Science.gov

Sample records for reduced residual arabinose

  1. A phosphodiester bridge between two arabinose residues as a structural element of an extracellular glycoprotein of Volvox carteri.

    PubMed

    Holst, O; Christoffel, V; Fründ, R; Moll, H; Sumper, M

    1989-05-01

    The sulphated glycoprotein SSG 185 is the monomeric precursor of a highly aggregated structural element in the extracellular matrix of the multicellular green alga Volvox carteri. A phosphodiester of arabinose was isolated from a saccharide fragment of SSG 185. The structure of this phosphodiester was investigated by methylation analysis, 13C-NMR, photometric methods and enzymatic assays and identified as D-Araiota-5-phospho-5-D-Araiota. The function of this phosphodiester bridge as a crosslink of different carbohydrate chains in SSG 185 is discussed. PMID:2714288

  2. Virulence Gene Regulation by l-Arabinose in Salmonella enterica

    PubMed Central

    López-Garrido, Javier; Puerta-Fernández, Elena; Cota, Ignacio; Casadesús, Josep

    2015-01-01

    Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal. PMID:25991823

  3. L-arabinose fermenting yeast

    DOEpatents

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  4. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2014-09-23

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  5. L-arabinose fermenting yeast

    SciTech Connect

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  6. Microbial production of xylitol from xylose and L-arabinose: conversion of L-arabitol to xylitol using bacterial oxidoreductases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial production of xylitol, using hemicellulosic biomass such as agricultural residues, is becoming more attractive for reducing its manufacturing cost. L-arabitol is a particular problem to xylitol production from hemicellulosic hydrolyzates that contain both xylose and L-arabinose because it...

  7. Fractionation of sugar beet pulp into pectin, cellulose, and arabinose by arabinases combined with ultrafiltration

    SciTech Connect

    Spangnuolo, M.; Crecchio, C.; Pizzigallo, M.D.R.; Ruggiero, P.

    1999-09-20

    Incubation of beet pulp with two arabinases ({alpha}-L-arabinofuranosidase and endo-arabinase), used singularly or in combination at different units of activity per gram of beet pulp, caused the hydrolysis of arabinasn, which produced a hydrolyzate consisting mainly of arabinose. Pectin and a residue enriched with cellulose were subsequently separated from the incubation mixture. The best enzymatic hydrolysis results were obtained when 100 U/g of beet pulp of each enzyme worked synergistically with yields of 100% arabinose and 91.7% pectin. These yields were higher than those obtained with traditional chemical hydrolysis. The pectin fraction showed a low content of neutral sugar content and the cellulose residue contained only a small amount of pentoses. Semicontinuous hydrolysis with enzyme recycling in an ultrafiltration unit was also carried out to separate arabinose, pectin, and cellulose from beet pulp in 7 cycles of hydrolysis followed by ultrafiltration. The yields of separation were similar to those obtained in batch experiments, with an enzyme consumption reduced by 3.5 times and some significant advantages over batch processes.

  8. Regulation of L-arabinose transport in Salmonella typhimurium LT2.

    PubMed

    Lee, J H; Russo, R J; Heffernan, L; Wilcox, G

    1982-01-01

    The inducible L-arabinose transport system was characterized in Salmonella typhimurium LT2. Only one L-arabinose transport system with a Km of 2 X 10(-4) M was identified. The results suggested that araE may be the only gene which codes for L-arabinose transport activity under the conditions tested. An araE-lac fusion strain was used to study the induction of the araE gene. No araE expression was detected when the L-arabinose concentration was lower than 1 mM. The expression of araE reached a maximum in the presence of 50 mM L-arabinose, and was significantly reduced in the presence of 50 mM L-arabinose, and was significantly reduced in the presence of D-glucose. Expression of the araBAD and araE genes was coordinately regulated. The concentration of L-arabinose that allowed maximum araBAD gene expression was 50-fold lower in an araE+ strain compared to an araE strain. PMID:6283309

  9. ECONOMICALLY OPTIMAL NITROGEN RATE REDUCES SOIL RESIDUAL NITRATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Practices that minimize post-harvest residual soil NO3-N (RSN) can reduce N loss to the environment. Our objectives were to determine if the RSN after corn (Zea mays L.) harvest can be reduced if N fertilizer is applied at the economically optimal N rate (EONR) as compared to current producers' prac...

  10. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    PubMed Central

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-01-01

    Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides. PMID:26438537

  11. Residues recycling: Reducing costs and helping the environment

    NASA Astrophysics Data System (ADS)

    Venancio, Luis C. A.; Souza, José Antonio Silva; Macedo, Emanuel Negrão; Quaresma, João Nazareno N.; Paiva, Antonio Ernandes M.

    2010-09-01

    The aluminum production chain from bauxite to primary aluminum includes refining using the Bayer process, and smelting through electrolysis. This production chain produces two main solid residues, red mud at the refinery and spent pot lining at the smelter. The use of these residues as raw material for other industrial processes can save large amounts of energy, reduce the overall environmental impact, and even improve the emissions of other processes. This paper shows the results of ten years of co-processing of spent pot lining in the cement industry in Brazil and the efforts to develop technologies to reduce the reactivity and use the red mud as raw material for several different processes. This approach, although engineering intensive, can reduce C02 emissions and save huge amounts of wasted energy in transport and processing when compared with dedicated recycling or neutralizing processes.

  12. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats

    PubMed Central

    Hao, Lei; Lu, Xiaoling; Sun, Min; Li, Kai; Shen, Lingmin; Wu, Tao

    2015-01-01

    Background L-Arabinose is a non-caloric sugar, which could affect glucose and lipid metabolism and suppress obesity. However, few reports have described the effect of L-arabinose in metabolic syndrome, a combination of medical disorders that increase the risk of diabetes and cardiovascular disease. Objective This study was conducted to explore the effects of L-arabinose in rats with metabolic syndrome induced by a high-carbohydrate, high-fat (HCHF) diet. Methods After the rat model for metabolic syndrome was successfully established, L-arabinose was administrated by oral gavage for 6 weeks. The biochemical index and histological analysis were measured, and the expression levels of genes related to fatty acid metabolism were analyzed using real-time PCR. Results Following treatment with L-arabinose, metabolic syndrome rats had an obvious reduction in body weight, systolic blood pressure, diastolic blood pressure, fasting blood glucose, triglycerides, total cholesterol, serum insulin, TNF-α, and leptin. Further study showed that treatment with L-arabinose significantly increased the expression of mRNA for hepatic CPT-1α and PDK4, but the expression of mRNA for hepatic ACCα was reduced. Conclusions This work suggests that L-arabinose could lower body weight, Lee's index, and visceral index and improve dyslipidemia, insulin resistance, inflammation, and viscera function, which indicate that it might be a promising candidate for therapies combating metabolic syndrome. PMID:26652604

  13. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    DOE PAGESBeta

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specificmore » DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.« less

  14. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria

    SciTech Connect

    Chang, Changsoo; Tesar, Christine; Li, Xiaoqing; Kim, Youngchang; Rodionov, Dmitry A.; Joachimiak, Andrzej

    2015-10-04

    We report that carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR–DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Furthermore, our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.

  15. Metabolism of L-arabinose in plants.

    PubMed

    Kotake, Toshihisa; Yamanashi, Yukiko; Imaizumi, Chiemi; Tsumuraya, Yoichi

    2016-09-01

    L-Arabinose (L-Ara) is a plant-specific sugar accounting for 5-10 % of cell wall saccharides in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). L-Ara occurs in pectic arabinan, rhamnogalacturonan II, arabinoxylan, arabinogalactan-protein (AGP), and extensin in the cell walls, as well as in glycosylated signaling peptides like CLAVATA3 and small glycoconjugates such as quercetin 3-O-arabinoside. This review focuses on recent advances towards understanding the generation of L-Ara and the metabolism of L-Ara-containing molecules in plants. PMID:27220955

  16. Economically optimal nitrogen rate reduces soil residual nitrate.

    PubMed

    Hong, Nan; Scharf, Peter C; Davis, J Glenn; Kitchen, Newell R; Sudduth, Kenneth A

    2007-01-01

    Post-harvest residual soil NO(3)-N (RSN) is susceptible to transfer to water resources. Practices that minimize RSN levels can reduce N loss to the environment. Our objectives were (i) to determine if the RSN after corn (Zea mays L.) harvest can be reduced if N fertilizer is applied at the economically optimal N rate (EONR) as compared to current producer practices in the midwestern USA and (ii) to compare RSN levels for N fertilizer rates below, at, and above the EONR. Six experiments were conducted in producer fields in three major soil areas (Mississippi Delta alluvial, deep loess, claypan) in Missouri over 2 yr. Predominant soil great groups were Albaqualfs, Argiudolls, Haplaquolls, and Fluvaquents. At four transects in each field, six treatment N rates from 0 to 280 kg N ha(-1) were applied, the EONR was determined, and the RSN was measured to a 0.9-m depth from five treatment plots. The EONR at sampling sites varied from 49 to 228 kg N ha(-1) depending on site and year. Estimated average RSN at the EONR was 33 kg N ha(-1) in the 0.9-m profile. This was at least 12 kg N ha(-1) lower than RSN at the producers' N rates. The RSN increased with increasing Delta EONR (total N applied - EONR). This relationship was best modeled by a plateau-linear function, with a low RSN plateau at N rates well below the EONR. A linear increase in RSN began anywhere from 65 kg N ha(-1) below the EONR to 20 kg N ha(-1) above the EONR at the three sites with good data resolution near the EONR. Applying N rates in excess of the EONR produced elevated RSN values in all six experiments. Our results suggest that applying the EONR will produce environmental benefits in an economically sound manner, and that continued attempts to develop methods for accurately predicting EONR are justified. PMID:17255622

  17. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    PubMed

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1). PMID:22806043

  18. Sugar-metal ion interactions: The coordination behavior of cesium ion with lactose, D-arabinose and L-arabinose

    NASA Astrophysics Data System (ADS)

    Jiang, Ye; Xue, Junhui; Wen, Xiaodong; Zhai, Yanjun; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Kou, Kuan; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2016-04-01

    The novel cesium chloride-lactose complex (CsCl·C12H22O10 (Cs-Lac), cesium chloride-D-arabinose and L-arabinose complexes (CsCl·C5H10O5, Cs-D-Ara and Cs-L-Ara) have been synthesized and characterized using X-ray diffraction, FTIR, FIR, THz and Raman spectroscopies. Cs+ is 9-coordinated to two chloride ions and seven hydroxyl groups from five lactose molecules in Cs-Lac. In the structures of CsCl-D-arabinose and CsCl-L-arabinose complexes, two kinds of Cs+ ions coexist in the structures. Cs1 is 10-coordinated with two chloride ions and eight hydroxyl groups from five arabinose molecule; Cs2 is 9-coordinated to three chloride ions and six hydroxyl groups from five arabinose molecules. Two coordination modes of arabinose coexist in the structures. α-D-arabinopyranose and α-L-arabinopyranose appear in the structures of Cs-D-Ara and Cs-L-Ara complexes. FTIR and Raman results indicate variations of hydrogen bonds and the conformation of the ligands after complexation. FIR and THz spectra also confirm the formation of Cs-complexes. Crystal structure, FTIR, FIR, THz and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-lactose, cesium chloride-D- and L-arabinose complexes.

  19. Utility pump truck; Residual gas problems reduced with innovative equipment

    SciTech Connect

    Not Available

    1988-04-01

    Residual natural gas trapped in the ground after the repair of a distribution-system leak can be a headache for utility employees and customers. The pump truck, a unique approach to removing residual gas, is described in this paper. Natural gas is lighter than air and naturally tends to rise upward and dissipate in the atmosphere. However, pavement, buildings or soil conditions around a leaking pipe often cause gas to be trapped in the ground. In addition to removing trapped gas, the pump truck is used to help pinpoint leaks where the source is difficult to locate because of soil conditions.

  20. Single zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, Min; Chou, Yat-Chen; Picataggio, Stephen K.; Finkelstein, Mark

    1998-01-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol.

  1. Single Zymomonas mobilis strain for xylose and arabinose fermentation

    DOEpatents

    Zhang, M.; Chou, Y.C.; Picataggio, S.K.; Finkelstein, M.

    1998-12-01

    This invention relates to single microorganisms which normally do not ferment pentose sugars which are genetically altered to ferment the pentose sugars, xylose and arabinose, to produce ethanol, and a fermentation process utilizing the same. Examples include Zymomonas mobilis which has been transformed with a combination of E. coli genes for xylose isomerase, xylulokinase, L-arabinose isomerase, L-ribulokinase, L-ribulose 5-phosphate 4-epimerase, transaldolase and transketolase. Expression of added genes are under the control of Z. mobilis promoters. These newly created microorganisms are useful for fermenting glucose, xylose and arabinose, produced by hydrolysis of hemicellulose and cellulose or starch, to produce ethanol. 6 figs.

  2. Improving N credit predictions to reduce residual nitrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential to increase farm profitability and reduce nitrate leaching in Minnesota are huge if the alfalfa N credit was better understood and applied to first-year corn. If the N credit (150 lb/N/ac) were applied to the nearly 250,000 acres of corn following alfalfa in Minnesota each year, 19,000...

  3. Roller Burnishing - A Cold Working Tool to Reduce Weld Induced Residual Stress

    SciTech Connect

    John Martin

    2002-02-19

    The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.

  4. Microbial Production of Xylitol from L-arabinose by Metabolically Engineered Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Escherichia coli strain, ZUC99(pATX210), which can produce xylitol from L-arabinose at a high yield has been created by introducing a new bioconversion pathway into cells. This pathway consists of three enzymes: L-arabinose isomerase, which converts L-arabinose to L-ribulose; D-psicose 3-epimer...

  5. Study on Winding Method to Reduce the Residual Current of Track Type (Oval Type) ZCT

    NASA Astrophysics Data System (ADS)

    Iwasaki, Fumio; Ibe, Masayuki; Ninohei, Koichiro; Okamura, Seiichiro

    ZCT (Zero-phase-sequence Current Transformer) is used widely for the detection of the ground fault current in low or high voltage distribution power line. Especially, the use of pole air switches equipped with ZCT is increasing to prevent the extended accident caused by the ground fault. The accurate detection of low level ground fault is needed from the view of early stage discovery. The internal residual current of ZCT must be small as possible for the detection of low level ground fault. Generally, the magnetic shield around the core of ZCT is used to reduce the internal residual current. Also, the core material and shield effect is related to the reduction of the internal residual current. In this paper, the reducing method of the internal residual current is proposed by using new winding method of the core. In new winding method, the secondary and tertiary windings are provided, and each winding is divided into two or three sections with parallel connection. The leakage magnetic flux caused by the primary current is changed to the cross current in parallel winding. This cross current is used to offset the leakage magnetic flux caused by the primary current. It is observed by the examination that the cross current is effective to reduce the internal residual current without influence to the zero phase current detection.

  6. Simultaneous utilization of glucose, xylose and arabinose in the presence of acetate by a consortium of Escherichia coli strains

    PubMed Central

    2012-01-01

    Background The efficient microbial utilization of lignocellulosic hydrolysates has remained challenging because this material is composed of multiple sugars and also contains growth inhibitors such as acetic acid (acetate). Using an engineered consortium of strains derived from Escherichia coli C and a synthetic medium containing acetate, glucose, xylose and arabinose, we report on both the microbial removal of acetate and the subsequent simultaneous utilization of the sugars. Results In a first stage, a strain unable to utilize glucose, xylose and arabinose (ALS1392, strain E. coli C ptsG manZ glk crr xylA araA) removed 3 g/L acetate within 30 hours. In a subsequent second stage, three E. coli strains (ALS1370, ALS1371, ALS1391), which are each engineered to utilize only one sugar, together simultaneously utilized glucose, xylose and arabinose. The effect of non-metabolizable sugars on the metabolism of the target sugar was minimal. Additionally the deletions necessary to prevent the consumption of one sugar only minimally affected the consumption of a desired sugar. For example, the crr deletion necessary to prevent glucose consumption reduced xylose and arabinose utilization by less than 15% compared to the wild-type. Similarly, the araA deletion used to exclude arabinose consumption did not affect xylose- and glucose-consumption. Conclusions Despite the modest reduction in the overall rate of sugar consumption due to the various deletions that were required to generate the consortium of strains, the approach constitutes a significant improvement in any single-organism approach to utilize sugars found in lignocellulosic hydrolysate in the presence of acetate. PMID:22691294

  7. Combined glyphosate-ripener and residue blanket stresses reduce ratoon yields in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failure to remove the blanket of residue generated during green-cane harvesting and certain glyphosate ripener application regimes have independently been shown to reduce yields of the subsequent ratoon crop of Louisiana’s leading variety LCP 85-384. The objectives of this experiment were to determ...

  8. Sugarcane Post-harvest Residue Retention and Certain Ripener Applications Reduce First and Second Ratoon Yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue and certain glyphosate ripener application regimes have independently been shown to reduce yields of the subsequent ratoon crop. The objective of this experiment was to determine the combined effects of post-harve...

  9. Teichuronic acid reducing terminal N-acetylglucosamine residue linked by phosphodiester to peptidoglycan of Micrococcus luteus

    SciTech Connect

    Gassner, G.T.; Dickie, J.P.; Hamerski, D.A.; Magnuson, J.K.; Anderson, J.S. )

    1990-05-01

    Teichuronic acid-peptidoglycan complex isolated from Micrococcus luteus cells by lysozyme digestion in osmotically stabilized medium was treated with mild acid to cleave the linkage joining teichuronic acid to peptidoglycan. This labile linkage was shown to be the phosphodiester which joins N-acetylglucosamine, the residue located at the reducing end of the teichuronic acid, through its anomeric hydroxyl group to a 6-phosphomuramic acid, a residue of the glycan strand of peptidoglycan. {sup 31}P nuclear magnetic resonance spectroscopy of the lysozyme digest of cell walls demonstrated the presence of a phosphodiester which was converted to a phosphomonoester by the conditions which released teichuronic acid from cell walls. Reduction of acid-liberated reducing end groups by NaB{sup 3}H{sub 4} followed by complete acid hydrolysis yielded ({sup 3}H) glucosaminitol from the true reducing end residue of teichuronic acid and ({sup 3}H)glucitol from the sites of fragmentation of teichuronic acid. The amount of N-acetylglucosamine detected was approximately stoichiometric with the amount of phosphate in the complex. Partial fragmentation of teichuronic acid provides an explanation of the previous erroneous identification of the reducing end residue.

  10. Concurrent tailoring of fabrication process and interphase layer to reduce residual stresses in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.; Morel, M.

    1991-01-01

    A methodology is presented to reduce the residual matrix stresses in continuous fiber metal matrix composites (MMC) by optimizing the fabrication process and interphase layer characteristics. The response of the fabricated MMC was simulated based on nonlinear micromechanics. Application cases include fabrication tailoring, interphase tailoring, and concurrent fabrication-interphase optimization. Two composite systems, silicon carbide/titanium and graphite/copper, are considered. Results illustrate the merits of each approach, indicate that concurrent fabrication/interphase optimization produces significant reductions in the matrix residual stresses and demonstrate the strong coupling between fabrication and interphase tailoring.

  11. A Link between Arabinose Utilization and Oxalotrophy in Bradyrhizobium japonicum

    PubMed Central

    Koch, Marion; Delmotte, Nathanaël; Ahrens, Christian H.; Omasits, Ulrich; Schneider, Kathrin; Danza, Francesco; Padhi, Barnali; Murset, Valérie; Braissant, Olivier; Vorholt, Julia A.; Hennecke, Hauke

    2014-01-01

    Rhizobia have a versatile catabolism that allows them to compete successfully with other microorganisms for nutrients in the soil and in the rhizosphere of their respective host plants. In this study, Bradyrhizobium japonicum USDA 110 was found to be able to utilize oxalate as the sole carbon source. A proteome analysis of cells grown in minimal medium containing arabinose suggested that oxalate oxidation extends the arabinose degradation branch via glycolaldehyde. A mutant of the key pathway genes oxc (for oxalyl-coenzyme A decarboxylase) and frc (for formyl-coenzyme A transferase) was constructed and shown to be (i) impaired in growth on arabinose and (ii) unable to grow on oxalate. Oxalate was detected in roots and, at elevated levels, in root nodules of four different B. japonicum host plants. Mixed-inoculation experiments with wild-type and oxc-frc mutant cells revealed that oxalotrophy might be a beneficial trait of B. japonicum at some stage during legume root nodule colonization. PMID:24463964

  12. Microbial conversion of L-arabinose to xylitol by coexpression of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A microbial strain has been developed that can produce xylitol from L-arabinose at a high yield by transforming Escherichia coli with a new xylitol biosynthetic pathway consisting of L-arabinose isomerase, D-tagatose 3-epimerase, and L-xylulose reductase. An E. coli strain that heterologously expre...

  13. The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin.

    PubMed

    Charasseangpaisarn, Taksid; Wiwatwarrapan, Chairat

    2015-12-01

    Monomer remaining in denture base acrylic can be a major problem because it may cause adverse effects on oral tissue and on the properties of the material. The purpose of this study was to compare the effect of various ultrasonic cleaner frequencies on the amount of residual monomer in acrylic resin after curing. Forty-two specimens each of Meliodent heat-polymerized acrylic resin (M) and Unifast Trad Ivory auto-polymerized acrylic resin (U) were prepared according to their manufacturer's instructions and randomly divided into seven groups: Negative control (NC); Positive control (PC); and five ultrasonic treatment groups: 28 kHz (F1), 40 kHz (F2), 60 kHz (F3) (M=10 min, U=5 min), and 28 kHz followed by 60 kHz (F4: M=5 min per frequency, U=2.5 min per frequency, and F5: M=10 min followed by 5 min per frequency, U=5 min followed by 2.5 min per frequency). Residual monomer was determined by HPLC following ISO 20795-1. The data were analyzed by One-way ANOVA and Tukey HSD. There was significantly less residual monomer in the auto-polymerized acrylic resin in all ultrasonic treatment groups and the PC group than that of the NC group (p<0.05). However, the amount of residual monomer in group F3 was significantly higher than that of the F1, F4, and PC groups (p<0.05). In contrast, ultrasonic treatment did not reduce the amount of residual monomer in heat-polymerized acrylic resin (p>0.05). The amount of residual monomer in heat-polymerized acrylic resin was significantly lower than that of auto-polymerized acrylic resin. In conclusion, ultrasonic treatment at low frequencies is recommended to reduce the residual monomer in auto-polymerized acrylic resin and this method is more practical in a clinical situation than previously recommended methods because of reduced chairside time. PMID:26190059

  14. Citrus co-products as technological strategy to reduce residual nitrite content in meat products.

    PubMed

    Viuda-Martos, M; Fernández-López, J; Sayas-Barbera, E; Sendra, E; Navarro, C; Pérez-Alvarez, J A

    2009-10-01

    Sodium or potassium nitrite is widely used as a curing agent in cured meat products because it inhibits outgrowth and neurotoxin formation by Clostridium botulinum, delays the development of oxidative rancidity, develops the characteristic flavor of cured meats, and reacts with myoglobin and stabilizes the red meat color. As soon as nitrite is added in the meat formulation, it starts to disappear and the nitrite that has not reacted with myoglobin and it is available corresponds to residual nitrite level. Health concerns relating to the use of nitrates and nitrites in cured meats (cooked and dry cured) trend toward decreased usage to alleviate the potential risk to the consumers from formation of carcinogenic compounds. Recently, some new ingredients principally agro-industrial co-products in general and those from the citrus industry in particular (albedo [with different treatments], dietetic fiber obtained from the whole co-product, and washing water used in the process to obtain the dietetic fiber) are seen as good sources of bio-compounds that may help to reduce the residual nitrite level in meat products. From these co-products, citrus fiber shows the highest potential to reduce the residual nitrite level, followed by the albedo and finally the washing water. The aim of this article is to describe the latest advances concerning the use of citrus co-products in meat products as a potential ingredient to reduce the nitrite level. PMID:19799678

  15. Enhanced Atrazine Degradation: Evidence for Reduced Residual Weed Control and A Method for Identifying Adapted Soils and Predicting Herbicide Persistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborn bacteria with novel metabolic abilities have been linked with enhanced atrazine degradation and complaints of reduced residual weed control in soils with an s-triazine use history. However, no field study has verified that enhanced degradation reduces atrazine’s residual weed control. The...

  16. THE FUNDAMENTAL METALLICITY RELATION REDUCES TYPE Ia SN HUBBLE RESIDUALS MORE THAN HOST MASS ALONE

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Gupta, Ravi R.; Sako, Masao; Mannucci, Filippo; Nichol, Robert C.

    2013-02-20

    Type Ia supernova Hubble residuals have been shown to correlate with host galaxy mass, imposing a major obstacle for their use in measuring dark energy properties. Here, we calibrate the fundamental metallicity relation (FMR) of Mannucci et al. for host mass and star formation rates measured from broadband colors alone. We apply the FMR to the large number of hosts from the SDSS-II sample of Gupta et al. and find that the scatter in the Hubble residuals is significantly reduced when compared with using only stellar mass (or the mass-metallicity relation) as a fit parameter. Our calibration of the FMR is restricted to only star-forming galaxies and in the Hubble residual calculation we include only hosts with log(SFR) > - 2. Our results strongly suggest that metallicity is the underlying source of the correlation between Hubble residuals and host galaxy mass. Since the FMR is nearly constant between z = 2 and the present, use of the FMR along with light-curve width and color should provide a robust distance measurement method that minimizes systematic errors.

  17. Reduced residual conduction gaps and favourable outcome in contact force-guided circumferential pulmonary vein isolation

    PubMed Central

    Itoh, Taihei; Kimura, Masaomi; Tomita, Hirofumi; Sasaki, Shingo; Owada, Shingen; Horiuchi, Daisuke; Sasaki, Kenichi; Ishida, Yuji; Kinjo, Takahiko; Okumura, Ken

    2016-01-01

    Aims Although contact force (CF)-guided circumferential pulmonary vein isolation (CPVI) for paroxysmal atrial fibrillation (PAF) is useful, AF recurrence at long-term follow-up still remains to be resolved. The purpose of this study was to assess safety and efficacy of CF-guided CPVI and to compare residual conduction gaps during CPVI and long-term outcome between the conventional (non-CF-guided) and the CF-guided CPVI. Methods and results We studied the 50 consecutive PAF patients undergoing CPVI by a ThermoCool EZ Steer catheter (conventional group, mean age 61 ± 10 years) and the other 50 consecutive PAF patients by a ThermoCool SmartTouch catheter (CF group, 65 ± 11 years). The procedure parameters and residual conduction gaps during CPVI, and long-term outcome for 12 months were compared between the two groups. Circumferential pulmonary vein isolation was successfully accomplished without any major complications in both groups. Total procedure and total fluoroscopy times were both significantly shorter in the CF group than in the conventional group (160 ± 30 vs. 245 ± 61 min, P < 0.001, and 17 ± 8 vs. 54 ± 27 min, P < 0.001, respectively). Total number of residual conduction gaps was significantly less in the CF group than in the conventional group (2.7 ± 1.7 vs. 6.3 ± 2.7, P < 0.05). The AF recurrence-free rates after CPVI during 12-month follow-up were 96% (48/50) in the CF group and 82% (41/50) in the conventional group (P = 0.02 by log rank test). Multivariate Cox regression analysis further supported this finding. Conclusion Contact force-guided CPVI is safe and more effective in reducing not only the procedure time but also the AF recurrence than the conventional CPVI, possibly due to reduced residual conduction gaps during CPVI procedure. PMID:26346921

  18. Epistatic Interactions in the Arabinose Cis-Regulatory Element

    PubMed Central

    Lagator, Mato; Igler, Claudia; Moreno, Anaísa B.; Guet, Călin C.; Bollback, Jonathan P.

