Sample records for reduces radiation exposure

  1. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Cancer.gov

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  2. Personalized technologist dose audit feedback for reducing patient radiation exposure from CT.

    PubMed

    Miglioretti, Diana L; Zhang, Yue; Johnson, Eric; Lee, Choonsik; Morin, Richard L; Vanneman, Nicholas; Smith-Bindman, Rebecca

    2014-03-01

    The aim of this study was to determine whether providing radiologic technologists with audit feedback on doses from CT examinations they conduct and education on dose-reduction strategies reduces patients' radiation exposure. This prospective, controlled pilot study was conducted within an integrated health care system from November 2010 to October 2011. Ten technologists at 2 facilities received personalized dose audit reports and education on dose-reduction strategies; 9 technologists at a control facility received no intervention. Radiation exposure was measured by the dose-length product (DLP) from CT scans performed before (n = 1,630) and after (n = 1,499) the intervention and compared using quantile regression. Technologists were surveyed before and after the intervention. For abdominal CT, DLPs decreased by 3% to 12% at intervention facilities but not at the control facility. For brain CT, DLPs significantly decreased by 7% to 12% at one intervention facility; did not change at the second intervention facility, which had the lowest preintervention DLPs; and increased at the control facility. Technologists were more likely to report always thinking about radiation exposure and associated cancer risk and optimizing settings to reduce exposure after the intervention. Personalized audit feedback and education can change technologists' attitudes about, and awareness of, radiation and can lower patient radiation exposure from CT imaging. Copyright © 2014 American College of Radiology. All rights reserved.

  3. 75 FR 8375 - Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... radiologic technologists or technologists in other specialties as well as physicians in all medical...] Device Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging; Public Meeting... Improvements to Reduce Unnecessary Radiation Exposure From Medical Imaging.'' The purpose of this meeting is to...

  4. Radiation safety protocol using real-time dose reporting reduces patient exposure in pediatric electrophysiology procedures.

    PubMed

    Patel, Akash R; Ganley, Jamie; Zhu, Xiaowei; Rome, Jonathan J; Shah, Maully; Glatz, Andrew C

    2014-10-01

    Radiation exposure during pediatric catheterization is significant. We sought to describe radiation exposure and the effectiveness of radiation safety protocols in reducing exposure during catheter ablations with electrophysiology studies in children and patients with congenital heart disease. We additionally sought to identify at-risk patients. We retrospectively reviewed all interventional electrophysiology procedures performed from April 2009 to September 2011 (6 months preceding intervention, 12 months following implementation of initial radiation safety protocol, and 8 months following implementation of modified protocol). The protocols consisted of low pulse rate fluoroscopy settings, operator notification of skin entrance dose every 1,000 mGy, adjusting cameras by >5 at every 1,000 mGy, and appropriate collimation. The cohort consisted of 291 patients (70 pre-intervention, 137 after initial protocol implementation, 84 after modified protocol implementation) at a median age of 14.9 years with congenital heart disease present in 11 %. Diagnoses included atrioventricular nodal reentrant tachycardia (25 %), atrioventricular reentrant tachycardia (61 %), atrial tachycardias (12 %), and ventricular tachycardia (2 %). There were no differences between groups based on patient, arrhythmia, and procedural characteristics. Following implementation of the protocols, there were significant reductions in all measures of radiation exposure: fluoroscopy time (17.8 %), dose area product (80.2 %), skin entry dose (81.0 %), and effective dose (76.9 %), p = 0.0001. Independent predictors of increased radiation exposure included larger patient weight, longer fluoroscopy time, and lack of radiation safety protocol. Implementation of a radiation safety protocol for pediatric and congenital catheter ablations can drastically reduce radiation exposure to patients without affecting procedural success.

  5. A novel radiation protection drape reduces radiation exposure during fluoroscopy guided electrophysiology procedures.

    PubMed

    Germano, Joseph J; Day, Gina; Gregorious, David; Natarajan, Venkataraman; Cohen, Todd

    2005-09-01

    The purpose of this study was to evaluate a novel disposable lead-free radiation protection drape for decreasing radiation scatter during electrophysiology procedures. In recent years, there has been an exponential increase in the number of electrophysiology (EP) procedures exposing patients, operators and laboratory staff to higher radiation doses. The RADPAD was positioned slightly lateral to the incision site for pectoral device implants and superior to the femoral vein during electrophysiology studies. Each patient served as their own control and dosimetric measurements were obtained at the examiner's elbow and hand. Radiation badge readings for the operator were obtained three months prior to RADPAD use and three months after introduction. Radiation dosimetry was obtained in twenty patients: 7 electrophysiology studies, 6 pacemakers, 5 catheter ablations, and 2 implantable cardioverter-defibrillators. Eleven women and nine men with a mean age of 63 +/- 4 years had an average fluoroscopy time of 2.5 +/- 0.42 minutes per case. Mean dosimetric measurements at the hand were reduced from 141.38 +/- 24.67 to 48.63 +/- 9.02 milliroentgen (mR) per hour using the protective drape (63% reduction; p < 0.0001). Measurements at the elbow were reduced from 78.78 +/- 7.95 mR per hour to 34.50 +/- 4.18 mR per hour using the drape (55% reduction; p < 0.0001). Badge readings for three months prior to drape introduction averaged 2.45 mR per procedure versus 1.54 mR per procedure for 3 months post-initiation (37% reduction). The use of a novel radiation protection surgical drape can significantly reduce scatter radiation exposure to staff and operators during a variety of EP procedures.

  6. Effectiveness of Fluorography versus Cineangiography at Reducing Radiation Exposure During Diagnostic Coronary Angiography

    PubMed Central

    Shah, Binita; Mai, Xingchen; Tummala, Lakshmi; Kliger, Chad; Bangalore, Sripal; Miller, Louis H.; Sedlis, Steven P.; Feit, Frederick; Liou, Michael; Attubato, Michael; Coppola, John; Slater, James

    2014-01-01

    Coronary angiography is the gold standard for defining obstructive coronary disease. However, radiation exposure remains an unwanted hazard. Patients referred for coronary angiography with abdominal circumference <45 inches and glomerular filtration rate >60mL/min were randomized to the Fluorography (n=25) or Cineangiography (n=25) group. Patients in the Fluorography group underwent coronary angiography using retrospectively-stored fluorography with repeat injection under cineangiography only when needed for better resolution per operator’s discretion. Patients in the Cineangiography group underwent coronary angiography using routine cineangiography. The primary endpoint was patient radiation exposure measured by radiochromic film. Secondary endpoints included the radiation output measurement of kerma-area product (KAP) and air kerma at the interventional reference point (Ka,r), and operator radiation exposure measured by dosimeter. Patient radiation exposure (158.2mGy [76.5–210.2] vs 272.5mGy [163.3–314.0], p=0.001), KAP (1323μGy m2 [826–1765] vs 3451μGy m2 [2464–4818], p<0.001), and Ka,r (175 mGy [112–252] vs 558 mGy [313–621], p<0.001)was significantly lower in the Fluorography compared with Cineangiography group (42%, 62%, and 69% relative reduction, respectively). Operator radiation exposure trended in the same direction though statistically non-significant (Fluorography 2.35 μGy [1.24–6.30] vs Cineangiography 5.03μGy [2.48–7.80], p=0.059). In conclusion, the use of fluorography in a select group of patients during coronary angiography with repeat injection under cineangiography only when needed was efficacious at reducing patient radiation exposure. PMID:24513469

  7. Minimizing radiation exposure during percutaneous nephrolithotomy.

    PubMed

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  8. Reduced growth of soybean seedlings after exposure to weak microwave radiation from GSM 900 mobile phone and base station.

    PubMed

    Halgamuge, Malka N; Yak, See Kye; Eberhardt, Jacob L

    2015-02-01

    The aim of this work was to study possible effects of environmental radiation pollution on plants. The association between cellular telephone (short duration, higher amplitude) and base station (long duration, very low amplitude) radiation exposure and the growth rate of soybean (Glycine max) seedlings was investigated. Soybean seedlings, pre-grown for 4 days, were exposed in a gigahertz transverse electromagnetic cell for 2 h to global system for mobile communication (GSM) mobile phone pulsed radiation or continuous wave (CW) radiation at 900 MHz with amplitudes of 5.7 and 41 V m(-1) , and outgrowth was studied one week after exposure. The exposure to higher amplitude (41 V m(-1)) GSM radiation resulted in diminished outgrowth of the epicotyl. The exposure to lower amplitude (5.7 V m(-1)) GSM radiation did not influence outgrowth of epicotyl, hypocotyls, or roots. The exposure to higher amplitude CW radiation resulted in reduced outgrowth of the roots whereas lower CW exposure resulted in a reduced outgrowth of the hypocotyl. Soybean seedlings were also exposed for 5 days to an extremely low level of radiation (GSM 900 MHz, 0.56 V m(-1)) and outgrowth was studied 2 days later. Growth of epicotyl and hypocotyl was found to be reduced, whereas the outgrowth of roots was stimulated. Our findings indicate that the observed effects were significantly dependent on field strength as well as amplitude modulation of the applied field. © 2015 Wiley Periodicals, Inc.

  9. Digital methods for reducing radiation exposure during medical fluoroscopy

    NASA Astrophysics Data System (ADS)

    Edmonds, Ernest W.; Rowlands, John A.; Hynes, David M.; Toth, B. D.; Porter, Anthony J.

    1990-07-01

    There is increased concern over radiation exposure to the general population from many sources. One of the most significant sources is that received by the patient during medical diagnostic procedures, and of these, the procedure with the greatest potential hazard is fluoroscopy. The legal limit for fluoroscopy in most jurisdictions is SR per minute skin exposure rate. Fluoroscopes are often operated in excess of this figure, and in the case of interventional procedures, fluorocopy times may exceed 20 minutes. With improvements in medical technology these procedures are being performed more often, and also are being carried out on younger age groups. Radiation exposure during fluoroscopy, both to patient and operator, is therefore becoming a matter of increasing concern to regulating authorities, and it is incumbent on us to develop digital technology to minimise the radiation hazard in these procedures. This paper explores the technical options available for radiation exposure reduction, including pulsed fluoroscopy, digital noise reduction, or simple reduction in exposure rate to the x-ray image intensifier. We also discuss educational aspects of fluoroscopy which radiologists should be aware of which can be more important than the technological solutions. A "work in progress" report gives a completely new approach to the implementation of a large number of possible digital algorithms, for the investigation of clinical efficacy.

  10. Interventions to prevent skin cancer by reducing exposure to ultraviolet radiation: a systematic review.

    PubMed

    Saraiya, Mona; Glanz, Karen; Briss, Peter A; Nichols, Phyllis; White, Cornelia; Das, Debjani; Smith, S Jay; Tannor, Bernice; Hutchinson, Angela B; Wilson, Katherine M; Gandhi, Nisha; Lee, Nancy C; Rimer, Barbara; Coates, Ralph C; Kerner, Jon F; Hiatt, Robert A; Buffler, Patricia; Rochester, Phyllis

    2004-12-01

    The relationship between skin cancer and ultraviolet radiation is well established. Behaviors such as seeking shade, avoiding sun exposure during peak hours of radiation, wearing protective clothing, or some combination of these behaviors can provide protection. Sunscreen use alone is not considered an adequate protection against ultraviolet radiation. This report presents the results of systematic reviews of effectiveness, applicability, other harms or benefits, economic evaluations, and barriers to use of selected interventions to prevent skin cancer by reducing exposure to ultraviolet radiation. The Task Force on Community Preventive Services found that education and policy approaches to increasing sun-protective behaviors were effective when implemented in primary schools and in recreational or tourism settings, but found insufficient evidence to determine effectiveness when implemented in other settings, such as child care centers, secondary schools and colleges, and occupational settings. They also found insufficient evidence to determine the effectiveness of interventions oriented to healthcare settings and providers, media campaigns alone, interventions oriented to parents or caregivers of children, and community-wide multicomponent interventions. The report also provides suggestions for areas for future research.

  11. Evaluation of an initiative to reduce radiation exposure from CT to children in a non-pediatric-focused facility.

    PubMed

    Blumfield, Einat; Zember, Jonathan; Guelfguat, Mark; Blumfield, Amit; Goldman, Harold

    2015-12-01

    We would like to share our experience of reducing pediatric radiation exposure. Much of the recent literature regarding successes of reducing radiation exposure has come from dedicated children's hospitals. Nonetheless, over the past two decades, there has been a considerable increase in CT imaging of children in the USA, predominantly in non-pediatric-focused facilities where the majority of children are treated. In our institution, two general hospitals with limited pediatric services, a dedicated initiative intended to reduce children's exposure to CT radiation was started by pediatric radiologists in 2005. The initiative addressed multiple issues including eliminating multiphase studies, decreasing inappropriate scans, educating referring providers, training residents and technologists, replacing CT with ultrasound or MRI, and ensuring availability of pediatric radiologists for consultation. During the study period, the total number of CT scans decreased by 24 %. When accounting for the number of scans per visit to the emergency department (ED), the numbers of abdominal and head CT scans decreased by 37.2 and 35.2 %, respectively. For abdominal scans, the average number of phases per scan decreased from 1.70 to 1.04. Upon surveying the pediatric ED staff, it was revealed that the most influential factors on ordering of scans were daily communication with pediatric radiologists, followed by journal articles and lectures by pediatric radiologists. We concluded that a non-pediatric-focused facility can achieve dramatic reduction in CT radiation exposure to children; however, this is most effectively achieved through a dedicated, multidisciplinary process led by pediatric radiologists.

  12. Orally administered fructose increases the numbers of peripheral lymphocytes reduced by exposure of mice to gamma or SPE-like proton radiation

    NASA Astrophysics Data System (ADS)

    Romero-Weaver, A. L.; Ni, J.; Lin, L.; Kennedy, A. R.

    2014-07-01

    Exposure of the whole body or a major portion of the body to ionizing radiation can result in Acute Radiation Sickness (ARS), which can cause symptoms that range from mild to severe, and include death. One of the syndromes that can occur during ARS is the hematopoietic syndrome, which is characterized by a reduction in bone marrow cells as well as the number of circulating blood cells. Doses capable of causing this syndrome can result from conventional radiation therapy and accidental exposure to ionizing radiation. It is of concern that this syndrome could also occur during space exploration class missions in which astronauts could be exposed to significant doses of solar particle event (SPE) radiation. Of particular concern is the reduction of lymphocytes and granulocytes, which are major components of the immune system. A significant reduction in their numbers can compromise the immune system, causing a higher risk for the development of infections which could jeopardize the success of the mission. Although there are no specific countermeasures utilized for the ARS resulting from exposure to space radiation(s), granulocyte colony-stimulating factor (G-CSF) has been proposed as a countermeasure for the low number of neutrophils caused by SPE radiation, but so far no countermeasure exists for a reduced number of circulating lymphocytes. The present study demonstrates that orally administered fructose significantly increases the number of peripheral lymphocytes reduced by exposure of mice to 2 Gy of gamma- or SPE-like proton radiation, making it a potential countermeasure for this biological end-point.

  13. Non-fluoroscopic navigation systems for radiofrequency catheter ablation for supraventricular tachycardia reduce ionising radiation exposure.

    PubMed

    See, Jason; Amora, Jonah L; Lee, Sheldon; Lim, Paul; Teo, Wee Siong; Tan, Boon Yew; Ho, Kah Leng; Lee, Chee Wan; Ching, Chi-Keong

    2016-07-01

    The use of non-fluoroscopic systems (NFS) to guide radiofrequency catheter ablation (RFCA) for the treatment of supraventricular tachycardia (SVT) is associated with lower radiation exposure. This study aimed to determine if NFS reduces fluoroscopy time, radiation dose and procedure time. We prospectively enrolled patients undergoing RFCA for SVT. NFS included EnSiteTM NavXTM or CARTO® mapping. We compared procedure and fluoroscopy times, and radiation exposure between NFS and conventional fluoroscopy (CF) cohorts. Procedural success, complications and one-year success rates were reported. A total of 200 patients over 27 months were included and RFCA was guided by NFS for 79 patients; those with atrioventricular nodal reentrant tachycardia (AVNRT), left-sided atrioventricular reentrant tachycardia (AVRT) and right-sided AVRT were included (n = 101, 63 and 36, respectively). Fluoroscopy times were significantly lower with NFS than with CF (10.8 ± 11.1 minutes vs. 32.0 ± 27.5 minutes; p < 0.001). The mean fluoroscopic dose area product was also significantly reduced with NFS (NSF: 5,382 ± 5,768 mGy*cm2 vs. CF: 21,070 ± 23,311 mGy*cm2; p < 0.001); for all SVT subtypes. There was no significant reduction in procedure time, except for left-sided AVRT ablation (NFS: 79.2 minutes vs. CF: 116.4 minutes; p = 0.001). Procedural success rates were comparable (NFS: 97.5% vs. CF: 98.3%) and at one-year follow-up, there was no significant difference in the recurrence rates (NFS: 5.2% vs. CF: 4.2%). No clinically significant complications were observed in both groups. The use of NFS for RFCA for SVT is safe, with significantly reduced radiation dose and fluoroscopy time. Copyright © Singapore Medical Association.

  14. Leaded eyeglasses substantially reduce radiation exposure of the surgeon's eyes during acquisition of typical fluoroscopic views of the hip and pelvis.

    PubMed

    Burns, Sean; Thornton, Raymond; Dauer, Lawrence T; Quinn, Brian; Miodownik, Daniel; Hak, David J

    2013-07-17

    Despite recommendations to do so, few orthopaedists wear leaded glasses when performing operative fluoroscopy. Radiation exposure to the ocular lens causes cataracts, and regulatory limits for maximum annual occupational exposure to the eye continue to be revised downward. Using anthropomorphic patient and surgeon phantoms, radiation dose at the surgeon phantom's lens was measured with and without leaded glasses during fluoroscopic acquisition of sixteen common pelvic and hip views. The magnitude of lens dose reduction from leaded glasses was calculated by dividing the unprotected dose by the dose measured behind leaded glasses. On average, the use of leaded glasses reduced radiation to the surgeon phantom's eye by tenfold, a 90% reduction in dose. However, there was widespread variation in the amount of radiation that reached the phantom surgeon's eye among the various radiographic projections we studied. Without leaded glasses, the dose measured at the surgeon's lens varied more than 250-fold among these sixteen different views. In addition to protecting the surgeon's eye from the deleterious effects of radiation, the use of leaded glasses could permit an orthopaedist to perform fluoroscopic views on up to ten times more patients before reaching the annual dose limit of 20 mSv of radiation to the eye recommended by the International Commission on Radiological Protection. Personal safety and adherence to limits of occupational radiation exposure should compel orthopaedists to wear leaded glasses for fluoroscopic procedures if other protective barriers are not in use. Leaded glasses are a powerful tool for reducing the orthopaedic surgeon's lens exposure to radiation during acquisition of common intraoperative fluoroscopic views.

  15. Overview of Radiation Environments and Human Exposures

    NASA Technical Reports Server (NTRS)

    Wilson, John W.

    2004-01-01

    Human exposures to ionizing radiation have been vastly altered by developing technology in the last century. This has been most obvious in the development of radiation generating devices and the utilization of nuclear energy. But even air travel has had its impact on human exposure. Human exposure increases with advancing aircraft technology as a result of the higher operating altitudes reducing the protective cover provided by the Earth s atmosphere from extraterrestrial radiations. This increase in operating altitudes is taken to a limit by human operations in space. Less obvious is the changing character of the radiations at higher altitudes. The associated health risks are less understood with increasing altitude due to the increasing complexity and new field components found in high altitude and space operations.

  16. Multicenter, randomized trial of quantitative pretest probability to reduce unnecessary medical radiation exposure in emergency department patients with chest pain and dyspnea.

    PubMed

    Kline, Jeffrey A; Jones, Alan E; Shapiro, Nathan I; Hernandez, Jackeline; Hogg, Melanie M; Troyer, Jennifer; Nelson, R Darrel

    2014-01-01

    Use of pretest probability can reduce unnecessary testing. We hypothesize that quantitative pretest probability, linked to evidence-based management strategies, can reduce unnecessary radiation exposure and cost in low-risk patients with symptoms suggestive of acute coronary syndrome and pulmonary embolism. This was a prospective, 4-center, randomized controlled trial of decision support effectiveness. Subjects were adults with chest pain and dyspnea, nondiagnostic ECGs, and no obvious diagnosis. The clinician provided data needed to compute pretest probabilities from a Web-based system. Clinicians randomized to the intervention group received the pretest probability estimates for both acute coronary syndrome and pulmonary embolism and suggested clinical actions designed to lower radiation exposure and cost. The control group received nothing. Patients were followed for 90 days. The primary outcome and sample size of 550 was predicated on a significant reduction in the proportion of healthy patients exposed to >5 mSv chest radiation. A total of 550 patients were randomized, and 541 had complete data. The proportion with >5 mSv to the chest and no significant cardiopulmonary diagnosis within 90 days was reduced from 33% to 25% (P=0.038). The intervention group had significantly lower median chest radiation exposure (0.06 versus 0.34 mSv; P=0.037, Mann-Whitney U test) and lower median costs ($934 versus $1275; P=0.018) for medical care. Adverse events occurred in 16% of controls and 11% in the intervention group (P=0.06). Provision of pretest probability and prescriptive advice reduced radiation exposure and cost of care in low-risk ambulatory patients with symptoms of acute coronary syndrome and pulmonary embolism. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01059500.

  17. Efficacy of RADPAD® protection drape in reducing radiation exposure to the primary operator during Transcatheter Aortic Valve Implantation (TAVI).

    PubMed

    Sharma, Divyesh; Ramsewak, Adesh; Manoharan, Ganesh; Spence, Mark S

    2016-02-01

    The efficacy of RADPAD® (a sterile, lead-free drape) has been demonstrated to reduce the scatter radiation to the primary operator during fluoroscopic procedures. However, the use of the RADPAD® during TAVI procedures has not been studied. Transcatheter aortic valve implantation (TAVI) is now an established treatment for patients with symptomatic severe aortic stenosis who are deemed inoperable or at high risk for conventional surgical aortic valve replacement (AVR). Consequently the radiation exposure to the patient and the interventional team from this procedure has become a matter of interest and importance. Methods to reduce radiation exposure to the interventional team during this procedure should be actively investigated. In this single center prospective study, we determined the radiation dose during this procedure and the efficacy of RADPAD® in reducing the radiation dose to the primary operator. Fifty consecutive patients due to undergo elective TAVI procedures were identified. Patients were randomly assigned to undergo the procedure with or without the use of a RADPAD® drape. There were 25 patients in each group and dosimetry was performed at the left eye level of the primary operator. The dosimeter was commenced at the start of the procedure, and the dose was recorded immediately after the end of the procedure. Fluoroscopy times and DAP were also recorded prospectively. Twenty-five patients underwent transfemoral TAVI using a RADPAD® and 25 with no-RADPAD®. The mean primary operator radiation dose was significantly lower in the RADPAD group at 14.8 mSv vs. 24.3 mSv in the no-RADPAD group (P=0.008). There was no significant difference in fluoroscopy times or dose-area products between the two patient groups. The dose to the primary operator relative to fluoroscopy time (RADPAD: slope=0.325; no RADPAD: slope=1.148; analysis of covariance F=7.47, P=0.009) and dose area product (RADPAD: slope=0.0007; no RADPAD: slope=0.002; analysis of covariance F=7

  18. Efficacy of the RADPAD Protection Drape in Reducing Operators' Radiation Exposure in the Catheterization Laboratory: A Sham-Controlled Randomized Trial.

    PubMed

    Vlastra, Wieneke; Delewi, Ronak; Sjauw, Krischan D; Beijk, Marcel A; Claessen, Bimmer E; Streekstra, Geert J; Bekker, Robbert J; van Hattum, Juliette C; Wykrzykowska, Joanna J; Vis, Marije M; Koch, Karel T; de Winter, Robbert J; Piek, Jan J; Henriques, José P S

    2017-11-01

    Interventional cardiologists are increasingly exposed to radiation-induced diseases like cataract and the stochastic risk of left-sided brain tumors. The RADPAD is a sterile, disposable, lead-free shield placed on the patient with the aim to minimize operator-received scatter radiation. The objective of the trial was to examine the RADPAD's efficacy in a real-world situation. In the current, double-blind, sham-controlled, all-comer trial, patients undergoing diagnostic catheterization or percutaneous coronary interventions were randomized in a 1:1:1 ratio to a radiation absorbing shield (RADPAD), standard treatment (NOPAD), or a sham shield (SHAMPAD). The sham shield allowed testing for shield-induced radiation behavior. The primary outcome was the difference in relative exposure of the primary operator between the RADPAD and NOPAD arms and was defined as the ratio between operator's exposure (E in µSv) and patient exposure (dose area product in mGy·cm 2 ), measured per procedure. A total of 766 consecutive coronary procedures were randomized to the use of RADPAD (N=255), NOPAD (N=255), or SHAMPAD (N=256). The use of RADPAD was associated with a 20% reduction in relative operator exposure compared with that of NOPAD ( P =0.01) and a 44% relative exposure reduction compared with the use of a SHAMPAD ( P <0.001). Use of the SHAMPAD was associated with a 43% higher relative radiation exposure than procedures with NOPAD ( P =0.009). In clinical daily practice, the standard use of the RADPAD radiation shield reduced operator radiation exposure compared with procedures with NOPAD or SHAMPAD. This study supports the routine use of RADPAD in the catheterization laboratory. URL: https://www.clinicaltrials.gov. Unique identifier: NCT03139968. © 2017 American Heart Association, Inc.

  19. Efforts to reduce exposure at Japanese PWRs: CVCS improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terada, Ryosuke

    1995-03-01

    Many reports have been focused on the reduction of radiation sources and related occupational exposures. The radiation sources mainly consist of corrosion products. Radiation dose rate is determined by the amount of the activated corrosion products on the surface of the primary loop components of Pressurized Water Reactor (PWR) plants. Therefore, reducing the amount of the corrosion product will contribute to the reduction of occupational exposures. In order to reduce the corrosion products, Chemical and Volume Control System (CVCS) has been improved in Japanese PWRs as follows: (a) Cation Bed Demineralizer Flowrate Control; (b) Hydrogen Peroxide Injection System; (c) Purificationmore » Flowrate During Plant Shutdown; (d) Fine Mesh Filters Upstream of Mixed Bed Demineralizers.« less

  20. Cosmic radiation exposure and persistent cognitive dysfunction

    PubMed Central

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  1. Cosmic radiation exposure and persistent cognitive dysfunction.

    PubMed

    Parihar, Vipan K; Allen, Barrett D; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K; Chmielewski, Nicole N; Giedzinski, Erich; Acharya, Munjal M; Britten, Richard A; Baulch, Janet E; Limoli, Charles L

    2016-10-10

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain.

  2. Radiation exposure in the moon environment

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Matthiae, Daniel

    2012-12-01

    During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the

  3. Improved intensifying screen reduces X-ray exposure

    NASA Technical Reports Server (NTRS)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  4. Radiation exposure from fluoroscopy during orthopedic surgical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, S.A.

    1989-11-01

    The use of fluoroscopy has enabled orthopedic surgeons to become technically more proficient. In addition, these surgical procedures tend to have less associated patient morbidity by decreasing operative time and minimizing the area of the operative field. The trade-off, however, may be an increased risk of radiation exposure to the surgeon on an annual or lifetime basis. The current study was designed to determine the amount of radiation received by the primary surgeon and the first assistant during selected surgical procedures involving the use of fluoroscopy. Five body sites exposed to radiation were monitored for dosage. The results of thismore » study indicate that with appropriate usage, (1) radiation exposure from fluoroscopy is relatively low; (2) the surgeon's dominant hand receives the most exposure per case; and (3) proper maintenance and calibration of fluoroscopic machines are important factors in reducing exposure risks. Therefore, with proper precautions, the use of fluoroscopy in orthopedic procedures can remain a safe practice.« less

  5. Control of excessive lead exposure in radiator repair workers.

    PubMed

    1991-03-01

    In 1988, 83 automotive repair workers with blood lead levels (BLLs) greater than 25 micrograms/dL were reported to state health departments in the seven states that collaborated with CDC's National Institute for Occupational Safety and Health (NIOSH) in maintaining registries of elevated BLLs in adults. In 18 (22%) of these 83 persons, BLLs were greater than 50 micrograms/dL. Among automotive repair workers for whom a job category was specified, radiator repair work was the principal source of lead exposure. The major sources of exposure for radiator repair workers are lead fumes generated during soldering and lead dust produced during radiator cleaning. This report summarizes current BLL surveillance data for radiator repair workers and describes three control technologies that are effective in reducing lead exposures in radiator repair shops.

  6. Decreasing radiation exposure on pediatric portable chest radiographs.

    PubMed

    Hawking, Nancy G; Sharp, Ted D

    2013-01-01

    To determine whether additional shielding designed for pediatric patients during portable chest exams that ascertain endotracheal tube placement would significantly decrease the amount of scatter radiation. Children aged 24 months or younger were intubated and received daily morning chest radiographs to determine endotracheal tube placement. For each measurement, the amount of scatter radiation decreased by more than 20% from a nonshielded exposure to a shielded exposure. There was a significant decrease in scatter radiation when using the lead shielding device along with appropriate collimation vs appropriate collimation alone. These results suggest that applying additional shielding to appropriately collimated chest radiographs could significantly reduce scatter radiation and therefore the overall dose to young children.

  7. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman, M.W.; Mak, H.K.; Lachman, R.S.

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  8. Radiation exposure reduction by use of Kevlar cassettes in the neonatal nursery.

    PubMed

    Herman, M W; Mak, H K; Lachman, R S

    1987-05-01

    A study was performed to determine whether the use of Kevlar cassettes in the neonatal intensive care nursery would reduce radiation exposure to patients. The radiation dose to the neonates was measured by using thermoluminescent dosimeters. In addition, the attenuation of the Kevlar cassettes and the sensitivity of the film-screen combination were compared with the previously used system. The greatest radiation reduction using a mobile X-ray unit was 27%; based on sensitivity measurements, the theoretical reduction averaged 38%. The reduction in radiation exposure resulted from reduced attenuation by the Kevlar cassette.

  9. Radiation exposure and radiation protection of the physician in iodine-131 Lipiodol therapy of liver tumours.

    PubMed

    Risse, J H; Ponath, C; Palmedo, H; Menzel, C; Grünwald, F; Biersack, H J

    2001-07-01

    Intra-arterial iodine-131 labelled Lipiodol therapy for liver cancer has been investigated for safety and efficacy over a number of years, but data on radiation exposure of personnel have remained unavailable to date. The aim of this study was to assess the radiation exposure of the physician during intra-arterial 131I-Lipiodol therapy for liver malignancies and to develop appropriate radiation protection measures and equipment. During 20 intra-arterial administrations of 131I-Lipiodol (1110-1924 MBq), radiation dose equivalents (RDE) to the whole body, fingers and eyes of the physician were determined for (a) conventional manual administration through a shielded syringe, (b) administration with an automatic injector and (c) administration with a lead container developed in-house. Administration by syringe resulted in a finger RDE of 19.5 mSv, an eye RDE of 130-140 microSv, and a whole-body RDE of 108-119 microSv. The injector reduced the finger RDE to 5 mSv. With both technique (a) and technique (b), contamination of angiography materials was observed. The container allowed safe transport and administration of the radiopharmaceutical from 4 m distance and reduced the finger RDE to <3 microSv and the eye RDE to <1 microSv during injection. During femoral artery compression, radiation exposure to the fingers reached 170 microSv, but the whole-body dose could be reduced from a mean RDE of 114 microSv to 14 microSv. No more contamination occurred. In conclusion, radiation exposure was high when 131I-Lipiodol was administered by syringe or injector, but was significantly reduced with the lead container.

