 100 nm × 10 nm constriction, the expected double sideband noise temperature TN is 2000 K for 5 μW local oscillator (LO) power (G = -13.5 dB conversion gain). For a larger (but more realistic according to YBaCuO aging effects) 600 nm × 1000 nm × 35 nm constriction, TN = 1300 K at 200 μW LO power (G = -12 dB). This approach is expected to allow optimizing the operation of the HEB constriction coupled to a THz planar antenna.

  3. Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA.

    PubMed

    Regan, S P; Goncharov, V N; Igumenshchev, I V; Sangster, T C; Betti, R; Bose, A; Boehly, T R; Bonino, M J; Campbell, E M; Cao, D; Collins, T J B; Craxton, R S; Davis, A K; Delettrez, J A; Edgell, D H; Epstein, R; Forrest, C J; Frenje, J A; Froula, D H; Gatu Johnson, M; Glebov, V Yu; Harding, D R; Hohenberger, M; Hu, S X; Jacobs-Perkins, D; Janezic, R; Karasik, M; Keck, R L; Kelly, J H; Kessler, T J; Knauer, J P; Kosc, T Z; Loucks, S J; Marozas, J A; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Myatt, J F; Obenschain, S P; Petrasso, R D; Radha, P B; Rice, B; Rosenberg, M J; Schmitt, A J; Schmitt, M J; Seka, W; Shmayda, W T; Shoup, M J; Shvydky, A; Skupsky, S; Solodov, A A; Stoeckl, C; Theobald, W; Ulreich, J; Wittman, M D; Woo, K M; Yaakobi, B; Zuegel, J D

    2016-07-01

    A record fuel hot-spot pressure P_{hs}=56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance. PMID:27447511

  4. PILOT-SCALE INCINERATION OF PCB-CONTAMINATED SEDIMENTS FROM THE HOT SPOT OF THE NEW BEDFORD HARBOR SUPERFUND SITE

    EPA Science Inventory

    Testing was performed at the EPA's Incineration Research Facility (IRF) to determine the incinerability of contaminated marine sediment from the Hot Spot in the New Bedford Harbor Superfund Site. he contaminants at this site were PCBs, at concentration up to >200,000 mg/kb, and m...

  5. PILOT-SCALE INCINERATION OF PCB-CONTAMINATED SEDIMENTS FROM THE NEW BEDFORD HARBOR HOT SPOT SUPERFUND SITE

    EPA Science Inventory

    Testing was performed at the EPA's Incineration Research Facility (IRF) to determine the incinerability of contaminated marine sediment from the Hot Spot in the New Bedford Harbor Superfund Site. he contaminants at this site were PCBs, at concentrations up to >200,000 mg/kg, and ...

  6. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo.

    PubMed

    Tchurikov, Nickolai A; Yudkin, Dmitry V; Gorbacheva, Maria A; Kulemzina, Anastasia I; Grischenko, Irina V; Fedoseeva, Daria M; Sosin, Dmitri V; Kravatsky, Yuri V; Kretova, Olga V

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics(1,2). There are nine hot spots of DSBs located in human rDNA units(3-6). Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  7. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Hot spots of DNA double-strand breaks in human rDNA units are produced in vivo

    PubMed Central

    Tchurikov, Nickolai A.; Yudkin, Dmitry V.; Gorbacheva, Maria A.; Kulemzina, Anastasia I.; Grischenko, Irina V.; Fedoseeva, Daria M.; Sosin, Dmitri V.; Kravatsky, Yuri V.; Kretova, Olga V.

    2016-01-01

    Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer genomics1,2. There are nine hot spots of DSBs located in human rDNA units3–6. Here we describe that the profiles of these hot spots coincide with the profiles of γ-H2AX or H2AX, strongly suggesting a high level of in vivo breakage inside rDNA genes. The data were confirmed by microscopic observation of the largest γ-H2AX foci inside nucleoli in interphase chromosomes. In metaphase chromosomes, we observed that only some portion of rDNA clusters possess γ-H2AX foci and that all γ-H2AX foci co-localize with UBF-1 binding sites, which strongly suggests that only active rDNA units possess the hot spots of DSBs. Both γ-H2AX and UBF-1 are epigenetically inherited and thus indicate the rDNA units that were active in the previous cell cycle. These results have implications for diverse fields, including epigenetics and cancer genomics. PMID:27160357

  9. Effect of width, amplitude, and position of a core mantle boundary hot spot on core convection and dynamo action

    NASA Astrophysics Data System (ADS)

    Dietrich, Wieland; Wicht, Johannes; Hori, Kumiko

    2015-12-01

    Within the fluid iron cores of terrestrial planets, convection and the resulting generation of global magnetic fields are controlled by the overlying rocky mantle. The thermal structure of the lower mantle determines how much heat is allowed to escape the core. Hot lower mantle features, such as the thermal footprint of a giant impact or hot mantle plumes, will locally reduce the heat flux through the core mantle boundary (CMB), thereby weakening core convection and affecting the magnetic field generation process. In this study, we numerically investigate how parametrised hot spots at the CMB with arbitrary sizes, amplitudes, and positions affect core convection and hence the dynamo. The effect of the heat flux anomaly is quantified by changes in global flow symmetry properties, such as the emergence of equatorial antisymmetric, axisymmetric (EAA) zonal flows. For purely hydrodynamic models, the EAA symmetry scales almost linearly with the CMB amplitude and size, whereas self-consistent dynamo simulations typically reveal either suppressed or drastically enhanced EAA symmetry depending mainly on the horizontal extent of the heat flux anomaly. Our results suggest that the length scale of the anomaly should be on the same order as the outer core radius to significantly affect flow and field symmetries. As an implication to Mars and in the range of our model, the study concludes that an ancient core field modified by a CMB heat flux anomaly is not able to heterogeneously magnetise the crust to the present-day level of north-south asymmetry on Mars. The resulting magnetic fields obtained using our model either are not asymmetric enough or, when they are asymmetric enough, show rapid polarity inversions, which are incompatible with thick unidirectional magnetisation.

  10. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery.

    PubMed

    Hall, David R; Ngan, Chi Ho; Zerbe, Brandon S; Kozakov, Dima; Vajda, Sandor

    2012-01-23

    Fragment-based drug design (FBDD) starts with finding fragment-sized compounds that are highly ligand efficient and can serve as a core moiety for developing high-affinity leads. Although the core-bound structure of a protein facilitates the construction of leads, effective design is far from straightforward. We show that protein mapping, a computational method developed to find binding hot spots and implemented as the FTMap server, provides information that complements the fragment screening results and can drive the evolution of core fragments into larger leads with a minimal loss or, in some cases, even a gain in ligand efficiency. The method places small molecular probes, the size of organic solvents, on a dense grid around the protein and identifies the hot spots as consensus clusters formed by clusters of several probes. The hot spots are ranked based on the number of probe clusters, which predicts the binding propensity of the subsites and hence their importance for drug design. Accordingly, with a single exception the main hot spot identified by FTMap binds the core compound found by fragment screening. The most useful information is provided by the neighboring secondary hot spots, indicating the regions where the core can be extended to increase its affinity. To quantify this information, we calculate the density of probes from mapping, which describes the binding propensity at each point, and show that the change in the correlation between a ligand position and the probe density upon extending or repositioning the core moiety predicts the expected change in ligand efficiency. PMID:22145575

  11. Hot spot formation of chloroform in forest soils caused pollution of groundwater

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels; Hunkeler, Daniel

    2015-04-01

    High concentration of chloroform in groundwater is usually attributed to anthropogenic input, but we have found that the groundwater beneath some pristine areas contained chloroform from 1 - 10 µg/L. Groundwater containing chloroform that exceeds 1 µg/L could not be used for drinking water according to Danish regulations. The strict demands on groundwater quality may have to be taken into account when decisions are made regarding the change of land use in order to protect major recharge areas from pollution with nitrate and pesticides resulting from high-yield agriculture production. The terrestrial environment and especially hot spots in forest soils seem to be important contributors to apparent pollution of groundwater with chloroform. We performed a field study to investigate concentration and fluxes of chloroform to the groundwater from in four coniferous forests in order to increase knowledge on the hot spot formation and fate of natural chloroform. We investigated four stations over a period of several years in order to measure the net-formation of chloroform. Field measurements soil air concentrations of chloroform were monitored in five soil profiles down to the groundwater table. Meteorological data were recorded at all stations In the hotspots up to 120 ppbv was found in soil air under the spruce forest, to be compared to an ambient atmospheric concentration of 0.02 ppbv. The concentration of chloroform in soil air showed seasonal variation with a maximum in August-September. The chloroform concentration decreased with depth in all profiles during the summer half-year to about 20 % of concentration in the production layer. However, the concentration is still high enough to give an equilibrium concentration in the upper groundwater of 1-10 µg/L. Stable carbon isotopic analyses of chloroform from the uppermost groundwater in different parts of the forests and from soil water showed values from δ13C = -13 ‰ to -27 ‰, corresponding to the ratio in

  12. Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh.

    PubMed

    Begum, Bilkis A; Biswas, Swapan K; Kim, Eugene; Hopke, Philip K; Khaliquzzaman, Mohammed

    2005-02-01

    Samples of fine and coarse fractions of airborne particulate matter were collected at the Farm Gate area in Dhaka from July 2001 to March 2002. Dhaka is a hot spot area with very high pollutant concentrations because of the proximity of major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0- to 2.2-microm and 2.2- to 10-microm sizes. The samples were analyzed for elemental concentrations by particle-induced X-ray excitation (PIXE) and for black carbon by reflectivity methods, respectively. The data were analyzed by positive matrix factorization (PMF) to identify the possible sources of atmospheric aerosols in this area. Six sources were found for both the coarse and fine PM fractions. The data sets were also analyzed by an expanded model to explore additional sources. Seven and six factors were obtained for coarse and fine PM fractions, respectively, in these analyses. The identified sources are motor vehicle, soil dust, emissions from construction activities, sea salt, biomass burning/brick kiln, resuspended/fugitive Pb, and two-stroke engines. From the expanded modeling, approximately 50% of the total PM2.2 mass can be attributed to motor vehicles, including two-stroke engine vehicle in this hot spot in Dhaka, whereas the PMF modeling indicates that 45% of the total PM2.2 mass is from motor vehicles. The PMF2 and expanded models could resolve approximately 4% and 3% of the total PM2.2 mass as resuspended/fugitive Pb, respectively. Although, Pb has been eliminated from gasoline in Bangladesh since July 1999, there still may be substantial amounts of accumulated lead in the dust near roadways as well as fugitive Pb emissions from battery reclaimation and other industries. Soil dust is the largest component of the coarse particle fraction (PM2.2-10) accounting for approximately 71% of the total PM2.2-10 mass in the expanded model, whereas from the PMF modeling, the dust (undifferentiated) contribution is approximately 49

  13. Spin-up and hot spots can drive mass out of a binary

    NASA Astrophysics Data System (ADS)

    van Rensbergen, W.; De Greve, J. P.; De Loore, C.; Mennekens, N.

    2008-09-01

    Context: The observed distribution of orbital periods of Algols with a B-type primary at birth agrees fairly well with the prediction from conservative theory. Conservative evolution fails, however, to produce the rather large fraction of Algols observed with a high mass-ratio, especially: q in [0.4-0.6]. Aims: In order to keep Algols for a longer time with a higher mass-ratio without disturbing the distribution of orbital periods too much, interacting binaries have to lose a significant fraction of their total mass without losing much angular momentum before or during Algolism. We propose a mechanism that meets both requirements. Methods: In the case of direct impact the gainer spins up: sometimes up to critical velocity. Equatorial material on the gainer is therefore less bound. A similar statement applies to material located at the edge of an accretion disc. The incoming material moreover creates a hot spot in the area of impact. The sum of the rotational and radiative energy of hot spot material depends on the mass-transfer-rate. The sum of both energies overcomes the binding energy at a well defined critical value of the mass-transfer-rate. As long as the transfer-rate is smaller than this critical value RLOF happens conservatively. But as soon as the critical rate is exceeded the gainer will acquire no more than the critical value and RLOF runs into a liberal era. Results: Low-mass binaries never achieve mass-transfer-rates larger than the critical value. Intermediate-mass binaries evolve mainly conservatively but mass will be blown away from the system during the short era of rapid mass-transfer soon after the onset of RLOF. We have calculated the evolution of binaries with a 9 M⊙ primary and a 5.4 M⊙ companion over a range of initial orbital periods, covering case-A RLOF. Mass-loss from the system is achieved during direct impact only. Conclusions: We find systems that show Algolism for more than ten million years. RLOF occurs almost always

  14. Demonstration of 55 +/- 7-Gbar Hot-Spot Pressure in Direct-Drive Layered DT Cryogenic Implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Regan, S. P.

    2015-11-01

    Direct-drive ignition target designs for the National Ignition Facility (NIF) require hot-spot pressures in excess of 100 Gbar. Only one-third of the required pressure was inferred in earlier experimental campaigns conducted on the 60-beam, 30-kJ, 351-nm OMEGA laser with direct-drive implosions of layered DT cryogenic targets. Laser and target improvements were implemented on OMEGA to increase the stagnation pressure, including a set of phase plates to increase the laser irradiation uniformity on target and a purified fuel with isotope composition reaching a 50:50 DT ratio. Diagnostic improvements were made for a neutron burnwidth measurement with a 40-ps impulse response and a 16-channel Kirkpatrick-Baez microscope to measure gated (30-ps) x-ray images of the core near peak compression with 6- μm resolution. The inferred volume-averaged, peak pressure in the current campaign almost doubled to 55 +/- 7 Gbar with a neutron yield approaching 5 ×1013 . Further target performance improvements to reach hydrodynamic equivalence to ignition on OMEGA require mitigation of cross-beam energy transfer (CBET), which reduces the laser coupling. A proposed technique to reduce CBET by driving the spherical target with overlapping laser beams having individual focal spots smaller than the outside diameter of the target was investigated. The diameter of the target was discretely varied from 800 to 1000 μm, while the laser focal spot size was kept constant at 820 μm. The larger targets driven with up to 30 kJ of laser energy used dynamic bandwidth reduction, where the smoothing by spectral dispersion (SSD) is only applied to the pickets. The smaller targets driven with 26 kJ of laser energy had SSD on the entire pulse. This talk will summarize the results of this CBET mitigation campaign and describe a path forward to achieve ignition hydro-equivalence on OMEGA. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under

  15. Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

    PubMed Central

    2014-01-01

    Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACV ASA , to predict the change of binding free energy after alanine mutations. βACV ASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACV ASA methods (similar to βACV ASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACV ASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation. PMID:24568581

  16. Computer simulations of laser hot spots and implosion symmetry kiniform phase plate experiments on Nova

    SciTech Connect

    Peterson, R. R.; Lindman, E. L.; Delamater, N. D.; Magelssen, G. R.

    2000-05-01

    LASNEX computer code simulations have been performed for radiation symmetry experiments on the Nova laser with vacuum and gas-filled hohlraum targets [R. L. Kauffman et al., Phys. Plasmas 5, 1927 (1998)]. In previous experiments with unsmoothed laser beams, the symmetry was substantially shifted by deflection of the laser beams. In these experiments, laser beams have been smoothed with Kiniform Phase Plates in an attempt to remove deflection of the beams. The experiments have shown that this smoothing significantly improves the agreement with LASNEX calculations of implosion symmetry. The images of laser produced hot spots on the inside of the hohlraum case have been found to differ from LASNEX calculations, suggesting that some beam deflection or self-focusing may still be present or that emission from interpenetrating plasmas is an important component of the images. The measured neutron yields are in good agreement with simulations for vacuum hohlraums but are far different for gas-filled hohlraums. (c) 2000 American Institute of Physics.

  17. Spin-fermion model with overlapping hot spots and charge modulation in cuprates

    NASA Astrophysics Data System (ADS)

    Volkov, Pavel A.; Efetov, Konstantin B.

    We study particle-hole instabilities in the framework of the spin-fermion model. In contrast to previous studies, we assume that adjacent hot spots can overlap due to a shallow dispersion of the electron spectrum in the antinodal region and take the effects of a remnant Coulomb interaction into account. We demonstrate that at sufficiently small values | ɛ (π , 0) - EF | < Γ , where Γ is a characteristic energy of the fermion-fermion interaction due to the paramagnons, the leading particle-hole instability is a d-form factor Fermi surface deformation rather than the charge modulation along the Brillouin zone diagonals. At lower temperatures, we find that the deformed Fermi surface is further unstable to formation of a d-form factor charge density wave (CDW) with a wave vector along one of the Brillouin zone axes. These findings can explain the robustness of this order in hole-doped cuprates. The approximations made are justified by a small parameter that allows one an Eliashberg-like treatment. Comparison with experiments suggests that in many cuprate compounds the prerequisites for the proposed scenario are indeed fulfilled and the results obtained may explain important features of the charge modulations observed recently.

  18. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic

    NASA Astrophysics Data System (ADS)

    Hawkings, Jon; Wadham, Jemma; Tranter, Martyn; Telling, Jon; Bagshaw, Elizabeth; Beaton, Alexander; Simmons, Sarah-Louise; Chandler, David; Tedstone, Andrew; Nienow, Peter

    2016-02-01

    The contribution of ice sheets to the global biogeochemical cycle of phosphorus is largely unknown, due to the lack of field data. Here we present the first comprehensive study of phosphorus export from two Greenland Ice Sheet glaciers. Our results indicate that the ice sheet is a hot spot of phosphorus export in the Arctic. Soluble reactive phosphorus (SRP) concentrations, up to 0.35 µM, are similar to those observed in Arctic rivers. Yields of SRP are among the highest in the literature, with denudation rates of 17-27 kg P km-2 yr-1. Particulate phases, as with nonglaciated catchments, dominate phosphorus export (>97% of total phosphorus flux). The labile particulate fraction differs between the two glaciers studied, with significantly higher yields found at the larger glacier (57.3 versus 8.3 kg P km-2 yr-1). Total phosphorus yields are an order of magnitude higher than riverine values reported in the literature. We estimate that the ice sheet contributes ~15% of total bioavailable phosphorus input to the Arctic oceans (~11 Gg yr-1) and dominates total phosphorus input (408 Gg yr-1), which is more than 3 times that estimated from Arctic rivers (126 Gg yr-1). We predict that these fluxes will rise with increasing ice sheet freshwater discharge in the future.

  19. Description of spatial patterns of radionuclide deposition by lognormal distribution and hot spots.

    PubMed

    Grubich, Andry; Makarevich, V I; Zhukova, O M

    2013-12-01

    Spatial distributions of activity density (kBq/m(2)) and activity concentration (Bq/kg) are studied on sites with non-cultivated soils. Fitting datasets with lognormal, Weibull and normal distributions with sampling size n ≥ 60 showed that radionuclide deposition ((90)Sr, (137)Cs, (238)Pu, (239+240)Pu, (241)Am) due to Chernobyl fallout no more than in 10% of cases are described by Weibull distribution, and in the rest of the cases--by lognormal distribution. However asymptotics of "righthand tail" of empirical (sample) distribution quite often differs from the right-hand tail asymptotics of lognormal distribution. Thereby lognormal distribution is only an approximate statistical model of radionuclides' spatial pattern. Estimates of site surface area with "hot spots" are considered. Also distributions of (137)Cs and (134)Cs activity concentration on the territory contaminated by Fukushima fallout are reviewed. Characteristics of activity concentration for Fukushima and Chernobyl fallouts are collated. The results obtained make it possible to suggest that in both cases spatial contaminations of soil are described by approximately the same statistical models. PMID:24144832

  20. Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean

    PubMed Central

    Mattes, Timothy E; Nunn, Brook L; Marshall, Katharine T; Proskurowski, Giora; Kelley, Deborah S; Kawka, Orest E; Goodlett, David R; Hansell, Dennis A; Morris, Robert M

    2013-01-01

    Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean. PMID:23842654

  1. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting

    USGS Publications Warehouse

    Waite, G.P.; Schutt, D.L.; Smith, R.B.

    2005-01-01

    Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (??) is nearly perpendicular to plate motion. These stations are ???30 km from stations with ?? parallel to plate motion. The 70?? rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ?? orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ?? oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting. Copyright 2005 by the American Geophysical Union.

  2. Using Activated Transport in Parallel Nanowires for Energy Harvesting and Hot-Spot Cooling

    NASA Astrophysics Data System (ADS)

    Bosisio, Riccardo; Gorini, Cosimo; Fleury, Geneviève; Pichard, Jean-Louis

    2015-05-01

    We study arrays of parallel doped semiconductor nanowires in a temperature range where the electrons propagate through the nanowires by phonon-assisted hops between localized states. By solving the random-resistor-network problem, we compute the thermopower S , the electrical conductance G , and the electronic thermal conductance Ke of the device. We investigate how those quantities depend on the position—which can be tuned with a back gate—of the nanowire impurity band with respect to the equilibrium electrochemical potential. We show that large power factors can be reached near the band edges, when S self-averages to large values while G is small but scales with the number of wires. Calculating the amount of heat exchanged locally between the electrons inside the nanowires and the phonons of the environment, we show that phonons are mainly absorbed near one electrode and emitted near the other when a charge current is driven through the nanowires near their band edges. This phenomenon could be exploited for a field control of the heat exchange between the phonons and the electrons at submicron scales in electronic circuits. It could be also used for cooling hot spots.

  3. Transient hot-spot analysis of the high-flux isotope reactor

    SciTech Connect

    Sofu, T.; Dodds, H.L. ); Cook, D.H. )

    1992-01-01

    Consideration of fuel element failure and the possibility of failure propagation is part of the overall safety approach for the Oak Ridge National Laboratory's High-Flux Isoptope Reactor (FHIR). There is a need to establish a technical basis for understanding the initiators that lead to fuel melting, the phenomena of fuel melting, and its consequences in order to reevaluate core damage criteria and to ensure that the HFIR core is designed to avoid or mitigate such accidents to the greatest extent possible. In this work, a computer model for the transient analysis of the HFIR is developed and applied for the study of hot-spot behavior during rapid HFIR transients. An earlier model that was developed for the analysis of reactivity transients of U-Al-dispersion-fueled research reactors is used as the base model. It includes point reactor kinetics for neutronics, a nonhomogeneous, nonequilibrium representation of the two-phase thermal hydraulics, and one-dimensional, spatially averaged heat conduction through fuel plates. The flow and heat transfer regimes considered are single-phase liquid flow, subcooled boiling, bulk boiling, film boiling, and single-phase vapor flow.

  4. Intermolecular Energy Transfer Dynamics at a Hot-Spot Interface in RDX Crystals.

    PubMed

    Joshi, Kaushik; Losada, Martin; Chaudhuri, Santanu

    2016-02-01

    The phonon mediated vibrational up-pumping mechanisms assume an intact lattice and climbing of a vibrational ladder using strongly correlated multiphonon dynamics under equilibrium or near-equilibrium conditions. Important dynamic processes far from-equilibrium in regions of large temperature gradient after the onset of decomposition reactions in energetic solids are relatively unknown. In this work, we present a classical molecular dynamics (MD) simulation-based study of such processes using a nonreactive and a reactive potential to study a fully reacted and unreacted zone in RDX (1,3,5-trinitro-1,3,5-triazocyclohexane) crystal under nonequilibrium conditions. The energy transfer rate is evaluated as a function of temperature difference between the reacted and unreacted regions, and for different widths and cross-sectional area of unreacted RDX layers. Vibrational up-pumping processes probed using velocity autocorrelation functions indicate that the mechanisms at high-temperature interfaces are quite different from the standard phonon-based models proposed in current literature. In particular, the up-pumping of high-frequency vibrations are seen in the presence of small molecule collisions at the hot-spot interface with strong contributions from bending modes. It also explains some major difference in the order of decomposition of C-N and N-N bonds as seen in recent literature on initiation chemistry. PMID:26741283

  5. Marine Snow and Gels: Hot Spots of Biogeochemical Cycling, Biological Activity, and Sedimentation in the Sea

    NASA Astrophysics Data System (ADS)

    Alldredge, A. L.

    2004-12-01

    Much of the organic carbon sequestered in the deep sea and ocean bottom sediments as relatively rare, large detrital particles generically known as marine snow. Because they are enriched in organic matter, microbes, and nutrients, these large particles also serve as hot spots for biological and chemical process in the water column. Recent evidence reveals that abundant carbohydrate gel particles in the ocean, formed from the dissolved exudates of phytoplankton and bacteria, are intricately involved in the formation of marine snow. These discoveries are changing the way we conceptualize the pelagic zone on small scales. We no longer imagine seawater as a relatively homogeneous fluid in which float a spectrum of dispersed molecules, particles, and organisms, but instead see it as a rich hydrated matrix of transparent organic gels, detritus, and cob-web like surfaces which provide microscale physical, chemical, and biological structure. This talk will focus on the origins, fate, and significance of marine snow and gels in the sea, including their role in carbon cycling, sedimentation and carbon flux , food webs, and chemical and biological transformation.

  6. New Caledonia: A Hot Spot for Valuable Chemodiversity Part 3: Santalales, Caryophyllales, and Asterids.

    PubMed

    Coulerie, Paul; Poullain, Cyril

    2016-04-01

    The flora of New Caledonia encompasses more than 3000 plant species and an endemism of almost 80%. New Caledonia is even considered as one of the 34 'hot spots' for biodiversity. Considering the current global loss of biodiversity and the fact that several drugs and pesticides become obsolete, there is an urgent need to increase sampling and research on new natural products. In this context, here, we reviewed the chemical knowledge available on New Caledonian native flora from economical perspectives. We expect that a better knowledge of the economic potential of plant chemistry will encourage the plantation of native plants for the development of a sustainable economy which will participate in the conservation of biodiversity. This review is divided into three parts, and the third part which is presented here summarizes the scientific literature related to the chemistry of endemic santalales, caryophyllales, and asterids. We show that the high rate of endemism is correlated with the originality of phytochemicals encountered in New Caledonian plants. A total of 176 original natural compounds have been identified from these plants, whereas many species have not been investigated so far. We also discuss the economic potential of plants and molecules with consideration of their medicinal and industrial perspectives. This review finally highlights several groups, such as Sapotaceae, that are unexplored in New Caledonia despite the high chemical interest in them. These plants are considered to have priority in future chemical investigations. PMID:26937845

  7. Hot spot detection and spatio-temporal dynamics of dengue in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Naish, S.; Tong, S.

    2014-11-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. This study explored spatio-temporal distribution and clustering of locally-acquired dengue cases in Queensland State, Australia and identified target areas for effective interventions. A computerised locally-acquired dengue case dataset was collected from Queensland Health for Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Dengue hot spots were detected using SatScan method. Descriptive spatial analysis showed that a total of 2,398 locally-acquired dengue cases were recorded in central and northern regions of tropical Queensland. A seasonal pattern was observed with most of the cases occurring in autumn. Spatial and temporal variation of dengue cases was observed in the geographic areas affected by dengue over time. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in tropical Queensland, Australia. There is a clear evidence for the existence of statistically significant clusters of dengue and these clusters varied over time. These findings enabled us to detect and target dengue clusters suggesting that the use of geospatial information can assist the health authority in planning dengue control activities and it would allow for better design and implementation of dengue management programs.

  8. Saturation mapping of a gene-rich recombination hot spot region in wheat.

    PubMed Central

    Faris, J D; Haen, K M; Gill, B S

    2000-01-01

    Physical mapping of wheat chromosomes has revealed small chromosome segments of high gene density and frequent recombination interspersed with relatively large regions of low gene density and infrequent recombination. We constructed a detailed genetic and physical map of one highly recombinant region on the long arm of chromosome 5B. This distally located region accounts for 4% of the physical size of the long arm and at least 30% of the recombination along the entire chromosome. Multiple crossovers occurred within this region, and the degree of recombination is at least 11-fold greater than the genomic average. Characteristics of the region such as gene order and frequency of recombination appear to be conserved throughout the evolution of the Triticeae. The region is more prone to chromosome breakage by gametocidal gene action than gene-poor regions, and evidence for genomic instability was implied by loss of gene collinearity for six loci among the homeologous regions. These data suggest that a unique level of chromatin organization exists within gene-rich recombination hot spots. The many agronomically important genes in this region should be accessible by positional cloning. PMID:10655233

  9. Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.

    PubMed

    Joshi, Kaushik L; Chaudhuri, Santanu

    2015-07-28

    Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions. PMID:26123323

  10. Molecular Dynamics Simulations of Hot Spots and Detonation on the Roadrunner Supercomputer

    NASA Astrophysics Data System (ADS)

    Mniszewski, Susan; Cawkwell, Marc; Germann, Timothy

    2011-06-01

    The temporal and spatial scales intrinsic to a real detonating explosive are extremely difficult to capture using molecular dynamics (MD) simulations. Nevertheless, MD remains very attractive since it allows for the resolution of dynamic phenomena at the atomic scale. We have studied the effects of spherical voids on the build up to detonation in three dimensions (3D) in a model explosive using the reactive empirical bond order (REBO) potential for the A-B system. This force field is attractive because it has been shown to support a detonation while being simple, analytic, and short-ranged. The transition from 2D to 3D simulations was facilitated by our port of the REBO force field in the parallel MD code SPaSM to LANL's petaflop Roadrunner supercomputer based on previous work by Swaminarayan and Germann [T. C. Germann et al. Concurrency Computat.: Pract. Exper. 21, 2143 (2009)]. We will provide a detailed discussion of the challenges associated with computing interatomic forces on a hybrid Opteron/Cell BE computational architecture. We will compare and contrast our results in 3D from Roadrunner with earlier 2D simulations of hot-spot assisted detonations by Heim, Herring, and co-workers [S. D. Herring et al. Phys. Rev. B, 82, 214108 (2010)].