    2016-01-01

    Changes in gene expression are an important mode of evolution; however, the proximate mechanism of these changes is poorly understood. In particular, little is known about the effects of mutations within cis binding sites for transcription factors, or the nature of epistatic interactions between these mutations. Here, we tested the effects of single and double mutants in two cis binding sites involved in the transcriptional regulation of the Escherichia coli araBAD operon, a component of arabinose metabolism, using a synthetic system. This system decouples transcriptional control from any posttranslational effects on fitness, allowing a precise estimate of the effect of single and double mutations, and hence epistasis, on gene expression. We found that epistatic interactions between mutations in the araBAD cis-regulatory element are common, and that the predominant form of epistasis is negative. The magnitude of the interactions depended on whether the mutations are located in the same or in different operator sites. Importantly, these epistatic interactions were dependent on the presence of arabinose, a native inducer of the araBAD operon in vivo, with some interactions changing in sign (e.g., from negative to positive) in its presence. This study thus reveals that mutations in even relatively simple cis-regulatory elements interact in complex ways such that selection on the level of gene expression in one environment might perturb regulation in the other environment in an unpredictable and uncorrelated manner. PMID:26589997

  19. Epistatic Interactions in the Arabinose Cis-Regulatory Element.

    PubMed

    Lagator, Mato; Igler, Claudia; Moreno, Anaísa B; Guet, Călin C; Bollback, Jonathan P

    2016-03-01

    Changes in gene expression are an important mode of evolution; however, the proximate mechanism of these changes is poorly understood. In particular, little is known about the effects of mutations within cis binding sites for transcription factors, or the nature of epistatic interactions between these mutations. Here, we tested the effects of single and double mutants in two cis binding sites involved in the transcriptional regulation of the Escherichia coli araBAD operon, a component of arabinose metabolism, using a synthetic system. This system decouples transcriptional control from any posttranslational effects on fitness, allowing a precise estimate of the effect of single and double mutations, and hence epistasis, on gene expression. We found that epistatic interactions between mutations in the araBAD cis-regulatory element are common, and that the predominant form of epistasis is negative. The magnitude of the interactions depended on whether the mutations are located in the same or in different operator sites. Importantly, these epistatic interactions were dependent on the presence of arabinose, a native inducer of the araBAD operon in vivo, with some interactions changing in sign (e.g., from negative to positive) in its presence. This study thus reveals that mutations in even relatively simple cis-regulatory elements interact in complex ways such that selection on the level of gene expression in one environment might perturb regulation in the other environment in an unpredictable and uncorrelated manner. PMID:26589997

  20. Reciprocal Regulation of l-Arabinose and d-Xylose Metabolism in Escherichia coli

    PubMed Central

    Koirala, Santosh; Wang, Xiaoyi

    2015-01-01

    ABSTRACT Glucose is known to inhibit the transport and metabolism of many sugars in Escherichia coli. This mechanism leads to its preferential consumption. Far less is known about the preferential utilization of nonglucose sugars in E. coli. Two exceptions are l-arabinose and d-xylose. Previous studies have shown that l-arabinose inhibits d-xylose metabolism in Escherichia coli. This repression results from l-arabinose-bound AraC binding to the promoter of the d-xylose metabolic genes and inhibiting their expression. This mechanism, however, has not been explored in single cells. Both the l-arabinose and d-xylose utilization systems are known to exhibit a bimodal induction response to their cognate sugar, where mixed populations of cells either expressing the metabolic genes or not are observed at intermediate sugar concentrations. This suggests that l-arabinose can only inhibit d-xylose metabolism in l-arabinose-induced cells. To understand how cross talk between these systems affects their response, we investigated E. coli during growth on mixtures of l-arabinose and d-xylose at single-cell resolution. Our results showed that mixed, multimodal populations of l-arabinose- and d-xylose-induced cells occurred at intermediate sugar concentrations. We also found that d-xylose inhibited the expression of the l-arabinose metabolic genes and that this repression was due to XylR. These results demonstrate that a strict hierarchy does not exist between l-arabinose and d-xylose as previously thought. The results may also aid in the design of E. coli strains capable of simultaneous sugar consumption. IMPORTANCE Glucose, d-xylose, and l-arabinose are the most abundant sugars in plant biomass. Developing efficient fermentation processes that convert these sugars into chemicals and fuels will require strains capable of coutilizing these sugars. Glucose has long been known to repress the expression of the l-arabinose and d-xylose metabolic genes in Escherichia coli. Recent

  1. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state.

    PubMed

    Launay, Hélène; Barré, Patrick; Puppo, Carine; Manneville, Stéphanie; Gontero, Brigitte; Receveur-Bréchot, Véronique

    2016-08-12

    The redox switch protein CP12 is a key player of the regulation of the Benson-Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold. PMID:27268235

  2. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-05-14

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10{sup 17} cm{sup −3} to (2–5) × 10{sup 14} cm{sup −3}. The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10{sup 13} cm{sup −3} versus 2.9 × 10{sup 16} cm{sup −3} in the standard samples, with a similar decrease in the electron traps concentration.

  3. Reduced parenteral nutrition requirements following anastomosis of a short residual colonic segment to a short jejunum.

    PubMed

    Smith, Katherine H; Saunders, John A; Nugent, Karen P; Jackson, Alan A; Stroud, Michael A

    2011-11-01

    A 22-year-old man suffered an acute small bowel infarct leading to extensive bowel resection, resulting in only 20 cm of jejunum to a jejunostomy, although he also had 50 cm of residual colon with a mucous fistula. The patient was out on long-term home parenteral nutrition (PN) but endured high stomal losses of 5-6 L per day and, despite all conventional measures, required 6.1 L of fluid (including PN) and 555 mmol sodium per day. Although body mass index was maintained, he suffered debilitating malaise and recurrent episodes of catheter-related sepsis and also developed persistently abnormal liver function tests. He was considered a potential intestinal transplant patient, but before taking that step, he opted for reanastomosis of his residual colon to his jejunum, ending in a colostomy. At surgery, only 30 cm of additional bowel lengthening could be achieved, but despite this, the patient's stomal losses reduced to 2.5 L per day, intravenous fluid requirements reduced to 4.1 L per day, and liver function normalized. The patient also gained 7.5 kg despite no change in PN caloric prescription, and his quality of life was dramatically enhanced. The case illustrates that even a small length of colon can grant significant improvements, probably via improvements in small bowel transit and adaptive changes, better sodium and water resorption with decreased hyperaldosteronism, and enhanced energy and nitrogen recovery. Reanastomosis of defunctioned colon should therefore always be considered a management option in short bowel syndrome. PMID:22042049

  4. Galacturonic Acid Inhibits the Growth of Saccharomyces cerevisiae on Galactose, Xylose, and Arabinose

    PubMed Central

    Huisjes, Eline H.; de Hulster, Erik; van Dam, Jan C.; Pronk, Jack T.

    2012-01-01

    The efficient fermentation of mixed substrates is essential for the microbial conversion of second-generation feedstocks, including pectin-rich waste streams such as citrus peel and sugar beet pulp. Galacturonic acid is a major constituent of hydrolysates of these pectin-rich materials. The yeast Saccharomyces cerevisiae, the main producer of bioethanol, cannot use this sugar acid. The impact of galacturonic acid on alcoholic fermentation by S. cerevisiae was investigated with anaerobic batch cultures grown on mixtures of glucose and galactose at various galacturonic acid concentrations and on a mixture of glucose, xylose, and arabinose. In cultures grown at pH 5.0, which is well above the pKa value of galacturonic acid (3.51), the addition of 10 g · liter−1 galacturonic acid did not affect galactose fermentation kinetics and growth. In cultures grown at pH 3.5, the addition of 10 g · liter−1 galacturonic acid did not significantly affect glucose consumption. However, at this lower pH, galacturonic acid completely inhibited growth on galactose and reduced galactose consumption rates by 87%. Additionally, it was shown that galacturonic acid strongly inhibits the fermentation of xylose and arabinose by the engineered pentose-fermenting S. cerevisiae strain IMS0010. The data indicate that inhibition occurs when nondissociated galacturonic acid is present extracellularly and corroborate the hypothesis that a combination of a decreased substrate uptake rate due to competitive inhibition on Gal2p, an increased energy requirement to maintain cellular homeostasis, and/or an accumulation of galacturonic acid 1-phosphate contributes to the inhibition. The role of galacturonic acid as an inhibitor of sugar fermentation should be considered in the design of yeast fermentation processes based on pectin-rich feedstocks. PMID:22582063

  5. Role of plant residues in determining temporal patterns of the activity, size, and structure of nitrate reducer communities in soil.

    PubMed

    Chèneby, D; Bru, D; Pascault, N; Maron, P A; Ranjard, L; Philippot, L

    2010-11-01

    The incorporation of plant residues into soil not only represents an opportunity to limit soil organic matter depletion resulting from cultivation but also provides a valuable source of nutrients such as nitrogen. However, the consequences of plant residue addition on soil microbial communities involved in biochemical cycles other than the carbon cycle are poorly understood. In this study, we investigated the responses of one N-cycling microbial community, the nitrate reducers, to wheat, rape, and alfalfa residues for 11 months after incorporation into soil in a field experiment. A 20- to 27-fold increase in potential nitrate reduction activity was observed for residue-amended plots compared to the nonamended plots during the first week. This stimulating effect of residues on the activity of the nitrate-reducing community rapidly decreased but remained significant over 11 months. During this period, our results suggest that the potential nitrate reduction activity was regulated by both carbon availability and temperature. The presence of residues also had a significant effect on the abundance of nitrate reducers estimated by quantitative PCR of the narG and napA genes, encoding the membrane-bound and periplasmic nitrate reductases, respectively. In contrast, the incorporation of the plant residues into soil had little impact on the structure of the narG and napA nitrate-reducing community determined by PCR-restriction fragment length polymorphism (RFLP) fingerprinting. Overall, our results revealed that the addition of plant residues can lead to important long-term changes in the activity and size of a microbial community involved in N cycling but with limited effects of the type of plant residue itself. PMID:20833788

  6. Biosynthesis of d-arabinose in Mycobacterium smegmatis: specific labeling from d-glucose.

    PubMed

    Klutts, J Stacey; Hatanaka, Kenichi; Pan, Y T; Elbein, Alan D

    2002-02-15

    d-Arabinose is a major sugar in the cell wall polysaccharides of Mycobacterium tuberculosis and other mycobacterial species. The reactions involved in the biosynthesis and activation of d-arabinose represent excellent potential sites for drug intervention since d-arabinose is not found in mammalian cells, and the cell wall arabinomannan and/or arabinogalactan appear to be essential for cell survival. Since the pathway involved in conversion of d-glucose to d-arabinose is unknown, we incubated cells of Mycobacterium smegmatis individually with [1-(14)C]glucose, [3,4-(14)C]glucose, and [6-(14)C]glucose and compared the specific activities of the cell wall-bound arabinose. Although the specific activity of the arabinose was about 25% lower with [6-(14)C]glucose than with other labels, there did not appear to be selective loss of either carbon 1 or carbon 6, suggesting that arabinose was not formed by loss of carbon 1 of glucose via the oxidative step of the pentose phosphate pathway, or by loss of carbon 6 in the uronic acid pathway. Similar labeling patterns were observed with ribose isolated from the nucleic acid fraction. Since these results suggested an unusual pathway of pentose formation, labeling studies were also done with [1-(13)C]glucose, [2-(13)C]glucose, and [6-(13)C]glucose and the cell wall arabinose was examined by NMR analysis. This method allows one to determine the relative (13)C content in each carbon of the arabinose. The labeling patterns suggested that the most likely pathway was condensation of carbons 1 and 2 of fructose 6-phosphate produced by the transaldolase reaction with carbons 4, 5, and 6 (i.e., glyceraldehyde 3-phosphate) formed by fructose-1,6 bisphosphate aldolase. Cell-free enzyme extracts of M. smegmatis were incubated with ribose 5-phosphate, xylulose 5-phosphate, and d-arabinose 5-phosphate under a variety of experimental conditions. Although the ribose 5-phosphate and xylulose 5-phosphate were converted to other pentoses and

  7. l-Arabinose Binding Protein from Escherichia coli B/r

    PubMed Central

    Hogg, R. W.; Englesberg, E.

    1969-01-01

    A protein which is capable of binding l-arabinose-1-14C has been isolated from l-arabinose-induced cultures of Escherichia coli B/r. Analysis for this l-arabinose-binding protein (ABP) in a number of l-arabinose-negative mutants suggests that the ABP is not coded for by any of the known genetic units of the l-arabinose complex yet is under the control of the regulator gene araC. The ABP has been purified and found to bind l-arabinose, d-fucose, d-xylose, and l-ribulose with decreasing affinities. The Km for l-arabinose is 5.7 × 10−6m. The molecular weight, as determined by equilibrium centrifugation, was found to be 32,000. The protein was observed to have many features that liken it to other recently isolated binding proteins that have been implicated in the active transport of small molecules. Images PMID:4899002

  8. Engineering of an L-arabinose metabolic pathway in Rhodococcus jostii RHA1 for biofuel production.

    PubMed

    Xiong, Xiaochao; Wang, Xi; Chen, Shulin

    2016-07-01

    The oleaginous bacterium, Rhodococcus jostii RHA1 has attracted considerable attention due to its capability to accumulate significant levels of triacylglycerol as renewable hydrocarbon. To enable the strain to utilize arabinose derived from lignocellulosic biomass, the metabolic pathway of L-arabinose utilization was introduced into R. jostii RHA1 by heterogenous expression of the operon, araBAD from Escherichia coli. The results showed that recombinant bearing araBAD could grow on L-arabinose as the sole carbon source, and additional expression of araFGH encoding the arabinose transporter from E. coli could improve the cell biomass yield from high contents of arabinose. We further increased the content of lipid produced from arabinose in the recombinants from 47.9 to 56.8 % of the cell dry weight (CDW) by overexpression of a gene, atf1 encoding a diglyceride acyltransferase from R. opacus PD630. This work demonstrated the feasibility of producing lipid from arabinose by genetic modification of the rhodococci strain. PMID:27143134

  9. Utilization and Transport of L-Arabinose by Non-Saccharomyces Yeasts

    SciTech Connect

    Knoshaug, E. P.; Franden, M. A.; Stambuk, B. U.; Zhang, M.; Singh, A.

    2009-01-01

    L-Arabinose is one of the sugars found in hemicellulose, a major component of plant cell walls. The ability to convert L-arabinose to ethanol would improve the economics of biomass to ethanol fermentations. One of the limitations for L-arabinose fermentation in the current engineered Saccharomyces cerevisiae strains is poor transport of the sugar. To better understand L-arabinose transport and use in yeasts and to identify a source for efficient L-arabinose transporters, 165 non-Saccharomyces yeast strains were studied. These yeast strains were arranged into six groups based on the minimum time required to utilize 20 g/L of L-arabinose. Initial transport rates of L-arabinose were determined for several species and a more comprehensive transport study was done in four selected species. Detailed transport kinetics in Arxula adeninivorans suggested both low and high affinity components while Debaryomyces hansenii var. fabryii, Kluyveromyces marxianus and Pichia guilliermondii possessed a single component, high affinity active transport systems.

  10. Targeting bacterial membranes: NMR spectroscopy characterization of substrate recognition and binding requirements of D-arabinose-5-phosphate isomerase.

    PubMed

    Airoldi, Cristina; Sommaruga, Silvia; Merlo, Silvia; Sperandeo, Paola; Cipolla, Laura; Polissi, Alessandra; Nicotra, Francesco

    2010-02-01

    Lipopolysaccharide (LPS) is an essential component of the outer membrane of gram-negative bacteria and consists of three elements: lipid A, the core oligosaccharide, and the O-antigen. The inner-core region is highly conserved and contains at least one residue of 3-deoxy-D-manno-octulosonate (Kdo). Arabinose-5-phosphate isomerase (API) is an aldo-keto isomerase catalyzing the reversible isomerization of D-ribulose-5-phosphate (Ru5P) to D-arabinose-5-phosphate (A5P), the first step of Kdo biosynthesis. By exploiting saturation transfer difference (STD) NMR spectroscopy, the structural requirements necessary for API substrate recognition and binding were identified, with the aim of designing new API inhibitors. In addition, simple experimental conditions for the STD experiments to perform a fast, robust, and efficient screening of small libraries of potential API inhibitors, allowing the identification of new potential leads, were set up. Due to the essential role of API enzymes in LPS biosynthesis and gram-negative bacteria survival, by exploiting these data, a new generation of potent antibacterial drugs could be developed. PMID:20039350

  11. L-arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae.

    PubMed

    Aro-Kärkkäinen, Niina; Toivari, Mervi; Maaheimo, Hannu; Ylilauri, Mikko; Pentikäinen, Olli T; Andberg, Martina; Oja, Merja; Penttilä, Merja; Wiebe, Marilyn G; Ruohonen, Laura; Koivula, Anu

    2014-12-01

    Four potential dehydrogenases identified through literature and bioinformatic searches were tested for L-arabonate production from L-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a D-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a L-arabinose/D-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP(+) but uses also NAD(+) as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards L-arabinose, D-galactose and D-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of L-arabinose, and the stable oxidation product detected is L-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear L-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for L-arabinose uptake, resulted in production of 18 g of L-arabonate per litre, at a rate of 248 mg of L-arabonate per litre per hour, with 86 % of the provided L-arabinose converted to L-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for L-arabonate production in yeast. PMID:25236800

  12. INDUCTION AND REPRESSION OF l-ARABINOSE ISOMERASE IN PEDIOCOCCUS PENTOSACEUS1

    PubMed Central

    Dobrogosz, Walter J.; DeMoss, Ralph D.

    1963-01-01

    Dobrogosz, Walter J. (University of Illinois, Urbana) and Ralph D. DeMoss. Induction and repression of l-arabinose isomerase in Pediococcus pentosaceus. J. Bacteriol. 85:1350–1355. 1963.—The inducible l-arabinose isomerase of Pediococcus pentosaceus can be rapidly and conveniently measured in whole-cell preparations by use of a standard colorimetric procedure originally developed for studies with cell-free enzyme preparations. The enzyme is measured by its ability to catalyze the isomerization of l-arabinose to l-ribulose. Whole cells suspended in a suitable buffer and pretreated with toluene were shown to exhibit this isomerase activity at a level comparable with that observed in cell-free enzyme preparations. Conditions for optimal induction of l-arabinose isomerase are described. In addition, it was determined that the formation of this enzyme is subject to repression by glucose, i.e., via catabolite repression. PMID:14047229

  13. Bioprospecting and evolving alternative xylose and arabinose pathway enzymes for use in Saccharomyces cerevisiae.

    PubMed

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2016-03-01

    Bioprospecting is an effective way to find novel enzymes from strains with desirable phenotypes. Such bioprospecting has enabled organisms such as Saccharomyces cerevisiae to utilize nonnative pentose sugars. Yet, the efficiency of this pentose catabolism (especially for the case of arabinose) remains suboptimal. Thus, further pathway optimization or identification of novel, optimal pathways is needed. Previously, we identified a novel set of xylan catabolic pathway enzymes from a superior pentose-utilizing strain of Ustilago bevomyces. These enzymes were used to successfully engineer a xylan-utilizing S. cerevisiae through a blended approach of bioprospecting and evolutionary engineering. Here, we expanded this approach to xylose and arabinose catabolic pathway engineering and demonstrated that bioprospected xylose and arabinose catabolic pathways from U. bevomyces offer alternative choices for enabling efficient pentose catabolism in S. cerevisiae. By introducing a novel set of xylose catabolic genes from U. bevomyces, growth rates were improved up to 85 % over a set of traditional Scheffersomyces stipitis pathway genes. In addition, we suggested an alternative arabinose catabolic pathway which, after directed evolution and pathway engineering, enabled S. cerevisiae to grow on arabinose as a sole carbon source in minimal medium with growth rates upwards of 0.05 h(-1). This pathway represents the most efficient growth of yeast on pure arabinose minimal medium. These pathways provide great starting points for further strain development and demonstrate the utility of bioprospecting from U. bevomyces. PMID:26671616

  14. Biochemical preparation of L-ribose and L-arabinose from ribitol: a new approach.

    PubMed

    Ahmed, Z; Shimonishi, T; Bhuiyan, S H; Utamura, M; Takada, G; Izumori, K

    1999-01-01

    L-ribose and L-arabinose were prepared biochemically from ribitol via a two-step reaction, by which the complete oxidation of ribitol to L-ribulose (approximately 98%) was achieved by the reaction of washed cells of Acetobacter aceti IFO 3281. The produced L-ribulose was then used as a substrate for the production of L-ribose and L-arabinose. The isomerization of L-ribulose to L-ribose and L-arabinose was carried out using L-ribose isomerase (L-RI) of Acinetobacter sp. strain DL-28 and L-arabinose isomerase (L-AI) of Mycobacterium smegmatis, respectively. At equilibrium, the ratio of L-ribose: L-ribulose was 70:30 and that of L-arabinose: L-ribulose was 90: 10. After a simple purification treatment, both pentoses could be crystallized without the use of column chromatography. The crystals were confirmed as L-ribose and L-arabinose by High-performance liquid chromatography (HPLC), Infrared (IR), Nuclear magnetic resonance (NMR) and optical rotation measurements. PMID:16232643

  15. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions

    NASA Astrophysics Data System (ADS)

    Liska, Adam J.; Yang, Haishun; Milner, Maribeth; Goddard, Steve; Blanco-Canqui, Humberto; Pelton, Matthew P.; Fang, Xiao X.; Zhu, Haitao; Suyker, Andrew E.

    2014-05-01

    Removal of corn residue for biofuels can decrease soil organic carbon (SOC; refs , ) and increase CO2 emissions because residue C in biofuels is oxidized to CO2 at a faster rate than when added to soil. Net CO2 emissions from residue removal are not adequately characterized in biofuel life cycle assessment (LCA; refs , , ). Here we used a model to estimate CO2 emissions from corn residue removal across the US Corn Belt at 580 million geospatial cells. To test the SOC model, we compared estimated daily CO2 emissions from corn residue and soil with CO2 emissions measured using eddy covariance, with 12% average error over nine years. The model estimated residue removal of 6 Mg per ha-1 yr-1 over five to ten years could decrease regional net SOC by an average of 0.47-0.66 Mg C ha-1 yr-1. These emissions add an average of 50-70 g CO2 per megajoule of biofuel (range 30-90) and are insensitive to the fraction of residue removed. Unless lost C is replaced, life cycle emissions will probably exceed the US legislative mandate of 60% reduction in greenhouse gas (GHG) emissions compared with gasoline.

  16. D-arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the L-fucose-D-arabinose pathway enzymes.

    PubMed

    Elsinghorst, E A; Mortlock, R P

    1988-12-01

    D-Arabinose is degraded by Escherichia coli B via some of the L-fucose pathway enzymes and a D-ribulokinase which is distinct from the L-fuculokinase of the L-fucose pathway. We found that L-fucose and D-arabinose acted as the apparent inducers of the enzymes needed for their degradation. These enzymes, including D-ribulokinase, appeared to be coordinately regulated, and mutants which constitutively synthesized the L-fucose enzymes also constitutively synthesized D-ribulokinase. In contrast to D-arabinose-positive mutants of E. coli K-12, in which L-fuculose-1-phosphate and D-ribulose-1-phosphate act as inducers of the L-fucose pathway, we found that these intermediates did not act as inducers in E. coli B. To further characterize the E. coli B system, some of the L-fucose-D-arabinose genes were mapped by using bacteriophage P1 transduction. A transposon Tn10 insertion near the E. coli B L-fucose regulon was used in two- and three-factor reciprocal crosses. The gene encoding D-ribulokinase, designated darK, was found to map within the L-fucose regulon, and the partial gene order was found to be Tn10-fucA-darK-fucI-fucK-thyA. PMID:3056899

  17. Consumption of residue containing cucurbitacin feeding stimulant and reduced rates of carbaryl insecticide by western corn rootworm (Coleoptera: Chrysomelidae).

    PubMed

    Behle, R W

    2001-12-01

    Application of insecticide at a reduced rate with a cucurbitacin-based feeding stimulant is a viable alternative to a broadcast insecticide application for control of adult western corn rootworms, Diabrotica virgifera virgifera, LeConte. Because of the small amount of material applied, it is conceivable that a high density of beetles could consume all of the spray residue before economic control is achieved. A laboratory experiment was conducted to determine the amount of cucurbitacin-based spray residue consumed by beetles. Dried residue of four treatments were exposed to three groups of 10 rootworm beetles for 1 h each. Treatments consisted of a cucurbitacin-based adjuvant (Cidetrak CRW, Trécé, Salinas, CA) with carbaryl insecticide (Sevin XLR Plus, Rhone Poulenc, Research Triangle Park, NC) mixed at 0, 0.12, 1.2, and 12 g (AI)/liter. For the treatment with cucurbitacin adjuvant only (no insecticide), beetles consumed 0.029 mg beetle(-1) h(-1) of exposure. Approximately 54% of the beetles were recorded as feeding at any given time during the 60-min feeding period. However, when the spray residue contained carbaryl, no weight loss of treatment residue was measured, though the beetles were observed to feed from the residue during the first few minutes of exposure. When residue included insecticide, beetles quickly ceased feeding (within 20 min), and toxicity behavior was observed 30 min after initial exposure for up to 75% of the beetles, which were classified as moribund (unable to stand upright). Beetle mortality was recorded 24 h after exposure and demonstrated that male beetles (53% dead for three insecticide treatments) were more susceptible to carbaryl toxicity than female beetles (28% dead for three insecticide treatments). Regression analysis showed a significant positive relationship between mortality of female beetles and ovarian development. Based on the measurements of this experiment, it is unlikely that realistic beetle densities would consume

  18. [Effect of reduced N application on soil N residue and N loss in maize-soybean relay strip intercropping system].

    PubMed

    Liu, Xiao-Ming; Yong, Tai-Wen; Liu, Wen-Yu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-08-01

    A field experiment was conducted in 2012, including three planting pattern (maize-soybean relay strip intercropping, mono-cultured maize and soybean) and three nitrogen application level [0 kg N x hm(-2), 180 kg N x hm(-2) (reduced N) and 240 kg N x hm(-2) (normal N)]. Fields were assigned to different treatments in a randomized block design with three replicates. The objective of this work was to analyze the effects of planting patterns and nitrogen application rates on plant N uptake, soil N residue and N loss. After fertilization applications, NH4(+)-N and NO3(-)-N levels increased in the soil of intercropped maize but decreased in the soil of intercropped soybean. Compared with mono-crops, the soil N residue and loss of intercropped soybean were reduced, while those of intercropped maize were increased and decreased, respectively. With the reduced rate of N application, N residue rate, N loss rate and ammonia volatilization loss rate of the maize-soybean intercropping relay strip system were decreased by 17.7%, 21.5% and 0.4% compared to mono-cultured maize, but increased by 2.0%, 19.8% and 0.1% compared to mono-cultured soybean, respectively. Likewise, the reduced N application resulted in reductions in N residue, N loss, and the N loss via ammonia volatilization in the maize-soybean relay strip intercropping system compared with the conventional rate of N application adopted by local farmers, and the N residue rate, N loss rate and ammonia volatilization loss rate reduced by 12.0%, 15.4% and 1.2%, respectively. PMID:25509077

  19. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster.

    PubMed Central

    Elsinghorst, E A; Mortlock, R P

    1994-01-01

    To metabolize the uncommon pentose D-arabinose, enteric bacteria often recruit the enzymes of the L-fucose pathway by a regulatory mutation. However, Escherichia coli B can grow on D-arabinose without the requirement of a mutation, using some of the L-fucose enzymes and a D-ribulokinase that is distinct from the L-fuculokinase of the L-fucose pathway. To study this naturally occurring D-arabinose pathway, we cloned and partially characterized the E. coli B L-fucose-D-arabinose gene cluster and compared it with the L-fucose gene cluster of E. coli K-12. The order of the fucA, -P, -I, and -K genes was the same in the two E. coli strains. However, the E. coli B gene cluster contained a 5.2-kb segment located between the fucA and fucP genes that was not present in E. coli K-12. This segment carried the darK gene, which encodes the D-ribulokinase needed for growth on D-arabinose by E. coli B. The darK gene was not homologous with any of the L-fucose genes or with chromosomal DNA from other D-arabinose-utilizing bacteria. D-Ribulokinase and L-fuculokinase were purified to apparent homogeneity and partially characterized. The molecular weights, substrate specificities, and kinetic parameters of these two enzymes were very dissimilar, which together with DNA hybridization analysis, suggested that these enzymes are not related. D-Arabinose metabolism by E. coli B appears to be the result of acquisitive evolution, but the source of the darK gene has not been determined. Images PMID:7961494

  20. USING REDUCING AGENTS TO ELIMINATE CHLORINE DIOXIDE AND CHLORITE ION RESIDUALS IN DRINKING WATER

    EPA Science Inventory

    In an effort to determine the viability of various disinfection alternatives, the Evansville, Ind. Water and Sewer Utility is engaged in a pilot-plant investigation to compare chlorine dioxide and ozone pretreatment. As a result of increased speculation that the total residual c...