  10. Digital radiography can reduce scoliosis x-ray exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.

    1990-09-01

    Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with allmore » anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.« less

  11. Epidemiology of accidental radiation exposures.

    PubMed Central

    Cardis, E

    1996-01-01

    Much of the information on the health effects of radiation exposure available to date comes from long-term studies of the atomic bombings in Hiroshima and Nagasaki. Accidental exposures, such as those resulting from the Chernobyl and Kyshtym accidents, have as yet provided little information concerning health effects of ionizing radiation. This paper will present the current state of our knowledge concerning radiation effects, review major large-scale accidental radiation exposures, and discuss information that could be obtained from studies of accidental exposures and the types of studies that are needed. PMID:8781398

  12. Evaluating strategies for reducing scattered radiation in fixed-imaging hybrid operating suites.

    PubMed

    Miller, Claire; Kendrick, Daniel; Shevitz, Andrew; Kim, Ann; Baele, Henry; Jordan, David; Kashyap, Vikram S

    2018-04-01

    High-resolution fixed C-arm fluoroscopic systems allow high-quality endovascular imaging but come at a cost of greater scatter radiation generation and increased occupational exposure for surgeons. The purpose of this study was to evaluate the efficacy of two methods in reducing scattered radiation exposure. There were 164 endovascular cases analyzed in three phases. In phase 1 (P1), baseline radiation exposure was calculated. In phase 2 (P2), staff used real-time radiation dose monitoring (dosimetry badges [RaySafe; Unfors, Hopkinton, Mass]). In phase 3 (P3), a software imaging algorithm was installed that reduced radiation (EcoDose software; Philips Healthcare, Best, The Netherlands). A total of 72 cases in P1, 34 cases in P2, and 58 cases in P3 were analyzed. Total mean dose-area product decreased across each phase, with statistical significance achieved for P1 vs P3 (mean ± standard error of the mean, 186,173 ± 16,754 mGy/cm 2 vs 121,536 ± 11,971 mGy/cm 2 ; P = .002) and P2 vs P3 (171,921 ± 26,276 mGy/cm 2 vs 121,536 ± 11,971 mGy/cm 2 ; P = .04), whereas total mean fluoroscopy time did not significantly differ across any phase. The radiation exposure to the primary operator did not change significantly from P1 to P2 but fell significantly in P3 (0.08 ± 0.02 mSv vs 0.03 ± 0.01 mSv; P = .02). The addition of dose reduction software had the most impact on endovascular aneurysm repair, with reductions in median room dose (P = .03) and primary operator exposure (P2 vs P3; 0.19 ± 0.04 mSv vs 0.03 ± 0.02 mSv; P < .01). Dose reduction software may be an effective technique to lower radiation exposure. Implementation of system-based strategies to reduce radiation is needed to reduce lifetime occupational radiation exposure for endovascular staff and to improve patient safety. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Health effects of prenatal radiation exposure.

    PubMed

    Williams, Pamela M; Fletcher, Stacy

    2010-09-01

    Pregnant women are at risk of exposure to nonionizing and ionizing radiation resulting from necessary medical procedures, workplace exposure, and diagnostic or therapeutic interventions before the pregnancy is known. Nonionizing radiation includes microwave, ultrasound, radio frequency, and electromagnetic waves. In utero exposure to nonionizing radiation is not associated with significant risks; therefore, ultrasonography is safe to perform during pregnancy. Ionizing radiation includes particles and electromagnetic radiation (e.g., gamma rays, x-rays). In utero exposure to ionizing radiation can be teratogenic, carcinogenic, or mutagenic. The effects are directly related to the level of exposure and stage of fetal development. The fetus is most susceptible to radiation during organogenesis (two to seven weeks after conception) and in the early fetal period (eight to 15 weeks after conception). Noncancer health effects have not been detected at any stage of gestation after exposure to ionizing radiation of less than 0.05 Gy (5 rad). Spontaneous abortion, growth restriction, and mental retardation may occur at higher exposure levels. The risk of cancer is increased regardless of the dose. When an exposure to ionizing radiation occurs, the total fetal radiation dose should be estimated and the mother counseled about the potential risks so that she can make informed decisions about her pregnancy management.

  14. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing.

    PubMed

    Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh

    2014-07-01

    To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.

  15. Radiation exposure from Chest CT: Issues and Strategies

    PubMed Central

    Maher, Michael M.; Rizzo, Stefania; Kanarek, David; Shephard, Jo-Anne O.

    2004-01-01

    Concerns have been raised over alleged overuse of CT scanning and inappropriate selection of scanning methods, all of which expose patients to unnecessary radiation. Thus, it is important to identify clinical situations in which techniques with lower radiation dose such as plain radiography or no radiation such as MRI and occasionally ultrasonography can be chosen over CT scanning. This article proposes the arguments for radiation dose reduction in CT scanning of the chest and discusses recommended practices and studies that address means of reducing radiation exposure associated with CT scanning of the chest. PMID:15082885

  16. Controlled Administration of Penicillamine Reduces Radiation Exposure in Critical Organs during 64Cu-ATSM Internal Radiotherapy: A Novel Strategy for Liver Protection

    PubMed Central

    Yoshii, Yukie; Matsumoto, Hiroki; Yoshimoto, Mitsuyoshi; Furukawa, Takako; Morokoshi, Yukie; Sogawa, Chizuru; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2014-01-01

    Purpose 64Cu-diacetyl-bis (N 4-methylthiosemicarbazone) (64Cu-ATSM) is a promising theranostic agent that targets hypoxic regions in tumors related to malignant characteristics. Its diagnostic usefulness has been recognized in clinical studies. Internal radiotherapy (IRT) with 64Cu-ATSM is reportedly effective in preclinical studies; however, for clinical applications, improvements to reduce radiation exposure in non-target organs, particularly the liver, are required. We developed a strategy to reduce radiation doses to critical organs while preserving tumor radiation doses by controlled administration of copper chelator penicillamine during 64Cu-ATSM IRT. Methods Biodistribution was evaluated in HT-29 tumor-bearing mice injected with 64Cu-ATSM (185 kBq) with or without oral penicillamine administration. The appropriate injection interval between 64Cu-ATSM and penicillamine was determined. Then, the optimal penicillamine administration schedule was selected from single (100, 300, and 500 mg/kg) and fractionated doses (100 mg/kg×3 at 1- or 2-h intervals from 1 h after 64Cu-ATSM injection). PET imaging was performed to confirm the effect of penicillamine with a therapeutic 64Cu-ATSM dose (37 MBq). Dosimetry analysis was performed to estimate human absorbed doses. Results Penicillamine reduced 64Cu accumulation in the liver and small intestine. Tumor uptake was not affected by penicillamine administration at 1 h after 64Cu-ATSM injection, when radioactivity was almost cleared from the blood and tumor uptake had plateaued. Of the single doses, 300 mg/kg was most effective. Fractionated administration at 2-h intervals further decreased liver accumulation at later time points. PET indicated that penicillamine acts similarly with the therapeutic 64Cu-ATSM dose. Dosimetry demonstrated that appropriately scheduled penicillamine administration reduced radiation doses to critical organs (liver, ovaries, and red marrow) below tolerance levels. Laxatives reduced radiation

  17. A Personal Experience Reducing Radiation Exposures: Protecting Family in Kiev during the First Two Weeks after Chernobyl

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremenko, Vitaly A.; Droppo, James G.

    2006-08-01

    The Chernobyl nuclear reactor accident occurred in 1986. The plume from the explosions and fires was highly radioactive and resulted in very high exposure levels in the surrounding regions. This paper describes how the people in Kiev, Ukraine, a city 90 miles (120 km) south of Chernobyl, and in particular one individual in that city, Professor Vitaly Eremenko, became aware of the threat before the official announcement and the steps he took to mitigate potential impacts to his immediate family. The combination of being informed and using available resources led to greatly reduced consequences for his family and, in particular,more » his newborn granddaughter. He notes how quickly word of some aspects of the hazard spread in the city and how other aspects appear to not have been understood. Although these events are being recalled as the 20th anniversary of the terrible event approaches, the lessons are still pertinent today. Threats of possible terrorist use of radiation dispersal devices makes knowledge of effective individual actions for self-protection from radiation exposures a topic of current interest.« less

  18. DOE 2011 occupational radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protectionmore » of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.« less

  19. Lead exposure in radiator repair workers: a survey of Washington State radiator repair shops and review of occupational lead exposure registry data.

    PubMed

    Whittaker, Stephen G

    2003-07-01

    Radiator repair workers in Washington State have the greatest number of very elevated (> or =60 microg/dL) blood lead levels of any other worker population. The goals of this study were to determine the number of radiator repair workers potentially exposed to lead; estimate the extent of blood lead data underreporting to the Occupational Lead Exposure Registry; describe current safety and health practices in radiator repair shops; and determine appropriate intervention strategies to reduce exposure and increase employer and worker awareness. Lead exposure in Washington State's radiator repair workers was assessed by reviewing Registry data and conducting a statewide survey of radiator repair businesses. This study revealed that a total of 226 workers in Washington State (including owner-operators and all employees) conduct repair activities that could potentially result in excessive exposures to lead. Approximately 26% of radiator repair workers with elevated blood lead levels (> or =25 microg/dL) were determined to report to Washington State's Registry. This study also revealed a lack of awareness of lead's health effects, appropriate industrial hygiene controls, and the requirements of the Lead Standard. Survey respondents requested information on a variety of workplace health and safety issues and waste management; 80% requested a confidential, free-of-charge consultation. Combining data derived from an occupational health surveillance system and a statewide mail survey proved effective at characterizing lead exposures and directing public health intervention in Washington State.

  20. Simple methods to reduce patient exposure during scoliosis radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, P.F.; Thomas, A.W.; Thompson, W.E.

    1986-05-01

    Radiation exposure to the breasts of adolescent females can be reduced significantly through the use of one or all of the following methods: fast, rare-earth screen-film combinations; specially designed compensating filters; and breast shielding. The importance of exposure reduction during scoliosis radiography as well as further details on the above described methods are discussed. In addition, the early results of a Center for Devices and Radiological Health study, which recorded exposure and technique data for scoliosis radiography, is presented.

  1. Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation.

    PubMed

    Mendelsohn, Daniel; Strelzow, Jason; Dea, Nicolas; Ford, Nancy L; Batke, Juliet; Pennington, Andrew; Yang, Kaiyun; Ailon, Tamir; Boyd, Michael; Dvorak, Marcel; Kwon, Brian; Paquette, Scott; Fisher, Charles; Street, John

    2016-03-01

    exposure to the patient was 5.69 mSv, a value less than a single routine lumbar CT scan (7.5 mSv). The average radiation exposure to the patient in the present study was approximately one quarter the recommended annual occupational radiation exposure. Navigation did not reduce the number of postoperative X-rays or CT scans obtained. Intraoperative CT navigation increases the radiation exposure to the patient and reduces the radiation exposure to the surgeon when compared with values reported in the literature. Intraoperative CT navigation improves the accuracy of spine instrumentation with acceptable patient radiation exposure and reduced surgical team exposure. Surgeons should be aware of the implications of radiation exposure to both the patient and the surgical team when using intraoperative CT navigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Cancer risks after radiation exposure in middle age.

    PubMed

    Shuryak, Igor; Sachs, Rainer K; Brenner, David J

    2010-11-03

    Epidemiological data show that radiation exposure during childhood is associated with larger cancer risks compared with exposure at older ages. For exposures in adulthood, however, the relative risks of radiation-induced cancer in Japanese atomic bomb survivors generally do not decrease monotonically with increasing age of adult exposure. These observations are inconsistent with most standard models of radiation-induced cancer, which predict that relative risks decrease monotonically with increasing age at exposure, at all ages. We analyzed observed cancer risk patterns as a function of age at exposure in Japanese atomic bomb survivors by using a biologically based quantitative model of radiation carcinogenesis that incorporates both radiation induction of premalignant cells (initiation) and radiation-induced promotion of premalignant damage. This approach emphasizes the kinetics of radiation-induced initiation and promotion, and tracks the yields of premalignant cells before, during, shortly after, and long after radiation exposure. Radiation risks after exposure in younger individuals are dominated by initiation processes, whereas radiation risks after exposure at later ages are more influenced by promotion of preexisting premalignant cells. Thus, the cancer site-dependent balance between initiation and promotion determines the dependence of cancer risk on age at radiation exposure. For example, in terms of radiation induction of premalignant cells, a quantitative measure of the relative contribution of initiation vs promotion is 10-fold larger for breast cancer than for lung cancer. Reflecting this difference, radiation-induced breast cancer risks decrease with age at exposure at all ages, whereas radiation-induced lung cancer risks do not. For radiation exposure in middle age, most radiation-induced cancer risks do not, as often assumed, decrease with increasing age at exposure. This observation suggests that promotional processes in radiation carcinogenesis

  3. DNA Topoisomerase IB as a Potential Ionizing Radiation Exposure and Dose Biomarker.

    PubMed

    Daudee, Rotem; Gonen, Rafi; German, Uzi; Orion, Itzhak; Alfassi, Zeev B; Priel, Esther

    2018-06-01

    In radiation exposure scenarios where physical dosimetry is absent or inefficient, dose estimation must rely on biological markers. A reliable biomarker is of utmost importance in correlating biological system changes with radiation exposure. Human DNA topoisomerase ІB (topo І) is a ubiquitous nuclear enzyme, which is involved in essential cellular processes, including transcription, DNA replication and DNA repair, and is the target of anti-cancer drugs. It has been shown that the cellular activity of this enzyme is significantly sensitive to various DNA lesions, including radiation-induced DNA damages. Therefore, we investigated the potential of topo I as a biomarker of radiation exposure and dose. We examined the effect of exposure of different human cells to beta, X-ray and gamma radiation on the cellular catalytic activity of topo I. The results demonstrate a significant reduction in the DNA relaxation activity of topo I after irradiation and the level of the reduction was correlated with radiation dose. In normal human peripheral blood lymphocytes, exposure for 3 h to an integral dose of 0.065 mGy from tritium reduced the enzyme activity to less than 25%. In MG-63 osteoblast-like cells and in human pulmonary fibroblast (HPF) cells exposed to gamma radiation from a 60 Co source (up to 2 Gy) or to X rays (up to 2.8 Gy), a significant decrease in topo I catalytic activity was also observed. We observed that the enzyme-protein level was not altered but was partially posttranslational modified by ADP-ribosylation of the enzyme protein that is known to reduce topo I activity. The results of this study suggest that the decrease in the cellular topo I catalytic activity after low-dose exposure to different radiation types may be considered as a novel biomarker of ionizing radiation exposure and dose. For this purpose, a suitable ELISA-based method for large-scale analysis of radiation-induced topo I modification is under development.

  4. Factors associated with reduced radiation exposure, cost, and technical difficulty of inferior vena cava filter placement and retrieval.

    PubMed

    Neill, Matthew; Charles, Hearns W; Pflager, Daniel; Deipolyi, Amy R

    2017-01-01

    We sought to delineate factors of inferior vena cava filter placement associated with increased radiation and cost and difficult subsequent retrieval. In total, 299 procedures from August 2013 to December 2014, 252 in a fluoroscopy suite (FS) and 47 in the operating room (OR), were reviewed for radiation exposure, fluoroscopy time, filter type, and angulation. The number of retrieval devices and fluoroscopy time needed for retrieval were assessed. Multiple linear regression assessed the impact of filter type, procedure location, and patient and procedural variables on radiation dose, fluoroscopy time, and filter angulation. Logistic regression assessed the impact of filter angulation, type, and filtration duration on retrieval difficulty. Access site and filter type had no impact on radiation exposure. However, placement in the OR, compared to the FS, entailed more radiation (156.3 vs 71.4 mGy; P = 0.001), fluoroscopy time (6.1 vs 2.8 min; P < 0.001), and filter angulation (4.8° vs 2.6°; P < 0.001). Angulation was primarily dependent on filter type ( P = 0.02), with VenaTech and Denali filters associated with decreased angulation (2.2°, 2.4°) and Option filters associated with greater angulation (4.2°). Filter angulation, but not filter type or filtration duration, predicted cases requiring >1 retrieval device ( P < 0.001) and >30 min fluoroscopy time ( P = 0.02). Cost savings for placement in the FS vs OR were estimated at $444.50 per case. In conclusion, increased radiation and cost were associated with placement in the OR. Filter angulation independently predicted difficult filter retrieval; angulation was determined by filter type. Performing filter placement in the FS using specific filters may reduce radiation and cost while enabling future retrieval.

  5. Ionizing radiation exposure as a result of diagnostic imaging in patients with lymphoma.

    PubMed

    Crowley, M P; O'Neill, S B; Kevane, B; O'Neill, D C; Eustace, J A; Cahill, M R; Bird, B; Maher, M M; O'Regan, K; O'Shea, D

    2016-05-01

    Survival rates among patients with lymphoma continue to improve. Strategies aimed at reducing potential treatment-related toxicity are increasingly prioritized. While radiological procedures play an important role, ionizing radiation exposure has been linked to an increased risk of malignancy, particularly among individuals whose cumulative radiation exposure exceeds a specific threshold (75 millisieverts). Within this retrospective study, the cumulative radiation exposure dose was quantified for 486 consecutive patients with lymphoma. The median estimated total cumulative effective dose (CED) of ionizing radiation per subject was 69 mSv (42-118). However, younger patients (under 40 years) had a median CED of 89 mSv (55-124). This study highlights the considerable radiation exposure occurring among patients with lymphoma as a result of diagnostic imaging. To limit the risk of secondary carcinogenesis, consideration should be given to monitoring cumulative radiation exposure in individual patients as well as considering imaging modalities, which do not impart an ionizing radiation dose.

  6. Occupational radiation exposure in nuclear medicine department in Kuwait

    NASA Astrophysics Data System (ADS)

    Alnaaimi, M.; Alkhorayef, M.; Omar, M.; Abughaith, N.; Alduaij, M.; Salahudin, T.; Alkandri, F.; Sulieman, A.; Bradley, D. A.

    2017-11-01

    Ionizing radiation exposure is associated with eye lens opacities and cataracts. Radiation workers with heavy workloads and poor protection measures are at risk for vision impairment or cataracts if suitable protection measures are not implemented. The aim of this study was to measure and evaluate the occupational radiation exposure in a nuclear medicine (NM) department. The annual average effective doses (Hp[10] and Hp[0.07]) were measured using calibrated thermos-luminescent dosimeters (TLDs; MCP-N [LiF:Mg,Cu,P]). Five categories of staff (hot lab staff, PET physicians, NM physicians, technologists, and nurses) were included. The average annual eye dose (Hp[3]) for NM staff, based on measurements for a typical yearly workload of >7000 patients, was 4.5 mSv. The annual whole body radiation (Hp[10]) and skin doses (Hp[0.07]) were 4.0 and 120 mSv, respectively. The measured Hp(3), Hp(10), and Hp(0.07) doses for all NM staff categories were below the dose limits described in ICRP 2014 in light of the current practice. The results provide baseline data for staff exposure in NM in Kuwait. Radiation dose optimization measures are recommended to reduce NM staff exposure to its minimal value.

  7. Radiation Exposure and Pregnancy

    MedlinePlus

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  8. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Yoshitake

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less

  9. [Creation of a crystalline lens radiation exposure defense cover and the effect of radiation exposure decrease on neuro-interventions].

    PubMed

    Take, Toshio; Sato, Kaori; Kiuchi, Katsunori; Nakazawa, Yasuo

    2007-11-20

    A variety of radiation hazards resulting from interventional radiology (IVR) have been reported in recent years. Particularly affected are the skin and the crystalline lens, with their high radiation sensitivity. During neurological interventions, the radiological technologist should consider decreasing radiation exposure. We found exposure projections where the exposure dose became a radiation hazard for the crystalline lens, and examined an efficient method of cover for the exposure projections used for neurological interventions. The exposure projection for maximum crystalline lens radiation exposure was a lateral projection. In the crystalline lens the maximum exposure to radiation was on the X-ray tube side. The method of defense adopted was that of installing a lead plate of the appropriate shape on the surface of the X-ray tube collimator. In other exposure projections, this cover did not become a redundant shadow. With the cover that was created, the X-ray side crystalline lens lateral projection could be defended effectively.

  10. Radiation Exposure in Transjugular Intrahepatic Portosystemic Shunt Creation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miraglia, Roberto, E-mail: rmiraglia@ismett.edu; Maruzzelli, Luigi, E-mail: lmaruzzelli@ismett.edu; Cortis, Kelvin, E-mail: kelvincortis@ismett.edu

    2016-02-15

    PurposeTransjugular intrahepatic portosystemic shunt (TIPS) creation is considered as being one of the most complex procedures in abdominal interventional radiology. Our aim was twofold: quantification of TIPS-related patient radiation exposure in our center and identification of factors leading to reduced radiation exposure.Materials and methodsThree hundred and forty seven consecutive patients underwent TIPS in our center between 2007 and 2014. Three main procedure categories were identified: Group I (n = 88)—fluoroscopic-guided portal vein targeting, procedure done in an image intensifier-based angiographic system (IIDS); Group II (n = 48)—ultrasound-guided portal vein puncture, procedure done in an IIDS; and Group III (n = 211)—ultrasound-guided portal vein puncture, procedure donemore » in a flat panel detector-based system (FPDS). Radiation exposure (dose-area product [DAP], in Gy cm{sup 2} and fluoroscopy time [FT] in minutes) was retrospectively analyzed.ResultsDAP was significantly higher in Group I (mean ± SD 360 ± 298; median 287; 75th percentile 389 Gy cm{sup 2}) as compared to Group II (217 ± 130; 178; 276 Gy cm{sup 2}; p = 0.002) and Group III (129 ± 117; 70; 150 Gy cm{sup 2}p < 0.001). The difference in DAP between Groups II and III was also significant (p < 0.001). Group I had significantly longer FT (25.78 ± 13.52 min) as compared to Group II (20.45 ± 10.87 min; p = 0.02) and Group III (19.76 ± 13.34; p < 0.001). FT was not significantly different between Groups II and III (p = 0.73).ConclusionsReal-time ultrasound-guided targeting of the portal venous system during TIPS creation results in a significantly lower radiation exposure and reduced FT. Further reduction in radiation exposure can be achieved through the use of modern angiographic units with FPDS.« less

  11. Monitoring of fetal radiation exposure during pregnancy.

    PubMed

    Chandra, Venita; Dorsey, Chelsea; Reed, Amy B; Shaw, Palma; Banghart, Dawn; Zhou, Wei

    2013-09-01

    One unique concern of vascular surgeons and trainees is radiation exposure associated with increased endovascular practice. The safety of childbearing is a particular worry for current and future women in vascular surgery. Little is known regarding actual fetal radiation exposure. This multi-institutional study aimed to evaluate the radiation dosages recorded on fetal dosimeter badges and compare them to external badges worn by the same cohort of women. All women who declared pregnancy with potential radiation exposure were required to wear two radiation monitors at each institution, one outside and the other inside the lead apron. Maternal (external) and fetal monitor dosimeter readings were analyzed. Maternal radiation exposures prior to, during, and postpregnancy were also assessed to determine any associated behavior modification. Eighty-one women declared pregnancy from 2008 to 2011 and 32 had regular radiation exposure during pregnancy. Maternal whole-body exposures ranged from 21-731 mrem. The average fetal dosimeter recordings for the cohort rounded to zero. Only two women had positive fetal dosimeter recordings; one had a single recording of 3 mrem and the other had a single recording of 7 mrem. There was no significant difference between maternal exposures prior to, during, and postpregnancy. Lack of knowledge of fetal radiation exposure has concerned many vascular surgeons, prompting them to wear double lead aprons during pregnancy, and perhaps prevented numerous other women from entering the field. Our study showed negligible radiation exposure on fetal monitoring suggesting that with the appropriate safety precautions, these concerns may be unwarranted. Published by Mosby, Inc.

  12. Fluoroscopic radiation exposure: are we protecting ourselves adequately?

    PubMed

    Hoffler, C Edward; Ilyas, Asif M

    2015-05-06

    While traditional intraoperative fluoroscopy protection relies on thyroid shields and aprons, recent data suggest that the surgeon's eyes and hands receive more exposure than previously appreciated. Using a distal radial fracture surgery model, we examined (1) radiation exposure to the eyes, thyroid, chest, groin, and hands of a surgeon mannequin; (2) the degree to which shielding equipment can decrease exposure; and (3) how exposure varies with fluoroscopy unit size. An anthropomorphic model was fit with radiation-attenuating glasses, a thyroid shield, an apron, and gloves. "Exposed" thermoluminescent dosimeters overlaid the protective equipment at the eyes, thyroid, chest, groin, and index finger while "shielded" dosimeters were placed beneath the protective equipment. Fluoroscopy position and settings were standardized. The mini-c-arm milliampere-seconds were fixed based on the selection of the kilovolt peak (kVp). Three mini and three standard c-arms scanned a model of the patient's wrist continuously for fifteen minutes each. Ten dosimeter exposures were recorded for each c-arm. Hand exposure averaged 31 μSv/min (range, 22 to 48 μSv/min), which was 13.0 times higher than the other recorded exposures. Eye exposure averaged 4 μSv/min, 2.2 times higher than the mean thyroid, chest, and groin exposure. Gloves reduced hand exposure by 69.4%. Glasses decreased eye exposure by 65.6%. There was no significant difference in exposure between mini and standard fluoroscopy. Surgeons' hands receive the most radiation exposure during distal radial plate fixation under fluoroscopy. There was a small but insignificant difference in mean exposure between standard fluoroscopy and mini-fluoroscopy, but some standard units resulted in lower exposure than some mini-units. On the basis of these findings, we recommend routine protective equipment to mitigate exposure to surgeons' hands and eyes, in addition to the thyroid, chest, and groin, during fluoroscopy procedures

  13. [Effects of radiation exposure on human body].

    PubMed

    Kamiya, Kenji; Sasatani, Megumi

    2012-03-01

    There are two types of radiation health effect; acute disorder and late on-set disorder. Acute disorder is a deterministic effect that the symptoms appear by exposure above a threshold. Tissues and cells that compose the human body have different radiation sensitivity respectively, and the symptoms appear in order, from highly radiosensitive tissues. The clinical symptoms of acute disorder begin with a decrease in lymphocytes, and then the symptoms appear such as alopecia, skin erythema, hematopoietic damage, gastrointestinal damage, central nervous system damage with increasing radiation dose. Regarding the late on-set disorder, a predominant health effect is the cancer among the symptoms of such as cancer, non-cancer disease and genetic effect. Cancer and genetic effect are recognized as stochastic effects without the threshold. When radiation dose is equal to or more than 100 mSv, it is observed that the cancer risk by radiation exposure increases linearly with an increase in dose. On the other hand, the risk of developing cancer through low-dose radiation exposure, less 100 mSv, has not yet been clarified scientifically. Although uncertainty still remains regarding low level risk estimation, ICRP propound LNT model and conduct radiation protection in accordance with LNT model in the low-dose and low-dose rate radiation from a position of radiation protection. Meanwhile, the mechanism of radiation damage has been gradually clarified. The initial event of radiation-induced diseases is thought to be the damage to genome such as radiation-induced DNA double-strand breaks. Recently, it is clarified that our cells could recognize genome damage and induce the diverse cell response to maintain genome integrity. This phenomenon is called DNA damage response which induces the cell cycle arrest, DNA repair, apoptosis, cell senescence and so on. These responses act in the direction to maintain genome integrity against genome damage, however, the death of large number of

  14. Reduction in operator radiation exposure during transradial coronary procedures using a simple lead rectangle.

    PubMed

    Osherov, Azriel B; Bruoha, Sharon; Laish Farkash, Avishag; Paul, Gideon; Orlov, Ian; Katz, Amos; Jafari, Jamal

    2017-02-01

    Transradial access for percutaneous coronary intervention (PCI) reduces procedural complications however, there are concerns regarding the potential for increased exposure to ionizing radiation to the primary operator. We evaluated the efficacy of a lead-attenuator in reducing radiation exposure during transradial PCI. This was a non-randomized, prospective, observational study in which 52 consecutive patients were assigned to either standard operator protection (n = 26) or the addition of the lead attenuator across their abdomen/pelvis (n = 26). In the attenuator group patients were relatively older with a higher prevalence of peripheral vascular disease (67.9 vs 58.7 p = 0.0292 and 12% vs 7.6% p < 0.001 respectively). Despite similar average fluoroscopy times (12.3 ± 9.8 min vs. 9.3 ± 5.4 min, p = 0.175) and average examination doses (111866 ± 80790 vs. 91,268 ± 47916 Gycm 2 , p = 0.2688), the total radiation exposure to the operator, at the thyroid level, was significantly lower when the lead-attenuator was utilized (20.2% p < 0.0001) as compared to the control group. Amongst the 26 patients assigned to the lead-attenuator, there was a significant reduction in measured radiation of 94.5% (p < 0.0001), above as compared to underneath the lead attenuator. Additional protection with the use of a lead rectangle-attenuator significantly lowered radiation exposure to the primary operator, which may confer long-term benefits in reducing radiation-induced injury. This is the first paper to show that a simple lead attenuator almost completely reduced the scattered radiation at very close proximity to the patient and should be considered as part of the standard equipment within catheterization laboratories.

  15. Ionizing radiation exposure in interventional cardiology: current radiation protection practice of invasive cardiology operators in Lithuania.

    PubMed

    Valuckiene, Zivile; Jurenas, Martynas; Cibulskaite, Inga

    2016-09-01

    Ionizing radiation management is among the most important safety issues in interventional cardiology. Multiple radiation protection measures allow the minimization of x-ray exposure during interventional procedures. Our purpose was to assess the utilization and effectiveness of radiation protection and optimization techniques among interventional cardiologists in Lithuania. Interventional cardiologists of five cardiac centres were interviewed by anonymized questionnaire, addressing personal use of protective garments, shielding, table/detector positioning, frame rate (FR), resolution, field of view adjustment and collimation. Effective patient doses were compared between operators who work with and without x-ray optimization. Thirty one (68.9%) out of 45 Lithuanian interventional cardiologists participated in the survey. Protective aprons were universally used, but not the thyroid collars; 35.5% (n  =  11) operators use protective eyewear and 12.9% (n  =  4) wear radio-protective caps; 83.9% (n  =  26) use overhanging shields, 58.1% (n  =  18)-portable barriers; 12.9% (n  =  4)-abdominal patient's shielding; 35.5% (n  =  11) work at a high table position; 87.1% (n  =  27) keep an image intensifier/receiver close to the patient; 58.1% (n  =  18) reduce the fluoroscopy FR; 6.5% (n  =  2) reduce the fluoro image detail resolution; 83.9% (n  =  26) use a 'store fluoro' option; 41.9% (N  =  13) reduce magnification for catheter transit; 51.6% (n  =  16) limit image magnification; and 35.5% (n  =  11) use image collimation. Median effective patient doses were significantly lower with x-ray optimization techniques in both diagnostic and therapeutic interventions. Many of the ionizing radiation exposure reduction tools and techniques are underused by a considerable proportion of interventional cardiology operators. The application of basic radiation protection tools and

  16. Malignant mesothelioma following radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antman, K.H.; Corson, J.M.; Li, F.P.

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommonmore » cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered.« less

  17. Radiation protection aspects of the cosmic radiation exposure of aircraft crew.

    PubMed

    Bartlett, D T

    2004-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.

  18. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Clayton B.; Thompson, Holly M.; Benedict, Stanley H.

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning—a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and,more » because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of

  19. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-05-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A controlmore » group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial.« less

  20. Combined exposure to simulated microgravity and acute or chronic radiation reduces neuronal network integrity and cell survival

    NASA Astrophysics Data System (ADS)

    Benotmane, Rafi

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. This study aimed at assessing the effect of these combined conditions on neuronal network density, cell morphology and survival, using well-connected mouse cortical neuron cultures. To this end, neurons were exposed to acute low and high doses of low LET (X-rays) radiation or to chronic low dose-rate of high LET neutron irradiation (Californium-252), under the simulated microgravity generated by the Random Positioning Machine (RPM, Dutch space). High content image analysis of cortical neurons positive for the neuronal marker βIII-tubulin unveiled a reduced neuronal network integrity and connectivity, and an altered cell morphology after exposure to acute/chronic radiation or to simulated microgravity. Additionally, in both conditions, a defect in DNA-repair efficiency was revealed by an increased number of γH2AX-positive foci, as well as an increased number of Annexin V-positive apoptotic neurons. Of interest, when combining both simulated space conditions, we noted a synergistic effect on neuronal network density, neuronal morphology, cell survival and DNA repair. Furthermore, these observations are in agreement with preliminary gene expression data, revealing modulations in cytoskeletal and apoptosis-related genes after exposure to simulated microgravity. In conclusion, the observed in vitro changes in neuronal network integrity and cell survival induced by space simulated conditions provide us with mechanistic understanding to evaluate health risks and the development of countermeasures to prevent neurological disorders in astronauts over long-term space travels. Acknowledgements: This work is supported partly by the EU-FP7 projects CEREBRAD (n° 295552)

  1. Reducing ionizing radiation doses during cardiac interventions in pregnant women.

    PubMed

    Orchard, Elizabeth; Dix, Sarah; Wilson, Neil; Mackillop, Lucy; Ormerod, Oliver

    2012-09-01

    There is concern over ionizing radiation exposure in women who are pregnant or of child-bearing age. Due to the increasing prevalence of congenital and acquired heart disease, the number of women who require cardiac interventions during pregnancy has increased. We have developed protocols for cardiac interventions in pregnant women and women of child-bearing age, aimed at substantially reducing both fluoroscopy duration and radiation doses. Over five years, we performed cardiac interventions on 15 pregnant women, nine postpartum women and four as part of prepregnancy assessment. Fluoroscopy times were minimized by simultaneous use of intracardiac echocardiography, and by using very low frame rates (2/second) during fluoroscopy. The procedures most commonly undertaken were closure of atrial septal defect (ASD) or patent foramen ovale (PFO) in 16 women, coronary angiograms in seven, right and left heart catheters in three and two stent placements. The mean screening time for all patients was 2.38 minutes (range 0.48-13.7), the median radiation dose was 66 (8.9-1501) Gy/cm(2). The median radiation dose to uterus was 1.92 (0.59-5.47) μGy, and the patient estimated dose was 0.24 (0.095-0.80) mSv. Ionizing radiation can be used safely in the management of severe cardiac structural disease in pregnancy, with very low ionizing radiation dose to the mother and extremely low exposure to the fetus. With experience, ionizing radiation doses at our institution have been reduced.