  11. Engineering the hot spots in squared arrays of gold nanoparticles on a silver film.

    PubMed

    Li, Anran; Srivastava, Sachin K; Abdulhalim, Ibrahim; Li, Shuzhou

    2016-08-25

    Density of nanoparticle (NP) arrays affects the hot spots distribution and strength in NP-metal film (NP-MF) geometry. In-depth understanding of the variation of electromagnetic (EM) field enhancement with NPs density is essential for wide applications of the NP-MF geometry such as surface-enhanced spectroscopies and enhanced efficiency of optoelectronic devices. Here, we show that the field distribution in the NP array on the metal film is greatly enhanced and confined at the NP-NP junctions for very small horizontal gap (g) between neighboring NPs, whereas the fields at the NP-MF junction are extremely small. When gradually increasing g, the field enhancement at the NP-NP junction decreases, along with the gradually enhanced fields at the NP-MF junction. We show that there is an optimal value of horizontal gap (∼75 nm for 80 nm Au NP array on Ag film with 532 nm normal incidence), indicating that the average field enhancement in NP-MF geometry can be optimized by adjusting the horizontal gap. More importantly, it is found that the EM field enhancement is greatly decreased when g fulfills the requirement to couple the 532 nm incident light into SPPs, because of the interference between the LSPR and the SPPs, which leads to a Fano dip at the incident wavelength of 532 nm. PMID:27515538

  12. Hot Spot-Localized Artificial Antibodies for Label-Free Plasmonic Biosensing

    PubMed Central

    Abbas, Abdennour; Tian, Limei; Morrissey, Jeremiah J.; Kharasch, Evan D.; Singamaneni, Srikanth

    2013-01-01

    The development of biomolecular imprinting over the last decade has raised promising perspectives in replacing natural antibodies with artificial antibodies. A significant number of reports have been dedicated to imprinting of organic and inorganic nanostructures, but very few were performed on nanomaterials with a transduction function. Herein we describe a relatively fast and efficient plasmonic hot spot-localized surface imprinting of gold nanorods using reversible template immobilization and siloxane co-polymerization. The technique enables a fine control of the imprinting process at the nanometer scale and provides a nanobiosensor with high selectivity and reusability. Proof of concept is established by the detection of neutrophil gelatinase-associated lipocalin (NGAL), a biomarker for acute kidney injury, using localized surface plasmon resonance spectroscopy. The work represents a valuable step towards plasmonic nanobiosensors with synthetic antibodies for label-free and cost-efficient diagnostic assays. We expect that this novel class of surface imprinted plasmonic nanomaterials will open up new possibilities in advancing biomedical applications of plasmonic nanostructures. PMID:24013481

  13. Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes.

    PubMed

    Ma, Liping; Zhang, Xu-Xiang; Zhao, Fuzheng; Wu, Bing; Cheng, Shupei; Yang, Liuyan

    2013-04-01

    This study investigated the occurrence and abundance of class 1 integrons and related antibiotic resistance genes (ARGs) in a sewage treatment plant (STP) of China. Totally, 189 bacterial strains were isolated from influent, activated sludge and effluent, and 40 isolates contained the integons with a complete structure. The intl1-carrying isolates were found to harbor two types of gene cassettes: dfr17-aadA5 and aadA2, conferring resistances to trimethoprim and streptomycin, which were further confirmed by antimicrobial susceptibility analysis. Many other gene cassettes were carried on integron, including qnrVC1, catB-8-blaoxa-10-aadA1-aac(6'), aadB-aacA29b, aadA2, aac(6')-1b, aadA6 and aadA12, which were detected using DNA cloning. Quantitative real time PCR showed that over 99% of the integrons was eliminated in activated sludge process, but average copy number of integrons in given bacterial cells was increased by 56% in treated sewage. Besides integrons, other mobile gene elements (MGEs) were present in the STP with high abundance. MGEs and the associated ARGs may be wide-spread in STPs, which constitute a potential hot spot for selection of antibiotic resistant bacteria and horizontal transfer of ARGs. PMID:24620610

  14. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces.

    PubMed

    Melo, Rita; Fieldhouse, Robert; Melo, André; Correia, João D G; Cordeiro, Maria Natália D S; Gümüş, Zeynep H; Costa, Joaquim; Bonvin, Alexandre M J J; Moreira, Irina S

    2016-01-01

    Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set. PMID:27472327

  15. DIESEL TRUCK IDLING EMISSIONS - MEASUREMENTS AT A PM2.5 HOT SPOT

    SciTech Connect

    Parks, II, James E; Miller, Terry L.; Storey, John Morse; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    The University of Tennessee and Oak Ridge National Laboratory conducted a 5-month long air monitoring study at the Watt Road interchange on I-40 in Knoxville Tennessee where there are 20,000 heavy-duty trucks per day traveling the interstate. In addition, there are 3 large truck stops at this interchange where as many as 400 trucks idle engines at night. As a result, high levels of PM2.5 were measured near the interchange often exceeding National Ambient Air Quality Standards. This paper presents the results of the air monitoring study illustrating the hourly, day-of-week, and seasonal patterns of PM2.5 resulting from diesel truck emissions on the interstate and at the truck stops. Surprisingly, most of the PM2.5 concentrations occurred during the night when the largest contribution of emissions was from idling trucks rather than trucks on the interstate. A nearby background air monitoring site was used to identify the contribution of regional PM2.5 emissions which also contribute significantly to the concentrations measured at the site. The relative contributions of regional background, local truck idling and trucks on the interstate to local PM2.5 concentrations are presented and discussed in the paper. The results indicate the potential significance of diesel truck idling emissions to the occurrence of hot-spots of high PM2.5 concentrations near large truck stops, ports or border crossings.

  16. Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological 'hot spot' for influenza viruses.

    PubMed

    Krauss, Scott; Stallknecht, David E; Negovetich, Nicholas J; Niles, Lawrence J; Webby, Richard J; Webster, Robert G

    2010-11-22

    Since 1985, avian influenza virus surveillance has been conducted annually from mid-May to early June in charadriiform species from the families Scolopacidae and Laridae (shorebirds and gulls) at Delaware Bay in the northeast United States. The mass migrations of shorebirds, gulls and horseshoe crabs (Limulus polyphemus) coincide at that time, and large numbers of migrating birds pause at Delaware Bay to feed on horseshoe crab eggs deposited at the high-tide line. Influenza viruses are consistently isolated from charadriiform birds at Delaware Bay, at an overall rate approximately 17 times the combined rate of isolation at all other surveillance sites worldwide (490 isolates/9474 samples, 5.2% versus 49 isolates per 15,848 samples, 0.3%, respectively; Proportion test, p < 0.0001). The likelihood of isolating influenza viruses at Delaware Bay is dependent on the presence of ruddy turnstone (Arenaria interpres) at the sampling site (G-test of independence, p < 0.001). The convergence of host factors and environmental factors results in a unique ecological 'hot spot' for influenza viruses in Charadriiformes. PMID:20630885

  17. Detecting hot-spots of bivalve biomass in the south-western Baltic Sea

    NASA Astrophysics Data System (ADS)

    Darr, Alexander; Gogina, Mayya; Zettler, Michael L.

    2014-06-01

    Bivalves are among the most important taxonomic groups in marine benthic communities in nutrient cycling via benthic-pelagic coupling and as food source for higher trophic levels. Additionally, bivalve species combine several autecological features with potential value for assessment and management purposes. Therefore, the demand for quantitative distribution maps of bivalves is high both in research with focus on functional ecology of marine benthos and in policy. In our study, we modelled and mapped the distribution of biomass of soft- and hard-bottom bivalves in the south-western Baltic Sea using Random Forest algorithms. Models were achieved for ten of the most frequent of overall 29 identified species. The distribution of bivalve biomass was mainly influenced by the abiotic parameters salinity, water depths, sediment characteristics and the amount of detritus as a proxy for food availability. Three hot-spots of bivalve biomass dominated by different species were detected: the oxygen-rich deeper parts of the Kiel Bay dominated by Arctica islandica, the shallow areas close to the mouth of the river Oder dominated by Mya arenaria and the hard-substrates around Rügen Island and the shallow Adlergrund dominated by Mytilus spp. The attained maps provide a good basis for further functional and applied analysis.

  18. Thermal windows on the trunk of hauled-out seals: hot spots for thermoregulatory evaporation?

    PubMed

    Mauck, Björn; Bilgmann, Kerstin; Jones, Daryl D; Eysel, Ulf; Dehnhardt, Guido

    2003-05-01

    Seals have adapted to the high heat transfer coefficient in the aquatic environment by effective thermal insulation of the body core. While swimming and diving, excess metabolic heat is supposed to be dissipated mainly over the sparsely insulated body appendages, whereas the location of main heat sinks in hauled-out seals remains unclear. Here, we demonstrate thermal windows on the trunk of harbour seals, harp seals and a grey seal examined under various ambient temperatures using infrared thermography. Thermograms were analysed for location, size and development of thermal windows. Thermal windows were observed in all experimental sessions, shared some common characteristics in all seals and tended to reappear in similar body sites of individual seals. Nevertheless, the observed variations in order and location of appearance, number, size and shape of thermal windows would imply no special anatomical site for this avenue of heat loss. Based on our findings, we suggest that, in hauled-out seals, heat may be transported by blood flow to a small area of the wet body surface where the elevation of temperature facilitates evaporation of water trapped within the seals' pelages due to increased saturation vapour pressure. The comparatively large latent heat necessary for evaporation creates a temporary hot spot for heat dissipation. PMID:12682104

  19. CROI 2016: Hot Spots in HIV Infection and Advances in HIV Prevention.

    PubMed

    Buchbinder, Susan P; Liu, Albert Y

    2016-01-01

    The 2016 Conference on Retroviruses and Opportunistic Infections (CROI) highlighted hot spots in HIV infection. Men who have sex with men (MSM), transgender populations, people who inject drugs, fisherfolk, migrants, adolescents, and older adults are heavily impacted in a number of regions. Stigma contributes to risk behaviors and HIV acquisition across populations. HIV testing is a crucial first step in the HIV care continuum, and several large community-based surveys are underway in Africa to increase HIV testing, linkage to care, and uptake of antiretroviral treatment. Advances in preexposure prophylaxis (PrEP) featured prominently at CROI 2016. Two large efficacy trials of a vaginal ring containing the investigational drug dapivirine demonstrated efficacy and safety in preventing HIV infections in women in Africa. Data on the safety of long-acting injectable PrEP and several investigational PrEP drugs and formulations were also presented. Knowledge and use of PrEP among MSM in the United States appears to be increasing, and high uptake was seen among black MSM when provided as part of a culturally tailored support program. The use of broadly neutralizing antibodies for HIV prevention is a novel and promising approach to be evaluated in efficacy trials. PMID:27398859

  20. Theoretical evaluation of a method for locating gaseous emission hot spots.

    PubMed

    Hashmonay, Ram A

    2008-08-01

    This paper describes and theoretically evaluates a recently developed method that provides a unique methodology for mapping gaseous emissions from non-point pollutant sources. The horizontal radial plume mapping (HRPM) methodology uses an open-path, path-integrated optical remote sensing (PI-ORS) system in a horizontal plane to directly identify emission hot spots. The radial plume mapping methodology has been well developed, evaluated, and demonstrated. In this paper, the theoretical basis of the HRPM method is explained in the context of the method's reliability and robustness to reconstruct spatially resolved plume maps. Calculation of the condition number of the inversion's kernel matrix showed that this method has minimal error magnification (EM) when the beam geometry is optimized. Minimizing the condition number provides a tool for such optimization of the beam geometry because it indicates minimized EM. Using methane concentration data collected from a landfill with a tunable diode laser absorption spectroscopy (TDLAS) system, it is demonstrated that EM is minimal because the averaged plume map of many reconstructed plume maps is very similar to a plume map generated by the averaged concentration data. It is also shown in the analysis of this dataset that the reconstructions of plume maps are unique for the optimized HRPM beam geometry and independent of the actual algorithm applied. PMID:18720659

  1. A Machine Learning Approach for Hot-Spot Detection at Protein-Protein Interfaces

    PubMed Central

    Melo, Rita; Fieldhouse, Robert; Melo, André; Correia, João D. G.; Cordeiro, Maria Natália D. S.; Gümüş, Zeynep H.; Costa, Joaquim; Bonvin, Alexandre M. J. J.; Moreira, Irina S.

    2016-01-01

    Understanding protein-protein interactions is a key challenge in biochemistry. In this work, we describe a more accurate methodology to predict Hot-Spots (HS) in protein-protein interfaces from their native complex structure compared to previous published Machine Learning (ML) techniques. Our model is trained on a large number of complexes and on a significantly larger number of different structural- and evolutionary sequence-based features. In particular, we added interface size, type of interaction between residues at the interface of the complex, number of different types of residues at the interface and the Position-Specific Scoring Matrix (PSSM), for a total of 79 features. We used twenty-seven algorithms from a simple linear-based function to support-vector machine models with different cost functions. The best model was achieved by the use of the conditional inference random forest (c-forest) algorithm with a dataset pre-processed by the normalization of features and with up-sampling of the minor class. The method has an overall accuracy of 0.80, an F1-score of 0.73, a sensitivity of 0.76 and a specificity of 0.82 for the independent test set. PMID:27472327

  2. Volcanic hot spot detection from optical multispectral remote sensing data using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Lombardo, Valerio

    2014-03-01

    This paper describes an application of artificial neural networks for the recognition of volcanic lava flow hot spots using remote sensing data. Satellite remote sensing is a very effective and safe way to monitor volcanic eruptions in order to safeguard the environment and the people affected by such natural hazards. Neural networks are an effective and well-established technique for the classification of satellite images. In addition, once well trained, they prove to be very fast in the application stage. In our study a back propagation neural network was used for the recognition of thermal anomalies affecting hot lava pixels. The network was trained using the three thermal channels of the Advanced Very High Resolution Radiometer (AVHRR) sensor as inputs and the corresponding values of heat flux, estimated using a two thermal component model, as reference outputs. As a case study the volcano Etna (Eastern Sicily, Italy) was chosen, and in particular the effusive eruption which took place during the month of 2006 July. The neural network was trained with a time-series of 15 images (12 nighttime images and 3 daytime images) and validated on three independent data sets of AVHRR images of the same eruption and on two relative to an eruption occurred the following month. While for both nighttime and daytime validation images the neural network identified the image pixels affected by hot lava with a 100 per cent success rate, for the daytime images also adjacent pixels were included, apparently not interested by lava flow. Despite these performance differences under different illumination conditions, the proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or cloudy pixels, whose presence in multispectral images can often undermine the performance of traditional classification algorithms. Future

  3. XMM-Newton observations of the hot spot galaxy NGC 2903

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, D.; Caballero-García, M. D.; Ebrero, J.; Leon, S.

    2010-11-01

    We report on the first deeper X-ray broad-band observation of the hot spot galaxy NGC 2903 obtained with XMM-Newton. X-ray imaging and spectra of the spiral barred galaxy NGC 2903 were obtained from XMM-Newton archival data to study its X-ray population and the conditions of the hot gas in its central region. We investigate the spectral properties of the discrete point-source population and give estimates of their X-ray spectral parameters. By analysing the RGS spectra, we derive temperature and abundances for the hot gas located in its central region. A total of six X-ray point sources (four of them ULX candidates) were detected in the energy range of 0.3-10.0 keV located within the galaxy D25 optical disk. Three of these sources are detected for the first time, and one of them, XMM-NGC2903 X2 with a luminosity of higher than 1039 erg s-1. After fitting three different models, we were able to estimate their luminosities, which are compatible with those of binaries with a compact object in the form of black holes (BHs) rather than neutron stars (NSs). We extracted the combined first-order RGS1 and RGS2 spectra of its central region, which display several emission lines. The spectrum is dominated by a strong O viii Lyα emission line along with Ne x Lyα and several Fe xvii features. The O vii complex is also significantly detected, although only the forbidden and resonance lines could be resolved. Both O vii f and r lines seem to be of similar strength, which is consistent with the presence of the collisionally ionized gas that is typical of starburst galaxies. We fitted the spectrum to a model for a plasma in collisional ionization equilibrium (CIE) and the continuum was modelled with a power law, resulting in a plasma temperature of T = 0.31 ± 0.01 keV and an emission measure EM ≡ nHneV = 6.4-0.4+0.5 × 1061 cm-3. We also estimated abundances that are consistent with solar values.

  4. Hot spot investigations on PV modules -- New concepts for a test standard and consequences for module design with respect to bypass diodes

    SciTech Connect

    Hermann, W.; Wiesner, W.; Vaassen, W.

    1997-12-31

    One of the technical requirements of PV modules for qualification according to the standard IEC 1215 is fulfillment of the pass criteria of the hot spot endurance test. A hot spot situation is existent when a solar cell within a module generates less current than the string current of the module or of the PV generator. This occurs when the cell is totally or partially shaded, damaged, or when cells are electrically mismatched. The shaded cell becomes reverse biased and dissipates power in the form of heat. This article focuses on failures due to cell shading which may occur during operation of a PV system. Whereas in the past publications mainly dealt with the physical process of hot-spots, the numerical simulation of the current-voltage characteristics of PV modules with shaded cells, energy output losses and hot spot susceptibility, this article focuses on the following points: the characterization of commercial silicon cells under reverse biased conditions, the worst case hot-spot conditions for a PV module, a new method for determining the worst case cell within a module for hot-spot testing, and requirements for bypass diode concepts to ensure the hot-spot endurance of modules.

  5. Lithospheric sutures, continental fragments and hot spots revealed by a transportable seismic array experiment in southeast Australia

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Vanacore, E. A.; Pozgay, S.

    2011-12-01

    Beginning in 1998, passive seismic arrays have been progressively deployed throughout southeast Australia in an attempt to image the 3-D seismic structure of the underlying lithosphere at high resolution. To date, over 600 stations have been deployed as part of 14 separate arrays. Station spacing on the mainland is ˜50 km, which reduces to ˜20 km in Tasmania, an island that lies at the southern tip of the continent. The majority of stations use 3-component short period sensors (1 Hz natural frequency), but several of the early arrays use vertical component short period sensors, and a number of 3-component broadband sensors are distributed throughout. In the past, teleseismic traveltime tomography has been separately applied to data from most of the arrays. More recently, the emphasis has been on joint treatment of the data, with ambient noise tomography and teleseismic traveltime tomography being applied to multiple array data. The latest developments involve the use of an irregular grid approach for traveltime tomography which incorporates global ISC traveltimes as well as relative arrival times obtained from each array, thus enabling high resolution recovery of structure where justified by the path coverage. Differential attenuation tomography is also beginning to be applied, which complements the results obtained from the traveltime tomography. To date, a wealth of features have been revealed by 3-D seismic tomography, the most significant being: (1) an easterly dipping velocity transition zone which suggests that the older Delamerian Orogen extends beneath the younger Western Subprovince of the Lachlan Orogen; (2) a distinct region of low velocity in the upper mantle north of Melbourne, which can be associated with recent Quaternary hot-spot volcanism; (3) a gradual east-southeast decrease in velocity towards the coast, which is consistent with lithospheric stretching and thinning near a passive margin; (4) a zone of high velocity north of Adelaide that may

  6. Are There Connections Between Erosional Hot Spots and Alongshore Sediment Transport Along the North Carolina Outer Banks?

    NASA Astrophysics Data System (ADS)

    Ashton, A.; List, J. H.; Murray, A.; Farris, A. S.

    2002-12-01

    Recent, high-definition measurements taken along the northern North Carolina Outer Banks reveal that the shoreline moves in a surprisingly alongshore-heterogeneous way over time scales ranging from storms to decades. SWASH is a shoreline measuring system developed by the USGS that utilizes Global Positioning System measurements to determine the location of the shoreline (List and Farris, Coastal Sediments, 1999). Surveys taken before and after storms, as well as at monthly intervals, have documented zones of accentuated erosion or deposition, or `hot spots'. We classify hot spots into three general categories: 1) Short-term Reversible Hot Spots, consisting of alongshore non-uniform patterns of storm erosion that are erased during post-storm accretion; 2) Medium-term Hotspots, occurring over hundreds of meters and persisting for months while often shifting in the alongshore direction; and 3) Long-term Hotspots, which can be couplets of shoreline erosion and accretion occurring over decadal time scales. Recent research (Ashton, et al., Nature, 2001) has indicated that when waves approach at an angle greater than the one that maximizes alongshore sediment transport (approximately 45 degrees in deep water, which we call `high-angle' waves), any plan view perturbations on a nearly straight coastline will grow. This growth involves erosion in seaward-concave shoreline segments and accretion in convex areas. (Similarly, low-angle waves produce accretion where the shoreline is concave, and vice versa.) Simple numerical simulations using wave distributions weighted towards high angle waves show shoreline features that migrate in the direction of net sediment transport. Hot spots are likely to be influenced by many factors, including variations in shoreface lithology, off-shore bathymetry that concentrates wave energy, the configuration of alongshore bars, and variations in cross-shore sediment transport. However, evidence that hotspots migrate, occur in different locations

  7. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Yu. Glebov, V.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; Kessler, T. J.; Kosc, T. Z.; Loucks, S. J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Michel, D. T.; Myatt, J. F.; Nora, R.; Radha, P. B.; Regan, S. P.; Seka, W.; Shmayda, W. T.; Short, R.W.; Shvydky, A.; Skupsky, S.; Stoeckl, C.; Yaakobi, B.; Frenje, J. A.; Gatu-Johnson, M.; Petrasso, R. D.; Casey, D. T.

    2014-05-01

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≅ 4, an implosion velocity of 3.8 × 10⁷ cm/s, and a laser intensity of ~10¹⁵ W/cm². These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  8. “Rings of saturn-like” nanoarrays with high number density of hot spots for surface-enhanced Raman scattering

    SciTech Connect

    Dai, Zhigao; Liao, Lei; Wu, Wei; Guo, Shishang; Zhao, Xinyue; Li, Wei; Ren, Feng; Jiang, Changzhong E-mail: czjiang@whu.edu.cn; Mei, Fei; Xiao, Xiangheng E-mail: czjiang@whu.edu.cn; Fu, Lei; Wang, Jiao

    2014-07-21

    The Ag nanoparticles (NPs) surrounding triangular nanoarrays (TNAs) with high number density of surface-enhanced Raman scattering (SERS) hot spots (SERS hot spots ring) are prepared by a combination of NPs deposition and subsequent colloid lithography processing. Owing to the SERS hot spots ring, the Ag NPs surrounding TNAs have been proved an excellent candidate for ultrasensitive molecular sensing for their high SERS signal enhancing capacity in experiments and theories. The Ag NPs surrounding TNAs can be readily used for the quick detection of low concentrations of molecules related to food safety; herein, detection of melamine is discussed.

  9. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they

  10. An MD2 Hot-Spot Mimicking Peptide that Suppresses TLR4-Mediated Inflammatory Response In Vitro and In Vivo

    PubMed Central

    Liu, Liping; Ghosh, Nilanjan; Slivka, Peter F.; Fiorini, Zeno; Hutchinson, Mark R.; Watkins, Linda R.

    2012-01-01

    A truncated peptide was shown to retain the structure of the TLR4-binding hot-spot region of MD2, disrupting with the TLR4/MD2 interactions. The peptide not only demonstrated strong binding affinity in the fluorescence polarization assay, but also showed high specificity in macrophage cells. Furthermore, MD2-I was able to suppress neuropathic pain in animal models. PMID:21678541

  11. Imaging challenges in 20nm and 14nm logic nodes: hot spots performance in Metal1 layer

    NASA Astrophysics Data System (ADS)

    Timoshkov, V.; Rio, D.; Liu, H.; Gillijns, W.; Wang, J.; Wong, P.; Van Den Heuvel, D.; Wiaux, V.; Nikolsky, P.; Finders, J.

    2013-10-01

    The 20nm Metal1 layer, based on ARM standard cells, has a 2D design with minimum pitch of 64nm. This 2D design requires a Litho-Etch-Litho-Etch (LELE) double patterning. The whole design is divided in 2 splits: Me1A and Me1B. But solution of splitting conflicts needs stitching at some locations, what requires good Critical Dimension (CD) and overlay control to provide reliable contact between 2 stitched line ends. ASML Immersion NXT tools are aimed at 20 and 14nm logic production nodes. Focus control requirements become tighter, as existing 20nm production logic layouts, based on ARM, have about 50-60nm focus latitude and tight CD Uniformity (CDU) specifications, especially for line ends. IMEC inspected 20nm production Metal1 ARM standard cells with a Negative Tone Development (NTD) process using the Process Window Qualification-like technique experimentally and by Brion Tachyon LMC by simulations. Stronger defects were found thru process variations. A calibrated Tachyon model proved a good overall predictability capability for this process. Selected defects are likely to be transferred to hard mask during etch. Further, CDU inspection was performed for these critical features. Hot spots showed worse CD uniformity than specifications. Intra-field CDU contribution is significant in overall CDU budget, where reticle has major impact due to high MEEF of hot spots. Tip-to-Tip and tip-to-line hot spots have high MEEF and its variation over the field. Best focus variation range was determined by best focus offsets between hot spots and its variation within the field.

  12. Five-way smoking status classification using text hot-spot identification and error-correcting output codes.

    PubMed

    Cohen, Aaron M

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here. PMID:17947623

  13. Controlling dynamic SERS hot spots on a monolayer film of Fe3O4@Au nanoparticles by a magnetic field

    NASA Astrophysics Data System (ADS)

    Guo, Qing-Hua; Zhang, Chen-Jie; Wei, Chao; Xu, Min-Min; Yuan, Ya-Xian; Gu, Ren-Ao; Yao, Jian-Lin

    2016-01-01

    A large surface-enhanced Raman scattering (SERS) effect is critically dependent on the gap distance of adjacent nanostructures, i.e., "hot spots". However, the fabrication of dynamically controllable hot spots still remains a remarkable challenge. In the present study, we employed an external magnetic field to dynamically control the interparticle spacing of a two-dimensional monolayer film of Fe3O4@Au nanoparticles at a hexane/water interface. SERS measurements were performed to monitor the expansion and shrinkage of the nanoparticles gaps, which produced an obvious effect on SERS activities. The balance between the electrostatic repulsive force, surface tension, and magnetic attractive force allowed observation of the magnetic-field-responsive SERS effect. Upon introduction of an external magnetic field, a very weak SERS signal appeared initially, indicating weak enhancement due to a monolayer film with large interparticle spacing. The SERS intensity reached maximum after 5 s and thereafter remained almost unchanged. The results indicated that the observed variations in SERS intensities were fully reversible after removal of the external magnetic field. The reduction of interparticle spacing in response to a magnetic field resulted in about one order of magnitude of SERS enhancement. The combined use of the monolayer film and external magnetic field could be developed as a strategy to construct hot spots both for practical application of SERS and theoretical simulation of enhancement mechanisms.

  14. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins.

    PubMed

    Kozakov, Dima; Grove, Laurie E; Hall, David R; Bohnuud, Tanggis; Mottarella, Scott E; Luo, Lingqi; Xia, Bing; Beglov, Dmitri; Vajda, Sandor

    2015-05-01

    FTMap is a computational mapping server that identifies binding hot spots of macromolecules-i.e., regions of the surface with major contributions to the ligand-binding free energy. To use FTMap, users submit a protein, DNA or RNA structure in PDB (Protein Data Bank) format. FTMap samples billions of positions of small organic molecules used as probes, and it scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots in good agreement with experimental data. FTMap serves as the basis for other servers, namely FTSite, which is used to predict ligand-binding sites, FTFlex, which is used to account for side chain flexibility, FTMap/param, used to parameterize additional probes and FTDyn, for mapping ensembles of protein structures. Applications include determining the druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures and providing input for fragment-based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and it is much faster than the more-recent approaches to protein mapping based on mixed molecular dynamics. By using 16 probe molecules, the FTMap server finds the hot spots of an average-size protein in <1 h. As FTFlex performs mapping for all low-energy conformers of side chains in the binding site, its completion time is proportionately longer. PMID:25855957

  15. Prediction of hot spots in protein interfaces using extreme learning machines with the information of spatial neighbour residues.

    PubMed

    Wang, Lin; Zhang, Wenjuan; Gao, Qiang; Xiong, Congcong

    2014-08-01

    The identification of hot spots, a small subset of protein interfaces that accounts for the majority of binding free energy, is becoming increasingly important for the research on protein-protein interaction and drug design. For each interface residue or target residue to be predicted, the authors extract hybrid features which incorporate a wide range of information of the target residue and its spatial neighbor residues, that is, the nearest contact residue in the other face (mirror-contact residue) and the nearest contact residue in the same face (intra-contact residue). Here, feature selection is performed using random forests to avoid over-fitting. Thereafter, the extreme learning machine is employed to effectively integrate these hybrid features for predicting hot spots in protein interfaces. By the 5-fold cross validation in the training set, their method can achieve accuracy (ACC) of 82.1% and Matthew's correlation coefficient (MCC) of 0.459, and outperforms some alternative machine learning methods in the comparison study. Furthermore, their method achieves ACC of 76.8% and MCC of 0.401 in the independent test set, and is more effective than the major existing hot spot predictors. Their prediction method offers a powerful tool for uncovering candidate residues in the studies of alanine scanning mutagenesis for functional protein interaction sites. PMID:25075532

  16. Hot Spots of Mercury Bioaccumulation in Amphibian Populations From the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Bank, M. S.

    2008-12-01

    Mercury (Hg) contamination in the United States (U.S.) is well-documented and continues to be a public- health issue of great concern. Fish consumption advisories have been issued throughout much of the U.S. due to elevated levels of methylmercury (MeHg). Methylmercury contamination in the developing fetus and in young children is a major public health issue for certain sectors of the global human population. Moreover, identifying MeHg hot spots and the effects of MeHg pollution on environmental health and biodiversity are also considered a high priority for land managers, risk assessors, and conservation scientists. Despite their overall biomass and importance to aquatic and terrestrial ecosystems, Hg and MeHg bioaccumulation dynamics and toxicity in amphibians are not well studied, especially when compared to other vertebrate taxa such as birds, mammals, and fish species. Population declines in amphibians are well documented and likely caused by synergistic and interacting, multiple stressors such as climate change, exposure to toxic pollutants, fungal pathogens, and habitat loss and ecosystem degradation. Protecting quality of terrestrial ecosystems in the U.S. has enormous ramifications for economic and public health of the nation's residents and is fundamental to maintaining the biotic integrity of surface waters, riparian zones, and environmental health of forested landscapes nationwide. Determining Hg concentration levels for terrestrial and surface water ecosystems also has important implications for protecting the nation's fauna. Here I present an overview of the National Amphibian Mercury Program and evaluate variation in MeHg hotspots, Hg bioaccumulation and distribution in freshwater and terrestrial habitats across a broad gradient of physical, climatic, biotic, and ecosystem settings to identify the environmental conditions and ecosystem types that are most sensitive to Hg pollution. The role of geography, disturbance mechanisms, and abiotic and biotic

  17. Spin-fermion model with overlapping hot spots and charge modulation in cuprates

    NASA Astrophysics Data System (ADS)

    Volkov, Pavel A.; Efetov, Konstantin B.