  1. Hydrophobic carboxy-terminal residues dramatically reduce protein levels in the haloarchaeon Haloferax volcanii

    PubMed Central

    Reuter, Christopher J.; Uthandi, Sivakumar; Puentes, Jose A.; Maupin-Furlow, Julie A.

    2010-01-01

    Proteolysis is important not only to cell physiology but also to the successful development of biocatalysts. While a wide-variety of signals are known to trigger protein degradation in bacteria and eukaryotes, these mechanisms are poorly understood in archaea, known for their ability to withstand harsh conditions. Here we present a systematic study in which single C-terminal amino acid residues were added to a reporter protein and shown to influence its levels in an archaeal cell. All 20 amino acid residues were examined for their impact on protein levels, using the reporter protein soluble modified red-shifted GFP (smRS-GFP) expressed in the haloarchaeon Haloferax volcanii as a model system. Addition of hydrophobic residues, including Leu, Cys, Met, Phe, Ala, Tyr, Ile and Val, gave the most pronounced reduction in smRS-GFP levels compared with the addition of either neutral or charged hydrophilic residues. In contrast to the altered protein levels, the C-terminal alterations had no influence on smRS-GFP-specific transcript levels, thus revealing that the effect is post-transcriptional. PMID:19850616

  2. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.

    PubMed

    Zhang, Bo; Li, Xin-Li; Fu, Jing; Li, Ning; Wang, Zhiwen; Tang, Ya-Jie; Chen, Tao

    2016-01-01

    Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin. PMID:27467131

  3. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis

    PubMed Central

    Fu, Jing; Li, Ning; Wang, Zhiwen; Tang, Ya-jie; Chen, Tao

    2016-01-01

    Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin. PMID:27467131

  4. High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants.

    PubMed

    Li, Fengcheng; Zhang, Mingliang; Guo, Kai; Hu, Zhen; Zhang, Ran; Feng, Yongqing; Yi, Xiaoyan; Zou, Weihua; Wang, Lingqiang; Wu, Changyin; Tian, Jinshan; Lu, Tiegang; Xie, Guosheng; Peng, Liangcai

    2015-05-01

    Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with β-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice. PMID:25418842

  5. Efficiency of light-emitting diode and halogen units in reducing residual monomers

    PubMed Central

    de Assis Ribeiro Carvalho, Felipe; Almeida, Rhita C.; Almeida, Marco Antonio; Cevidanes, Lucia H. S.; Leite, Marcia C. Amorim M.

    2011-01-01

    Introduction In this in-vitro study, we aimed to compare the residual monomers in composites beneath brackets bonded to enamel, using a light-emitting diode (LED) or a halogen unit, and to compare the residual monomers in the central to the peripheral areas of the composite. Methods Twenty bovine teeth preserved in 0.1% thymol were used in this study. Ten teeth were used to standardize the thickness of the composite film, since different thicknesses would cause different absorbance of light. Brackets were bonded to 10 bovine incisors, with the halogen light (n = 5) and the LED (n = 5). The brackets were debonded, and the remaining composite on the enamel surface was sectioned in 2 regions: peripheral (0.8 mm) and central, resulting in 2 subgroups per group: central halogen (n = 5), peripheral halogen (n = 5), central LED (n = 5), and peripheral LED (n = 5). The spectrometric analysis in the infrared region was used to measure the free monomers with the attenuated total reflectance method. Results Normal distribution was tested by using the Kolmogorov-Smirnov test. Data were compared by 2-way analysis of variance (ANOVA) at P <0.05. The LED group showed fewer residual monomers than did the halogen group (P = 0.014). No differences were found among the regions (P = 0.354), and there were no interactions between light type and region (P = 0.368). Conclusions LED leaves less residual monomer than does the halogen light, even with half of the irradiation time; there were no differences between the central and peripheral regions, and no interaction between light type and region. PMID:21055603

  6. 1H MRS detection of glycine residue of reduced glutathione in vivo

    NASA Astrophysics Data System (ADS)

    Kaiser, Lana G.; Marjańska, Małgorzata; Matson, Gerald B.; Iltis, Isabelle; Bush, Seth D.; Soher, Brian J.; Mueller, Susanne; Young, Karl

    2010-02-01

    Glutathione (GSH) is a powerful antioxidant found inside different kinds of cells, including those of the central nervous system. Detection of GSH in the human brain using 1H MR spectroscopy is hindered by low concentration and spectral overlap with other metabolites. Previous MRS methods focused mainly on the detection of the cysteine residue (GSH-Cys) via editing schemes. This study focuses on the detection of the glycine residue (GSH-Gly), which is overlapped by glutamate and glutamine (Glx) under physiological pH and temperature. The first goal of the study was to obtain the spectral parameters for characterization of the GSH-Gly signal under physiological conditions. The second goal was to investigate a new method of separating GSH-Gly from Glx in vivo. The characterization of the signal was carried out by utilization of numerical simulations as well as experiments over a wide range of magnetic fields (4.0-14 T). The proposed separation scheme utilizes J-difference editing to quantify the Glx contribution to separate it from the GSH-Gly signal. The presented method retains 100% of the GSH-Gly signal. The overall increase in signal to noise ratio of the targeted resonance is calculated to yield a significant SNR improvement compared to previously used methods that target GSH-Cys residue. This allows shorter acquisition times for in vivo human clinical studies.

  7. 13C metabolic flux analysis in Clostridium acetobutylicum during growth on L-arabinose

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret; Sund, Christian; Liu, Sanchao; Germane, Katherine; Servinsky, Matthew; Gerlach, Elliot

    2015-03-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism are continuing to emerge. To elucidate the role of xylulose-5-P/fructose-6-P phosphoketolase (XFP), and the recently discovered Pentose Phosphate Pathway (PKP) in C. acetobutylicum, experimental and computational metabolic isotope analysis was performed under growth on glucose, xylose, and arabinose. Results indicate that PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. This was confirmed by mutation of the gene encoding XFP, which almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate:butyrate ratios. We discuss these experimental and computational results here, and the implications for our understanding of sugar metabolism in C. acetobutylicum.

  8. Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters.

    PubMed

    Lee, Sung Kuk; Chou, Howard H; Pfleger, Brian F; Newman, Jack D; Yoshikuni, Yasuo; Keasling, Jay D

    2007-09-01

    Synthetic biological systems often require multiple, independently inducible promoters in order to control the expression levels of several genes; however, cross talk between the promoters limits this ability. Here, we demonstrate the directed evolution of AraC to construct an arabinose-inducible (P(BAD)) system that is more compatible with IPTG (isopropyl-beta-D-1-thiogalactopyranoside) induction of a lactose-inducible (P(lac)) system. The constructed system is 10 times more sensitive to arabinose and tolerates IPTG significantly better than the wild type. Detailed studies indicate that the AraC dimerization domain and C terminus are important for the increased sensitivity of AraC to arabinose. PMID:17644634

  9. Arabinose 5-phosphate isomerase as a target for antibacterial design: studies with substrate analogues and inhibitors.

    PubMed

    Gabrielli, Luca; Merlo, Silvia; Airoldi, Cristina; Sperandeo, Paola; Gianera, Serena; Polissi, Alessandra; Nicotra, Francesco; Holler, Tod P; Woodard, Ronald W; Cipolla, Laura

    2014-04-15

    Structural requirements of D-arabinose 5-phosphate isomerase (KdsD, E.C. 5.3.1.13) from Pseudomonas aeruginosa were analysed in detail using advanced NMR techniques. We performed epitope mapping studies of the binding between the enzyme and the most potent KdsD inhibitors found to date, together with studies of a set of newly synthesised arabinose 5-phosphate (A5P) mimetics. We report here the first experimental evidence that KdsD may bind the furanose form of A5P, suggesting that catalysis of ring opening may be an important part of KdsD catalysis. PMID:24680056

  10. Improved starch recovery from potatoes by enzymes and reduced water holding of the residual fibres.

    PubMed

    Ramasamy, Urmila R; Lips, Steef; Bakker, Rob; Gruppen, Harry; Kabel, Mirjam A

    2014-11-26

    During the industrial extraction of starch from potatoes (Seresta), some starch remains within undisrupted potato cells in the fibrous side-stream. The aim of this study was to investigate if enzymatic degradation of cell wall polysaccharides (CWPs) can enhance starch recovery and lower the water holding capacity (WHC) of the "fibre" fraction. The use of a pectinase-rich preparation recovered 58% of the starch present in the "fibre" fraction. Also, the "fibre" fraction retained only 40% of the water present in the non-enzyme treated "fibre". This was caused by the degradation of pectins, in particular arabinogalactan side chains calculated as the sum of galactosyl and arabinosyl residues. PMID:25256483

  11. Reducing soluble phosphorus in dairy effluents through application of mine drainage residuals

    USGS Publications Warehouse

    Sibrell, Philip L.; Penn, Chad J.; Hedin, Robert S.

    2015-01-01

    Three different dairy manure wastewater effluent samples were amended with mine drainage residuals (MDR) to evaluate the suitability of MDR for sequestration of phosphorus (P). Geochemical modeling of the manure wastewater compositions indicated that partially soluble P-bearing minerals including hydroxyapatite, octacalcium phosphate, and vivianite were all oversaturated in each of the manure wastewater samples. Initial MDR amendment test results indicated that these partially soluble P minerals suspended in the wastewater replenished P in the water phase as it was sorbed by the MDR samples. Further investigations revealed that the MDR samples were effective in decreasing soluble P when the amended manure was tested using the water-extractable P procedure. Under these conditions, up to 90 percent of the soluble P in the manure was converted to a sorbed, water-insoluble state. Water contamination and large-scale validation tests of the process were also conducted.

  12. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  13. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway

    PubMed Central

    Bettiga, Maurizio; Bengtsson, Oskar; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2009-01-01

    Background Sustainable and economically viable manufacturing of bioethanol from lignocellulose raw material is dependent on the availability of a robust ethanol producing microorganism, able to ferment all sugars present in the feedstock, including the pentose sugars L-arabinose and D-xylose. Saccharomyces cerevisiae is a robust ethanol producer, but needs to be engineered to achieve pentose sugar fermentation. Results A new recombinant S. cerevisiae strain expressing an improved fungal pathway for the utilization of L-arabinose and D-xylose was constructed and characterized. The new strain grew aerobically on L-arabinose and D-xylose as sole carbon sources. The activities of the enzymes constituting the pentose utilization pathway(s) and product formation during anaerobic mixed sugar fermentation were characterized. Conclusion Pentose fermenting recombinant S. cerevisiae strains were obtained by the expression of a pentose utilization pathway of entirely fungal origin. During anaerobic fermentation the strain produced biomass and ethanol. L-arabitol yield was 0.48 g per gram of consumed pentose sugar, which is considerably less than previously reported for D-xylose reductase expressing strains co-fermenting L-arabinose and D-xylose, and the xylitol yield was 0.07 g per gram of consumed pentose sugar. PMID:19630951

  14. A new method to reduce false positives due to antimony in detection of gunshot residues.

    PubMed

    Aksoy, Çağdaş; Bora, Taner; Şenocak, Nilgün; Aydın, Fırat

    2015-05-01

    False positives due to the presence of antimony in vehicle seat fabrics are a problem in gunshot residue (GSR) analysis, in particular, when graphite furnace atomic absorption spectrometry (GFAAS) is employed. In this study, we sought to determine the reason for the prevalence of false positive results and to propose a new approach for the analysis of GSR on vehicle seats. GFAAS was used to examine adhesive tape swabs collected from 100 seats of 50 different automobiles. Characterization of seat fabrics was carried out by using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy with energy dispersive X-ray (SEM/EDX) spectroscopy. The results of FTIR analysis indicated that all seat covers containing antimony were composed of polyester. Experimental results obtained by SEM/EDX analysis revealed that the fabrics in these seat covers contained evenly distributed antimony within the structure of polyester fibers. This study shows that the type of seat fabric should be determined by FTIR spectroscopy before elemental GSR analysis. In this way, most of the false positives caused by polyester fibers in GSR analysis can be prevented. PMID:25828380

  15. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate

    DOE PAGESBeta

    Chou, Yat -Chen; Linger, Jeffrey; Yang, Shihui; Zhang, Min

    2015-04-28

    In this paper, a glucose, xylose and arabinose utilizing Zymomonas mobilis strain was constructed by incorporating arabinose catabolic pathway genes, araBAD encoding L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate- 4-epimerase in a glucose, xylose co-fermenting host, 8b, using a transposition integration approach. Further improvement on this arabinose-capable integrant, 33C was achieved by applying a second transposition to create a genomic knockout (KO) mutant library. Using arabinose as a sole carbon source and a selection pressure, the KO library was subjected to a growth-enrichment process involving continuous sub-culturing for over 120 generations. Strain 13-1-17, isolated from such process demonstrated significant improvement in metabolizingmore » arabinose in a dilute acid pretreated, saccharified corn stover slurry. Through Next Generation Sequencing (NGS) analysis, integration sites of the transposons were identified. Furthermore, multiple additional point mutations (SNPs: Single Nucleotide Polymorphisms) were discovered in 13-1-17, affecting genes araB and RpiB in the genome. Finally, we speculate that these mutations may have impacted the expression of the enzymes coded by these genes, ribulokinase and Ribose 5-P-isomerase, thus attributing to the improvement of the arabinose utilization.« less

  16. Structure of the thermophilic l-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability.

    PubMed

    Choi, Jin Myung; Lee, Yong-Jik; Cao, Thinh-Phat; Shin, Sun-Mi; Park, Min-Kyu; Lee, Han-Seung; di Luccio, Eric; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2016-04-15

    Thermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn(2+), but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs. PMID:26946941

  17. Reducing the impurity incorporation from residual gas by ion bombardment during high vacuum magnetron sputtering

    SciTech Connect

    Rosen, Johanna; Widenkvist, Erika; Larsson, Karin; Kreissig, Ulrich; Mraz, Stanislav; Martinez, Carlos; Music, Denis; Schneider, J. M.

    2006-05-08

    The influence of ion energy on the hydrogen incorporation has been investigated for alumina thin films, deposited by reactive magnetron sputtering in an Ar/O{sub 2}/H{sub 2}O environment. Ar{sup +} with an average kinetic energy of {approx}5 eV was determined to be the dominating species in the plasma. The films were analyzed with x-ray diffraction, x-ray photoelectron spectroscopy, and elastic recoil detection analysis, demonstrating evidence for amorphous films with stoichiometric O/Al ratio. As the substrate bias potential was increased from -15 V (floating potential) to -100 V, the hydrogen content decreased by {approx}70%, from 9.1 to 2.8 at. %. Based on ab initio calculations, these results may be understood by thermodynamic principles, where a supply of energy enables surface diffusion, H{sub 2} formation, and desorption [Rosen et al., J. Phys.: Condens. Matter 17, L137 (2005)]. These findings are of importance for the understanding of the correlation between ion energy and film composition and also show a pathway to reduce impurity incorporation during film growth in a high vacuum ambient.

  18. Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM.

    PubMed

    Wang, Pei-Pei; Bao, Peng; Sun, Guo-Xin

    2015-01-01

    Arsenic methylation is an important process frequently occurring in anaerobic environments. Anaerobic microorganisms have been implicated as the major contributors for As methylation. However, very little information is available regarding the enzymatic mechanism of As methylation by anaerobes. In this study, one novel sulfate-reducing bacterium isolate, Clostridium sp. BXM, which was isolated from a paddy soil in our laboratory, was demonstrated to have the ability of methylating As. One putative arsenite S-Adenosyl-Methionine methyltransferase (ArsM) gene, CsarsM was cloned from Clostridium sp. BXM. Heterologous expression of CsarsM conferred As resistance and the ability of methylating As to an As-sensitive strain of Escherichia coli. Purified methyltransferase CsArsM catalyzed the formation of methylated products from arsenite, further confirming its function of As methylation. Site-directed mutagenesis studies demonstrated that three conserved cysteine residues at positions 65, 153 and 203 in CsArsM are necessary for arsenite methylation, but only Cysteine 153 and Cysteine 203 are required for the methylation of monomethylarsenic to dimethylarsenic. These results provided the characterization of arsenic methyltransferase from anaerobic sulfate-reducing bacterium. Given that sulfate-reducing bacteria are ubiquitous in various wetlands including paddy soils, enzymatic methylation mediated by these anaerobes is proposed to contribute to the arsenic biogeochemical cycling. PMID:25790486

  19. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments

    PubMed Central

    Meier, Elizabeth A.; Thorburn, Peter J.

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues (‘trash’). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a ‘trash blanket’ in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N

  20. Long Term Sugarcane Crop Residue Retention Offers Limited Potential to Reduce Nitrogen Fertilizer Rates in Australian Wet Tropical Environments.

    PubMed

    Meier, Elizabeth A; Thorburn, Peter J

    2016-01-01

    The warming of world climate systems is driving interest in the mitigation of greenhouse gas (GHG) emissions. In the agricultural sector, practices that mitigate GHG emissions include those that (1) reduce emissions [e.g., those that reduce nitrous oxide (N2O) emissions by avoiding excess nitrogen (N) fertilizer application], and (2) increase soil organic carbon (SOC) stocks (e.g., by retaining instead of burning crop residues). Sugarcane is a globally important crop that can have substantial inputs of N fertilizer and which produces large amounts of crop residues ('trash'). Management of N fertilizer and trash affects soil carbon and nitrogen cycling, and hence GHG emissions. Trash has historically been burned at harvest, but increasingly is being retained on the soil surface as a 'trash blanket' in many countries. The potential for trash retention to alter N fertilizer requirements and sequester SOC was investigated in this study. The APSIM model was calibrated with data from field and laboratory studies of trash decomposition in the wet tropics of northern Australia. APSIM was then validated against four independent data sets, before simulating location × soil × fertilizer × trash management scenarios. Soil carbon increased in trash blanketed soils relative to SOC in soils with burnt trash. However, further increases in SOC for the study region may be limited because the SOC in trash blanketed soils could be approaching equilibrium; future GHG mitigation efforts in this region should therefore focus on N fertilizer management. Simulated N fertilizer rates were able to be reduced from conventional rates regardless of trash management, because of low yield potential in the wet tropics. For crops subjected to continuous trash blanketing, there was substantial immobilization of N in decomposing trash so conventional N fertilizer rates were required for up to 24 years after trash blanketing commenced. After this period, there was potential to reduce N fertilizer

  1. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    PubMed Central

    Bettiga, Maurizio; Hahn-Hägerdal, Bärbel; Gorwa-Grauslund, Marie F

    2008-01-01

    Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase

  2. Use of drinking water treatment residuals as a potential best management practice to reduce phosphorus risk index scores.

    PubMed

    Dayton, E A; Basta, N T

    2005-01-01

    The P risk index system has been developed to identify agricultural fields vulnerable to P loss as a step toward protecting surface water. Because of their high Langmuir phosphorus adsorption maxima (P(max)), use of drinking water treatment residuals (WTRs) should be considered as a best management practice (BMP) to lower P risk index scores. This work discusses three WTR application methods that can be used to reduce P risk scores: (i) enhanced buffer strip, (ii) incorporation into a high soil test phosphorus (STP) soil, and (iii) co-blending with manure or biosolids. The relationship between WTR P(max) and reduction in P extractability and runoff P was investigated. In a simulated rainfall experiment, using a buffer strip enhanced with 20 Mg WTR ha(-1), runoff P was reduced by from 66.8 to 86.2% and reductions were related to the WTR P(max). When 25 g kg(-1) WTR was incorporated into a high STP soil of 315 mg kg(-1) determined using Mehlich-3 extraction, 0.01 M calcium chloride-extractable phosphorus (CaCl(2)-P) reductions ranged from 60.9 to 96.0% and were strongly (P < 0.01) related to WTR P(max). At a 100 g kg(-1) WTR addition, Mehlich 3-extractable P reductions ranged from 41.1 to 86.7% and were strongly (P < 0.01) related to WTR P(max). Co-blending WTR at 250 g kg(-1) to manure or biosolids reduced CaCl(2)-P by >75%. The WTR P(max) normalized across WTR application rates (P(max) x WTR application) was significantly related to reductions in CaCl(2)-P or STP. Using WTR as a P risk index modifying factor will promote effective use of WTR as a BMP to reduce P loss from agricultural land. PMID:16275711

  3. Efficient Synthesis of 4-Amino-4-deoxy-L-arabinose and Spacer-equipped 4-Amino-4-deoxy-L-arabinopyranosides by Transglycosylation Reactions.

    PubMed

    Müller, Bernhard; Blaukopf, Markus; Hofinger, Andreas; Zamyatina, Alla; Brade, Helmut; Kosma, Paul

    2010-09-01

    Methyl 4-azido-4-deoxy-β-L-arabinopyranoside has been synthesized in five steps starting from methyl β-D-xylopyranoside in a multigram scale without chromatographic purification in 78% overall yield. The transformation relied on selective tosylation/nosylation at O-4 followed by acylation, S(N)2 displacement with sodium azide and subsequent deprotection. The methyl 4-azido-4-deoxy-arabinoside was then converted into allyl, propenyl, ω-bromohexyl and chlorethoxyethyl spacer glycosides by transglycosylation with the respective alcohols in good yields and fair anomeric selectivity. Reduction of the azido group and further transformations of the aglycon afforded ω-thiol-containing spacer derivatives. Coupling to maleimide-activated BSA provided a potent immunogen which was used to generate murine and rabbit polyclonal sera binding to LPS-core epitopes containing 4-amino-4-deoxy-arabinose residues. PMID:22187517

  4. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    SciTech Connect

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr; Sieglová, Irena; Fábry, Milan; Otwinowski, Zbyszek; Řezáčová, Pavlína

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similarity to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.

  5. Properties of d-Arabinose Isomerase Purified from Two Strains of Escherichia coli

    PubMed Central

    Boulter, James R.; Gielow, William O.

    1973-01-01

    d-Arabinose isomerase (EC 5.3.1.3) has been isolated from l-fucose-induced cultures of Escherichia coli K-12 and d-arabinose-induced cultures of E. coli B/r. Both enzymes were homogeneous in an ultracentrifuge and migrated as single bands upon disc electrophoresis in acrylamide gels. The s20,w was 14.5 × 10−13 sec for the E. coli K-12 enzyme and 14.3 × 10−13 sec for the E. coli B/r enzyme. The molecular weight, determined by high-speed sedimentation equilibrium, was 3.55 ± 0.06 × 105 for the E. coli K-12 enzyme and 3.42 ± 0.04 × 105 for the enzyme isolated from E. coli B/r. Both enzyme preparations were active wth l-fucose or d-arabinose as substrates and showed no activity on any of the other aldopentoses or aldohexoses tested. With the E. coli K-12 enzyme, the Km was 2.8 × 10−1m for d-arabinose and 4.5 × 10−2m for l-fucose; with the E. coli B/r enzyme, the Km was 1.7 × 10−1m for d-arabinose and 4.2 × 10−2m for l-fucose. Both enzymes were inhibited by several of the polyalcohols tested, ribitol, l-arabitol, and dulcitol being the strongest. Both enzymes exhibited a broad plateau of optimal catalytic activity in the alkaline range. Both enzymes were stimulated by the presence of Mn2+ or Co2+ ions, but were strongly inhibited by the presence of Cd2+ ions. Both enzymes were precipitated by antisera prepared against either enzyme preparation. The amino acid composition for both proteins has been determined; a striking similarity has been detected. Both enzymes could be dissociated, by protonation at pH 2 or by dialysis against buffer containing 8 m urea, into subunits that were homogeneous in an ultracentrifuge and migrated as single bands on disc electrophoresis in acrylamide gels containing urea. The molecular weight of the subunit, determined by high-speed sedimentation equilibrium, was 9.09 ± 0.2 × 104 for the enzyme from E. coli K-12 and 8.46 ± 0.1 × 104 for the enzyme from E. coli B/r. On the basis of biophysical studies, both

  6. Hepatitis C Virus (HCV) Envelope Glycoproteins E1 and E2 Contain Reduced Cysteine Residues Essential for Virus Entry*

    PubMed Central

    Fraser, Johanna; Boo, Irene; Poumbourios, Pantelis; Drummer, Heidi E.

    2011-01-01

    The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process. PMID:21768113

  7. Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 contain reduced cysteine residues essential for virus entry.

    PubMed

    Fraser, Johanna; Boo, Irene; Poumbourios, Pantelis; Drummer, Heidi E

    2011-09-16

    The HCV envelope glycoproteins E1 and E2 contain eight and 18 highly conserved cysteine residues, respectively. Here, we examined the oxidation state of E1E2 heterodimers incorporated into retroviral pseudotyped particles (HCVpp) and investigated the significance of free sulfhydryl groups in cell culture-derived HCV (HCVcc) and HCVpp entry. Alkylation of free sulfhydryl groups on HCVcc/pp with a membrane-impermeable sulfhydryl-alkylating reagent 4-(N-maleimido)benzyl-α-trimethylammonium iodide (M135) prior to virus attachment to cells abolished infectivity in a dose-dependent manner. Labeling of HCVpp envelope proteins with EZ-Link maleimide-PEG2-biotin (maleimide-biotin) detected free thiol groups in both E1 and E2. Unlike retroviruses that employ disulfide reduction to facilitate virus entry, the infectivity of alkylated HCVcc could not be rescued by addition of exogenous reducing agents. Furthermore, the infectivity of HCVcc bound to target cells was not affected by addition of M135 indicative of a change in glycoprotein oxidation state from reduced to oxidized following virus attachment to cells. By contrast, HCVpp entry was reduced by 61% when treated with M135 immediately following attachment to cells, suggesting that the two model systems might demonstrate variations in oxidation kinetics. Glycoprotein oxidation was not altered following binding of HCVpp incorporated E1E2 to soluble heparin or recombinant CD81. These results suggest that HCV entry is dependent on the presence of free thiol groups in E1 and E2 prior to cellular attachment and reveals a new essential component of the HCV entry process. PMID:21768113

  8. Removal of the free cysteine residue reduces irreversible thermal inactivation of feruloyl esterase: evidence from circular dichroism and fluorescence spectra.

    PubMed

    Li, Jingjing; Zhang, Shuaibing; Yi, Zhuolin; Pei, Xiaoqiong; Wu, Zhongliu

    2015-08-01

    Feruloyl esterase A from Aspergillus niger (AnFaeA) contains three intramolecular disulfide bonds and one free cysteine at position 235. Saturated mutagenesis at Cys235 was carried out to produce five active mutants, all of which displayed unusual thermal inactivation patterns with the most residual activity achieved at 75°C, much higher than the parental AnFaeA. But their optimal reaction temperatures were lower than the parental AnFaeA. Extensive investigation into their free thiol and disulfide bond, circular dichroism spectra and fluorescence spectra revealed that the unfolding of the parental enzyme was irreversible on all the tested conditions, while that of the Cys235 mutants was reversible, and their ability to refold was highly dependent on the denaturing temperature. Mutants denatured at 75°C were able to efficiently reverse the unfolding to regain native structure during the cooling process. This study provided valid evidence that free cysteine substitutions can reduce irreversible thermal inactivation of proteins. PMID:26079173

  9. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: A solution to reduce residual stress anisotropy

    NASA Astrophysics Data System (ADS)

    Correa, C.; Peral, D.; Porro, J. A.; Díaz, M.; Ruiz de Lara, L.; García-Beltrán, A.; Ocaña, J. L.

    2015-10-01

    Laser Shock Peening (LSP) is considered as an alternative technology to shot peening (SP) for the induction of compressive residual stresses in metallic alloys in order to improve their fatigue, corrosion and wear resistance. Since laser pulses generated by high-intensity laser systems cover only a small area, laser pulses are generally overlapped and scanned in a zigzag-type pattern to cover completely the surface to be treated. However, zigzag-type scanning patterns induce residual stress anisotropy as collateral effect. The purpose of this paper is to describe and explain, for the first time and with the aid of the numerical model developed by the authors, the influence of the scanning pattern directionality on the residual stress tensor. As an effective solution, the authors propose the application of random-type scanning patterns instead of zigzag-type in order to reduce the mentioned residual stress anisotropy.