  2. [Cutaneous radiation syndrome after accidental skin exposure to ionizing radiation].

    PubMed

    Peter, R U

    2013-12-01

    Accidental exposure of the human skin to single doses of ionizing radiation greater than 3 Gy results in a distinct clinical picture, which is characterized by a transient and faint erythema after a few hours, then followed by severe erythema, blistering and necrosis. Depending on severity of damage, the latter generally occurs 10-30 days after exposure, but in severe cases may appear within 48 hrs. Between three and 24 months after exposure, epidermal atrophy combined with progressive dermal and subcutaneous fibrosis is the predominant clinical feature. Even years and decades after exposure, atrophy of epidermis, sweat and sebaceous glands; telangiectases; and dermal and subcutaneous fibrosis may be found and even continue to progress. For this distinct pattern of deterministic effects following cutaneous accidental radiation exposure the term "cutaneous radiation syndrome (CRS)" was coined in 1993 and has been accepted by all international authorities including IAEA and WHO since 2000. In contrast to the classical concept that inhibition of epidermal stem cell proliferation accounts for the clinical symptomatology, research of the last three decades has demonstrated the additional crucial role of inflammatory processes in the etiology of both acute and chronic sequelae of the CRS. Therefore, therapeutic approaches should include topical and systemic anti-inflammatory measures at the earliest conceivable point, and should be maintained throughout the acute and subacute stages, as this reduces the need for surgical intervention, once necrosis has occurred. If surgical intervention is planned, it should be executed with a conservative approach; no safety margins are needed. Antifibrotic measures in the chronic stage should address the chronic inflammatory nature of this process, in which over-expression TGF beta-1 may be a target for therapeutic intervention. Life-long follow-up often is required for management of delayed effects and for early detection of secondary

  3. Prospective Measurement of Patient Exposure to Radiation During Pediatric Ureteroscopy

    PubMed Central

    Kokorowski, Paul J.; Chow, Jeanne S.; Strauss, Keith; Pennison, Melanie; Routh, Jonathan C.; Nelson, Caleb P.

    2013-01-01

    Objective Little data have been reported regarding radiation exposure during pediatric endourologic procedures, including ureteroscopy (URS). We sought to measure radiation exposure during pediatric URS and identify opportunities for exposure reduction. Methods We prospectively observed URS procedures as part of a quality improvement initiative. Pre-operative patient characteristics, operative factors, fluoroscopy settings and radiation exposure were recorded. Our outcomes were entrance skin dose (ESD, in mGy) and midline dose (MLD, in mGy). Specific modifiable factors were identified as targets for potential quality improvement. Results Direct observation was performed on 56 consecutive URS procedures. Mean patient age was 14.8 ± 3.8 years (range 7.4 to 19.2); 9 children were under age 12 years. Mean ESD was 46.4 ± 48 mGy. Mean MLD was 6.2 ± 5.0 mGy. The most important major determinant of radiation dose was total fluoroscopy time (mean 2.68 ± 1.8 min) followed by dose rate setting, child anterior-posterior (AP) diameter, and source to skin distance (all p<0.01). The analysis of factors affecting exposure levels found that the use of ureteral access sheaths (p=0.01) and retrograde pyelography (p=0.04) were significantly associated with fluoroscopy time. We also found that dose rate settings were higher than recommended in up to 43% of cases and ideal C-arm positioning could have reduced exposure 14% (up to 49% in some cases). Conclusions Children receive biologically significant radiation doses during URS procedures. Several modifiable factors contribute to dose and could be targeted in efforts to implement dose reduction strategies. PMID:22341275

  4. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles.

    PubMed

    Dörr, Harald; Meineke, Viktor

    2011-11-25

    Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  5. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    PubMed Central

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  6. Combined Exposure to Simulated Microgravity and Acute or Chronic Radiation Reduces Neuronal Network Integrity and Survival

    PubMed Central

    Quintens, Roel; Samari, Nada; de Saint-Georges, Louis; van Oostveldt, Patrick; Baatout, Sarah; Benotmane, Mohammed Abderrafi

    2016-01-01

    During orbital or interplanetary space flights, astronauts are exposed to cosmic radiations and microgravity. However, most earth-based studies on the potential health risks of space conditions have investigated the effects of these two conditions separately. This study aimed at assessing the combined effect of radiation exposure and microgravity on neuronal morphology and survival in vitro. In particular, we investigated the effects of simulated microgravity after acute (X-rays) or during chronic (Californium-252) exposure to ionizing radiation using mouse mature neuron cultures. Acute exposure to low (0.1 Gy) doses of X-rays caused a delay in neurite outgrowth and a reduction in soma size, while only the high dose impaired neuronal survival. Of interest, the strongest effect on neuronal morphology and survival was evident in cells exposed to microgravity and in particular in cells exposed to both microgravity and radiation. Removal of neurons from simulated microgravity for a period of 24 h was not sufficient to recover neurite length, whereas the soma size showed a clear re-adaptation to normal ground conditions. Genome-wide gene expression analysis confirmed a modulation of genes involved in neurite extension, cell survival and synaptic communication, suggesting that these changes might be responsible for the observed morphological effects. In general, the observed synergistic changes in neuronal network integrity and cell survival induced by simulated space conditions might help to better evaluate the astronaut's health risks and underline the importance of investigating the central nervous system and long-term cognition during and after a space flight. PMID:27203085

  7. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    NASA Technical Reports Server (NTRS)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  8. The risk of radiation exposure to the eyes of the interventional pain physician.

    PubMed

    Fish, David E; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them.

  9. The Risk of Radiation Exposure to the Eyes of the Interventional Pain Physician

    PubMed Central

    Fish, David E.; Kim, Andrew; Ornelas, Christopher; Song, Sungchan; Pangarkar, Sanjog

    2011-01-01

    It is widely accepted that the use of medical imaging continues to grow across the globe as does the concern for radiation safety. The danger of lens opacities and cataract formation related to radiation exposure is well documented in the medical literature. However, there continues to be controversy regarding actual dose thresholds of radiation exposure and whether these thresholds are still relevant to cataract formation. Eye safety and the risk involved for the interventional pain physician is not entirely clear. Given the available literature on measured radiation exposure to the interventionist, and the controversy regarding dose thresholds, it is our current recommendation that the interventional pain physician use shielded eyewear. As the breadth of interventional procedures continues to grow, so does the radiation risk to the interventional pain physician. In this paper, we attempt to outline the risk of cataract formation in the scope of practice of an interventional pain physician and describe techniques that may help reduce them. PMID:22091381

  10. Radiation exposure of the anesthesiologist in the neurointerventional suite.

    PubMed

    Anastasian, Zirka H; Strozyk, Dorothea; Meyers, Philip M; Wang, Shuang; Berman, Mitchell F

    2011-03-01

    Scatter radiation during interventional radiology procedures can produce cataracts in participating medical personnel. Standard safety equipment for the radiologist includes eye protection. The typical configuration of fluoroscopy equipment directs radiation scatter away from the radiologist and toward the anesthesiologist. This study analyzed facial radiation exposure of the anesthesiologist during interventional neuroradiology procedures. Radiation exposure to the forehead of the anesthesiologist and radiologist was measured during 31 adult neuroradiologic procedures involving the head or neck. Variables hypothesized to affect anesthesiologist exposure were recorded for each procedure. These included total radiation emitted by fluoroscopic equipment, radiologist exposure, number of pharmacologic interventions performed by the anesthesiologist, and other variables. Radiation exposure to the anesthesiologist's face averaged 6.5 ± 5.4 μSv per interventional procedure. This exposure was more than 6-fold greater (P < 0.0005) than for noninterventional angiographic procedures (1.0 ± 1.0) and averaged more than 3-fold the exposure of the radiologist (ratio, 3.2; 95% CI, 1.8-4.5). Multiple linear regression analysis showed that the exposure of the anesthesiologist was correlated with the number of pharmacologic interventions performed by the anesthesiologist and the total exposure of the radiologist. Current guidelines for occupational radiation exposure to the eye are undergoing review and are likely to be lowered below the current 100-150 mSv/yr limit. Anesthesiologists who spend significant time in neurointerventional radiology suites may have ocular radiation exposure approaching that of a radiologist. To ensure parity with safety standards adopted by radiologists, these anesthesiologists should wear protective eyewear.

  11. [Eye lens radiation exposure during ureteroscopy with and without a face protection shield: Investigations on a phantom model].

    PubMed

    Zöller, G; Figel, M; Denk, J; Schulz, K; Sabo, A

    2016-03-01

    Eye lens radiation exposure during radiologically-guided endoscopic procedures may result in radiation-induced cataracts; therefore, we investigated the ocular radiation exposure during ureteroscopy on a phantom model. Using an Alderson phantom model and eye lens dosimeters, we measured the ocular radiation exposure depending on the number of X-ray images and on the duration of fluoroscopic imaging. The measurements were done with and without using a face protection shield. We could demonstrate that a significant ocular radiation exposure can occur, depending on the number of X-ray images and on the duration time of fluoroscopy. Eye lens doses up to 0.025 mSv were recorded even using modern digital X-ray systems. Using face protection shields this ocular radiation exposure can be reduced to a minimum. The International Commission on Radiological Protection (ICRP) recommendations of a mean eye lens dosage of 20 mSv/year may be exceeded during repeated ureteroscopy by a high volume surgeon. Using a face protection shield, the eye lens dose during ureteroscopy could be reduced to a minimum in a phantom model. Further investigations will show whether these results can be transferred to real life ureteroscopic procedures.

  12. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  13. Atmospheric Ionizing Radiation and Human Exposure

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  14. Impact of a Disposable Sterile Radiation Shield on Operator Radiation Exposure During Percutaneous Coronary Intervention of Chronic Total Occlusions.

    PubMed

    Shorrock, Deborah; Christopoulos, Georgios; Wosik, Jedrek; Kotsia, Anna; Rangan, Bavana; Abdullah, Shuaib; Cipher, Daisha; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-07-01

    Daily radiation exposure over many years can adversely impact the health of medical professionals. Operator radiation exposure was recorded for 124 percutaneous coronary interventions (PCIs) performed at our institution between August 2011 and May 2013: 69 were chronic total occlusion (CTO)-PCIs and 55 were non-CTO PCIs. A disposable radiation protection sterile drape (Radpad; Worldwide Innovations & Technologies, Inc) was used in all CTO-PCI cases vs none of the non-CTO PCI cases. Operator radiation exposure was compared between CTO and non-CTO PCIs. Mean age was 64.6 ± 6.2 years and 99.2% of the patients were men. Compared with non-CTO PCI, patients undergoing CTO-PCI were more likely to have congestive heart failure, to be current smokers, and to have longer lesions, and less likely to have prior PCI and a saphenous vein graft target lesion. CTO-PCI cases had longer procedural time (median: 123 minutes [IQR, 85-192 minutes] vs 27 minutes [IQR, 20-44 minutes]; P<.001), fluoroscopy time (35 minutes [IQR, 19-54 minutes] vs 8 minutes [IQR, 5-16 minutes]; P<.001), number of stents placed (2.4 ± 1.5 vs 1.7 ± 0.9; P<.001), and patient air kerma radiation exposure (3.92 Gray [IQR, 2.48-5.86 Gray] vs 1.22 Gray [IQR, 0.74-1.90 Gray]; P<.001), as well as dose area product (267 Gray•cm² [IQR, 163-4.25 Gray•cm²] vs 84 Gray•cm² [IQR, 48-138 Gray•cm²]; P<.001). In spite of higher patient radiation exposure, operator radiation exposure was similar between the two groups (20 μSv [IQR, 9.5-31 μSv] vs 15 μSv [IQR, 7-23 μSv]; P=.07). Operator radiation exposure during CTO-PCI can be reduced to levels similar to less complicated cases with the use of a disposable sterile radiation protection shield.

  15. Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations

    PubMed Central

    Glanz, Karen; Buller, David B; Saraiya, Mona

    2007-01-01

    Objective Outdoor workers have high levels of exposure to ultraviolet radiation and the associated increased risk of skin cancer. This paper describes a review of: 1) descriptive data about outdoor workers' sun exposure and protection and related knowledge, attitudes, and policies and 2) evidence about the effectiveness of skin cancer prevention interventions in outdoor workplaces. Data sources Systematic evidence-based review. Data synthesis We found variable preventive practices, with men more likely to wear hats and protective clothing and women more likely to use sunscreen. Few data document education and prevention policies. Conclusion Reports of interventions to promote sun-safe practices and environments provide encouraging results, but yield insufficient evidence to recommend current strategies as effective. Additional efforts should focus on increasing sun protection policies and education programs in workplaces and evaluating whether they improve the health behavior of outdoor workers. PMID:17686155

  16. Effects of fetal microwave radiation exposure on offspring behavior in mice

    PubMed Central

    Zhang, Yanchun; Li, Zhihui; Gao, Yan; Zhang, Chenggang

    2015-01-01

    Abstract The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5–18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects. PMID:25359903

  17. Childhood cancer and occupational radiation exposure in parents.

    PubMed

    Hicks, N; Zack, M; Caldwell, G G; Fernbach, D J; Falletta, J M

    1984-04-15

    To test the hypothesis that a parent's job exposure to radiation affects his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR) = infinity, one-sided 95% lower limit = 1.5; P = 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR = 2.73; P = 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations.

  18. Radiation Exposure from Medical Exams and Procedures

    MedlinePlus

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  19. Emesis, radiation exposure, and local cerebral blood flow in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuor, U.I.; Kondysar, M.H.; Harding, R.K.

    1988-06-01

    We examined the sensitivity of the ferret to emetic stimuli and the effect of radiation exposure near the time of emesis on local cerebral blood flow. Ferrets vomited following the administration of either apomorphine (approx 45% of the ferrets tested) or peptide YY (approx 36% of those tested). Exposure to radiation was a very potent emetic stimulus, but vomiting could be prevented by restraint of the hindquarters of the ferret. Local cerebral blood flow was measured using a quantitative autoradiographic technique and with the exception of several regions in the telencephalon and cerebellum, local cerebral blood flow in the ferretmore » was similar to that in the rat. In animals with whole-body exposure to moderate levels of radiation (4 Gy of /sup 137/Cs), mean arterial blood pressure was similar to that in the control group. However, 15-25 min following irradiation there was a general reduction of local cerebral blood flow ranging from 7 to 33% of that in control animals. These cerebral blood flow changes likely correspond to a reduced activation of the central nervous system.« less

  20. The leaded apron revisited: does it reduce gonadal radiation dose in dental radiology?

    PubMed

    Wood, R E; Harris, A M; van der Merwe, E J; Nortjé, C J

    1991-05-01

    A tissue-equivalent anthropomorphic human phantom was used with a lithium fluoride thermoluminescent dosimetry system to evaluate the radiation absorbed dose to the ovarian and testicular region during dental radiologic procedures. Measurements were made with and without personal lead shielding devices consisting of thyroid collar and apron of 0.25 mm lead thickness equivalence. The radiation absorbed dose with or without lead shielding did not differ significantly from control dosimeters in vertex occlusal and periapical views (p greater than 0.05). Personal lead shielding devices did reduce gonadal dose in the case of accidental exposure (p less than 0.05). A leaded apron of 0.25 mm lead thickness equivalent was permeable to radiation in direct exposure testing.

  1. Limited Internal Radiation Exposure Associated with Resettlements to a Radiation-Contaminated Homeland after the Fukushima Daiichi Nuclear Disaster

    PubMed Central

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12–30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers’ resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309–1050 Bq/kg), and 5.3 Bq/kg (range, 5.1–18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10-2 mSv/y (range, 1.0 x 10-2-4.1 x 10-2 mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure. PMID:24312602

  2. Limited internal radiation exposure associated with resettlements to a radiation-contaminated homeland after the Fukushima Daiichi nuclear disaster.

    PubMed

    Tsubokura, Masaharu; Kato, Shigeaki; Nihei, Masahiko; Sakuma, Yu; Furutani, Tomoyuki; Uehara, Keisuke; Sugimoto, Amina; Nomura, Shuhei; Hayano, Ryugo; Kami, Masahiro; Watanobe, Hajime; Endo, Yukou

    2013-01-01

    Resettlement to their radiation-contaminated hometown could be an option for people displaced at the time of a nuclear disaster; however, little information is available on the safety implications of these resettlement programs. Kawauchi village, located 12-30 km southwest of the Fukushima Daiichi nuclear power plant, was one of the 11 municipalities where mandatory evacuation was ordered by the central government. This village was also the first municipality to organize the return of the villagers. To assess the validity of the Kawauchi villagers' resettlement program, the levels of internal Cesium (Cs) exposures were comparatively measured in returnees, commuters, and non-returnees among the Kawauchi villagers using a whole body counter. Of 149 individuals, 5 villagers had traceable levels of Cs exposure; the median detected level was 333 Bq/body (range, 309-1050 Bq/kg), and 5.3 Bq/kg (range, 5.1-18.2 Bq/kg). Median annual effective doses of villagers with traceable Cs were 1.1 x 10(-2) mSv/y (range, 1.0 x 10(-2)-4.1 x 10(-2) mSv/y). Although returnees had higher chances of consuming locally produced vegetables, Cochran-Mantel-Haenszel test showed that their level of internal radiation exposure was not significantly higher than that in the other 2 groups (p=0.643). The present findings in Kawauchi village imply that it is possible to maintain internal radiation exposure at very low levels even in a highly radiation-contaminated region at the time of a nuclear disaster. Moreover, the risks for internal radiation exposure could be limited with a strict food control intervention after resettlement to the radiation-contaminated village. It is crucial to establish an adequate number of radio-contaminated testing sites within the village, to provide immediate test result feedback to the villagers, and to provide education regarding the importance of re-testing in reducing the risk of high internal radiation exposure.

  3. Real Time Radiation Exposure And Health Risks

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Barzilla, Janet E.; Semones, Edward J.

    2015-01-01

    Radiation from solar particle events (SPEs) poses a serious threat to future manned missions outside of low Earth orbit (LEO). Accurate characterization of the radiation environment in the inner heliosphere and timely monitoring the health risks to crew are essential steps to ensure the safety of future Mars missions. In this project we plan to develop an approach that can use the particle data from multiple satellites and perform near real-time simulations of radiation exposure and health risks for various exposure scenarios. Time-course profiles of dose rates will be calculated with HZETRN and PDOSE from the energy spectrum and compositions of the particles archived from satellites, and will be validated from recent radiation exposure measurements in space. Real-time estimation of radiation risks will be investigated using ARRBOD. This cross discipline integrated approach can improve risk mitigation by providing critical information for risk assessment and medical guidance to crew during SPEs.

  4. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    PubMed Central

    Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01

    Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834

  5. Outdoor work and solar radiation exposure: Evaluation method for epidemiological studies.

    PubMed

    Modenese, Alberto; Bisegna, Fabio; Borra, Massimo; Grandi, Carlo; Gugliermetti, Franco; Militello, Andrea; Gobba, Fabriziomaria

    The health risk related to an excessive exposure to solar radiation (SR) is well known. The Sun represents the main exposure source for all the frequency bands of optical radiation, that is the part of the electromagnetic spectrum ranging between 100 nm and 1 mm, including infrared (IR), ultraviolet (UV) and visible radiation. According to recent studies, outdoor workers have a relevant exposure to SR but few studies available in scientific literature have attempted to retrace a detailed history of individual exposure. We propose a new method for the evaluation of SR cumulative exposure both during work and leisure time, integrating subjective and objective data. The former is collected by means of an interviewer administrated questionnaire. The latter is available through the Internet databases for many geographical regions and through individual exposure measurements. The data is integrated into a mathematical algorithm, in order to obtain an esteem of the individual total amount of SR the subjects have been exposed to during their lives. The questionnaire has been tested for 58 voluntary subjects. Environmental exposure data through online databases has been collected for 3 different places in Italy in 2012. Individual exposure by electronic UV dosimeter has been measured in 6 fishermen. A mathematical algorithm integrating subjective and objective data has been elaborated. The method proposed may be used in epidemiological studies to evaluate specific correlations with biological effects of SR and to weigh the role of the personal and environmental factors that may increase or reduce SR exposure. Med Pr 2016;67(5):577-587. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Radiation exposure in gastroenterology: improving patient and staff protection.

    PubMed

    Ho, Immanuel K H; Cash, Brooks D; Cohen, Henry; Hanauer, Stephen B; Inkster, Michelle; Johnson, David A; Maher, Michael M; Rex, Douglas K; Saad, Abdo; Singh, Ajaypal; Rehani, Madan M; Quigley, Eamonn M

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  7. Radiation exposure to sonographers from nuclear medicine patients: A review.

    PubMed

    Earl, Victoria Jean; Badawy, Mohamed Khaldoun

    2018-06-01

    Following nuclear medicine scans a patient can be a source of radiation exposure to the hospital staff, including sonographers. Sonographers are not routinely monitored for occupational radiation exposure as they do not commonly interact with radioactive patients or other sources of ionizing radiation. This review aims to find evidence relating to the risk and amount of radiation the sonographer is exposed to from nuclear medicine patients. It is established in the literature that the radiation exposure to the sonographer following diagnostic nuclear medicine studies is low and consequently the risk is not significant. Nevertheless, it is paramount that basic radiation safety principles are followed to ensure any exposure to ionizing radiation is kept as low as reasonably achievable. Practical recommendations are given to assist the sonographer in radiation protection. Nuclear medicine therapy procedures may place the sonographer at higher risk and as such consultation with a Radiation Safety Officer or Medical Physicist as to the extent of exposure is recommended. © 2018 The Royal Australian and New Zealand College of Radiologists.

  8. Impact of climate change on occupational exposure to solar radiation.

    PubMed

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  9. Cosmic radiation exposure during air travel.

    DOT National Transportation Integrated Search

    1980-03-01

    In 1967 the FAA appointed an advisory committee on radiation biology aspects of SST flight. Some of the committee members were subsequently appointed to a working group to study radiation exposure during air travel in conventional jet aircraft. : Pre...

  10. Radiation exposure in transcatheter patent ductus arteriosus closure: time to tune?

    PubMed

    Villemain, Olivier; Malekzadeh-Milani, Sophie; Sitefane, Fidelio; Mostefa-Kara, Meriem; Boudjemline, Younes

    2018-05-01

    The aims of this study were to describe radiation level at our institution during transcatheter patent ductus arteriosus occlusion and to evaluate the components contributing to radiation exposure. Transcatheter occlusion relying on X-ray imaging has become the treatment of choice for patients with patent ductus arteriosus. Interventionists now work hard to minimise radiation exposure in order to reduce risk of induced cancers. We retrospectively reviewed all consecutive children who underwent transcatheter closure of patent ductus arteriosus from January 2012 to January 2016. Clinical data, anatomical characteristics, and catheterisation procedure parameters were reported. Radiation doses were analysed for the following variables: total air kerma, mGy; dose area product, Gy.cm2; dose area product per body weight, Gy.cm2/kg; and total fluoroscopic time. A total of 324 patients were included (median age=1.51 [Q1-Q3: 0.62-4.23] years; weight=10.3 [6.7-17.0] kg). In all, 322/324 (99.4%) procedures were successful. The median radiation doses were as follows: total air kerma: 26 (14.5-49.3) mGy; dose area product: 1.01 (0.56-2.24) Gy.cm2; dose area product/kg: 0.106 (0.061-0.185) Gy.cm2/kg; and fluoroscopic time: 2.8 (2-4) min. In multivariate analysis, a weight >10 kg, a ductus arteriosus width <2 mm, complications during the procedure, and a high frame rate (15 frames/second) were risk factors for an increased exposure. Lower doses of radiation can be achieved with subsequent recommendations: technical improvement, frame rate reduction, avoidance of biplane cineangiograms, use of stored fluoroscopy as much as possible, and limitation of fluoroscopic time. A greater use of echocardiography might even lessen the exposure.

  11. Patient radiation exposure during different kyphoplasty techniques.

    PubMed

    Panizza, Denis; Barbieri, Massimo; Parisoli, Francesco; Moro, Luca

    2014-01-01

    The scope of this study was to quantify patient radiation exposure during two different techniques of kyphoplasty (KP), which differ by a cement delivery method, in order to assess whether or not one of the two used methods can reduce the patient dose. Twenty patients were examined for this investigation. One X-ray fluoroscopy unit was used for localization, navigation and monitoring of cement delivery. The patient biometric data, the setting of the fluoroscope, the exposure time and the kerma-area product (KAP) were monitored in all the procedures for anteroposterior (AP) and lateral (LL) fluoroscopic projections in order to assess the range of radiation doses imparted to the patient. Theoretical entrance skin dose (ESD) and effective dose (E) were calculated from intraoperatively measured KAP. An average ET per procedure was 1.5±0.5 min for the manual injection technique (study A) and 1.4±0.4 min for the distance delivery technique (study B) in the AP plane, while 3.2±0.7 and 5.1±0.6 min in the lateral plane, respectively. ESD was estimated as an average of 0.10±0.06 Gy for study A and 0.13±0.13 Gy for study B in the AP or/and 0.59±0.46 and 1.05±0.36 Gy in the lateral view, respectively. The cumulative mean E was 1.9±1.0 mSv procedure(-1) for study A and 3.6±0.9 mSv procedure(-1) for study B. Patient radiation exposure and associated effective dose from KP may be considerable. The technique of distance cement delivery appears to be slower than the manual injection technique and it requires a more protracted fluoroscopic control in the lateral projection, so that this system entails a higher amount of dose to the patient.

  12. Radiation exposure of air carrier crewmembers II.

    DOT National Transportation Integrated Search

    1992-01-01

    The cosmic radiation environment at air carrier flight altitudes is described and estimates given of the amounts of galactic cosmic radiation received on a wide variety of routes to and from, and within the contiguous United States. Radiation exposur...

  13. Radiation exposure of U.S. military individuals.

    PubMed

    Blake, Paul K; Komp, Gregory R

    2014-02-01

    The U.S. military consists of five armed services: the Army, Navy, Marine Corps, Air Force, and Coast Guard. It directly employs 1.4 million active duty military, 1.3 million National Guard and reserve military, and 700,000 civilian individuals. This paper describes the military guidance used to preserve and maintain the health of military personnel while they accomplish necessary and purposeful work in areas where they are exposed to radiation. It also discusses military exposure cohorts and associated radiogenic disease compensation programs administered by the U.S. Department of Veterans Affairs, the U.S. Department of Justice, and the U.S. Department of Labor. With a few exceptions, the U.S. military has effectively employed ionizing radiation since it was first introduced during the Spanish-American War in 1898. The U.S military annually monitors 70,000 individuals for occupational radiation exposure: ~2% of its workforce. In recent years, the Departments of the Navy (including the Marine Corps), the Army, and the Air Force all have a low collective dose that remains close to 1 person-Sv annually. Only a few Coast Guard individuals are now routinely monitored for radiation exposure. As with the nuclear industry as a whole, the Naval Reactors program has a higher collective dose than the remainder of the U.S. military. The U.S. military maintains occupational radiation exposure records on over two million individuals from 1945 through the present. These records are controlled in accordance with the Privacy Act of 1974 but are available to affected individuals or their designees and other groups performing sanctioned epidemiology studies.Introduction of Radiation Exposure of U.S. Military Individuals (Video 2:19, http://links.lww.com/HP/A30).

  14. Invasive Cardiologists Are Exposed to Greater Left Sided Cranial Radiation: The BRAIN Study (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures).

    PubMed

    Reeves, Ryan R; Ang, Lawrence; Bahadorani, John; Naghi, Jesse; Dominguez, Arturo; Palakodeti, Vachaspathi; Tsimikas, Sotirios; Patel, Mitul P; Mahmud, Ehtisham

    2015-08-17

    This study sought to determine radiation exposure across the cranium of cardiologists and the protective ability of a nonlead, XPF (barium sulfate/bismuth oxide) layered cap (BLOXR, Salt Lake City, Utah) during fluoroscopically guided, invasive cardiovascular (CV) procedures. Cranial radiation exposure and potential for protection during contemporary invasive CV procedures is unclear. Invasive cardiologists wore an XPF cap with radiation attenuation ability. Six dosimeters were fixed across the outside and inside of the cap (left, center, and right), and 3 dosimeters were placed outside the catheterization lab to measure ambient exposure. Seven cardiology fellows and 4 attending physicians (38.4 ± 7.2 years of age; all male) performed diagnostic and interventional CV procedures (n = 66.2 ± 27 cases/operator; fluoroscopy time: 14.9 ± 5.0 min). There was significantly greater total radiation exposure at the outside left and outside center (106.1 ± 33.6 mrad and 83.1 ± 18.9 mrad) versus outside right (50.2 ± 16.2 mrad; p < 0.001 for both) locations of the cranium. The XPF cap attenuated radiation exposure (42.3 ± 3.5 mrad, 42.0 ± 3.0 mrad, and 41.8 ± 2.9 mrad at the inside left, inside center, and inside right locations, respectively) to a level slightly higher than that of the ambient control (38.3 ± 1.2 mrad, p = 0.046). After subtracting ambient radiation, exposure at the outside left was 16 times higher than the inside left (p < 0.001) and 4.7 times higher than the outside right (p < 0.001). Exposure at the outside center location was 11 times higher than the inside center (p < 0.001), whereas no difference was observed on the right side. Radiation exposure to invasive cardiologists is significantly higher on the left and center compared with the right side of the cranium. Exposure may be reduced similar to an ambient control level by wearing a nonlead XPF cap. (Brain Radiation Exposure and Attenuation During Invasive Cardiology Procedures [BRAIN]; NCT

  15. Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice.

    PubMed

    Comish, Paul B; Drumond, Ana Luiza; Kinnell, Hazel L; Anderson, Richard A; Matin, Angabin; Meistrich, Marvin L; Shetty, Gunapala

    2014-01-01

    Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼ 70% of control and induced atrophic seminiferous tubules in ∼ 30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.

  16. Fetal Cyclophosphamide Exposure Induces Testicular Cancer and Reduced Spermatogenesis and Ovarian Follicle Numbers in Mice

    PubMed Central

    Comish, Paul B.; Drumond, Ana Luiza; Kinnell, Hazel L.; Anderson, Richard A.; Matin, Angabin; Meistrich, Marvin L.; Shetty, Gunapala

    2014-01-01

    Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan. PMID:24691397

  17. Use of the posteroanterior projection: a method of reducing x-ray exposure to specific radiosensitive organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, E.D.; Stears, J.G.; Gray, J.E.

    The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.

  18. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    PubMed

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Reduction of radiation exposure during radiography for scoliosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, J.E.; Hoffman, A.D.; Peterson, H.A.

    1983-01-01

    To reduce the radiation exposure received by young scoliosis patients during treatment, six changes in technique were instituted: (1) a posteroanterior projection, (2) specially designed leaded acrylic filters, (3) a high-speed screen-film system, (4) a specially designed cassette-holder and grid, (5) a breast-shield, and (6) additional filtration in the x-ray tube the thyroid, breast, and abdominal areas were made on an Alderson phantom. They revealed an eightfold reduction in abdominal exposure for both the posteroanterior and the lateral radiographys. There was a twentyfold reduction in exposure to the thyroid for the posteroanterior radiography from 100 to less than five milliroentgensmore » and for the lateral radiograph there was a 100-fold reduction from 618 to six milliroentgens. For the breasts there was a sixty-ninefold reduction from 344 to less than five milliroentgens for the posteroanterior radiography and a fifty-fivefold reduction from 277 to less than five milliroentgens for the lateral radiograph. These reductions in exposure were obtained without significant loss in the quality of the radiographs and in most instances with an improvement in the over-all quality of the radiograph due to the more uniform exposure.« less

  20. Radiation exposure and lung disease in today's nuclear world.

    PubMed

    Deas, Steven D; Huprikar, Nikhil; Skabelund, Andrew

    2017-03-01

    Ionizing radiation poses important health risks. The per capita annual dose rate has increased in the United States and there is increasing concern for the risks posed by low-dose occupational exposure among workers in nuclear industries and healthcare. Recent nuclear accidents and concern for terrorism have heightened concern for catastrophic, high-dose ionizing radiation exposure. This review will highlight recent research into the risks to lung health posed by ionizing radiation exposure and into potential treatments. Angiotensin-converting enzyme inhibitors and some antioxidants have shown promise as mitigators, to decrease pneumonitis and fibrosis when given after exposure. Studies of survivors of nuclear catastrophes have shown increased risk for lung cancer, especially in nonsmokers. There is evidence for increased lung cancer risk in industrial radiation workers, especially those who process plutonium and may inhale radioactive particles. There does not seem to be an increased risk of lung cancer in healthcare workers who perform fluoroscopic procedures. High-dose ionizing radiation exposure causes pneumonitis and fibrosis, and more research is needed to develop mitigators to improve outcomes in nuclear catastrophes. Long-term, low-dose occupational radiation may increase lung cancer risk. More research to better define this risk could lead to improved safety protocols and screening programs.