    2016-02-01

    We study particle-hole instabilities in the framework of the spin-fermion (SF) model. In contrast to previous studies, we assume that adjacent hot spots can overlap due to a shallow dispersion of the electron spectrum in the antinodal region. In addition, we take into account effects of a remnant low energy and momentum Coulomb interaction. We demonstrate that at sufficiently small values |ɛ (π ,0 ) - EF|≲Γ , where EF is the Fermi energy, ɛ (π ,0 ) is the energy in the middle of the Brillouin zone edge, and Γ is a characteristic energy of the fermion-fermion interaction due to the antiferromagnetic fluctuations, the leading particle-hole instability is a d -form factor Fermi surface deformation (the Pomeranchuk instability) rather than the charge modulation along the Brillouin zone diagonals predicted within the standard SF model previously. At lower temperatures, we find that the deformed Fermi surface is further unstable to formation of a d -form factor charge density wave (CDW) with a wave vector along the Cu-O-Cu bonds (axes of the Brillouin zone). We show that the remnant Coulomb interaction enhances the d -form-factor symmetry of the CDW. These findings can explain the robustness of this order in the cuprates. The approximations made in the paper are justified by a small parameter that allows one to implement an Eliashberg-like treatment. Comparison with experiments suggests that in many cuprate compounds the prerequisites for the proposed scenario are indeed fulfilled and the results obtained may explain important features of the charge modulations observed recently.

  18. Intersubunit signaling in RecBCD enzyme, a complex protein machine regulated by Chi hot spots

    PubMed Central

    Amundsen, Susan K.; Taylor, Andrew F.; Reddy, Manjula; Smith, Gerald R.

    2007-01-01

    The Escherichia coli RecBCD helicase–nuclease, a paradigm of complex protein machines, initiates homologous genetic recombination and the repair of broken DNA. Starting at a duplex end, RecBCD unwinds DNA with its fast RecD helicase and slower RecB helicase on complementary strands. Upon encountering a Chi hot spot (5′-GCTGGTGG-3′), the enzyme produces a new 3′ single-strand end and loads RecA protein onto it, but how Chi regulates RecBCD is unknown. We report a new class of mutant RecBCD enzymes that cut DNA at novel positions that depend on the DNA substrate length and that are strictly correlated with the RecB:RecD helicase rates. We conclude that in the mutant enzymes when RecD reaches the DNA end, it signals RecB’s nuclease domain to cut the DNA. As predicted by this interpretation, the mutant enzymes cut closer to the entry point on DNA when unwinding is blocked by another RecBCD molecule traveling in the opposite direction. Furthermore, when RecD is slowed by a mutation altering its ATPase site such that RecB reaches the DNA end before RecD does, the length-dependent cuts are abolished. These observations lead us to hypothesize that, in wild-type RecBCD enzyme, Chi is recognized by RecC, which then signals RecD to stop, which in turn signals RecB to cut the DNA and load RecA. We discuss support for this “signal cascade” hypothesis and tests of it. Intersubunit signaling may regulate other complex protein machines. PMID:18079176

  19. Shock Compression Induced Hot Spots in Energetic Material Detected by Thermal Imaging Microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Wei; Dlott, Dana

    2014-06-01

    The chemical reaction of powder energetic material is of great interest in energy and pyrotechnic applications since the high reaction temperature. Under the shock compression, the chemical reaction appears in the sub-microsecond to microsecond time scale, and releases a large amount of energy. Experimental and theoretical research progresses have been made in the past decade, in order to characterize the process under the shock compression. However, the knowledge of energy release and temperature change of this procedure is still limited, due to the difficulties of detecting technologies. We have constructed a thermal imaging microscopy apparatus, and studied the temperature change in energetic materials under the long-wavelength infrared (LWIR) and ultrasound exposure. Additionally, the real-time detection of the localized heating and energy concentration in composite material is capable with our thermal imaging microscopy apparatus. Recently, this apparatus is combined with our laser driven flyer plate system to provide a lab-scale source of shock compression to energetic material. A fast temperature increase of thermite particulars induced by the shock compression is directly observed by thermal imaging with 15-20 μm spatial resolution. Temperature change during the shock loading is evaluated to be at the order of 10^9K/s, through the direct measurement of mid-wavelength infrared (MWIR) emission intensity change. We observe preliminary results to confirm the hot spots appear with shock compression on energetic crystals, and will discuss the data and analysis in further detail. M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Rev. Sci. Instr., 85, 023705 (2014) M.-W. Chen, S. You, K. S. Suslick, and D. D. Dlott, {Appl. Phys. Lett., 104, 061907 (2014)} K. E. Brown, W. L. Shaw, X. Zheng, and D. D. Dlott, {Rev. Sci. Instr., 83, 103901 (2012)}

  20. Seamount morphology in the Bowie and Cobb hot spot trails, Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Chaytor, Jason D.; Keller, Randall A.; Duncan, Robert A.; Dziak, Robert P.

    2007-09-01

    Full-coverage multibeam bathymetric mapping of twelve seamounts in the Gulf of Alaska reveals that they are characterized by flat-topped summits (rarely with summit craters) and by terraced, or step-bench, flanks. These summit plateaus contain relict volcanic features (e.g., flow levees, late-stage cones, and collapse craters) and as such must have been constructed by volcanic processes such as lava ponding above a central vent, rather than by erosion above sea level. The terraced flanks are composed of a sequence of stacked lava deltas and cones, probably tube-fed from a central lava pond, a morphology which is suggestive of long-lived, stable central lava sources and low to moderate eruption rates, indicative of significant time spent above a hot spot outlet. Most of these seamounts have summit plateaus surrounded, and cut into, by amphitheater headwall scarps, and flanks that are scarred by debris chutes, but lack visible debris accumulations at their base. We interpret the lack of blocky debris fields as evidence that the slope failures are mainly small-scale debris flows, rather than large-scale flank collapses. However, we cannot rule out the possibility that large flank-collapse blocks from early in the histories of these seamounts are now hidden beneath the thick glacio-fluvial fan deposits that cover the Gulf of Alaska seafloor. These slope failure features become smoother and longer and increase in size and abundance with increasing age of a seamount, suggesting that slope failure processes continue long after volcanic activity ceases.

  1. Sensitivity "Hot Spots" in the Direct Analysis in Real Time Mass Spectrometry of Nerve Agent Simulants

    NASA Astrophysics Data System (ADS)

    Harris, Glenn A.; Falcone, Caitlin E.; Fernández, Facundo M.

    2012-01-01

    Presented here are findings describing the spatial-dependence of sensitivity and ion suppression effects observed with direct analysis in real time (DART). Continuous liquid infusion of dimethyl methyl phosphonate (DMMP) revealed that ion yield "hot spots" did not always correspond with the highest temperature regions within the ionization space. For instance, at lower concentrations (50 and 100 μM), the highest sensitivities were in the middle of the ionization region at 200 °C where there was a shorter ion transport distance, and the heat available to thermally desorb neutrals was moderate. Conversely, at higher DMMP concentrations (500 μM), the highest ion yield was directly in front of the DART source at 200 °C where it was exposed to the highest temperature for thermal desorption. In matching experiments, differential analyte volatility was observed to play a smaller role in relative ion suppression than differences in proton affinity and the relative sampling positions of analytes. At equimolar concentrations sampled at the same position, suppression was as high as 26× between isoquinoline (proton affinity 952 kJ mol-1, boiling point 242 °C) and p-anisidine (proton affinity 900 kJ mol-1, boiling point 243 °C). This effect was exacerbated when sampling positions of the two analytes differed, reaching levels of relative suppression as high as 4543.0× ± 1406.0. To mitigate this level of relative ion suppression, sampling positions and molar ratios of the analytes were modified to create conditions in which ion suppression was negligible.

  2. Are flood-driven turbidity currents hot spots for priming effect in lakes?

    NASA Astrophysics Data System (ADS)

    Bouffard, Damien; Perga, Marie-Elodie

    2016-06-01

    In deep stratified lakes, such as Lake Geneva, flood-driven turbidity currents are thought to contribute to the replenishment of deep oxygen by significant transport of river waters saturated with oxygen into the hypolimnion. The overarching aim of this study was to test this long-standing hypothesis directly. It combines direct observational data collected during an extreme flooding event that occurred in May 2015 with dark bioassays designed to evaluate the consequences of river-borne inputs for the hypolimnetic respiration. The exceptional precipitation events of May 2015 caused floods with an annual return time for the Rhône River, the dominant tributary of Lake Geneva, and with 50-year return time for the Dranse River, the second-most important tributary. Sediment-loaded river flows generated turbidity currents plunging into the lake hypolimnion. The observed river intrusions contributed to the redistribution of dissolved oxygen, with no net gain, when occurring in the lowermost hypolimnetic layer. In the uppermost hypolimnion above the last deep-mixing event, the intrusions coincided with a net oxygen deficit. Consistent with field observations, dark bioassays showed that 1 to 50 % substitution of riverine organic matter to deep (< 200 m) hypolimnetic water did not affect microbial respiration, while the addition of 1 to 10 % of riverine water to the uppermost hypolimnetic waters resulted in a respiration over-yielding, i.e. excess respiration of both river-borne and lacustrine organic matter. The results of our study conflict with the hypothesis that flood-driven turbidity currents necessarily increase hypolimnetic oxygen stocks in Lake Geneva. In contrast, results show that flood-driven turbidity currents can be potential hot spots for priming effect in lakes.

  3. Structural Determinants of Oligomerization of !1-Pyrroline-5-Carboxylate Dehydrogenase: Identification of a Hexamerization Hot Spot

    PubMed Central

    Luo, Min; Singh, Ranjan K.; Tanner, John J.

    2013-01-01

    The aldehyde dehydrogenase (ALDH) superfamily member !1-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyzes the NAD+-dependent oxidation of glutamate semialdehyde to glutamate, which is the final step of proline catabolism. Defects in P5CDH activity lead to the metabolic disorder type II hyperprolinemia, P5CDH is essential for virulence of the fungal pathogen Cryptococcus neoformans, and bacterial P5CDHs have been targeted for vaccine development. Although the enzyme oligomeric state is known to be important for ALDH function, the oligomerization of P5CDH has remained relatively unstudied. Here we determine the oligomeric states and quaternary structures of four bacterial P5CDHs using a combination of small-angle X-ray scattering, X-ray crystallography, and dynamic light scattering. The P5CDHs from Thermus thermophilus and Deinococcus radiodurans form trimer-of-dimers hexamers in solution, which is the first observation of a hexameric ALDH in solution. In contrast, two Bacillus P5CDHs form dimers in solution but do not assemble into a higher order oligomer. Site-directed mutagenesis was used to identify a hexamerization hot spot that is centered on an arginine residue in the NAD+-binding domain. Mutation of this critical Arg residue to Ala in either of the hexameric enzymes prevents hexamer formation in solution. Paradoxically, the dimeric Arg-to-Ala T. thermophilus mutant enzyme packs as a hexamer in the crystal state, which illustrates the challenges associated with predicting the biological assembly in solution from crystal structures. The observation of different oligomeric states among P5CDHs suggests potential differences in cooperativity and protein-protein interactions. PMID:23747974

  4. Cooling water of power plant creates "hot spots" for tropical fishes and parasites.

    PubMed

    Emde, Sebastian; Kochmann, Judith; Kuhn, Thomas; Dörge, Dorian D; Plath, Martin; Miesen, Friedrich W; Klimpel, Sven

    2016-01-01

    Thermally altered water bodies can function as "hot spots" where non-native species are establishing self-sustaining populations beyond their tropical and subtropical native regions. Whereas many tropical fish species have been found in these habitats, the introduction of non-native parasites often remains undetected. Here, n = 77 convict cichlids (Amatitlania nigrofasciata) were sampled by electro-fishing at two sites from a thermally altered stream in Germany and examined for parasite fauna and feeding ecology. Stomach content analysis suggests an opportunistic feeding strategy of A. nigrofasciata: while plant material dominated the diet at the warm water inlet (∼30 °C), relative contributions of insects, plants, and crustaceans were balanced 3 km downstream (∼27 °C). The most abundant non-native parasite species was the tropical nematode Camallanus cotti with P = 11.90 % and P = 80.00 % at the inlet and further downstream, respectively. Additionally, nematode larvae of Anguillicoloides crassus and one specimen of the subtropical species Bothriocephalus acheilognathi were isolated. A. nigrofasciata was also highly infected with the native parasite Acanthocephalus anguillae, which could be linked to high numbers of the parasite's intermediate host Asellus aquaticus. The aim of this study was to highlight the risk and consequences of the release and establishment of ornamental fish species for the introduction and spread of non-indigenous metazoan parasites using the convict cichlid as a model species. Furthermore, the spread of non-native parasites into adjacent fish communities needs to be addressed in the future as first evidence of Camallanus cotti in native fish species was also found. PMID:26374537

  5. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    SciTech Connect

    Wu, May; Zhang, Zhonglong

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was

  6. Seafloor Tectonic Fault Fabric and the Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot Twins in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Sager, W. W.; Engfer, D.; Thoram, S.; Koppers, A. A. P.; Class, C.

    2015-12-01

    Walvis Ridge (WR) and Rio Grande Rise (RGR) are Cretaceous-Cenozoic large igneous provinces (LIPs) formed by the Tristan-Gough hot spot interacting with the Mid-Atlantic Ridge (MAR). Although hot spot-ridge interaction has long been considered a primary factor controlling WR-RGR morphology, details are fuzzy owing to sparse geophysical data. We examined tectonic fabric revealed in satellite altimetry-derived gravity data to infer details about RGR-WR evolution. Plate tectonic reconstructions indicate that the main RGR plateau and large N-S plateau in the eastern WR erupted at the same point at ~90 Ma. Over the next ~8 Myr, these conjunct LIPs formed a "V" shape with a basin in between. Curved fracture zones within the basin imply the two LIPs formed around a microplate. The prominent rift in the middle of RGR formed nearly perpendicular to the RGR-WR intersection, suggesting an extensional microplate boundary. Hot spot eruptions continued at the MAR, emplacing the eastern WR and two main RGR plateaus until ~60 Ma. During this period, the N-S trending Eastern Rio Grande Rise (ERGR) was erupted along the MAR. Both the ERGR and WR formed bathymetric lineaments parallel to seafloor fault fabric and were likely connected. This resulted in WR seamounts with a "tadpole" shape, the head being small to medium seamounts on the WR track and the tails being low, spreading-fabric-parallel ridges extending up to ~150 km northward. Similar, small seamounts are found in the contemporaneous ERGR. Another critical observation is that the WR-RGR formed at a large crustal discontinuity (~700 km at anomaly C33, ~84 Ma) at one or more fracture zone offsets. By late Cenozoic time (anomaly C5, ~10 Ma), the offset was reduced by half while several new fracture zones formed at the junction between RGR and WR. This implies a connection between ridge reorganization and RGR-WR volcanism that may have resulted from the fracture zones becoming oblique to the spreading direction as Euler poles

  7. A study of the long-term properties of Jovian hot spots from HST and ground-based observations between 1994 and 1998

    NASA Astrophysics Data System (ADS)

    Arregui, E.; Rojas, J. F.; Sanchez-Lavega, A.; Lecacheux, J.; Colas, F.; Miyazaki, I.; Parker, D.

    2000-10-01

    We have used the HST-WFPC2 archived images of Jupiter in the period 1994-1998 together with a large set of CCD ground based images, to study the zonal distribution, long-term motions, lifetimes, interactions and other properties of the hot spot - plume regions at 7 degrees North. Red and near infrared filters covering the wavelength range 650 - 953 nm have been used since they show the hot spots with a high contrast. We have found that the hot spots have velocities ranging from 95 to 112 m/s and are grouped typically in families of three to six members. We do not found any correlation between their velocity and wavenumber. The long-term survey allowed us to identify mergers and splitting of the hot spots areas. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie."

  8. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional "hot spot".

    PubMed

    Kim, M; Sun, Z Y; Byron, O; Campbell, G; Wagner, G; Wang, J; Reinherz, E L

    2001-09-28

    The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors. PMID:11575926

  9. Comparison of the Manual, Semiautomatic, and Automatic Selection and Leveling of Hot Spots in Whole Slide Images for Ki-67 Quantification in Meningiomas

    PubMed Central

    Swiderska, Zaneta; Korzynska, Anna; Markiewicz, Tomasz; Lorent, Malgorzata; Zak, Jakub; Wesolowska, Anna; Roszkowiak, Lukasz; Slodkowska, Janina; Grala, Bartlomiej

    2015-01-01

    Background. This paper presents the study concerning hot-spot selection in the assessment of whole slide images of tissue sections collected from meningioma patients. The samples were immunohistochemically stained to determine the Ki-67/MIB-1 proliferation index used for prognosis and treatment planning. Objective. The observer performance was examined by comparing results of the proposed method of automatic hot-spot selection in whole slide images, results of traditional scoring under a microscope, and results of a pathologist's manual hot-spot selection. Methods. The results of scoring the Ki-67 index using optical scoring under a microscope, software for Ki-67 index quantification based on hot spots selected by two pathologists (resp., once and three times), and the same software but on hot spots selected by proposed automatic methods were compared using Kendall's tau-b statistics. Results. Results show intra- and interobserver agreement. The agreement between Ki-67 scoring with manual and automatic hot-spot selection is high, while agreement between Ki-67 index scoring results in whole slide images and traditional microscopic examination is lower. Conclusions. The agreement observed for the three scoring methods shows that automation of area selection is an effective tool in supporting physicians and in increasing the reliability of Ki-67 scoring in meningioma. PMID:26240787

  10. DIESEL TRUCK IDLING EMISSIONS - MOBILE SOURCE AIR TOXICS MEASURED AT A HOT SPOT

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Miller, Terry L.; Fu, Joshua S.; Hromis, Boris

    2007-01-01

    Mobile Source Air Toxics (MSATs) are of growing concern due to recent studies linking health risk to residency near heavily traveled roadways. Few research studies on MSAT emissions have been performed due to several factors; those factors include: the difficulty of measuring MSATs due to their semi-volatile nature, lower relative concentration in comparison to NOx and other criteria emissions, and fewer regulations on MSATs. In this paper, measurements of MSATs at a "hot spot" of poor air quality created by a high population of idling heavy-duty trucks are presented. The study area was the Watt Road-Interstate-40/75 interchange just west of Knoxville, TN where approximately 20,000 heavy-duty trucks travel along the interstate each day and hundreds of heavy-duty trucks idle at three large truck stops near the interchange. The air quality in the local area surrounding the interchange is affected negatively by the high number of mobile sources as well as geographic and meteorological conditions; the interchange lies in a valley between two ridges which slows long range transport of pollutants especially in winter months when temperature inversion occurs frequently. Ambient air quality was measured during summer and winter months of two separate years at three sites: a site in one of the truckstops, a site near the interstate roadway, and a site on top of one of the surrounding ridges chosen as a background site for comparison. Results of criteria pollutants measured at these sites are reported in a companion paper by Miller et. al.; the results presented here include measurements of MSATs such as formaldehyde, acetaldehyde, acrolein, and other species obtained via collection on di-nitrophenyl hydrazine (DNPH) filters. Also, preliminary measurements of poly-aromatic hydrocarbons are presented. The results indicate that emissions from idling heavy-duty trucks are a primary contributor of MSATs to local air quality near areas of high static truck traffic; furthermore

  11. The topographic wetness index as a predictor for hot spots of DOC export from catchments

    NASA Astrophysics Data System (ADS)

    Musolff, Andreas; Oosterwoud, Marieke; Tittel, Jörg; Selle, Benny; Fleckenstein, Jan H.

    2015-04-01

    Dissolved organic carbon (DOC) concentrations in the discharge of many catchments in Europe and North America are rising. This increase is of concern for the drinking water supply from reservoirs since high DOC concentrations cause additional costs in water treatment and potentially the formation of harmful disinfection by-products. A prerequisite for understanding this increase is the knowledge on the spatial distribution of dominant soil DOC sources within catchments and on mobilization as well as transfer processes to the surface water. A number of studies identified wetland soils as the dominant source with fast mobilization and short transit times to the receiving surface water. However, most studies have either focussed on smaller, hillslope and single catchment or on larger scale multi-catchment assessments. Moreover, information on the distribution of soil types in catchments is not always readily available. This study brings together both types of assessment in a data-driven top-down approach: (i) a detailed survey on DOC concentration and loads over the course of one year within two paired data-rich catchments discharging into a large drinking water reservoir in central Germany and (ii) a database of hydrochemistry and physio-geographic characteristics of 113 catchments draining into 58 reservoirs across Germany over the course of 16 years. The objective is to define hot spots of DOC export within the catchments for both types of assessments (i, ii) and to test the suitability of the topographic wetness index (TWI) as a proxy for well-connected wetland soils at various spatial scales. In the sub-catchments of assessment (i) the spatial variability of concentrations and loads was much smaller than expected. None of the studied sub-catchments was a predominant producer of the total DOC loads exported from the catchments. We found the mean concentrations and loads to be positively correlated with the share of groundwater-dominated soils in the sub

  12. Direct imaging of hot spot in Bi2Sr2CaCu2O8+δ mesa terahertz sources

    NASA Astrophysics Data System (ADS)

    Benseman, Timothy; Gray, Ken; Koshelev, Alexei; Kwok, Wai-Kwong; Welp, Ulrich; Vlasko-Vlasov, Vitalii; Kadowaki, Kazuo; Minami, Hidetoshi

    2013-03-01

    Stacks of intrinsic Josephson junctions (IJJs) made from high-temperature superconductors such as Bi2Sr2CaCu2O8+δ (Bi-2212) are a promising source of coherent continuous-wave terahertz radiation. When electrical power is applied to these devices, it is thought that hot spots may form due to resistive self-heating, and that these spots may be highly beneficial for the generation of high levels of THz power from Bi-2212 stacks. In order to better understand these hot spots, we have performed a thermal imaging study of BSCCO stacks which generate approximately 50 microwatts of radiation power at 0.59 THz. Utilizing the temperature-dependent 612nm fluorescence line of Eu3+, we are able to directly measure the temperature distribution at the top surface of these stacks with a resolution of +/- 1K. The images reveal a highly non-uniform temperature distribution in which the temperature in the middle of the stack can exceed the superconducting transition temperature by tens of Kelvin under biasing conditions typical for THz-emission. This research was funded by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  13. Hot Spots and Mantle Plumes: A Window Into the Deep Earth and a Lesson on How Science Really Works

    NASA Astrophysics Data System (ADS)

    Caplan-Auerbach, J.

    2010-12-01

    Despite years of discussion, debate and controversy over the causes of ocean island volcanism, most students simply learn that such features form from fixed plumes of hot material rising from the core mantle boundary. Although we know that the Hawaiian plume exhibited substantial southward motion, most introductory geology textbooks still report that hot spots are fixed and that the Hawaiian-Emperor bend reflects a change in plate motion. That mantle plumes are the focus of significant controversy within the scientific community is rarely, if ever, discussed, and alternative models for the formation of intraplate volcanoes are ignored. Students may thus complete their studies without learning about the dynamic debate focused on the existence and formation of mantle plumes. This issue represents an opportunity for students to see how science really works, how new models are constructed, and what distinguishes a hypothesis from a theory. The culminating project in Western Washington University’s Introduction to Geophysics class, a course required for the BS degree in geology, focuses on the hot spot and mantle plume debate. For the first nine weeks of the quarter students learn about general topics in geophysics including plate tectonics, magnetism, seismology, gravity and heat flow. At the end of the course, students break into small research groups with the goal of investigating how geophysics may be used to address three questions: (1) Do ocean island volcanoes form from mantle plumes? (2) Are “hot spots” actually hot? (3) Are hot spots stationary? Each group examines how these questions may be addressed using a specific geophysical tool. In addition to the five topics described above, a sixth group investigates the question of “if not hot spots/mantle plumes, how do ocean island volcanoes form?” Students read the current literature on the topic and present their results to their classmates. Presentations focus on topics such as the use of seismic

  14. Heat tracing as a tool for locating and quantifying hydrological hot spots and hot moments that impact surface water and groundwater quality

    NASA Astrophysics Data System (ADS)

    Lautz, L.; Briggs, M. A.; Gordon, R.; Irvine, D. J.; McKenzie, J. M.; Ribaudo, R.; Hare, D. K.

    2014-12-01

    Hot spots and hot moments of biogeochemical transformations in stream ecosystems are often driven by rapid water exchange across the streambed interface. Few field methods are available for quantifying variability of hydrologic exchange rates across the streambed interface through space and time at high resolution. Advances in heat tracing provide opportunities for improved assessment of the paired spatial and temporal structure of heterogeneity in water flux and chemistry in the hyporheic zone. Here, we present a synthesis of heat transport monitoring and modeling studies aimed at improving spatial and temporal characterization of water exchange across the bed interface. Hot spots of water and solute exchange at the bed interface are quantified in the field at the reach scale by integrating high-resolution streambed temperature maps with point measurements of water flux inferred from 1D temperature profiles. The effectiveness and potential errors of this methodology are explored through numerical groundwater flow and heat transport modeling. Hot moments of water and solute exchange are quantified in the field using high-resolution distributed temperature sensing, paired with 1D heat transport modeling and detailed water quality profiles. The effectiveness and potential errors of quantifying temporal variability in water flux using heat tracing are explored through controlled laboratory experiments. Our results demonstrate the enormous potential for using heat tracing to quantify spatial and temporal changes in water flux across the bed interface at high resolution. The methods presented take advantage of inexpensive temperature sensors and user-friendly modeling methods, such as VFLUX, making heat tracing a good option for field practitioners interested in observing spatial and temporal heterogeneity of water flux at the bed interface.

  15. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA

    SciTech Connect

    Goncharov, V. N.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Follett, R. K.; Forrest, C. J.; Froula, D. H.; Glebov, V. Yu.; Harding, D. R.; Henchen, R. J.; Hu, S. X.; Igumenshchev, I. V.; Janezic, R.; Kelly, J. H.; and others

    2014-05-15

    Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 10{sup 7} cm/s, and a laser intensity of ∼10{sup 15} W/cm{sup 2}. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics that dictate the target performance. These models indicate that degradations in the shell density and integrity (caused by hydrodynamic instabilities during the target acceleration) coupled with hydrodynamics at stagnation are the main failure mechanisms in low-adiabat designs. To demonstrate ignition hydrodynamic equivalence in cryogenic implosions on OMEGA, the target-design robustness to hydrodynamic instability growth must be improved by reducing laser-coupling losses caused by cross beam energy transfer.

  16. The southern stratospheric gravity-wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-02-01

    During austral winter the mountains of the southern Andes and Antarctic Peninsula are a known hot spot of intense gravity wave momentum flux. There also exists a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains out over the Southern Ocean, the source of which has historically proved difficult to determine. In this study we use Global Positioning System (GPS) Radio Occultation (RO) data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellite constellation to investigate the distribution, variability and sources of waves in the hot spot region and over the Southern Ocean. We present evidence that suggests a southward focusing of waves into the stratospheric jet from sources to the north. We also describe a wavelet analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we take advantage of the large numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient numbers of these pairs, GPS-RO can then produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot region that are consistent with other studies. The results are discussed in the context of previous satellite and modelling studies to build up a better picture of the nature and origins of waves in the southern winter stratosphere.

  17. The great lunar hot spot and the composition and origin of the Apollo mafic (``LKFM'') impact-melt breccias

    NASA Astrophysics Data System (ADS)

    Korotev, Randy L.

    2000-02-01

    Thorium-rich, mafic impact-melt breccias from the Apollo 14-17 missions, that is, those breccias identified with the composition known as ``LKFM,'' are regarded largely as products of basin-forming impacts that penetrated the feldspathic crust and sampled underlying mafic material and magma-ocean residuum carrying the compositional signature of KREEP (potassium, rare earth elements, phosphorous). Despite considerable compositional variation among such breccias, compositions of all of them correspond to mixtures of only four components: (1) a norite with composition generally similar to that of Apollo 15 basalt (mean abundance: 58% range: ~30-95%), (2) Fo~90 dunite (mean: 13%, range: 1-27%), (3) feldspathic upper crust (mean: 29%, range: 4-50%), and FeNi metal (0.1-1.7%). Petrographic evidence has shown that much of the feldspathic component, but none of the KREEP component, is clastic. This observation and the high proportion of KREEP norite component in the breccias suggest that the melt zone of the impact or impacts forming the breccias contained little feldspathic material but consisted predominantly of material with the average composition of KREEP norite. The dunite component probably derives ultimately from the upper mantle. These conclusions support the hypothesis that the breccias were not formed in typical feldspathic crust but instead by one or more impacts into what is designated here ``the great lunar hot spot,'' that is, the anomalous Th-rich terrane in the Imbrium-Procellarum area identified by the Apollo and Lunar Prospector gamma-ray spectrometers. The LKFM composition is a special product of the great lunar hot spot and is not the average composition of the lower crust in typical feldspathic highlands. Similarly, Mg-suite and alkali-suite plutonic rocks of the Apollo collection are likely all differentiation products of the hot spot, not of plutons that might occur in typical feldspathic crust.

  18. Global Admittance Estimates of Elastic and Crustal Thickness of Venus: Results from Top, Hot Spot, and Bottom Loading Models

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Anderson, F. S.

    2005-01-01

    We have calculated admittance spectra using the spatio-spectral method [14] for Venus by moving the central location of the spectrum over a 1 grid, create 360x180 admittance spectra. We invert the observed admittance using top-loading (TL), hot spot (HS), and bottom loading (BL) models, resulting in elastic, crustal, and lithospheric thickness estimates (Te, Zc, and Zl) [0]. The result is a global map for interpreting subsurface structure. Estimated values of Te and Zc concur with previous TL local admittance results, but BL estimates indicate larger values than previously suspected.