  10. A mixed diet supplemented with L-arabinose does not alter glycaemic or insulinaemic responses in healthy human subjects.

    PubMed

    Halschou-Jensen, Kia; Bach Knudsen, Knud E; Nielsen, Søren; Bukhave, Klaus; Andersen, Jens R

    2015-01-14

    In addition to a yet-to-be published study showing arabinose to have an inhibiting effect on maltase, in vitro studies have shown L-arabinose to exert an inhibiting effect on small-intestinal sucrase and maltase and the consumption of a sucrose-rich drink containing L-arabinose to exert positive effects on postprandial blood glucose, insulin and C-peptide responses in humans. However, the effects of adding L-arabinose to mixed meals on the indices of glucose control are unknown. The purpose of the present study was to investigate whether the positive effects of L-arabinose added to a sugar drink could be reproduced in subjects consuming a mixed meal containing sucrose and/or starch from wheat flour. A total of seventeen healthy men participated in study 1, a randomised, double-blind, cross-over trial. In this study, the subjects consumed two different breakfast meals containing sucrose and starch from wheat flour (meal A) or starch from wheat flour (meal B) supplemented with 0, 5 and 10 % L-arabinose by weight after a 12 h fast. A total of six healthy men participated in study 2, a randomised, double-blind, cross-over trial. In this study, the subjects also consumed meal B served in two different textures and a liquid meal with maltose supplemented with 0 and 20% L-arabinose. In addition, 1·5 g of paracetamol was chosen as an indirect marker to assess gastric emptying. Postprandial plasma glucose, insulin and C-peptide concentrations were measured regularly for 3 h. The results of the present study showed that the peak plasma concentration, time to reach peak plasma concentration or AUC values of glucose, insulin and C-peptide were not altered after consumption of the test meals. Overall, it was not possible to reproduce the beneficial effects of L-arabinose added to sucrose drinks when L-arabinose was mixed in a solid or semi-solid mixed meal. PMID:25400106

  11. Web-Based Intervention in Mindfulness Meditation for Reducing Residual Depressive Symptoms and Relapse Prophylaxis: A Qualitative Study

    PubMed Central

    2014-01-01

    Background Mindful Mood Balance (MMB) is a Web-based intervention designed to treat residual depressive symptoms and prevent relapse. MMB was designed to deliver the core concepts of mindfulness-based cognitive therapy (MBCT), a group treatment, which, despite its strong evidence base, faces a number of dissemination challenges. Objective The present study is a qualitative investigation of participants’ experiences with MMB. Methods Qualitative content analysis was conducted via 38 exit interviews with MMB participants. Study inclusion required a current PHQ-9 (Patient Health Questionnaire) score ≤12 and lifetime history ≥1 major depressive episode. Feedback was obtained on specific website components, program content, and administration as well as skills learned. Results Codes were assigned to interview responses and organized into four main themes: MBCT Web content, MBCT Web-based group process, home practice, and evidence of concept comprehension. Within these four areas, participants highlighted the advantages and obstacles of translating and delivering MBCT in a Web-based format. Adding increased support was suggested for troubleshooting session content as well as managing time challenges for completing home mindfulness practice. Participants endorsed developing affect regulation skills and identified several advantages to Web-based delivery including flexibility, reduced cost, and time commitment. Conclusions These findings support the viability of providing MBCT online and are consistent with prior qualitative accounts derived from in-person MBCT groups. While there is certainly room for innovation in the domains of program support and engagement, the high levels of participant satisfaction indicated that MMB can significantly increase access to evidence-based psychological treatments for sub-threshold symptoms of unipolar affective disorder. PMID:24662625

  12. Analysis of the Arabinose-5-Phosphate Isomerase of Bacteroides fragilis Provides Insight into Regulation of Single-Domain Arabinose Phosphate Isomerases

    PubMed Central

    Cech, David; Wang, Pan Fen; Holler, Tod P.

    2014-01-01

    Arabinose-5-phosphate isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and d-arabinose-5-phosphate, the first step in the biosynthesis of 3-deoxy-d-manno-octulosonic acid (Kdo), an essential component of the lipopolysaccharide in Gram-negative bacteria. Classical APIs, such as Escherichia coli KdsD, contain a sugar isomerase domain and a tandem cystathionine beta-synthase domain. Despite substantial effort, little is known about structure-function relationships in these APIs. We recently reported an API containing only a sugar isomerase domain. This protein, c3406 from E. coli CFT073, has no known physiological function. In this study, we investigated a putative single-domain API from the anaerobic Gram-negative bacterium Bacteroides fragilis. This putative API (UniProt ID Q5LIW1) is the only protein encoded by the B. fragilis genome with significant identity to any known API, suggesting that it is responsible for lipopolysaccharide biosynthesis in B. fragilis. We tested this hypothesis by preparing recombinant Q5LIW1 protein (here referred to by the UniProt ID Q5LIW1), characterizing its API activity in vitro, and demonstrating that the gene encoding Q5LIW1 (GenBank ID YP_209877.1) was able to complement an API-deficient E. coli strain. We demonstrated that Q5LIW1 is inhibited by cytidine 5′-monophospho-3-deoxy-d-manno-2-octulosonic acid, the final product of the Kdo biosynthesis pathway, with a Ki of 1.91 μM. These results support the assertion that Q5LIW1 is the API that supports lipopolysaccharide biosynthesis in B. fragilis and is subject to feedback regulation by CMP-Kdo. The sugar isomerase domain of E. coli KdsD, lacking the two cystathionine beta-synthase domains, demonstrated API activity and was further characterized. These results suggest that Q5LIW1 may be a suitable system to study API structure-function relationships. PMID:24891442

  13. ASCORBIC ACID TREATMENT TO REDUCE RESIDUAL HALOGEN-BASED OXIDANTS PRIOR TO THE DETERMINATION OF HALOGENATED DISINFECTION BYPRODUCTS IN POTABLE WATER

    EPA Science Inventory

    Treatment of potable water samples with ascorbic acid has been investigated as a means for reducing residual halogen-based oxidants (disinfectants)i.e., HOCl, Cl2, Brw and BrCl, prior to determination of EPA Method 551.1A and 551.1B analytes. These disinfection byproducts include...

  14. Effect of Dietary l-arabinose on the Intestinal Microbiota and Metabolism of Dietary Daidzein in Adult Mice

    PubMed Central

    TAMURA, Motoi; KURUSU, Yukie; HORI, Sachiko

    2012-01-01

    This study examined the effects of L-arabinose on mouse intestinal microbiota and urinary isoflavonoids. Male mice were randomly divided into two groups: those fed a 0.05% daidzein–2.5% L-arabinose diet (AR group) and those fed a 0.05% daidzein control diet (CO group) for 28 days. The amounts of daidzein detected in urine were significantly lower in the AR group than in the CO group. The ratio of equol/daidzein was significantly higher in the AR group (p<0.01) than in the CO group. The composition of caecal flora differed between the AR and CO groups. The occupation ratios of Prevotella and Lactobacillales were significantly lower in the AR group. This study suggests that dietary L-arabinose has the potential to affect the metabolism of equol from daidzein by altering the metabolic activity of intestinal microbiota. PMID:24936350

  15. Uptake and Metabolic Fate of Glucose, Arabinose, and Xylose by Zea mays Coleoptiles in Relation to Cell Wall Synthesis 1

    PubMed Central

    Carpita, Nicholas C.; Brown, Ronald A.; Weller, Kathleen M.

    1982-01-01

    According to the acid-growth hypothesis, auxin-induced secretion of hydrogen ions activate “wall loosening” enzymes that change the rheological properties of the cell wall. The wall loosening process may yield monosaccharides by the enzymic cleavage of load-bearing polysaccharides. Our study was initiated to determine the metabolic fate of such sugars when released from the major hemicellulosic polysaccharides of the cell walls of Zea mays coleoptiles. Excised coleoptile sections accumulated radioactive glucose, arabinose, and xylose supplied in an incubation medium, and the radioactivity from these sugars was incorporated into polysaccharides. At least 50% of the radioactivity from glucose accumulated in the soluble neutral sugar fraction regardless of external concentrations. The distribution of radioactivity from xylose into all subcellular fractions was similar to that from glucose, indicating that xylose was converted to glucose before being used by the coleoptile. IAA increased the incorporation of glucose into cell wall polysaccharide and neutral sugar pools when the exogenous concentration was higher than 1 millimolar. Over 80% of the radioactivity from arabinose accumulated by the coleoptile sections was incorporated into soluble and noncellulosic polymers; IAA induced an increase in the incorporation of arabinose into noncellulosic polymers by 22%. Accumulation of radioactivity from arabinose into polysaccharide was enhanced by IAA at concentrations of exogenous arabinose up to 33 millimolar. IAA promoted the incorporation of both arabinose and glucose into cell wall polysaccharides even when elongation was inhibited by CaCl2, indicating that the influence of IAA was not a consequence of the growth response. PMID:16662366

  16. FORMATION OF FINE PARTICLES FROM RESIDUAL OIL COMBUSTION: REDUCING ULTRAFINE NUCLEI THROUGH THE ADDITION OF INORGANIC SORBENT

    EPA Science Inventory

    The paper gives results of an investigation, using an 82-kW-rated laboratory-scale refractory-lined combustor, of the characteristics of particulate matter emitted from residual oil combustion and the reduction of ultrafine nuclei by postflame sorbent injection. Without sorbent a...

  17. Industrial Saccharomyces cerevisiae Yeast Strain Engineered to Convert Glucose, Mannose, Arabinose, and Xylose (GMAX) to Ethanol Anaerobically

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technology for engineering an industrial yeast strain for production of ethanol from glucose, mannose, arabinose, and xylose (GMAX-yeast) using both corn starch and cellulosic feedstocks with simultaneous production of valuable coproducts, including biodiesel, will be discussed. A stable industrial...

  18. Elastic/plastic analyses of advanced composites investigating the use of the compliant layer concept in reducing residual stresses resulting from processing

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Arya, Vinod K.; Melis, Matthew E.

    1990-01-01

    High residual stresses within intermetallic and metal matrix composite systems can develop upon cooling from the processing temperature to room temperature due to the coefficient of thermal expansion (CTE) mismatch between the fiber and matrix. As a result, within certain composite systems, radial, circumferential, and/or longitudinal cracks have been observed to form at the fiber-matrix interface. The compliant layer concept (insertion of a compensating interface material between the fiber and matrix) was proposed to reduce or eliminate the residual stress buildup during cooling and thus minimize cracking. The viability of the proposed compliant layer concept is investigated both elastically and elastoplastically. A detailed parametric study was conducted using a unit cell model consisting of three concentric cylinders to determine the required character (i.e., thickness and material properties) of the compliant layer as well as its applicability. The unknown compliant layer mechanical properties were expressed as ratios of the corresponding temperature dependent Ti-24Al-11Nb (a/o) matrix properties. The fiber properties taken were those corresponding to SCS-6 (SiC). Results indicate that the compliant layer can be used to reduce, if not eliminate, radial and circumferential residual stresses within the fiber and matrix and therefore also reduce or eliminate the radial cracking. However, with this decrease in in-plane stresses, one obtains an increase in longitudinal stress, thus potentially initiating longitudinal cracking. Guidelines are given for the selection of a specific compliant material, given a perfectly bonded system.

  19. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands. PMID:15607197

  20. Boost the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues

    DOE PAGESBeta

    Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; Fan, Congcheng; Liu, Shuang; Huang, Zhuoting; Liu, Yujing; Shan, Bowen; Miao, Qian; Chen, Hongzheng; et al

    2015-10-29

    Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm2 V–1 s–1 with a highest value of 13.3 cm2 V–1 s–1;more » these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm2 V–1 s–1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm2 V–1 s–1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less

  1. Genetic engineering and improvement of a Zymomonas mobilis for arabinose utilization and its performance on pretreated corn stover hydrolyzate

    SciTech Connect

    Chou, Yat -Chen; Linger, Jeffrey; Yang, Shihui; Zhang, Min

    2015-04-28

    In this paper, a glucose, xylose and arabinose utilizing Zymomonas mobilis strain was constructed by incorporating arabinose catabolic pathway genes, araBAD encoding L-ribulokinase, L-arabinose isomerase and L-ribulose-5-phosphate- 4-epimerase in a glucose, xylose co-fermenting host, 8b, using a transposition integration approach. Further improvement on this arabinose-capable integrant, 33C was achieved by applying a second transposition to create a genomic knockout (KO) mutant library. Using arabinose as a sole carbon source and a selection pressure, the KO library was subjected to a growth-enrichment process involving continuous sub-culturing for over 120 generations. Strain 13-1-17, isolated from such process demonstrated significant improvement in metabolizing arabinose in a dilute acid pretreated, saccharified corn stover slurry. Through Next Generation Sequencing (NGS) analysis, integration sites of the transposons were identified. Furthermore, multiple additional point mutations (SNPs: Single Nucleotide Polymorphisms) were discovered in 13-1-17, affecting genes araB and RpiB in the genome. Finally, we speculate that these mutations may have impacted the expression of the enzymes coded by these genes, ribulokinase and Ribose 5-P-isomerase, thus attributing to the improvement of the arabinose utilization.

  2. Thermal-hydraulic processes involved in loss of residual heat removal during reduced inventory operation. Revision 1

    SciTech Connect

    Fletcher, C.D.; McHugh, P.R.; Naff, S.A.; Johnsen, G.W.

    1991-02-01

    This paper identifies the topics needed to understand pressurized water reactor response to an extended loss of residual heat removal event during refueling and maintenance outages. By identifying the possible plant conditions and cooling methods that would be used for each cooling mode, the controlling thermal-hydraulic processes and phenomena were identified. Controlling processes and phenomena include: gravity drain, core water boil-off, and reflux cooling processes. Important subcategories of the reflux cooling processes include: the initiation of reflux cooling from various plant conditions, the effects of air on reflux cooling, core level depression effects, issues regarding the steam generator secondaries, and the special case of boiler-condenser cooling with once-through steam generators. 25 refs., 6 figs., 1 tab.

  3. Identification of GutQ from Escherichia coli as a d-Arabinose 5-Phosphate Isomerase

    PubMed Central

    Meredith, Timothy C.; Woodard, Ronald W.

    2005-01-01

    The glucitol operon (gutAEBDMRQ) of Escherichia coli encodes a phosphoenolpyruvate:sugar phosphotransferase system that metabolizes the hexitol d-glucitol (sorbitol). The functions for all but the last gene, gutQ, have been previously assigned. The high sequence similarity between GutQ and KdsD, a d-arabinose 5-phosphate isomerase (API) from the 3-deoxy-d-manno-octulosonate (KDO)-lipopolysaccharide (LPS) biosynthetic pathway, suggested a putative activity, but its role within the context of the gut operon remained unclear. Accordingly, the enzyme was cloned, overexpressed, and characterized. Recombinant GutQ was shown to indeed be a second copy of API from the E. coli K-12 genome with biochemical properties similar to those of KdsD, catalyzing the reversible aldol-ketol isomerization between d-ribulose 5-phosphate (Ru5P) and d-arabinose 5-phosphate (A5P). Genomic disruptions of each API gene were constructed in E. coli K-12. TCM11[(ΔkdsD)] was capable of sustaining essential LPS synthesis at wild-type levels, indicating that GutQ functions as an API inside the cell. The gut operon remained inducible in TCM7[(ΔgutQ)], suggesting that GutQ is not directly involved in d-glucitol catabolism. The conditional mutant TCM15[(ΔgutQΔkdsD)] was dependent on exogenous A5P both for LPS synthesis/growth and for upregulation of the gut operon. The phenotype was suppressed by complementation in trans with a plasmid encoding a functional copy of GutQ or by increasing the amount of A5P in the medium. As there is no obvious obligatory role for GutQ in the metabolism of d-glucitol and there is no readily apparent link between d-glucitol metabolism and LPS biosynthesis, it is suggested that A5P is not only a building block for KDO biosynthesis but also may be a regulatory molecule involved in expression of the gut operon. PMID:16199563

  4. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation.

    PubMed

    Moore, John P; Nguema-Ona, Eric E; Vicré-Gibouin, Mäite; Sørensen, Iben; Willats, William G T; Driouich, Azeddine; Farrant, Jill M

    2013-03-01

    A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as 'pectic plasticizers'. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of 'plasticising' the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants. PMID:23117392

  5. Reducing residual stresses and deformations in selective laser melting through multi-level multi-scale optimization of cellular scanning strategy

    NASA Astrophysics Data System (ADS)

    Mohanty, Sankhya; Hattel, Jesper H.

    2016-04-01

    Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential, there is still dearth of techniques to tackle the issue. Numerical modelling of selective laser melting process has thus been an active area of research in the last few years. However, large computational resource requirements have slowed the usage of these models for optimizing the process. In this paper, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process. A multilevel optimization strategy is adopted using a customized genetic algorithm developed for optimizing cellular scanning strategy for selective laser melting, with an objective of reducing residual stresses and deformations. The resulting thermo-mechanically optimized cellular scanning strategies are compared with standard scanning strategies and have been used to manufacture standard samples.

  6. Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannan in Human Urine

    PubMed Central

    De, Prithwiraj; Amin, Anita G.; Valli, Eloise; Perkins, Mark D.; McNeil, Michael; Chatterjee, Delphi

    2015-01-01

    Globally, tuberculosis is slowly declining each year and it is estimated that 37 million lives were saved between 2000 and 2013 through effective diagnosis and treatment. Currently, diagnosis relies on demonstration of the bacteria, Mycobacterium tuberculosis (Mtb), in clinical specimens by serial sputum microscopy, culture and molecular testing. Commercial immunoassay lateral flow kits developed to detect Mtb lipoglycan lipoarabinomannan (LAM) in urine as a marker of active TB exhibit poor sensitivity, especially in immunocompetent individuals, perhaps due to low abundance of the analyte. Our present study was designed to develop methods to validate the presence of LAM in a quantitative fashion in human urine samples obtained from culture-confirmed TB patients. Herein we describe, a consolidated approach for isolating LAM from the urine and quantifying D-arabinose as a proxy for LAM, using Gas Chromatography/Mass Spectrometry. 298 urine samples obtained from a repository were rigorously analyzed and shown to contain varying amounts of LAM-equivalent ranging between ~10–40 ng/mL. To further substantiate that D-arabinose detected in the samples originated from LAM, tuberculostearic acid, the unique 10-methyloctadecanoic acid present at the phosphatidylinositol end of LAM was also analyzed in a set of samples and found to be present confirming that the D-arabinose was indeed derived from LAM. Among the 144 samples from culture-negative TB suspects, 30 showed presence of D-arabinose suggesting another source of the analyte, such as disseminated TB or from non-tuberculosis mycobacterium. Our work validates that LAM is present in the urine samples of culture-positive patients in small but readily detectable amounts. The study further substantiates LAM in urine as a powerful biomarker for active tuberculosis. PMID:26633829

  7. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2.

    PubMed

    Dugard, Christopher K; Mertz, Rachel A; Rayon, Catherine; Mercadante, Davide; Hart, Christopher; Benatti, Matheus R; Olek, Anna T; SanMiguel, Phillip J; Cooper, Bruce R; Reiter, Wolf-Dieter; McCann, Maureen C; Carpita, Nicholas C

    2016-07-01

    Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP. PMID:27217494

  8. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    SciTech Connect

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  9. Does polyacrylamide reduce post-fire runoff and inter-rill erosion as effectively as forest residue mulching?

    NASA Astrophysics Data System (ADS)

    Prats, Sergio; Martins, Martinho A. S.; Malvar Cortizo, Marutxa; Ben Hur, Meni; Keizer, Jan Jacob

    2013-04-01

    Forest fires are well-known to increase both overland flow and soil erosion during several years before returning to pre-fire levels. The mitigation of these effects has been less well quantified, especially by forest residue mulching and application of polyacrylamides (PAM). In this study, the effectiveness of both treatments was determined for an eucalypt stand in north-central Portugal during the first year after a wildfire. This was done using twelve micro-plots organized in four triplets located at roughly equal distances from the base to the top of a steep but short slope. After a total rainfall of 1419 mm, the overall overland flow and soil loss figures were markedly and significantly lower for the mulched than untreated plots. The PAM plots, however, did not produce significantly different runoff volumes and sediment losses than the control plots, although they revealed a tendency towards less runoff and, at the same time, greater sediment losses. Also, the key factors explaining runoff and soil erosion were basically the same for the untreated and PAM plots but distinct for the mulched plots. A possible explanation for the poor performance of the PAM was its preferential binding to the ash particles and, at the same time, the selective transport of these ash particles by the overland flow. Of interest was further that the plots on the lower section of the slope tended to produce more runoff and greater soil losses than the plots on the upper part of the slope. Possibly, this was due to differences in fire severity, which, in turn, reflected differences in biomass accumulation and, more specifically, less dry plant growth conditions.

  10. Transcriptional comparison of the filamentous fungus Neurospora crassa growing on three major monosaccharides D-glucose, D-xylose and L-arabinose

    PubMed Central

    2014-01-01

    Background D-glucose, D-xylose and L-arabinose are the three major monosaccharides in plant cell walls. Complete utilization of all three sugars is still a bottleneck for second-generation cellulolytic bioethanol production, especially for L-arabinose. However, little is known about gene expression profiles during L-arabinose utilization in fungi and a comparison of the genome-wide fungal response to these three major monosaccharides has not yet been reported. Results Using next-generation sequencing technology, we have analyzed the transcriptome of N. crassa grown on L-arabinose versus D-xylose, with D-glucose as the reference. We found that the gene expression profiles on L-arabinose were dramatically different from those on D-xylose. It appears that L-arabinose can rewire the fungal cell metabolic pathway widely and provoke the expression of many kinds of sugar transporters, hemicellulase genes and transcription factors. In contrast, many fewer genes, mainly related to the pentose metabolic pathway, were upregulated on D-xylose. The rewired metabolic response to L-arabinose was significantly different and wider than that under no carbon conditions, although the carbon starvation response was initiated on L-arabinose. Three novel sugar transporters were identified and characterized for their substrates here, including one glucose transporter GLT-1 (NCU01633) and two novel pentose transporters, XAT-1 (NCU01132), XYT-1 (NCU05627). One transcription factor associated with the regulation of hemicellulase genes, HCR-1 (NCU05064) was also characterized in the present study. Conclusions We conducted the first transcriptome analysis of Neurospora crassa grown on L-arabinose and performed a comparative analysis with cells grown on D-xylose and D-glucose, which deepens the understanding of the utilization of L-arabinose and D-xylose in filamentous fungi. The dataset generated by this research will be useful for mining target genes for D-xylose and L-arabinose utilization

  11. Does further clean-up reduce the matrix enhancement effect in gas chromatographic analysis of pesticide residues in food?

    PubMed

    Schenck, F J; Lehotay, S J

    2000-01-28

    Sample extracts of apples, peas, green beans, oranges, raspberries, clementines, carrots, and wheat obtained using the Food and Drug Administration (acetone extraction) and Canadian Pest Management Regulatory Agency (acetonitrile extraction) multiresidue methods for pesticides were subjected to clean-up using different solid-phase extraction (SPE) cartridges in an attempt to reduce or eliminate the matrix enhancement effect. The matrix enhancement effect is related to the blocking of active sites on the injector liner by matrix components, thereby increasing signal in the presence of matrix versus standards in solvent in which the pesticides themselves interact with the active sites. Graphitized carbon black (GCB) was often used in combination with various anion-exchange SPE cartridges. The extracts were then spiked with organophosphorus insecticides. These process standards were then compared to standards in acetone of the same concentration using gas chromatography with flame photometric detection or ion trap mass spectrometric detection. Sample matrix enhancement varied from little to no effect for some pesticides (e.g. chlorpyrifos, malathion) to >200% in the case of certain susceptible pesticides. The GCB removed color components but showed little effect in reducing matrix enhancement by itself. The anion-exchange cartridges in combination with GCB or not, substantially reduced the matrix enhancement effect but did not eliminate it. PMID:10677079

  12. LEDGIN-mediated Inhibition of Integrase-LEDGF/p75 Interaction Reduces Reactivation of Residual Latent HIV.

    PubMed

    Vranckx, Lenard S; Demeulemeester, Jonas; Saleh, Suha; Boll, Annegret; Vansant, Gerlinde; Schrijvers, Rik; Weydert, Caroline; Battivelli, Emilie; Verdin, Eric; Cereseto, Anna; Christ, Frauke; Gijsbers, Rik; Debyser, Zeger

    2016-06-01

    Persistence of latent, replication-competent Human Immunodeficiency Virus type 1 (HIV-1) provirus is the main impediment towards a cure for HIV/AIDS (Acquired Immune Deficiency Syndrome). Therefore, different therapeutic strategies to eliminate the viral reservoirs are currently being explored. We here propose a novel strategy to reduce the replicating HIV reservoir during primary HIV infection by means of drug-induced retargeting of HIV integration. A novel class of integration inhibitors, referred to as LEDGINs, inhibit the interaction between HIV integrase and the LEDGF/p75 host cofactor, the main determinant of lentiviral integration site selection. We show for the first time that LEDGF/p75 depletion hampers HIV-1 reactivation in cell culture. Next we demonstrate that LEDGINs relocate and retarget HIV integration resulting in a HIV reservoir that is refractory to reactivation by different latency-reversing agents. Taken together, these results support the potential of integrase inhibitors that modulate integration site targeting to reduce the likeliness of viral rebound. PMID:27428435

  13. Quantification of glucose, xylose, arabinose, furfural, and HMF in corncob hydrolysate by HPLC-PDA-ELSD.

    PubMed

    Liu, Xuejun; Ai, Ning; Zhang, Haiyan; Lu, Meizhen; Ji, Dengxiang; Yu, Fengwen; Ji, Jianbing

    2012-05-15

    Lignocellulose and other carbohydrates are being studied extensively as potential renewable carbon sources for liquid biofuels and other valuable chemicals. In the present study, a simple, sensitive, selective, and reliable HPLC method using a photodiode array (PDA) detector and an evaporative light scattering detector (ELSD) was developed for the simultaneous determination of important sugars (D(+)-cellobiose, glucose, xylose, and arabinose), furfural and 5-hydroxymethylfurfural (5-HMF) in lignocellulose hydrolysate. The analysis was carried out on an Aminex HPX-87H column (250 mm × 4.6 mm, 5 μm particle size). Ultra-pure water with 0.00035 M H(2)SO(4) was used as the mobile phase with a flow rate of 0.6 mL/min. The temperature of the ELSD drift tube was kept at 50 °C, the carrier gas pressure was 350 kPa, and the gain was set at 7. Furfural and 5-HMF were quantified on a PDA detector at 275 nm and 284 nm, respectively. The sugar concentrations were determined by ELSD. This method was validated for accuracy and precision. The regression equation revealed a good linear relationship (r(2) = 0.9986 ± 0.0012) within the test ranges. The method showed good reproducibility for the quantification of six analytes in corncob hydrolysate, with intra- and inter-day variations less than 1.12%. This method is also convenient because it allows the rapid analysis of the primary products of biomass hydrolysis and carbohydrate degradation. PMID:22516168

  14. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels.

    PubMed

    Narayanan, Narayanan N; Ihemere, Uzoma; Ellery, Claire; Sayre, Richard T

    2011-01-01

    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels. PMID:21799761

  15. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  16. Structural characterization of (1→2)-β-xylose-(1→3)-α-arabinose-containing oligosaccharide products of extracted switchgrass (Panicum virgatum, L.) xylan after exhaustive enzymatic treatment with α-arabinofuranosidase and β-endo-xylanase.