  1. Effectiveness of using low rate fluoroscopy to reduce an examiner's radiation dose during lumbar nerve root block.

    PubMed

    Yamane, Kentaro; Kai, Nobuo; Mazaki, Tetsuro; Miyamoto, Tadashi; Matsushita, Tomohiro

    2018-06-13

    Long-term exposure to radiation can lead to gene mutations and increase the risk of cancer. Low rate fluoroscopy has the potential to reduce the radiation exposure for both the examiner and the patient during various fluoroscopic procedures. The purpose of this study was to evaluate the impact of low rate fluoroscopy on reducing an examiner's radiation dose during nerve root block. A total of 101 lumbar nerve root block examinations were performed at our institute during a 6-month period. During the first 3 months, low rate fluoroscopy was performed at 7.5 frames/s (FPS) in 54 examinations, while 47 were performed at 15 FPS during the last 3 months. The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective and equivalent doses for the hands, skin, and eyes were investigated. The mean monthly equivalent doses were significantly lower both inside and outside the hand protector for the 7.5 FPS versus 15 FPS (inside; P = 0.021, outside; P = 0.024). There were no significant differences between the two groups for the mean monthly calculated effective dose for each protector's condition. Radiation exposure was significantly reduced for the skin on the examiner's hand when using low rate fluoroscopy at 7.5 FPS, with no noticeable decrease in image quality or prolonged fluoroscopy time. Copyright © 2018. Published by Elsevier B.V.

  2. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    PubMed

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  3. Decreased Radiation Exposure Among Orthopedic Residents Is Maintained When Using the Mini C-Arm After Undergoing Radiation Safety Training.

    PubMed

    Gendelberg, David; Hennrikus, William L; Sawyer, Carissa; Armstrong, Douglas; King, Steven

    2017-09-01

    The resident curriculum of the American Board of Orthopaedic Surgery emphasizes radiation safety. Gendelberg showed that, immediately after a program on fluoroscopic safety, residents used less radiation when using the mini C-arm to reduce pediatric fractures. The current study evaluated whether this effect lasted. Residents underwent a new annual 3-hour session on mini C-arm use and radiation. Group A included 53 reductions performed before training. Group B included 45 reductions performed immediately after training. Group C included 46 reductions performed 11 months later. For distal radius fractures, exposure time and amount were 38.1 seconds and 83.1 mR, respectively, for group A; 26.7 seconds and 32.6 mR, respectively, for group B; and 24.1 seconds and 40.0 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .525 and .293, respectively. When group C and group A were compared, P values were <.05 and <.01, respectively. For both bone forearm fractures, exposure time and amount were 41.2 seconds and 90.9 mR, respectively, for group A; 28.9 seconds and 30.4 mR, respectively, for group B; and 31.2 seconds and 43.6 mR, respectively, for group C. When radiation time and amount were compared between group B and group C, P values were .704 and .117, respectively. When group C and group A were compared, P values were .183 and .004, respectively. No significant difference in radiation exposure was noted immediately after training vs 11 months later. A sustained decrease in radiation exposure occurred after an educational program on safe mini C-arm use. [Orthopedics. 2017; 40(5):e788-e792.]. Copyright 2017, SLACK Incorporated.

  4. Radiation Exposure of Abdominal Cone Beam Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sailer, Anna M., E-mail: anni.sailer@mumc.nl; Schurink, Geert Willem H., E-mail: gwh.schurink@mumc.nl; Wildberger, Joachim E., E-mail: j.wildberger@mumc.nl

    2015-02-15

    PurposeTo evaluate patients radiation exposure of abdominal C-arm cone beam computed tomography (CBCT).MethodsThis prospective study was approved by the institutional review board; written, informed consent was waived. Radiation exposure of abdominal CBCT was evaluated in 40 patients who underwent CBCT during endovascular interventions. Dose area product (DAP) of CBCT was documented and effective dose (ED) was estimated based on organ doses using dedicated Monte Carlo simulation software with consideration of X-ray field location and patients’ individual body weight and height. Weight-dependent ED per DAP conversion factors were calculated. CBCT radiation dose was compared to radiation dose of procedural fluoroscopy. CBCTmore » dose-related risk for cancer was assessed.ResultsMean ED of abdominal CBCT was 4.3 mSv (95 % confidence interval [CI] 3.9; 4.8 mSv, range 1.1–7.4 mSv). ED was significantly higher in the upper than in the lower abdomen (p = 0.003) and increased with patients’ weight (r = 0.55, slope = 0.045 mSv/kg, p < 0.001). Radiation exposure of CBCT corresponded to the radiation exposure of on average 7.2 fluoroscopy minutes (95 % CI 5.5; 8.8 min) in the same region of interest. Lifetime risk of exposure related cancer death was 0.033 % or less depending on age and weight.ConclusionsMean ED of abdominal CBCT was 4.3 mSv depending on X-ray field location and body weight.« less

  5. Analytic Shielding Optimization to Reduce Crew Exposure to Ionizing Radiation Inside Space Vehicles

    NASA Technical Reports Server (NTRS)

    Gaza, Razvan; Cooper, Tim P.; Hanzo, Arthur; Hussein, Hesham; Jarvis, Kandy S.; Kimble, Ryan; Lee, Kerry T.; Patel, Chirag; Reddell, Brandon D.; Stoffle, Nicholas; hide

    2009-01-01

    A sustainable lunar architecture provides capabilities for leveraging out-of-service components for alternate uses. Discarded architecture elements may be used to provide ionizing radiation shielding to the crew habitat in case of a Solar Particle Event. The specific location relative to the vehicle where the additional shielding mass is placed, as corroborated with particularities of the vehicle design, has a large influence on protection gain. This effect is caused by the exponential- like decrease of radiation exposure with shielding mass thickness, which in turn determines that the most benefit from a given amount of shielding mass is obtained by placing it so that it preferentially augments protection in under-shielded areas of the vehicle exposed to the radiation environment. A novel analytic technique to derive an optimal shielding configuration was developed by Lockheed Martin during Design Analysis Cycle 3 (DAC-3) of the Orion Crew Exploration Vehicle (CEV). [1] Based on a detailed Computer Aided Design (CAD) model of the vehicle including a specific crew positioning scenario, a set of under-shielded vehicle regions can be identified as candidates for placement of additional shielding. Analytic tools are available to allow capturing an idealized supplemental shielding distribution in the CAD environment, which in turn is used as a reference for deriving a realistic shielding configuration from available vehicle components. While the analysis referenced in this communication applies particularly to the Orion vehicle, the general method can be applied to a large range of space exploration vehicles, including but not limited to lunar and Mars architecture components. In addition, the method can be immediately applied for optimization of radiation shielding provided to sensitive electronic components.

  6. Radiation safety education reduces the incidence of adult fingers on neonatal chest radiographs.

    PubMed

    Sahota, N; Burbridge, B E; Duncan, M D

    2014-06-01

    A previous audit revealed a high frequency of adult fingers visualised on neonatal intensive care unit (NICU) chest radiographs-representing an example of inappropriate occupational radiation exposure. Radiation safety education was provided to staff and we hypothesised that the education would reduce the frequency of adult fingers visualised on NICU chest radiographs. Two cross-sectional samples taken before and after the administration of the education were compared. We examined fingers visualised directly in the beam, fingers in the direct beam but eliminated by technologists editing the image, and fingers under the cones of the portable x-ray machine. There was a 46.2% reduction in fingers directly in the beam, 50.0% reduction in fingers directly in the beam but cropped out, and 68.4% reduction in fingers in the coned area. There was a 57.1% overall reduction in adult fingers visualised, which was statistically significant (Z value - 7.48, P < 0.0001). This study supports radiation safety education in minimising inappropriate occupational radiation exposure.

  7. Occupational radiation Exposure at Agreement State-Licensed Materials Facilities, 1997-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    The purpose of this report is to examine occupational radiation exposures received under Agreement State licensees. As such, this report reflects the occupational radiation exposure data contained in the Radiation Exposure Information and Reporting System (REIRS) database, for 1997 through 2010, from Agreement State-licensed materials facilities.

  8. Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during (18)F-fluorodeoxyglucose positron emission tomography/computed tomography imaging.

    PubMed

    Verma, Shashwat; Kheruka, Subhash Chand; Maurya, Anil Kumar; Kumar, Narvesh; Gambhir, Sanjay; Kumari, Sarita

    2016-01-01

    Positron emission tomography has been established as an important imaging modality in the management of patients, especially in oncology. The higher gamma radiation energy of positron-emitting isotopes poses an additional radiation safety problem. Those working with this modality may likely to receive higher whole body doses than those working only in conventional nuclear medicine. The radiation exposure to the personnel occurs in dispensing the dose, administration of activity, patient positioning, and while removing the intravenous (i.v.) cannula. The estimation of radiation dose to Nuclear Medicine Physician (NMP) involved during administration of activity to the patient and technical staff assisting in these procedures in a positron emission tomography/computed tomography (PET/CT) facility was carried out. An i.v access was secured for the patient by putting the cannula and blood sugar was monitored. The activity was then dispensed and measured in the dose calibrator and administered to the patient by NMP. Personnel doses received by NMP and technical staff were measured using electronic pocket dosimeter. The radiation exposure levels at various working locations were assessed with the help of gamma survey meter. The radiation level at working distance while administering the radioactivity was found to be 106-170 μSv/h with a mean value of 126.5 ± 14.88 μSv/h which was reduced to 4.2-14.2 μSv/h with a mean value of 7.16 ± 2.29 μSv/h with introduction of L-bench for administration of radioactivity. This shows a mean exposure level reduction of 94.45 ± 1.03%. The radiation level at working distance, while removing the i.v. cannula postscanning was found to be 25-70 μSv/h with a mean value of 37.4 ± 13.16 μSv/h which was reduced to 1.0-5.0 μSv/h with a mean value of 2.77 ± 1.3 μSv/h with introduction of L-bench for removal of i.v cannula. This shows a mean exposure level reduction of 92.85 ± 1.78%. This study shows that good radiation practices are

  9. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake.

    PubMed

    Matsuoka, Yutaka; Nishi, Daisuke; Nakaya, Naoki; Sone, Toshimasa; Noguchi, Hiroko; Hamazaki, Kei; Hamazaki, Tomohito; Koido, Yuichi

    2012-05-15

    On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers.

  10. Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave

    Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.

  11. Exposure of luminous marine bacteria to low-dose gamma-radiation.

    PubMed

    Kudryasheva, N S; Petrova, A S; Dementyev, D V; Bondar, A A

    2017-04-01

    The study addresses biological effects of low-dose gamma-radiation. Radioactive 137 Cs-containing particles were used as model sources of gamma-radiation. Luminous marine bacterium Photobacterium phosphoreum was used as a bioassay with the bioluminescent intensity as the physiological parameter tested. To investigate the sensitivity of the bacteria to the low-dose gamma-radiation exposure (≤250 mGy), the irradiation conditions were varied as follows: bioluminescence intensity was measured at 5, 10, and 20°С for 175, 100, and 47 h, respectively, at different dose rates (up to 4100 μGy/h). There was no noticeable effect of gamma-radiation at 5 and 10°С, while the 20°С exposure revealed authentic bioluminescence inhibition. The 20°С results of gamma-radiation exposure were compared to those for low-dose alpha- and beta-radiation exposures studied previously under comparable experimental conditions. In contrast to ionizing radiation of alpha and beta types, gamma-emission did not initiate bacterial bioluminescence activation (adaptive response). As with alpha- and beta-radiation, gamma-emission did not demonstrate monotonic dose-effect dependencies; the bioluminescence inhibition efficiency was found to be related to the exposure time, while no dose rate dependence was found. The sequence analysis of 16S ribosomal RNA gene did not reveal a mutagenic effect of low-dose gamma radiation. The exposure time that caused 50% bioluminescence inhibition was suggested as a test parameter for radiotoxicity evaluation under conditions of chronic low-dose gamma irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Diagnostic imaging and radiation exposure in inflammatory bowel disease.

    PubMed

    Zakeri, Nekisa; Pollok, Richard C G

    2016-02-21

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn's disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT.

  13. Risk of whole body radiation exposure and protective measures in fluoroscopically guided interventional techniques: a prospective evaluation.

    PubMed

    Manchikanti, Laxmaiah; Cash, Kim A; Moss, Tammy L; Rivera, Jose; Pampati, Vidyasagar

    2003-08-06

    BACKGROUND: Fluoroscopic guidance is frequently utilized in interventional pain management. The major purpose of fluoroscopy is correct needle placement to ensure target specificity and accurate delivery of the injectate. Radiation exposure may be associated with risks to physician, patient and personnel. While there have been many studies evaluating the risk of radiation exposure and techniques to reduce this risk in the upper part of the body, the literature is scant in evaluating the risk of radiation exposure in the lower part of the body. METHODS: Radiation exposure risk to the physician was evaluated in 1156 patients undergoing interventional procedures under fluoroscopy by 3 physicians. Monitoring of scattered radiation exposure in the upper and lower body, inside and outside the lead apron was carried out. RESULTS: The average exposure per procedure was 12.0 PlusMinus; 9.8 seconds, 9.0 PlusMinus; 0.37 seconds, and 7.5 PlusMinus; 1.27 seconds in Groups I, II, and III respectively. Scatter radiation exposure ranged from a low of 3.7 PlusMinus; 0.29 seconds for caudal/interlaminar epidurals to 61.0 PlusMinus; 9.0 seconds for discography. Inside the apron, over the thyroid collar on the neck, the scatter radiation exposure was 68 mREM in Group I consisting of 201 patients who had a total of 330 procedures with an average of 0.2060 mREM per procedure and 25 mREM in Group II consisting of 446 patients who had a total of 662 procedures with average of 0.0378 mREM per procedure. The scatter radiation exposure was 0 mREM in Group III consisting of 509 patients who had a total 827 procedures. Increased levels of exposures were observed in Groups I and II compared to Group III, and Group I compared to Group II.Groin exposure showed 0 mREM exposure in Groups I and II and 15 mREM in Group III. Scatter radiation exposure for groin outside the apron in Group I was 1260 mREM and per procedure was 3.8182 mREM. In Group II the scatter radiation exposure was 400 mREM and with

  14. Influence of various factors on individual radiation exposure from the chernobyl disaster

    PubMed Central

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-01-01

    Background The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. Methods This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Results Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. Conclusion A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures. PMID:12495449

  15. Influence of various factors on individual radiation exposure from the Chernobyl disaster.

    PubMed

    Zamostian, Pavlo; Moysich, Kirsten B; Mahoney, Martin C; McCarthy, Philip; Bondar, Alexandra; Noschenko, Andrey G; Michalek, Arthur M

    2002-10-29

    The explosion at the Chernobyl Nuclear Power Plant was one of the greatest known nuclear disasters of the 20th century. To reduce individual exposure to ionizing radiation the Soviet Union government introduced a number of counter-measures. This article presents a description of how historical events conspired to disrupt these efforts and affect residents in exposed areas. This study employed an extensive review of data on radionuclide deposition, contamination patterns and lifestyle characteristics. Data were obtained from the Ukraine Ministry of Health and the Ukraine Research Center for Radiation Medicine. Data are presented on annual contamination rates in selected locales as well as data on local food consumption patterns. Historical factors including economic and political circumstances are also highlighted. Results show the diminution of individual doses between 1987 and 1991 and then an increase between 1991 and 1994 and the relationship between this increase and changes in the lifestyle of the local population. A number of factors played direct and indirect roles in contributing to the populace's cumulative radiation exposure. Future post-contamination studies need to consider these factors when estimating individual exposures.

  16. Modelling of aircrew radiation exposure during solar particle events

    NASA Astrophysics Data System (ADS)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  17. A statewide teleradiology system reduces radiation exposure and charges in transferred trauma patients.

    PubMed

    Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo

    2016-05-01

    Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Stored-fluorography mode reduces radiation dose during cardiac catheterization measured with OSLD dosimeter

    NASA Astrophysics Data System (ADS)

    Ting, Chien-Yi; Chen, Zhih-Cherng; Tang, Kuo-Ting; Liu, Wei-Chung; Lin, Chun-Chih; Wang, Hsin-Ell

    2015-12-01

    Coronary angiogram is an imperative tool for diagnosis of coronary artery diseases, in which cine-angiography is a commonly used method. Although the angiography proceeds under radiation, the potential risk of radiation exposure for both the patients and the operators was seldom noticed. In this study, the absorbed radiation dose in stored-fluorography mode was compared with that in cine-angiography mode by using optically simulated luminescent dosimeters to realize their effects on radiation dose. Patients received coronary angiogram via radial artery approach were randomized into the stored-fluorography group (N=30) or the cine-angiography group (N=30). The excluded criteria were: 1. women at pregnancy or on breast feeding, 2. chronic kidney diseases with glomerular filtration rate less than 60 mL/min. During the coronary angiogram, absorbed dose of the patients and the operator radiation exposure was measured with optically simulated luminescent dosimeter (OSLD). The absorbed dose of the patients in the stored-fluorography group (3.13±0.25 mGy) was apparently lower than that in the cine-angiography group (65.57±5.37 mGy; P<0.001). For the operator, a statistical difference (P<0.001) was also found between the stored-fluorography group (0.09163 μGy) and the cine-angiography (0.6519μGy). Compared with traditional cine-angiography mode, the stored-fluorography mode can apparently reduce radiation exposure of the patients and the operator in coronary angiogram.

  19. Temporal variation of optimal UV exposure time over Korea: risks and benefits of surface UV radiation

    NASA Astrophysics Data System (ADS)

    Lee, Y. G.; Koo, J. H.

    2015-12-01

    Solar UV radiation in a wavelength range between 280 to 400 nm has both positive and negative influences on human body. Surface UV radiation is the main natural source of vitamin D, providing the promotion of bone and musculoskeletal health and reducing the risk of a number of cancers and other medical conditions. However, overexposure to surface UV radiation is significantly related with the majority of skin cancer, in addition other negative health effects such as sunburn, skin aging, and some forms of eye cataracts. Therefore, it is important to estimate the optimal UV exposure time, representing a balance between reducing negative health effects and maximizing sufficient vitamin D production. Previous studies calculated erythemal UV and vitamin-D UV from the measured and modelled spectral irradiances, respectively, by weighting CIE Erythema and Vitamin D3 generation functions (Kazantzidis et al., 2009; Fioletov et al., 2010). In particular, McKenzie et al. (2009) suggested the algorithm to estimate vitamin-D production UV from erythemal UV (or UV index) and determined the optimum conditions of UV exposure based on skin type Ⅱ according to the Fitzpatrick (1988). Recently, there are various demands for risks and benefits of surface UV radiation on public health over Korea, thus it is necessary to estimate optimal UV exposure time suitable to skin type of East Asians. This study examined the relationship between erythemally weighted UV (UVEry) and vitamin D weighted UV (UVVitD) over Korea during 2004-2012. The temporal variations of the ratio (UVVitD/UVEry) were also analyzed and the ratio as a function of UV index was applied in estimating the optimal UV exposure time. In summer with high surface UV radiation, short exposure time leaded to sufficient vitamin D and erythema and vice versa in winter. Thus, the balancing time in winter was enough to maximize UV benefits and minimize UV risks.

  20. Concern over radiation exposure and psychological distress among rescue workers following the Great East Japan Earthquake

    PubMed Central

    2012-01-01

    Background On March 11, 2011, the Great East Japan Earthquake and tsunami that followed caused severe damage along Japans northeastern coastline and to the Fukushima Daiichi nuclear power plant. To date, there are few reports specifically examining psychological distress in rescue workers in Japan. Moreover, it is unclear to what extent concern over radiation exposure has caused psychological distress to such workers deployed in the disaster area. Methods One month after the disaster, 424 of 1816 (24%) disaster medical assistance team workers deployed to the disaster area were assessed. Concern over radiation exposure was evaluated by a single self-reported question. General psychological distress was assessed with the Kessler 6 scale (K6), depressive symptoms with the Center for Epidemiologic Studies Depression Scale (CES-D), fear and sense of helplessness with the Peritraumatic Distress Inventory (PDI), and posttraumatic stress symptoms with the Impact of Event Scale-Revised (IES-R). Results Radiation exposure was a concern for 39 (9.2%) respondents. Concern over radiation exposure was significantly associated with higher scores on the K6, CES-D, PDI, and IES-R. After controlling for age, occupation, disaster operation experience, duration of time spent watching earthquake news, and past history of psychiatric illness, these associations remained significant in men, but did not remain significant in women for the CES-D and PDI scores. Conclusion The findings suggest that concern over radiation exposure was strongly associated with psychological distress. Reliable, accurate information on radiation exposure might reduce deployment-related distress in disaster rescue workers. PMID:22455604

  1. Exposure assessment of aluminum arc welding radiation.

    PubMed

    Peng, Chiung-yu; Lan, Cheng-hang; Juang, Yow-jer; Tsao, Ta-ho; Dai, Yu-tung; Liu, Hung-hsin; Chen, Chiou-jong

    2007-10-01

    The purpose of this study is to evaluate the non-ionizing radiation (NIR) exposure, especially optical radiation levels, and potential health hazard from aluminum arc welding processes based on the American Conference of Governmental Industrial Hygienists (ACGIH) method. The irradiance from the optical radiation emissions can be calculated with various biological effective parameters [i.e., S(lambda), B(lambda), R(lambda)] for NIR hazard assessments. The aluminum arc welding processing scatters bright light with NIR emission including ultraviolet radiation (UVR), visible, and infrared spectra. The UVR effective irradiance (Eeff) has a mean value of 1,100 microW cm at 100 cm distance from the arc spot. The maximum allowance time (tmax) is 2.79 s according to the ACGIH guideline. Blue-light hazard effective irradiance (EBlue) has a mean value of 1840 microW cm (300-700 nm) at 100 cm with a tmax of 5.45 s exposure allowance. Retinal thermal hazard effective calculation shows mean values of 320 mW cm(-2) sr(-1) and 25.4 mW (cm-2) (380-875 nm) for LRetina (spectral radiance) and ERetina (spectral irradiance), respectively. From this study, the NIR measurement from welding optical radiation emissions has been established to evaluate separate types of hazards to the eye and skin simultaneously. The NIR exposure assessment can be applied to other optical emissions from industrial sources. The data from welding assessment strongly suggest employees involved in aluminum welding processing must be fitted with appropriate personal protection devices such as masks and gloves to prevent serious injuries of the skin and eyes upon intense optical exposure.

  2. NTPR Radiation Exposure Reports

    Science.gov Websites

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Detonations 1945-1962, Vol II: Oceanic Test Series DNA-6041F For the Record - A History of the Nuclear Test

  3. Practical protective tools for occupational exposure: 1) double focus spectacles for the aged with highly refracted glass lens 2) remodeled barrier for radiation protection.

    PubMed

    Kurokawa, S; Yabe, S; Takamura, A; Ishizaki, H; Aizawa, S

    2000-11-30

    Two practical protective tools for occupational exposure for neurointerventional radiologists are presented. The first purpose of this study was to investigate the effectiveness of double focus spectacles for the aged with a highly refracted glass lens (special spectacles for the aged) for radiation protection of the crystalline lens of the eye in comparison with other spectacles on the market, based on the measurement of film density which was obtained by exposure of X-ray through those spectacles. As a result of the film densitometry mentioned above, the effectiveness of special spectacles for the aged in radiation protection was nearly equal to the effectiveness of a goggle type shield which is made with a 0.07 mm lead-equivalent plastic lens. The second purpose of this study was to investigate the effectiveness of the protective barrier, which we remodeled for cerebral angiography or neuroendovascular therapy, for radiation exposure, based on the measurement in a simulated study with a head phantom, and on the measurement of radiation exposure in operaters during procedures of clinical cases. In the experimental study radiation exposure in supposed position of the crystalline lens was reduced to about one third and radiation exposure in supposed position of the gonadal glands was reduced to about one seventh, compared to radiation exposure without employing the barrier. The radiation exposure was monitored at the left breast of three radiologists, in 215 cases of cerebral angiography. Employing the barrier in cerebral angiography, average equivalent dose at the left breast measured 1.49mu Sv during 10 min of fluoroscopy. In three kinds of neuroendovascular therapy in 40 cases, radiation exposure in an operator was monitored in the same fashion and the dose was recorded less than the result reported in previous papers in which any protective barrier have not been employed in the procedure (1,2). As a result, the two above mentioned protective tools are

  4. Diagnostic radiation exposure in pediatric trauma patients.

    PubMed

    Brunetti, Marissa A; Mahesh, Mahadevappa; Nabaweesi, Rosemary; Locke, Paul; Ziegfeld, Susan; Brown, Robert

    2011-02-01

    The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit. Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included. A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (p<0.0001). Burn injuries had the lowest radiation dose [1.2 (±2.6) mSv], whereas motor vehicle collision victims had the highest dose [18.8 (±14.7) mSv]. When the use of radiologic imaging is considered essential, cumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

  5. Exposing exposure: automated anatomy-specific CT radiation exposure extraction for quality assurance and radiation monitoring.

    PubMed

    Sodickson, Aaron; Warden, Graham I; Farkas, Cameron E; Ikuta, Ichiro; Prevedello, Luciano M; Andriole, Katherine P; Khorasani, Ramin

    2012-08-01

    To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. This institutional review board-approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality control and optimization, and cumulative

  6. Acute Radiation Effects Resulting from Exposure to Solar Particle Event-Like Radiation

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann; Cengel, Keith

    2012-07-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animal models exposed to space flight stressors combined with the types of radiation expected during an SPE. As part of this program, FDA-approved drugs that may prevent and/or mitigate ARS symptoms are being evaluated. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations, gamma rays or electrons). The ARS is a phased syndrome which often includes vomiting and fatigue. Other acute adverse biologic effects of concern are the loss of hematopoietic cells, which can result in compromised bone marrow and immune cell functions. There is also concern for skin damage from high SPE radiation doses, including burns, and resulting immune system dysfunction. Using 3 separate animal model systems (ferrets, mice and pigs), the major ARS biologic endpoints being evaluated are: 1) vomiting/retching and fatigue, 2) hematologic changes (with focus on white blood cells) and immune system changes resulting from exposure to SPE radiation with and without reduced weightbearing conditions, and 3) skin injury and related immune system functions. In all of these areas of research, statistically significant adverse health effects have been observed in animals exposed to SPE-like radiation. Countermeasures for the management of ARS symptoms are being evaluated. New research findings from the past grant year will be discussed. Acknowledgements: This research is supported by the NSBRI Center of Acute

  7. Diagnostic imaging and radiation exposure in inflammatory bowel disease

    PubMed Central

    Zakeri, Nekisa; Pollok, Richard CG

    2016-01-01

    Diagnostic imaging plays a key role in the diagnosis and management of inflammatory bowel disease (IBD). However due to the relapsing nature of IBD, there is growing concern that IBD patients may be exposed to potentially harmful cumulative levels of ionising radiation in their lifetime, increasing malignant potential in a population already at risk. In this review we explore the proportion of IBD patients exposed to high cumulative radiation doses, the risk factors associated with higher radiation exposures, and we compare conventional diagnostic imaging with newer radiation-free imaging techniques used in the evaluation of patients with IBD. While computed tomography (CT) performs well as an imaging modality for IBD, the effective radiation dose is considerably higher than other abdominal imaging modalities. It is increasingly recognised that CT imaging remains responsible for the majority of diagnostic medical radiation to which IBD patients are exposed. Magnetic resonance imaging (MRI) and small intestine contrast enhanced ultrasonography (SICUS) have now emerged as suitable radiation-free alternatives to CT imaging, with comparable diagnostic accuracy. The routine use of MRI and SICUS for the clinical evaluation of patients with known or suspected small bowel Crohn’s disease is to be encouraged wherever possible. More provision is needed for out-of-hours radiation-free imaging modalities to reduce the need for CT. PMID:26900282

  8. Approximating the Probability of Mortality Due to Protracted Radiation Exposures

    DTIC Science & Technology

    2016-06-01

    syndrome of acute radiation sickness. In the MARCELL model, radiation exposure dynamically depletes the bone marrow cell population, the underpinning of...Protracted Radiation Exposures DTRA-TR-16-054 HDTRA1-14-D-0003; 0005 Prepared by: Applied Research Associates, Inc. 801 N. Quincy Street...Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation curie (Ci) [activity of radionuclides] 3.7 × 1010 per second (s–1

  9. Space Radiation and Human Exposures, A Primer.

    PubMed

    Nelson, Gregory A

    2016-04-01

    The space radiation environment is a complex field comprised primarily of charged particles spanning energies over many orders of magnitude. The principal sources of these particles are galactic cosmic rays, the Sun and the trapped radiation belts around the earth. Superimposed on a steady influx of cosmic rays and a steady outward flux of low-energy solar wind are short-term ejections of higher energy particles from the Sun and an 11-year variation of solar luminosity that modulates cosmic ray intensity. Human health risks are estimated from models of the radiation environment for various mission scenarios, the shielding of associated vehicles and the human body itself. Transport models are used to propagate the ambient radiation fields through realistic shielding levels and materials to yield radiation field models inside spacecraft. Then, informed by radiobiological experiments and epidemiology studies, estimates are made for various outcome measures associated with impairments of biological processes, losses of function or mortality. Cancer-associated risks have been formulated in a probabilistic model while management of non-cancer risks are based on permissible exposure limits. This article focuses on the various components of the space radiation environment and the human exposures that it creates.

  10. Radiation exposures due to fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Beck, Harold L.

    The current consensus regarding the potential radiation exposures resulting from the combustion of fossil fuels is examined. Sources, releases and potential doses to humans are discussed, both for power plants and waste materials. It is concluded that the radiation exposure to most individuals from any pathway is probably insignificant, i.e. only a tiny fraction of the dose received from natural sources in soil and building materials. Any small dose that may result from power-plant emissions will most likely be from inhalation of the small insoluble ash particles from the more poorly controlled plants burning higher than average activity fuel, rather than from direct or indirect ingestion of food grown on contaminated soil. One potentially significant pathway for exposure to humans that requires further evaluation is the effect on indoor external γ-radiation levels resulting from the use of flyash in building materials. The combustion of natural gas in private dwellings is also discussed, and the radiological consequences are concluded to be generally insignificant, except under certain extraordinary circumstances.

  11. Ultrasound Guidance for Renal Tract Access and Dilation Reduces Radiation Exposure during Percutaneous Nephrolithotomy

    PubMed Central

    2016-01-01

    Purposes. To present our series of 38 prone percutaneous nephrolithotomy procedures performed with renal access and tract dilation purely under ultrasound guidance and describe the benefits and challenges accompanying this approach. Methods. Thirty-eight consecutive patients presenting for percutaneous nephrolithotomy for renal stone removal were included in this prospective cohort study. Ultrasonographic imaging in the prone position was used to obtain percutaneous renal access and guide tract dilation. Fluoroscopic screening was used only for nephrostomy tube placement. Preoperative, intraoperative, and postoperative procedural and patient data were collected for analysis. Results. Mean age of patients was 52.7 ± 17.2 years. Forty-five percent of patients were male with mean BMI of 26.1 ± 7.3 and mean stone size of 27.2 ± 17.6 millimeters. Renal puncture was performed successfully with ultrasonographic guidance in all cases with mean puncture time of 135.4 ± 132.5 seconds. Mean dilation time was 11.5 ± 3.8 min and mean stone fragmentation time was 37.5 ± 29.0 min. Mean total operative time was 129.3 ± 41.1. No patients experienced any significant immediate postoperative complication. All patients were rendered stone-free and no additional secondary procedures were required. Conclusions. Ultrasound guidance for renal access and tract dilation in prone percutaneous nephrolithotomy is a feasible and effective technique. It can be performed safely with significantly reduced fluoroscopic radiation exposure to the patient, surgeon, and intraoperative personnel. PMID:27042176

  12. Assessment of Health Consequences of Steel Industry Welders' Occupational Exposure to Ultraviolet Radiation.

    PubMed

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders' exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. In this case-control study, we measured the intensity of UV at the workers' wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders' wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm(2), respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures.