  19. Comprehensive Experimental and Computational Analysis of Binding Energy Hot Spots at the NF-κB Essential Modulator (NEMO)/IKKβ Protein-Protein Interface

    PubMed Central

    Golden, Mary S.; Cote, Shaun M.; Sayeg, Marianna; Zerbe, Brandon S.; Villar, Elizabeth A.; Beglov, Dmitri; Sazinsky, Stephen L.; Georgiadis, Rosina M.; Vajda, Sandor; Kozakov, Dima; Whitty, Adrian

    2013-01-01

    We report a comprehensive analysis of binding energy hot spots at the protein-protein interaction (PPI) interface between NF-κB Essential Modulator (NEMO) and IκB kinase subunit β (IKKβ), an interaction that is critical for NF-κB pathway signaling, using experimental alanine scanning mutagenesis and also the FTMap method for computational fragment screening. The experimental results confirm that the previously identified NBD region of IKKβ contains the highest concentration of hot spot residues, the strongest of which are W739, W741 and L742 (ΔΔG = 4.3, 3.5 and 3.2 kcal/mol, respectively). The region occupied by these residues defines a potentially druggable binding site on NEMO that extends for ~16 Å to additionally include the regions that bind IKKβ L737 and F734. NBD residues D738 and S740 are also important for binding but do not make direct contact with NEMO, instead likely acting to stabilize the active conformation of surrounding residues. We additionally found two previously unknown hot spot regions centered on IKKβ residues L708/V709 and L719/I723. The computational approach successfully identified all three hot spot regions on IKKβ. Moreover, the method was able to accurately quantify the energetic importance of all hot spots residues involving direct contact with NEMO. Our results provide new information to guide the discovery of small molecule inhibitors that target the NEMO/IKKβ interaction. They additionally clarify the structural and energetic complementarity between “pocket-forming” and “pocket occupying” hot spot residues, and further validate computational fragment mapping as a method for identifying hot spots at PPI interfaces. PMID:23506214

  20. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large-scale reactive molecular dynamics study.

    PubMed

    Zhou, Tingting; Lou, Jianfeng; Zhang, Yangeng; Song, Huajie; Huang, Fenglei

    2016-07-14

    We report million-atom reactive molecular dynamic simulations of shock initiation of β-cyclotetramethylene tetranitramine (β-HMX) single crystals containing nanometer-scale spherical voids. Shock induced void collapse and subsequent hot spot formation as well as chemical reaction initiation are observed which depend on the void size and impact strength. For an impact velocity of 1 km s(-1) and a void radius of 4 nm, the void collapse process includes three stages; the dominant mechanism is the convergence of upstream molecules toward the centerline and the downstream surface of the void forming flowing molecules. Hot spot formation also undergoes three stages, and the principal mechanism is kinetic energy transforming to thermal energy due to the collision of flowing molecules on the downstream surface. The high temperature of the hot spot initiates a local chemical reaction, and the breakage of the N-NO2 bond plays the key role in the initial reaction mechanism. The impact strength and void size have noticeable effects on the shock dynamical process, resulting in a variation of the predominant mechanisms leading to void collapse and hot spot formation. Larger voids or stronger shocks result in more intense hot spots and, thus, more violent chemical reactions, promoting more reaction channels and generating more reaction products in a shorter duration. The reaction products are mainly concentrated in the developed hot spot, indicating that the chemical reactivity of the hmx crystal is greatly enhanced by void collapse. The detailed information derived from this study can aid a thorough understanding of the role of void collapse in hot spot formation and the chemical reaction initiation of explosives. PMID:27307079

  1. A Virus-Binding Hot Spot on Human Angiotensin-Converting Enzyme 2 Is Critical for Binding of Two Different Coronaviruses▿

    PubMed Central

    Wu, Kailang; Chen, Lang; Peng, Guiqing; Zhou, Wenbo; Pennell, Christopher A.; Mansky, Louis M.; Geraghty, Robert J.; Li, Fang

    2011-01-01

    How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV. PMID:21411533

  2. The Rhizosphere Zone: A Hot Spot of Microbial Activity and Methylmercury Production in Saltmarsh Sediments of San Francisco Bay, California

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Marvin-Dipasquale, M.; Voytek, M.; Kirshtein, J.; Krabbenhoft, D. P.; Agee, J. L.; Cox, M.; Kakouros, E.; Collins, J. N.; Yee, D.

    2008-12-01

    bacterial DNA in vegetated sites. In contrast to microbial indicators of mercury methylation, no effects of devegetation or seasonal sampling were observed on sediment pools of reactive Hg (Hg(II)R), although the relative abundance of mercuric reductase functional genes (MerA) was reduced by devegetation and was correlated with live root density. These experiments, among others, demonstrate that the presence and activity of emergent wetland plants directly influence Hg cycling in densely rooted surface soils. Development of this shallow and dense rhizosphere is likely to be a primary reason as to why periodically flooded, high elevation marsh sites are a "hot spot" for mercury methylation.

  3. Magma Genesis in the Hawaiian Hot Spot: From melting experiments on basalt/peridotite hybrid source

    NASA Astrophysics Data System (ADS)

    Takahashi, E.

    2003-12-01

    Melting mantle peridotite is one of the central themes in experimental petrology. Melting studies in CMAS, NCMAS and natural peridotites have extensively documented the magma genesis process at Mid Oceanic Ridges (e.g., Presnall et al., 1979). Magma genesis in OIBs and LIPs, on the other hand, has been poorly constrained by experiments. Evidences from isotope geochemistry indicate that the source materials for basalt magmas in these provinces are not peridotite alone. Based on a geological and geochemical reconstruction of 3 Ma old Koolau volcano, I proposed that the size of eclogite blocks in the Hawaiian plume would exceed 1000km3 (Takahashi and Nakajima, 2002) and therefore the melting interaction of eclogite blocks and the surrounding peridotite would play essential roles in magma genesis in the Hawaiian hot spot. Melting experiments on basalt/peridotite composite starting materials were carried out at 2.5 to 3.0 GPa at temperatures from the peridotite dry solidus to that of basalt for 20 to 100 hours. Three layered starting materials consisting of 1 basalt to 2 peridotite (in volume) were placed in graphite/Pt double capsules. Peridotite KLB-1 (Fo89.6) and two basalt-starting materials (CLG-46 and CRB72-31) were used as starting materials. In temperatures ca.50-100 degrees below the peridotite solidus, silica-rich partial melts are produced in the basalt zone and the boundaries between the basalt and peridotite are coated with a 10 to 50 micron thick opx reaction band. The chemical reactions between the basalt and peridotite domains are controlled by solid diffusions across the opx reaction band and are very slow. In temperatures within 50 degrees of the peridotite dry solidus, a time dependent reaction process takes place. The basalt/peridotite boundary gradually partial melts as the chemical reaction lowers the peridotite solidus locally. At 2.8 GPa and 1450-1470C after 50-100 hours, resultant melt in the basalt layer becomes saturated with oliv + opx + cpx

  4. Identification of a Non-Gatekeeper Hot Spot for Drug-Resistant Mutations in mTOR Kinase.

    PubMed

    Wu, Tzung-Ju; Wang, Xiaowen; Zhang, Yanjie; Meng, Linghua; Kerrigan, John E; Burley, Stephen K; Zheng, X F Steven

    2015-04-21

    Protein kinases are therapeutic targets for human cancer. However, "gatekeeper" mutations in tyrosine kinases cause acquired clinical resistance, limiting long-term treatment benefits. mTOR is a key cancer driver and drug target. Numerous small-molecule mTOR kinase inhibitors have been developed, with some already in human clinical trials. Given our clinical experience with targeted therapeutics, acquired drug resistance in mTOR is thought likely, but not yet documented. Herein, we describe identification of a hot spot (L2185) for drug-resistant mutations, which is distinct from the gatekeeper site, and a chemical scaffold refractory to drug-resistant mutations. We also provide new insights into mTOR kinase structure and function. The hot spot mutations are potentially useful as surrogate biomarkers for acquired drug resistance in ongoing clinical trials and future treatments and for the design of the next generation of mTOR-targeted drugs. Our study provides a foundation for further research into mTOR kinase function and targeting. PMID:25865887

  5. A high-resolution linkage map for the Z chromosome in chicken reveals hot spots for recombination.

    PubMed

    Wahlberg, P; Strömstedt, L; Tordoir, X; Foglio, M; Heath, S; Lechner, D; Hellström, A R; Tixier-Boichard, M; Lathrop, M; Gut, I G; Andersson, L

    2007-01-01

    A comprehensive linkage map for chicken chromosome Z was constructed as the result of a large-scale screening of single nucleotide polymorphisms (SNPs). A total of 308 SNPs were assigned to Z based on the genotype distribution among 182 birds representing several populations. A linkage map comprising 210 markers and spanning 200.9 cM was established by analyzing a small Red junglefowl/White Leghorn intercross. There was excellent agreement between the linkage map for Z and a recently released assembly of the chicken genome (May 2006). Almost all SNPs assigned to chromosome Z in the present study are on Z in the new genome assembly. The remaining 12 loci are all found on unassigned contigs that can now be assigned to Z. The average recombination rate was estimated at 2.7 cM/Mb but there was a very uneven distribution of recombination events with both cold and hot spots of recombination. The existence of one of the major hot spots of recombination, located around position 39.4 Mb, was supported by the observed pattern of linkage disequilibrium. Thirteen markers from unassigned contigs were shown to be located on chromosome W. Three of these contigs included genes that have homologues on chromosome Z. The preliminary assignment of three more genes to the gene-poor W chromosome may be important for studies on the mechanism of sex determination and dosage compensation in birds. PMID:17675841

  6. Shell asymmetry-driven hot-spot generation issues in high convergence ratio implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar; Springer, Paul; Callahan, Debbie; Casey, Daniel; Dewald, Eduard; Dittrich, Thomas; Doeppner, Tilo; Hinkel, Denise; Hopkins, Laura Berzak; Kritcher, Andrea; Ma, Tammy; Macphee, Andrew; Milovich, Jose; Park, Hye-Sook; Patel, Prav; Ralph, Joseph; Robey, Harry; Ross, J. Steven; Salmonson, Jay; Spears, Brian; Smalyuk, Vladimir; Tommasini, Riccardo; Yeamans, Charles

    2015-11-01

    Much of the conceptual understanding, theory, and design of ICF implosions has been developed assuming a one-dimensional (1D) implosion. But what if the typical ICF implosion is not 1D? In this talk we present an overview of data and simulation results from recent high performance implosions on NIF that imply highly distorted implosions and an associated non-ideal hot-spot generation issue, even in cases where the bang-time emission (in x-rays and neutrons) from the implosion appears 1D. We present a simple extension of a semi-analytic dynamic implosion model that captures the key effect of localized thin-regions in an implosions shell (fuel +remaining ablator), via a leaking hot-spot picture, and discuss what the model implies about the physics we can't directly diagnose in our suite of implosions. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. A combination of in silico and SAR studies to identify binding hot spots of Bcl-xL inhibitors.

    PubMed

    Levoin, Nicolas; Vo, Duc Duy; Gautier, Fabien; Barillé-Nion, Sophie; Juin, Philippe; Tasseau, Olivier; Grée, René

    2015-04-15

    Inhibition of Bcl-2 family protein-protein interactions (PPI) is a very promising direction in cancer chemotherapy. Hence over the last decade, many medicinal chemistry studies endeavoured to discover drug candidates, and a wealth of chemical scaffolds with striking chemical diversity was reported as Bcl-xL inhibitors. This raises the question of whether all these molecules could occupy a unique binding site, or rather discrete pockets of the protein surface. To test if small and chemically diverse Bcl-xL inhibitors are likely to bind a single pocket, and to identify which pocket, we used a battery of computational and modeling approaches. We first checked that the large dataset of Bcl-xL inhibitors we built can actually fit to a universal pharmacophore. Then we defined the probable binding hot spots of interaction through comparison of crystal structures, as well as virtual fragment screening. Finally, new analogues of small polyphenol derivatives were synthesized to precisely probe a hydrogen bond suggested by docking experiments. Bcl-xL inhibition potency of these products confirmed the predicted binding mode. This combination of X-ray structure exploration, molecular modeling studies and medicinal chemistry supports that all these small Bcl-xL inhibitors occupy the same hot spot of interaction. The identification of this binding site should help the design and optimization of small PPI Bcl-xL inhibitors. PMID:25797160

  8. High frequency localised "hot spots" in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study.

    PubMed

    Ashton, Heather; Reid, Keith; Marsh, Richard; Johnson, Ian; Alter, Kai; Griffiths, Tim

    2007-10-01

    Tinnitus, the perception of noise in the absence of an external auditory stimulus, is common, frequently distressing and often intractable. It is associated with a number of conditions including deafness but may arise spontaneously. Brain imaging studies indicate increased neuronal excitability and decreased density of benzodiazepine receptors in temporal (auditory) cortex but the source and mechanism of such changes are unknown. Various electroencephalographic (EEG) abnormalities involving temporal lobe and other brain areas have been described but recordings have been limited to standard EEG wave bands up to frequencies of 22Hz. This clinical study of otherwise healthy patients with intractable unilateral tinnitus, using quantitative EEG power spectral mapping (QEEG), identified discrete localised unilateral foci of high frequency activity in the gamma range (>40-80Hz) over the auditory cortex in eight patients experiencing tinnitus during recording. These high frequency "hot spots" were not present in 25 subjects without tinnitus. The results suggest that further EEG investigations should include recordings in the gamma frequency range since such high frequency oscillations are believed to be necessary for perception. Identification of "hot spots" in tinnitus patients would provide a means for monitoring the effects of new treatments. These findings may also provide a model for exploration of more complex phenomena such as verbal and musical hallucinations. PMID:17888572

  9. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface.

    PubMed

    Metz, Alexander; Pfleger, Christopher; Kopitz, Hannes; Pfeiffer-Marek, Stefania; Baringhaus, Karl-Heinz; Gohlke, Holger

    2012-01-23

    Protein-protein interfaces are considered difficult targets for small-molecule protein-protein interaction modulators (PPIMs ). Here, we present for the first time a computational strategy that simultaneously considers aspects of energetics and plasticity in the context of PPIM binding to a protein interface. The strategy aims at identifying the determinants of small-molecule binding, hot spots, and transient pockets, in a protein-protein interface in order to make use of this knowledge for predicting binding modes of and ranking PPIMs with respect to their affinity. When applied to interleukin-2 (IL-2), the computationally inexpensive constrained geometric simulation method FRODA outperforms molecular dynamics simulations in sampling hydrophobic transient pockets. We introduce the PPIAnalyzer approach for identifying transient pockets on the basis of geometrical criteria only. A sequence of docking to identified transient pockets, starting structure selection based on hot spot information, RMSD clustering and intermolecular docking energies, and MM-PBSA calculations allows one to enrich IL-2 PPIMs from a set of decoys and to discriminate between subgroups of IL-2 PPIMs with low and high affinity. Our strategy will be applicable in a prospective manner where nothing else than a protein-protein complex structure is known; hence, it can well be the first step in a structure-based endeavor to identify PPIMs. PMID:22087639

  10. Penumbral Imaging of micrometer size plasma hot spots at shock stagnation in Gbar EOS experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Kritcher, A. L.; Benedetti, L. R.; Falcone, R. W.; Glenn, S.; Hawreliak, J.; Izumi, N.; Kraus, D.; Landen, O. L.; Lepape, S.; Ma, T.; Perez, F.; Swift, D.; Doeppner, T.

    2014-10-01

    We have developed an experimental platform for absolute equation of state (EOS) measurements up to Gbar pressures on the National Ignition Facility (NIF). We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked Radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe short and bright x-ray self emission from high density (50 g/cm3) plasma at 1 keV. Here, we present results obtained with penumbral imaging, carried out to characterize the size of the hot spot emission. A detailed understanding of this size and emission strength allows for benchmarking radiation-hydro simulations in a regime that is not accessible to radiography. The application of penumbral imaging extends existing NIF diagnostic capabilities to higher spatial resolution (currently 10 μm to 1 μm) and higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/ -1 μm, corresponding to a convergence ratio of 200. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts

    NASA Astrophysics Data System (ADS)

    Nichols, A. R. L.; Carroll, M. R.; Höskuldsson, Á.

    2002-08-01

    Water contents have been measured in basaltic glasses from submarine and subglacial eruption sites along the Reykjanes Ridge and Iceland, respectively, in order to evaluate the hypothesis of Schilling et al. [Phil. Trans. R. Soc. London A 56 (1980) 147-178] that hot spots are also wet spots. Having erupted under pressure the water contents measured in these samples are potentially unaffected by degassing. After correcting these water contents for the effects of crystallisation (to give H 2O(8) values) they indicate that the concentration of water in the source regions increases from 165 ppm at the southern end of the Reykjanes Ridge to between 620 and 920 ppm beneath Iceland. This suggests that Iceland is a wet spot and the H 2O(8) values indicate that its influence on basalt compositions increases northwards along the Reykjanes Ridge from ˜61°N (650 km from the plume centre) towards Iceland. The existence of wetter Icelandic source regions have important implications for mantle melting, as enrichments of this magnitude depress the mantle solidus, increasing the degree of melting at a given temperature. Therefore the enhanced rates of volcanism on Iceland may be a result of wetter sources in addition to a thermal anomaly beneath Iceland.

  12. Structural and energetic hot-spots for the interaction between a ladder-like polycyclic ether and the anti-ciguatoxin antibody 10C9Fab.

    PubMed

    Ui, Mihoko; Tanaka, Yoshikazu; Tsumuraya, Takeshi; Fujii, Ikuo; Inoue, Masayuki; Hirama, Masahiro; Tsumoto, Kouhei

    2011-03-01

    The mechanism by which anti-ciguatoxin antibody 10C9Fab recognizes a fragment of ciguatoxin CTX3C (CTX3C-ABCDE) was investigated by mutational analysis based on structural data. 10C9Fab has an extraordinarily large and deep antigen-binding pocket at the center of its variable region. We mutated several residues located at the antigen-binding pocket to Ala, and kinetic analysis of the interactions between the mutant proteins and the antigen fragment was performed. The results indicate that some residues associated with the rigid antigen-binding pocket are structural hot-spots and that L-N94 is an energetic hot-spot for association of the antibody with the antigen fragment CTX3C-ABCDE, suggesting the importance of structural complementarity and energetic hot-spot interactions for specific recognition of polycyclic ethers. PMID:21161086

  13. Hot topic: Black spot defect in Cheddar cheese linked to intramammary teat sealant.

    PubMed

    Lay, A M; Kolpin, K M; Sommer, D A; Rankin, S A

    2007-11-01

    The objective of this work was to characterize a novel appearance defect found in Cheddar cheese, heretofore referred to as black spot defect (BSD), and to determine an etiology. Uniformly distributed throughout the cheese mass, BSD appears as small spherical black spots from 0.20 to 4.7 mm in diameter and at an average frequency of about 2 spots per kg of cheese. To date, BSD has only been found in aged Cheddar cheese. Selected elemental analysis found the BSD region in cheese to have average concentrations of the element bismuth of approximately 400 microg/g, representing an approximately 2,500-fold increase over native levels of bismuth in cheese. Transmission electron microscopy analysis of the BSD region revealed amorphous solid structures and one-dimensional hair-like structures, neither of which was present in non-BSD regions. Such amorphous "nanorod" structures can be formed by the crystallization of bismuth III sulfide and are proposed to be a source of black discoloration. We hypothesize that localized bismuth salts entrained within the cheese curd react with hydrogen sulfide generated during aging to generate bismuth III sulfide. We further propose that the presence of localized bismuth salt precursor results from residual levels of a commercial intra-mammary teat sealant containing bismuth subnitrate that becomes unintentionally entrained within the cheese milk. PMID:17954732

  14. Collective excitation of plasmonic hot-spots for enhanced hot charge carrier transfer in metal/semiconductor contacts

    NASA Astrophysics Data System (ADS)

    Piot, Adrien; Earl, Stuart K.; Ng, Charlene; Dligatch, Svetlana; Roberts, Ann; Davis, Timothy J.; Gómez, Daniel E.

    2015-04-01

    We show how a combination of near- and far-field coupling of the localised surface plasmon resonances in aluminium nanoparticles deposited on TiO2 films greatly enhances the visible light photocatalytic activity of the semiconductor material. We demonstrate two orders of magnitude enhancement in the rate of decomposition of methylene blue under visible light illumination when the surface of TiO2 films is decorated with gratings of Al nanoparticle dimers.We show how a combination of near- and far-field coupling of the localised surface plasmon resonances in aluminium nanoparticles deposited on TiO2 films greatly enhances the visible light photocatalytic activity of the semiconductor material. We demonstrate two orders of magnitude enhancement in the rate of decomposition of methylene blue under visible light illumination when the surface of TiO2 films is decorated with gratings of Al nanoparticle dimers. Electronic supplementary information (ESI) available: Detailed information on estimates of hot-electron injection efficiencies, electrodynamic simulations, sample preparation, spectroscopic and structural characterization and photocatalytic experiments. See DOI: 10.1039/c5nr01592h

  15. Hot moments and hot spots in hyporheic nutrient transformation - To what degree does small-scale variability control stream-reach attenuation potential?

    NASA Astrophysics Data System (ADS)

    Krause, S.; Blume, T.; Binley, A.; Heathwaite, L.; Cassidy, N. J.; Munz, M.; Tecklenburg, C.; Kaeser, D.

    2011-12-01

    Concentrations of nutrients and contaminants in up-welling groundwater can significantly change along the passage through highly heterogeneous streambed sediments with substantial implications for the quality of connected surface water bodies. This study presents investigations into the physical drivers and chemical controls of nutrient transport and transformation at the aquifer-river interfaces of two upland and lowland UK rivers. It combines the application of in-stream geophysical exploration techniques, multi-level mini-piezometer networks, active and passive heat tracing methods (including fibre-optic distributed temperature sensing - FO-DTS) for identifying hyporheic exchange fluxes and residence time distributions with multi-scale approaches of hyporheic pore water sampling and reactive tracers for analysing the patterns of streambed redox conditions and chemical transformation rates. The analysis of hyporheic pore water from nested multi-level mini piezometers and passive gel probe samplers revealed significant spatial variability in streambed redox conditions and concentration changes of nitrogen species, dissolved oxygen and bioavailable organic carbon. Hot spots of increased nitrate attenuation were identified beneath semi-confining peat lenses in the streambed of the investigated lowland river. The intensity of concentration changes underneath the confining peat pockets correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break through of nitrate without significant concentration changes along the hyporheic flow path. Fibre-optic distributed temperature sensor networks and streambed electric resistivity tomography were applied for identifying exchange flow patterns between groundwater and surface water in dependency of streambed structural

  16. Professional- Amateur Astronomer Partnerships in Scientific Research: The Re-emergence of Jupiter's 5-Micron Hot Spots

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2012-12-01

    The night sky, with all its delights and mysteries, enthrall professional and amateur astronomers alike. The discrete data sets acquired by professional astronomers via their approved observing programs at various national facilities are supplemented by the nearly daily observations of the same celestial object by amateur astronomers around the world. The emerging partnerships between professional and dedicated amateur astronomers rely on creating a niche for long timeline of multispectral remote sensing. "Citizen Astronomy" can be thought of as the paradigm shift transforming the nature of observational astronomy. In the past decade, it is the collective observations and their analyses by the ever-increasing global network of amateur astronomers that has discovered interesting phenomena and provided the reference backdrop for observations by ground-based professional astronomers and spacecraft missions. We shall present results from our collaborations to observe the recent global upheaval on Jupiter for the past five years and illustrate the strong synergy between the two groups. Global upheavals on Jupiter involve changes in the albedo of entire axisymmetric regions, lasting several years, with the last two occurring in 1989 and 2006. Against this backdrop of planetary-scale changes, discrete features such as the Great Red Spot (GRS), and other vortices exhibit changes on shorter spatial- and time-scales. One set of features we are currently tracking is the variability of the discrete equatorial 5-μm hot spots, semi-evenly spaced in longitude and confined to a narrow latitude band centered at 6.5°N (southern edge of the North Equatorial Belt, NEB), abundant in Voyager images (1980-1981). Tantalizingly similar patterns were observed in the visible (bright plumes and blue-gray regions), where reflectivity in the red is anti-correlated with 5-μm thermal radiance. During the recent NEB fade (2011 - early 2012), however, these otherwise ubiquitous features were

  17. ND5 is a hot-spot for multiple atypical mitochondrial DNA deletions in mitochondrial neurogastrointestinal encephalomyopathy.

    PubMed

    Nishigaki, Yutaka; Marti, Ramon; Hirano, Michio

    2004-01-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive multisystem disorder associated with depletion, multiple deletions and site-specific point mutations of mitochondrial DNA (mtDNA). MNGIE is caused by loss-of-function mutations in the gene encoding thymidine phosphorylase (TP; endothelial cell growth factor 1). Deficiency of TP leads to dramatically elevated levels of circulating thymidine and deoxyuridine. The alterations of pyrimidine nucleoside metabolism are hypothesized to cause imbalances of mitochondrial nucleotide pools that, in turn, may cause somatic alterations of mtDNA. We have now identified five major forms of mtDNA deletions in the skeletal muscle of MNGIE patients. While direct repeats and imperfectly homologous sequences appear to mediate the formation of mtDNA deletions, the nicotinamide adenine dinucleotide dehydrogenase 5 gene is a hot-spot for these rearrangements. A novel aspect of the mtDNA deletions in MNGIE is the presence of microdeletions at the imperfectly homologous breakpoints. PMID:14613972

  18. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    NASA Astrophysics Data System (ADS)

    Orth, Charles D.

    2016-02-01

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot "mix" may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields—not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or "grains" of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation and (2) this solid material spalls under shock loading and sudden decompression. We describe this mix mechanism, support it with simulations and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.

  19. Spallation as a dominant source of pusher-fuel and hot-spot mix in inertial confinement fusion capsules

    DOE PAGESBeta

    Orth, Charles D.

    2016-02-23

    We suggest that a potentially dominant but previously neglected source of pusher-fuel and hot-spot “mix” may have been the main degradation mechanism for fusion energy yields of modern inertial confinement fusion (ICF) capsules designed and fielded to achieve high yields — not hydrodynamic instabilities. This potentially dominant mix source is the spallation of small chunks or “grains” of pusher material into the fuel regions whenever (1) the solid material adjacent to the fuel changes its phase by nucleation, and (2) this solid material spalls under shock loading and sudden decompression. Finally, we describe this mix mechanism, support it with simulationsmore » and experimental evidence, and explain how to eliminate it and thereby allow higher yields for ICF capsules and possibly ignition at the National Ignition Facility.« less

  20. Unusual seismic activity in 2011 and 2013 at the submarine volcano Rocard, Society hot spot (French Polynesia)

    NASA Astrophysics Data System (ADS)

    Talandier, Jacques; Hyvernaud, Olivier; Maury, René C.

    2016-05-01

    We analyze two seismic events that occurred on 27 May 2011 and 29 April 2013 at the Rocard submarine volcano which overlies the Society hot spot. The Polynesian Seismic Network recorded for the first time unusual associated short- and long-period signals, with perfectly monochromatic (0.0589 Hz) Rayleigh wave trains of long period and duration. None of the numerous observations of long-period (10-30 s) signals previously associated with volcanic activity in Japan, Italy, Mexico, Indonesia, Antarctica, and the Hawaiian Islands have the characteristics we observed at Rocard. We propose a tentative model for these unusual and rather enigmatic signals, in which the movement of lava excited the resonance of a shallow open conduit under a high hydrostatic pressure of ~400 bars.

  1. Styles of eruptive activity on intraplate volcanoes in the Society and Austral hot spot regions - Bathymetry, petrology, and submersible observations

    NASA Astrophysics Data System (ADS)

    Binard, N.; Hekinian, R.; Cheminee, J. L.; Stoffers, P.

    1992-09-01

    A model relating the style of volcanism to the depth of eruption on large intraplate seamounts is proposed on the basis of submersible observations carried out in the Society and Austral hot spot regions (South Pacific) during the Teahitia II cruise (1988-1989). The bases of volcanic edifices are characterized by broad flat flows formed during a high rate of discharge of a very fluid magma on the sea floor. The edifices' flanks deeper than 500 m are mainly made up of bulbous tubular pillows and large drained lava tunnels occurring on slopes steeper than 60-70 deg. Volcanic ejecta due to hydromagmatic eruptions occur at shallow depths (less than 500 m). Volcanic shards, produced by the shattering of the vesiculated glassy margins of the flows, are observed on the edifices' slopes at all depths (from 3000 m to the sea surface), concentrated between pillows or covering large areas, and forming thin indurated layers of mixed shard, sediment, and hydrothermal deposits.

  2. Ultrasensitive SERS detection of trinitrotoluene through capillarity-constructed reversible hot spots based on ZnO-Ag nanorod hybrids

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Hui; Li, Zhongbo; Chen, Dong; Liu, Jiahui; Zhang, Qi

    2015-04-01

    A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement effect was repeatedly renewed by the reconstruction of molecular bridges, which could selectively detect TNT with a lower limit of 4 × 10-14 M. In addition, TNT vapor was also tested under this sensor, whereby once the ZnO-Ag NRs hybrid substrate was dipped in TNT, this substrate could detect the existence of TNT even in 5 detection cycles via a capillarity-constructed reversible hot spots approach. Compared with other pure Ag-based SERS sensors, this ZnO-Ag hybrid SERS sensor could rapidly self-revive SERS-activity by simple UV light irradiation and could retain stable SERS sensitivity for one month when used for TNT detection. This stable and ultrasensitive SERS substrate demonstrates a new route to eliminate the oxidized inactive problem of traditional Ag-based SERS substrates and suggests promising use in the applications of such hybrids as real-time online sensors for explosives detection.A simple and efficient self-approach strategy was used to apply ultrasensitivity and self-revive ZnO-Ag hybrid surface-enhanced Raman scattering (SERS) sensors for the highly sensitive and selective detection of explosive TNT in both solution and vapour conditions. The good ultrasensitive sensing performance is a result of the abundant Raman hot spots, which were spontaneously formed in a reversible way by the self-approaching of flexible ZnO-Ag hybrid nanorods driven by the capillary force of solvent evaporation. Moreover, the enhancement

  3. Extinction processes in hot spots of avian biodiversity and the targeting of pre-emptive conservation action.

    PubMed Central

    Norris, Ken; Harper, Neil

    2004-01-01

    Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected. PMID:15058387

  4. Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides.