    PubMed

    Bowman, Michael J; Dien, Bruce S; Vermillion, Karl E; Mertens, Jeffrey A

    2014-10-29

    Switchgrass (Panicum virgatum, L.) is a potential dedicated biomass crop for use in biocatalytic conversion systems to biofuels. Nearly 30% of switchgrass cell wall material is xylan. The complete depolymerization of xylan is desirable both as an additional carbon source for microbial fermentation and to reduce inhibitory effects xylooligomers may have on cellulolytic glycoside hydrolase enzymes. To identify structural features of switchgrass xylan that are not distinguishable by mass spectrometry alone, a α-arabinofuranosidase enzyme was used to remove the arabinose side chains from alkali-extracted switchgrass xylan from three cultivars with simultaneous hydrolysis by β-endo-xylanase to enrich for oligosaccharide products with extended branching. The two most abundant enzymatic digestion products were separated and characterized by LC-MS(n), linkage analysis, and NMR. These two oligosaccharides were present in all three switchgrass cultivars and found to contain (1→2)-β-xylose-(1→3)-α-arabinose side chains, a linkage not previously reported in switchgrass. PMID:25240184

  17. Web-based Mindfulness-based Cognitive Therapy for reducing residual depressive symptoms: An open trial and quasi-experimental comparison to propensity score matched controls.

    PubMed

    Dimidjian, Sona; Beck, Arne; Felder, Jennifer N; Boggs, Jennifer M; Gallop, Robert; Segal, Zindel V

    2014-09-18

    Mindfulness-based Cognitive Therapy (MBCT) has been shown to effectively prevent relapse and reduce residual depressive symptoms (RDS), yet it faces barriers to dissemination. The present study examined Mindful Mood Balance (MMB), the first web-based approach to deliver the core content of MBCT. Of the 107 recurrently depressed individuals screened, 100 elected to enroll in the study and received MMB in an 8-session open trial with 6-month follow-up. Outcomes included depressive symptom severity, rumination and mindful awareness, and program engagement. A quasi-experimental comparison between MMB participants and propensity matched case-controls receiving usual depression care (UDC) (N = 100) also was conducted. The full sample and the subgroup with residual depressive symptoms (N = 42) showed significantly reduced depressive severity, which was sustained over six months, and improvement on rumination and mindfulness. Examination of acceptability of MMB indicated that 42% of participants within the full sample and 36% of the RDS subgroup completed all 8 sessions and 53% within the full sample and 50% within the RDS subgroup completed at least 4 sessions, and that participants engaged with daily mindfulness practice. MMB also was associated with significant reduction in RDS severity as compared to quasi-experimental propensity matched controls. Although the use of a non-randomized design, with potential unmeasured differences between groups, and short interval of clinical follow-up were limitations, findings from this study support the web-based delivery of MBCT and suggest clinical benefits for participants with histories of depression and with RDS, relative to those receiving usual care alone. PMID:25461782

  18. X-ray structures of Bacillus pallidus d-arabinose isomerase and its complex with l-fucitol.

    PubMed

    Takeda, Kosei; Yoshida, Hiromi; Izumori, Ken; Kamitori, Shigehiro

    2010-06-01

    d-Arabinose isomerase (d-AI), also known as l-fucose isomerase (l-FI), catalyzes the aldose-ketose isomerization of d-arabinose to d-ribulose, and l-fucose to l-fuculose. Bacillus pallidus (B. pallidus) d-AI can catalyze isomerization of d-altrose to d-psicose, as well as d-arabinose and l-fucose. Three X-ray structures of B. pallidus d-AI in complexes with 2-methyl-2,4-pentadiol, glycerol and an inhibitor, l-fucitol, were determined at resolutions of 1.77, 1.60 and 2.60 A, respectively. B. pallidus d-AI forms a homo-hexamer, and one subunit has three domains of almost equal size; two Rossmann fold domains and a mimic of the (beta/alpha) barrel fold domain. A catalytic metal ion (Mn(2+)) was found in the active site coordinated by Glu342, Asp366 and His532, and an additional metal ion was found at the channel for the passage of a substrate coordinated by Asp453. The X-ray structures basically supported the ene-diol mechanism for the aldose-ketose isomerization by B. pallidus d-AI, as well as Escherichia coli (E. coli) l-FI, in which Glu342 and Asp366 facing each other at the catalytic metal ion transfer a proton from C2 to C1 and O1 to O2, acting as acid/base catalysts, respectively. However, considering the ionized state of Asp366, the catalytic reaction also possibly occurs through the negatively charged ene-diolate intermediate stabilized by the catalytic metal ion. A structural comparison with E. colil-FI showed that B. pallidus d-AI possibly interconverts between "open" and "closed" forms, and that the additional metal ion found in B. pallidus d-AI may help to stabilize the channel region. PMID:20123133

  19. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.

    PubMed

    Knoshaug, Eric P; Vidgren, Virve; Magalhães, Frederico; Jarvis, Eric E; Franden, Mary Ann; Zhang, Min; Singh, Arjun

    2015-10-01

    Genes encoding L-arabinose transporters in Kluyveromyces marxianus and Pichia guilliermondii were identified by functional complementation of Saccharomyces cerevisiae whose growth on L-arabinose was dependent on a functioning L-arabinose transporter, or by screening a differential display library, respectively. These transporters also transport D-xylose and were designated KmAXT1 (arabinose-xylose transporter) and PgAXT1, respectively. Transport assays using L-arabinose showed that KmAxt1p has K(m) 263 mM and V(max) 57 nM/mg/min, and PgAxt1p has K(m) 0.13 mM and V(max) 18 nM/mg/min. Glucose, galactose and xylose significantly inhibit L-arabinose transport by both transporters. Transport assays using D-xylose showed that KmAxt1p has K(m) 27 mM and V(max) 3.8 nM/mg/min, and PgAxt1p has K(m) 65 mM and V(max) 8.7 nM/mg/min. Neither transporter is capable of recovering growth on glucose or galactose in a S. cerevisiae strain deleted for hexose and galactose transporters. Transport kinetics of S. cerevisiae Gal2p showed K(m) 371 mM and V(max) 341 nM/mg/min for L-arabinose, and K(m) 25 mM and V(max) 76 nM/mg/min for galactose. Due to the ability of Gal2p and these two newly characterized transporters to transport both L-arabinose and D-xylose, one scenario for the complete usage of biomass-derived pentose sugars would require only the low-affinity, high-throughput transporter Gal2p and one additional high-affinity general pentose transporter, rather than dedicated D-xylose or L-arabinose transporters. Additionally, alignment of these transporters with other characterized pentose transporters provides potential targets for substrate recognition engineering. PMID:26129747

  20. Reduced susceptibility to all neuraminidase inhibitors of influenza H1N1 viruses with haemagglutinin mutations and mutations in non-conserved residues of the neuraminidase

    PubMed Central

    McKimm-Breschkin, Jennifer L.; Williams, Janelle; Barrett, Susan; Jachno, Kim; McDonald, Mandy; Mohr, Peter G.; Saito, Takehiko; Tashiro, Masato

    2013-01-01

    Objectives We characterized human H1N1 influenza isolate A/Hokkaido/15/02, which has haemagglutinin and neuraminidase mutations that reduce drug susceptibility to oseltamivir, zanamivir and peramivir. Methods One wild-type and three mutant viruses were isolated by plaque purification. Viruses were tested in MUNANA-based enzyme assays, cell culture and receptor binding assays. Results Two viruses had a neuraminidase Y155H mutation that reduced susceptibility in the enzyme inhibition assay to all inhibitors by 30-fold to >100-fold. The Y155H mutation reduced plaque size and affected the stability, Km and pH activity profile of the enzyme. In contrast to previous mutants, this neuraminidase demonstrated a slower rate of inhibitor binding in the IC50 kinetics assay. One virus had both the Y155H mutation and a haemagglutinin D225G mutation that rescued the small-plaque phenotype of the Y155H virus and affected receptor binding and drug susceptibility in cell culture and binding assays. We also isolated a third mutant virus, with both neuraminidase V114I and haemagglutinin D225N mutations, which affected susceptibility in the enzyme inhibition assay and receptor binding, respectively, but to lesser extents than the Y155H and D225G mutations. Conclusions Neither Y155 nor V114 is conserved across neuraminidase subtypes. Furthermore, Y155 is not conserved even among avian and swine N1 viruses. Structurally, both residues reside far from the neuraminidase active site. D225 forms part of the receptor binding site of the haemagglutinin. We believe this is the first demonstration of a specific haemagglutinin mutation correlating with reduced drug susceptibility in plaque assays in both Madin Darby Canine Kidney and SIAT cells. PMID:23759505

  1. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum.

    PubMed

    Schneider, Jens; Niermann, Karin; Wendisch, Volker F

    2011-07-10

    Amino acid production processes with Corynebacterium glutamicum are based on media containing glucose from starch hydrolysis or fructose and sucrose as present in molasses. Simultaneous utilization of various carbon sources, including glucose, fructose and sucrose, in blends is a typical characteristic of this bacterium. The renewable non-food carbon source arabinose, which is present in hemicellulosic hydrolysates, cannot be utilized by most C. glutamicum strains. Heterologous expression of the araBAD operon from Escherichia coli in the wild-type and in an l-lysine producing strain of C. glutamicum was shown to enable production of l-glutamate and l-lysine, respectively, from arabinose as sole carbon source. l-Ornithine and l-arginine producing strains were constructed and shown to produce l-ornithine and l-arginine from arabinose when araBAD from E. coli was expressed. Moreover, the recombinant strains produced l-glutamate, l-lysine, l-ornithine and l-arginine respectively, from arabinose also when glucose-arabinose blends were used as carbon sources. PMID:20638422

  2. Metabolite gene regulation: imidazole and imidazole derivatives which circumvent cyclic adenosine 3',5'-monophosphate in induction of the Escherichia coli L-arabinose operon.

    PubMed Central

    Kline, E L; Bankaitis, V A; Brown, C S; Montefiori, D C

    1980-01-01

    Imidazole, histidine, histamine, histidinol phosphate, urocanic acid, or imidazolepropionic acid were shown to induce the L-arabinose operon in the absence of cyclic adenosine 3',5'-monophosphate. Induction was quantitated by measuring the increased differential rate of synthesis of L-arabinose isomerase in Escherichia coli strains which carried a deletion of the adenyl cyclase gene. The crp gene product (cyclic adenosine 3',5'-monophosphate receptor protein) and the araC gene product (P2) were essential for induction of the L-arabinose operon by imidazole and its derivatives. These compounds were unable to circumvent the cyclic adenosine 3',5'-monophosphate in the induction of the lactose or the maltose operons. The L-arabinose regulon was catabolite repressed upon the addition of glucose to a strain carrying an adenyl cyclase deletion growing in the presence of L-arabinose with imidazole. These results demonstrated that several imidazole derivatives may be involved in metabolite gene regulation (23). Images PMID:6245056

  3. The residual and direct effects of reduced-risk and conventional miticides on twospotted spider mites, Tetranychus urticae (Acari: Tetranychidae) and predatory mites (Acari: Phytoseiidae)

    SciTech Connect

    Liburd, O.E.; White, J.C.; Rhodes, E.M.; Browdy, A.A.

    2007-03-15

    The residual effects of several reduced-risk and conventional miticides were evaluated in strawberries (Fragaria z ananassa Duchesne) on the twospotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) and on 2 predatory mites, Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Experiments were conducted in the laboratory and greenhouse. The greenhouse experiments also tested the direct effects of the miticides on TSSM. The efficacy of conventional and reduced-risk miticides was evaluated on strawberry leaf discs and on whole plants for control of TSSM. Furthermore, the residual effects of these miticides were evaluated on whole strawberry plants against selective predatory mites. For TSSM, 5 treatments were evaluated: a conventional miticide; fenbutatin-oxide (Vendex[reg]) and 3 reduced-risk miticides; binfenazate (Acramite 50WP[reg]), activated garlic extract (Repel[reg]), sesame seed and castor oil (Wipeout[reg]), and a water-treated control. For predatory mites, the residual effects of only Acramite[reg] and Vendex[reg] were evaluated. Acramite[reg] was the most effective acaricide in reducing TSSM populations in both the laboratory and greenhouse experiments. Vendex[reg] and Wipeout[reg] were also effective in the laboratory, but did not cause significant reduction of TSSM in the greenhouse. Repel[reg] was the least effective of the 4 pesticides evaluated. Neither Acramite[reg] nor Vendex[reg] had a significant effect on either predatory mite species. However, there appeared to be more predatory mites on the Vendex[reg]-treated plants than on the Acramite[reg]-treated plants. There were significantly more predatory mites of both species on the cue plants, which were inoculated with TSSM versus the non-cue plants, which were not inoculated. (author) [Spanish] Los efectos residuales en poblaciones de la 'arana roja', Tetranychus urticae Koch (Acari: Tetranichidae) y de los acaros predadores

  4. An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins.

    PubMed

    Barb, Adam W; Subedi, Ganesh P

    2016-01-01

    Metal ions serve important roles in structural biology applications from long-range perturbations seen in magnetic resonance experiments to electron-dense signatures in X-ray crystallography data; however, the metal ion must be secured in a molecular framework to achieve the maximum benefit. Polypeptide-based lanthanide-binding tags (LBTs) represent one option that can be directly encoded within a recombinant protein expression construct. However, LBTs often exhibit significant mobility relative to the target molecule. Here we report the characterization of improved LBTs sequences for insertion into a protein loop. These LBTs were inserted to connect two parallel alpha helices of an immunoglobulin G (IgG)-binding Z domain platform. Variants A and B bound Tb(3+) with high affinity (0.70 and 0.13 μM, respectively) and displayed restricted LBT motion. Compared to the parent construct, the metal-bound A experienced a 2.5-fold reduction in tag motion as measured by magnetic field-induced residual dipolar couplings and was further studied in a 72.2 kDa complex with the human IgG1 fragment crystallizable (IgG1 Fc) glycoprotein. The appearance of both pseudo-contact shifts (-0.221 to 0.081 ppm) and residual dipolar couplings (-7.6 to 14.3 Hz) of IgG1 Fc resonances in the IgG1 Fc:(variant A:Tb(3+))2 complex indicated structural restriction of the LBT with respect to the Fc. These studies highlight the applicability of improved LBT sequences with reduced mobility to probe the structure of macromolecular systems. PMID:26728077

  5. Product PCNPsurv or the "reduced" evaporation residue cross section σER/σfusion for "hot" fusion reactions studied with the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Kaur, Arshdeep; Hemdeep, Gupta, Raj K.

    2016-04-01

    The product PCNPsurv of compound nucleus (CN) fusion probability PCN and survival probability Psurv is calculated to determine the reduced evaporation residue cross section σER/σfusion , denoted σERreduced, with (total) fusion cross section σfusion given as a sum of CN-formation cross section σCN and non-CN cross section σnCN for each reaction, where σCN is the sum of evaporation residue cross section σER and fusion-fission cross section σff and σnCN, if not measured, is estimated empirically as the difference between measured and calculated σfusion. Our calculations of PCN and Psurv, based on the dynamical cluster-decay model, were successfully made for some 17 "hot" fusion reactions, forming different CN of mass numbers ACN˜100 -300 , with deformations of nuclei up to hexadecapole deformations and "compact" orientations for both coplanar (Φc=0∘ ) and noncoplanar (Φc≠0∘ ) configurations, using various different nuclear interaction potentials. Interesting variations of σERreduced with CN excitation energy E*, fissility parameter χ , CN mass ACN, and Coulomb parameter Z1Z2 show that, independent of entrance channel, different isotopes of CN, and nuclear interaction potentials used, the dominant quantity in the product is Psurv, which classifies all the studied CN into three groups of weakly fissioning, radioactive, and strongly fissioning superheavy nuclei, with relative magnitudes of σERreduced˜1 , ˜10-6 , and ˜10-11 , which, like for PCN, get further grouped in two dependencies of (i) weakly fissioning and strongly fissioning superheavy nuclei decreasing with increasing E* and (ii) radioactive nuclei increasing with increasing E*.

  6. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12.

    PubMed

    Wang, Liqin; Xu, Nuo; Zhang, Jianjun; Zhao, Huajie; Lin, Lin; Jia, Shouhua; Jia, Le

    2015-10-20

    Cordyceps militaris has been artificially cultivated in China, and the great amounts of produced medium residue were discarded after the harvest. The aims of this work were to analyze the structure of the residue polysaccharide (RPS) of C. militaris SU-12, and to investigate the pharmacological effects of RPS on lipid metabolism and oxidative stress. RPS was composed of glucose, arabinose and mannose with a ratio of 62:1.6:1 by gas chromatography analysis, and the Mw (weight-average molecular weight), Mn (number-average molecular weight) and Mz (z-average molecular weight) of RPS were 2.86×10(3), 6.85×10(2), and 1.97×10(4)Da, respectively. The mice experiments demonstrated that RPS could reduce the levels of blood and liver lipid, and improve the glutamate pyruvate transaminase and antioxidant activity. The histopathological observations of mice livers indicated that RPS could attenuate liver cell injury. Results suggest that the RPS might be used as a potential antihyperlipidemic, hepatoprotective and antioxidant product. PMID:26256194

  7. Lipid production through simultaneous utilization of glucose, xylose, and L-arabinose by Pseudozyma hubeiensis: a comparative screening study.

    PubMed

    Tanimura, Ayumi; Takashima, Masako; Sugita, Takashi; Endoh, Rikiya; Ohkuma, Moriya; Kishino, Shigenobu; Ogawa, Jun; Shima, Jun

    2016-12-01

    Co-fermentation of glucose, xylose and L-arabinose from lignocellulosic biomass by an oleaginous yeast is anticipated as a method for biodiesel production. However, most yeasts ferment glucose first before consuming pentoses, due to glucose repression. This preferential utilization results in delayed fermentation time and lower productivity. Therefore, co-fermentation of lignocellulosic sugars could achieve cost-effective conversion of lignocellulosic biomass to microbial lipid. Comprehensive screening of oleaginous yeasts capable of simultaneously utilizing glucose, xylose, and L-arabinose was performed by measuring the concentration of sugars remaining in the medium and of lipids accumulated in the cells. We found that of 1189 strains tested, 12 had the ability to co-ferment the sugars. The basidiomycete yeast Pseudozyma hubeiensis IPM1-10, which had the highest sugars consumption rate of 94.1 %, was selected by culturing in a batch culture with the mixed-sugar medium. The strain showed (1) simultaneous utilization of all three sugars, and (2) high lipid-accumulating ability. This study suggests that P. hubeiensis IPM1-10 is a promising candidate for second-generation biodiesel production from hydrolysate of lignocellulosic biomass. PMID:27566647

  8. Mutagenicity study on pyrazole, seven pyrazole derivatives, and two nitroimidazoles with the L-arabinose resistance test of Salmonella typhimurium

    SciTech Connect

    Alejandre-Duran, E.; Ruiz-Rubio, M.; Claramunt, R.M.; Lopez, C.; Pueyo, C.

    1986-01-01

    The mutagenicity of pyrazole and seven pyrazole derivatives (4-nitropyrazole, 4-bromopyrazole, 1-methyl-4-nitropyrazole, 3,5-dimethyl-4-nitropyrazole, 1-methyl-4-bromopyrazole, 4,4'-dinitro-1, 1'-methylene-dipyrazole and 4,4'-dibromo-1,1'-methylene-dipyrazole) has been investigated with the L-arabinose forward mutation assay of Salmonella typhimurium. Two nitroimidazoles (1-methyl-5-nitroimidazole and metronidazole) were included as reference drugs. The mutagenicity of each chemical was determined by both preincubation and liquid tests, in the presence or absence of S9 microsomal fraction. The mutagenic responses was expressed as the absolute number of L-arabinose resistant mutants growing in selective plates, supplemented with traces of D-glucose. Strain BA13 with a wild-type lipopolysaccharide barrier was used as a comparison to the deep rough derivative BA9. No mutagenic effect was detected with pyrazole and two of its derivatives, 1-methyl-4-bromopyrazole and 4,4'-dibromo-1,1'-methylene-dipyrazole. The other five pyrazole derivatives were mutagenic to different degrees, although their mutagenic potencies were always considerably lower than those of the two nitroimidazoles. The results suggest that 4-nitropyrazoles, as well as 4,4'-dinitro-1, 1'-methylene-dipyrazoles, should be investigated further as alternatives to, or even substitutes for, the currently used nitroimidazoles.

  9. The glcB locus of Rhizobium leguminosarum VF39 encodes an arabinose-inducible malate synthase.

    PubMed

    García-de los Santos, Alejandro; Morales, Alejandro; Baldomá, Laura; Clark, Scott R D; Brom, Susana; Yost, Christopher K; Hernández-Lucas, Ismael; Aguilar, Juan; Hynes, Michael F

    2002-10-01

    In the course of a study conducted to isolate genes upregulated by plant cell wall sugars, we identified an arabinose-inducible locus from a transcriptional fusion library of Rhizobium leguminosarum VF39, carrying random insertions of the lacZ transposon Tn5B22. Sequence analysis of the locus disrupted by the transposon revealed a high similarity to uncharacterized malate synthase G genes from Sinorhizobium meliloti, Agrobacterium tumefaciens, and Mesorhizobium loti. This enzyme catalyzes the condensation of glyoxylate and acetyl-CoA to yield malate and CoA and is thought to be a component of the glyoxylate cycle, which allows microorganisms to grow on two carbon compounds. Enzyme assays showed that a functional malate synthase is encoded in the glcB gene of R. leguminosarum and that its expression is induced by arabinose, glycolate, and glyoxylate. An Escherichia coli aceB glcB mutant, complemented with the R. leguminosarum PCR-amplified gene, recovered malate synthase activity. A very similar genome organization of the loci containing malate synthase and flanking genes was observed in R. leguminosarum, S. meliloti, and A. tumefaciens. Pea plants inoculated with the glcB mutant or the wild-type strain showed no significant differences in nitrogen fixation. This is the first report regarding the characterization of a mutant in one of the glyoxylate cycle enzymes in the rhizobia. PMID:12489782

  10. L-Arabinose (pyranose and furanose rings)-branched poly (vinylalcohol): enzymatic synthesis of the sugar esters followed by free radical polymerization.

    PubMed

    Rodrigues Borges, Maurício; Balaban, Rosangela de Carvalho

    2014-12-20

    Herein this study reports the successful synthesis of a new poly(vinyl alcohol) (PVA), containing L-arabinose (L-arabinopyranose and arabinofuranose isomers) branched in only two steps: (1) production of polymerizable monomers of L-arabinose isomers (pyranose and furanose forms) through enzymatic synthesis using alkaline protease from Bacillus subtilis as catalyst and two substrates: L-arabinose and Divinyl Adipate (DVA) in N,N-dimethylformamide (DMF); (2) radical polymerization of the monomers, using an initiator system consisting of potassium persulfate and hydrogen peroxide in water. The transesterification of DVA with L-arabinose was monitored via qualitative analysis by TLC, confirming the formation of the vinyl sugar ester. The acylation occurred on the two different cyclic conformations of the L-arabinose which coexist in equilibrium: (α/β) arabinofuranose and (α/β) arabinopyranose. The acylation positions and the chemical structure of the 5-O-vinyl adipoyl L-arabinofuranose and 4-O-vinyl adipolyl L-arabinopyranose formed were determined by 13C NMR. The surface activity of the L-arabinose esters mixture (monomers) was compared with a commercial product based on phenol formaldehyde polyoxyalkylene polyamine, largely used as surfactant in many industries. FTIR spectroscopy of the sugar ester monomers and the respective polymer were compared revealing the disappearance of the vinyl group in the polymer spectrum. The polymer number-average molar mass (Mn) and the weight-average molar mass (Mw) were determined by gel permeation chromatography (GPC) presenting the following results: 2.9 × 10(4) Da and 7.2 × 10(4) Da, respectively, and polydispersity (Mw/Mn) equal to 2.48. PMID:25450639

  11. Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue.

    PubMed

    Tan, Inn Shi; Lee, Keat Teong

    2015-05-01

    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity. PMID:25465785

  12. Copper-dependent inhibition of cytochrome c oxidase by Abeta(1-42) requires reduced methionine at residue 35 of the Abeta peptide.

    PubMed

    Crouch, Peter J; Barnham, Kevin J; Duce, James A; Blake, Rachel E; Masters, Colin L; Trounce, Ian A

    2006-10-01

    By altering key amino acid residues of the Alzheimer's disease-associated amyloid-beta peptide, we investigated the mechanism through which amyloid-beta inhibits cytochrome c oxidase (EC 1.9.3.1). Native amyloid-beta inhibited cytochrome oxidase by up to 65%, and the level of inhibition was determined by the period of amyloid-beta ageing before the cytochrome oxidase assay. Substituting tyrosine-10 with alanine did not affect maximal enzyme inhibition, but the altered peptide required a longer period of ageing. By contrast, oxidizing the sulfur of methionine-35 to a sulfoxide, or substituting methionine-35 with valine, completely abrogated the peptide's inhibitory potential towards cytochrome oxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the loss of inhibitory potential towards cytochrome oxidase with the methionine-35-altered peptides did not correlate with a substantially different distribution of amyloid-beta oligomeric species. Although the amyloid-beta-mediated inhibition of cytochrome oxidase was completely dependent on the presence of divalent Cu2+, it was not supported by monovalent Cu+, and experiments with catalase and H2O2 indicated that the mechanism of cytochrome oxidase inhibition does not involve amyloid-beta-mediated H2O2 production. We propose that amyloid-beta-mediated inhibition of cytochrome oxidase is dependent on the peptide's capacity to bind, then reduce Cu2+, and that it may involve the formation of a redox active amyloid-beta-methionine radical. PMID:16987248

  13. Effects of ad libitum and restricted feeding on early production performance and body composition of Yorkshire pigs selected for reduced residual feed intake.

    PubMed

    Boddicker, N; Gabler, N K; Spurlock, M E; Nettleton, D; Dekkers, J C M

    2011-08-01

    Residual feed intake (RFI), defined as the difference between observed and expected feed intake based on growth and backfat, has been used to investigate genetic variation in feed efficiency in cattle, poultry and pigs. However, little is known about the biological basis of differences in RFI in pigs. To this end, the objective of this study was to evaluate the fifth generation of a line of pigs selected for reduced RFI against a randomly selected Control line for performance, carcass and chemical carcass composition and overall efficiency. Here, emphasis was on the early grower phase. A total of 100 barrows, 50 from each line, were paired by age and weight (22.6 ± 3.9 kg) and randomly assigned to one of four feeding treatments in 11 replicates: ad libitum (Ad), 75% of Ad (Ad75), 55% of Ad (Ad55) and weight stasis (WS), which involved weekly adjustments in intake to keep body weight (BW) constant for each pig. Pigs were individually penned (group housing was used for selection) and were on treatment for 6 weeks. Initial BW did not significantly differ between the lines (P > 0.17). Under Ad feeding, the low RFI pigs consumed 8% less feed compared with Control line pigs (P < 0.06), had less carcass fat (P < 0.05), but with no significant difference in growth rate (P > 0.85). Under restricted feeding, low RFI pigs under the Ad75 treatment had a greater rate of gain while consuming the same amount of feed as Control pigs. Despite the greater gain, no significant line differences in carcass composition or carcass traits were observed. For the WS treatment, low RFI pigs had similar BW (P > 0.37) with no significant difference in feed consumption (P > 0.32). Overall, selection for reduced RFI has decreased feed intake, with limited differences in growth rate but reduced carcass fat, as seen under Ad feeding. Collectively, results indicate that the effects of selection for low RFI are evident during the early grower stage, which allows for greater savings to the producer

  14. Increased urinary excretion of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features.

    PubMed

    Shaw, W; Kassen, E; Chaves, E

    1995-08-01

    A marked increase in analogs of Krebs cycle metabolites was found in the urine of two brothers with autistic features. These metabolites included citramalic, tartaric (3-OH-malic), and 3-oxoglutaric acids and compounds tentatively identified as a citric acid analog and partially identified as a phenylcarboxylic acid by the fragmentation pattern of the trimethylsilyl (TMS) derivatives of the compounds and mass shifts of the same compounds derivatized with perdeuterated N,O-bis(trimethylsilyl)trifluoroacetamide. The molecular mass of the TMS derivative of the tentatively identified citric acid analog was 596 Da, based on a finding of a significant M - 15 ion at m/z 581. The citric acid analog was excreted in quantities as high as 137 mmol/mol creatinine, based on the response factor of citric acid as a surrogate calibrator. A carbohydrate with a retention time and mass spectrum identical to arabinose was also found in high concentrations in the urine of these brothers. PMID:7628083

  15. L-Arabinose binding, isomerization, and epimerization by D-xylose isomerase: X-ray/neutron crystallographic and molecular simulation study.