  13. Assessment of Health Consequences of Steel Industry Welders’ Occupational Exposure to Ultraviolet Radiation

    PubMed Central

    Zamanian, Zahra; Mortazavi, Saied Mohammad Javad; Asmand, Ebrahim; Nikeghbal, Kiana

    2015-01-01

    Background: Welding is among the most important frequently used processes in the industry with a wide range of applications from the food industry to aerospace and from precision tools to shipbuilding. The aim of this study was to assess the level of steel industry welders’ exposure to ultraviolet (UV) radiation and to investigate the health impacts of these exposures. Methods: In this case–control study, we measured the intensity of UV at the workers’ wrist in Fars Steel Company through manufacture of different types of heavy metal structures, using UV-meter model 666230 made by Leybold Co., from Germany. Results: The population under the study comprised 400 people including 200 welders as the exposed group and 200 nonwelders as the unexposed group. The results of the questionnaire were analyzed using SPSS software, version 19. The average, standard deviation, maximum and minimum of the UV at the welders’ wrist were 0.362, 0.346, 1.27, and 0.01 μW/cm2, respectively. There was a significantly (P < 0.01) higher incidence of cataracts, keratoconjunctivitis, dermatitis and erythema in welders than in their nonwelders. Conclusions: This study showed that the time period of UV exposure in welders is higher than the permissible contact threshold level. Therefore, considering the outbreak of the eye and skin disorders in the welders, decreasing exposure time, reducing UV radiation level, and using personal protective equipment seem indispensable. As exposure to UV radiation can be linked to different types of skin cancer, skin aging, and cataract, welders should be advised to decrease their occupational exposures. PMID:26900437

  14. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, Virginia E.

    2011-01-01

    Radiation exposure is one of the unique physiological challenges of human spaceflight that is not encountered on earth. While radiation exposure is known to impart physiological stresses and alter normal function, it is unclear how it specifically affects drug metabolism. A major concern is that the actions of medications used in spaceflight may deviate from the expectations formed from terrestrial use. This concern was investigated at the molecular level by analyzing how gamma radiation exposure affected gene expression in the livers of mice. Three different doses of radiation were administered and after various intervals of recovery time, gene expression was measured with RT-qPCR screening arrays for drug metabolism and DNA repair. After examining the results of 192 genes total from each of 72 mice, 65 genes were found to be significantly affected by at least one of the doses of radiation. In general, the genes affected are involved in the metabolism of drugs with lipid or steroid hormone-like structures, as well as the maintenance of redox homeostasis and repair of DNA damage.

  15. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    NASA Technical Reports Server (NTRS)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  16. The relationship between ultraviolet radiation exposure and vitamin D status.

    PubMed

    Engelsen, Ola

    2010-05-01

    This paper reviews the main factors influencing the synthesis of vitamin D, with particular focus on ultraviolet radiation exposure. On the global level, the main source of vitamin D is the sun. The effect of solar radiation on vitamin D synthesis depends to some extent on the initial vitamin D levels. At moderate to high latitudes, diet becomes an increasingly important source of vitamin D due to decreased solar intensity and cold temperatures, which discourage skin exposure. During the mid-winter season, these factors result in decreased solar radiation exposure, hindering extensively the synthesis of vitamin D in these populations.

  17. Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring

    PubMed Central

    Warden, Graham I.; Farkas, Cameron E.; Ikuta, Ichiro; Prevedello, Luciano M.; Andriole, Katherine P.; Khorasani, Ramin

    2012-01-01

    Purpose: To develop and validate an informatics toolkit that extracts anatomy-specific computed tomography (CT) radiation exposure metrics (volume CT dose index and dose-length product) from existing digital image archives through optical character recognition of CT dose report screen captures (dose screens) combined with Digital Imaging and Communications in Medicine attributes. Materials and Methods: This institutional review board–approved HIPAA-compliant study was performed in a large urban health care delivery network. Data were drawn from a random sample of CT encounters that occurred between 2000 and 2010; images from these encounters were contained within the enterprise image archive, which encompassed images obtained at an adult academic tertiary referral hospital and its affiliated sites, including a cancer center, a community hospital, and outpatient imaging centers, as well as images imported from other facilities. Software was validated by using 150 randomly selected encounters for each major CT scanner manufacturer, with outcome measures of dose screen retrieval rate (proportion of correctly located dose screens) and anatomic assignment precision (proportion of extracted exposure data with correctly assigned anatomic region, such as head, chest, or abdomen and pelvis). The 95% binomial confidence intervals (CIs) were calculated for discrete proportions, and CIs were derived from the standard error of the mean for continuous variables. After validation, the informatics toolkit was used to populate an exposure repository from a cohort of 54 549 CT encounters; of which 29 948 had available dose screens. Results: Validation yielded a dose screen retrieval rate of 99% (597 of 605 CT encounters; 95% CI: 98%, 100%) and an anatomic assignment precision of 94% (summed DLP fraction correct 563 in 600 CT encounters; 95% CI: 92%, 96%). Patient safety applications of the resulting data repository include benchmarking between institutions, CT protocol quality

  18. A study of smart card for radiation exposure history of patient.

    PubMed

    Rehani, Madan M; Kushi, Joseph F

    2013-04-01

    The purpose of this article is to undertake a study on developing a prototype of a smart card that, when swiped in a system with access to the radiation exposure monitoring server, will locate the patient's radiation exposure history from that institution or set of associated institutions to which it has database access. Like the ATM or credit card, the card acts as a secure unique "token" rather than having cash, credit, or dose data on the card. The system provides the requested radiation history report, which then can be printed or sent by e-mail to the patient. The prototype system is capable of extending outreach to wherever the radiation exposure monitoring server extends, at county, state, or national levels. It is anticipated that the prototype shall pave the way for quick availability of patient exposure history for use in clinical practice for strengthening radiation protection of patients.

  19. Medical management of three workers following a radiation exposure incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    House, R.A.; Sax, S.E.; Rumack, E.R.

    The medical management of three individuals involved in an exposure incident to whole-body radiation at a nuclear generating plant of a Canadian electrical utility is described. The exposure incident resulted in the two highest whole-body radiation doses ever received in a single event by workers in a Canadian nuclear power plant. The individual whole-body doses (127.4 mSv, 92.0 mSv, 22.4 mSv) were below the threshold for acute radiation sickness but the exposures still presented medical management problems related to assessment and counseling. Serial blood counting and lymphocyte cytogenetic analysis to corroborate the physical dosimetry were performed. All three employees experiencedmore » somatic symptoms due to stress and one employee developed post-traumatic stress disorder. This incident indicates that there is a need in such radiation exposure accidents for early and continued counseling of exposed employees to minimize the risk of development of stress-related symptoms.« less

  20. Ultraviolet Radiation: Human Exposure and Health Risks.

    ERIC Educational Resources Information Center

    Tenkate, Thomas D.

    1998-01-01

    Provides an overview of human exposure to ultraviolet radiation and associated health effects as well as risk estimates for acute and chronic conditions resulting from such exposure. Demonstrates substantial reductions in health risk that can be achieved through preventive actions. Also includes a risk assessment model for skin cancer. Contains 36…

  1. Sun Exposure and Its Effects on Human Health: Mechanisms through Which Sun Exposure Could Reduce the Risk of Developing Obesity and Cardiometabolic Dysfunction

    PubMed Central

    Fleury, Naomi; Geldenhuys, Sian; Gorman, Shelley

    2016-01-01

    Obesity is a significant burden on global healthcare due to its high prevalence and associations with chronic health conditions. In our animal studies, ongoing exposure to low dose ultraviolet radiation (UVR, found in sunlight) reduced weight gain and the development of signs of cardiometabolic dysfunction in mice fed a high fat diet. These observations suggest that regular exposure to safe levels of sunlight could be an effective means of reducing the burden of obesity. However, there is limited knowledge around the nature of associations between sun exposure and the development of obesity and cardiometabolic dysfunction, and we do not know if sun exposure (independent of outdoor activity) affects the metabolic processes that determine obesity in humans. In addition, excessive sun exposure has strong associations with a number of negative health consequences such as skin cancer. This means it is very important to “get the balance right” to ensure that we receive benefits without increasing harm. In this review, we detail the evidence around the cardiometabolic protective effects of UVR and suggest mechanistic pathways through which UVR could be beneficial. PMID:27727191

  2. Diagnostic medical imaging radiation exposure and risk of development of solid and hematologic malignancy.

    PubMed

    Fabricant, Peter D; Berkes, Marschall B; Dy, Christopher J; Bogner, Eric A

    2012-05-01

    Limiting patients' exposure to ionizing radiation during diagnostic imaging is of concern to patients and clinicians. Large single-dose exposures and cumulative exposures to ionizing radiation have been associated with solid tumors and hematologic malignancy. Although these associations have been a driving force in minimizing patients' exposure, significant risks are found when diagnoses are missed and subsequent treatment is withheld. Therefore, based on epidemiologic data obtained after nuclear and occupational exposures, dose exposure limits have been estimated. A recent collaborative effort between the US Food and Drug Administration and the American College of Radiology has provided information and tools that patients and imaging professionals can use to avoid unnecessary ionizing radiation scans and ensure use of the lowest feasible radiation dose necessary for studies. Further collaboration, research, and development should focus on producing technological advances that minimize individual study exposures and duplicate studies. This article outlines the research used to govern safe radiation doses, defines recent initiatives in decreasing radiation exposure, and provides orthopedic surgeons with techniques that may help decrease radiation exposure in their daily practice. Copyright 2012, SLACK Incorporated.

  3. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  4. Cumulative radiation exposure and cancer risk estimation in children with heart disease.

    PubMed

    Johnson, Jason N; Hornik, Christoph P; Li, Jennifer S; Benjamin, Daniel K; Yoshizumi, Terry T; Reiman, Robert E; Frush, Donald P; Hill, Kevin D

    2014-07-08

    Children with heart disease are frequently exposed to imaging examinations that use ionizing radiation. Although radiation exposure is potentially carcinogenic, there are limited data on cumulative exposure and the associated cancer risk. We evaluated the cumulative effective dose of radiation from all radiation examinations to estimate the lifetime attributable risk of cancer in children with heart disease. Children ≤6 years of age who had previously undergone 1 of 7 primary surgical procedures for heart disease at a single institution between 2005 and 2010 were eligible for the study. Exposure to radiation-producing examinations was tabulated, and cumulative effective dose was calculated in millisieverts. These data were used to estimate lifetime attributable risk of cancer above baseline using the approach of the Committee on Biological Effects of Ionizing Radiation VII. The cohort included 337 children exposed to 13 932 radiation examinations. Conventional radiographs represented 92% of examinations, whereas cardiac catheterization and computed tomography accounted for 81% of cumulative exposure. Overall median cumulative effective dose was 2.7 mSv (range, 0.1-76.9 mSv), and the associated lifetime attributable risk of cancer was 0.07% (range, 0.001%-6.5%). Median lifetime attributable risk of cancer ranged widely depending on surgical complexity (0.006%-1.6% for the 7 surgical cohorts) and was twice as high in females per unit exposure (0.04% versus 0.02% per 1-mSv effective dose for females versus males, respectively; P<0.001). Overall radiation exposures in children with heart disease are relatively low; however, select cohorts receive significant exposure. Cancer risk estimation highlights the need to limit radiation dose, particularly for high-exposure modalities. © 2014 American Heart Association, Inc.

  5. Risk Assessment of Radiation Exposure using Molecular Biodosimetry

    NASA Technical Reports Server (NTRS)

    Elliott, Todd F.; George, K.; Hammond, D. K.; Cucinotta, F. A.

    2007-01-01

    Current cytogenetic biodosimetry methods would be difficult to adapt to spaceflight operations, because they require toxic chemicals and a substantial amount of time to perform. In addition, current biodosimetry techniques are limited to whole body doses over about 10cGy. Development of new techniques that assess radiation exposure response at the molecular level could overcome these limitations and have important implications in the advancement of biodosimetry. Recent technical advances include expression profiling at the transcript and protein level to assess multiple biomarkers of exposure, which may lead to the development of a radiation biomarker panel revealing possible fingerprints of individual radiation sensitivity. So far, many biomarkers of interest have been examined in their response to ionizing radiation, such as cytokines and members of the DNA repair pathway. New technology, such as the Luminex system can analyze many biomarkers simultaneously in one sample.

  6. Exposure to solar ultraviolet radiation is associated with a decreased folate status in women of childbearing age.

    PubMed

    Borradale, D; Isenring, E; Hacker, E; Kimlin, M G

    2014-02-05

    In vitro studies indicate that folate in collected human blood is vulnerable to degradation after exposure to ultraviolet (UV) radiation. This has raised concerns about folate depletion in individuals with high sun exposure. Here, we investigate the association between personal solar UV radiation exposure and serum folate concentration, using a three-week prospective study that was undertaken in females aged 18-47years in Brisbane, Australia (153 E, 27 S). Following two weeks of supplementation with 500μg of folic acid daily, the change in serum folate status was assessed over a 7-day period of measured personal sun exposure. Compared to participants with personal UV exposures of <200 Joules per day, participants with personal UV exposures of 200-599 and >600 Joules per day had significantly higher depletion of serum folate (p=0.015). Multivariable analysis revealed personal UV exposure as the strongest predictor accounting for 20% of the overall change in serum folate (Standardised B=-0.49; t=-3.75; p=<0.01). These data show that increasing solar UV radiation exposures reduces the effectiveness of folic acid supplementation. The consequences of this association may be most pronounced for vulnerable individuals, such as women who are pregnant or of childbearing age with high sun exposures. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.

    PubMed

    Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A

    2015-07-01

    The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  8. Molecular effects of 1-naphthyl-methylcarbamate and solar radiation exposures on human melanocytes.

    PubMed

    Ferrucio, Bianca; Tiago, Manoela; Fannin, Richard D; Liu, Liwen; Gerrish, Kevin; Maria-Engler, Silvya Stuchi; Paules, Richard S; Barros, Silvia Berlanga de Moraes

    2017-02-01

    Carbaryl (1-naphthyl-methylcarbamate), a broad-spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, the main etiologic factor for skin carcinogenesis. We hypothesized that carbaryl exposure may increase deleterious effects of UV solar radiation on skin melanocytes. This study aimed to characterize human melanocytes after individual or combined exposure to carbaryl (100μM) and solar radiation (375mJ/cm 2 ). In a microarray analysis, carbaryl, but not solar radiation, induced an oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of Microphtalmia-associated Transcription Factor (MITF), the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Carbaryl and solar radiation induced a gene response suggestive of DNA damage and cell cycle alteration. The expression of CDKN1A, BRCA1/2 and MDM2 genes was notably more intense in the combined treatment group, in a synergistic manner. Flow cytometry assays demonstrated S-phase cell cycle arrest, reduced apoptosis levels and faster induction of cyclobutane pyrimidine dimers (CPD) lesions in carbaryl treated groups. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hand and body radiation exposure with the use of mini C-arm fluoroscopy.

    PubMed

    Tuohy, Christopher J; Weikert, Douglas R; Watson, Jeffry T; Lee, Donald H

    2011-04-01

    To determine whole body and hand radiation exposure to the hand surgeon wearing a lead apron during routine intraoperative use of the mini C-arm fluoroscope. Four surgeons (3 hand attending surgeons and 1 hand fellow) monitored their radiation exposure for a total of 200 consecutive cases (50 cases per surgeon) requiring mini C-arm fluoroscopy. Each surgeon measured radiation exposure with a badge dosimeter placed on the outside breast pocket of the lead apron (external whole body exposure), a second badge dosimeter under the lead apron (shielded whole body exposure), and a ring dosimeter (hand exposure). Completed records were noted in 198 cases, with an average fluoroscopy time of 133.52 seconds and average cumulative dose of 19,260 rem-cm(2) per case. The total measured radiation exposures for the (1) external whole body exposure dosimeters were 16 mrem (for shallow depth), 7 mrem (for eye depth), and less than 1 mrem (for deep depth); (2) shielded whole body badge dosimeters recorded less than 1 mrem; and (3) ring dosimeters totaled 170 mrem. The total radial exposure for 4 ring dosimeters that had registered a threshold of 30 mrem or more of radiation exposure was 170 mrem at the skin level, for an average of 42.5 mrem per dosimeter ring or 6.3 mrem per case. This study of whole body and hand radiation exposure from the mini C-arm includes the largest number of surgical cases in the published literature. The measured whole body and hand radiation exposure received by the hand surgeon from the mini C-arm represents a minimal risk of radiation, based on the current National Council on Radiation Protection and Management standards of annual dose limits (5,000 mrem per year for whole body and 50,000 mrem per year to the extremities). Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Reducing radiation exposure during CRT implant procedures: early experience with a sensor-based navigation system.

    PubMed

    Thibault, Bernard; Andrade, Jason G; Dubuc, Marc; Talajic, Mario; Guerra, Peter G; Dyrda, Katia; Macle, Laurent; Rivard, Léna; Roy, Denis; Mondésert, Blandine; Khairy, Paul

    2015-01-01

    Cardiac resynchronization therapy (CRT) implant procedures are often complex and prolonged, resulting in significant ionizing radiation (IR) exposure to the patient and operator. We report our early experience working with a novel sensor-based electromagnetic tracking system (MediGuide™, MDG, St. Jude Medical Inc., St. Paul, MN, USA), in terms of procedural IR exposure reduction. Information regarding patient demographics, procedural details, procedural duration, and IR exposure were prospectively collected on 130 consecutive CRT procedures performed between January 2013 and January 2014. Sixty procedures were performed with MDG guidance, and 70 were performed without MDG guidance. Despite a nonsignificant trend toward shorter procedure duration with the use of MDG (120 minutes vs 138 minutes with non-MDG, P = 0.088), a 66% reduction in total IR exposure (median 769 μGray · m(2) vs 2,608 μGray · m(2), P < 0.001) was found. This reduction was primarily driven by a >90% reduction in IR dose required to cannulate the coronary sinus (median 80 μGray · m(2) vs 922 μGray · m(2), P < 0.001), and to a lesser extent from a reduction in IR dose required for LV lead placement (median 330 μGray·m(2) vs 737 μGray · m(2), P = 0.059). In addition, a significant learning curve effect was observed with a significantly shorter procedural duration for the last 15 cases compared to the first 15 cases (median 98 minutes vs 175 minutes, P < 0.001). The nonfluoroscopic MDG positioning system is associated with a dramatic reduction in exposure to IR during CRT implant procedures, with a 90% decrease in the IR dose required to cannulate the coronary sinus. A steep learning curve was quantified. ©2014 Wiley Periodicals, Inc.

  11. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. Link to an... execution, or 952.223-72, Radiation protection and nuclear criticality: Preservation of Individual...

  12. Lead exposure in Mexican radiator repair workers.

    PubMed

    Dykeman, Ronald; Aguilar-Madrid, Guadalupe; Smith, Tom; Juárez-Pérez, Cuauhtemoc Arturo; Piacitelli, Gregory M; Hu, Howard; Hernandez-Avila, Mauricio

    2002-03-01

    Lead exposure was investigated among 73 Mexican radiator repair workers (RRWs), 12 members of their family (4 children and 8 wives), and 36 working controls. RRWs were employed at 4 radiator repair shops in Mexico City and 27 shops in Cuernavaca and surrounding areas. Exposure was assessed directly through the use of personal air sampling and hand wipe samples. In addition, industrial hygiene inspections were performed and detailed questionnaires were administered. Blood lead levels were measured by graphite furnace atomic absorption spectroscopy (AAS). The mean (SD) values for blood lead of the RRWs, 35.5 (13.5) microg/dl, was significantly greater than the same values for the working controls, 13.6 (8.7) microg/dl; P < 001. After excluding a single outlier (247 microg/m(3)), air lead levels ranged from 0 to 99 microg/m(3) with a mean (SD) value of 19 (23) microg/m(3) (median = 7.9 microg/m(3)). In a final multivariate regression model of elevated blood lead levels, the strongest predictors were smoking (vs. non-smoking), the number of radiators repaired per day on average, and the use (vs. non-use) of a uniform while at work, which were associated with blood lead elevations of 11.4 microg/dl, 1.95 microg/dl/radiator/day, and 16.4 microg/dl, respectively (all P <.05). Uniform use was probably a risk factor because they were not laundered regularly and consequently served as reservoir of contamination on which RRWs frequently wiped their hands. Lead exposure is a significant problem of radiator repair work, a small industry that is abundant in Mexico and other developing countries. Copyright 2002 Wiley-Liss, Inc.

  13. Buccal mucosa micronuclei counts in relation to exposure to low dose-rate radiation from the Chornobyl nuclear accident and other medical and occupational radiation exposures.

    PubMed

    Bazyka, D; Finch, S C; Ilienko, I M; Lyaskivska, O; Dyagil, I; Trotsiuk, N; Gudzenko, N; Chumak, V V; Walsh, K M; Wiemels, J; Little, M P; Zablotska, L B

    2017-06-23

    Ionizing radiation is a well-known carcinogen. Chromosome aberrations, and in particular micronuclei represent an early biological predictor of cancer risk. There are well-documented associations of micronuclei with ionizing radiation dose in some radiation-exposed groups, although not all. That associations are not seen in all radiation-exposed groups may be because cells with micronuclei will not generally pass through mitosis, so that radiation-induced micronuclei decay, generally within a few years after exposure. Buccal samples from a group of 111 male workers in Ukraine exposed to ionizing radiation during the cleanup activities at the Chornobyl nuclear power plant were studied. Samples were taken between 12 and 18 years after their last radiation exposure from the Chornobyl cleanup. The frequency of binucleated micronuclei was analyzed in relation to estimated bone marrow dose from the cleanup activities along with a number of environmental/occupational risk factors using Poisson regression adjusted for overdispersion. Among the 105 persons without a previous cancer diagnosis, the mean Chornobyl-related dose was 59.5 mSv (range 0-748.4 mSv). There was a borderline significant increase in micronuclei frequency among those reporting work as an industrial radiographer compared with all others, with a relative risk of 6.19 (95% CI 0.90, 31.08, 2-sided p = 0.0729), although this was based on a single person. There was a borderline significant positive radiation dose response for micronuclei frequency with increase in micronuclei per 1000 scored cells per Gy of 3.03 (95% CI -0.78, 7.65, 2-sided p = 0.1170), and a borderline significant reduction of excess relative MN prevalence with increasing time since last exposure (p = 0.0949). There was a significant (p = 0.0388) reduction in MN prevalence associated with bone X-ray exposure, but no significant trend (p = 0.3845) of MN prevalence with numbers of bone X-ray procedures. There are indications of

  14. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  15. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  16. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  17. 48 CFR 952.223-75 - Preservation of individual occupational radiation exposure records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... occupational radiation exposure records. 952.223-75 Section 952.223-75 Federal Acquisition Regulations System... Clauses 952.223-75 Preservation of individual occupational radiation exposure records. As prescribed at..., and health into work planning and execution, or 952.223-72, Radiation protection and nuclear...

  18. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  19. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  20. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  1. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  2. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the surveys required by paragraph (a) of this section in an area(s) where patients or human research... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by...

  3. Changes of reduced glutathion, glutathion reductase, and glutathione peroxidase after radiation in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erden, M.; Bor, N.M.

    1984-04-01

    In this series of experiments the protective action of reduced glutathion due to ionizing radiation has been studied. In the experimental group 18 guinea pigs were exposed to successive radiations of 150 rad 3 or 4 days apart. Total dose given amounted to 750 rad which is the LD50 for guinea pigs. Blood samples were taken 30 min after each exposure. The control series were sham radiated but otherwise treated identically. The cells of the removed blood samples were separated by centrifugation and were subjected to the reduced glutathion stability test. GSSGR, GPer, and LDH enzyme activities were also measuredmore » of which the latter served as a marked enzyme. It was found that LDH did not show any alteration after radiation. The reduced glutathion stability test showed a consistent but minor reduction (P greater than 0.05), in the experimental group. GSSGR enzyme activity on the other hand was reduced significantly (from 176.48 +/- 11.32 to 41.34 +/- 1.17 IU/ml of packed erythrocytes, P less than 0.001) in the same group. GPer activity showed a consistent but minor elevation during the early phase of the experimental group. It was later increased significantly beginning after 600 rad total radiation on the fourth session (P less than 0.050).« less

  4. Late skin damage in rabbits and monkeys after exposure to particulate radiations

    NASA Technical Reports Server (NTRS)

    Bergtold, D. S.; Cox, A. B.; Lett, J. T.; Su, C. M.

    1983-01-01

    Preliminary results are reported of experiments on the late effects of exposure to particulate radiations on stem cell populations. Skin biopsies were taken from the ears of rabbits irradiated 2-5 years previously with 530 MeV/amu Ar ions (LET 90 keV/micron), or 365 MeV/amu Ne ions (LET 35 keV micron), and from the chests and inner thighs of rhesus monkeys irradiated 16-18 years previously with 32-MeV protons (LET about 1.2 keV/micron). Skin fibroblast cultures obtained from the biopsy samples in rabbits were observed to undergo dose-dependent decreases in in vitro life span, with estimated survival curves showing the effects of Ar-ion irradiation to be more severe than those of Ne-ion irradiation. In addition, the healing of the biopsy wound was observed to become slower as radiation dose increased. In the monkey, radiation reduced the average number of fibroblasts at the time of cessation of growth in culture. Results thus demonstrate the capacity of skin sampling to reveal stem cell destruction, and have important implications for astronauts and other persons at risk of particle exposure with regard to healing responses to trauma or surgery.

  5. A translatable predictor of human radiation exposure.

    PubMed

    Lucas, Joseph; Dressman, Holly K; Suchindran, Sunil; Nakamura, Mai; Chao, Nelson J; Himburg, Heather; Minor, Kerry; Phillips, Gary; Ross, Joel; Abedi, Majid; Terbrueggen, Robert; Chute, John P

    2014-01-01

    Terrorism using radiological dirty bombs or improvised nuclear devices is recognized as a major threat to both public health and national security. In the event of a radiological or nuclear disaster, rapid and accurate biodosimetry of thousands of potentially affected individuals will be essential for effective medical management to occur. Currently, health care providers lack an accurate, high-throughput biodosimetric assay which is suitable for the triage of large numbers of radiation injury victims. Here, we describe the development of a biodosimetric assay based on the analysis of irradiated mice, ex vivo-irradiated human peripheral blood (PB) and humans treated with total body irradiation (TBI). Interestingly, a gene expression profile developed via analysis of murine PB radiation response alone was inaccurate in predicting human radiation injury. In contrast, generation of a gene expression profile which incorporated data from ex vivo irradiated human PB and human TBI patients yielded an 18-gene radiation classifier which was highly accurate at predicting human radiation status and discriminating medically relevant radiation dose levels in human samples. Although the patient population was relatively small, the accuracy of this classifier in discriminating radiation dose levels in human TBI patients was not substantially confounded by gender, diagnosis or prior exposure to chemotherapy. We have further incorporated genes from this human radiation signature into a rapid and high-throughput chemical ligation-dependent probe amplification assay (CLPA) which was able to discriminate radiation dose levels in a pilot study of ex vivo irradiated human blood and samples from human TBI patients. Our results illustrate the potential for translation of a human genetic signature for the diagnosis of human radiation exposure and suggest the basis for further testing of CLPA as a candidate biodosimetric assay.

  6. Occupational external exposure to ionising radiation in France (2005-2011).

    PubMed

    Feuardent, J; Scanff, P; Crescini, D; Rannou, A

    2013-12-01

    The Institute for Radiological Protection and Nuclear Safety (IRSN) produces the French annual report on occupational exposure to ionising radiation, collecting all national data and aggregating the results according to a unique activity classification expected to be shared by all involved in personal dosimetric monitoring (employers, external dosimetry services and IRSN). Nearly 344,000 monitored workers were counted in France in 2011, with a collective dose of 64.24 man.Sv. The average annual dose (as calculated over the number of measurably exposed workers) differed among the main activity fields: 0.54 mSv in medical and veterinary activities, 1.18 mSv in the nuclear field, 1.60 mSv in non-nuclear industry and 0.47 mSv in research activities. Because of improved knowledge about worker activities, the results for year 2011 are detailed per activity sectors in each field. Lasting limitations prevent from having complete and reliable worker activity information. Solutions are considered to reduce the inaccuracy in the annually published statistics. The evolution of occupational external exposure to ionising radiation from 2005 to 2011 in France is then presented for the main activity fields.

  7. Current methods of monitoring radiation exposure from CT.

    PubMed

    Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H

    2013-09-01

    Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.

  8. [Radiation exposure during spiral-CT of the paranasal sinuses].

    PubMed

    Dammann, F; Momino-Traserra, E; Remy, C; Pereira, P L; Baumann, I; Koitschev, A; Claussen, C D

    2000-03-01

    Determination of the radiation doses in spiral CT of the paranasal sinuses using a variety of mAs values and scan protocols. CT examinations of the paranasal sinuses were performed using an Alderson-Rando phantom. Radiation dose was determined by LiF-TLD at the level of high risk organs in the head and neck region for combinations of different scan parameters (2/3, 3/3, 3/4 mm) and decreasing charges (200, 150, 100, 50, 25 mAs) on a spiral CT. Additional measurements were performed on three other CT scanners using the 2/3 mm protocol at 50 mAs, and a single slice technique (5/5 mm) on one scanner. The lowest dose values found were 1.88 mGy for the eye lenses, 1.35 mGy for the parotid gland, 0.03 mGy for the thyroid gland and 0.1 mGy for the medulla oblongata using 2 mm collimation and 3 mm table feed at 25 mAs. Maximal dose values resulted using the 3/3 mm protocol at 200 mAs (31.00 mGy for the eye lense, 0.65 mGy for the thyroid gland). There were no significant differences found between the different CT scanners. Using up-to-date CT scanners, radiation exposure may be reduced by a factor of 15-20 compared to that of conventional CT technique. Thus, the exposure of the eye lens comes to only a thousandth of the value supposedly inducing a cataract, as published by the ICRP.

  9. Reducing operator radiation exposure during cardiac resynchronization therapy.

    PubMed

    Brambilla, Marco; Occhetta, Eraldo; Ronconi, Martina; Plebani, Laura; Carriero, Alessandro; Marino, Paolo

    2010-12-01

    To quantify the reduction in equivalent dose at operator's hand that can be achieved by placement of a radiation-absorbing drape (RADPAD) during long-lasting cardiac resynchronization therapy (CRT) procedures. This is a prospective observational study that included 22 consecutive patients with drug-refractory heart failure who underwent implantation of a CRT device. The cases were randomly assigned to Group A (11 cases), performed without RADPAD, and to Group B (11 cases), performed using RADPAD. Dose equivalent at the examiner's hand was measured as H(p)(0.07) and as a time-adjusted H(p)(0.07) rate (mGy/min) with a direct reading dosimeter. The mean fluoroscopy time was 20.8 ± 7.7 min and the mean dose area product (DAP) was 118.6 ± 45.3 Gy cm(2). No significant differences were found between body mass index, fluoroscopy time, and DAP between patients examined with or without RADPAD. The correlation between the fluoroscopy time and the DAP was high (R(2) = 0.94, P < 0.001). Mean dose and dose rate measurement without the RADPAD at the finger and hand were H(p)(0.07) = 1.27 ± 0.47 mGy per procedure and H(p)(0.07) rate = 0.057 ± 0.011 mGy/min, respectively. The dosage was reduced with the RADPAD to H(p)(0.07) = 0.48 ± 0.20 (P < 0.05) and to H(p)(0.07) rate = 0.026 ± 0.008 (P < 0.001), respectively. A mean reduction of 54% in the equivalent dose rate to the operator's hand can be achieved with the use of RADPAD. The use of the RADPAD in CRT devices implantation will make unlikely the necessity of limiting the yearly number of implants for high volume operators.

  10. Exposure of the examiner to radiation during myelography versus radiculography and root block: A comparative study.

    PubMed

    Yamane, Kentaro; Kai, Nobuo; Miyamoto, Tadashi; Matsushita, Tomohiro

    2017-03-01

    Exposure to radiation over many years prompts concerns regarding potential health-related effects, particularly the incidence of cataracts and the development of cancer. The purpose of this study was to examine and compare the exposure of the examiner to radiation during myelography versus radiculography and root block. A total of 114 examinations were performed in our institute in the 6 months. Sixty-two examinations were performed during myelography in the first 3 months (MG group), while 52 were performed during radiculography and root block in the last 3 months (RB group). The examiner wore a torso protector, a neck protector, radiation protection gloves, and radiation protection glasses. Optically stimulated luminescence (OSL) dosimeter badges were placed on both the inside and the outside of each protector. The dosimeters were exchanged every month. Radiation doses (mSv) were measured as the integrated radiation quantity every month from the OSL dosimeters. The effective dose and the equivalent doses of hand, skin, and eyes were investigated. The mean equivalent doses were significantly lower outside the neck, torso, eye protectors, and inside the torso protector in the RB group than in the MG group. Conversely, the mean equivalent dose was significantly lower outside the hand protector in the MG group than in the RB group. The use of a neck protector significantly decreased the effective dose compared to the non-use of a neck protector in the RB group. The present study showed the standard radiation exposure to the examiner during myelography, radiculography, and root block. Receiving full protection including a neck protector and protection gloves is an easy and reliable means to reduce radiation exposure. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  11. Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.