    PubMed

    Zhu, Limei; Peigneur, Steve; Gao, Bin; Zhang, Shangfei; Tytgat, Jan; Zhu, Shunyi

    2016-08-01

    Positive selection sites (PSSs), a class of amino acid sites with an excess of nonsynonymous to synonymous substitutions, are indicators of adaptive molecular evolution and have been detected in many protein families involved in a diversity of biological processes by statistical approaches. However, few studies are conducted to evaluate their functional significance and the driving force behind the evolution (i.e., agent of selection). Scorpion α-toxins are a class of multigene family of peptide neurotoxins affecting voltage-gated Na(+ )(Nav) channels, whose members exhibit differential potency and preference for insect and mammalian Nav channels. In this study, we undertook a systematical molecular dissection of nearly all the PSSs newly characterized in the Mesobuthus α-toxin family and a two-residue insertion ((19)AlaPhe(20)) located within a positively selected loop via mutational analysis of α-like MeuNaTxα-5, one member affecting both insect and mammalian Nav channels. This allows to identify hot-spot residues on its functional face involved in interaction with the receptor site of Nav channels, which comprises two PSSs (Ile(40) and Leu(41)) and the small insertion, both located on two spatially separated functional loops. Mutations at these hot-spots resulted in a remarkably decreased anti-mammalian activity in MeuNaTxα-5 with partially impaired or enhanced insecticide activity, suggesting the potential of PSSs in designing promising candidate insecticides from scorpion α-like toxins. Based on an experiment-guided toxin-channel complex model and high evolutionary variability in the receptor site of predators and prey of scorpions, we provide new evidence for target-driven adaptive evolution of scorpion toxins to deal with their targets' diversity. PMID:27189560

  5. Infrared radiation emitted due to scanning of a hot spot as a probe of hidden defects

    NASA Astrophysics Data System (ADS)

    Woźny, Mariusz; Maś, Kinga; Prokhorenko, Serhiy; Ploch, Dariusz; Sheregii, E. M.

    2016-05-01

    Specially created subsurface defects in a sample are detected using a high resolution infrared camera FLIR SC7000. A scanning hot air (about 110 °C) nozzle is applied to introduce additional energy in a researched sample. The hidden defect has an increased temperature in comparison with the surrounding area that is a result of changed emissivity and thermal diffusivity. The suggested method is compared with pulse thermography which uses a xenon lamp for excitation.

  6. Transport properties of a charged hot spot in an external electromagnetic field

    NASA Astrophysics Data System (ADS)

    Bondarenko, S.; Komoshvili, K.; Prygarin, A.

    2016-06-01

    We investigate adiabatic expansion of a charged and rotating fluid element consisting of weakly interacting particles, which is initially perturbed by an external electromagnetic field. A framework for the perturbative calculation of the non-equilibrium distribution function of this fluid volume is considered and the distribution function is calculated to the first order in the perturbative expansion. This distribution function, which describes the evolution of the element with constant entropy, allows to calculate momentum flux tensor and viscosity coefficients of the expanding system. We show, that these viscosity coefficients depend on the initial angular velocity of the spot and on the strength of its initial perturbation by the external field. Obtained results are applied to the phenomenology of the viscosity to the entropy ratio calculated in lattice models.

  7. 40 CFR 93.123 - Procedures for determining localized CO, PM10, and PM2.5 concentrations (hot-spot analysis).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., data bases, and other requirements specified in 40 CFR part 51, Appendix W (Guideline on Air Quality..., PM10, and PM2.5 concentrations (hot-spot analysis). 93.123 Section 93.123 Protection of Environment... Transit Laws § 93.123 Procedures for determining localized CO, PM10, and PM2.5 concentrations...

  8. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots

    NASA Astrophysics Data System (ADS)

    Koppers, Anthony A. P.; Duncan, Robert A.; Steinberger, Bernhard

    2004-06-01

    The Louisville seamount trail has been recognized as one of the key examples of hot spot volcanism, comparable to the classic volcanic Hawaiian-Emperor lineaments. The published total fusion 40Ar/39Ar data of Watts et al. [1988] showed an astonishing linear age progression, firmly establishing Louisville as a fixed hot spot in the South Pacific mantle. We report new 40Ar/39Ar ages based on high-resolution incremental heating 40Ar/39Ar dating for the same group of samples, showing a marked increase in both precision and accuracy. One of the key findings in our reexamination is that the age progression is not linear after all. The new data show a significantly decreased "apparent" plate velocity for the Louisville seamount trail older than 62 Ma but confirm the linear trend between 47 Ma and the present day (although based on only three samples over 2150 km). The most recent volcanic activity in the Louisville seamount trail has now been dated at 1.11 ± 0.04 Ma for the most southeastern seamount located at 50°26'S and 139°09'W. These results indicate that the Louisville age progression should be interpreted on the basis of both plate and hot spot motion. In this paper we examine our new results in conjunction with the numerical mantle flow models of [2004] that also predict marked deviations from simple linear age progressions. With these models we can achieve a good fit to the geometry of both the Hawaiian and Louisville seamount trails and their age progressions as well as the ˜15° paleolatitudinal shift observed by [2003] for the Hawaiian hot spot between 80 and 47 Ma. If the model is restricted to Pacific hot spots only, we can improve the fit to the nonlinear age trend for the Louisville seamount trail by allowing an additional rotation change of the Pacific plate around 62 Ma and by decreasing the initiation age of the Louisville plume from 120 to 90 Ma. This improved model features a significant eastward hot spot motion of ˜5° between 80 and 30 Ma for

  9. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Direct reduced iron (DRI); hot-molded briquettes. 148.250 Section 148.250 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... Materials § 148.250 Direct reduced iron (DRI); hot-molded briquettes. (a) Before loading DRI...

  10. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Direct reduced iron (DRI); hot-molded briquettes. 148.250 Section 148.250 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... Materials § 148.250 Direct reduced iron (DRI); hot-molded briquettes. (a) Before loading DRI...

  11. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Direct reduced iron (DRI); hot-molded briquettes. 148.250 Section 148.250 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... Materials § 148.250 Direct reduced iron (DRI); hot-molded briquettes. (a) Before loading DRI...

  12. 46 CFR 148.250 - Direct reduced iron (DRI); hot-molded briquettes.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Direct reduced iron (DRI); hot-molded briquettes. 148.250 Section 148.250 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... Materials § 148.250 Direct reduced iron (DRI); hot-molded briquettes. (a) Before loading DRI...

  13. Testing the nature of the supermassive black hole candidate in SgrA* with light curves and images of hot spots

    SciTech Connect

    Li, Zilong; Kong, Lingyao; Bambi, Cosimo

    2014-06-01

    General relativity makes clear predictions about the spacetime geometry around black holes. In the near future, new facilities will have the capability to explore the metric around SgrA*, the supermassive black hole candidate at the center of our Galaxy, and to open a new window to test the Kerr black hole hypothesis. In this paper, we compute light curves and images associated with compact emission regions (hot spots) orbiting around Kerr and non-Kerr black holes. We study how the analysis of the properties of the radiation emitted by a hot spot can be used to test the Kerr nature of SgrA*. We find that the sole observation of the hot spot light curve can at most constrain a combination of the black hole spin and of possible deviations from the Kerr solution. This happens because the same orbital frequency around a Kerr black hole can be found for a non-Kerr object with a different spin parameter. Second order corrections in the light curve due to the background geometry are typically too small to be identified. While the observation of the hot spot centroid track can potentially bound possible deviations from the Kerr solution, that is out of reach for the near future for the Very Large Telescope Interferometer instrument GRAVITY. The Kerr black hole hypothesis could really be tested in the case of the discovery of a radio pulsar in a compact orbit around SgrA*. Radio observations of such a pulsar would provide precise estimates of the mass and the spin of SgrA*, and the combination of these measurements (probing the weak field) with the hot spot light curve information (probing the strong field) may constrain/find possible deviations from the Kerr solution with quite good precision.

  14. Volcanic lava flow hot-spots monitoring from remote sensing data using neural networks

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Lombardo, Valerio

    2014-05-01

    Neural networks are an effective and well-established technique for the classification of satellite images. In addition, once well trained, they prove to be very fast in the application stage. Furthermore satellite remote sensing is a very effective and safe way to monitor volcanic eruptions in order to safeguard the environment and the people affected by such natural hazards. In our study a Back Propagation Neural Network was used for the recognition of thermal anomalies affecting hot lava pixels in multispectral remote sensed images. The network was trained using the three thermal channels of the Advanced Very High Resolution Radiometer (AVHHR) sensor as inputs and the corresponding values of heat flux, estimated using a two thermal component model, as reference outputs. As a case study the volcano Etna (Eastern Sicily, Italy) was chosen and the neural network was trained with a time series of AVHRR images belonging to an effusive eruption which took place during the month of July 2006, and validated on three independent data sets of images of the same eruption and on two relative to an eruption occurred the following month. Whilst for both night-time and day-time validation images the neural network identified the image pixels affected by hot lava with a 100% success rate, for the daytime images also adjacent pixels were included, apparently not interested by lava flow. Despite these performance differences under different illumination conditions, the proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or cloudy pixels, whose presence in multispectral images can often undermine the performance of traditional classification algorithms. Future work shall address application of the proposed method to data from different eruptions provided by the MODIS sensor aboard the Terra and Aqua

  15. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

    USGS Publications Warehouse

    López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.

    2014-01-01

    We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.

  16. Observations of IO hot-spots at coastal sites with the combination of a mobile CE- and LP- DOAS

    NASA Astrophysics Data System (ADS)

    Pöhler, D.; Horbanski, M.; Schmitt, S.; Anthofer, M.; Tschritter, J.; Platt, U.

    2012-04-01

    Reactive iodine species are emitted by seaweed in the intertidal zone of coastal sites during low tide. Beside their oxidation to iodine oxide (IO) and reduction of ozone, they act as precursors for particle formation and therefore have a potential impact on climate. A correlation between iodine oxide and particle formation could be observed in several field studies. However, modelling studies suggest that the so far observed mixing ratios of iodine oxide are too low to explain the observed particle formation. This may be caused by the so far applied measurement techniques which either average over a long measurement path of several km (LP-DOAS) or by immobile in-situ techniques (LIF or BB-CEAS) located typically few 10-100m of the intertidal area. Thus both techniques could not observe local "hot-spots", locations with locally elevated IO levels above the background with small spatial extend (e.g. above a source). We present a new developed Cavity Enhanced Differential Optical Absorption Spectroscopy (CE- DOAS) instrument for the direct identification of IO down to 1ppt. This technique gives the possibility to achieve long absorption light paths in a compact setup (<2.0m) and thus apply the DOAS principle to in-situ measurements. The resonator of the cavity is formed by two high reflective mirrors in the spectral window from 430-460nm. To avoid any interference of reactive iodine compounds with tubes, walls or filters, the resonator is open similar to a LP-DOAS setup. A blue LED is used as light source. The total instrument setup is relatively light (25kg) and can easily be located at different locations. Hence it is possible to setup this instrument directly over the macro algae in the intertidal area during low tide to investigate the IO spatial distribution and "hot-spots". As IO concentrations vary strongly due to different meteorological parameters, the CE-DOAS measurements are combined with LP-DOAS in the same area. Thus the combination allows deriving a

  17. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    PubMed

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (<0.5%) whilst road dust (47.3%), sinter production-cold phase (27.7%), coal combustion (16.8%), and raw iron production (8.2%) were resolved being sources of the coarse aerosol particles. The shape and elemental composition of size-segregated aerosol airborne-sampled by an airship aloft presumed air pollution sources helped to interpret the PMF solution. PMID:25260163

  18. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  19. Temperature Measurements on Hot Spots of Power Substations Utilizing Surface Acoustic Wave Sensors

    NASA Astrophysics Data System (ADS)

    Cavaco, M. A. M.; Benedet, M. E.; Neto, L. R.

    2011-12-01

    In several applications in the field of metrology, the direct connection of the sensor element with the respective signal-processing unit of the measurement system is not trivial. It can be mentioned, as an example, the measurement of hot points in electric power substations because of the high electrical potential. To solve that problem, two alternatives were studied, one using active surface acoustic wave (SAW) sensors and other using passive SAW tags. For the passive sensor, a SAW radio-frequency identification (RFID) temperature detector was used. That technology is widely applied for typical transport identification (grain transportation, road traffic control), but its application in the field of metrology is innovative. The variation in temperature makes an alteration in the characteristics of the piezoelectric material of the SAW matrix, changing mostly the resonance frequency. Using SAW-RFID, the problem of measuring temperature basically is directed to the identification of the frequency of resonance of the SAW. The use of active SAW sensors has been demonstrated to be much more satisfactory for the solution of such a problem because of the limitation in the range of the passive sensors.

  20. Juan Fernández Ridge (Nazca Plate): petrology and thermochronology of a rejuvenated hot spot trail

    NASA Astrophysics Data System (ADS)

    Reyes, J.; Lara, L. E.

    2012-04-01

    The Juan Fernández Ridge on the oceanic Nazca plate is thought to be a classic hot spot trail because of the apparent westward rejuvenation of the eruptive ages. However, geochronological data is still scarce and there are a few constrains to support this hypothesis like the ca. 9 Ma Ar-Ar age of the O'Higgins seamount (115 km from the Chile-Perú trench), some published K-Ar ages of ca. 3-4 Ma in Robinson Crusoe island (580 km from the trench) and ca. 1 Ma in Alejandro Selkirk (180 km further west). New reconnaissance K-Ar ages and specially the ongoing Ar-Ar dating effort in Robinson Crusoe define a ca. 1-4 Ma time span, which partially overlap with the age of Alejandro Selkirk, breaking the expected age progression given that the Nazca plate moves eastwards at ca. 6-8 cm/yr. In addition, new geological mapping shows a sharp unconformity between the older (ca. 4 Ma), strongly altered sequences and the more recent (ca. 1 Ma), post-erosional volcanic piles, where the proximal facies are still preserved. Petrological evidence also supports this evolution pattern. In fact, the partially altered older sequence is tholeiitic (Ba/Yb=12.70; La/Yb=8.12; Ba/Y=6.51; Ba/Zr=0.89). The shield stage (ca. 1-3 Ma) is transicional from tholeiitic to alkaline (Ba/Yb=18.07-8.32; La/Yb=4.59-9.84; Ba/Y=4.24-8.18; Ba/Zr=0.73-1.09) and the younger (ca. 1 Ma) is mostly alkaline (Ba/Yb=38.15; La/Yb=15.66; Ba/Y=20.27; Ba/Zr=2.31). A fixed deep-mantle plume origin for Pacific hot spots has been widely debated and concurrent phenomena arose as a possible explanation for non-linear age progressions and/or long-lived volcanic activity. In fact, intraplate regional tectonics, plume displacement, and mantle heterogeneities could be the main factor of the ridge architecture or the mask for a first-order linear trend. An ongoing mapping and dating effort is aimed to understand the evolution of the Juan Fernández Ridge, testing the main hypothesis. This research is supported by FONDECYT Project

  1. Hot Spot Induced Cenozoic Volcanism in the Upper Rajang Valley, Sarawak - Is Borneo Rifting?

    NASA Astrophysics Data System (ADS)

    Taib, N.

    2010-12-01

    The Upper Rajang Valley covers a large area in the northern interior of the island of Borneo, in the Malaysian state of Sarawak . It is underlain by the Cretaceous to Late Eocene deep to shallow marine sediments of the Rajang Group. Within this area are several Cenozoic volcanic edifices, which to date have been sparsely studied. Two distinct episodes of volcanism are recognized - the first, dated early Eocene, consists of K-rich basalts, and is represented by the Bukit Mersing volcanics, which were erupted conformably onto deep water turbidites of the Rajang Group. The second, far more extensive, is dated Pliocene to Quaternary, and is bimodal, consisting mainly of early dacite and rhyodacite tuffs, with a smaller amount of later basalt, forming several volcanic plateaus and massifs (Hose Mountains, Usun Apau, Linau-Balui, Nieuwenhuis Mountains and others). They lie unconformably over pre-Miocene sediments, the Linau-Balui basalts having been erupted onto Quaternary river terraces. Mantle-normalized REE and incompatible trace element spider plots reveal that the Bukit Mersing basalts have geochemical affinity with Oceanic Island Basalts (OIB) and rift basalts, being enriched in LREEs and Most Incompatible Elements, and no Eu anomaly. Preliminary trace element data for several basalt samples from Usun Apau also show Oceanic Island/Rift affinity. Bimodal volcanism is most often associated with rift environments. Efforts are being made to radiometrically date the volcanics, in part to determine the possibility of future eruptions. The Upper Rajang Valley is remote, covered in tropical rainforest and is very sparsely populated. At this time, there is no information concerning signs of imminent volcanism, such as hot springs and microseismicity.

  2. Mutual Occultation Observations of Volcanic Hot Spots on Io in 2015

    NASA Astrophysics Data System (ADS)

    Howell, Robert R.; Spencer, John R.; Rathbun, Julie A.; Goguen, Jay D.

    2015-11-01

    During spring 2015 we observed a series of mutual occultations and eclipses of Io using the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). Mutual event lightcurves were obtained on 4 Feb., 18 Feb., 15 Mar., and 22 Mar. in the Lp (3.8 micron) filter, with observations on 11 Feb. and on 8 and 10 Mar. lost to weather. Such lightcurves can potentially provide the highest spatial resolution observations of Io's volcanic hotspots possible from ground-based observations. The geometry of the recent events was particularly favorable for studies of the Loki Patera region, but unfortunately Loki remained relatively faint during the 2015 series. An eruption of Pillan was observed on 18 Feb., and is discussed in more detail by de Pater et al. (2015) at this meeting. While the relative faintness of Loki during the recent series limits the value of the new observations for studying that source, recent improvements to the Galilean satellite ephemerides also allow us to significantly improve the analysis of previous Loki occultations from 1985, 1991, 1997, and 2003. In that earlier work it was necessary to allow adjustable offsets in the relative position of the satellites to accommodate ephemeris uncertainty. That in turn limited the accuracy with which hot regions within Loki Patera could be fixed, and limited the ability to test different models for Patera activity. Initial analysis of the most recent event series indicates that such arbitrary adjustments are no longer necessary. We will present the occultation lightcurves for the most recent series and the constraints on the location of Loki activity provided by those observations and from earlier occultation series.

  3. Identification of hot spots of DNA methylation in the adult male adrenal in response to in utero exposure to the ubiquitous endocrine disruptor plasticizer di-(2-ethylhexyl) phthalate.

    PubMed

    Martinez-Arguelles, D B; Papadopoulos, V

    2015-01-01

    Exposure to environmental toxicants during fetal development alters gene expression and promotes disease later in life. Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer widely used for the manufacturing of consumer products. Exposure to DEHP has been associated with obesity, asthma, and low T levels. In utero exposure of pregnant dams to DEHP from gestational day 14 until birth resulted in reduced levels of serum T and aldosterone in the adult male offspring. Because DEHP is rapidly cleared from the body, the effects observed in the adult are likely epigenetic in origin. Under the same experimental conditions, we used reduced-representation bisulfite sequencing to assess changes in DNA methylation. We identified hot spots of DNA methylation changes primarily within CpG islands followed by shelf regions of the genome known to control regional gene expression. We also identified epigenomic areas responsive to exposure to environmental levels of DEHP and found the chromosomal region that houses genes controlling immune responsiveness to be a primary target of DEHP. These data suggest that DEHP phthalate exposure early in life induces epigenetic changes that may be linked to altered gene expression and function in the adult. PMID:25330100

  4. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein-Protein Interaction in Solution and Determination of Binding Energy Hot Spots.

    PubMed

    Wang, Yan; Yao, Huili; Cheng, Yuan; Lovell, Scott; Battaile, Kevin P; Midaugh, C Russell; Rivera, Mario

    2015-10-13

    Mobilization of iron stored in the interior cavity of BfrB requires electron transfer from the [2Fe−2S] cluster in Bfd to the core iron in BfrB. A crystal structure of the Pseudomonas aeruginosa BfrB:Bfd complex revealed that BfrB can bind up to 12 Bfd molecules at 12 structurally identical binding sites, placing the [2Fe−2S] cluster of each Bfd immediately above a heme group in BfrB [Yao, H., et al. (2012) J. Am. Chem. Soc., 134, 13470−13481]. We report here study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface plasmon resonance and isothermal titration calorimetry as well as determining the binding energy hot spots at the protein−protein interaction interface. The results show that the 12 Bfd-binding sites on BfrB are equivalent and independent and that the protein−protein association at each of these sites is driven entropically and is characterized by a dissociation constant (Kd) of approximately 3 μM. Determination of the binding energy hot spots was carried out by replacing certain residues that comprise the protein−protein interface with alanine and by evaluating the effect of the mutation on Kd and on the efficiency of core iron mobilization from BfrB. The results identified hot spot residues in both proteins [LB 68, EA 81, and EA 85 in BfrB (superscript for residue number and subscript for chain) and Y2 and L5 in Bfd] that network at the interface to produce a highly complementary hot region for the interaction. The hot spot residues are conserved in the amino acid sequences of Bfr and Bfd proteins from a number of Gram-negative pathogens, indicating that the BfrB:Bfd interaction is of widespread significance in bacterial iron metabolism. PMID:26368531

  5. ACCRETION TORQUES AND MOTION OF THE HOT SPOT ON THE ACCRETING MILLISECOND PULSAR XTE J1807-294

    SciTech Connect

    Patruno, Alessandro; Wijnands, R.; Van der Klis, Michiel; Hartman, Jacob M.; Chakrabarty, Deepto

    2010-07-10

    We present a coherent timing analysis of the 2003 outburst of the accreting millisecond pulsar (AMXP) XTE J1807-294. We find a 95% confidence interval for the pulse frequency derivative of (+0.7, + 4.7) x 10{sup -14} Hz s{sup -1} and (-0.6, + 3.8) x 10{sup -14} Hz s{sup -1} for the fundamental and second harmonics, respectively. The sinusoidal fractional amplitudes of the pulsations are the highest observed among AMXPs and can reach values of up to 27% (2.5-30 keV). The pulse arrival time residuals of the fundamental frequency follow a linear anti-correlation with the fractional amplitudes that suggests hot spot motion both in longitude and latitude over the surface of the neutron star. An anti-correlation between residuals and X-ray flux suggests an influence of the accretion rate on pulse phase and casts doubts on the interpretation of pulse frequency derivatives in terms of changes of spin rates and torques on the neutron star.

  6. Neighborhood-level hot spot maps to inform delivery of primary care and allocation of social resources.

    PubMed

    Hardt, Nancy S; Muhamed, Shehzad; Das, Rajeeb; Estrella, Roland; Roth, Jeffrey

    2013-01-01

    Challenges to health care access in the US are forcing local policymakers and service delivery systems to find novel ways to address the shortage of primary care clinicians. The uninsured and underinsured face the greatest obstacles in accessing services. Geographic information systems mapping software was used to illustrate health disparities in Alachua County, FL; galvanize a community response; and direct reallocation of resources. The University of Florida Family Data Center created "hot spot" density maps of important health and social indicators to highlight the location of disparities at the neighborhood level. Maps were produced for Medicaid births, teen births, low birth weight, domestic violence incidents, child maltreatment reports, unexcused school absences, and juvenile justice referrals. Maps were widely shared with community partners, including local elected officials, law enforcement, educators, child welfare agencies, health care providers, and service organizations. This data sharing resulted in advocacy efforts to bring resources to the greatest-need neighborhoods in the county. Novel public-private partnerships were forged between the local library district, children and family service providers, and university administrators. Two major changes are detailed: a family resource center built in the neighborhood of greatest need and a mobile clinic staffed by physicians, nurses, physician assistants, health educators, and student and faculty volunteers. Density maps have several advantages. They require minimal explanation. Anyone familiar with local geographic features can quickly identify locations displaying health disparities. Personalizing health disparities by locating them geographically allows a community to translate data to action to improve health care access. PMID:23596361

  7. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Grimaud, Jean-Louis; Rouby, Delphine; Beauvais, Anicet; Christophoul, Frédéric

    2016-03-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction of two physiographic configurations of West Africa in the Paleogene. Those reconstructions show that the geometry of the drainage is stabilized by the late early Oligocene (29 Ma) and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland morphoclimatic record to offshore sedimentation since that time, particularly in the case of the Niger catchment—delta system. Mid-Eocene paleogeography reveals the antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a marginal upwarp forming a continental divide preexisted early Oligocene connection of the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage rearrangement was primarily enhanced by the topographic growth of the Hoggar hot spot swell and caused a stratigraphic turnover along the Equatorial margin of West Africa.

  8. Targeted Next-Generation Sequencing Reveals Hot Spots and Doubly Heterozygous Mutations in Chinese Patients with Familial Cardiomyopathy

    PubMed Central

    Zhao, Yue; Feng, Yue; Zhang, Yun-Mei; Ding, Xiao-Xue; Song, Yu-Zhu; Zhang, A-Mei; Liu, Li; Zhang, Hong; Ding, Jia-Huan; Xia, Xue-Shan

    2015-01-01

    As a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen for pathogenic mutations using Sanger sequencing. In the present study, three probands, one with familial hypertrophic cardiomyopathy (FHCM) and two with familial dilated cardiomyopathy (FDCM), were recruited together with their respective family members. Using next-generation sequencing technology (NGS), 24 genes frequently known to be related to inherited cardiomyopathy were screened. Two hot spots (TNNI3-p.Arg145Gly, and LMNA-p.Arg190Trp) and double (LMNA-p.Arg190Trp plus MYH7-p.Arg1045His) heterozygous mutations were found to be highly correlated with familial cardiomyopathy. FDCM patients with doubly heterozygous mutations show a notably severe phenotype as we could confirm in our study; this indicates that the double mutations had a dose effect. In addition, it is proposed that genetic testing using NGS technology can be used as a cost-effective screening tool and help guide the treatment of patients with familial cardiomyopathy particularly regarding the risk of family members who are clinically asymptomatic. PMID:26199943

  9. Saturation scanning of ubiquitin variants reveals a common hot spot for binding to USP2 and USP21.

    PubMed

    Leung, Isabel; Dekel, Ayelet; Shifman, Julia M; Sidhu, Sachdev S

    2016-08-01

    A detailed understanding of the molecular mechanisms whereby ubiquitin (Ub) recognizes enzymes in the Ub proteasome system is crucial for understanding the biological function of Ub. Many structures of Ub complexes have been solved and, in most cases, reveal a large structural epitope on a common face of the Ub molecule. However, owing to the generally weak nature of these interactions, it has been difficult to map in detail the functional contributions of individual Ub side chains to affinity and specificity. Here we took advantage of Ub variants (Ubvs) that bind tightly to particular Ub-specific proteases (USPs) and used phage display and saturation scanning mutagenesis to comprehensively map functional epitopes within the structural epitopes. We found that Ubvs that bind to USP2 or USP21 contain a remarkably similar core functional epitope, or "hot spot," consisting mainly of positions that are conserved as the wild type sequence, but also some positions that prefer mutant sequences. The Ubv core functional epitope contacts residues that are conserved in the human USP family, and thus it is likely important for the interactions of Ub across many family members. PMID:27436899

  10. Septic systems as hot-spots of pollutants in the environment: Fate and mass balance of micropollutants in septic drainfields.

    PubMed

    Yang, Yun-Ya; Toor, Gurpal S; Wilson, P Chris; Williams, Clinton F

    2016-10-01

    Septic systems, a common type of onsite wastewater treatment systems, can be an important source of micropollutants in the environment. We investigated the fate and mass balance of 17 micropollutants, including wastewater markers, hormones, pharmaceuticals and personal care products (PPCPs) in the drainfield of a septic system. Drainfields were replicated in lysimeters (1.5m length, 0.9m width, 0.9m height) and managed similar to the field practice. In each lysimeter, a drip line dispersed 9L of septic tank effluent (STE) per day (equivalent to 32.29L/m(2) per day). Fourteen micropollutants in the STE and 12 in the leachate from drainfields were detected over eight months. Concentrations of most micropollutants in the leachate were low (<200ng/L) when compared to STE because >85% of the added micropollutants except for sucralose were attenuated in the drainfield. We discovered that sorption was the key mechanism for retention of carbamazepine and partially for sulfamethoxazole, whereas microbial degradation likely attenuated acetaminophen in the drainfield. This data suggests that sorption and microbial degradation limited transport of micropollutants from the drainfields. However, the leaching of small amounts of micropollutants indicate that septic systems are hot-spots of micropollutants in the environment and a better understanding of micropollutants in septic systems is needed to protect groundwater quality. PMID:27312276

  11. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots.

    PubMed

    Zhao, Fusheng; Zeng, Jianbo; Parvez Arnob, Md Masud; Sun, Po; Qi, Ji; Motwani, Pratik; Gheewala, Mufaddal; Li, Chien-Hung; Paterson, Andrew; Strych, Uli; Raja, Balakrishnan; Willson, Richard C; Wolfe, John C; Lee, T Randall; Shih, Wei-Chuan

    2014-07-21

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability. PMID:24926835

  12. Maternal risk factors associated with increased dioxin concentrations in breast milk in a hot spot of dioxin contamination in Vietnam.