    PubMed

    Langan, Paul; Sangha, Amandeep K; Wymore, Troy; Parks, Jerry M; Yang, Zamin Koo; Hanson, B Leif; Fisher, Zoe; Mason, Sax A; Blakeley, Matthew P; Forsyth, V Trevor; Glusker, Jenny P; Carrell, Horace L; Smith, Jeremy C; Keen, David A; Graham, David E; Kovalevsky, Andrey

    2014-09-01

    D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy (5)S1 conformation; this may explain the apparent high KM for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni(2+) cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism. PMID:25132082

  16. Investigation of the interconversion of L­arabinose and D­xylose as regulated by candidate pathway genes in Beta vulgaris using comparative genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabinose and xylose occur in hemicellulose, a group of polysaccharides present in plant cell walls in all terrestrial plants. Xylose is an aldopentose sugar with uses as a chemical feedstock, and this study sought to explore the possibility of using sugar beet as an industrial source of xylose, wh...

  17. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    PubMed Central

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  18. Genetics, Transcriptional Profiles, and Catalytic Properties of the UDP-Arabinose Mutase Family from Barley.

    PubMed

    Hsieh, Yves S Y; Zhang, Qisen; Yap, Kuok; Shirley, Neil J; Lahnstein, Jelle; Nelson, Clark J; Burton, Rachel A; Millar, A Harvey; Bulone, Vincent; Fincher, Geoffrey B

    2016-01-19

    Four members of the UDP-Ara mutase (UAM) gene family from barley have been isolated and characterized, and their map positions on chromosomes 2H, 3H, and 4H have been defined. When the genes are expressed in Escherichia coli, the corresponding HvUAM1, HvUAM2, and HvUAM3 proteins exhibit UAM activity, and the kinetic properties of the enzymes have been determined, including Km, Kcat, and catalytic efficiencies. However, the expressed HvUAM4 protein shows no mutase activity against UDP-Ara or against a broad range of other nucleotide sugars and related molecules. The enzymic data indicate therefore that the HvUAM4 protein may not be a mutase. However, the HvUAM4 gene is transcribed at high levels in all the barley tissues examined, and its transcript abundance is correlated with transcript levels for other genes involved in cell wall biosynthesis. The UDP-l-Arap → UDP-l-Araf reaction, which is essential for the generation of the UDP-Araf substrate for arabinoxylan, arabinogalactan protein, and pectic polysaccharide biosynthesis, is thermodynamically unfavorable and has an equilibrium constant of 0.02. Nevertheless, the incorporation of Araf residues into nascent polysaccharides clearly occurs at biologically appropriate rates. The characterization of the HvUAM genes opens the way for the manipulation of both the amounts and fine structures of heteroxylans in cereals, grasses, and other crop plants, with a view toward enhancing their value in human health and nutrition, and in renewable biofuel production. PMID:26645466

  19. Microflow liquid chromatography coupled to mass spectrometry--an approach to significantly increase sensitivity, decrease matrix effects, and reduce organic solvent usage in pesticide residue analysis.

    PubMed

    Uclés Moreno, Ana; Herrera López, Sonia; Reichert, Barbara; Lozano Fernández, Ana; Hernando Guil, María Dolores; Fernández-Alba, Amadeo Rodríguez

    2015-01-20

    This manuscript reports a new pesticide residue analysis method employing a microflow-liquid chromatography system coupled to a triple quadrupole mass spectrometer (microflow-LC-ESI-QqQ-MS). This uses an electrospray ionization source with a narrow tip emitter to generate smaller droplets. A validation study was undertaken to establish performance characteristics for this new approach on 90 pesticide residues, including their degradation products, in three commodities (tomato, pepper, and orange). The significant benefits of the microflow-LC-MS/MS-based method were a high sensitivity gain and a notable reduction in matrix effects delivered by a dilution of the sample (up to 30-fold); this is as a result of competition reduction between the matrix compounds and analytes for charge during ionization. Overall robustness and a capability to withstand long analytical runs using the microflow-LC-MS system have been demonstrated (for 100 consecutive injections without any maintenance being required). Quality controls based on the results of internal standards added at the samples' extraction, dilution, and injection steps were also satisfactory. The LOQ values were mostly 5 μg kg(-1) for almost all pesticide residues. Other benefits were a substantial reduction in solvent usage and waste disposal as well as a decrease in the run-time. The method was successfully applied in the routine analysis of 50 fruit and vegetable samples labeled as organically produced. PMID:25495653

  20. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    SciTech Connect

    Zhu,W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn{sup 2+} for its catalytic activity. Crystals of the ECAI + Mn{sup 2+} complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn{sup 2+} complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 {angstrom} resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn{sup 2+} ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI.

  1. The Cell Wall Arabinose-Deficient Arabidopsis thaliana Mutant murus5 Encodes a Defective Allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE21[OPEN

    PubMed Central

    Dugard, Christopher K.; Olek, Anna T.; Cooper, Bruce R.

    2016-01-01

    Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP. PMID:27217494

  2. Boost the electron mobility of solution-grown organic single crystals via reducing the amount of polar solvent residues

    SciTech Connect

    Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; Fan, Congcheng; Liu, Shuang; Huang, Zhuoting; Liu, Yujing; Shan, Bowen; Miao, Qian; Chen, Hongzheng; Li, Hanying

    2015-10-29

    Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm2 V–1 s–1 with a highest value of 13.3 cm2 V–1 s–1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm2 V–1 s–1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm2 V–1 s–1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.

  3. Analysis of organo-chlorine pesticides residue in raw coffee with a modified "quick easy cheap effective rugged and safe" extraction/clean up procedure for reducing the impact of caffeine on the gas chromatography-mass spectrometry measurement.

    PubMed

    Bresin, Bruno; Piol, Maria; Fabbro, Denis; Mancini, Maria Antonietta; Casetta, Bruno; Del Bianco, Clorinda

    2015-01-01

    The control of pesticide residues on raw coffee is a task of great importance due to high consumption of this beverage in Italy and in many other countries. High caffeine content can hamper extraction and measurement of any pesticide residue. A tandem extraction protocol has been devised by exploiting the quick easy cheap effective rugged and safe (QuEChERS) scheme for extraction, coupled to a dispersive liquid-liquid micro-extraction (DLLME) in order to drastically reduce caffeine content in the final extract. Gas chromatography-mass spectrometry (GC-MS) has been used for quantification of organo-chlorine pesticides in single ion monitoring (SIM) mode. Method has been validated and performances meet the criteria prescribed by European Union regulations. PMID:25537171

  4. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    PubMed Central

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  5. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  6. Use of Interface Treatment to Reduce Emissions from Residuals in Lower Permeability Zones to Groundwater flowing Through More Permeable Zones (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, P.; Cavanagh, B.; Clifton, L.; Daniels, E.; Dahlen, P.

    2013-12-01

    Many soil and groundwater remediation technologies rely on fluid flow for contaminant extraction or reactant delivery (e.g., soil vapor extraction, pump and treat, in situ chemical oxidation, air sparging, enhanced bioremediation). Given that most unconsolidated and consolidated settings have permeability contrasts, the outcome is often preferential treatment of more permeable zones and ineffective treatment of the lower permeability zones. When this happens, post-treatment contaminant emissions from low permeability zone residuals can cause unacceptable long-term impacts to groundwater in the transmissive zones. As complete remediation of the impacted lower permeability zones may not be practicable with conventional technologies, one might explore options that lead to reduction of the contaminant emissions to acceptable levels, rather than full remediation of the lower permeability layers. This could be accomplished either by creating a sustained emission reaction/attenuation zone at the high-low permeability interface, or by creating a clean soil zone extending sufficiently far into the lower permeability layer to cause the necessary reduction in contaminant concentration gradient and diffusive emission. These options are explored in proof-of-concept laboratory-scale physical model experiments. The physical models are prepared with two layers of contrasting permeability and either dissolved matrix storage or nonaqueous phase liquid (NAPL) in the lower permeability layer. A dissolved oxidant is then delivered to the interface via flow across the higher permeability layer and changes in contaminant emissions from the low permeability zone are monitored before, during, and after oxidant delivery. The use of three oxidants (dissolved oxygen, hydrogen peroxide and sodium persulfate) for treatment of emissions from petroleum hydrocarbon residuals is examined.

  7. Identification of a Novel Mycobacterial Arabinosyltransferase Activity Which Adds an Arabinosyl Residue to α-d-Mannosyl Residues.

    PubMed

    Angala, Shiva Kumar; McNeil, Michael R; Zou, Lu; Liav, Avraham; Zhang, Junfeng; Lowary, Todd L; Jackson, Mary

    2016-06-17

    The arabinosyltransferases responsible for the biosynthesis of the arabinan domains of two abundant heteropolysaccharides of the cell envelope of all mycobacterial species, lipoarabinomannan and arabinogalactan, are validated drug targets. Using a cell envelope preparation from Mycobacterium smegmatis as the enzyme source and di- and trimannoside synthetic acceptors, we uncovered a previously undetected arabinosyltransferase activity. Thin layer chromatography, GC/MS, and LC/MS/MS analyses of the major enzymatic product are consistent with the transfer of an arabinose residue to the 6 position of the terminal mannosyl residue at the nonreducing end of the acceptors. The newly identified enzymatic activity is resistant to ethambutol and could correspond to the priming arabinosyl transfer reaction that occurs during lipoarabinomannan biosynthesis. PMID:27045860

  8. Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology.

    PubMed

    Canettieri, Eliana Vieira; de Moraes Rocha, George Jackson; de Carvalho, João Andrade; de Almeida e Silva, João Batista

    2007-01-01

    Biotechnological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically and with dilute or concentrate mineral acids. The present study used dilute sulfuric acid as a catalyst for hydrolysis of Eucalyptus grandis residue. The purpose of this paper was to optimize the hydrolysis process in a 1.4 l pilot-scale reactor and investigate the effects of the acid concentration, temperature and residue/acid solution ratio on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). This study was based on a model composition corresponding to a 2(3) orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of residue. The considered optimum conditions were: H(2)SO(4) concentration of 0.65%, temperature of 157 degrees C and residue/acid solution ratio of 1/8.6 with a reaction time of 20 min. Under these conditions, 79.6% of the total xylose was removed and the hydrolysate contained 1.65 g/l glucose, 13.65 g/l xylose, 1.55 g/l arabinose, 3.10 g/l acetic acid, 1.23 g/l furfural and 0.20 g/l 5-hydroxymethylfurfural. PMID:16473004

  9. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil.

    PubMed

    Fenoll, José; Vela, Nuria; Navarro, Ginés; Pérez-Lucas, Gabriel; Navarro, Simón

    2014-09-15

    In this study, we examined the effect of four different organic wastes--composted sheep manure (CSM), spent coffee grounds (SCG), composted pine bark (CPB) and coir (CR)--on the sorption, persistence and mobility of eight symmetrical and two asymmetrical-triazine herbicides: atrazine, propazine, simazine, terbuthylazine (chlorotriazines), prometon (methoxytriazine), prometryn, simetryn, terbutryn (methylthiotriazines), metamitron and metribuzin (triazinones). The downward movement of herbicides was monitored using disturbed soil columns packed with a clay loam soil (Hipercalcic calcisol) under laboratory conditions. For unamended and amended soils, the groundwater ubiquity score (GUS) was calculated for each herbicide on the basis of its persistence (as t½) and mobility (as KOC). All herbicides showed medium/high leachability through the unamended soils. The addition of agro-industrial and composted organic wastes at a rate of 10% (w:w) strongly decreased the mobility of herbicides. Sorption coefficients normalized to the total soil organic carbon (KOC) increased in the amended soils. These results suggest that used organic wastes could be used to enhance the retention and reduce the mobility of the studied herbicides in soil. PMID:24937498

  10. Impact of Residual Inducer on Titratable Expression Systems

    PubMed Central

    Afroz, Taliman; Luo, Michelle L.; Beisel, Chase L.

    2015-01-01

    Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on “all-or-none” systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering. PMID:26348036

  11. Impact of Residual Inducer on Titratable Expression Systems.

    PubMed

    Afroz, Taliman; Luo, Michelle L; Beisel, Chase L

    2015-01-01

    Inducible expression systems are widely employed for the titratable control of gene expression, yet molecules inadvertently present in the growth medium or synthesized by the host cells can alter the response profile of some of these systems. Here, we explored the quantitative impact of these residual inducers on the apparent response properties of inducible systems. Using a simple mathematical model, we found that the presence of residual inducer shrinks the apparent dynamic range and causes the apparent Hill coefficient to converge to one. We also found that activating systems were more sensitive than repressing systems to the presence of residual inducer and the response parameters were most heavily dependent on the original Hill coefficient. Experimental interrogation of common titratable systems based on an L-arabinose inducible promoter or a thiamine pyrophosphate-repressing riboswitch in Escherichia coli confirmed the predicted trends. We finally found that residual inducer had a distinct effect on "all-or-none" systems, which exhibited increased sensitivity to the added inducer until becoming fully induced. Our findings indicate that residual inducer or repressor alters the quantitative response properties of titratable systems, impacting their utility for scientific discovery and pathway engineering. PMID:26348036

  12. Crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues [e.g., corn (Zea mays) stover and small grain straw] are sometimes excluded when discussing cellulosic energy crops per se, but because of the vast area upon which they are grown and their current role in the development of cellulosic energy systems. This chapter focuses on current cor...

  13. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase

    PubMed Central

    Harris, Darby M.; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana L.; Petti, Carloalberto; Smilgies, Detlef-M.; Estevez, José Manuel; Bonetta, Dario; Urbanowicz, Breeanna R.; Ehrhardt, David W.; Somerville, Chris R.; Rose, Jocelyn K. C.; Hong, Mei; DeBolt, Seth

    2012-01-01

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1A903V and CESA3T942I in Arabidopsis thaliana. Using 13C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1A903V and CESA3T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1A903V and CESA3T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. PMID:22375033

  14. Magnetic solid phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices.

    PubMed

    Yan, Shan; Qi, Ting-Ting; Chen, De-Wen; Li, Zhao; Li, Xiu-Juan; Pan, Si-Yi

    2014-06-20

    A simple one-step solvothermal method was applied for the preparation of magnetite/reduced graphene oxide (MRGO), and the synthetic nanocomposites with a magnetic particle size of ∼8nm were used as an adsorbent for magnetic solid phase extraction of isocarbophos (ICP) in different sample matrices prior to gas chromatography (GC) detection. The identity of the nanomaterial was confirmed using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It was shown that Fe3O4 nanoparticles with a uniform size were homogeneously anchored on RGO nanosheets. Increased oxidation degrees of graphite oxide, big particle sizes and large loading amounts of Fe3O4 on the surface of RGO led to a decrease of adsorption capacity of MRGO to ICP. The adsorption behavior of this adsorbent was better fitted by the pseudo-second-order kinetic model. Several parameters affecting the extraction efficiency were investigated and optimized, including adsorbent dosage, extraction time, ionic strength and desorption conditions. And then, a rapid and effective method based on MRGO combined with GC was developed for the determination of ICP in aqueous samples. A linear range from 0.05 to 50ngmL(-1) was obtained with a high correlation coefficient (R(2)) of 0.9995, and the limit of detection was found to be 0.0044ngmL(-1). This method was successfully applied to the analysis of ICP in five kinds of samples, including apple, rice, lake water, cowpea and cabbage. The recoveries in different sample matrices were in the range from 81.00% to 108.51% with relative standard deviations less than 9.72%. It can be concluded that the proposed analytical method is highly-efficient, sensitive, precise, accurate and practicable. PMID:24800969

  15. AraR, an l-Arabinose-Responsive Transcriptional Regulator in Corynebacterium glutamicum ATCC 31831, Exerts Different Degrees of Repression Depending on the Location of Its Binding Sites within the Three Target Promoter Regions

    PubMed Central

    Kuge, Takayuki; Teramoto, Haruhiko

    2015-01-01

    ABSTRACT In Corynebacterium glutamicum ATCC 31831, a LacI-type transcriptional regulator AraR, represses the expression of l-arabinose catabolism (araBDA), uptake (araE), and the regulator (araR) genes clustered on the chromosome. AraR binds to three sites: one (BSB) between the divergent operons (araBDA and galM-araR) and two (BSE1 and BSE2) upstream of araE. l-Arabinose acts as an inducer of the AraR-mediated regulation. Here, we examined the roles of these AraR-binding sites in the expression of the AraR regulon. BSB mutation resulted in derepression of both araBDA and galM-araR operons. The effects of BSE1 and/or BSE2 mutation on araE expression revealed that the two sites independently function as the cis elements, but BSE1 plays the primary role. However, AraR was shown to bind to these sites with almost the same affinity in vitro. Taken together, the expression of araBDA and araE is strongly repressed by binding of AraR to a single site immediately downstream of the respective transcriptional start sites, whereas the binding site overlapping the −10 or −35 region of the galM-araR and araE promoters is less effective in repression. Furthermore, downregulation of araBDA and araE dependent on l-arabinose catabolism observed in the BSB mutant and the AraR-independent araR promoter identified within galM-araR add complexity to regulation of the AraR regulon derepressed by l-arabinose. IMPORTANCE Corynebacterium glutamicum has a long history as an industrial workhorse for large-scale production of amino acids. An important aspect of industrial microorganisms is the utilization of the broad range of sugars for cell growth and production process. Most C. glutamicum strains are unable to use a pentose sugar l-arabinose as a carbon source. However, genes for l-arabinose utilization and its regulation have been recently identified in C. glutamicum ATCC 31831. This study elucidates the roles of the multiple binding sites of the transcriptional repressor AraR in the

  16. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.

    PubMed

    Dussan, Karla; Girisuta, Buana; Lopes, Marystela; Leahy, James J; Hayes, Michael H B

    2015-04-24

    The pre-treatment of lignocellulosic biomass produces a liquid stream of hemicellulose-based sugars, which can be further converted to high-value chemicals. Formosolv pulping and the Milox process use formic acid as the fractionating agent, which can be used as the catalyst for the valorisation of hemicellulose sugars to platform chemicals. The objective of this study was to investigate the reaction kinetics of major components in the hemicelluloses fraction of biomass, that is, D-xylose, L-arabinose and D-glucose. The kinetics experiments for each sugar were performed at temperatures between 130 and 170 °C in various formic acid concentrations (10-64 wt %). The implications of these kinetic models on the selectivity of each sugar to the desired products are discussed. The models were used to predict the reaction kinetics of solutions that resemble the liquid stream obtained from the fractionation process of biomass using formic acid. PMID:25821128

  17. Crystal structures of two monomeric triosephosphate isomerase variants identified via a directed-evolution protocol selecting for L-arabinose isomerase activity.

    PubMed

    Krause, Mirja; Kiema, Tiila Riikka; Neubauer, Peter; Wierenga, Rik K

    2016-06-01

    The crystal structures are described of two variants of A-TIM: Ma18 (2.7 Å resolution) and Ma21 (1.55 Å resolution). A-TIM is a monomeric loop-deletion variant of triosephosphate isomerase (TIM) which has lost the TIM catalytic properties. Ma18 and Ma21 were identified after extensive directed-evolution selection experiments using an Escherichia coli L-arabinose isomerase knockout strain expressing a randomly mutated A-TIM gene. These variants facilitate better growth of the Escherichia coli selection strain in medium supplemented with 40 mM L-arabinose. Ma18 and Ma21 differ from A-TIM by four and one point mutations, respectively. Ma18 and Ma21 are more stable proteins than A-TIM, as judged from CD melting experiments. Like A-TIM, both proteins are monomeric in solution. In the Ma18 crystal structure loop 6 is open and in the Ma21 crystal structure loop 6 is closed, being stabilized by a bound glycolate molecule. The crystal structures show only small differences in the active site compared with A-TIM. In the case of Ma21 it is observed that the point mutation (Q65L) contributes to small structural rearrangements near Asn11 of loop 1, which correlate with different ligand-binding properties such as a loss of citrate binding in the active site. The Ma21 structure also shows that its Leu65 side chain is involved in van der Waals interactions with neighbouring hydrophobic side-chain moieties, correlating with its increased stability. The experimental data suggest that the increased stability and solubility properties of Ma21 and Ma18 compared with A-TIM cause better growth of the selection strain when coexpressing Ma21 and Ma18 instead of A-TIM. PMID:27303904

  18. Residual Cap

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime view of the south polar residual cap of Mars. In this image, mesas composed largely of solid carbon dioxide are separated from one another by irregularly-shaped depressions. The variation in brightness across this scene is a function of several factors including, but not limited to, varying proportions of dust and solid carbon dioxide, undulating topography, and differences in the roughness of the slopes versus the flat surfaces.

    Location near: 86.7oS, 343.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  19. Insecticidal Activity of Some Reducing Sugars Against the Sweet Potato Whitefly, Bemisia tabaci, Biotype B

    PubMed Central

    Hu, Jing S.; Gelman, Dale B.; Salvucci, Michael E.; Chen, Yan P.; Blackburn, Michael B.

    2010-01-01

    The effects of 16 sugars (arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, inositol, lactose, maltose, mannitol (a sugar alcohol), mannose, melibiose, ribose, sorbitol, trehalose, and xylose) on sweet potato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) survival were determined using in vitro bioassays. Of these sugars, arabinose, mannose, ribose, and xylose were strongly inhibitory to both nymphal and adult survival. When 10% mannose was added to the nymphal diet, 10.5%, 1.0%, and 0% developed to the 2nd, 3rd, and 4th instars, respectively. When 10% arabinose was added, 10.8% and 0% of the nymphs molted to the 2nd and 3rd instars, respectively. Addition of 10% xylose or ribose completely terminated B. tabaci development, preventing the molt to the 2nd instar. With decreasing sugar concentrations the inhibitory effect was significantly reduced. In tests using adults, arabinose, galactose, inositol, lactose, maltose, mannitol, mannose, melibiose, ribose, sorbitol, trehalose, and xylose significantly reduced mean day survival. Mortality rates were highest when arabinose, mannitol, mannose, ribose, or xylose was added to the diet. Mean day survival was less than 2 days when adults were fed on diet containing 10% of any one of these five sugars. When lower concentrations of sugars were used there was a decrease in mortality. Mode of action studies revealed that toxicity was not due to the inhibition of alpha glucosidase (converts sucrose to glucose and fructose) and/or trehalulose synthase (converts sucrose to trehalulose) activity. The result of agarose gel electrophoresis of RT-PCR products of bacterial endosymbionts amplified from RNA isolated from whiteflies fed with 10% arabinose, mannose, or xylose indicated that the concentration of endosymbionts in mycetomes was not affected by the toxic sugars. Experiments in which B. tabaci were fed on diets that contained radio-labeled sucrose, methionine or inulin and one or none (control) of

  20. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    PubMed Central

    2012-01-01

    Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the

  1. Chemical improvement of chitosan-modified beads for the immobilization of Enterococcus faecium DBFIQ E36 L-arabinose isomerase through multipoint covalent attachment approach.

    PubMed

    Manzo, Ricardo M; de Sousa, Marylane; Fenoglio, Cecilia L; Gonçalves, Luciana Rocha Barro; Mammarella, Enrique J

    2015-10-01

    D-tagatose is produced from D-galactose by the enzyme L-arabinose isomerase (L-AI) in a commercially viable bioprocess. An active and stable biocatalyst was obtained by modifying chitosan gel structure through reaction with TNBS, D-fructose or DMF, among others. This led to a significant improvement in L-AI immobilization via multipoint covalent attachment approach. Synthetized derivatives were compared with commercial supports such as Eupergit(®) C250L and glyoxal-agarose. The best chitosan derivative for L-AI immobilization was achieved by reacting 4 % (w/v) D-fructose with 3 % (w/v) chitosan at 50 °C for 4 h. When compared to the free enzyme, the glutaraldehyde-activated chitosan biocatalyst showed an apparent activity of 88.4 U g (gel) (-1) with a 211-fold stabilization factor while the glyoxal-agarose biocatalyst gave an apparent activity of 161.8 U g (gel) (-1) with an 85-fold stabilization factor. Hence, chitosan derivatives were comparable to commercial resins, thus becoming a viable low-cost strategy to obtain high active L-AI insolubilized derivatives. PMID:26254040

  2. Optical systolic array processor using residue arithmetic

    NASA Technical Reports Server (NTRS)

    Jackson, J.; Casasent, D.

    1983-01-01

    The use of residue arithmetic to increase the accuracy and reduce the dynamic range requirements of optical matrix-vector processors is evaluated. It is determined that matrix-vector operations and iterative algorithms can be performed totally in residue notation. A new parallel residue quantizer circuit is developed which significantly improves the performance of the systolic array feedback processor. Results are presented of a computer simulation of this system used to solve a set of three simultaneous equations.

  3. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  4. An EBV recombinant deleted for residues 130-159 in EBNA3C can deregulate p53/Mdm2 and Cyclin D1/CDK6 which results in apoptosis and reduced cell proliferation

    PubMed Central

    El-Naccache, Darine W.; Robertson, Erle S.

    2016-01-01

    Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130–159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation. Also, this recombinant virus showed with higher infectivity of human peripheral blood mononuclear cells (PBMCs) compared to wild type EBV. PBMCs- infected with recombinant EBV deleted for 130-159 residues have differential expression patterns for the p53/Mdm2, CyclinD1/Cdk6 and pRb/E2F1 pathways compared to wild type EBV-infected PBMCs. PBMCs infected with recombinant virus showed increased apoptotic cell death which further resulted in activation of polymerase 1 (PARP1), an important contributor to apoptotic signaling. Interestingly, cells infected with this recombinant virus showed a dramatic decrease in chromosomal instability, indicated by the presence of increased multinucleation and micronucleation. In addition infection with recombinant virus have increased cells in G0/G1 phase and decreased cells in S-G2M phase when compared to wild type infected cells. Thus, these differences in signaling activities due to 29 amino acid residues of EBNA3C is of particular significance in deregulation of cell proliferation in EBV-infected cells. PMID:26908453

  5. Should the Functional Residual Capacity be Ignored?

    PubMed Central

    Selvi E, Chandra; K.V Rao, Kuppu; Malathi

    2013-01-01

    Aim and Objectives: The functional residual capacity was given the least importance than the other lung volume parameters. Studies have revealed the restrictive pattern of lung disease in patients with liver cirrhosis. We aimed to analyze the importance of the functional residual capacity and other lung volumes of cirrhotic patients. Subjects and Methods: Forty (40) patients with cirrhosis (Child’s-B) were enrolled in this study. The vital capacity was measured by an instrument called V02 Max 22. The other lung volumes which were measured were derived parameters. The functional residual capacity was measured by the nitrogen wash-out method. Results: The measured value of the functional residual capacity was below normal as compared to the reference value. The total lung capacity and the vital capacity were positively correlated with the functional residual capacity. The residual volume was found to be increased in twelve out of forty cirrhotic patients. Conclusion: The functional residual capacity can be determined by the compliance of the lung and the chest wall. The patients with a reduced functional residual capacity may be suffering from dyspnoea, probably due to the restrictive pattern of the lung disease. Hence, the reduced lung volumes of the subjects may be due to the abnormalities in the mechanics of ventilation. PMID:23450122

  6. Sugarcane Post-Harvest Residue Management in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Failure to remove sugarcane post-harvest residue often reduces ratoon crop yields in temperate climates. A series of experiments was conducted to determine the effects of various residue management practices on sugarcane yield. For the first experiment, timing of post-harvest residue was based on th...

  7. Behavior of peptides combining 1 alanine residue and 8 glycine residues on papain associated with structural fluctuations

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2011-12-01

    I investigated the behavior of the peptides combining 1 ALA residue and 8 GLY residues on papain associated with structural fluctuations via molecular dynamics and docking simulations. Although the chance of binding to sites near the active center of papain was reduced by replacing the GLY residue in 9GLY with ALA residue, binding stability was improved by the replacement. Furthermore, both the chance and binding stability were greatly affected by positioning of ALA residue in the peptides. Residue in peptides should be replaced in view of the balance between chance of binding to sites near active center and binding stability.

  8. Process for treatment of residual gas

    SciTech Connect

    Nolden, K.