    PubMed

    Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L

    2017-11-01

    This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.

  12. Ionizing Radiation Environments and Exposure Risks

    NASA Astrophysics Data System (ADS)

    Kim, M. H. Y.

    2015-12-01

    Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.

  13. Summary of retrospective asbestos and welding fume exposure estimates for a nuclear naval shipyard and their correlation with radiation exposure estimates.

    PubMed

    Zaebst, D D; Seel, E A; Yiin, J H; Nowlin, S J; Chen, P

    2009-07-01

    In support of a nested case-control study at a U.S. naval shipyard, the results of the reconstruction of historical exposures were summarized, and an analysis was undertaken to determine the impact of historical exposures to potential chemical confounders. The nested case-control study (N = 4388) primarily assessed the relationship between lung cancer and external ionizing radiation. Chemical confounders considered important were asbestos and welding fume (as iron oxide fume), and the chromium and nickel content of welding fume. Exposures to the potential confounders were estimated by an expert panel based on a set of quantitatively defined categories of exposure. Distributions of the estimated exposures and trends in exposures over time were examined for the study population. Scatter plots and Spearman rank correlation coefficients were used to assess the degree of association between the estimates of exposure to asbestos, welding fume, and ionizing radiation. Correlation coefficients were calculated separately for 0-, 15-, 20-, and 25-year time-lagged cumulative exposures, total radiation dose (which included medical X-ray dose) and occupational radiation dose. Exposed workers' estimated cumulative exposures to asbestos ranged from 0.01 fiber-days/cm(3) to just under 20,000 fiber-days/cm(3), with a median of 29.0 fiber-days/cm(3). Estimated cumulative exposures to welding fume ranged from 0.16 mg-days/m(3) to just over 30,000 mg-days/m(3), with a median of 603 mg-days/m(3). Spearman correlation coefficients between cumulative radiation dose and cumulative asbestos exposures ranged from 0.09 (occupational dose) to 0.47 (total radiation dose), and those between radiation and welding fume from 0.14 to 0.47. The estimates of relative risk for ionizing radiation and lung cancer were unchanged when lowest and highest estimates of asbestos and welding fume were considered. These results suggest a fairly large proportion of study population workers were exposed to

  14. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  15. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  16. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  17. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  18. 28 CFR 79.44 - Proof of working level month exposure to radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiation. 79.44 Section 79.44 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of working level month exposure to radiation. (a) If one or more of the sources in § 79.43(a) contain a...

  19. 38 CFR 3.715 - Radiation Exposure Compensation Act of 1990, as amended.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Radiation Exposure... Benefits and Elections § 3.715 Radiation Exposure Compensation Act of 1990, as amended. (a) Compensation. (1) A radiation-exposed veteran, as defined in 38 CFR 3.309(d)(3), who receives a payment under the...

  20. Collection of DICOM RDSR (Digital Imaging and Communication in Medicine, Radiation Dose Structured Report) Information Aimed at Reducing Patient Exposure Dose.

    PubMed

    Morota, Koichi; Moritake, Takashi; Sun, Lue; Ishihara, Takahiro; Kuma, Natsuyo; Murata, Satomi; Yamada, Takahiro; Okazaki, Ryuji

    2016-01-01

    The recent progress in angiography technology bestows benefits on patients for minimally invasive than surgery, while there has been an increase in the number of cases involving stochastic effects, such as radiation dermatitis, resulting from upgrading of the procedure because of an extension of the time for fluoroscopy and the number of shots. Recent CT equipment saves the dose data along with image data about the information management for patient exposure dose, which is used for management of individual cumulative dose and the presumed effective dose, using digital imaging and communication in medicine (DICOM). We extracted detailed information about shooting conditions and dose from the DICOM radiation dose structured report (DICOM RDSR) in the angiography area, and evaluated the trend of patient exposure dose in each procedure. As a result, we found that cases exceeding 3 Gy which needed observation in the head region were 16.7% and in the heart region were 27.3%. We also found that angiography had a higher dose of shooting than did fluoroscopy, and that the diagnosis and treatment with tumor involvement required a exposure dose than did vascular lesion. In this paper, we review the shooting conditions as a root of DICOM RDSR information and consider the possibility of planning for further reduction of the exposure dose.

  1. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    NASA Astrophysics Data System (ADS)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  2. Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi.

    PubMed

    Jamal, Joseph E; Armenakas, Noel A; Sosa, R Ernest; Fracchia, John A

    2011-11-01

    The efficacy of computed tomography (CT) in detailing upper urinary tract calculi is well established. There is no established acceptable annual recommended limit for medical exposure, yet the global accepted upper limit for occupational radiation exposure is <50 millisieverts (mSv) in any one year. We sought to appreciate the CT and fluoroscopic radiation exposure to our patients undergoing endoscopic removal of upper tract calculi during the periprocedure period. All patients undergoing upper urinary endoscopic stone removal between 2005 and 2009 were identified. To calculate the cumulative radiation exposure, we included all ionizing radiation imaging performed during a periprocedure period, which we defined as ≤90 days pre- and post-therapeutic procedure. A total of 233 upper urinary tract therapeutic patient stone procedures were identified; 127 patients underwent ureteroscopy (URS) and 106 patients underwent percutaneous nephrolithotomy (PCNL). A mean 1.58 CTs were performed per patient. Ninety (38.6%) patients underwent ≥2 CTs in the periprocedure period, with an average number in this group of 2.49 CT/patient, resulting in approximately 49.8 mSv of CT radiation exposure. Patients who were undergoing URS were significantly more likely to have multiple CTs (P=0.003) than those undergoing PCNL. Median fluoroscopic procedure exposures were 43.3 mGy for patients who were undergoing PCNL and 27.6 mGy for those patients undergoing URS. CT radiation exposure in the periprocedure period for patients who were undergoing endoscopic upper tract stone removal is considerable. Added to this is the procedure-related fluoroscopic radiation exposure. Urologic surgeons should be aware of the cumulative amount of ionizing radiation received by their patients from multiple sources.

  3. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  4. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Radiation Exposure Compensation Act... JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part 79—Radiation Exposure Compensation Act Offset Worksheet—On Site Participants Radiation Exposure...

  5. Fluoroscopic exposure in modern spinal surgery.

    PubMed

    Fransen, Patrick

    2011-06-01

    The widespread use of minimally invasive and other spinal procedures raises concern about the peroperative radiation exposure to surgeon and patient. The authors noted the fluoroscopy time and the radiation dose, as read from the image amplifier, in 95 spinal procedures. The results of this prospective study varied widely between different operations. Percutaneous surgery was associated with more exposure than open surgery. For instance, the average radiation dose per pedicle screw was 3.2 times higher with percutaneous insertion than with an open approach. Therefore, efforts to reduce fluoroscopy time and radiation exposure should be made when using minimally invasive percutaneous surgical techniques. Preventive measures for the surgeon, such as lead aprons and gloves, thyroid shields, radioprotective glasses and staying away from the beam are recommended. Still from the surgeon's view-point, source inferior positioning of the image amplifier is indicated for the AP view, as well as monitoring of the radiation exposure. Finally, the difference in fluoroscopy time and radiation exposure between surgeons for the same procedure stresses the fact that peroperative radiation may be reduced by simple awareness and by training.

  6. Radiation Exposure and Attributable Cancer Risk in Patients With Esophageal Atresia.

    PubMed

    Yousef, Yasmine; Baird, Robert

    2018-02-01

    Cases of esophageal carcinoma have been documented in survivors of esophageal atresia (EA). Children with EA undergo considerable amounts of diagnostic imaging and consequent radiation exposure potentially increasing their lifetime cancer mortality risk. This study evaluates the radiological procedures performed on patients with EA and estimates their cumulative radiation exposure and attributable lifetime cancer mortality risk. Medical records of patients with EA managed at a tertiary care center were reviewed for demographics, EA subtype, and number and type of radiological investigations. Existing normative data were used to estimate the cumulative radiation exposure and lifetime cancer risk per patient. The present study included 53 patients with a mean follow-up of 5.7 years. The overall median and maximum estimated effective radiation dose in the neonatal period was 5521.4 μSv/patient and 66638.6 μSv/patient, respectively. This correlates to a median and maximum estimated cumulative lifetime cancer mortality risk of 1:1530 and 1:130, respectively. Hence, radiation exposure in the neonatal period increased the cumulative cancer mortality risk a median of 130-fold and a maximum of 1575-fold in EA survivors. Children with EA are exposed to significant amounts of radiation and an increased estimated cumulative cancer mortality risk. Efforts should be made to eliminate superfluous imaging.

  7. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    PubMed

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.

  8. Diet as a factor in behavioral radiation protection following exposure to heavy particles

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Shukitt-Hale, Barbara; Joseph, James; Todd, Paul

    2005-01-01

    Major risks associated with radiation exposures on deep space missions include carcinogenesis due to heavy-particle exposure of cancer-prone tissues and performance decrements due to neurological damage produced by heavy particles. Because exposure to heavy particles can cause oxidative stress, it is possible that antioxidants can be used to mitigate these risks (and possibly some health risks of microgravity). To assess the capacity of antioxidant diets to mitigate the effects of exposure to heavy particles, rats were maintained on antioxidant diets containing 2% blueberry or strawberry extract or a control diet for 8 weeks prior to exposure to 1.5 or 2.0 Gy of accelerated iron particles at Brookhaven National Laboratory. Following irradiation rats were tested on a series of behavioral tasks: amphetamine-induced taste aversion learning, operant responding and spatial learning and memory. The results indicated that the performance of the irradiated rats maintained on the antioxidant diets was, in general, significantly better than that of the control animals, although the effectiveness of the diets ameliorating the radiation-induced deterioration in performance varied as a function of both the specific diet and the specific endpoint. In addition, animals fed antioxidant diets prior to exposure showed reduced heavy particle-induced tumorigenesis one year after exposure compared to the animals fed the control diet. These results suggest that antioxidant diets have the potential to serve as part of a system designed to provide protection to astronauts against the effects of heavy particles on exploratory missions outside the magnetic field of the earth.

  9. Cancer risk estimation caused by radiation exposure during endovascular procedure

    NASA Astrophysics Data System (ADS)

    Kang, Y. H.; Cho, J. H.; Yun, W. S.; Park, K. H.; Kim, H. G.; Kwon, S. M.

    2014-05-01

    The objective of this study was to identify the radiation exposure dose of patients, as well as staff caused by fluoroscopy for C-arm-assisted vascular surgical operation and to estimate carcinogenic risk due to such exposure dose. The study was conducted in 71 patients (53 men and 18 women) who had undergone vascular surgical intervention at the division of vascular surgery in the University Hospital from November of 2011 to April of 2012. It had used a mobile C-arm device and calculated the radiation exposure dose of patient (dose-area product, DAP). Effective dose was measured by attaching optically stimulated luminescence on the radiation protectors of staff who participates in the surgery to measure the radiation exposure dose of staff during the vascular surgical operation. From the study results, DAP value of patients was 308.7 Gy cm2 in average, and the maximum value was 3085 Gy cm2. When converted to the effective dose, the resulted mean was 6.2 m Gy and the maximum effective dose was 61.7 milliSievert (mSv). The effective dose of staff was 3.85 mSv; while the radiation technician was 1.04 mSv, the nurse was 1.31 mSv. All cancer incidences of operator are corresponding to 2355 persons per 100,000 persons, which deemed 1 of 42 persons is likely to have all cancer incidences. In conclusion, the vascular surgeons should keep the radiation protection for patient, staff, and all participants in the intervention in mind as supervisor of fluoroscopy while trying to understand the effects by radiation by themselves to prevent invisible danger during the intervention and to minimize the harm.

  10. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  11. Overview on association of different types of leukemias with radiation exposure.

    PubMed

    Gluzman, D F; Sklyarenko, L M; Zavelevich, M P; Koval, S V; Ivanivska, T S; Rodionova, N K

    2015-06-01

    Exposure to ionizing radiation is associated with increasing risk of various types of hematological malignancies. The results of major studies on association of leukemias and radiation exposure of large populations in Japan and in Ukraine are analyzed. The patterns of different types of leukemia in 295 Chernobyl clean-up workers diagnosed according to the criteria of up-to-date World Health Organization classification within 10-25 years following Chernobyl catastrophe are summarized. In fact, a broad spectrum of radiation-related hematological malignancies has been revealed both in Life Span Study in Japan and in study of Chernobyl clean-up workers in Ukraine. The importance of the precise diagnosis of tumors of hematopoietic and lymphoid tissues according to up-to-date classifications for elucidating the role of radiation as a causative factor of leukemias is emphasized. Such studies are of high importance since according to the recent findings, radiation-associated excess risks of several types of leukemias seem to persist throughout the follow-up period up to 55 years after the radiation exposure.

  12. Comparative occupational radiation exposure between fixed and mobile imaging systems.

    PubMed

    Kendrick, Daniel E; Miller, Claire P; Moorehead, Pamela A; Kim, Ann H; Baele, Henry R; Wong, Virginia L; Jordan, David W; Kashyap, Vikram S

    2016-01-01

    Endovascular intervention exposes surgical staff to scattered radiation, which varies according to procedure and imaging equipment. The purpose of this study was to determine differences in occupational exposure between procedures performed with fixed imaging (FI) in an endovascular suite compared with conventional mobile imaging (MI) in a standard operating room. A series of 116 endovascular cases were performed over a 4-month interval in a dedicated endovascular suite with FI and conventional operating room with MI. All cases were performed at a single institution and radiation dose was recorded using real-time dosimetry badges from Unfors RaySafe (Hopkinton, Mass). A dosimeter was mounted in each room to establish a radiation baseline. Staff dose was recorded using individual badges worn on the torso lead. Total mean air kerma (Kar; mGy, patient dose) and mean case dose (mSv, scattered radiation) were compared between rooms and across all staff positions for cases of varying complexity. Statistical analyses for all continuous variables were performed using t test and analysis of variance where appropriate. A total of 43 cases with MI and 73 cases with FI were performed by four vascular surgeons. Total mean Kar, and case dose were significantly higher with FI compared with MI. (mean ± standard error of the mean, 523 ± 49 mGy vs 98 ± 19 mGy; P < .00001; 0.77 ± 0.03 mSv vs 0.16 ± 0.08 mSv, P < .00001). Exposure for the primary surgeon and assistant was significantly higher with FI compared with MI. Mean exposure for all cases using either imaging modality, was significantly higher for the primary surgeon and assistant than for support staff (ie, nurse, radiology technologist) beyond 6 feet from the X-ray source, indicated according to one-way analysis of variance (MI: P < .00001; FI: P < .00001). Support staff exposure was negligible and did not differ between FI and MI. Room dose stratified according to case complexity (Kar) showed statistically significantly

  13. Factors modifying the response of large animals to low-intensity radiation exposure

    NASA Technical Reports Server (NTRS)

    Page, N. P.; Still, E. T.

    1972-01-01

    In assessing the biological response to space radiation, two of the most important modifying factors are dose protraction and dose distribution to the body. Studies are reported in which sheep and swine were used to compare the hematology and lethality response resulting from radiation exposure encountered in a variety of forms, including acute (high dose-rate), chronic (low dose-rate), combinations of acute and chronic, and whether received as a continuous or as fractionated exposure. While sheep and swine are basically similar in response to acute radiation, their sensitivity to chronic irradiation is markedly different. Sheep remain relatively sensitive as the radiation exposure is protracted while swine are more resistant and capable of surviving extremely large doses of chronic irradiation. This response to chronic irradiation correlated well with changes in radiosensitivity and recovery following an acute, sublethal exposure.

  14. Modeling of urban trees' effects on reducing human exposure to UV radiation in Seoul, Korea

    Treesearch

    Hang Ryeol Na; Gordon M. Heisler; David J. Nowak; Richard H. Grant

    2014-01-01

    A mathematical model isconstructed for quantifying urban trees’ effects on mitigating the intensity of ultraviolet (UV) radiation on the ground within different landuse types across a city. The model is based upon local field data, meteorological data and equations designed to predict the reduced UV fraction due to trees at the ground level. Trees in Seoul, Korea (2010...

  15. Radiation exposure of patient and surgeon in minimally invasive kidney stone surgery.

    PubMed

    Demirci, A; Raif Karabacak, O; Yalçınkaya, F; Yiğitbaşı, O; Aktaş, C

    2016-05-01

    Percutaneous nephrolithotomy (PNL) and retrograde intrarenal surgery (RIRS) are the standard treatments used in the endoscopic treatment of kidney stones depending on the location and the size of the stone. The purpose of the study was to show the radiation exposure difference between the minimally invasive techniques by synchronously measuring the amount of radiation the patients and the surgeon received in each session, which makes our study unique. This is a prospective study which included 20 patients who underwent PNL, and 45 patients who underwent RIRS in our clinic between June 2014 and October 2014. The surgeries were assessed by dividing them into three steps: step 1: the access sheath or ureter catheter placement, step 2: lithotripsy and collection of fragments, and step 3: DJ catheter or re-entry tube insertion. For the PNL and RIRS groups, mean stone sizes were 30mm (range 16-60), and 12mm (range 7-35); mean fluoroscopy times were 337s (range 200-679), and 37s (range 7-351); and total radiation exposures were 142mBq (44.7 to 221), and 4.4mBq (0.2 to 30) respectively. Fluoroscopy times and radiation exposures at each step were found to be higher in the PNL group compared to the RIRS group. When assessed in itself, the fluoroscopy time and radiation exposure were stable in RIRS, and the radiation exposure was the highest in step 1 and the lowest in step 3 in PNL. When assessed for the 19 PNL patients and the 12 RIRS patients who had stone sizes≥2cm, the fluoroscopy time in step 1, and the radiation exposure in steps 1 and 2 were found to be higher in the PNL group than the RIRS group (P<0.001). Although there is need for more prospective randomized studies, RIRS appears to be a viable alternate for PNL because it has short fluoroscopy time and the radiation exposure is low in every step. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Method for minimizing the radiation exposure from scoliosis radiographs. [X ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Smet, A.A.; Fritz, S.L.; Asher, M.A.

    1981-01-01

    The radiation exposure resulting from standard scoliosis radiographs was determined for eighteen adolescent girls. The risk of inducing breast cancer was estimated from the skin-exposure doses. The average skin exposure to the breasts was 59.6 millirads (0.59 mGy) for the anteroposterior radiograph. Assuming a total of twenty-two anteroposterior radiographs during a course of treatment, the cumulative exposure would result in a 1.35% relative increase in the risk of development of breast cancer. By utilizing collimation of the x-ray beam and proper selection of grids, films, and screens, the radiation risk of scoliosis radiographs is minimized.

  17. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    NASA Technical Reports Server (NTRS)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  18. Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.

    PubMed

    Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M

    2016-06-01

    Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.

  19. Persistent nature of alterations in cognition and neuronal circuit excitability after exposure to simulated cosmic radiation in mice.

    PubMed

    Parihar, Vipan K; Maroso, Mattia; Syage, Amber; Allen, Barrett D; Angulo, Maria C; Soltesz, Ivan; Limoli, Charles L

    2018-07-01

    Of the many perils associated with deep space travel to Mars, neurocognitive complications associated with cosmic radiation exposure are of particular concern. Despite these realizations, whether and how realistic doses of cosmic radiation cause cognitive deficits and neuronal circuitry alterations several months after exposure remains unclear. In addition, even less is known about the temporal progression of cosmic radiation-induced changes transpiring over the duration of a time period commensurate with a flight to Mars. Here we show that rodents exposed to the second most prevalent radiation type in space (i.e. helium ions) at low, realistic doses, exhibit significant hippocampal and cortical based cognitive decrements lasting 1 year after exposure. Cosmic-radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in cognitive flexibility and reduced rates of fear extinction, elevated anxiety and depression like behavior. At the circuit level, irradiation caused significant changes in the intrinsic properties (resting membrane potential, input resistance) of principal cells in the perirhinal cortex, a region of the brain implicated by our cognitive studies. Irradiation also resulted in persistent decreases in the frequency and amplitude of the spontaneous excitatory postsynaptic currents in principal cells of the perirhinal cortex, as well as a reduction in the functional connectivity between the CA1 of the hippocampus and the perirhinal cortex. Finally, increased numbers of activated microglia revealed significant elevations in neuroinflammation in the perirhinal cortex, in agreement with the persistent nature of the perturbations in key neuronal networks after cosmic radiation exposure. These data provide new insights into cosmic radiation exposure, and reveal that even sparsely ionizing particles can disrupt the neural circuitry of the brain to compromise cognitive function over surprisingly protracted

  20. Radiation exposure from work-related medical X-rays at the Portsmouth Naval Shipyard.

    PubMed

    Daniels, Robert D; Kubale, Travis L; Spitz, Henry B

    2005-03-01

    Previous analyses suggest that worker radiation dose may be significantly increased by routine occupational X-ray examinations. Medical exposures are investigated for 570 civilian workers employed at the Portsmouth Naval Shipyard (PNS) at Kittery, Maine. The research objective was to determine the radiation exposure contribution of work-related chest X-rays (WRX) relative to conventional workplace radiation sources. Methods were developed to estimate absorbed doses to the active (hematopoietic) bone marrow from X-ray examinations and workplace exposures using data extracted from worker dosimetry records (8,468) and health records (2,453). Dose distributions were examined for radiation and non-radiation workers. Photofluorographic chest examinations resulted in 82% of the dose from medical sources. Radiation workers received 26% of their collective dose from WRX and received 66% more WRX exposure than non-radiation workers. WRX can result in a significant fraction of the total dose, especially for radiation workers who were more likely to be subjected to routine medical monitoring. Omission of WRX from the total dose is a likely source of bias that can lead to dose category misclassification and may skew the epidemiologic dose-response assessment for cancers induced by the workplace.

  1. Exposure to mobile phone radiation opens new horizons in Alzheimer's disease treatment.

    PubMed

    Mortazavi, Sar; Shojaei-Fard, Mb; Haghani, M; Shokrpour, N; Mortazavi, Smj

    2013-09-01

    Alzheimer's disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer's disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer's disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease.

  2. Changes in Liver Metabolic Gene Expression from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Peters, C. P.; Wotring, V. E.

    2012-01-01

    Increased exposure to radiation is one physiological stressor associated with spaceflight. While known to alter normal physiological function, how radiation affects metabolism of administered medications is unclear. Crew health could be affected if the actions of medications used in spaceflight deviated from expectations formed during terrestrial medication use. Three different doses of gamma radiation (50 mGy - 6.05 Gy) and a sham were administered to groups of 6 mice each, and after various intervals of recovery time, liver gene expression was measured with RT-qPCR arrays for drug metabolism and DNA repair enzymes. Results indicated approx.65 genes of the 190 tested were significantly affected by at least one of the radiation doses. Many of the affected genes are involved in the metabolism of drugs with hydrophobic or steroid-like structures, maintenance of redox homeostasis and repair of DNA damage. Most affected genes returned to near control expression levels by 7 days post-treatment. With 6 Gy exposure, metallothionein expression was 132-fold more than control at the 4 hr time point, and fell at each later time point (11-fold at 24 hrs, and 8-fold at 7 days). In contrast, Cyp17a1 showed a 4-fold elevation at 4 hrs after exposure and remained constant for 7 days.

  3. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    NASA Astrophysics Data System (ADS)

    Marica, Lucia; Moraru, Luminita

    2011-12-01

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performed on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.

  4. Risk assessment and management of radiofrequency radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile

    2013-11-13

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  5. Risk assessment and management of radiofrequency radiation exposure

    NASA Astrophysics Data System (ADS)

    Dabala, Dana; Surducan, Emanoil; Surducan, Vasile; Neamtu, Camelia

    2013-11-01

    Radiofrequency radiation (RFR) industry managers, occupational physicians, security department, and other practitioners must be advised on the basic of biophysics and the health effects of RF electromagnetic fields so as to guide the management of exposure. Information on biophysics of RFR and biological/heath effects is derived from standard texts, literature and clinical experiences. Emergency treatment and ongoing care is outlined, with clinical approach integrating the circumstances of exposure and the patient's symptoms. Experimental risk assessment model in RFR chronic exposure is proposed. Planning for assessment and monitoring exposure, ongoing care, safety measures and work protection are outlining the proper management.

  6. Computer Aided Dosimetry and Verification of Exposure to Radiation

    DTIC Science & Technology

    2002-06-01

    Event matrix 2. Hematopoietic * Absolute blood counts * Relative blood counts 3. Dosimetry * TLD * EPDQuantitative * Radiation survey * Whole body...EI1 Defence Research and Recherche et developpement Development Canada pour la d6fense Canada DEFENCE •mI•DEFENSE Computer Aided Dosimetry and...Aided Dosimetry and Verification of Exposure to Radiation Edward Waller SAIC Canada Robert Z Stodilka Radiation Effects Group, Space Systems and

  7. Mars Radiation Risk Assessment and Shielding Design for Long-term Exposure to Ionizing Space Radiation

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Nealy, John E.

    2007-01-01

    NASA is now focused on the agency's vision for space exploration encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. As a result, there is a focus on long duration space missions. NASA is committed to the safety of the missions and the crew, and there is an overwhelming emphasis on the reliability issues for space missions and the habitat. The cost-effective design of the spacecraft demands a very stringent requirement on the optimization process. Exposure from the hazards of severe space radiation in deep space and/or long duration missions is a critical design constraint and a potential 'show stopper'. Thus, protection from the hazards of severe space radiation is of paramount importance to the agency's vision. It is envisioned to have long duration human presence on the Moon for deep space exploration. The exposures from ionizing radiation - galactic cosmic radiation and solar particle events - and optimized shield design for a swing-by and a long duration Mars mission have been investigated. It is found that the technology of today is inadequate for safe human missions to Mars, and revolutionary technologies need to be developed for long duration and/or deep space missions. The study will provide a guideline for radiation exposure and protection for long duration missions and career astronauts and their safety.

  8. Mitigation Strategies for Acute Radiation Exposure during Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Epelman, Slava

    2006-01-01

    While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.

  9. Initiation-promotion model of tumor prevalence in mice from space radiation exposures

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Wilson, J. W.

    1995-01-01

    Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.

  10. External radiation dose and cancer mortality among French nuclear workers: considering potential confounding by internal radiation exposure.

    PubMed

    Fournier, L; Laurent, O; Samson, E; Caër-Lorho, S; Laroche, P; Le Guen, B; Laurier, D; Leuraud, K

    2016-11-01

    French nuclear workers have detailed records of their occupational exposure to external radiation that have been used to examine associations with subsequent cancer mortality. However, some workers were also exposed to internal contamination by radionuclides. This study aims to assess the potential for bias due to confounding by internal contamination of estimates of associations between external radiation exposure and cancer mortality. A cohort of 59,004 workers employed for at least 1 year between 1950 and 1994 by CEA (Commissariat à l'Energie Atomique), AREVA NC, or EDF (Electricité de France) and badge-monitored for external radiation exposure were followed through 2004 to assess vital status and cause of death. A flag based on a workstation-exposure matrix defined four levels of potential for internal contamination. Standardized mortality ratios were assessed for each level of the internal contamination indicator. Poisson regression was used to quantify associations between external radiation exposure and cancer mortality, adjusting for potential internal contamination. For solid cancer, the mortality deficit tended to decrease as the levels of potential for internal contamination increased. For solid cancer and leukemia excluding chronic lymphocytic leukemia, adjusting the dose-response analysis on the internal contamination indicator did not markedly change the excess relative risk per Sievert of external radiation dose. This study suggests that in this cohort, neglecting information on internal dosimetry while studying the association between external dose and cancer mortality does not generate a substantial bias. To investigate more specifically the health effects of internal contamination, an effort is underway to estimate organ doses due to internal contamination.

  11. Cell phone radiation exposure on brain and associated biological systems.

    PubMed

    Kesari, Kavindra Kumar; Siddiqui, Mohd Haris; Meena, Ramovatar; Verma, H N; Kumar, Shivendra

    2013-03-01

    Wireless technologies are ubiquitous today and the mobile phones are one of the prodigious output of this technology. Although the familiarization and dependency of mobile phones is growing at an alarming pace, the biological effects due to the exposure of radiations have become a subject of intense debate. The present evidence on mobile phone radiation exposure is based on scientific research and public policy initiative to give an overview of what is known of biological effects that occur at radiofrequency (RF)/ electromagnetic fields (EMFs) exposure. The conflict in conclusions is mainly because of difficulty in controlling the affecting parameters. Biological effects are dependent not only on the distance and size of the object (with respect to the object) but also on the environmental parameters. Health endpoints reported to be associated with RF include childhood leukemia, brain tumors, genotoxic effects, neurological effects and neurodegenerative diseases, immune system deregulation, allergic and inflammatory responses, infertility and some cardiovascular effects. Most of the reports conclude a reasonable suspicion of mobile phone risk that exists based on clear evidence of bio-effects which with prolonged exposures may reasonably be presumed to result in health impacts. The present study summarizes the public issue based on mobile phone radiation exposure and their biological effects. This review concludes that the regular and long term use of microwave devices (mobile phone, microwave oven) at domestic level can have negative impact upon biological system especially on brain. It also suggests that increased reactive oxygen species (ROS) play an important role by enhancing the effect of microwave radiations which may cause neurodegenerative diseases.

  12. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  13. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT

    PubMed Central

    Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.

    2011-01-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552

  14. Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.

    PubMed

    Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T

    2012-02-01

    The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.

  15. Elastomeric Seal Performance after Terrestrial Ultraviolet Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Oravec, Heather A.; Mather, Janice L.; Taylor, Shawn C.; Dunlap, Patrick H.

    2015-01-01

    Ultraviolet radiation was evaluated to determine its negative effects on the performance of elastomeric gas pressure seals. The leak rates of the silicone elastomer S0383-70 O-ring test articles were used to quantify the degradation of the seals after exposure to vacuum-ultraviolet and/or middle-to-near-ultraviolet wavelength radiation. Three groups of seals were exposed in terrestrial facilities to 115-165 nm wavelength radiation, 230-500 nm wavelength radiation, or both spectrums, for an orbital spaceflight equivalent of 125 hours. The leak rates of the silicone elastomer S0383-70 seals were quantified and compared to samples that received no radiation. Each lot contained six samples and statistical t-tests were used to determine the separate and combined influences of exposure to the two wavelength ranges. A comparison of the mean leak rates of samples exposed to 115-165 nm wavelength radiation to the control specimens showed no difference, suggesting that spectrum was not damaging. The 230-500 nm wavelength appeared to be damaging, as the mean leak rates of the specimens exposed to that range of wavelengths, and those exposed to the combined 115-165 nm and 230-500 nm spectrums, were significantly different from the leak rates of the control specimens. Most importantly, the test articles exposed to both wavelength spectrums exhibited mean leak rates two orders of magnitude larger than any other exposed specimens, which suggested that both wavelength spectrums are important when simulating the orbital environment.