    PubMed

    Anh, Nguyen Thi Nguyet; Nishijo, Muneko; Tai, Pham The; Maruzeni, Shoko; Morikawa, Yuko; Anh, Tran Hai; Van Luong, Hoang; Dam, Pham Minh; Nakagawa, Hideaki; Son, Le Ke; Nishijo, Hisao

    2014-01-01

    This study looked to identify determinants of exposure to dioxin in breast milk from breast-feeding women in a hot spot of dioxin exposure in Vietnam. Breast milk was collected from 140 mothers 1 month after delivery. The risk factors investigated included length of residency, drinking of well water and the frequency of animal food consumption. Cluster analysis was performed to identify dietary patterns of fish and meat portions, fish variety and egg variety. Residency, age and parity were clearly associated with increased dioxin levels. Drinking well water and the consumption of marine crab and shrimps were related to higher levels of furans in breast milk. The consumption of quail eggs also appeared to be associated with increased levels of some dioxin isomers in this area. Some mothers who ate no or less meat than fish and mothers who consumed more freshwater fish than marine fish had lower levels of dioxins in their breast milk. However, the type of water and the eating habits of mothers contributed only partly to the increased dioxin levels in their breast milk; the length of residency was the most important risk factor associated with increased dioxin body burdens of mothers. PMID:24149970

  13. From science into practice: modelling hot spots for corporate flood risk and emergency management with high-resolution digital terrain data

    NASA Astrophysics Data System (ADS)

    Pfurtscheller, Clemens; Vetter, Michael; Werthmann, Markus

    2010-05-01

    In times of increasing scarcity of private or public resources and uncertain changes in natural environment caused by climate variations, prevention and risk management against floods and coherent processes in mountainous regions, like debris flows or log jams, should be faced as a main challenge for globalised enterprises whose production facilities are located in flood-prone areas. From an entrepreneurial perspective, vulnerability of production facilities which causes restrictions or a total termination of production processes has to be optimised by means of cost-benefit-principles. Modern production enterprises are subject to globalisation and accompanying aspects, like short order and delivery periods, interlinking production processes and just-in-time manufacturing, so a breakdown of production provokes substantial financial impacts, unemployment and a decline of gross regional product. The aim of the presented project is to identify weak and critical points of the corporate emergency planning ("hot spots") and to assess possible losses triggered by mountainous flood processes using high-resolution digital terrain models (DTM) from airborne LiDAR (ALS). We derive flood-hot spots and model critical locations where the risk of natural hazards is very high. To model those hot spots a flood simulation based on an ALS-DTM has to be calculated. Based on that flood simulation, the flood heights of the overflowed locations which are lower than a threshold are mapped as flood-hot-spots. Then the corporate critical infrastructure, e.g. production facilities or lifelines, which are affected by the flooding, can be figured out. After the identification of hot spots and possible damage potential, the implementation of the results into corporate risk and emergency management guarantees the transdisciplinary approach involving stakeholders, risk and safety management officers and corporate fire brigade. Thus, the interdisciplinary analysis, including remote sensing

  14. Hot Spots and Hot Moments of Methylmercury Production Associated With Agricultural and Non-agricultural Wetlands of the Yolo Bypass Wildlife Area, California

    NASA Astrophysics Data System (ADS)

    Marvin-Dipasquale, M.; Windham-Myers, L.; Agee, J. L.; Kakouros, E.; Cox, M. H.; Fleck, J.; Alpers, C. N.; Stephenson, M.

    2008-12-01

    The Yolo Bypass Wildlife Area (YBWA) is part of the larger Yolo Bypass floodwater protection zone associated with the Sacramento River and the Sacramento-San Joaquin Delta, in California. While mercury contamination is widespread throughout the region due to historic mining practices, the Yolo Bypass is responsible for a high proportion of the aqueous methylmercury (MeHg) entering the Delta, and biota from the Yolo Bypass are particularly elevated in toxic MeHg. Land use in the YBWA includes seasonally flooded agricultural fields (white rice, wild rice, fallow fields), and permanently and seasonally flooded non-agricultural wetlands used for resident and migratory waterfowl. Mercury biogeochemistry was examined in 0-2 cm surface sediment, as a function of habitat type, wetland management, and agricultural practices during the 2007-08 crop year. In permanently flooded wetlands, MeHg concentrations varied within a narrow range (ca. 0.5-1.5 ng/g dry wt) throughout the study period. In contrast, the three types of agricultural fields had higher MeHg concentrations throughout the rice-growing season (June-Sept; ca. 1.5-3.5 ng/g), and exhibited the highest levels (ca. 3.3-6.3 ng/g) in the post-harvest winter period (Dec-Feb). Further, naturally dried sediment, sampled during July '08 from post-harvest drained fallow agricultural fields (prior to reflooding) had MeHg concentrations that were also quite elevated (3.1 +/- 1.5 ng/g). This suggests that the initial elevated concentrations of overlying water MeHg, sometimes measured soon after flooding previously dried fields, may be related to the release of MeHg formed during the previous wet season and trapped in dried sediment, as opposed to being MeHg newly produced by bacteria upon soil rewetting. These results indicate that the 'hot spots and hot moments' associated with MeHg production in this system are linked to hydrologic manipulations (wetting and drying) in the agricultural fields, and that the practice of post

  15. Coal-Tar-Sealcoated Parking Lots: "Hot spots" of PAHs and N-heterocycles to Urban Streams and Lakes Result in "Hot Moments" of Toxicity

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Van Metre, P. C.; Ingersoll, C.; Kunz, J. L.

    2014-12-01

    Coal-tar (CT) sealcoat, a potent source of polycyclic aromatic hydrocarbons (PAHs) and N-heterocycles, is applied to asphalt pavement of parking lots and driveways in many parts of the U.S. and Canada every 1 to 5 years. We measured the chemistry and toxicity of unfiltered runoff resulting from rain events simulated from 5 hours to 111 days after application of CT or asphalt (AS) sealcoat. PAHs and N-heterocycles were measured by GC/EIMS. Toxicity tests were done with Ceriodaphnia dubia and Pimephales promelas exposed 48 hours to undiluted and diluted (1 part runoff 9 parts control water) runoff under ambient lighting. Organisms were then transferred to fresh control water and subjected to a 4-hour pulse of ultraviolet radiation (UVR). Concentrations of 2- and 3-ringed PAHs and N-heterocycles in CT runoff, initially high (sum of 6 PAHs, 220 μg/L; sum of 7 N-heterocycles, 904 μg/L), decreased rapidly, whereas concentrations of 4-, 5- and 6-ringed PAHs more than doubled by 7 days after application (sum of 9 PAHs, 378 μg/L) and remained elevated 111 days after application (sum of 9 PAHs, 283 μg/L). Concentrations of PAHs and N-heterocycles in AS sealcoated runoff followed a similar pattern, but were ~10 times lower than those in CT runoff; concentrations in a sample of runoff from unsealed asphalt pavement were near or less than the detection limit. Organisms exposed to samples of undiluted CT-runoff collected during the 36 days following CT sealcoat application (no UVR exposure) experienced 100% mortality. Mortality (as much as 100%) of organisms exposed to the 10% dilution of CT runoff or to undiluted AS runoff occurred only with UVR; mortality of organisms exposed to the 10% solution of AS runoff and UVR was minimal. Results demonstrate that freshly CT-sealed parking lots and driveways are "hot spots" of PAH and N-heterocycle contamination and that prolonged "hot moments" of toxicity follow CT sealcoat application.

  16. Linewidth dependence of coherent terahertz emission from Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks in the hot-spot regime

    NASA Astrophysics Data System (ADS)

    Li, Mengyue; Yuan, Jie; Kinev, Nickolay; Li, Jun; Gross, Boris; Guénon, Stefan; Ishii, Akira; Hirata, Kazuto; Hatano, Takeshi; Koelle, Dieter; Kleiner, Reinhold; Koshelets, Valery P.; Wang, Huabing; Wu, Peiheng

    2012-08-01

    We report on measurements of the linewidth Δf of terahertz radiation emitted from intrinsic Josephson junction stacks, using a Nb/AlN/NbN integrated receiver for detection. Previous resolution-limited measurements indicated that Δf may be below 1 GHz—much smaller than expected from a purely cavity-induced synchronization. While at low bias we found Δf to be not smaller than ˜500 MHz, at high bias, where a hot spot coexists with regions which are still superconducting, Δf turned out to be as narrow as 23 MHz. We attribute this to the hot spot acting as a synchronizing element. Δf decreases with increasing bath temperature, a behavior reminiscent of motional narrowing in NMR or electron spin resonance (ESR), but hard to explain in standard electrodynamic models of Josephson junctions.

  17. A cancer-predisposing "hot spot" mutation of the fumarase gene creates a dominant negative protein.

    PubMed

    Lorenzato, Annalisa; Olivero, Martina; Perro, Mario; Brière, Jean Jacques; Rustin, Pierre; Di Renzo, Maria Flavia

    2008-02-15

    The Fumarase (Fumarate Hydratase, FH) is a tumor suppressor gene whose germline heterozygous mutations predispose to hereditary leiomyomatosis and renal cell cancer (HLRCC). The FH gene encodes an enzyme of the Krebs cycle, functioning as a homotetramer and catalyzing the hydration of fumarate to malate. Among the numerous FH mutations reported so far, the R190H missense mutation is the most frequent in HLRCC patients. Here we show the functional analyses of the R190H, in comparison to the better characterized E319Q mutation. We first expressed wild-type and mutated proteins in FH deficient human skin fibroblasts, using lentiviral vectors. The wild-type transgene was able to restore the FH enzymatic activity in cells, while the R190H- and E319Q-FH were not. More interestingly, when the same transgenes were expressed in normal, FH-proficient cells, only the R190H-FH reduced the endogenous FH enzymatic activity. By enforcing the expression of equal amount of wild-type and R190H-FH in the same cell, we showed that the mutated FH protein directly inhibited enzymatic activity by nearly abrogating the FH homotetramer formation. These data demonstrate the dominant negative effect of the R190H missense mutation in the FH gene and suggest that the FH tumor-suppressing activity might be impaired in cells carrying a heterozygous mutation. PMID:17960613

  18. Hot spots of genetic diversity descended from multiple Pleistocene refugia in an alpine ungulate.

    PubMed

    Shafer, Aaron B A; Côté, Steeve D; Coltman, David W

    2011-01-01

    Species that inhabit naturally fragmented environments are expected to be spatially structured and exhibit reduced genetic diversity at the periphery of their range. Patterns of differentiation may also reflect historical processes such as recolonization from glacial refugia. We examined the relative importance of these factors in shaping the spatial patterns of genetic differentiation across the range of an alpine specialist, the North American mountain goat (Oreamnos americanus). Contrary to fossil evidence that suggests a single southern refugium, we detected evidence for additional refugia in northern British Columbia and the Alaskan coast using both mitochondrial and microsatellite DNA. A core area of elevated genetic diversity characterized both regions, and molecular dating suggested a recent Pleistocene split was followed by demographic expansion. Across their range, mountain goats were highly genetically structured and displayed the expected pattern of declining diversity toward the periphery. Gene flow was high within contiguous mountain ranges, but cross-assignments paradoxically suggest that long-distance contemporary dispersal movements are not uncommon. These results improve our understanding of how historical vicariance and contemporary fragmentation influence population differentiation, and have implications for conserving the adaptive potential of alpine populations and habitat. PMID:20731714

  19. The Satah Mountain and Baldface Mountain volcanic fields: Pleistocene hot spot volcanism in the Anahim Volcanic Belt, west-central British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Kuehn, Christian; Guest, Bernard; Russell, James K.; Benowitz, Jeff A.

    2015-03-01

    The Satah Mountain and Baldface Mountain volcanic fields (SMVF, BMVF) comprise more than three dozen small volcanic centers and erosional remnants thereof. These fields are located in the Chilcotin Highland of west-central British Columbia, Canada, and are spatially associated with the Anahim Volcanic Belt (AVB), a linear feature of alkaline to peralkaline plutonic and volcanic centers of Miocene to Holocene ages. The AVB has been postulated to be the track of a hot spot passing beneath the westward moving Cordilleran lithosphere. We test the AVB hot spot model by applying whole-rock 40Ar/39Ar geochronology ( n = 24) and geochemistry. Whole-rock chemical compositions of volcanic rock samples ( n = 59) from these two fields suggest a strong geochemical affinity with the nearby Itcha Range shield volcano; however, SMVF and BMVF centers are mostly small in volume (<1 km3) and differ in composition from one another, even where they are in close spatial proximity. Trace element and REE patterns of mafic AVB lavas are similar to ocean island basalts (OIB), suggesting a mantle source for these lavas. The age ranges for the SMVF ( n = 11; ~2.21 to ~1.43 Ma) and BMVF ( n = 7; ~3.91 to ~0.91 Ma) are largely coeval with the Itcha Range. The distribution of volcanoes in these two volcanic fields is potentially consistent with the postulated AVB hot spot track. Eruption rates in the SMVF were high enough to build an elongated ridge that deviates from the E-W trend of the AVB by almost 90°. This deviation might reflect the mechanisms and processes facilitating magma generation and ascent through the lithosphere in this tectonically complex region and may also indicate interaction of the potential hot spot with (pre)existing fracture systems in vicinity of the Itcha Range.

  20. Plasmon Mapping in Metallic Nanostructures and its Application to Single Molecule Surface Enhanced Raman Scattering: Imaging Electromagnetic Hot-Spots and Analyte Location

    SciTech Connect

    Camden, Jon P

    2013-07-16

    A major component of this proposal is to elucidate the connection between optical and electron excitation of plasmon modes in metallic nanostructures. These accomplishments are reported: developed a routine protocol for obtaining spatially resolved, low energy EELS spectra, and resonance Rayleigh scattering spectra from the same nanostructures.; correlated optical scattering spectra and plasmon maps obtained using STEM/EELS.; and imaged electromagnetic hot spots responsible for single-molecule surface-enhanced Raman scattering (SMSERS).

  1. Hot Spot and THz Wave Generation in Bi2Sr2CaCu2O8 Intrinsic Josephson Junction Stacks

    NASA Astrophysics Data System (ADS)

    Kleiner, Reinhold

    2013-03-01

    Stacks of intrinsic Josephson junctions made of the high temperature superconductor Bi2Sr2CaCu2O8 have been shown to emit coherent radiation at THz frequencies. Emission is observed both in a low bias regime and a high bias regime. While at low bias the temperature of the stack is close to the bath temperature, at high bias a hot spot and a standing wave, formed in the ``cold'' part of the stack, coexist. THz radiation is very stable in this regime, exhibiting a linewidth which is much smaller than expected from a purely cavity-induced synchronization mechanism. We investigate the interaction of hot spots and THz waves using a combination of transport measurement, direct electromagnetic wave detection and low temperature scanning laser microscopy (LTSLM). In this talk recent developments will be presented, with a focus on the mechanism of hot spot formation. In collaboration with B. Gross, S. Guénon, M. Y. Li, J. Yuan, N. Kinev, J. Li, A. Ishii, K. Hirata, T. Hatano, R. G. Mints, D. Koelle, V. P. Koshelets, H. B. Wang and P. H. Wu.

  2. Mobile Launch Platform Vehicle Assembly Building Area (SWMU 056) Hot Spot 3 Bioremediation Interim Measures Work Plan, Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Whitney L. Morrison; Daprato, Rebecca C.

    2016-01-01

    This Interim Measures Work Plan (IMWP) presents an approach and design for the remediation of chlorinated volatile organic compound (CVOC) groundwater impacts using bioremediation (biostimulation and bioaugmentation) in Hot Spot 3, which is defined by the area where CVOC (trichloroethene [TCE], cis-1,2-dichloroethene [cDCE], and vinyl chloride [VC]) concentrations are greater than 10 times their respective Florida Department of Environmental Protection (FDEP) Natural Attenuation Default Concentration (NADC) [10xNADC] near the western Mobile Launch Platform (MLP) structure. The IM treatment area is the Hot Spot 3 area, which is approximately 0.07 acres and extends from approximately 6 to 22 and 41 to 55 feet below land surface (ft BLS). Within Hot Spot 3, a source zone (SZ; area with TCE concentrations greater than 1% solubility [11,000 micrograms per liter (micrograms/L)]) was delineated and is approximately 0.02 acres and extends from approximately 6 to 16 and 41 to 50 ft BLS.

  3. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy.

    PubMed

    Nakamura, Akinori; Fueki, Noboru; Shiba, Naoko; Motoki, Hirohiko; Miyazaki, Daigo; Nishizawa, Hitomi; Echigoya, Yusuke; Yokota, Toshifumi; Aoki, Yoshitsugu; Takeda, Shin'ichi

    2016-07-01

    Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy. The patient showed a slight decrease in cardiac function at the age of 21 years and was administered a β-blocker, but there was no muscle involvement even at the age of 27 years. A deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene was detected, and dystrophin protein expression was ∼15% that of control level. We propose that in-frame deletion of exons 3-9 may produce a functional protein, and that multiexon skipping therapy targeting these exons may be feasible for severe dystrophic patients with a mutation in the 5' hot spot of the DMD gene. PMID:27009627

  4. Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zeng, Jianbo; Parvez Arnob, Md Masud; Sun, Po; Qi, Ji; Motwani, Pratik; Gheewala, Mufaddal; Li, Chien-Hung; Paterson, Andrew; Strych, Uli; Raja, Balakrishnan; Willson, Richard C.; Wolfe, John C.; Lee, T. Randall; Shih, Wei-Chuan

    2014-06-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks not only possess large specific surface area but also high-density, internal plasmonic ``hot-spots'' with impressive electric field enhancement, which greatly promotes plasmon-matter interactions as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of nanoporous gold disks can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. Furthermore, nanoporous gold disks can be fabricated as either bound on a surface or as non-aggregating colloidal suspension with high stability.Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to the enhancement of local electric field by light-excited surface plasmons, i.e., collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3-dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the

  5. Dynamics of a microbial community associated with manure hot spots as revealed by phospholipid fatty acid analyses.

    PubMed Central

    Frostegård, A; Petersen, S O; Bååth, E; Nielsen, T H

    1997-01-01

    Microbial community dynamics associated with manure hot spots were studied by using a model system consisting of a gel-stabilized mixture of soil and manure, placed between layers of soil, during a 3-week incubation period. The microbial biomass, measured as the total amount of phospholipid fatty acids (PLFA), had doubled within a 2-mm distance from the soil-manure interface after 3 days. Principal-component analyses demonstrated that this increase was accompanied by reproducible changes in the composition of PLFA, indicating changes in the microbial community structure. The effect of the manure was strongest in the 2-mm-thick soil layer closest to the interface, in which the PLFA composition was statistically significantly different (P < 0.05) from that of the unaffected soil layers throughout the incubation period. An effect was also observed in the soil layer 2 to 4 mm from the interface. The changes in microbial biomass and community structure were mainly attributed to the diffusion of dissolved organic carbon from the manure. During the initial period of microbial growth, PLFA, which were already more abundant in the manure than in the soil, increased in the manure core and in the 2-mm soil layer closest to the interface. After day 3, the PLFA composition of these layers gradually became more similar to that of the soil. The dynamics of individual PLFA suggested that both taxonomic and physiological changes occurred during growth. Examples of the latter were decreases in the ratios of 16:1 omega 7t to 16:1 omega 7c and of cyclopropyl fatty acids to their respective precursors, indicating a more active bacterial community. An inverse relationship between bacterial PLFA and the eucaryotic 20:4 PLFA (arachidonic acid) suggested that grazing was important. PMID:9172342

  6. Premutation huntingtin allele adopts a non-B conformation and contains a hot spot for DNA damage

    SciTech Connect

    Jarem, Daniel A.; Delaney, Sarah

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer First structural and thermodynamic analysis of premutation allele of HD. Black-Right-Pointing-Pointer Premutation allele of HD adopts a stem-loop non-B conformation. Black-Right-Pointing-Pointer Healthy and premutation length stem-loops are hyper-susceptible to oxidative damage. Black-Right-Pointing-Pointer Stability of stem-loop structures increases linearly with repeat length. Black-Right-Pointing-Pointer Thermodynamic stability, not the ability to adopt non-B conformation, distinguishes DNA prone to expansion from stable DNA. -- Abstract: The expansion of a CAG trinucleotide repeat (TNR) sequence has been linked to several neurological disorders, for example, Huntington's disease (HD). In HD, healthy individuals have 5-35 CAG repeats. Those with 36-39 repeats have the premutation allele, which is known to be prone to expansion. In the disease state, greater than 40 repeats are present. Interestingly, the formation of non-B DNA conformations by the TNR sequence is proposed to contribute to the expansion. Here we provide the first structural and thermodynamic analysis of a premutation length TNR sequence. Using chemical probes of nucleobase accessibility, we found that similar to (CAG){sub 10}, the premutation length sequence (CAG){sub 36} forms a stem-loop hairpin and contains a hot spot for DNA damage. Additionally, calorimetric analysis of a series of (CAG){sub n} sequences, that includes repeat tracts in both the healthy and premutation ranges, reveal that thermodynamic stability increases linearly with the number of repeats. Based on these data, we propose that while non-B conformations can be formed by TNR tracts found in both the healthy and premutation allele, only sequences containing at least 36 repeats have sufficient thermodynamic stability to contribute to expansion.

  7. Local diversity hot spots in the Middle Miocene of the Central Paratethys: influence of environment and sampling

    NASA Astrophysics Data System (ADS)

    Nawrot, Rafal; Zuschin, Martin; Harzhauser, Mathias; Kroh, Andreas; Mandic, Oleg

    2015-04-01

    Species richness captured by historical fossil inventories is a complex function of true local diversity, degree of outcrop-scale heterogeneity in species composition and sampling intensity. Disentangling these factors is hindered by the fact that the 'systematists follow the fossils' (Raup, 1977) and thus non-uniform research effort may both drive apparent diversity patterns and follow the actual presence of highly fossiliferous strata. The molluscan fauna of Lapugiu de Sus (Hunedoara District, Romania) constitutes one of the most diverse Early Badenian (Langhian) assemblages of the Paratethys Sea, with almost one thousand species reported during 170 years of extensive studies. We evaluate whether this exceptional richness reflects the actual diversity hot spot or just a long history of fossil-collecting by comparing the fauna of Lapugiu with other Paratethyan molluscan lagerstätten of similar age. The literature-derived species lists for each section were contrasted with independent abundance data based on a standardized sampling protocol (42 samples, 24,000 specimens, and 530 species from six localities). Although individual samples from other localities can exhibit comparable diversity levels, richness estimates for samples from Lapugiu are all consistently high, reflecting increasing evenness in more offshore depositional settings. This translates to the highest diversity at the outcrop scale when all samples are pooled. In contrast to other localities, however, for which data from historical inventories corresponds well to our quantitative estimates of total richness, the number of species described from Lapugiu is much higher than expected. This excessive richness likely reflects the 'Bonanza Effect' (sensu Dunhill et al., 2012), where uniformly species-rich deposits were attracting intensive taxonomic studies. The strong positive feedback between palaeontological sampling effort and fossil diversity may thus greatly overestimate the true differences in

  8. Multi-Scale Multi-physics Methods Development for the Calculation of Hot-Spots in the NGNP

    SciTech Connect

    Downar, Thomas; Seker, Volkan

    2013-04-30

    Radioactive gaseous fission products are released out of the fuel element at a significantly higher rate when the fuel temperature exceeds 1600°C in high-temperature gas-cooled reactors (HTGRs). Therefore, it is of paramount importance to accurately predict the peak fuel temperature during all operational and design-basis accident conditions. The current methods used to predict the peak fuel temperature in HTGRs, such as the Next-Generation Nuclear Plant (NGNP), estimate the average fuel temperature in a computational mesh modeling hundreds of fuel pebbles or a fuel assembly in a pebble-bed reactor (PBR) or prismatic block type reactor (PMR), respectively. Experiments conducted in operating HTGRs indicate considerable uncertainty in the current methods and correlations used to predict actual temperatures. The objective of this project is to improve the accuracy in the prediction of local "hot" spots by developing multi-scale, multi-physics methods and implementing them within the framework of established codes used for NGNP analysis.The multi-scale approach which this project will implement begins with defining suitable scales for a physical and mathematical model and then deriving and applying the appropriate boundary conditions between scales. The macro scale is the greatest length that describes the entire reactor, whereas the meso scale models only a fuel block in a prismatic reactor and ten to hundreds of pebbles in a pebble bed reactor. The smallest scale is the micro scale--the level of a fuel kernel of the pebble in a PBR and fuel compact in a PMR--which needs to be resolved in order to calculate the peak temperature in a fuel kernel.

  9. Catchments as heterogeneous and multi-species reactors: An integral approach for identifying biogeochemical hot-spots at the catchment scale

    NASA Astrophysics Data System (ADS)

    Weyer, Christina; Peiffer, Stefan; Schulze, Kerstin; Borken, Werner; Lischeid, Gunnar

    2014-11-01

    From a biogeochemical perspective, catchments can be regarded as reactors that transform the input of various substances via precipitation or deposition as they pass through soils and aquifers towards draining streams. Understanding and modeling the variability of solute concentrations in catchment waters require the identification of the prevailing processes, determining their respective contribution to the observed transformation of substances, and the localization of "hot spots", that is, the most reactive areas of catchments. For this study, we applied a non-linear variant of the Principle Component Analysis, the Isometric Feature Mapping (Isomap), to a data set composed of 1686 soil solution, groundwater and stream water samples and 16 variables (Al, Ca, Cl, Fe, K, Mg, Mn, Na, NH4, NO3, SO4, total S, Si, DOC, electric conductivity and pH values) from the Lehstenbach catchment in Germany. The aim was (i) to assess the contribution of the prevailing biogeochemical processes to the variability of solute concentrations in water samples taken from soils, in groundwater and in stream water in a catchment and (ii) to identify hot spots at the catchment scale with respect to 16 solutes along different flow paths. The first three dimensions of the Isomap analysis explained 48%, 30% and 11%, respectively, i.e. 89% of the variance in the data set. Scores of the first three dimensions could be ascribed to three predominating bundles of biogeochemical processes: (i) redox processes, (ii) acid-induced podzolization, and (iii) weathering processes. In general, the upper 1 m topsoil layer could be considered as hot spots along flow paths from upslope soils and in the wetland, although with varying extents for the different prevailing biogeochemical processes. Nearly 67% and 97% of the variance with respect to redox processes and acid induced podzolization could be traced back to hot spots, respectively, representing less than 2% of the total spatial volume of the catchment

  10. Straw Mulch and Reduced-Risk Pesticide Impacts upon Thrips and Iris yellow spot virus on Western-Grown Onions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iris yellow spot virus (IYSV) and its thrips vector, Thrips tabaci Lindeman, are yield limiting pests of onion throughout the western U.S. In experiments conducted in Colorado during 2005 to 2007, straw mulch applied to the center of onion beds reduced early to mid-bulb growth stage thrips populatio...

  11. Reducing the size of the human physiological blind spot through training.

    PubMed

    Miller, Paul A; Wallis, Guy; Bex, Peter J; Arnold, Derek H

    2015-08-31

    The physiological blind spot refers to a zone of functional blindness all normally sighted people have in each eye, due to an absence of photoreceptors where the optic nerve passes through the surface of the retina. Here we report that the functional size of the physiological blind spot can be shrunk through training to distinguish direction signals at the blind spot periphery. Training on twenty successive weekdays improved sensitivity to both direction and colour, suggesting a generalizable benefit. Training on one blind spot, however, did not transfer to the blind spot in the untrained eye, ruling out mediation via a generic practice effect; nor could training benefits be attributed to eye movements, which were monitored to ensure stable fixation. These data suggest that training enhances the response gains of neurons with receptive fields that partially overlap, or abut, the physiological blind spot, thereby enhancing sensitivity to weak signals originating primarily from within the functionally-defined region of blindness [1-3]. Our results have important implications for situations where localised blindness has been acquired through damage to components of the visual system [4,5], and support proposals that these situations might be improved through perceptual training [5-7]. PMID:26325131

  12. Spatial and Temporal Hot Spots of Aedes albopictus Abundance inside and outside a South European Metropolitan Area

    PubMed Central

    Manica, Mattia; Filipponi, Federico; D’Alessandro, Antonello; Screti, Alessia; Neteler, Markus; Rosà, Roberto; Solimini, Angelo; della Torre, Alessandra; Caputo, Beniamino

    2016-01-01

    Aedes albopictus is a tropical invasive species which in the last decades spread worldwide, also colonizing temperate regions of Europe and US, where it has become a public health concern due to its ability to transmit exotic arboviruses, as well as severe nuisance problems due to its aggressive daytime outdoor biting behaviour. While several studies have been carried out in order to predict the potential limits of the species expansions based on eco-climatic parameters, few studies have so far focused on the specific effects of these variables in shaping its micro-geographic abundance and dynamics. The present study investigated eco-climatic factors affecting Ae. albopictus abundance and dynamics in metropolitan and sub-urban/rural sites in Rome (Italy), which was colonized in 1997 and is nowadays one of the most infested metropolitan areas in Southern Europe. To this aim, longitudinal adult monitoring was carried out along a 70 km-transect across and beyond the most urbanized and densely populated metropolitan area. Two fine scale spatiotemporal datasets (one with reference to a 20m circular buffer around sticky traps used to collect mosquitoes and the second to a 300m circular buffer within each sampling site) were exploited to analyze the effect of climatic and socio-environmental variables on Ae. albopictus abundance and dynamics along the transect. Results showed an association between highly anthropized habitats and high adult abundance both in metropolitan and sub-urban/rural areas, with “small green islands” corresponding to hot spots of abundance in the metropolitan areas only, and a bimodal seasonal dynamics with a second peak of abundance in autumn, due to heavy rains occurring in the preceding weeks in association with permissive temperatures. The results provide useful indications to prioritize public mosquito control measures in temperate urban areas where nuisance, human-mosquito contact and risk of local arbovirus transmission are likely higher

  13. Spatial and Temporal Hot Spots of Aedes albopictus Abundance inside and outside a South European Metropolitan Area.

    PubMed

    Manica, Mattia; Filipponi, Federico; D'Alessandro, Antonello; Screti, Alessia; Neteler, Markus; Rosà, Roberto; Solimini, Angelo; Della Torre, Alessandra; Caputo, Beniamino

    2016-06-01

    Aedes albopictus is a tropical invasive species which in the last decades spread worldwide, also colonizing temperate regions of Europe and US, where it has become a public health concern due to its ability to transmit exotic arboviruses, as well as severe nuisance problems due to its aggressive daytime outdoor biting behaviour. While several studies have been carried out in order to predict the potential limits of the species expansions based on eco-climatic parameters, few studies have so far focused on the specific effects of these variables in shaping its micro-geographic abundance and dynamics. The present study investigated eco-climatic factors affecting Ae. albopictus abundance and dynamics in metropolitan and sub-urban/rural sites in Rome (Italy), which was colonized in 1997 and is nowadays one of the most infested metropolitan areas in Southern Europe. To this aim, longitudinal adult monitoring was carried out along a 70 km-transect across and beyond the most urbanized and densely populated metropolitan area. Two fine scale spatiotemporal datasets (one with reference to a 20m circular buffer around sticky traps used to collect mosquitoes and the second to a 300m circular buffer within each sampling site) were exploited to analyze the effect of climatic and socio-environmental variables on Ae. albopictus abundance and dynamics along the transect. Results showed an association between highly anthropized habitats and high adult abundance both in metropolitan and sub-urban/rural areas, with "small green islands" corresponding to hot spots of abundance in the metropolitan areas only, and a bimodal seasonal dynamics with a second peak of abundance in autumn, due to heavy rains occurring in the preceding weeks in association with permissive temperatures. The results provide useful indications to prioritize public mosquito control measures in temperate urban areas where nuisance, human-mosquito contact and risk of local arbovirus transmission are likely higher

  14. Enhanced Hot-Carrier Luminescence in Multilayer Reduced Graphene Oxide Nanospheres

    PubMed Central

    Chen, Qi; Zhang, Chunfeng; Xue, Fei; Zhou, Yong; Li, Wei; Wang, Ye; Tu, Wenguang; Zou, Zhigang; Wang, Xiaoyong; Xiao, Min

    2013-01-01

    We report a method to promote photoluminescence emission in graphene materials by enhancing carrier scattering instead of directly modifying band structure in multilayer reduced graphene oxide (rGO) nanospheres. We intentionally curl graphene layers to form nanospheres by reducing graphene oxide with spherical polymer templates to manipulate the carrier scattering. These nanospheres produce hot-carrier luminescence with more than ten-fold improvement of emission efficiency as compared to planar nanosheets. With increasing excitation power, hot-carrier luminescence from nanospheres exhibits abnormal spectral redshift with dynamic feature associated to the strengthened electron-phonon coupling. These experimental results can be well understood by considering the screened Coulomb interactions. With increasing carrier density, the reduced screening effect promotes carrier scattering which enhances hot-carrier emission from such multilayer rGO nanospheres. This carrier-scattering scenario is further confirmed by pump-probe measurements. PMID:23897010

  15. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  16. Fluorescence enhancement using Fano-resonant a plasmonic nanostructure with selective functionalization of molecules at the electromagnetic hot spot (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolong; Martin, Olivier J. F.