    1980-01-01

    A process is disclosed for the treatment of the residual gases which are produced when hydrogen sulfide is reduced, by combustion, to elementary sulfur by the Claus process. The residual gases are fed through a heated conduit and gas scrubber, wherein the temperature of those residual gases are maintained above the melting point of sulfur. A portion of the raw coke oven gas condensate is admitted to the gas scrubber to be returned to the coke oven battery main from the flushing liquid separator as flushing liquor. The residual gases are then conducted through the coke oven gas purification process equipment along with the raw coke oven gas where the residual gases are intermixed with the raw coke oven gas prior to tar separation.

  9. Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms.

    PubMed

    Ueki, Atsuko; Abe, Kunihiro; Kaku, Nobuo; Watanabe, Kazuya; Ueki, Katsuji

    2008-02-01

    Two strictly anaerobic bacterial strains (SV434(T) and S562) were isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms in Japan. They had identical 16S rRNA gene sequences and showed almost the same phenotypic properties. The cells of both strains were Gram-negative, non-motile, non-spore-forming rods; extraordinarily long rods often occurred. Remarkable stimulation of growth occurred with the addition of haemin and cobalamin (vitamin B(12)) to the medium. The supplementary cobalamin and haemin could be replaced if autoclaved and clarified sludge fluid obtained from the reactor was added. Both strains utilized a range of growth substrates, including arabinose, fructose, galactose, glucose, mannose, cellobiose, maltose, glycogen, starch, dextrin, amygdalin, lactate and pyruvate. Both strains produced acetate and propionate with a small amount of succinate from these substrates in the presence of haemin and cobalamin. Both strains were slightly alkaliphilic, having a pH optimum at about 7.9. The temperature range for growth was 5-35 degrees C, the optimum being 30 degrees C. The NaCl concentration range for growth was 0-4 % (w/v). Catalase activity was not detected in cells cultivated without haemin, whereas cells cultivated with haemin usually had the enzyme activity. Oxidase and nitrate-reducing activities were not detected. Aesculin was hydrolysed, but gelatin was not hydrolysed. Both strains were sensitive to bile acids. The major cellular fatty acids of both strains were anteiso-C(15 : 0) and iso-C(15 : 0). Menaquinones MK-8(H(0)) and MK-9(H(0)) were the major respiratory quinones and the genomic DNA G+C contents were 46.2-47.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences placed both strains in the phylum Bacteroidetes. Bacteroides coprosuis (isolated from swine-manure storage pits) was the species most closely related to both strains (95.9 % 16S rRNA gene sequence similarity to the type strain). On the

  10. Effects of processing on carbendazim residue in Pleurotus ostreatus.

    PubMed

    Xia, Erdong; Tao, Wuqun; Yao, Xi; Wang, Jin; Tang, Feng

    2016-07-01

    Samples of Pleurotus ostreatus were exposed to fungicide carbendazim to study the effect of processing on the residues. In most cases, processing operations led to a significant decrease in residue levels in the finished products, particularly through washing, drying, and cooking processes. The results indicated that rinsing under running tap water led to more than 70.30% loss in carbendazim residues. When dried under sunlight could remove more than 70.30% residues. There was a 63.90-97.14% reduction after steaming, with processing time extending, the removal rates increased especially for lower initial residue level samples. The residue was almost completely removed by frying combined with microwave heating. Furthermore, boiling the mushrooms reduced the residue in the mushroom and no carbendazim residues were determined in the broth. PMID:27386113

  11. Interfacial residual thermal strain

    NASA Astrophysics Data System (ADS)

    Kasen, M.; Santoyo, R.

    A method has been developed for assessing the influence of polymer chemical composition and of processing parameters on the magnitude of residual stress developed in glass-fibre-reinforced composites subjected to various cure cycles and subsequently cooled to cryogenic temperatures. The test method was applied to nine resin types, including epoxy, vinyl ester, polyester, cyanate ester and phenolic formulations. Results suggest that polyester resin develops substantially less overall residual strain than do the other resin systems.

  12. Quantifying logging residue - before the fact

    SciTech Connect

    Bones, J.T.

    1982-06-01

    Tree biomass estimation, which is being integrated into the U.S. Forest Service Renewable Resources Evaluation Program, will give foresters the ability to estimate the amount of logging residues they might expect from harvested treetops and branches and residual rough, rotten, and small trees before the actual harvest. With planning, and increased demand for such timber products as pulpwood and fuelwood, product recovery could be increased by up to 43 percent in softwood stands and 99% in hardwoods. Recovery levels affect gross product receipts and site preparation costs. An example of product recovery and residue generation is presented for three harvesting options in Pennsylvania hardwood stands. Under the whole-tree harvesting option, 46% more product was recovered than in single product harvesting, and logging residue levels were reduced by 58%.

  13. Mapping crop Residue Cover and Soil Tillage Intensity Using Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Until recently crop residues were managed primarily to reduce soil erosion and increase soil organic carbon, but demands for biofuels may remove much of the residue. Current methods of measuring crop residue cover are inadequate for characterizing the temporal and spatial variability of crop residu...

  14. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1{sup A903V} and CESA3{sup T942I} of cellulose synthase

    SciTech Connect

    Harris, Darby; Corbin, Kendall; Wang, Tuo; Gutierrez, Ryan; Bertolo, Ana; Petti, Caroalberto; Smilgies, Detlef-M; Estevez, Jose Manuel; Bonetta, Dario; Urbanowicz, Breeanna; Ehrhardt, David; Somerville, Chris; Rose, Jocelyn; Hong, Mei; DeBolt, Seth

    2012-01-08

    The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1{sup A903V} and CESA3{sup T942I} in Arabidopsis thaliana. Using {sup 13}C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1{sup A903V} and CESA3{sup T942I} displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1{sup A903V} and CESA3{sup T942I} have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.

  15. Chemical Stabilization of Hanford Tank Residual Waste

    SciTech Connect

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanford’s tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

  16. Close proximity gunshot residues.

    PubMed

    Thornton, J I

    1986-04-01

    Intuitively, a hand held in close proximity to a firearm at the instant of discharge will intercept a significant amount of gunshot residue, even though the hand did not actually come into contact with the weapon. There is, however, little information specifically described in the forensic science literature concerning the residue levels which might be encountered in such an instance. The present work confirms that antimony levels consistent with an individual having fired or handled a firearm may be intercepted by a hand held in close proximity. PMID:3711843

  17. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  18. Optimization of reaction conditions for enzymatic viscosity reduction and hydrolysis of wheat arabinoxylan in an industrial ethanol fermentation residue.

    PubMed

    Sørensen, Hanne R; Pedersen, Sven; Meyer, Anne S

    2006-01-01

    This study examined enzyme-catalyzed viscosity reduction and evaluated the effects of substrate dry matter concentration on enzymatic degradation of arabinoxylan in a fermentation residue, "vinasse", resulting from industrial ethanol manufacture on wheat. Enzymatic catalysis was accomplished with a 50:50 mixture of an enzyme preparation from Humicola insolens, Ultraflo L, and a cellulolytic enzyme preparation from Trichoderma reesei, Celluclast 1.5 L. This enzyme mixture was previously shown to exhibit a synergistic action on arabinoxylan degradation. The viscosity of vinasse decreased with increased enzyme dosage and treatment time at pH 5, 50 degrees C, 5 wt % vinasse dry matter. After 24 h of enzymatic treatment, 76-84%, 75-80%, and 43-47%, respectively, of the theoretically maximal arabinose, xylose, and glucose releases were achieved, indicating that the viscosity decrease was a result of enzyme-catalyzed hydrolysis of arabinoxylan, beta-glucan, and cellulose. In designed response surface experiments, the optimal enzyme reaction conditions with respect to pH and temperature of the vinasse, the vinasse supernatant (mainly soluble material), and the vinasse sediment (mainly insoluble substances) varied from pH 5.2-6.4 and 41-49 degrees C for arabinose release and from pH 4.9-5.3 and 42-46 degrees C for xylose release. Even though only limited hydrolysis of the arabinoxylan in the vinasse sediment fraction was obtained, the results indicated that the same enzyme activities acted on the arabinoxylan in the different vinasse fractions irrespective of the state of solubility of the substrate material. The levels of liberated arabinose and xylose increased with increased dry matter concentration during enzymatic hydrolysis in the vinasse and the vinasse supernatant, but at the same time, increased substrate dry matter concentrations gave corresponding linear decreases in the hydrolytic efficiency as evaluated from levels of monosaccharide release per weight unit dry

  19. Structure of ten free N-glycans in ripening tomato fruit. Arabinose is a constituent of a plant N-glycan.

    PubMed Central

    Priem, B; Gitti, R; Bush, C A; Gross, K C

    1993-01-01

    The concentration-dependent stimulatory and inhibitory effect of N-glycans on tomato (Lycopersicon esculentum Mill.) fruit ripening was recently reported (B. Priem and K.C. Gross [1992] Plant Physiol 98: 399-401). We report here the structure of 10 free N-glycans in mature green tomatoes. N-Glycans were purified from fruit pericarp by ethanolic extraction, desalting, concanavalin A-Sepharose chromatography, and amine-bonded silica high performance liquid chromatography. N-Glycan structures were determined using 500 MHz 1H-nuclear magnetic resonance spectroscopy, fast atom bombardment mass spectrometry, and glycosyl linkage methylation analysis by gas chromatography-mass spectrometry. A novel arabinosyl-containing N-glycan, Man alpha 1-->6(Ara alpha 1-->2)Man beta 1-->4GlcNAc beta 1-->4(Fuc alpha 1-->3)GlcNAc, was purified from a retarded concanavalin A fraction. The location of the arabinosyl residue was the same as the xylosyl residue in complex N-glycans. GlcNAc[5']Man3(Xyl)GlcNAc(Fuc)GlcNAc and GlcNAc[5']Man2GlcNAc(Fuc)GlcNAc were also purified from the weakly retained fraction. The oligomannosyl N-glycans Man5GlcNAc, Man6GlcNAc, Man7GlcNAc, and Man8GlcNAc were purified from a strongly retained concanavalin A fraction. The finding of free Man5GlcNAc in situ was important physiologically because previously we had described it as a promoter of tomato ripening when added exogenously. Mature green pericarp tissue contained more than 1 microgram of total free N-glycan/g fresh weight. Changes in N-glycan composition were determined during ripening by comparing glycosyl and glycosyl-linkage composition of oligosaccharidic extracts from fruit at different developmental stages. N-Glycans were present in pericarp tissue at all stages of development. However, the amount increased during ripening, as did the relative amount of xylosyl-containing N-glycans. PMID:8108510

  20. CROP-RESIDUE MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our agricultural production system is under increasing pressure to provide low cost, high quality food, fiber and biofuels while maintaining and preserving the environment. Increased interest in crop residues for production system sustainability is related to the recognition that the soil, water and...

  1. Utilizing water treatment residuals to reduce phosphorus runoff from biosolids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 40% of biosolids (sewage sludge) produced in the U.S. are incinerated or landfilled rather than land applied due to concern over non-point source phosphorus (P) runoff. The objective of this study was to determine the impact of chemical amendments on water-extractable P (WEP) in appli...

  2. Reducing Phosphorus Runoff from Biosolids with Water Treatment Residuals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large fraction of the biosolids produced in the U.S. are placed in landfills or incinerated to avoid potential water quality problems associated with non-point source phosphorus (P) runoff. The objective of this study was to determine the effect of various chemical amendments on P runoff from bi...

  3. Capturing residual soil nitrogen with winter cereal cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide-spread drought during the 2012 summer has resulted in reduced crop growth, poor yields, and an anticipated increase in residual nitrate (NO3) nitrogen (N) in the soil profile. This residual N can potentially increase NO3-N losses to ground and/or surface waters, as well as increase carry-ov...

  4. Corn cob residue carbon and nutrient dynamics during decomposition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cob fraction of corn (Zea mays L.) residue has characteristics that reduce concerns associated with residue removal making it a potential biofuel feedstock. The contribution the cob fraction makes to soil C and nutrient dynamics is unknown. A litterbag study was conducted in no-tillage plots und...

  5. Assessing crop residue cover as scene moisture conditions change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue or plant litter is the portion of a crop left in the field after harvest. Crop residues on the soil surface provide a first line of defense against water and wind erosion and reduce the amounts of soil, nutrients, and pesticides that reach streams and rivers. Thus, quantification of cro...

  6. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  7. Residual stresses in material processing

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Hubbard, C.R.; Wang, Xun-Li; Spooner, S.

    1994-09-01

    Material manufacturing processes often introduce residual stresses into the product. The residual stresses affect the properties of the material and often are detrimental. Therefore, the distribution and magnitude of residual stresses in the final product are usually an important factor in manufacturing process optimization or component life prediction. The present paper briefly discusses the causes of residual stresses. It then adresses the direct, nondestructive methods of residual stress measurement by X-ray and neutron diffraction. Examples are presented to demonstrate the importance of residual stress measurement in machining and joining operations.

  8. SRC Residual fuel oils

    DOEpatents

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  9. Residual Neuromuscular Blockade.

    PubMed

    Plummer-Roberts, Anna L; Trost, Christina; Collins, Shawn; Hewer, Ian

    2016-02-01

    This article provides an update on residual neuromuscular blockade for nurse anesthetists. The neuromuscular junction, pharmacology for producing and reversing neuromuscular blockade, monitoring sites and methods, and patient implications relating to incomplete reversal of neuromuscular blockade are reviewed. Overall recommendations include using multiple settings when employing a peripheral nerve stimulator for monitoring return of neuromuscular function and administering pharmacologic reversal when the train-of-four ratio is below 0.9. PMID:26939390

  10. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    PubMed Central

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  11. Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins.

    PubMed

    Sudakevitz, Dvora; Imberty, Anne; Gilboa-Garber, Nechama

    2002-08-01

    The worldwide distributed plant aggressive pathogen Ralstonia solanacearum, which causes lethal wilt in many agricultural crops, produces a potent L-fucose-binding lectin (RSL) exhibiting sugar specificity similar to that of PA-IIL of the human aggressive opportunistic pathogen Pseudomonas aeruginosa. Both lectins show L-fucose > L-galactose > D-arabinose > D-mannose specificity, but the affinities of RSL to these sugars are substantially lower. Unlike Ulex europaeus anti-H lectin, but like PA-IIL and Aleuria aurantia lectin (AAL), RSL agglutinates H-positive human erythrocytes regardless of their type, O, A, B, or AB, and animal erythrocytes (papain-treated ones more strongly than untreated ones). It also interacts with H and Lewis chains in the saliva of "secretors" and "nonsecretors." RSL purification is easier than that of PA-IIL since R. solanacearum extracts do not contain a galactophilic PA-IL-like activity. Mass spectrometry and 35 N-terminal amino acid sequencing enabled identification of the RSL protein (subunit approximately 9.9 kDa, approximately 90 amino acids) in the complete genome sequence of this bacterium. Despite the greater phylogenetic proximity of R. solanacearum to P. aeruginosa, and the presence of a PA-IIL-like gene in its genome, the RSL structure is not related to that of PA-IIL, but to that of the fucose-binding lectin of the mushroom (fungus) Aleuria aurantia, which like the two bacteria is a soil inhabitant. PMID:12153735

  12. CHARACTERIZING RESIDUE TRANSFER EFFICIENCIES USING A FLUORESCENT IMAGING TECHNIQUE

    EPA Science Inventory

    To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and indirect ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study to identify the important parameters for chara...

  13. Energy from rice residues

    SciTech Connect

    Mahin, D.B.

    1990-03-01

    Developing countries produce millions of tons of rice husks and straw as a byproduct of harvesting rice. Although some of these rice residues are used for fuel or other purposes, most are burned for disposal or just dumped. However, since the mid- 1980's, industrial plants for rice residue utilization have been installed in several countries and are planned in a number of others. The report provides information on systems to produce energy from rice residues that are commercially available in the United States, Europe, and various developing countries, with an emphasis on those currently used or sold on an international level. Specifically reviewed are the use of rice husks to produce: (1) industrial process heat either directly from furnaces or by generating low pressure steam in boilers; (2) mechanical and electrical power for rice milling via steam engine systems, steam turbine/generator systems, and gasifier/engine systems; and (3) electric power for the grid. The outlook for producing energy from rice straw is also assessed. In addition, the prospects for the use of energy from husks or straw in the processing of rice bran are reviewed.

  14. Crop Residue Coverage Estimation Using ASTER Imagery

    NASA Astrophysics Data System (ADS)

    Lewis, D.; Yao, H.; Kincaid, R.

    2006-12-01

    Soil erosion and its related runoff is a serious problem in U.S. agriculture. USDA has classified 33 percent of U.S. agricultural land as being highly erodible. It is well recognized that residue coverage on the soil surface can reduce soil erosion. The National Food Security Act of 1985 requires that agricultural producers protect all highly erodible cropland from excessive erosion. The 2002 Farm Bill gave U.S. Department of Agriculture's (USDA) Natural Resource Conservation Service (NRCS) the authority to make a determination of compliance. NRCS is currently running several programs to implement conservation practices and to monitor compliance. To be in compliance, growers must keep crop residue cover more than 30 percent of the field. This requires field-level assessment. The NRCS does not have the resources to regularly survey every field. One potential approach for compliance decision making is using data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor onboard NASA's Terra satellite. ASTER data provides 15 bands of 15 meter visible/NIR (VNIR) and 30 meter SWIR resolution data. Both the spatial resolution and spectral wavelength range and resolution are suitable for field level residue cover estimation. The objective of this study was to explore the potential of using ASTER data for crop residue cover estimation. The results indicate that ASTER imagery has good capability to identify residue within the corn fields and moderate capability in soybean residue estimation. SWIR bands have the most promise in separating crop residue when compared to the VNIR bands. Satellite based remote sensing imagery could be a potential rapid decision making tool for NRCS's compliance programs.

  15. Sustainable System for Residual Hazards Management

    SciTech Connect

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact

  16. Mobility of organic carbon from incineration residues

    SciTech Connect

    Ecke, Holger Svensson, Malin

    2008-07-01

    Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2{sup 6-1} experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO{sub 2} until the pH was stable for 2.5 h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.

  17. Chemical stabilization of Hanford tank residual waste

    NASA Astrophysics Data System (ADS)

    Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

    2014-03-01

    Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and Ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of uranium from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. All three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective Maximum Contaminant Levels (MCLs) for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste.

  18. Reduced-Bandwidth Coding for Mobile Communication

    NASA Technical Reports Server (NTRS)

    Davarian, F.

    1986-01-01

    Fade-resistant mobile systems use power and spectrum efficiently. Transmission system employs tone-calibrated technique (TCT). Residual carrier used in technique to reduce fading-induced effects and coherently demodulate received signal. TCT potentially efficient in use of power and of frequency spectrum. Coding technique, intended for residual-carrier transmission system, alleviates fading and spectrum crowding that hamper mobile communications.

  19. Improved Remote Crop Residue Cover Estimation by Incorporation of Soil and Residue Information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern agricultural practices are increasingly making use of conservation (reduced- and no-till) methods, in order to minimize soil erosion and increase soil organic carbon (SOC) content. These methods result in increased crop residue cover after planting when compared to conventional tillage metho...

  20. The residual caries dilemma.

    PubMed

    Weerheijm, K L; Groen, H J

    1999-12-01

    Restorative dentistry is based on the assumption that bacterial infection of demineralized dentine should prompt operative intervention. One of the concepts of practical dentistry is to create a favourable environment for caries arrest with minimal operative intervention. The progress of remaining primary caries is key to any discussion of this concept. This discussion is important for the atraumatic restorative treatment (ART) approach, since the removal of all carious dentine is sometimes difficult using hand instruments only. In this paper the results of possible measures to guard against the effects of residual carious and its consequences are reviewed, in order to obtain an impression of the justification for (in)complete excavation of occlusal dentinal caries. Three types of measure are considered: isolating the caries process from the oral environment, excavating the carious dentine, and using a cariostatic filling material. Each of these measures contributes to the arrest of the caries process. However, none of these measures can arrest this process by itself. A combination of all three seems necessary. It is concluded that although residual caries does not seem to be the criterion for rerestoration, one has to strive for as complete caries removal as possible. If this cannot be fulfilled the sealing capacities of the filling material seem to be more important than its cariostatic properties. PMID:10600078

  1. Reducing the atmospheric impact of wet slaking

    SciTech Connect

    B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov

    2009-05-15

    Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

  2. Impact of Corn Residue Removal on Crop and Soil Productivity

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  3. Recycling of auto shredder residue.

    PubMed

    Nourreddine, Menad

    2007-01-31

    Currently, about 75% of end-of-life vehicle's (ELV) total weight is recycled in EU countries. The remaining 25%, which is called auto shredder residues (ASR) or auto fluff, is disposed of as landfill because of its complexity. It is a major challenge to reduce this percentage of obsolete cars. The European draft directive states that by the year 2006, only 15% of the vehicle's weight can be disposed of at landfill sites and by 2015, this will be reduced to 5%. The draft directive states that a further 10% can be incinerated. The quantities of shredder fluff are likely to increase in the coming years. This is because of the growing number of cars being scrapped, coupled with the increase in the amount of plastics used in cars. In Sweden, some current projects are focusing on recycling of ASR material. In this paper some different alternatives for using this material are reported. The hypothetical injection of ASR into a blast furnace concentrating on ASR's effect to some blast furnace (BF) parameters has been completed using a blast furnace mass balance model. As a result, in principle, ASR can be used as reducing agent in the BF process if certain conditions are met. The particle size of ASR material must be controlled to ensure optimal gasification of the material in the raceway. Regarding the chemical composition of ASR, the non-ferrous content can affect the pig iron quality, which is difficult to rectify at a later point. The most attractive recycling alternative is to use the products obtained from pyrolysis of ASR in appropriate metallurgical processes. PMID:16600493

  4. Sugarcane Post-Harvest Residue Management in the Temperate Climate of Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue often reduces subsequent ratoon crop yields in Louisiana. Experiments were conducted to investigate if residue management effects are consistent across ratoon crops, to determine if residue management by soil...

  5. Residue harvest effects on corn response to applied N and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue harvest is common in Nebraska, primarily for feeding of beef cattle. Applied N immobilization is expected to be less with residue harvest due to reduced microbial activity for digestion of high CN organic material. Residue reduction may affect subsequent crop yield and res...

  6. Residue harvest effects on irrigated, no-till corn yield and nitrogen response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L.) residue harvest is common in Nebraska, primarily for feeding of beef cattle. Applied N immobilization is expected to be less with residue harvest due to reduced microbial activity for digestion of high CN organic material. Residue reduction may affect subsequent crop yield and res...

  7. Residual gas analyzer calibration

    NASA Technical Reports Server (NTRS)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  8. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  9. Selenium speciation in flue desulfurization residues.

    PubMed

    Zhong, Liping; Cao, Yan; Li, Wenying; Xie, Kechang; Pan, Wei-Ping

    2011-01-01

    Flue gas from coal combustion contains significant amounts of volatile selenium (Se). The capture of Se in the flue gas desulfurization (FGD) scrubber unit has resulted in a generation of metal-laden residues. It is important to determine Se speciation to understand the environmental impact of its disposal. A simple method has been developed for selective inorganic Se(IV), Se(VI) and organic Se determination in the liquid-phase FGD residues by hydride generation atomic fluorescence spectrometry (AFS). It has been determined that Se(IV), Se(VI) and organic Se can be accurately determined with detection limits (DL) of 0.05, 0.06 and 0.06 microg/L, respectively. The accuracy of the proposed method was evaluated by analyzing the certified reference material, NIST CRM 1632c, and also by analyzing spiked tap-water samples. Analysis indicates that the concentration of Se is high in FGD liquid residues and primarily exists in a reduced state as selenite (Se(IV)). The toxicity of Se(IV) is the strongest of all Se species. Flue gas desulfurization residues pose a serious environmental risk. PMID:21476358

  10. Materials recovery from shredder residues

    SciTech Connect

    Daniels, E. J.; Jody, B. J.; Pomykala, J., Jr.

    2000-07-24

    Each year, about five (5) million ton of shredder residues are landfilled in the US. Similar quantities are landfilled in Europe and the Pacific Rim. Landfilling of these residues results in a cost to the existing recycling industry and also represents a loss of material resources that are otherwise recyclable. In this paper, the authors outline the resources recoverable from typical shredder residues and describe technology that they have developed to recover these resources.

  11. Laundering as decontamination of apparel fabrics: residues of pesticides from six chemical classes.

    PubMed

    Nelson, C; Laughlin, J; Kim, C; Rigakis, K; Raheel, M; Scholten, L

    1992-07-01

    Research on reducing the level of pesticide residue on a textile substrate has examined many variables under many different conditions. This study controlled fiber type and the use of prewash product in an examination of residue levels for a number of pesticides in different pesticide classes. For all pesticides examined, the use of prewash lowered pesticide residues regardless of fiber type. Differences in pesticide residue level attributable to fiber type were not consistent. PMID:1637202

  12. Residual stresses in darrieus vertical axis wind turbine blades

    SciTech Connect

    Veers, P.

    1981-04-01

    A numerical package called RESID has been assembled to calculate the residual stresses in VAWT blades induced during cold forming. Using a strength of materials - elementary beam theory approach, RESID models the material response with a bilinear stress-strain curve, and the cross-sectional geometry with an array of area increments. Through an iterative solution procedure residual stresses are predicted for a specified final radius of curvature or applied bending moment. RESID results are compared to theoretical solutions for simple geometries and with MARC Finite element results for VAWT blade geometries. Calculating residual stress levels, determining acceptable residual stress levels, and a method of reducing residual stresses are discussed. A complete listing and sample run are included in the appendicies.

  13. Glove accumulation of pesticide residues for strawberry harvester exposure assessment.

    PubMed

    Li, Yanhong; Chen, Li; Chen, Zhenshan; Coehlo, Joe; Cui, Li; Liu, Yu; Lopez, Terry; Sankaran, Gayatri; Vega, Helen; Krieger, Robert

    2011-06-01

    We investigated the accumulation of pesticide residues on rubber latex gloves that are used by strawberry harvesters to protect their skin, reduce pesticide exposure and promote food safety. Gloves accumulated residues of 16 active ingredients including azoxystrobin, bifenthrin, boscalid, captan, cyprodinil, fenhexamid, fenpropathrin, fludioxonil, hexythiazox, malathion, methomyl, naled, propiconazole, pyraclostrobin, quinoline, and quinoxyfen at different times. Glove residue accumulation (t(½) 2.8-3.7 d) was very similar to the dissipation of DFRs (t(½) 2.1-3.0 d) during the first 3 weeks after malathion applications. Dermal malathion dose was 0.2 mg/kg at the preharvest interval and declined to trace levels during the following 3 months. Glove accumulation of malathion indicated trace surface residue availability and was used to assess the relationship between dislodgable foliar residues and potential hand exposure. PMID:21503692

  14. Microwave emission and crop residues

    NASA Technical Reports Server (NTRS)

    Jackson, Thomas J.; O'Neill, Peggy E.

    1991-01-01

    A series of controlled experiments were conducted to determine the significance of crop residues or stubble in estimating the emission of the underlying soil. Observations using truck-mounted L and C band passive microwave radiometers showed that for dry wheat and soybeans the dry residue caused negligible attenuation of the background emission. Green residues, with water contents typical of standing crops, did have a significant effect on the background emission. Results for these green residues also indicated that extremes in plant structure, as created using parallel and perpendicular stalk orientations, can cause very large differences in the degree of attenuation.

  15. Costs for alternative grain-residue-collection systems

    NASA Astrophysics Data System (ADS)

    Flaim, S. J.; Neenan, B.; Dauve, J.; Mapp, H. P., Jr.

    1981-06-01

    The costs for systems for corn and soybean production in Iowa are examined. All machinery field operations, fuel, other inputs, and labor requirements are identified for the base case with no residue harvest, and for residue harvest by stacks and large round bales, with the owner's equipment and for custom harvest. These five cases were developed for corn and soybeans for conventional and reduced tillage practices. Harvesting alternatives are compared on the basis of costs, fuel input requirements, and gross energy balances of residues collected less energy inputs. The cost of collecting corn and soybean residues varies widely over the collection and tillage systems examined. Other effects constant, the reduced tillage practice leads to a lower cost of harvest than conventional tillage, and stacks are always cheaper than large round bales; however, the former difference is greater than the latter.