  16. Human exposure to high natural background radiation: what can it teach us about radiation risks?

    PubMed Central

    Hendry, Jolyon H; Simon, Steven L; Wojcik, Andrzej; Sohrabi, Mehdi; Burkart, Werner; Cardis, Elisabeth; Laurier, Dominique; Tirmarche, Margot; Hayata, Isamu

    2014-01-01

    Natural radiation is the major source of human exposure to ionising radiation, and its largest contributing component to effective dose arises from inhalation of 222Rn and its radioactive progeny. However, despite extensive knowledge of radiation risks gained through epidemiologic investigations and mechanistic considerations, the health effects of chronic low-level radiation exposure are still poorly understood. The present paper reviews the possible contribution of studies of populations living in high natural background radiation (HNBR) areas (Guarapari, Brazil; Kerala, India; Ramsar, Iran; Yangjiang, China), including radon-prone areas, to low dose risk estimation. Much of the direct information about risk related to HNBR comes from case–control studies of radon and lung cancer, which provide convincing evidence of an association between long-term protracted radiation exposures in the general population and disease incidence. The success of these studies is mainly due to the careful organ dose reconstruction (with relatively high doses to the lung), and to the fact that large-scale collaborative studies have been conducted to maximise the statistical power and to ensure the systematic collection of information on potential confounding factors. In contrast, studies in other (non-radon) HNBR areas have provided little information, relying mainly on ecological designs and very rough effective dose categorisations. Recent steps taken in China and India to establish cohorts for follow-up and to conduct nested case–control studies may provide useful information about risks in the future, provided that careful organ dose reconstruction is possible and information is collected on potential confounding factors. PMID:19454802

  17. Ocular ultraviolet radiation exposure of welders.

    PubMed

    Tenkate, Thomas D

    2017-05-01

    I read with interest a recent paper in your journal by Slagor et al on the risk of cataract in relation to metal arc welding (1). The authors highlight that even though welders are exposed to substantial levels of ultraviolet radiation (UVR), "no studies have reported data on how much UVR welders' eyes are exposed to during a working day. Thus, we do not know whether welders are more or less exposed to UVR than outdoor workers" (1, p451). Undertaking accurate exposure assessment of UVR from welding arcs is difficult, however, two studies have reported ocular/facial UVR levels underneath welding helmets (2, 3). In the first paper, UVR levels were measured using polysulphone film dosimeters applied to the cheeks of a patient who suffered from severe facial dermatitis (2). UVR levels of four times the American Conference of Governmental Industrial Hygienists (ACGIH) maximum permissible exposure (MPE) (4) were measured on the workers left cheek and nine times the MPE on the right cheek. The authors concluded that the workers dermatitis was likely to have been due to the UVR exposure received during welding. In the other paper, a comprehensive exposure assessment of personal UVR exposure of workers in a welding environment was reported (3). The study was conducted at a metal fabrication workshop with participants being welders, boilermakers and non-welders (eg, supervisors, fitters, machinists). Polysulphone film dosimeters were again used to measure UVR exposure of the workers, with badges worn on the clothing of workers (in the chest area), on the exterior of welding helmets, attached to 11 locations on the inside of welding helmets, and on the bridge and side-shields of safety spectacles. Dosimeters were also attached to surfaces throughout the workshop to measure ambient UVR levels. For welding subjects, mean 8-hour UVR doses within the welding helmets ranged from around 9 mJ/cm 2 (3×MPE) on the inside of the helmets to around 15 mJ/cm 2 (5×MPE) on the headband (a

  18. Neurobehavioural Changes and Brain Oxidative Stress Induced by Acute Exposure to GSM900 Mobile Phone Radiations in Zebrafish (Danio rerio)

    PubMed Central

    Nirwane, Abhijit; Sridhar, Vinay; Majumdar, Anuradha

    2016-01-01

    The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish. PMID:27123163

  19. Does exposure to GSM 900 MHz mobile phone radiation affect short-term memory of elementary school students?

    PubMed Central

    Movvahedi, M. M.; Tavakkoli-Golpayegani, A.; Mortazavi, S. A. R.; Haghani, M.; Razi, Z.; Shojaie-fard, M. B.; Zare, M.; Mina, E.; Mansourabadi, L.; Nazari-Jahromi; Safari, A.; Shokrpour, N.; Mortazavi, S. M. J.

    2014-01-01

    Background: Now-a-days, children are exposed to mobile phone radiation at a very early age. We have previously shown that a large proportion of children in the city of Shiraz, Iran use mobile phones. Furthermore, we have indicated that the visual reaction time (VRT) of university students was significantly affected by a 10 min real/sham exposure to electromagnetic fields emitted by mobile phone. We found that these exposures decreased the reaction time which might lead to a better response to different hazards. We have also revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. The purpose of this study was to investigate whether short-term exposure of elementary school students to radiofrequency (RF) radiation leads to changes in their reaction time and short-term memory. Materials and Methods: A total of 60 elementary school children ages ranging from 8 to 10 years studying at a public elementary school in Shiraz, Iran were enrolled in this study. Standardized computer-based tests of VRT and short-term memory (modified for children) were administered. The students were asked to perform some preliminary tests for orientation with the VRT test. After orientation, to reduce the random variation of measurements, each test was repeated ten times in both real and sham exposure phases. The time interval between the two subsequent sham and real exposure phases was 30 min. Results: The mean ± standard deviation reaction times after a 10 min talk period and after a 10 min sham exposure (switched off mobile) period were 249.0 ± 82.3 ms and 252.9 ± 68.2 ms (P = 0.629), respectively. On the other hand, the mean short-term memory scores after the talk and sham exposure periods were 1062.60 ± 305.39, and 1003.84 ± 339.68 (P = 0.030), respectively. Conclusion: To the best of our knowledge, this is the first study to show that short-term exposure of elementary school students to RF radiation leads to the better performance of

  20. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  1. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  2. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  3. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  4. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of...

  5. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    PubMed

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  6. Improved image quality with simultaneously reduced radiation exposure: Knowledge-based iterative model reconstruction algorithms for coronary CT angiography in a clinical setting.

    PubMed

    André, Florian; Fortner, Philipp; Vembar, Mani; Mueller, Dirk; Stiller, Wolfram; Buss, Sebastian J; Kauczor, Hans-Ulrich; Katus, Hugo A; Korosoglou, Grigorios

    The aim of this study was to assess the potential for radiation dose reduction using knowledge-based iterative model reconstruction (K-IMR) algorithms in combination with ultra-low dose body mass index (BMI)-adapted protocols in coronary CT angiography (coronary CTA). Forty patients undergoing clinically indicated coronary CTA were randomly assigned to two groups with BMI-adapted (I: <25.0 kg/m 2 , II: <28.0 kg/m 2 , III: <30.0 kg/m 2 , IV: ≥30.0 kg/m 2 ) low dose (LD, I: 100kV p /75 mAs, II: 100kV p /100 mAs, III: 100kV p /150 mAs, IV: 120kV p /150 mAs, n = 20) or ultra-low dose (ULD, I: 100kV p /50 mAs, II: 100kV p /75 mAs, III: 100kV p /100 mAs, IV: 120kV p /100 mAs, n = 20) protocols. Prospectively-triggered coronary CTA was performed using a 256-MDCT with the lowest reasonable scan length. Images were generated with filtered back projection (FBP), a noise-reducing hybrid iterative algorithm (iD, levels 2/5) and K-IMR using cardiac routine (CR) and cardiac sharp settings, levels 1-3. Groups were comparable regarding anthropometric parameters, heart rate, and scan length. The use of ULD protocols resulted in a significant reduction of radiation exposure (0.7 (0.6-0.9) mSv vs. 1.1 (0.9-1.7) mSv; p < 0.02). Image quality was significantly better in the ULD group using K-IMR CR 1 compared to FBP, iD 2 and iD 5 in the LD group, resulting in fewer non-diagnostic coronary segments (2.4% vs. 11.6%, 9.2% and 6.1%; p < 0.05). The combination of K-IMR with BMI-adapted ULD protocols results in significant radiation dose savings while simultaneously improving image quality compared to LD protocols with FBP or hybrid iterative algorithms. Therefore, K-IMR allows for coronary CTA examinations with high diagnostic value and very low radiation exposure in clinical routine. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  7. Predictive modeling of terrestrial radiation exposure from geologic materials

    NASA Astrophysics Data System (ADS)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  8. Tracking Cumulative Radiation Exposure in Orthopaedic Surgeons and Residents: What Dose Are We Getting?

    PubMed

    Gausden, Elizabeth B; Christ, Alexander B; Zeldin, Roseann; Lane, Joseph M; McCarthy, Moira M

    2017-08-02

    The purpose of this study was to determine the amount of cumulative radiation exposure received by orthopaedic surgeons and residents in various subspecialties. We obtained dosimeter measures over 12 months on 24 residents and 16 attending surgeons. Monthly radiation exposure was measured over a 12-month period for 24 orthopaedic residents and 16 orthopaedic attending surgeons. The participants wore a Landauer Luxel dosimeter on the breast pocket of their lead apron. The dosimeters were exchanged every rotation (5 to 7 weeks) for the resident participants and every month for the attending surgeon participants. Radiation exposure was compared by orthopaedic subspecialty, level of training, and type of fluoroscopy used (regular C-arm compared with mini C-arm). Orthopaedic residents participating in this study received monthly mean radiation exposures of 0.2 to 79 mrem/month, lower than the dose limits of 5,000 mrem/year recommended by the United States Nuclear Regulatory Commission (U.S. NRC). Senior residents rotating on trauma were exposed to the highest monthly radiation (79 mrem/month [range, 15 to 243 mrem/month]) compared with all other specialty rotations (p < 0.001). Similarly, attending orthopaedic surgeons who specialize in trauma or deformity surgery received the highest radiation exposure of their peers, and the mean exposure was 53 mrem/month (range, 0 to 355 mrem/month). Residents and attending surgeons performing trauma or deformity surgical procedures are exposed to significantly higher doses of radiation compared with all other subspecialties within orthopaedic surgery, but the doses are still within the recommended limits. The use of ionizing radiation in the operating room has become an indispensable part of orthopaedic surgery. Although all surgeons in our study received lower than the yearly recommended dose limit, it is important to be aware of how much radiation we are exposed to as surgeons and to take measures to further limit that exposure.

  9. Effect of Vascular Access Site Choice on Radiation Exposure During Coronary Angiography: The REVERE Trial (Randomized Evaluation of Vascular Entry Site and Radiation Exposure).

    PubMed

    Pancholy, Samir B; Joshi, Pankaj; Shah, Sanjay; Rao, Sunil V; Bertrand, Olivier F; Patel, Tejas M

    2015-08-17

    This study sought to perform a randomized noninferiority trial of radiation exposure during cardiac catheterization comparing femoral access (FA) with left radial access (LRA) and right radial access (RRA). Increased radiation exposure with radial approach compared with femoral approach remains a controversial issue. This study randomized 1,493 patients undergoing cardiac catheterization at a tertiary care center to FA, LRA, and RRA in a 1:1:1 fashion. The primary endpoint was air kerma. The secondary endpoints included dose-area product, fluoroscopy time and operator dose per procedure, number of cineangiograms, and number of catheters. Baseline and procedural characteristics were similar among groups. No significant differences were observed in air kerma (medians: FA: 421 mGy [interquartile range (IQR): 337 to 574 mGy], LRA: 454 mGy [IQR: 331 to 643 mGy], and RRA: 483 mGy [IQR: 382 to 592 mGy], p = 0.146), dose-area product (medians: FA: 25.5 Gy cm(2) [IQR: 19.6 to 34.5 Gy cm(2)], LRA: 26.6 Gy cm(2) [IQR: 19.5 to 37.5 Gy cm(2)], and RRA: 27.7 Gy cm(2) [IQR: 21.9 to 34.4 Gy cm(2)], p = 0.40), or fluoroscopy time (medians: FA: 1.3 min [IQR: 1.0 to 1.7 min], LRA: 1.3 min [IQR: 1.0 to 1.7 min], and RRA: 1.32 min [IQR: 1.0 to 1.7 min], p = 0.19) among the 3 access sites. Median operator exposure was higher in the LRA group (3 mrem [IQR: 2 to 5 mrem], p = 0.001 vs. FA, and p = 0.0001 vs. RRA) compared with the FA (2 mrem [IQR: 2 to 4 mrem] and RRA groups (3 mrem [IQR: 2 to 5 mrem]). Radiation exposure to patients was similar during diagnostic coronary angiography with FA, RRA, and LRA. However, LRA was associated with significantly higher operator radiation exposure than were FA and RRA procedures. (Randomized Evaluation of Vascular Entry Site and Radiation Exposure [REVERE]; NCT01677481). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Astronaut Exposures to Ionizing Radiation in a Lightly-Shielded Spacesuit

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Simonsen, L. C.; Shinn, J. L.; Kim, M.-H. Y.; Cucinotta, F. A.; Badavi, F. F.; Atwell, W.

    1999-01-01

    The normal working and living areas of the astronauts are designed to provide an acceptable level of protection against the hazards of ionizing radiation of the space environment. Still there are occasions when they must don a spacesuit designed mainly for environmental control and mobility and leave the confines of their better-protected domain. This is especially true for deep space exploration. The impact of spacesuit construction on the exposure of critical astronaut organs will be examined in the ionizing radiation environments of free space, the lunar surface and the Martian surface. The computerized anatomical male model is used to evaluate astronaut self-shielding factors and to determine space radiation exposures to critical radiosensitive human organs.

  11. Radiation exposure from videofluoroscopic swallow studies in children with a type 1 laryngeal cleft and pharyngeal dysphagia: A retrospective review.

    PubMed

    Hersh, Cheryl; Wentland, Carissa; Sally, Sarah; de Stadler, Marie; Hardy, Steven; Fracchia, M Shannon; Liu, Bob; Hartnick, Christopher

    2016-10-01

    Radiation exposure is recognized as having long term consequences, resulting in increased risks over the lifetime. Children, in particular, have a projected lifetime risk of cancer, which should be reduced if within our capacity. The objective of this study is to quantify the amount of ionizing radiation in care for children being treated for aspiration secondary to a type 1 laryngeal cleft. With this baseline data, strategies can be developed to create best practice pathways to maintain quality of care while minimizing radiation exposure. Retrospective review of 78 children seen in a tertiary pediatric aerodigestive center over a 5 year period from 2008 to 2013 for management of a type 1 laryngeal cleft. The number of videofluoroscopic swallow studies (VFSS) per child was quantified, as was the mean effective dose of radiation exposure. The 78 children reviewed were of mean age 19.9 mo (range 4 mo-12 years). All children were evaluated at the aerodigestive center with clinical symptomatology and subsequent diagnosis of a type 1 laryngeal cleft. Aspiration was assessed via VFSS and exposure data collected. Imaging exams where dose parameters were not available were excluded. The mean number of VFSS each child received during the total course of treatment was 3.24 studies (range 1-10). The average effective radiation dose per pediatric VFSS was 0.16 mSv (range: 0.03 mSv-0.59 mSv) per study. Clinical significance was determined by comparison to a pediatric CXR. At our facility a CXR yields an effective radiation dose of 0.017 mSv. Therefore, a patient receives an equivalent total of 30.6 CXR over the course of management. Radiation exposure has known detrimental effects particularly in pediatric patients. The total ionizing radiation from VFSS exams over the course of management of aspiration has heretofore not been reported in peer reviewed literature. With this study's data in mind, future developments are indicated to create innovative clinical pathways and

  12. Occupational radiation exposure experience: Paducah Gaseous Diffusion Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.C.

    1975-01-01

    The potential for significant uranium exposure in gaseous diffusion plants is very low. The potential for significant radiation exposure in uranium hexafluoride manufacturing is very real. Exposures can be controlled to low levels only through the cooperation and commitment of facility management and operating personnel. Exposure control can be adequately monitored by a combination of air analyses, urinalyses, and measurements of internal deposition as obtained by the IVRML. A program based on control of air-borne uranium exposure has maintained the internal dose of the Paducah Gaseous Diffusion Plant workman to less than one-half the RPG dose to the lung (15more » rem/year) and probably to less than one-fourth that dose. (auth)« less

  13. Study Regarding Electromagnetic Radiation Exposure Generated By Mobile Phone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marica, Lucia; Moraru, Luminita

    Number of mobile phone users reached to 5 billion subscribers in 2010 [ABI Research, 2010]. A large number of studies illustrated the public concern about adverse effects of mobile phone radiation and possible health hazards. Position of mobile phone use in close proximity to the head leads the main radiation between the hand and the head. Many investigations studying the possible effects of mobile phone exposure, founded no measurable effects of short-term mobile phone radiation, and there was no evidence for the ability to perceive mobile phone EMF in the general population. In this study, field radiation measurements were performedmore » on different brand and different models of mobile phones in active mode, using an EMF RF Radiation Field Strength Power Meter 1 MHz-8 GHz. The study was effectuated on both the 2G and 3G generations phones connected to the providers operating in the frequency range 450 MHz-1800 MHz. There were recorded values in outgoing call and SMS mode, incoming call and SMS mode. Results were compared with ICNIRP guidelines for exposure to general public.« less

  14. Light scattering apparatus and method for determining radiation exposure to plastic detectors

    DOEpatents

    Hermes, Robert E.

    2002-01-01

    An improved system and method of analyzing cumulative radiation exposure registered as pits on track etch foils of radiation dosimeters. The light scattering apparatus and method of the present invention increases the speed of analysis while it also provides the ability to analyze exposure levels beyond that which may be properly measured with conventional techniques. Dosimeters often contain small plastic sheets that register accumulated damage when exposed to a radiation source. When the plastic sheet from the dosimeter is chemically etched, a track etch foil is produced wherein pits or holes are created in the plastic. The number of these pits, or holes, per unit of area (pit density) correspond to the amount of cumulative radiation exposure which is being optically measured by the apparatus. To measure the cumulative radiation exposure of a track etch foil a high intensity collimated beam is passed through foil such that the pits and holes within the track etch foil cause a portion of the impinging light beam to become scattered upon exit. The scattered light is focused with a lens, while the primary collimated light beam (unscattered light) is blocked. The scattered light is focused by the lens onto an optical detector capable of registering the optical power of the scattered light which corresponds to the cumulative radiation to which the track etch foil has been exposed.

  15. Acute radiation enteritis caused by dose-dependent radiation exposure in dogs: experimental research.

    PubMed

    Xu, Wenda; Chen, Jiang; Xu, Liu; Li, Hongyu; Guo, Xiaozhong

    2014-12-01

    Accidental or intended radiation exposure in mass casualty settings presents a serious and on-going threat. The development of mitigating and treating agents requires appropriate animal models. Unfortunately, the majority of research on radiation enteritis in animals has lacked specific assessments and targeted therapy. Our study showed beagle dogs, treated by intensity-modulated radiation therapy (IMRT) for abdominal irradiation, were administered single X-ray doses of 8-30 Gy. The degree of intestinal tract injury for all of the animals after radiation exposure was evaluated with regard to clinical syndrome, endoscopic findings, histological features, and intestinal function. The range of single doses (8 Gy, 10-14 Gy, and 16-30 Gy) represented the degree of injury (mild, moderate, and severe, respectively). Acute radiation enteritis included clinical syndrome with fever, vomiting, diarrhea, hemafecia, and weight loss; typical endoscopic findings included edema, bleeding, mucosal abrasions, and ulcers; and intestinal biopsy results revealed mucosal necrosis, erosion, and loss, inflammatory cell infiltration, hemorrhage, and congestion. Changes in serum diamine oxides (DAOs) and d-xylose represented intestinal barrier function and absorption function, respectively, and correlated with the extent of damage (P < 0.05 and P < 0.05, respectively). We successfully developed a dog model of acute radiation enteritis, thus obtaining a relatively objective evaluation of intestinal tract injury based on clinical performance and laboratory examination. The method of assessment of the degree of intestinal tract injury after abdominal irradiation could be beneficial in the development of novel and effective therapeutic strategies for acute radiation enteritis. © 2014 by the Society for Experimental Biology and Medicine.

  16. Exposure to Mobile Phone Radiation Opens New Horizons in Alzheimer’s Disease Treatment

    PubMed Central

    Mortazavi, SAR; Shojaei-Fard, MB; Haghani, M; Shokrpour, N; Mortazavi, SMJ

    2013-01-01

    Alzheimer’s disease, the most common type of dementia and a progressive neurodegenerative disease, occurs when the nerve cells in the brain die. Although there are medications that can help delay the development of Alzheimer’s disease, there is currently no cure for this disease. Exposure to ionizing and non-ionizing radiation may cause adverse health effects such as cancer.  Looking at the other side of the coin, there are reports indicating stimulatory or beneficial effects after exposure to cell phone radiofrequency radiation. Mortazavi et al. have previously reported some beneficial cognitive effects such as decreased reaction time after human short-term exposure to cell phone radiation or occupational exposure to radar microwave radiation. On the other hand, some recent reports have indicated that RF radiation may have a role in protecting against cognitive impairment in Alzheimer’s disease. Although the majority of these data come from animal studies that cannot be easily extrapolated to humans, it can be concluded that this memory enhancing approach may open new horizons in treatment of cognitive impairment in Alzheimer disease. PMID:25505755

  17. Interleukin-12 Preserves the Cutaneous Physical and Immunological Barrier after Radiation Exposure

    PubMed Central

    Gerber, Scott A.; Cummings, Ryan J.; Judge, Jennifer L.; Barlow, Margaret L.; Nanduri, Julee; Milano Johnson, Doug E.; Palis, James; Pentland, Alice P.; Lord, Edith M.; Ryan, Julie L.

    2015-01-01

    The United States continues to be a prime target for attack by terrorist organizations in which nuclear detonation and dispersal of radiological material are legitimate threats. Such attacks could have devastating consequences to large populations, in the form of radiation injury to various human organ systems. One of these at risk organs is the cutaneous system, which forms both a physical and immunological barrier to the surrounding environment and is particularly sensitive to ionizing radiation. Therefore, increased efforts to develop medical countermeasures for treatment of the deleterious effects of cutaneous radiation exposure are essential. Interleukin-12 (IL-12) was shown to elicit protective effects against radiation injury on radiosensitive systems such as the bone marrow and gastrointestinal tract. In this article, we examined if IL-12 could protect the cutaneous system from a combined radiation injury in the form of sublethal total body irradiation and beta-radiation burn (β-burn) directly to the skin. Combined radiation injury resulted in a breakdown in skin integrity as measured by transepidermal water loss, size of β-burn lesion and an exacerbated loss of surveillant cutaneous dendritic cells. Interestingly, intradermal administration of IL-12 48 h postirradiation reduced transepidermal water loss and burn size, as well as retention of cutaneous dendritic cells. Our data identify IL-12 as a potential mitigator of radiation-induced skin injury and argue for the further development of this cytokine as a radiation countermeasure. PMID:25564716

  18. Human Space Exploration and Radiation Exposure from EVA: 1981-2011

    NASA Astrophysics Data System (ADS)

    Way, A. R.; Saganti, S. P.; Erickson, G. M.; Saganti, P. B.

    2011-12-01

    There are several risks for any human space exploration endeavor. One such inevitable risk is exposure to the space radiation environment of which extra vehicular activity (EVA) demands more challenges due to limited amount of protection from space suit shielding. We recently compiled all EVA data comprising low-earth orbit (LEO) from Space Shuttle (STS) flights, International Space Station (ISS) expeditions, and Shuttle-Mir missions. Assessment of such radiation risk is very important, particularly for the anticipated long-term, deep-space human explorations in the near future. We present our assessment of anticipated radiation exposure and space radiation dose contribution to each crew member from a listing of 350 different EVA events resulting in more than 1000+ hrs of total EVA time. As of July 12, 2011, 197 astronauts have made spacewalks (out of 520 people who have gone into Earth orbit). Only 11 women have been on spacewalks.

  19. Hazards of the Deep: Killing the Dragons - Neurobiological Consequences of Space Radiation Exposures (401st Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez, Marcelo

    Since astronauts hope to spend more time n space, they will receive more exposure to ionizing radiation, a stream of particles that, when pass through a body, has enough energy to damage the components of living cells and tissues. Ionizing radiation may cause changes in cells' ability to carry out repair, reproduction, and cross-talk with other cells. This may lead to mutations, which, in turn, may result in tumors, cancer, genetic defects in offspring, neurodegeneration. A 34 million dollar facility at BNL's NASA Space Radiation Laboratory (NSRL), built in a cooperative effort by NASA and DOE is one of themore » few places in the world that can simulate the harsh space radiation environment. At this facility, scientists from some several institutions in the U.S. and abroad will learn about the possible risks to human beings exposed to space radiation. Although the spacecraft itself somewhat reduces radiation exposure, it does not completely shield astronauts from galactic cosmic rays, which are highly energetic heavy ions, or from solar particles, which are primarily energetic protons. Within the NSRL target room, Lab researchers and other NASA-sponsored scientists irradiate a variety of biological specimens, tissues, and cells to study the effects that ion beams have on cells and animals.« less

  20. [Radiation exposure of children in pediatric radiology. Part 5: organ doses in chest radiography].

    PubMed

    Seidenbusch, M C; Schneider, K

    2009-05-01

    Reconstruction of organ doses of selected organs and tissues from radiographic settings and exposure data collected during chest X-ray examinations of children of various age groups performed in Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007. The dosimetric data of all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 119 150 chest radiographs of all age groups. Reconstruction of organ doses in 40 organs and tissues in X-ray examinations of the chest was performed based on the conversion factor concept. The radiation exposure of organs in projection radiography is determined by the exact site of the organs relative to the edges of the X-ray field and the beam direction of X-rays. Optimal collimation in chest radiography can reduce the exposure of organs located at the periphery of the X-ray field, e. g. thyroid gland, stomach and partially the liver, by a factor of 2 to 3, while organs located in the center of the X-ray-field, e. g. thymus, breasts, lungs, esophagus and red bone marrow, are not affected by exact collimation. The high frequency of the roentgen examination of the chest in early age groups increases the collective radiation burden to radiosensitive organs. Therefore, radiation protection of the patient during chest radiographies remains of great importance.

  1. Comparative Prospective Study Reporting Intraoperative Parameters, Pedicle Screw Perforation, and Radiation Exposure in Navigation-Guided versus Non-navigated Fluoroscopy-Assisted Minimal Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Kundnani, Vishal; Dutta, Shumayou; Patel, Ankit; Mehta, Gaurav; Singh, Mahendra

    2018-01-01

    Study Design Prospective cohort study. Purpose To compare intraoperative parameters, radiation exposure, and pedicle screw perforation rate in navigation-guided versus non-navigated fluoroscopy-assisted minimal invasive transforaminal lumbar interbody fusion (MIS TLIF). Overview of Literature The poor reliability of fluoroscopy-guided instrumentation and growing concerns about radiation exposure have led to the development of navigation-guided instrumentation techniques in MIS TLIF. The literature evaluating the efficacy of navigation-guided MIS TLIF is scant. Methods Eighty-seven patients underwent navigation- or fluoroscopy-guided MIS TLIF for symptomatic lumbar/lumbosacral spondylolisthesis. Demographics, intraoperative parameters (surgical time, blood loss), and radiation exposure (sec/mGy/Gy.cm2 noted from C-arm for comparison only) were recorded. Computed tomography was performed in patients in the navigation and non-navigation groups at postoperative 12 months and reviewed by an independent observer to assess the accuracy of screw placement, perforation incidence, location, grade (Mirza), and critical versus non-critical neurological implications. Results Twenty-seven patients (male/female, 11/16; L4–L5/L5–S1, 9/18) were operated with navigation-guided MIS TLIF, whereas 60 (male/female, 25/35; L4–L5/L5–S1, 26/34) with conventional fluoroscopy-guided MIS TILF. The use of navigation resulted in reduced fluoroscopy usage (dose area product, 0.47 Gy.cm2 versus 2.93 Gy.cm2), radiation exposure (1.68 mGy versus 10.97 mGy), and fluoroscopy time (46.5 seconds versus 119.08 seconds), with p-values of <0.001. Furthermore, 96.29% (104/108) of pedicle screws in the navigation group were accurately placed (grade 0) (4 breaches, all grade I) compared with 91.67% (220/240) in the non-navigation group (20 breaches, 16 grade I+4 grade II; p=0.114). None of the breaches resulted in a corresponding neurological deficit or required revision. Conclusions Navigation

  2. Exposure to 50 Hz electromagnetic radiation promote early maturation and differentiation in newborn rat cerebellar granule neurons.

    PubMed

    Lisi, A; Ciotti, M T; Ledda, M; Pieri, M; Zona, C; Mercanti, D; Rieti, S; Giuliani, L; Grimaldi, S

    2005-08-01

    The wish of this work is the study of the effect of electromagnetic (EMF) radiations at a frequency of 50 Hz on the development of cerebellar granule neurons (CGN). Granule neurons, prepared from newborn rat cerebellum (8 days after birth), were cultured after plate-seeding in the presence of EMF radiations, with the plan of characterizing their cellular and molecular biochemistry, after exposure to the electromagnetic stimulus. Five days challenge to EMF radiations showed, by the cytotoxic glutamate (Glu) pulse test, a 30% decrease of cells survival, while only 5% of mortality was reported for unexposed sample. Moreover, blocking the glutamate receptor (GluR) with the Glu competitor MK-801, no toxicity effect after CGN challenge to EMF radiations and Glu was detected. By patch-clamp recording technique, the Kainate-induced currents from 6 days old exposed CGN exhibited a significant increase with respect to control cells. Western blot and reverse transcription-polymerase chain reaction (RT-PCR) analyses show that EMF exposure of rats CGN, induces a change in both GluRs proteins and mRNAs expression with respect to control. In addition, the use of monoclonal antibody raised against neurofilament protein (NF-200) reveals an increase in NF-200 synthesis in the exposed CGN. All these results indicate that exposure to non-ionizing radiations contribute to a premature expression of GluRs reducing the life span of CGN, leading to a more rapid cell maturation. (c) 2005 Wiley-Liss, Inc.

  3. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  4. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  5. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  6. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  7. 46 CFR 197.545 - Program to reduce personal exposure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Program to reduce personal exposure. 197.545 Section 197.545 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.545 Program to reduce personal exposure. (a) When...

  8. Estimation of occupational cosmic radiation exposure among airline personnel: Agreement between a job-exposure matrix, aggregate, and individual dose estimates.

    PubMed

    Talibov, Madar; Salmelin, Raili; Lehtinen-Jacks, Susanna; Auvinen, Anssi

    2017-04-01

    Job-exposure matrices (JEM) are used for exposure assessment in occupational studies, but they can involve errors. We assessed agreement between the Nordic Occupational Cancer Studies JEM (NOCCA-JEM) and aggregate and individual dose estimates for cosmic radiation exposure among Finnish airline personnel. Cumulative cosmic radiation exposure for 5,022 airline crew members was compared between a JEM and aggregate and individual dose estimates. The NOCCA-JEM underestimated individual doses. Intraclass correlation coefficient was 0.37, proportion of agreement 64%, kappa 0.46 compared with individual doses. Higher agreement was achieved with aggregate dose estimates, that is annual medians of individual doses and estimates adjusted for heliocentric potentials. The substantial disagreement between NOCCA-JEM and individual dose estimates of cosmic radiation may lead to exposure misclassification and biased risk estimates in epidemiological studies. Using aggregate data may provide improved estimates. Am. J. Ind. Med. 60:386-393, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Radiation exposure in the young level 1 trauma patient: a retrospective review.

    PubMed

    Gottschalk, Michael B; Bellaire, Laura L; Moore, Thomas

    2015-01-01

    Computed tomography (CT) has become an increasingly popular and powerful tool for clinicians managing trauma patients with life-threatening injuries, but the ramifications of increasing radiation burden on individual patients are not insignificant. This study examines a continuous series of 337 patients less than 40 years old admitted to a level 1 trauma center during a 4-month period. Primary outcome measures included number of scans; effective dose of radiation from radiographs and CT scans, respectively; and total effective dose from both sources over patients' hospital stays. Several variables, including hospital length of stay, initial Glasgow Coma Scale score, and Injury Severity Score, correlated with greater radiation exposure. Blunt trauma victims were more prone to higher doses than those with penetrating or combined penetrating and blunt trauma. Location and mechanism of injury were also found to correlate with radiation exposure. Trauma patients as a group are exposed to high levels of radiation from X-rays and CT scans, and CT scans contribute a very high proportion (91.3% ± 11.7%) of that radiation. Certain subgroups of patients are at a particularly high risk of exposure, and greater attention to cumulative radiation dose should be paid to patients with the above mentioned risk factors.

  10. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  11. Management of cosmic radiation exposure for aircraft crew in Japan.

    PubMed

    Yasuda, Hiroshi; Sato, Tatsuhiko; Yonehara, Hidenori; Kosako, Toshiso; Fujitaka, Kazunobu; Sasaki, Yasuhito

    2011-07-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y(-1). The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Institute of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program.

  12. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    PubMed

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  13. Econometric model for age- and population-dependent radiation exposures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation.