    2015-09-01

    In recent years, one has paid significant attention to plasmonic nanostructures due to their potential for practical applications. Especially, in most plasmonic nanostructures, the local density of optical states is strongly enhanced and confined in the nanogap region - like for example in plasmonic antennas - which results in the so-called electromagnetic hot spots. In this work, we use 4-nanorod structures made with silver to generate and tune Fano resonances exhibiting an asymmetric and narrow lineshape. In such a system, a strongly enhanced electromagnetic field is created in the nanogap when the two antenna modes undergo destructive interference, i.e. at the Fano resonance. The local near field is thus strongly enhanced since most of the energy is not radiated into the far field at that wavelength. We will show that using a 4-nanorod structure in silver, we can easily tune the Fano resonance through the fluorescence spectrum of the molecule under study, thus exploring the different resonance conditions between the molecule absorption/emission bands and the plasmonic nanostructure; both the excitation and emission rates of the molecule can be enhanced when it is placed within the hot spot. To this end, we have developed a double electron beam lithography process to fabricate the plasmonic nanostructures and then selectively immobilize the molecule in the hot spot, in order to investigate the fluorescence enhancement under well-controlled conditions. The fluorescence enhancement is demonstrated by measuring the fluorescence lifetime and the fluorescence count rate. The experimental results are supported by theoretical modelling and numerical calculations with the Green's tensor method.

  17. P-wave tomography of eastern North America: Evidence for mantle evolution from Archean to Phanerozoic, and modification during subsequent hot spot tectonism

    NASA Astrophysics Data System (ADS)

    Villemaire, M.; Darbyshire, F. A.; Bastow, I. D.

    2012-12-01

    The unique physical and chemical properties of cratonic lithosphere are thought to be key to its long-term survival and its resistance to pervasive modification by tectonic processes. Study of mantle structure in southeast Canada and the northeast US offers an excellent opportunity to address this issue because the region spans 3 billion years of Earth history, including Archean formation of the Superior craton and younger accretion of terranes to eastern Laurentia during the Proterozoic Grenville and Phanerozoic Appalachian orogenies. Trending NW-SE through each of these terranes is the track of the Great Meteor hot spot, which affected the region during the Mesozoic. Here we study mantle seismic velocity structure beneath this region of eastern North America using tomographic inversion of teleseismic P-wave relative arrival-times recorded by a large-aperture seismograph network. There are no large-scale systematic differences between Superior and Grenville mantle wave speed structure, which may suggest that tectonic stabilization of cratons occurred in a similar fashion during the Archean and Proterozoic. Cratonic lithosphere is largely thought to be resistant to modification by hot spot processes, in contrast to younger terranes where lithospheric erosion and significant magmatism are expected. Low velocities beneath the regions affected by the Great Meteor hot spot are broadest beneath the Paleozoic Appalachian terranes, indicating pervasive modification of the lithosphere during magmatism. The zone of modification narrows considerably into the Proterozoic Grenville province before disappearing completely in the Archean Superior craton, where the surface signature of Mesozoic magmatism is limited to kimberlite eruptions.

  18. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    PubMed

    Tse, Amanda; Verkhivker, Gennady M

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  19. Mapping Publication Trends and Identifying Hot Spots of Research on Internet Health Information Seeking Behavior: A Quantitative and Co-Word Biclustering Analysis

    PubMed Central

    Li, Fan; Li, Min; Guan, Peng; Ma, Shuang

    2015-01-01

    Background The Internet has become an established source of health information for people seeking health information. In recent years, research on the health information seeking behavior of Internet users has become an increasingly important scholarly focus. However, there have been no long-term bibliometric studies to date on Internet health information seeking behavior. Objective The purpose of this study was to map publication trends and explore research hot spots of Internet health information seeking behavior. Methods A bibliometric analysis based on PubMed was conducted to investigate the publication trends of research on Internet health information seeking behavior. For the included publications, the annual publication number, the distribution of countries, authors, languages, journals, and annual distribution of highly frequent major MeSH (Medical Subject Headings) terms were determined. Furthermore, co-word biclustering analysis of highly frequent major MeSH terms was utilized to detect the hot spots in this field. Results A total of 533 publications were included. The research output was gradually increasing. There were five authors who published four or more articles individually. A total of 271 included publications (50.8%) were written by authors from the United States, and 516 of the 533 articles (96.8%) were published in English. The eight most active journals published 34.1% (182/533) of the publications on this topic. Ten research hot spots were found: (1) behavior of Internet health information seeking about HIV infection or sexually transmitted diseases, (2) Internet health information seeking behavior of students, (3) behavior of Internet health information seeking via mobile phone and its apps, (4) physicians’ utilization of Internet medical resources, (5) utilization of social media by parents, (6) Internet health information seeking behavior of patients with cancer (mainly breast cancer), (7) trust in or satisfaction with Web-based health

  20. Bear Creek Valley Floodplain hot spot removal early action characterization field data summary report, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1998-04-01

    This report summarizes the field and laboratory efforts as a result of the Bear Creek Floodplain Hot Spot Removal Project Early Action. The purpose of this project was to collect data necessary to assess contaminant levels in the Bear Creek Valley Floodplain and evaluate the risk posed by the sites. This report provides information on the background of the site, characterization of site and field activities, results of field and laboratory data collected, extent and distribution of contamination, and an assessment of the future risk posed by the site.

  1. Solvent accessible surface area-based hot-spot detection methods for protein-protein and protein-nucleic acid interfaces.

    PubMed

    Munteanu, Cristian R; Pimenta, António C; Fernandez-Lozano, Carlos; Melo, André; Cordeiro, Maria N D S; Moreira, Irina S

    2015-05-26

    Due to the importance of hot-spots (HS) detection and the efficiency of computational methodologies, several HS detecting approaches have been developed. The current paper presents new models to predict HS for protein-protein and protein-nucleic acid interactions with better statistics compared with the ones currently reported in literature. These models are based on solvent accessible surface area (SASA) and genetic conservation features subjected to simple Bayes networks (protein-protein systems) and a more complex multi-objective genetic algorithm-support vector machine algorithms (protein-nucleic acid systems). The best models for these interactions have been implemented in two free Web tools. PMID:25845030

  2. Application of E-beam hot spot inspection for early detection of systematic patterning problems to a FinFET technology

    NASA Astrophysics Data System (ADS)

    Ryan, Deborah A.; Patterson, Oliver D.; Lei, Shuen-Cheng Chris; Conklin, David; Liang, Jim; Biery, Glenn; Ogino, Atsushi; Dirahoui, Bachir; Baum, Zachary; Monkowski, Mike D.

    2015-04-01

    Early in-line detection of systematic patterning problems in technology development can dramatically improve a technology's chance for success. By uncovering layout geometries that are difficult to implement, prompt action may be taken so that solutions are in place well before product chips that contain these and similar patterns enter the manufacturing line. If a solution is not in place, this could spell disaster for the product and perhaps even the technology. Ideally, product chips will work on the first lot, which is referred to as "first time right." To help ensure this, a methodology for in-line detection of systematic patterning problems using E-beam hot spot inspection (EBHI) was developed. We review this methodology, including the latest enhancements. Pattern simulation tools and other sources are used to provide die locations with challenging geometries for evaluation. EBHI evaluates the patterning capability for these locations using modulated wafers. A multifunction team addresses any hot spots that fail within the process window. EBHI is then used to evaluate the solutions proposed by this team. Application of this methodology to a fin-shaped field effect transistor technology is described using examples from the fin and back end of line modules. These examples illustrate the full range of actions used to resolve patterning issues.

  3. The west side story: MEFV haplotype in Spanish FMF patients and controls, and evidence of high LD and a recombination "hot-spot" at the MEFV locus.

    PubMed

    Aldea, Anna; Calafell, Francesc; Aróstegui, Juan I; Lao, Oscar; Rius, Josefa; Plaza, Susana; Masó, Montserrat; Vives, Jordi; Buades, Joan; Yagüe, Jordi

    2004-04-01

    Mutations at the MEFV gene cause, with various degrees of penetrance, familial Mediterranean fever (FMF). This disease is more prevalent in the Middle East than elsewhere, and most studies have focused on those populations. However, FMF occurs also in the Western Mediterranean and these populations should be taken into account for a complete view of FMF. We have analyzed intragenic MEFV SNPs in Spanish and Chueta (descendants of converted Jews) FMF patients and controls, and this constitutes the first systematic survey of normal MEFV SNP haplotype structure and variability. Our findings have allowed us to systematize the nomenclature of MEFV haplotypes and show that there is strong linkage disequilibrium (LD) at the MEFV locus and an intragenic recombination hot spot. The high local LD, regardless the recombination hot spot, is responsible for the limited diversity of the MEFV control haplotypes found in the Spanish population and it suggests that it may be a common feature to all Mediterranean populations. The MEFV mutation spectrum in Spain is quite diverse, and similar to those of France and Italy. On the contrary, the Chueta spectrum was poorer and closer to that of North African Jews, suggesting a direct connection with the Jewish diaspora. PMID:15024744

  4. Reconstructing the History of Maize Streak Virus Strain A Dispersal To Reveal Diversification Hot Spots and Its Origin in Southern Africa ▿ †

    PubMed Central

    Monjane, Adérito L.; Harkins, Gordon W.; Martin, Darren P.; Lemey, Philippe; Lefeuvre, Pierre; Shepherd, Dionne N.; Oluwafemi, Sunday; Simuyandi, Michelo; Zinga, Innocent; Komba, Ephrem K.; Lakoutene, Didier P.; Mandakombo, Noella; Mboukoulida, Joseph; Semballa, Silla; Tagne, Appolinaire; Tiendrébéogo, Fidèle; Erdmann, Julia B.; van Antwerpen, Tania; Owor, Betty E.; Flett, Bradley; Ramusi, Moses; Windram, Oliver P.; Syed, Rizwan; Lett, Jean-Michel; Briddon, Rob W.; Markham, Peter G.; Rybicki, Edward P.; Varsani, Arvind

    2011-01-01

    Maize streak virus strain A (MSV-A), the causal agent of maize streak disease, is today one of the most serious biotic threats to African food security. Determining where MSV-A originated and how it spread transcontinentally could yield valuable insights into its historical emergence as a crop pathogen. Similarly, determining where the major extant MSV-A lineages arose could identify geographical hot spots of MSV evolution. Here, we use model-based phylogeographic analyses of 353 fully sequenced MSV-A isolates to reconstruct a plausible history of MSV-A movements over the past 150 years. We show that since the probable emergence of MSV-A in southern Africa around 1863, the virus spread transcontinentally at an average rate of 32.5 km/year (95% highest probability density interval, 15.6 to 51.6 km/year). Using distinctive patterns of nucleotide variation caused by 20 unique intra-MSV-A recombination events, we tentatively classified the MSV-A isolates into 24 easily discernible lineages. Despite many of these lineages displaying distinct geographical distributions, it is apparent that almost all have emerged within the past 4 decades from either southern or east-central Africa. Collectively, our results suggest that regular analysis of MSV-A genomes within these diversification hot spots could be used to monitor the emergence of future MSV-A lineages that could affect maize cultivation in Africa. PMID:21715477

  5. Determination of site selectivity of different carcinogens for preferential mutational hot spots in oligonucleotide fragments by ion-pair reversed-phase nano liquid chromatography tandem mass spectrometry.

    PubMed

    Sharma, Vaneet K; Xiong, Wennan; Glick, James; Vouros, Paul

    2014-01-01

    Ion-pair reversed-phase nano liquid chromatography coupled with nanospray ion trap mass spectrometry was used to investigate site selectivity of the known carcinogens N-acetoxy-2-acetylaminofluorene, N-hydroxy-4-aminobiphenyl and (+/-)-anti-benzo[a]pyrene diol epoxide with the synthetic double-strand 14-mer long oligonucleotide fragment of the p53 gene containing two mutational hot-spot codons (5'-P-ACC155 CGC156 GTC157 CGC158 GC/5'-GCG CGG ACG CGG GT). The investigation was performed using a monolithic polystyrene divinylbenzene capillary column and triethylammonium bicarbonate as an ion-pair reagent. The exact location of the carcinogen on the modified oligonucleotide backbone was determined using characteristic collision-induced dissociation fragmentation patterns obtained under negative-ion mode ionization. In all these cases, the adducted, isomeric oligonucleotides formed were chromatographically resolved and structural identification was performed without any prior deoxyribonucleic acid cleavage or hydrolysis. The knowledge of the site specificity of a carcinogen, especially at purported mutational hot spots, is of paramount importance (1) in establishing the identity of biomarkers for an early risk assessment of the formed DNA adducts, (2) developing repair mechanisms for the formed carcinogen adducted DNA, and (3) understanding the nature of the covalent bond formed and mapping the frequency of the adduction process. PMID:24881456

  6. Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination.

    PubMed

    Hooshmand, Nasrin; Bordley, Justin A; El-Sayed, Mostafa A

    2014-07-01

    Of all the plasmonic solid nanoparticles, single Ag or Au nanocubes are known to be plasmonic nanoparticles with strong plasmonic fields, which are concentrated around their corners. However, when nanoparticles aggregate, they do so in a face-to face arrangement. The formation of hot spots between plasmonic nanoparticles in close proximity to each other is known to greatly enhance their plasmonic fields which are important in the field of imaging. Thus, what is the structural development of hot spots between two nanocubes in a dimer? Do they form between the corners or are they between the adjacent facets, and what does this depend on? A detailed discrete dipole approximation (DDA) simulation of Au-Au and Ag-Ag dimers suggests that there is a competition between their formation in these two locations, which depends on the polarization direction of the exciting light (with respect to the interparticle axis in the dimer), its intensity and the wavelength as well as the interparticle separation of the dimer. PMID:26279539

  7. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Kritcher, A. L.; Benedetti, L. R.; Falcone, R. W.; Glenn, S.; Hawreliak, J.; Izumi, N.; Kraus, D.; Landen, O. L.; Le Pape, S.; Ma, T.; Pérez, F.; Swift, D.; Döppner, T.

    2014-11-01

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (˜50 g/cm3) plasma at ˜1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ˜10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/- 1 μm, corresponding to a convergence ratio of 200.

  8. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility.

    PubMed

    Bachmann, B; Kritcher, A L; Benedetti, L R; Falcone, R W; Glenn, S; Hawreliak, J; Izumi, N; Kraus, D; Landen, O L; Le Pape, S; Ma, T; Pérez, F; Swift, D; Döppner, T

    2014-11-01

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm(3)) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/- 1 μm, corresponding to a convergence ratio of 200. PMID:25430190

  9. Using penumbral imaging to measure micrometer size plasma hot spots in Gbar equation of state experiments on the National Ignition Facility

    SciTech Connect

    Bachmann, B. Kritcher, A. L.; Benedetti, L. R.; Glenn, S.; Hawreliak, J.; Izumi, N.; Landen, O. L.; Le Pape, S.; Ma, T.; Pérez, F.; Swift, D.; Döppner, T.; Falcone, R. W.; Kraus, D.

    2014-11-15

    We have developed an experimental platform for absolute equation of state measurements up to Gbar pressures on the National Ignition Facility (NIF) within the Fundamental Science Program. We use a symmetry-tuned hohlraum drive to launch a spherical shock wave into a solid CH sphere. Streaked radiography is the primary diagnostic to measure the density change at the shock front as the pressure increases towards smaller radii. At shock stagnation in the center of the capsule, we observe a short and bright x-ray self emission from high density (∼50 g/cm{sup 3}) plasma at ∼1 keV. Here, we present results obtained with penumbral imaging which has been carried out to characterize the size of the hot spot emission. This allows extending existing NIF diagnostic capabilities for spatial resolution (currently ∼10 μm) at higher sensitivity. At peak emission we find the hot spot radius to be as small as 5.8 +/− 1 μm, corresponding to a convergence ratio of 200.

  10. Validation of the DIFFAL, HPAC and HotSpot Dispersion Models Using the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials Witness Plate Deposition Dataset.

    PubMed

    Purves, Murray; Parkes, David

    2016-05-01

    Three atmospheric dispersion models--DIFFAL, HPAC, and HotSpot--of differing complexities have been validated against the witness plate deposition dataset taken during the Full-Scale Radiological Dispersal Device (FSRDD) Field Trials. The small-scale nature of these trials in comparison to many other historical radiological dispersion trials provides a unique opportunity to evaluate the near-field performance of the models considered. This paper performs validation of these models using two graphical methods of comparison: deposition contour plots and hotline profile graphs. All of the models tested are assessed to perform well, especially considering that previous model developments and validations have been focused on larger-scale scenarios. Of the models, HPAC generally produced the most accurate results, especially at locations within ∼100 m of GZ. Features present within the observed data, such as hot spots, were not well modeled by any of the codes considered. Additionally, it was found that an increase in the complexity of the meteorological data input to the models did not necessarily lead to an improvement in model accuracy; this is potentially due to the small-scale nature of the trials. PMID:27023035

  11. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore ( Thunnus alalunga) in the northwestern North Pacific

    NASA Astrophysics Data System (ADS)

    Zainuddin, Mukti; Kiyofuji, Hidetada; Saitoh, Katsuya; Saitoh, Sei-Ichi

    2006-02-01

    To understand better and describe oceanic hot spots for albacore ( Thunnus alalunga), we linked remotely sensed data from multi-sensor satellite images of TRMM/TMI sea-surface temperature (SST), SeaWiFS chlorophyll- a concentration and photosynthetically active radiation (PAR), and AVISO mean sea-level anomaly (MSLA) with fisheries catch data from 1998 to 2003. A probability map was generated based on biophysical environmental variables (SST and chlorophyll- a) in relation to the catch data. The probability of environmental variables was combined with an eddy kinetic energy (EKE) map to describe the oceanographic features around fishing locations. Primary production was examined to assess the productivity of the fishing grounds and was calculated from chlorophyll- a, SST and PAR using the vertically generalized production model (VGPM). Results indicate that the greatest catches occurred mainly in November, and the catches were highest at warm SSTs (19.78±1.69°C) and relatively high chlorophyll- a concentrations (0.31±0.13 mg m -3). Highest catches occurred in areas where primary production rates ranged from 15.65 to 20.61 g C m -2 month -1 (18.12±4.98 g C m -2 month -1). Our analysis found that catch per unit efforts (CPUEs) tended to increase significantly in areas of increasing probability of environmental variables ( P<0.0001) during the season of high abundance. Albacore CPUEs were clearly higher during November 1998-2000 than during November 2002-2003. During 1998-2000, the congregating spots of albacore clearly showed that the probability and primary productivity rates were higher than during 2002-2003. It is likely that the area of high probability (preferred biophysical environmental factors) corresponds to the location of frontal zones, where albacore prey were abundant. Regions of high tuna abundance occurred in relatively high EKE and geostrophic currents, reflecting that tuna aggregations were associated with anticyclonic eddies. These eddies may

  12. Time reducing exposure containing 18 fluorine flourodeoxyglucose master vial dispensing in hot lab: Omega technique.

    PubMed

    Rao, Vatturi Venkata Satya Prabhakar; Manthri, Ranadheer; Hemalatha, Pottumuthu; Kumar, Vuyyuru Navin; Azhar, Mohammad

    2016-01-01

    Hot lab dispensing of large doses of 18 fluorine fluorodeoxyglucose in master vials supplied from the cyclotrons requires high degrees of skill to handle high doses. Presently practiced conventional method of fractionating from the inverted tiltable vial pig mounted on a metal frame has its own limitations such as increasing isotope handling times and exposure to the technologist. Innovative technique devised markedly improves the fractionating efficiency along with speed, precision, and reduced dose exposure. PMID:27095872

  13. Time reducing exposure containing 18 fluorine flourodeoxyglucose master vial dispensing in hot lab: Omega technique

    PubMed Central

    Rao, Vatturi Venkata Satya Prabhakar; Manthri, Ranadheer; Hemalatha, Pottumuthu; Kumar, Vuyyuru Navin; Azhar, Mohammad

    2016-01-01

    Hot lab dispensing of large doses of 18 fluorine fluorodeoxyglucose in master vials supplied from the cyclotrons requires high degrees of skill to handle high doses. Presently practiced conventional method of fractionating from the inverted tiltable vial pig mounted on a metal frame has its own limitations such as increasing isotope handling times and exposure to the technologist. Innovative technique devised markedly improves the fractionating efficiency along with speed, precision, and reduced dose exposure. PMID:27095872

  14. 75 FR 29537 - Draft Transportation Conformity Guidance for Quantitative Hot-spot Analyses in PM2.5

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... (58 FR 62188) and has subsequently published several amendments. II. Background on the Draft Guidance.... In its March 10, 2006 final rule (71 FR 12468), EPA stated that quantitative PM 2.5 and PM 10 hot... its March 2006 final rule (71 FR 12502), this draft guidance was developed in coordination with...

  15. Ferrocyanide Safety Program: Waste tank sludge rheology within a hot spot or during draining. Homogeneous flow versus flow through a porous medium

    SciTech Connect

    Fauske, H.K.; Cash, R.J.

    1993-11-01

    The conditions under which ferrocyanide waste sludge flows as a homogeneous non-Newtonian two-phase (solid precipitate-liquid) mixture rather than as a liquid through a porous medium (of stationary precipitate) are examined theoretically, based on the notion that the preferred rheological behavior of the sludge is the one which imposes the least resistance to the sludge flow. The homogeneous two-phase mixture is modeled as a power-law fluid and simple criteria are derived that show that the homogeneous power-law sludge-flow is a much more likely flow situation than the porous medium model of sludge flow. The implication of this finding is that the formation of a hot spot or the drainage of sludge from a waste tank are not likely to result in the uncovering (drying) and subsequent potential overheating of the reactive-solid component of the sludge.

  16. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-01

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal ``off'' state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an ``open'' configuration of the hairpin probe and a CRET signal ``on'' state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing.Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme

  17. Exposures to volatile organic compounds (VOCs) and associated health risks of socio-economically disadvantaged population in a "hot spot" in Camden, New Jersey

    NASA Astrophysics Data System (ADS)

    Wu, Xiangmei (May); Fan, Zhihua (Tina); Zhu, Xianlei; Jung, Kyung Hwa; Ohman-Strickland, Pamela; Weisel, Clifford P.; Lioy, Paul J.

    2012-09-01

    To address disparities in health risks associated with ambient air pollution for racial/ethnic minority groups, this study characterized personal and ambient concentrations of volatile organic compounds (VOCs) in a suspected hot spot of air pollution - the Village of Waterfront South (WFS), and an urban reference community - the Copewood/Davis Streets (CDS) neighborhood in Camden, New Jersey. Both are minority-dominant, impoverished communities. We collected 24-h integrated personal air samples from 54 WFS residents and 53 CDS residents, with one sample on a weekday and one on a weekend day during the summer and winter seasons of 2004-2006. Ambient air samples from the center of each community were also collected simultaneously during personal air sampling. Toluene, ethylbenzene, and xylenes (TEX) presented higher (p < 0.05) ambient levels in WFS than in CDS, particularly during weekdays. A stronger association between personal and ambient concentrations of MTBE and TEX was found in WFS than in CDS. Fourteen to forty-two percent of the variation in personal MTBE, hexane, benzene, and TEX was explained by local outdoor air pollution. These observations indicated that local sources impacted the community air pollution and personal exposure in WFS. The estimated cancer risks resulting from two locally emitted VOCs, benzene and ethylbenzene, and non-cancer neurological and respiratory effects resulting from hexane, benzene, toluene, and xylenes exceeded the US EPA risk benchmarks in both communities. These findings emphasized the need to address disparity in health risks associated with ambient air pollution for the socio-economically disadvantaged groups. This study also demonstrated that air pollution hot spots similar to WFS can provide robust setting to investigate health effects of ambient air pollution.

  18. Phosphohistone H3 expression correlates with manual mitotic counts and aids in identification of "hot spots" in fibroepithelial tumors of the breast.

    PubMed

    Ginter, Paula S; Shin, Sandra J; Liu, Yifang; Chen, Zhengming; D'Alfonso, Timothy M

    2016-03-01

    Classification of mammary fibroepithelial tumors (FETs) relies on assessment of mitotic activity, among other histopathologic parameters. Routine hematoxylin and eosin (H&E) mitotic counts can be subjective and time consuming. Difficulty may arise in identifying "true" mitoses for a variety of reasons. Phosphorylation of histone H3 protein (PHH3) is correlated with mitotic chromatin condensation. The utility of PHH3 immunohistochemical staining to identify mitoses has been demonstrated in multiple organ systems. In this study, we examined the utility of PHH3 in assessing mitotic activity in FETs and compared PHH3- with H&E-determined mitotic counts. PHH3-stained mitoses were readily identifiable at ×10 magnification and allowed for rapid identification of mitotic "hot spots." Median mitotic counts/10 high-power fields for fibroadenoma, benign phyllodes tumor, borderline phyllodes tumor (BlnPT), and malignant phyllodes tumor (MPT) were 0, 0.5, 4.25, and 9, respectively on H&E, and 0, 0.75, 4.5, and 8, respectively for PHH3. Among all FETs, there was a strong positive correlation between H&E- and PHH3-determined mitotic counts (r=0.91, P<.001). Using PHH3, 2 cases would be reclassified, both from BlnPT to MPT. PHH3-determined counts correlated with H&E-determined counts in FETs. Using PHH3, a small number of cases were reclassified from BlnPT to MPT, for which treatment is similar. Although H&E-determined counts remain the criterion standard for assessing mitotic activity in FETs, PHH3 may be a useful adjunctive tool in some cases and is helpful in identifying mitotic hot spots. PMID:26826415

  19. A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer.

    PubMed

    Bi, Sai; Chen, Min; Jia, Xiaoqiang; Dong, Ying

    2015-02-28

    Herein, a cascaded chemiluminescence resonance energy transfer (C-CRET) process was demonstrated from horseradish peroxidase (HRP)-mimicking DNAzyme-catalyzed luminol-H2O2 to fluorescein and further to graphene oxide (GO) when HRP-mimicking DNAzyme/fluorescein was in close proximity to the GO surface. The proposed C-CRET system was successfully implemented to construct three modes of C-CRET hot-spot-active substrates (modes I, II and III) by covalently immobilizing HRP-mimicking DNAzyme/fluorescein-labeled hairpin DNAs (hot-spot-generation probes) on magnetic GO (MGO), resulting in a signal "off" state due to the quenching of the luminol/H2O2/HRP-mimicking DNAzyme/fluorescein CRET system by GO. Upon the introduction of microRNA-122 (miRNA-122), the targets (mode I) or the new triggers that were generated through a strand displacement reaction (SDR) initiated by miRNA-122 (modes II and III) hybridized with the loop domains of hairpin probes on MGO to form double-stranded (modes I and II) or triplex-stem structures (mode III), causing an "open" configuration of the hairpin probe and a CRET signal "on" state, thus achieving sensitive and selective detection of miRNA-122. More importantly, the substrate exhibited excellent controllability, reversibility and reproducibility through SDR and magnetic separation (modes II and III), especially sequence-independence for hairpin probes in mode III, holding great potential for the development of a versatile platform for optical biosensing. PMID:25644330

  20. Using a Reduced Spot Size for Intensity-Modulated Proton Therapy Potentially Improves Salivary Gland-Sparing in Oropharyngeal Cancer

    SciTech Connect

    Water, Tara A. van de; Lomax, Antony J.; Bijl, Hendrik P.; Schilstra, Cornelis; Hug, Eugen B.; Langendijk, Johannes A.