  16. Reducing Dropouts.

    ERIC Educational Resources Information Center

    Timpane, Michael; And Others

    A group of three conference papers, all addressing the subject of effective programs to decrease the number of school dropouts, is presented in this document. The first paper, "Systemic Approaches to Reducing Dropouts" (Michael Timpane), asserts that dropping out is a symptom of failures in the social, economic, and educational systems. Dropping…

  17. On tide-induced lagrangian residual current and residual transport: 1. Lagrangian residual current

    USGS Publications Warehouse

    Feng, Shizuo; Cheng, Ralph T.; Pangen, Xi

    1986-01-01

    Residual currents in tidal estuaries and coastal embayments have been recognized as fundamental factors which affect the long-term transport processes. It has been pointed out by previous studies that it is more relevant to use a Lagrangian mean velocity than an Eulerian mean velocity to determine the movements of water masses. Under weakly nonlinear approximation, the parameter k, which is the ratio of the net displacement of a labeled water mass in one tidal cycle to the tidal excursion, is assumed to be small. Solutions for tides, tidal current, and residual current have been considered for two-dimensional, barotropic estuaries and coastal seas. Particular attention has been paid to the distinction between the Lagrangian and Eulerian residual currents. When k is small, the first-order Lagrangian residual is shown to be the sum of the Eulerian residual current and the Stokes drift. The Lagrangian residual drift velocity or the second-order Lagrangian residual current has been shown to be dependent on the phase of tidal current. The Lagrangian drift velocity is induced by nonlinear interactions between tides, tidal currents, and the first-order residual currents, and it takes the form of an ellipse on a hodograph plane. Several examples are given to further demonstrate the unique properties of the Lagrangian residual current.

  18. A manual for implementing residual radioactive material guidelines

    SciTech Connect

    Gilbert, T.L.; Yu, C.; Yuan, Y.C.; Zielen, A.J.; Jusko, M.J.; Wallo, A. III

    1989-06-01

    This manual presents information for implementing US Department of Energy (DOE) guidelines for residual radioactive material at sites identified by the Formerly Utilized Sites Remedial Action Program (FUSRAP) and the Surplus Facilities Management Program (SFMP). It describes the analysis and models used to derive site-specific guidelines for allowable residual concentrations of radionuclides in soil and the design and use of the RESRAD computer code for calculating guideline values. It also describes procedures for implementing DOE policy for reducing residual radioactivity to levels that are as low as reasonably achievable. 36 refs., 16 figs, 22 tabs.

  19. Residual Field Correction of Pulsed Bending Magnet

    NASA Astrophysics Data System (ADS)

    Takano, Junpei; Igarashi, Susumu; Kamikubota, Norihiko; Meigo, Shin-ichiro; Sato, Kenichi; Shirakata, Masashi; Yamada, Shuei

    The Japan Proton Accelerator Research Complex (J-PARC) has an accelerator chain, Linac, Rapid Cycling Synchrotron (RCS), and Main Ring (MR). The RCS accelerates the proton beam up to 3 GeV every 40 msec. After the beam is extracted from the RCS, it is delivered to a beam transport line, which is 3NBT for the Material and Life Science Experimental Facility (MLF). Some bunches of the proton beam are bended from the 3NBT to another beam transport line, which is 3-50BT for the MR, by using a pulsed bending magnet (PB) [1]. However, the beam orbit in the 3NBT is kicked by the residual magnetic field of the PB. In order to correct the residual magnetic field, additional coils had been wound on the PB poles. As a result of scanning the current pattern of the correction coils, the orbit distortion in the 3NBT has been reduced.

  20. Sugar composition of the pectic polysaccharides of charophytes, the closest algal relatives of land-plants: presence of 3-O-methyl-d-galactose residues

    PubMed Central

    O’Rourke, Christina; Gregson, Timothy; Murray, Lorna; Sadler, Ian H.; Fry, Stephen C.

    2015-01-01

    Background and Aims During evolution, plants have acquired and/or lost diverse sugar residues as cell-wall constituents. Of particular interest are primordial cell-wall features that existed, and in some cases abruptly changed, during the momentous step whereby land-plants arose from charophytic algal ancestors. Methods Polysaccharides were extracted from four charophyte orders [Chlorokybales (Chlorokybus atmophyticus), Klebsormidiales (Klebsormidium fluitans, K. subtile), Charales (Chara vulgaris, Nitella flexilis), Coleochaetales (Coleochaete scutata)] and an early-diverging land-plant (Anthoceros agrestis). ‘Pectins’ and ‘hemicelluloses’, operationally defined as extractable in oxalate (100 °C) and 6 m NaOH (37 °C), respectively, were acid- or Driselase-hydrolysed, and the monosaccharides analysed chromatographically. One unusual monosaccharide, ‘U’, was characterized by 1H/13C-nuclear magnetic resonance spectroscopy and also enzymically. Key Results ‘U’ was identified as 3-O-methyl-d-galactose (3-MeGal). All pectins, except in Klebsormidium, contained acid- and Driselase-releasable galacturonate, suggesting homogalacturonan. All pectins, without exception, released rhamnose and galactose on acid hydrolysis; however, only in ‘higher’ charophytes (Charales, Coleochaetales) and Anthoceros were these sugars also efficiently released by Driselase, suggesting rhamnogalacturonan-I. Pectins of ‘higher’ charophytes, especially Chara, contained little arabinose, instead possessing 3-MeGal. Anthoceros hemicelluloses were rich in glucose, xylose, galactose and arabinose (suggesting xyloglucan and arabinoxylan), none of which was consistently present in charophyte hemicelluloses. Conclusions Homogalacturonan is an ancient streptophyte feature, albeit secondarily lost in Klebsormidium. When conquering the land, the first embryophytes already possessed rhamnogalacturonan-I. In contrast, charophyte and land-plant hemicelluloses differ

  1. Sugarcane rice residue biochars and their applications

    NASA Astrophysics Data System (ADS)

    Wang, J. J.

    2014-12-01

    production, and reduced greenhouse gas emission. Overall, the conversion of sugarcane harvest residue to biochar as soil amendment improves sugarcane production for both agronomic and environmental benefits. Sugarcane residue biochar also showed the potential of other environmental use for remediation of petroleum hydrocarbons.

  2. Improved Remotely-Sensed Estimates of Crop Residue Cover by Incorporating Soils Information.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage (CT) methods, which include reduced- and no-till methods, leave substantial quantities of crop residues on the soil surface. These crop residues act as a barrier to wind and water to reduce soil erosion and evaporation. Long-term CT also increases soil organic carbon (SOC) cont...

  3. Impact of corn residue on yield of cool-season crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Synergy between dry pea and corn can reduce the density of corn needed for optimum yield. Lower crop density may accrue an additional benefit, as after-harvest residues of corn lying on the soil surface can reduce yield of crops planted the next year. This study evaluated impact of corn residue lev...

  4. Measurement and correlation of conditions for entrapment and mobilization of residual oil. First annual report

    SciTech Connect

    Morrow, N.R.

    1982-09-01

    Substantial progress has been made in four major task areas. The first task is to establish the limits of reliability of laboratory waterflooding as an evaluation tool. Wettability is identified as a key variable. Work is being extended to wetting properties of crude oils and core flooding. The second task concerns the effects of high capillary number flows on trapping phenomena and residual oil saturation. Correlations of capillary number and relative permeability behavior at reduced residual saturations have been developed for displacement in sandstones. The third task deals with mechanisms of mobilization and entrapment of residual oil. Detailed accounts have recently been presented of work on relative permeability at reduced residual oil saturations and for factors which affect the magnitude and distribution of residual oil. Work on the fourth task concerns the detailed structure of residual oil. The size distribution of residual oil blobs, obtained under various displacement conditions, is being measured by various size-analysis methods.

  5. Universality in Protein Residue Networks

    PubMed Central

    Estrada, Ernesto

    2010-01-01

    Abstract Residue networks representing 595 nonhomologous proteins are studied. These networks exhibit universal topological characteristics as they belong to the topological class of modular networks formed by several highly interconnected clusters separated by topological cavities. There are some networks that tend to deviate from this universality. These networks represent small-size proteins having <200 residues. This article explains such differences in terms of the domain structure of these proteins. On the other hand, the topological cavities characterizing proteins residue networks match very well with protein binding sites. This study investigates the effect of the cutoff value used in building the residue network. For small cutoff values, <5 Å, the cavities found are very large corresponding almost to the whole protein surface. On the contrary, for large cutoff value, >10.0 Å, only very large cavities are detected and the networks look very homogeneous. These findings are useful for practical purposes as well as for identifying protein-like complex networks. Finally, this article shows that the main topological class of residue networks is not reproduced by random networks growing according to Erdös-Rényi model or the preferential attachment method of Barabási-Albert. However, the Watts-Strogatz model reproduces very well the topological class as well as other topological properties of residue network. A more biologically appealing modification of the Watts-Strogatz model to describe residue networks is proposed. PMID:20197043

  6. Noninvasive in vivo determination of residual strains and stresses.

    PubMed

    Donmazov, Samir; Piskin, Senol; Pekkan, Kerem

    2015-06-01

    Vascular growth and remodeling during embryonic development are associated with blood flow and pressure induced stress distribution, in which residual strains and stresses play a central role. Residual strains are typically measured by performing in vitro tests on the excised vascular tissue. In this paper, we investigated the possibility of estimating residual strains and stresses using physiological pressure-radius data obtained through in vivo noninvasive measurement techniques, such as optical coherence tomography or ultrasound modalities. This analytical approach first tested with in vitro results using experimental data sets for three different arteries such as rabbit carotid artery, rabbit thoracic artery, and human carotid artery based on Fung's pseudostrain energy function and Delfino's exponential strain energy function (SEF). We also examined residual strains and stresses in the human swine iliac artery using the in vivo experimental ultrasound data sets corresponding to the systolic-to-diastolic region only. This allowed computation of the in vivo residual stress information for loading and unloading states separately. Residual strain parameters as well as the material parameters were successfully computed with high accuracy, where the relative errors are introduced in the range of 0-7.5%. Corresponding residual stress distributions demonstrated global errors all in acceptable ranges. A slight discrepancy was observed in the computed reduced axial force. Results of computations performed based on in vivo experimental data obtained from loading and unloading states of the artery exhibited alterations in material properties and residual strain parameters as well. Emerging noninvasive measurement techniques combined with the present analytical approach can be used to estimate residual strains and stresses in vascular tissues as a precursor for growth estimates. This approach is also validated with a finite element model of a general two-layered artery

  7. Safety assessment of drug residues

    SciTech Connect

    Jackson, B.A.

    1980-05-15

    The safety assessment of drug residues is part of the process for defining the conditions for the safe use of drugs in food-producing animals. The information needed to assess the safety of drug residues is provided by chemical and toxicity tests. Toxicity tests are conducted to identify the type of effect produced and to determine the exposure concentrations that would be expected not to produce the effect. These tests include acute, subacute, and chronic toxicity tests, as well as reproduction studies and other special tests. The results are used to find an acceptable daily intake for drug residues that can be used to set a tolerance.

  8. Fasting, but Not Aging, Dramatically Alters the Redox Status of Cysteine Residues on Proteins in Drosophila melanogaster.

    PubMed

    Menger, Katja E; James, Andrew M; Cochemé, Helena M; Harbour, Michael E; Chouchani, Edward T; Ding, Shujing; Fearnley, Ian M; Partridge, Linda; Murphy, Michael P

    2015-06-30

    Altering the redox state of cysteine residues on protein surfaces is an important response to environmental challenges. Although aging and fasting alter many redox processes, the role of cysteine residues is uncertain. To address this, we used a redox proteomic technique, oxidative isotope-coded affinity tags (OxICAT), to assess cysteine-residue redox changes in Drosophila melanogaster during aging and fasting. This approach enabled us to simultaneously identify and quantify the redox state of several hundred cysteine residues in vivo. Cysteine residues within young flies had a bimodal distribution with peaks at ∼10% and ∼85% reversibly oxidized. Surprisingly, these cysteine residues did not become more oxidized with age. In contrast, 24 hr of fasting dramatically oxidized cysteine residues that were reduced under fed conditions while also reducing cysteine residues that were initially oxidized. We conclude that fasting, but not aging, dramatically alters cysteine-residue redox status in D. melanogaster. PMID:26095360

  9. Sludge displacement verification for reducing grout report

    SciTech Connect

    Caldwell, T.B.; Langton, C.A.

    1997-04-10

    To support the closure of HLW tanks at SRS, a reducing grout was developed that is formulated to reduce the mobility of radionuclides left in each tank. During non-radioactive flow tests of the grout, it was discovered that, in addition to its desired properties, the grout has the ability to move residual waste a considerable distance across the tank floor.

  10. Residual tembotrione and atrazine in carrot.

    PubMed

    Bontempo, Amanda F; Carneiro, Gabriella D P; Guimarães, Fernanda A R; Dos Reis, Marcelo R; Silva, Daniel V; Rocha, Bruno H; Souza, Matheus F; Sediyama, Tocio

    2016-07-01

    Carrot (Daucus carota L.) is a vegetable crop that is grown throughout the year across various regions of Brazil in rotation or in succession to other cultures. Herbicide residual effect has emerged as a concern, because of the possibility of carryover. Thus, the objective of this study was to evaluate the effect of tembotrione and atrazine residues - in mixture and isolated - on carrot planted in succession to corn. The experiment was designed in randomized blocks with five replications. Treatments consisted of tembotrione (50.4 g ha(-1)), tembotrione (100.8 g ha(-1)), tembotrione + atrazine (50.4 g ha(-1)+ 2 L ha(-1)), tembotrione + atrazine (100.8 g ha(-1)+ 2 L ha(-1)), and atrazine (2.00 L ha(-1)) applied eight months before carrot seeding, plus a control treatment with no herbicide application. Investigated variables were shoot dry mass, productivity, and classification of carrot roots. The presence of atrazine and tembotrione decreased dry mass in the area, and only tembotrione reduced total root productivity. Thus, there is a carryover effect to tembotrione application that reduces the dry matter accumulation of shoot and total productivity, and an atrazine + tembotrione (100.8 g ha(-1)) mixture reduces the total productivity after application of these herbicides to soil. PMID:27052932

  11. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  12. Ideal architecture of residue packing and its observation in protein structures.

    PubMed Central

    Raghunathan, G.; Jernigan, R. L.

    1997-01-01

    A simple model of sphere packing has been investigated as an ideal model for long-range interactions for the packing of non-bonded residues in protein structures. By superposing all residues, the geometry of packing around a central residue is investigated. It is found that all residues conform almost perfectly to this lattice model for sphere packing when a radius of 6.5 A is used to define non-bonded (virtual) interacting residues. Side-chain positions with respect to sequential backbone segments are relatively regular as well. This lattice can readily be used in conformation simulations to reduce the conformational space. PMID:9336831

  13. Effects of Crop Residue on the Persistence of Steinernema carpocapsae

    PubMed Central

    Shapiro, David I.; Obrycki, John J.; Lewis, Leslie C.; Jackson, Jan J.

    1999-01-01

    We determined the effects of crop residue on the persistence of an entomopathogenic nematode, Steinernema carpocapsae. During 2 consecutive years, nematodes were applied at rates of 2.5 × 10₄ and 1.0 × 10⁵ infective juveniles/m² to small field plots planted with corn. Nematode persistence was monitored by exposing Galleria mellonella larvae to soil samples from plots with and without crop residue (approximately 75% coverage of soybean stubble). Persistence of S. carpocapsae was significantly greater in crop residue plots than in plots without residue. In crop residue plots that received the higher rate of nematode application, larval mortality did not significantly decrease during the study period (3 to 5 days) and remained above 85%. In nematode-treated plots without crop residue, however, larval mortality fell from over 96% to below 11% and 35% in the first and second trials, respectively. The increased crop residue may have benefited nematode persistence through protection from desiccation or ultraviolet light. We conclude that increased ground cover in cropping systems (e.g., due to reduced tillage) may lead to increased insect pest suppression with entomopathogenic nematodes. PMID:19270924

  14. Americium recovery from reduction residues

    DOEpatents

    Conner, W.V.; Proctor, S.G.

    1973-12-25

    A process for separation and recovery of americium values from container or bomb'' reduction residues comprising dissolving the residues in a suitable acid, adjusting the hydrogen ion concentration to a desired level by adding a base, precipitating the americium as americium oxalate by adding oxalic acid, digesting the solution, separating the precipitate, and thereafter calcining the americium oxalate precipitate to form americium oxide. (Official Gazette)

  15. Residual Resistance Data from Cavity Production Projects at Jefferson Lab

    SciTech Connect

    Gianluigi Ciovati, Rongli Geng, John Mammosser, Jeffrey Saunders

    2010-11-01

    A fundamental limitation towards achieving high quality factors in superconducting radio-frequency cavities is the so-called residual resistance. Understanding and controlling the residual resistance has important implications towards improving the efficiency and reduce the operating cost of continuous wave superconducting linear accelerators. In this contribution we will report on the residual resistance values obtained from measurements of the quality factor of a large set of cavities, with resonant frequency between 805 MHz and 1.5 GHz, all of them processed and tested at Jefferson Lab. Surface treatments included both buffered chemical polishing and electropolishing. The results indicate an approximate value of the residual resistance of about 7-10 n Omega.

  16. Process-dependent residual trapping of CO2 in sandstone

    NASA Astrophysics Data System (ADS)

    Zuo, Lin; Benson, Sally M.

    2014-04-01

    This paper demonstrates that the nature and extent of residual CO2 trapping depend on the process by which the CO2 phase is introduced into the rock. We compare residual trapping of CO2 in Berea Sandstone by imbibing water into a core containing either exsolved CO2 or CO2 introduced by drainage. X-ray computed tomography measurements are used to map the spatial distribution of CO2 preimbibition and postimbibition. Unlike during drainage where the CO2 distribution is strongly influenced by the heterogeneity of the rock, the distribution of exsolved CO2 is comparatively uniform. Postimbibition, the CO2 distribution retained the essential features for both the exsolved and drainage cases, but twice as much residual trapping is observed for exsolved CO2 even with similar preimbibition gas saturations. Residually trapped exsolved gas also disproportionately reduced water relative permeability. Development of process-dependent parameterization will help better manage subsurface flow processes and unlock benefits from gas exsolution.

  17. Residual stress measurements of tension leg platform tendon welds

    SciTech Connect

    Kim, D.S.; Smith, J.D.

    1994-12-31

    Results of fatigue test of prototype welded tendons showed that fatigue life was greatly reduced for the weld repaired joint. Since tensile residual stresses near the fusion boundary were suspected to cause the fatigue life reduction, these residual stresses were measured. Residual stresses of girth welded tendon pipes for a tension leg platform (TLP) were obtained for various fabrication conditions. The stresses were measured experimentally using the blind hole drilling (BHD) technique, X-ray diffraction (XRD) technique and Barkhausen Noise (BHN) method. The results of these measurements illustrate the reliability of each measurement technique. Effects of joint configuration, weld repair, weld cap grinding, and pre-fatigue test on residual stresses were discussed.

  18. DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES

    SciTech Connect

    Kyser, E

    2009-01-12

    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  19. Residual stresses in welded plates

    NASA Technical Reports Server (NTRS)

    Bernstein, Edward L.

    1994-01-01

    The purpose of this project was to develop a simple model which could be used to study residual stress. The mechanism that results in residual stresses in the welding process starts with the deposition of molten weld metal which heats the immediately adjacent material. After solidification of weld material, normal thermal shrinkage is resisted by the adjacent, cooler material. When the thermal strain exceeds the elastic strain corresponding to the yield point stress, the stress level is limited by this value, which decreases with increasing temperature. Cooling then causes elastic unloading which is restrained by the adjoining material. Permanent plastic strain occurs, and tension is caused in the region immediately adjacent to the weld material. Compression arises in the metal farther from the weld in order to maintain overall static equilibrium. Subsequent repair welds may add to the level of residual stresses. The level of residual stress is related to the onset of fracture during welding. Thus, it is of great importance to be able to predict the level of residual stresses remaining after a weld procedure, and to determine the factors, such as weld speed, temperature, direction, and number of passes, which may affect the magnitude of remaining residual stress. It was hoped to use traditional analytical modeling techniques so that it would be easier to comprehend the effect of these variables on the resulting stress. This approach was chosen in place of finite element methods so as to facilitate the understanding of the physical processes. The accuracy of the results was checked with some existing experimental studies giving residual stress levels found from x-ray diffraction measurements.

  20. Residual deformations in ocular tissues

    PubMed Central

    Wang, Ruoya; Raykin, Julia; Gleason, Rudolph L.; Ethier, C. Ross

    2015-01-01

    Residual deformations strongly influence the local biomechanical environment in a number of connective tissues. The sclera is known to be biomechanically important in healthy and diseased eyes, such as in glaucoma. Here, we study the residual deformations of the sclera, as well as the adjacent choroid and retina. Using freshly harvested porcine eyes, we developed two approaches of quantifying residual deformations in the spherically shaped tissues of interest. The first consisted of punching discs from the posterior wall of the eye and quantifying the changes in the area and eccentricity of these samples. The second consisted of cutting a ring from the equatorial sclera and making stress-relieving cuts in it. Measurements of curvature were made before and after the stress-relieving cuts. Using the first approach, we observed a 42% areal contraction of the choroid, but only modest contractions of the sclera and retina. The observed contractions were asymmetric. In the second approach, we observed an opening of the scleral rings (approx. 10% decrease in curvature). We conclude that residual bending deformations are present in the sclera, which we speculate may be due to radially heterogeneous growth and remodelling of the tissue during normal development. Further, residual areal deformations present in the choroid may be due to the network of elastic fibres in this tissue and residual deformations in the constituent vascular bed. Future studies of ocular biomechanics should attempt to include effects of these residual deformations into mechanical models in order to gain a better understanding of the biomechanics of the ocular wall. PMID:25740853

  1. Field emitter based extractor gauges and residual gas analyzers

    SciTech Connect

    Changkun Dong; G. Rao Myneni

    1999-04-01

    Attempts at using the Spindt-type molybdenum field emitter arrays in the extractor gauges and a residual gas analyzer are presented in this article. The sensitivity of the fuel emitter gauge is as high as 11 Torr{sup -1}. The departure from linearity of the pressure versus ion current measurements did not exceed 10% over the pressure range of 10{sup -10} - 10{sup -6} Torr. Stable sensitivities for nitrogen, helium, and hydrogen were achieved below 10{sup -7} Torr with the field emitter residual gas analyzer. The slightly reduced emission current and sensitivity, after long-term operation, are of concern and need to be addressed. Residual gas spectra indicate that when using field emitters, the electron stimulated desorption ions (O{sup +}, F{sup +}, and Cl{sup +}) are reduced as compared to those made using a hot filament source.

  2. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  3. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented. PMID:11541570

  4. Dry fermentation of agricultural residues

    NASA Astrophysics Data System (ADS)

    Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.

    1981-09-01

    A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).

  5. Sampling protocols for the detection of smokeless powder residues using capillary electrophoresis.

    PubMed

    MacCrehan, W A; Smith, K D; Rowe, W F

    1998-01-01

    Present techniques for the detection of gunshot residue rely primarily metallic primer components such as lead, barium and antimony. With the advent of reformulated primers that reduce or eliminate these elements, new methods for the detection of organic residue compounds will be needed. Micellar electrokinetic capillary electrophoresis (MECE) is one technique that has been successfully applied to the analysis of these smokeless powder residue compounds. Protocols for the recovery of the organic residue components under a variety of sampling conditions were evaluated and improved for MECE analysis. The collection of residue samples where external contaminants such as grease or blood were present on the residue substrate were investigated using both tape lifts and solvent swab protocols. In addition, residue component recovery using supercritical fluid extraction techniques was preliminarily evaluated for samples contaminated with blood. PMID:9456532

  6. Total radioactive residues and residues of [36Cl]chlorate in market size broilers.

    PubMed

    Smith, David J; Byrd, James A; Anderson, Robin C

    2007-07-11

    The oral administration of chlorate salts reduces the numbers of Gram-negative pathogens in gastrointestinal tracts of live food animals. Although the efficacy of chlorate salts has been demonstrated repeatedly, the technology cannot be introduced into commercial settings without first demonstrating that chlorate residues, and metabolites of chlorate remaining in edible tissues, represent a negligible risk to consumers. Typically, a first step in this risk assessment is to quantify the parent compound and to identify metabolites remaining in edible tissues of animals treated with the experimental compound. The objectives of this study were to determine the pathway(s) of chlorate metabolism in market broilers and to determine the magnitude of chlorate residues remaining in edible tissues. To this end, 12 broilers (6 weeks; 2.70+/-0.34 kg) were randomly assigned to three treatments of 7.4, 15.0, and 22.5 mM sodium [36Cl]chlorate dissolved in drinking water (n=4 broilers per treatment). Exposure to chlorate, dissolved in drinking water, occurred at 0 and 24 h (250 mL per exposure), feed was withdrawn at hour 38, water was removed at hour 48, and birds were slaughtered at hour 54 (16 h after feed removal and 8 h after water removal). The radioactivity was rapidly eliminated in excreta with 69-78% of the total administered radioactivity being excreted by slaughter. Total radioactive residues were proportional to dose in all edible tissues with chloride ion comprising greater than 98.5% of the radioactive residue for the tissue (9.4-97.8 ppm chlorate equivalents). Chlorate residues were typically greatest in the skin (0.33-0.82 ppm), gizzard (0.1-0.137 ppm), and dark muscle (0.05-0.14 ppm). Adipose, liver, and white muscle tissue contained chlorate concentrations from 0.03 to 0.13 ppm. In contrast, chlorate concentrations in excreta eliminated during the 6 h period prior to slaughter ranged from 53 to 71 ppm. Collectively, these data indicate that broilers rapidly

  7. Chemistry of combined residual chlorination

    SciTech Connect

    Leao, S.F.; Selleck, R.E.

    1982-01-01

    The decay of the combined chlorine residual was investigated in this work. Recent concerns about the formation of undesirable compounds such as chloroform with free residual chlorination have focused attention on the alternative use of combined residual chlorination. This work investigates the applicability of reactions proposed to describe the transformations and decay of the combined residual with time. Sodium hypochlorite was added to buffered solutions of ammonia with the chlorine residual being monitored over periods extending up to 10 days. The reaction was studied at four initial concentrations of hypochlorite of 100, 50, 25 and 10 mg/L as Cl/sub 2/ with molar application ratios of chlorine to ammonia, defined herein as M ratios, of 0.90, 0.50, 0.25 and 0.05 at each hypochlorite dose. Sixty-eight experiments were conducted at the pH of 6.6 and 7.2. The conclusions are: (1) in the absence of free chlorine, the concentration of NH/sub 3/ does not seem to affect the rate of disappearance of the residual other than through the formation of NHCl/sub 2/ by NH/sub 2/Cl hydrolysis; (2) the reaction between NHCl/sub 2/ and NH/sub 4//sup +/ to form NH/sub 2/Cl is either much slower than reported by Gray et. al. or the mechanism is different with a rate limiting step not involving NH/sub 3/ or NH/sub 4//sup +/; (3) a redox reaction in addition to the first-order decomposition of NHCl/sub 2/ appears necessary. Model simulation results indicated that a reaction of the type NH/sub 2/Cl + NHCl/sub 2/ ..-->.. P added to the first-order NHCl/sub 2/ decomposition can explain the results observed except at the higher chlorine doses.

  8. Sugarcane postharvest residue management in a temperate climate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Full retention of sugarcane (interspecific hybrids of Saccharum spp.) post-harvest residue often reduces subsequent ratoon crop yields in Louisiana. Experiments were conducted to determine the effects of different removal methods and removal timings on sugarcane growth and yield and to determine if...

  9. CHARACTERIZING PESTICIDE RESIDUE TRANSFER EFFICIENCIES USING FLUORESCENT TRACER IMAGING TECHNIQUES

    EPA Science Inventory

    To reduce the uncertainty associated with current estimates of children's exposure to pesticides by dermal contact and non-dietary ingestion, residue transfer data are required. Prior to conducting exhaustive studies, a screening study was conducted to identify the important pa...

  10. Estimating Crop Residue Distribution Using Airborne and Satellite Remote Sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue management and reduced tillage are commonly accepted best management practices that improve soil quality through the sequestration of soil organic carbon. A major goal of this study was to evaluate remote sensing data for rapid quantification of conservation tillage at the field and wa...