    2012-02-01

    Purpose: To investigate whether intensity-modulated proton therapy with a reduced spot size (rsIMPT) could further reduce the parotid and submandibular gland dose compared with previously calculated IMPT plans with a larger spot size. In addition, it was investigated whether the obtained dose reductions would theoretically translate into a reduction of normal tissue complication probabilities (NTCPs). Methods: Ten patients with N0 oropharyngeal cancer were included in a comparative treatment planning study. Both IMPT plans delivered simultaneously 70 Gy to the boost planning target volume (PTV) and 54 Gy to the elective nodal PTV. IMPT and rsIMPT used identical three-field beam arrangements. In the IMPT plans, the parotid and submandibular salivary glands were spared as much as possible. rsIMPT plans used identical dose-volume objectives for the parotid glands as those used by the IMPT plans, whereas the objectives for the submandibular glands were tightened further. NTCPs were calculated for salivary dysfunction and xerostomia. Results: Target coverage was similar for both IMPT techniques, whereas rsIMPT clearly improved target conformity. The mean doses in the parotid glands and submandibular glands were significantly lower for three-field rsIMPT (14.7 Gy and 46.9 Gy, respectively) than for three-field IMPT (16.8 Gy and 54.6 Gy, respectively). Hence, rsIMPT significantly reduced the NTCP of patient-rated xerostomia and parotid and contralateral submandibular salivary flow dysfunction (27%, 17%, and 43% respectively) compared with IMPT (39%, 20%, and 79%, respectively). In addition, mean dose values in the sublingual glands, the soft palate and oral cavity were also decreased. Obtained dose and NTCP reductions varied per patient. Conclusions: rsIMPT improved sparing of the salivary glands and reduced NTCP for xerostomia and parotid and submandibular salivary dysfunction, while maintaining similar target coverage results. It is expected that rsIMPT improves quality

  1. Neighborhood-Level Hot Spot Maps to Inform Delivery of Primary Care and Allocation of Social Resources

    PubMed Central

    Hardt, Nancy S; Muhamed, Shehzad; Das, Rajeeb; Estrella, Roland; Roth, Jeffrey

    2013-01-01

    Challenges to health care access in the US are forcing local policymakers and service delivery systems to find novel ways to address the shortage of primary care clinicians. The uninsured and underinsured face the greatest obstacles in accessing services. Geographic information systems mapping software was used to illustrate health disparities in Alachua County, FL; galvanize a community response; and direct reallocation of resources. The University of Florida Family Data Center created “hot spot” density maps of important health and social indicators to highlight the location of disparities at the neighborhood level. Maps were produced for Medicaid births, teen births, low birth weight, domestic violence incidents, child maltreatment reports, unexcused school absences, and juvenile justice referrals. Maps were widely shared with community partners, including local elected officials, law enforcement, educators, child welfare agencies, health care providers, and service organizations. This data sharing resulted in advocacy efforts to bring resources to the greatest-need neighborhoods in the county. Novel public-private partnerships were forged between the local library district, children and family service providers, and university administrators. Two major changes are detailed: a family resource center built in the neighborhood of greatest need and a mobile clinic staffed by physicians, nurses, physician assistants, health educators, and student and faculty volunteers. Density maps have several advantages. They require minimal explanation. Anyone familiar with local geographic features can quickly identify locations displaying health disparities. Personalizing health disparities by locating them geographically allows a community to translate data to action to improve health care access. PMID:23596361

  2. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Langmuir, C.; Humphris, S.; Fornari, D.; Van Dover, C.; Von Damm, K.; Tivey, M. K.; Colodner, D.; Charlou, J.-L.; Desonie, D.; Wilson, C.; Fouquet, Y.; Klinkhammer, G.; Bougault, H.

    1997-04-01

    The Lucky Strike hydrothermal field occurs in the summit basin of a large seamount that forms the shallow center of a 65 km long ridge segment near 37°N on the Mid-Atlantic Ridge. The depth and chemistry of the ridge segment are influenced by the Azores hot spot, and this hydrothermal field is the first Atlantic site found on crust that is dominated by a hot spot signature. Multiple hydrothermal vents occur over an area of at least 300 m by 700 m. Vent morphologies range from flanges and chimneys with temperatures of 200-212°C, to black smoker chimneys with temperatures up to 333°C. Cooler fluids from northern vents have higher chlorinities and lower gas volumes, while hotter, southern fluids have chlorinities 20% below seawater with higher gas volumes, suggesting phase separation has influenced their compositions. All gas volumes in fluids are higher than those at TAG and Snake Pit hydrothermal fields. Black smokers exhibit their typical mineralogy, except that barite is a major mineral, particularly at lower-temperature sites, which contrasts with previously investigated Atlantic sites. The fluid chemistry, distribution of the relict sulfide deposits on the seamount summit in the areas investigated using DSV Alvin, and contact relationships between active vent sites and surrounding basaltic and sulfide substrate suggest that the hydrothermal system has a long history and may have recently been rejuvenated. Fauna at the Lucky Strike vent sites are dominated by a new species of mussel, and include the first reported sea urchins. The Lucky Strike biological community differs considerably from other vent fauna at the species level and appears to be a new biogeographic province. The Lucky Strike field helps to constrain how variations in the basaltic substrate influence the composition of hydrothermal fluids and solids, because basalt compositions at Lucky Strike are 10-30 times enriched in incompatible elements compared to other Atlantic hydrothermal sites such as

  3. First cross-correlated measurements of magma dynamics and degassing during a dyke eruption at Piton de la Fournaise hot spot volcano, Reunion island

    NASA Astrophysics Data System (ADS)

    Allard, P.; La Spina, A.; Tamburelllo, G.; Aiuppa, A.; Coquet, A.; Brenguier, F.; Coppola, D.; Di Muro, A.; Burton, M. R.; Staudacher, T.

    2011-12-01

    Piton de la Fournaise (PdF), in the western Indian Ocean, is a very active hot spot basaltic volcano whose eruptions (1-2 per year on average) are well anticipated by the local seismic-geodetic monitoring network. Here we report on the first cross-correlated measurements of seismic tremor, magmatic gas composition (OP-FTIR absorption spectroscopy and in situ MultiGas analysis plus filter-pack sampling), gas fluxes (DOAS) and magma extrusion rate (space-borne MODIS data) during a 2-weeks long dyke eruption at PDF in October 2010. Precursory seismic signals indicated dyke ascent in a few hours from a reservoir located at ~2.5 km beneath the summit crater. After an initial burst coinciding with eruptive fissure opening, both the tremor amplitude, lava extrusion rate and SO2 flux coherently decreased during the first week of eruption. The co-emitted magmatic gases, whose composition varied slightly over time, were found to have a high water content (95-98 mol %), high SO2/HCl and low CO2/SO2, HCl/HF and Cl/Br ratios, consistent with a hydrous hot spot mantle source. By comparing gas fluxes with the magma co-extrusion rate and available melt inclusion data, we infer an essentially syn-eruptive (closed system) degassing for sulfur, chlorine and fluorine during the first half of the eruption. In contrast, additions of CO2 (previously accumulated or/and bubbling differentially) and H2O (external contribution from the hydrothermal system?) are required to explain the gas composition. Differential CO2 bubbling is supported by high frequency correlations between the CO2/HCl ratio and seismic tremor. The second part of the eruption was marked by a spectacular decoupling between re-increasing seismic tremor and declining lava extrusion, indicating a key control of tremor and eruptive activity by differential (open system) gas bubbling across the feeder dyke. This was associated with an increasing contribution of the low-frequency (1-3 Hz) spectral band to the tremor amplitude

  4. A Look into the Melting Pot: The mecC-Harboring Region Is a Recombination Hot Spot in Staphylococcus stepanovicii

    PubMed Central

    Semmler, Torsten; Harrison, Ewan M.; Lübke-Becker, Antina; Ulrich, Rainer G.; Wieler, Lothar H.; Guenther, Sebastian; Stamm, Ivonne; Hanssen, Anne-Merethe; Holmes, Mark A.; Vincze, Szilvia; Walther, Birgit

    2016-01-01

    Introduction Horizontal gene transfer (HGT) is an important driver for resistance- and virulence factor accumulation in pathogenic bacteria such as Staphylococcus aureus. Methods Here, we have investigated the downstream region of the bacterial chromosomal attachment site (attB) for the staphylococcal cassette chromosome mec (SCCmec) element of a commensal mecC-positive Staphylococcus stepanovicii strain (IMT28705; ODD4) with respect to genetic composition and indications of HGT. S. stepanovicii IMT28705 was isolated from a fecal sample of a trapped wild bank vole (Myodes glareolus) during a screening study (National Network on “Rodent-Borne Pathogens”) in Germany. Whole genome sequencing (WGS) of IMT28705 together with the mecC-negative type strain CM7717 was conducted in order to comparatively investigate the genomic region downstream of attB (GenBank accession no. KR732654 and KR732653). Results The bank vole isolate (IMT28705) harbors a mecC gene which shares 99.2% nucleotide (and 98.5% amino acid) sequence identity with mecC of MRSA_LGA251. In addition, the mecC-encoding region harbors the typical blaZ-mecC-mecR1-mecI structure, corresponding with the class E mec complex. While the sequences downstream of attB in both S. stepanovicii isolates (IMT28705 and CM7717) are partitioned by 15 bp direct repeats, further comparison revealed a remarkable low concordance of gene content, indicating a chromosomal “hot spot” for foreign DNA integration and exchange. Conclusion Our data highlight the necessity for further research on transmission routes of resistance encoding factors from the environmental and wildlife resistome. PMID:26799070

  5. Liver spots

    MedlinePlus

    Sun-induced skin changes - liver spots; Senile or solar lentigines; Skin spots - aging; Age spots ... Liver spots are changes in skin color that occur in older skin. The coloring may be due to aging, exposure to the sun ...

  6. Comparison of the chromosome maps around a resistance hot spot on chromosome 5 of potato and tomato using BAC-FISH painting.

    PubMed

    Achenbach, Ute C; Tang, Xiaomin; Ballvora, Agim; de Jong, Hans; Gebhardt, Christiane

    2010-02-01

    Potato chromosome 5 harbours numerous genes for important qualitative and quantitative traits, such as resistance to the root cyst nematode Globodera pallida and the late blight fungus, Phytophthora infestans. The genes make up part of a "hot spot" for resistances to various pathogens covering a genetic map length of 3 cM between markers GP21 and GP179. We established the physical size and position of this region on chromosome 5 in potato and tomato using fluorescence in situ hybridization (FISH) on pachytene chromosomes. Five potato bacterial artificial chromosome (BAC) clones with the genetically anchored markers GP21, R1-contig (proximal end), CosA, GP179, and StPto were selected, labeled with different fluorophores, and hybridized in a five-colour FISH experiment. Our results showed the location of the BAC clones in the middle of the long arm of chromosome 5 in both potato and tomato. Based on chromosome measurements, we estimate the physical size of the GP21-GP179 interval at 0.85 Mb and 1.2 Mb in potato and tomato, respectively. The GP21-GP179 interval is part of a genome segment known to have inverted map positions between potato and tomato. PMID:20140028

  7. Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break

    NASA Astrophysics Data System (ADS)

    Vlasenko, Vasiliy; Stashchuk, Nataliya; Inall, Mark E.; Hopkins, Joanne E.

    2014-06-01

    Globally, the Celtic Sea shelf break is ranked highest as an energetic "hot spot" of tidal energy conversion, therefore making it the most significant contributor to global internal tidal energy flux. In this paper, the three-dimensional dynamics of baroclinic tides in the shelf-slope area of the Celtic Sea was investigated numerically and using observational data collected on the 376th cruise of the RV "RRS Discovery" in June 2012. The time series recorded at a shelf break mooring showed that semidiurnal internal waves were accompanied by packets of internal solitary waves with maximum amplitudes up to 105 m, the largest internal waves ever recorded in the Celtic Sea, and ranking among the largest observed in the global ocean. The observed baroclinic wavefields were replicated numerically using the Massachusetts Institute of Technology general circulation model. A fine-resolution grid with 115 m horizontal and 10 m vertical steps allowed the identification of two classes of short-scale internal waves. The first classification was generated over headlands and resembles spiral-type internal waves that are typical for isolated underwater banks. The second classification, generated within an area of several canyons, revealed properties of quasi-planar internal wave packets. The observed in situ intensification of tidal bottom currents at the shelf break mooring is explained in terms of a tidal beam that was formed over supercritical bottom topography at the mooring location.

  8. Insights into the origin and distribution of biodiversity in the Brazilian Atlantic forest hot spot: a statistical phylogeographic study using a low-dispersal organism

    PubMed Central

    Álvarez-Presas, M; Sánchez-Gracia, A; Carbayo, F; Rozas, J; Riutort, M

    2014-01-01

    The relative importance of the processes that generate and maintain biodiversity is a major and controversial topic in evolutionary biology with large implications for conservation management. The Atlantic Forest of Brazil, one of the world's richest biodiversity hot spots, is severely damaged by human activities. To formulate an efficient conservation policy, a good understanding of spatial and temporal biodiversity patterns and their underlying evolutionary mechanisms is required. With this aim, we performed a comprehensive phylogeographic study using a low-dispersal organism, the land planarian species Cephaloflexa bergi (Platyhelminthes, Tricladida). Analysing multi-locus DNA sequence variation under the Approximate Bayesian Computation framework, we evaluated two scenarios proposed to explain the diversity of Southern Atlantic Forest (SAF) region. We found that most sampled localities harbour high levels of genetic diversity, with lineages sharing common ancestors that predate the Pleistocene. Remarkably, we detected the molecular hallmark of the isolation-by-distance effect and little evidence of a recent colonization of SAF localities; nevertheless, some populations might result from very recent secondary contacts. We conclude that extant SAF biodiversity originated and has been shaped by complex interactions between ancient geological events and more recent evolutionary processes, whereas Pleistocene climate changes had a minor influence in generating present-day diversity. We also demonstrate that land planarians are an advantageous biological model for making phylogeographic and, particularly, fine-scale evolutionary inferences, and propose appropriate conservation policies. PMID:24549112

  9. Hot-spot mutations in the p53 gene of liver nodules induced in rats fed DL-ethionine with a methyl-deficient diet.

    PubMed Central

    Tsujiuchi, T.; Yeleswarapu, L.; Konishi, Y.; Lombardi, B.

    1997-01-01

    Male F-344 rats were fed for 15 weeks a methyl-deficient L-amino acid defined diet containing 0.05% DL-ethionine. Nodules protruding from the surface of the liver were dissected free of surrounding tissue, and polyadenylated RNA isolated from the nodules was reverse transcribed. The region of the p53 gene comprising codons 120-290 was amplified by the polymerase chain reaction, and cDNAs were sequenced. Mutations were detected in nodules obtained from 7 of 12 rats. In all seven cases, the same two point mutations were present. The first was at the first base of codon 246 and consisted of a C-->T transition (C:G-->T:A, Arg-->Cys), while the second was at the second base of codon 247 and consisted of a G-->T transversion (G:C-->T:A, Arg-->Leu). It is concluded that the hepatocarcinogen ethionine induces specific hot-spot p53 gene mutations; this is in contrast to the mutations at various sites previously observed to occur in rats fed a hepatocarcinogenic methyl-deficient diet alone. The results also provide the first evidence that ethionine is mutagenic in the rat. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9218726

  10. Deletion mutations of the Bs-alpha gene in patients with Albright hereditary osteodystrophy: Possible mutation hot-spot in exon 7

    SciTech Connect

    Weinstein, L.S.; Hainline, B.E.; Schuster, V.

    1994-09-01

    Albright hereditary osteodystrophy (AHO) is an autosomal dominant disease characterized by short stature, centripetal obesity, subcutaneous ossifications and focal brachydactyly. Patients with this disorder may have these features alone (pseudopseudohypoparathyroidism) or these features in association with resistance to multiple hormones which raise intracellular cAMP (pseudohypoparathyroidism, PHP). In most kindreds, affected members have decreased function of the G protein Gs and decreased levels of the Gs{alpha}-subunit. Heterozygous inactivating mutations of the Gs{alpha} gene have been previously identified in AHO. Exons 2-13 of the Gs{alpha} gene and their splice junctions were PCR-amplified and the products analyzed by temperature gradient gel electrophoresis (TGGE) and direct sequencing. Using this approach, a new heterozygous 2 bp deletion in exon 4 creating a premature stop codon was identified in 5 affected members of a previously reported family. The mutation was not present in an unaffected family member. We also have identified a previously reported 4 bp deletion in the coding region of exon 7 in 2 further unrelated sporadic cases of PHP. In one case, the mutation was absent in her siblings and in both parents, confirming that this is a de novo mutation in this patient. This specific 4 bp deletion has now been reported in 4 PHP patients, at least 3 of whom are unrelated. These results suggest that this region of the Gs{alpha} gene may be a hot-spot for deletions.

  11. The effect of hohlraum drive asymmetry on the observed in-flight momentum and hot spot emission non-uniformity in ICF implosions

    NASA Astrophysics Data System (ADS)

    Pak, Arthur; Field, J. E.; Kritcher, A.; Nora, R.; Berzak Hopkins, L. F.; Divol, L.; Khan, S. F.; Ma, T.; Tommasini, R.; Bradley, D. K.; Callahan, D.; Hinkel, D.; Hurricane, O. A.; Jones, O. S.; MacKinnon, A. J.; MacLaren, S. A.; Meezan, N. B.; Moody, J.; Patel, P.; Robey, H. F.; Smalyuk, V. A.; Spears, B. K.; Town, R. P. J.; Edwards, M. J.; LLNL Team

    2015-11-01

    At the National Ignition Facility indirectly driven inertial confinement fusion experiments are being conducted. In order to maximize the efficiency at which kinetic energy of the capsule ablator and fuel is converted to internal hot spot energy, asymmetries in the shape of the ablator and fuel momentum must be minimized. In this work an overview across different implosion experiments detailing the observed relationship between the in-flight ablator momentum symmetry and factors that modify the hohlraum radiation flux symmetry such as the density of the hohlraum gas fill, laser wavelength separation, and case to capsule ratio will be given. A measurement of the ablator momentum asymmetry at peak velocity can be made using the two-dimensional radiographs of the capsule ablator taken in-flight, at radii of 300 to 200 _m. Additionally the relationship between the morphology of the observed in-flight ablator and the x-ray self emission at stagnation will be examined. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  12. DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction.

    PubMed

    Fu, Cuicui; Xu, Weiqing; Wang, Hailong; Ding, Han; Liang, Lijia; Cong, Ming; Xu, Shuping

    2014-12-01

    We propose a highly sensitive and selective surface-enhanced Raman scattering (SERS) method for determining lead ions based on a DNAzyme-linked plasmonic nanomachine. A metallic nanoparticle-on-a-film structure was built through a rigid double-stranded bridge linker composed of a DNAzyme and its substrate. This DNAzyme could be activated by lead ions and catalyze a fracture action of the substrate. Thus, the double chain structure of DNA would turn into a flexible single strand, making the metal nanoparticles that connected to the terminal of DNAzyme fall to the surface of the metal film. Hereby, a narrow gap close to 2 nm generated between metal nanoparticles and the metal film, exhibiting a similar effect of a "hot spot" and remarkably enhancing the signal of randomly dispersed Raman-active molecules on the surface of metal film. By measuring the improvement of SERS intensity of the Raman-active molecules, we realized the lowest detection concentration of Pb(2+) ions to 1.0 nM. This SERS analytical method is highly selective and can be extended universally to other targets via the accurate programming of corresponding DNA sequences. PMID:25327564

  13. Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot

    NASA Astrophysics Data System (ADS)

    Gailler, Lydie-Sarah; Lénat, Jean-François; Blakely, Richard J.

    2016-09-01

    We present an innovative study to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, an approach which has previously focused largely on continental areas. In order to determine the validity of this technique in oceanic environments, we first tested the approach on sets of sea-floor-spreading anomalies. Assuming that magnetic anomalies are concentrated within the oceanic crust and uppermost mantle, the Curie depth should deepen as oceanic lithosphere increases in age and thickness away from spreading centers. The calculated depths to the magnetic bottom are in agreement with this general pattern. On the basis of this test, we then applied the method to La Réunion Island and surrounding oceanic lithosphere. The calculated extent of magnetic sources lies at depths between 10 and 30 km and exhibits a complex topography, presumably caused by a combination of various magmatic and tectonic lithospheric structures. These calculations indicate that magnetic sources extend well below the crust-mantle interface at this location. To the first order, the bottom of the magnetic surface shallows beneath Réunion and Mauritius Islands due to the thermal effect of the hot spot, and deepens away from La Réunion edifice. On the scale of the Mascarene Basin, several discontinuities in the CPD correlate well with major fracture zones.

  14. Short-range incommensurate d-wave charge order from a two-loop renormalization group calculation of the ferm-ionic hot spot model

    NASA Astrophysics Data System (ADS)

    Freire, Hermann; de Carvalho, Vanuildo

    2015-03-01

    The two-loop renormalization group (RG) calculation is considerably extended here for a two-dimensional (2D) fermionic effective field theory model, which includes only the so-called ``hot spots'' that are connected by the spin-density-wave (SDW) ordering wavevector on a Fermi surface generated by the 2D t -t' Hubbard model at low hole doping. We compute the Callan-Symanzik RG equation up to two loops describing the flow of the single-particle Green's function, the corresponding spectral function, the Fermi velocity, and some of the most important order-parameter susceptibilities in the model at lower energies. As a result, we establish that - in addition to clearly dominant SDW correlations - an approximate (pseudospin) symmetry relating a short-range incommensurate d-wave charge order to the d-wave superconducting order indeed emerges at lower energy scales, which is in agreement with recent works available in the literature addressing the 2D spin-fermion model. We derive implications of this possible electronic phase in the ongoing attempt to describe the phenomenology of the pseudogap regime in underdoped cuprates. We acknowledge financial support from CNPq under Grant No. 245919/2012-0 and FAPEG under Grant No. 201200550050248 for this project.

  15. Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats.

    PubMed

    Dealtry, Simone; Ding, Guo-Chun; Weichelt, Viola; Dunon, Vincent; Schlüter, Andreas; Martini, María Carla; Del Papa, María Florencia; Lagares, Antonio; Amos, Gregory Charles Auton; Wellington, Elizabeth Margaret Helen; Gaze, William Hugo; Sipkema, Detmer; Sjöling, Sara; Springael, Dirk; Heuer, Holger; van Elsas, Jan Dirk; Thomas, Christopher; Smalla, Kornelia

    2014-01-01

    IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are "hot spots" of plasmids potentially carrying catabolic genes. PMID:24587126

  16. Towards high quality triangular silver nanoprisms: improved synthesis, six-tip based hot spots and ultra-high local surface plasmon resonance sensitivity.

    PubMed

    Xue, Bin; Wang, Dan; Zuo, Jing; Kong, Xianggui; Zhang, Youlin; Liu, Xiaomin; Tu, Langping; Chang, Yulei; Li, Cuixia; Wu, Fei; Zeng, Qinghui; Zhao, Haifeng; Zhao, Huiying; Zhang, Hong

    2015-05-01

    The great application potential of triangular silver nanoprisms (TSNPRs, also referred to as triangular silver nanoplates) is hampered by the lack of methods to produce well-defined tips with high monodispersity, with easily removable ligands. In this work, a simple one-step plasmon-mediated method was developed to prepare monodisperse high-quality TSNPRs. In this approach, the sole surface capping agent was the easily removable trisodium citrate. Differing from common strategies using complex polymers, OH(-) ions were used to improve the monodispersity of silver seeds, as well as to control the growth process through inhibiting the oxidation of silver nanoparticles. Using these monodisperse high-quality TSNPRs as building blocks, self-assembled TSNPRs consisting of six-tip based "hot spots" were realized for the first time as demonstrated in a high enhancement (∼10(7)) of surface-enhanced Raman scattering (SERS). From the plasmon band shift versus the refractive index, ultra-high local surface plasmon resonance sensitivity (413 nm RIU(-1) or 1.24 eV RIU(-1), figure of merit (FOM) = 4.59) was reached at ∼630 nm, making these materials promising for chemical/biological sensing applications. PMID:25869897

  17. Clustering methods applied in the detection of Ki67 hot-spots in whole tumor slide images: an efficient way to characterize heterogeneous tissue-based biomarkers.

    PubMed

    Lopez, Xavier Moles; Debeir, Olivier; Maris, Calliope; Rorive, Sandrine; Roland, Isabelle; Saerens, Marco; Salmon, Isabelle; Decaestecker, Christine

    2012-09-01

    Whole-slide scanners allow the digitization of an entire histological slide at very high resolution. This new acquisition technique opens a wide range of possibilities for addressing challenging image analysis problems, including the identification of tissue-based biomarkers. In this study, we use whole-slide scanner technology for imaging the proliferating activity patterns in tumor slides based on Ki67 immunohistochemistry. Faced with large images, pathologists require tools that can help them identify tumor regions that exhibit high proliferating activity, called "hot-spots" (HSs). Pathologists need tools that can quantitatively characterize these HS patterns. To respond to this clinical need, the present study investigates various clustering methods with the aim of identifying Ki67 HSs in whole tumor slide images. This task requires a method capable of identifying an unknown number of clusters, which may be highly variable in terms of shape, size, and density. We developed a hybrid clustering method, referred to as Seedlink. Compared to manual HS selections by three pathologists, we show that Seedlink provides an efficient way of detecting Ki67 HSs and improves the agreement among pathologists when identifying HSs. PMID:22730412

  18. Coexistence of ΘI I-loop-current order with checkerboard d -wave CDW/PDW order in a hot-spot model for cuprate superconductors

    NASA Astrophysics Data System (ADS)

    de Carvalho, Vanuildo S.; Pépin, Catherine; Freire, Hermann

    2016-03-01

    We investigate the strong influence of the ΘI I-loop-current order on both unidirectional and bidirectional d -wave charge-density-wave/pair-density-wave (CDW/PDW) composite orders along axial momenta (±Q0,0 ) and (0 ,±Q0) that emerge in an effective hot-spot model departing from the three-band Emery model relevant to the phenomenology of the cuprate superconductors. This study is motivated by the compelling evidence that the ΘI I-loop-current order described by this model may explain groundbreaking experiments such as spin-polarized neutron scattering performed in these materials. Here, we demonstrate, within a saddle-point approximation, that the ΘI I-loop-current order clearly coexists with bidirectional (i.e., checkerboard) d -wave CDW and PDW orders along axial momenta, but is visibly detrimental to the unidirectional (i.e., stripe) case. This result has potentially far-reaching implications for the physics of the cuprates and agrees well with very recent x-ray experiments on YBCO that indicate that at higher dopings the CDW order has indeed a tendency to be bidirectional.

  19. Characterizing intra and inter annual variability of storm events based on very high frequency monitoring of hydrological and chemical variables: what can we learn about hot spots and hot moments from continuous hydro-chemical sensors ?

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Thelusma, G.; Humbert, G.; Dupas, R.; Jaffrezic, A.; Grimaldi, C.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Gruau, G.

    2015-12-01

    Storm events are hot moments of emission for several dissolved and particulate chemical species at major stake for water quality (e.g. dissolved organic carbon DOC, suspended sediments, phosphorus, NH4). During such events, the solutes or particles are exported from heterogeneous sources through various pathways to stream or are possibly stored in retention hot spots temporary. This leads to specific integrated signals at the outlet at the scale of storm events. The dynamics of such events are also very short especially in headwater catchments where their total duration ranges over 10h to 3 days, with very quick variations in stream flow and concentrations at the outlet occurring in a few hours. Thus for investigating properly event processes, high frequency monitoring of flow and water quality is required. We analysed 103 storm events in a 5 km2 agricultural headwater catchment, part of the AgrHys Observatory, on the basis of a 3-year-long data set which combined meterological (Rainfall), hydrological (flow and piezometry), and water quality (turbidity, conductivity, DOC and NO3 concentrations) data recorded at very high frequencies (from 1 to 20 min) thanks to dedicated sensors. We described the storm events using simple (1 variable) and combined (2 variables) descriptors for characterizing level and dynamics of flow (Q), groundwater levels, and concentrations (C) but also the C-Q relationships. Three intra annual periods have been previously defined for base flow dynamic according to shallow groundwater table variations so that they correspond to different connectivity status in the catchment. The seasonal and inter-annual variability of the storm events have been analysed using the descriptors and based on these predefined periods. Principal component analysis based on storm chemical descriptors led to discriminate these three seasons while storm hydrological descriptors are less variable between them. Finally we used a clustering method to build a typology of

  20. Spectral investigation of hot-spot and cavity resonance effects on the terahertz radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal mesa structures

    NASA Astrophysics Data System (ADS)

    Kadowaki, Kazuo; Watanabe, Chiharu; Minami, Hidetoshi; Yamamoto, Takashi; Kashiwagi, Takanari; Klemm, Richard

    2014-03-01

    Terahertz (THz) electromagnetic radiation emitted from high-Tc superconducting Bi2Sr2CaCu2O8+δ mesa structures in the case of single mesa and series-connected mesas is investigated by the FTIR spectroscopic technique while observing its temperature distribution simultaneously by a SiC photoluminescence technique. Changing the bias level, sudden jumps of the hot-spot position were clearly observed. Although the radiation intensity changes drastically associated with the jump of the hot spot position, the frequency is unaffected as long as the voltage per junction is kept constant. Since the frequency of the intense radiation satisfies the cavity resonance condition, we confirmed that the cavity resonance is of primarily importance for the synchronization of whole intrinsic Josephson junctions in the mesa for high power radiation. This work was supported in part by the Grant-in-Aid for challenging Exploratory Research, the Ministry of Education, Culture, Sports, Science & Technology (MEXT).

  1. Using dried blood spot sampling to improve data quality and reduce animal use in mouse pharmacokinetic studies.

    PubMed

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-03-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 μL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal-often to a single collection per mouse-thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 μL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study. PMID:25836959

  2. Using Dried Blood Spot Sampling to Improve Data Quality and Reduce Animal Use in Mouse Pharmacokinetic Studies

    PubMed Central

    Wickremsinhe, Enaksha R; Perkins, Everett J

    2015-01-01

    Traditional pharmacokinetic analysis in nonclinical studies is based on the concentration of a test compound in plasma and requires approximately 100 to 200 µL blood collected per time point. However, the total blood volume of mice limits the number of samples that can be collected from an individual animal—often to a single collection per mouse—thus necessitating dosing multiple mice to generate a pharmacokinetic profile in a sparse-sampling design. Compared with traditional methods, dried blood spot (DBS) analysis requires smaller volumes of blood (15 to 20 µL), thus supporting serial blood sampling and the generation of a complete pharmacokinetic profile from a single mouse. Here we compare plasma-derived data with DBS-derived data, explain how to adopt DBS sampling to support discovery mouse studies, and describe how to generate pharmacokinetic and pharmacodynamic data from a single mouse. Executing novel study designs that use DBS enhances the ability to identify and streamline better drug candidates during drug discovery. Implementing DBS sampling can reduce the number of mice needed in a drug discovery program. In addition, the simplicity of DBS sampling and the smaller numbers of mice needed translate to decreased study costs. Overall, DBS sampling is consistent with 3Rs principles by achieving reductions in the number of animals used, decreased restraint-associated stress, improved data quality, direct comparison of interanimal variability, and the generation of multiple endpoints from a single study. PMID:25836959

  3. Optimizing mini-ridge filter thickness to reduce proton treatment times in a spot-scanning synchrotron system

    SciTech Connect

    Courneyea, Lorraine; Beltran, Chris Tseung, Hok Seum Wan Chan; Yu, Juan; Herman, Michael G.

    2014-06-15

    Purpose: Study the contributors to treatment time as a function of Mini-Ridge Filter (MRF) thickness to determine