  14. Cancer and non-cancer brain and eye effects of chronic low-dose ionizing radiation exposure

    PubMed Central

    2012-01-01

    Background According to a fundamental law of radiobiology (“Law of Bergonié and Tribondeau”, 1906), the brain is a paradigm of a highly differentiated organ with low mitotic activity, and is thus radio-resistant. This assumption has been challenged by recent evidence discussed in the present review. Results Ionizing radiation is an established environmental cause of brain cancer. Although direct evidence is lacking in contemporary fluoroscopy due to obvious sample size limitation, limited follow-up time and lack of focused research, anecdotal reports of clusters have appeared in the literature, raising the suspicion that brain cancer may be a professional disease of interventional cardiologists. In addition, although terminally differentiated neurons have reduced or mild proliferative capacity, and are therefore not regarded as critical radiation targets, adult neurogenesis occurs in the dentate gyrus of the hippocampus and the olfactory bulb, and is important for mood, learning/memory and normal olfactory function, whose impairment is a recognized early biomarker of neurodegenerative diseases. The head doses involved in radiotherapy are high, usually above 2 Sv, whereas the low-dose range of professional exposure typically involves lifetime cumulative whole-body exposure in the low-dose range of < 200 mSv, but with head exposure which may (in absence of protection) arrive at a head equivalent dose of 1 to 3 Sv after a professional lifetime (corresponding to a brain equivalent dose around 500 mSv). Conclusions At this point, a systematic assessment of brain (cancer and non-cancer) effects of chronic low-dose radiation exposure in interventional cardiologists and staff is needed. PMID:22540409

  15. Simulator training to minimize ionizing radiation exposure in the catheterization laboratory.

    PubMed

    Katz, Aric; Shtub, Avraham; Solomonica, Amir; Poliakov, Adva; Roguin, Ariel

    2017-03-01

    To learn about radiation and how to lower it. Patients and operators are routinely exposed to high doses of ionizing radiation during catheterization procedures. This increased exposure to ionizing radiation is partially due to a lack of awareness to the effects of ionizing radiation, and lack of knowledge on the distribution and behavior of scattered radiation. A simulator, which incorporates data on scattered ionizing radiation, was built based on multiple phantom measurements and used for teaching radiation safety. The validity of the simulator was confirmed in three catheterization laboratories and tested by 20 interventional cardiologists. All evaluators were tested by an objective knowledge examination before, immediately following, and 12 weeks after simulator-based learning and training. A subjective Likert questionnaire on satisfaction with simulation-based learning and training was also completed. The 20 evaluators learned and retained the knowledge that they gained from using the simulator: the average scores of the knowledge examination pre-simulator training was 54 ± 15% (mean ± standard deviation), and this score significantly increased after training to 94 ± 10% (p < 0.001). The evaluators also reported high levels of satisfaction following simulation-based learning and training according to the results of the subjective Likert questionnaire. Simulators can be used to train cardiology staff and fellows and to further educate experienced personnel on radiation safety. As a result of simulator training, the operator gains knowledge, which can then be applied in the catheterization laboratory in order to reduce radiation doses to the patient and to the operator, thereby improving the safety of the intervention.

  16. Evaluation of the Stryker S2 IM Nail Distal Targeting Device for reduction of radiation exposure: a case series study.

    PubMed

    Anastopoulos, George; Ntagiopoulos, Panagiotis G; Chissas, Dionisios; Loupasis, George; Asimakopoulos, Antonios; Athanaselis, Eustratios; Megas, Panagiotis

    2008-10-01

    Distal locking is one challenging step during intramedullary nailing of femoral shaft fractures that can lead to an increase of radiation exposure. In the present study, the authors describe a technique for the distal locking of femoral nails, implementing a new targeting device in an attempt to reduce radiation exposure and operational time. Over a 2-year period, 127 consecutive cases of femoral shaft fractures were included in the study. All cases were treated with nailing of femoral shaft fractures with an unslotted reamed antegrade femoral nail and distal locking was performed with the use of a proximally mounted aiming device. Mean duration of the procedure was 63.5 18.1 min while the duration for distal locking was 6.6 +/- 2.6 min. In all successful cases, exposure from intraoperative fluoroscopy was 17.2 +/- 7.4 s for the whole operative procedure, and for distal locking was 2 shots, 1.35 s (range, 0.9-2.2 s) and 1.9 mGy (range, 1.1-2.9 mGy). Five cases (3.9%) were unsuccessful, but overall no intraoperative complications were encountered from the application of this technique. The ability of the device to correspond to the level of nail deformation and to properly identify the distal holes, reduced exposure to radiation compared to other published reports, and should be considered as a valuable tool for distal locking of femoral fractures.

  17. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure

    NASA Technical Reports Server (NTRS)

    Latimer, J. G.; Mitchell, C. A.; Mitchell, G. A.

    1987-01-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  18. UV-B radiation and photosynthetic irradiance acclimate eggplant for outdoor exposure.

    PubMed

    Latimer, J G; Mitchell, C A; Mitchell, G A

    1987-06-01

    Treatment of greenhouse-grown eggplant (Solanum melongena L. var. esculentum Nees. 'Burpee's Black Beauty') seedlings with supplemental photosynthetically active radiation from cool-white fluorescent lamps increased growth of plants subsequently transferred outdoors relative to growth of plants that received no supplemental radiation or were shaded to 45% of solar irradiation in the greenhouse before transfer outdoors. Eggplant seedlings transferred outdoors were placed under plastic tarps either to provide relative protection from solar ultraviolet-B (UV-B) radiation (280-315 nm) using Mylar film or to allow exposure to UV-B using cellulose acetate. Protection of seedlings from UV-B radiation resulted in greater leaf expansion than for UV-B-exposed seedlings, but no change in leaf or shoot dry weight occurred after 9 days of treatment. Specific leaf weight increased in response to UV-B exposure outdoors. Exposure of eggplant to UV-B radiation from fluorescent sunlamps in the greenhouse also decreased leaf expansion and leaf and shoot dry weight gain after 5 days of treatment. However, there were no differences in leaf or shoot dry weight relative to control plants after 12 days of UV-B treatment, indicating that UV-B treated plants had acclimated to the treatment and actually had caught up with non-UV-B-irradiated plants in terms of growth.

  19. Radiation exposure to operating staff during rotational flat-panel angiography and C-arm cone beam computed tomography (CT) applications.

    PubMed

    Schulz, Boris; Heidenreich, Ralf; Heidenreich, Monika; Eichler, Katrin; Thalhammer, Axel; Naeem, Naguib Nagy Naguib; Vogl, Thomas Josef; Zangos, Stefan

    2012-12-01

    To evaluate the radiation exposure for operating personnel associated with rotational flat-panel angiography and C-arm cone beam CT. Using a dedicated angiography-suite, 2D and 3D examinations of the liver were performed on a phantom to generate scattered radiation. Exposure was measured with a dosimeter at predefined heights (eye, thyroid, breast, gonads and knee) at the physician's location. Analysis included 3D procedures with a field of view (FOV) of 24 cm × 18 cm (8s/rotation, 20s/rotation and 5s/2 rotations), and 47 cm×18 cm (16s/2 rotations) and standard 2D angiography (10s, FOV 24 cm×18 cm). Measurements showed the highest radiation dose at the eye and thyroid level. In comparison to 2D-DSA (3.9 μSv eye-exposure), the 3D procedures caused an increased radiation exposure both in standard FOV (8s/rotation: 28.0 μSv, 20s/rotation: 79.3 μSv, 5s/2 rotations: 32.5 μSv) and large FOV (37.6 μSv). Proportional distributions were measured for the residual heights. With the use of lead glass, irradiation of the eye lens was reduced to 0.2 μSv (2D DSA) and 10.6 μSv (3D technique with 20s/rotation). Rotational flat-panel angiography and C-arm cone beam applications significantly increase radiation exposure to the attending operator in comparison to 2D angiography. Our study indicates that the physician should wear protective devices and leave the examination room when performing 3D examinations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Uncertainties in estimating health risks associated with exposure to ionising radiation.

    PubMed

    Preston, R Julian; Boice, John D; Brill, A Bertrand; Chakraborty, Ranajit; Conolly, Rory; Hoffman, F Owen; Hornung, Richard W; Kocher, David C; Land, Charles E; Shore, Roy E; Woloschak, Gayle E

    2013-09-01

    The information for the present discussion on the uncertainties associated with estimation of radiation risks and probability of disease causation was assembled for the recently published NCRP Report No. 171 on this topic. This memorandum provides a timely overview of the topic, given that quantitative uncertainty analysis is the state of the art in health risk assessment and given its potential importance to developments in radiation protection. Over the past decade the increasing volume of epidemiology data and the supporting radiobiology findings have aided in the reduction of uncertainty in the risk estimates derived. However, it is equally apparent that there remain significant uncertainties related to dose assessment, low dose and low dose-rate extrapolation approaches (e.g. the selection of an appropriate dose and dose-rate effectiveness factor), the biological effectiveness where considerations of the health effects of high-LET and lower-energy low-LET radiations are required and the transfer of risks from a population for which health effects data are available to one for which such data are not available. The impact of radiation on human health has focused in recent years on cancer, although there has been a decided increase in the data for noncancer effects together with more reliable estimates of the risk following radiation exposure, even at relatively low doses (notably for cataracts and cardiovascular disease). New approaches for the estimation of hereditary risk have been developed with the use of human data whenever feasible, although the current estimates of heritable radiation effects still are based on mouse data because of an absence of effects in human studies. Uncertainties associated with estimation of these different types of health effects are discussed in a qualitative and semi-quantitative manner as appropriate. The way forward would seem to require additional epidemiological studies, especially studies of low dose and low dose

  1. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990-2009.

    PubMed

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2017-04-01

    Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. AL cases diagnosed over 1990-2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002-2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland.

  2. Radiation exposure assessment for portsmouth naval shipyard health studies.

    PubMed

    Daniels, R D; Taulbee, T D; Chen, P

    2004-01-01

    Occupational radiation exposures of 13,475 civilian nuclear shipyard workers were investigated as part of a retrospective mortality study. Estimates of annual, cumulative and collective doses were tabulated for future dose-response analysis. Record sets were assembled and amended through range checks, examination of distributions and inspection. Methods were developed to adjust for administrative overestimates and dose from previous employment. Uncertainties from doses below the recording threshold were estimated. Low-dose protracted radiation exposures from submarine overhaul and repair predominated. Cumulative doses are best approximated by a hybrid log-normal distribution with arithmetic mean and median values of 20.59 and 3.24 mSv, respectively. The distribution is highly skewed with more than half the workers having cumulative doses <10 mSv and >95% having doses <100 mSv. The maximum cumulative dose is estimated at 649.39 mSv from 15 person-years of exposure. The collective dose was 277.42 person-Sv with 96.8% attributed to employment at Portsmouth Naval Shipyard.

  3. Radiation in dental practice: awareness, protection and recommendations.

    PubMed

    Praveen, B N; Shubhasini, A R; Bhanushree, R; Sumsum, P S; Sushma, C N

    2013-01-01

    Radiation is the transmission of energy through space and matter. There are several forms of radiation, including ionizing and nonionizing. X-rays are the ionizing radiation used extensively in medical and dental practice. Even though they provide useful information and aid in diagnosis, they also have the potential to cause harmful effects. In dentistry, it is mainly used for diagnostic purposes and in a dental set-up usually the practicing dentist exposes, processes and interprets the radiograph. Even though such exposure is less, it is critical to reduce the exposure to the dental personnel and patients in order to prevent the harmful effects of radiation. Several radiation protection measures have been advocated to ameliorate these effects. A survey conducted in the Bengaluru among practicing dentists revealed that radiation protection awareness was very low and the necessary measures taken to reduce the exposure were not adequate. The aim of the article is to review important parameters that must be taken into consideration in the clinical set-up to reduce radiation exposure to patients and dental personnel.

  4. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  5. Perception of low dose radiation risks among radiation researchers in Korea.

    PubMed

    Seong, Ki Moon; Kwon, TaeWoo; Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert's risk evaluation of radiation exposure strongly influences the public's risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts' radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual's opinions have often exacerbated the public's confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years' research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public's risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure.

  6. Perception of low dose radiation risks among radiation researchers in Korea

    PubMed Central

    Seo, Songwon; Lee, Dalnim; Park, Sunhoo; Jin, Young Woo; Lee, Seung-Sook

    2017-01-01

    Expert’s risk evaluation of radiation exposure strongly influences the public’s risk perception. Experts can inform laypersons of significant radiation information including health knowledge based on experimental data. However, some experts’ radiation risk perception is often based on non-conclusive scientific evidence (i.e., radiation levels below 100 millisievert), which is currently under debate. Examining perception levels among experts is important for communication with the public since these individual’s opinions have often exacerbated the public’s confusion. We conducted a survey of Korean radiation researchers to investigate their perceptions of the risks associated with radiation exposure below 100 millisievert. A linear regression analysis revealed that having ≥ 11 years’ research experience was a critical factor associated with radiation risk perception, which was inversely correlated with each other. Increased opportunities to understand radiation effects at < 100 millisievert could alter the public’s risk perception of radiation exposure. In addition, radiation researchers conceived that more scientific evidence reducing the uncertainty for radiation effects < 100 millisievert is necessary for successful public communication. We concluded that sustained education addressing scientific findings is a critical attribute that will affect the risk perception of radiation exposure. PMID:28166286

  7. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  8. Blue Light and Ultraviolet Radiation Exposure from Infant Phototherapy Equipment.

    PubMed

    Pinto, Iole; Bogi, Andrea; Picciolo, Francesco; Stacchini, Nicola; Buonocore, Giuseppe; Bellieni, Carlo V

    2015-01-01

    Phototherapy is the use of light for reducing the concentration of bilirubin in the body of infants. Although it has become a mainstay since its introduction in 1958, a better understanding of the efficacy and safety of phototherapy applications seems to be necessary for improved clinical practices and outcomes. This study was initiated to evaluate workers' exposure to Optical Radiation from different types of phototherapy devices in clinical use in Italy. During infant phototherapy the staff monitors babies periodically for around 10 min every hour, and fixation of the phototherapy beam light frequently occurs: almost all operators work within 30 cm of the phototherapy source during monitoring procedures, with most of them commonly working at ≤25 cm from the direct or reflected radiation beam. The results of this study suggest that there is a great variability in the spectral emission of equipments investigated, depending on the types of lamps used and some phototherapy equipment exposes operators to blue light photochemical retinal hazard. Some of the equipment investigated presents relevant spectral emission also in the UVA region. Taking into account that the exposure to UV in childhood has been established as an important contributing factor for melanoma risk in adults and considering the high susceptibility to UV-induced skin damage of the newborn, related to his pigmentary traits, the UV exposure of the infant during phototherapy should be "as low as reasonably achievable," considering that it is unnecessary to the therapy. It is recommended that special safety training be provided for the affected employees: in particular, protective eyewear can be necessary during newborn assistance activities carried out in proximity of some sources. The engineering design of phototherapy equipment can be optimized. Specific requirements for photobiological safety of lamps used in the phototherapy equipment should be defined in the safety product standard for such

  9. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights.

    PubMed

    Denkins, P; Badhwar, G; Obot, V; Wilson, B; Jejelewo, O

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  10. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Astrophysics Data System (ADS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  11. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    NASA Technical Reports Server (NTRS)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  12. The rate of repeating X-rays in the medical centers of Jenin District/Palestine and how to reduce patient exposure to radiation

    NASA Astrophysics Data System (ADS)

    Assi, Abed Al Nasser

    2018-03-01

    Reduction of the patient's received radiation dose to as low as reasonably achievable (ALARA) is based on recommendations of radiation protection organizations such as the International Commission on Radiological Protection (ICRP) and the National Radiological Protection Board (NRPB). The aim of this study was to explore the frequency and characteristics of rejected / repeated radiographic films in governmental and private centers in Jenin city. The radiological centers were chosen based on their high volume of radiographic studies. The evaluation was carried out over a period of four months. The collected data were compiled at the end of each week and entered into a computer for analysis at the end of study. Overall 5000 films (images) were performed in four months, The average repeat rate of radiographic images was 10% (500 films). Repetition rate was the same for both thoracic and abdominal images (42%). The main reason for repeating imaging was inadequate imaging quality (58.2%) and poor film processing (38%). Human error was the most likely reason necessitating the repetition of the radiographs (48 %). Infant and children groups comprised 85% of the patient population that required repetition of the radiographic studies. In conclusion, we have a higher repetition rate of imaging studies compared to the international standards (10% vs. 4-6%, respectively). This is especially noticeable in infants and children, and mainly attributed to human error in obtaining and processing images. This is an important issue that needs to be addressed on a national level due to the ill effects associated with excessive exposure to radiation especially in children, and to reduce cost of the care delivered.

  13. New Approaches to Radiation Protection

    PubMed Central

    Rosen, Eliot M.; Day, Regina; Singh, Vijay K.

    2015-01-01

    Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development. PMID:25653923

  14. AN ANALYSIS OF OPERATING PHYSICIAN AND PATIENT RADIATION EXPOSURE DURING RADIAL CORONARY ANGIOPLASTIES.

    PubMed

    Tarighatnia, Ali; Mesbahi, Asghar; Alian, Amir Hossein Mohammad; Koleini, Evin; Nader, Nader

    2018-03-23

    The objective of this study was to evaluate radiation exposure levels in conjunction with operator dose implemented, patient vascular characteristics, and other technical angiographic parameters. In total, 756 radial coronary angioplasties were evaluated in a major metropolitan general hospital in Tabriz, Iran. The classification of coronary lesions was based on the ACC/AHA system. One interventional cardiologist performed all of the procedures using a single angiography unit. The mean kerma-area product and mean cumulative dose for all cases was 5081 μGy m2 and 814.44 mGy, respectively. Average times of 26.16 and 9.1 min were recorded for the overall procedure and fluoroscopy, respectively. A strong correlation was demonstrated between types of lesions, number of stents and vessels treated in relation to physician radiation exposure. It was determined that operator radiation exposure levels for percutaneous coronary interventions lesions (complex) were higher than that of simple and moderate lesions. In addition, operator radiation exposure levels increased with the treatment of more coronary vessels and implementation of additional stents.

  15. Evaluation of radiation exposure with Tru-Align intraoral rectangular collimation system using OSL dosimeters.

    PubMed

    Goren, Arthur D; Bonvento, Michael J; Fernandez, Thomas J; Abramovitch, Kenneth; Zhang, Wenjian; Roe, Nadine; Seltzer, Jared; Steinberg, Mitchell; Colosi, Dan C

    2011-03-01

    A pilot study to compare radiation exposure with the Tru-Align rectangular collimation system to round collimation exposures was undertaken. Radiation exposure at various points within the cross sections of the collimators and entrance, intraoral and exit dose measurements were measured using InLight OSL dosimeters. Overall dose reduction with the use of the rectangular collimation system was estimated by taking into account the ratios of collimator openings and the average radiation exposure at the measurement points. Use of the Tru-Align system resulted in an average radiation exposure within the perimeter of the projected outline of the rectangular collimator of 36.1 mR, compared to 148.5 mR with the round collimator. Our calculations indicate a dose reduction by a factor of approximately 3.2 in the case of the Tru-Align system compared to round collimation. The Tru-Align system was easy to use, but in some situations failed to allow Xray coverage of the entire surface of the image receptor, leading to cone cuts.

  16. Radiation Transport Modeling and Assessment to Better Predict Radiation Exposure, Dose, and Toxicological Effects to Human Organs on Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor

    2000-01-01

    NASA's long-range plans include possible human exploratory missions to the moon and Mars within the next quarter century. Such missions beyond low Earth orbit will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and the missions long, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. The focus of this study is radiation exposure to the blood-forming organs of the NASA astronauts. NASA/JSC developed the Phantom Torso Experiment for Organ Dose Measurements which housed active and passive dosimeters that would monitor and record absorbed radiation levels at vital organ locations. This experiment was conducted during the STS-9 I mission in May '98 and provided the necessary space radiation data for correlation to results obtained from the current analytical models used to predict exposure to the blood-forming organs. Numerous models (i.e., BRYNTRN and HZETRN) have been developed and used to predict radiation exposure. However, new models are continually being developed and evaluated. The Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronomy, is to be used and evaluated as a part of the research activity. It is the intent of this research effort to compare the modeled data to the findings from the STS-9 I mission; assess the accuracy and efficiency of this model; and to determine its usefulness for predicting radiation exposure and developing better guidelines for shielding requirements for long duration manned missions.

  17. Weekend personal ultraviolet radiation exposure in four cities in Australia: influence of temperature, humidity and ambient ultraviolet radiation.

    PubMed

    Xiang, Fan; Harrison, Simone; Nowak, Madeleine; Kimlin, Michael; Van der Mei, Ingrid; Neale, Rachel E; Sinclair, Craig; Lucas, Robyn M

    2015-02-01

    To examine the effects of meteorological factors on weekend sun exposure behaviours and personal received dose of ultraviolet radiation (UVR) in Australian adults. Australian adults (n=1002) living in Townsville (19°S, 146°E), Brisbane (27°S, 153°E), Canberra (35°S, 149°E) and Hobart (43°S, 147°E) were recruited between 2009 and 2010. Data on sun exposure behaviours were collected by daily sun exposure dairies; personal UVR exposure was measured with a polysulphone dosimeter. Meteorological data were obtained from the Australian Bureau of Meteorology; ambient UVR levels were estimated using the Ozone Monitoring Instrument data. Higher daily maximum temperatures were associated with reduced likelihood of wearing a long-sleeved shirt or wearing long trousers in Canberra and Hobart, and higher clothing-adjusted UVR dose in Canberra. Higher daily humidity was associated with less time spent outdoors in Canberra. Higher ambient UVR level was related to a greater clothing-adjusted personal UVR dose in Hobart and a greater likelihood of using sunscreen in Townsville. The current findings enhance our understanding of the impact of weather conditions on the population's sun exposure behaviours. This information will allow us to refine current predictive models for UVR-related diseases, and guide future health service and health promotion needs. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Occupational Exposure to Ultraviolet Radiation and Risk of Non-Melanoma Skin Cancer in a Multinational European Study

    PubMed Central

    Surdu, Simona; Fitzgerald, Edward F.; Bloom, Michael S.; Boscoe, Francis P.; Carpenter, David O.; Haase, Richard F.; Gurzau, Eugen; Rudnai, Peter; Koppova, Kvetoslava; Févotte, Joëlle; Leonardi, Giovanni; Vahter, Marie; Goessler, Walter; Kumar, Rajiv; Fletcher, Tony

    2013-01-01

    Background Studies suggest that ambient sunlight plays an important role in the pathogenesis of non-melanoma skin cancers (NMSC). However, there is ongoing controversy regarding the relevance of occupational exposure to natural and artificial ultraviolet radiation (UV) radiation. Objectives We investigated potential associations between natural and artificial UV radiation exposure at work with NMSC in a case-control study conducted in Hungary, Romania, and Slovakia. Methods Occupational exposures were classified by expert assessment for 527 controls and 618 NMSC cases (515 basal cell carcinoma, BCC). Covariate information was collected via interview and multiple logistic regression models were used to assess associations between UV exposure and NMSC. Results Lifetime prevalence of occupational exposure in the participants was 13% for natural UV radiation and 7% for artificial UV radiation. Significant negative associations between occupational exposure to natural UV radiation and NMSC were detected for all who had ever been exposed (odds ratio (OR) 0.47, 95% confidence interval (CI) 0.27–0.80); similar results were detected using a semi-quantitative metric of cumulative exposure. The effects were modified by skin complexion, with significantly decreased risks of BCC among participants with light skin complexion. No associations were observed in relation to occupational artificial UV radiation exposure. Conclusions The protective effect of occupational exposure to natural UV radiation was unexpected, but limited to light-skinned people, suggesting adequate sun-protection behaviors. Further investigations focusing on variations in the individual genetic susceptibility and potential interactions with environmental and other relevant factors are planned. PMID:23638051

  19. Management of fear of radiation exposure in carers of outpatients treated with iodine-131.

    PubMed

    Calais, Phillipe J; Page, Andrew C; Turner, J Harvey

    2012-07-01

    To characterise potential fear of radiation exposure in a normal population of individuals who have volunteered to care for a radioactive family member or friend after outpatient radioimmunotherapy (RIT) treatment for cancer, and obtain their knowing and willing acceptance of the risk. Over 750 carers of 300 patients confined to their homes for 1 week following outpatient iodine-131 rituximab RIT of lymphoma were interviewed by a nuclear medicine physicist according to a multi-visit integrated protocol designed to minimise radiation exposure, define risk and gain informed consent. Median radiation exposure of carers was 0.49 mSv (range 0.01-3.7 mSv) which is below the Western Australian regulatory limit of 5 mSv for consenting adult carers of radioactive patients. After signing a declaration of consent, only 2 carers of 750 abrogated their responsibility and none of those who carried out their duties expressed residual concerns at the end of the exit interview with respect to their radiation exposure. Fear of radiation exposure in a normal population may be characterised as a normal emotional response. In the special case of carers of radioactive patients, this fear may be successfully managed by rational, authoritative and empathic explanation to define the risk and gain willing acceptance within the context of domiciliary patient care.

  20. Radiation exposure and risk assessment for critical female body organs

    NASA Technical Reports Server (NTRS)

    Atwell, William; Weyland, Mark D.; Hardy, Alva C.

    1991-01-01

    Space radiation exposure limits for astronauts are based on recommendations of the National Council on Radiation Protection and Measurements. These limits now include the age at exposure and sex of the astronaut. A recently-developed computerized anatomical female (CAF) model is discussed in detail. Computer-generated, cross-sectional data are presented to illustrate the completeness of the CAF model. By applying ray-tracing techniques, shield distribution functions have been computed to calculate absorbed dose and dose equivalent values for a variety of critical body organs (e.g., breasts, lungs, thyroid gland, etc.) and mission scenarios. Specific risk assessments, i.e., cancer induction and mortality, are reviewed.

  1. Effects of an acute dose of gamma radiation exposure on stem diameter growth, carbon gain, and biomass partitioning in Helianthus annuus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiede, M.E.

    1988-05-25

    Nineteen-day-old dwarf sunflower plants (Helianthus annuus, variety NK894) received a variable dose (0-40 Gy) from a cobalt-60 gamma source. A very sensitive stem monitoring device, developed at Battelle's Pacific Northwest Laboratories, Richland, Washington was used to measure real-time changes in stem diameter. Exposure of plants caused a significant reduction in stem growth and root biomass. Doses as low as 5 Gy resulted in a significant increase in leaf density, suggesting that nonreversible morphological growth changes could be induced by very low doses of radiation. Carbohydrate analysis of 40-Gy irradiated plants demonstrated significantly more starch content in leaves and significantly lessmore » starch content in stems 18 days after exposure than did control plants. In contrast, the carbohydrate content in roots of 40-Gy irradiated plants were not significantly different from unirradiated plants 18 days after exposure. These results indicate that radiation either decreased phloem transport or reduced the availability of sugar reducing enzymes in irradiated plants. 44 refs., 12 figs.« less

  2. Outcomes and radiation exposure of emergency department patients with chest pain and shortness of breath and ultralow pretest probability: a multicenter study.

    PubMed

    Kline, Jeffrey A; Shapiro, Nathan I; Jones, Alan E; Hernandez, Jackeline; Hogg, Melanie M; Troyer, Jennifer; Nelson, R Darrell

    2014-03-01

    Excessive radiation exposure remains a concern for patients with symptoms suggesting acute coronary syndrome and pulmonary embolism but must be judged in the perspective of pretest probability and outcomes. We quantify and qualify the pretest probability, outcomes, and radiation exposure of adults with both chest pain and dyspnea. This was a prospective, 4-center, outcomes study. Patients were adults with dyspnea and chest pain, nondiagnostic ECGs, and no obvious diagnosis. Pretest probability for both acute coronary syndrome and pulmonary embolism was assessed with a validated method; ultralow risk was defined as pretest probability less than 2.5% for both acute coronary syndrome and pulmonary embolism. Patients were followed for diagnosis and total medical radiation exposure for 90 days. Eight hundred forty patients had complete data; 23 (3%) had acute coronary syndrome and 15 (2%) had pulmonary embolism. The cohort received an average of 4.9 mSv radiation to the chest, 48% from computed tomography pulmonary angiography. The pretest probability estimates for acute coronary syndrome and pulmonary embolism were less than 2.5% in 227 patients (27%), of whom 0 of 277 (0%; 95% confidence interval 0% to 1.7%) had acute coronary syndrome or pulmonary embolism and 7 of 227 (3%) had any significant cardiopulmonary diagnosis. The estimated chest radiation exposure per patient in this ultralow-risk group was 3.5 mSv, including 26 (3%) with greater than 5 mSv radiation to the chest and no significant cardiopulmonary diagnosis. One quarter of patients with chest pain and dyspnea had ultralow risk and no acute coronary syndrome or pulmonary embolism but were exposed to an average of 3.5 mSv radiation to the chest. These data can be used in a clinical guideline to reduce radiation exposure. Copyright © 2013 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved.

  3. Relative efficacy for radiation reducing methods in scoliotic patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aikenhead, J.; Triano, J.; Baker, J.

    Radiation dosages to sensitive organs in full spine radiography have in recent years been a concern of physicians as well as the general public. The spine is the prime target for exposure in scoliosis radiography, though the exposure usually necessitates irradiation of several radio-sensitive organs. In recent studies, various protection techniques have been used including various lead and aluminum filtration systems, altered patient positioning and varied tube-film distances. The purpose of this study was to evaluate the efficiency for radiation dosage reduction of three filtration systems used frequently in the chiropractic profession. The systems tested were the Nolan Multiple X-raymore » Filters, the Clear-Pb system and the Sportelli Wedge system. These systems were tested in seven configurations varying breast shielding, distance and patient positioning. All systems tested demonstrated significant radiation reductions to organs, especially breast tissue. The Clear-Pb system appeared to be the most effective for all organs except the breast, and the Sportelli Wedge system demonstrated the greatest reduction to breast tissue.« less

  4. Effects of combined radiofrequency radiation exposure on levels of reactive oxygen species in neuronal cells

    PubMed Central

    Kang, Kyoung Ah; Lee, Hyung Chul; Lee, Je-Jung; Hong, Mi-Na; Park, Myung-Jin; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Nam; Ko, Young-Gyu; Lee, Jae-Seon

    2014-01-01

    The objective of this study was to investigate the effects of the combined RF radiation (837 MHz CDMA plus 1950 MHz WCDMA) signal on levels of intracellular reactive oxygen species (ROS) in neuronal cells. Exposure of the combined RF signal was conducted at specific absorption rate values of 2 W/kg of CDMA plus 2 W/kg of WCDMA for 2 h. Co-exposure to combined RF radiation with either H2O2 or menadione was also performed. The experimental exposure groups were incubator control, sham-exposed, combined RF radiation-exposed with or without either H2O2 or menadione groups. The intracellular ROS level was measured by flow cytometry using the fluorescent probe dichlorofluorescein diacetate. Intracellular ROS levels were not consistently affected by combined RF radiation exposure alone in a time-dependent manner in U87, PC12 or SH-SY5Y cells. In neuronal cells exposed to combined RF radiation with either H2O2 or menadione, intracellular ROS levels showed no statically significant alteration compared with exposure to menadione or H2O2 alone. These findings indicate that neither combined RF radiation alone nor combined RF radiation with menadione or H2O2 influences the intracellular ROS level in neuronal cells such as U87, PC12 or SH-SY5Y. PMID:24105709

  5. Lead exposure and radiator repair work.

    PubMed Central

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-01-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level. PMID:2817174

  6. Lead exposure and radiator repair work.

    PubMed

    Lussenhop, D H; Parker, D L; Barklind, A; McJilton, C

    1989-11-01

    In 1986, the ambient air for lead in radiator repair shops in the Minneapolis-St. Paul metropolitan area exceeded the Occupational Safety and Health Administration (OSHA) action level in nine of 12 shops sampled by Minnesota OSHA. We therefore sought to determine the prevalence of lead exposure/toxicity in this industry. Thirty-five radiator shops were identified, 30 were visited, and 53 workers were studied. The mean blood lead level was 1.53 (range 0.24-2.80). Seventeen individuals had blood lead levels greater than or equal to 1.93 mumol/L (40 micrograms/dl). The mean zinc protoporphyrin level (ZPP) was 0.55 mumol/L (range 0.16-1.43). No single worksite or personal characteristic was a strong determinant of either blood lead or ZPP level.

  7. Effect of space relevant radiation exposure on differentiation and mineralization of murine osteoprogenitor cells

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hu, Yueyuan; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Extended exposure to altered gravity conditions like during long-term space flight results in significant bone loss. Exposure to ionizing radiation for cancer therapy causes bone damage and may increase the risk of fractures. Similarly, besides altered gravity conditions, astronauts on exploratory missions beyond low-Earth orbit will be exposed to high-energy heavy ions in addition to proton and photon radiation, although for prolonged periods and at lower doses and dose rates compared with therapy. Space conditions may place astronauts at a greater risk for mission-critical fractures. Until now, little is known about the effects of space radiation on the skeletal system especially on osteoprogenitor cells. Accelerator facilities are used to simulate parts of the radiation environment in space. Heavy ion accelerators therefore could be used to assess radiation risks for astronauts who will be exposed to higher radiation doses e.g. on a Mars mission. The aim of the present study was to determine the biological effects of spaceflight-relevant radiation exposure on the cellular level using murine osteoprogenitor cell lines compared to nonirradiated controls. To gain a deeper understanding of bone cell differenti-ation and mineralization after exposure to heavy ions, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. We investigated the transcrip-tional modulation of type I collagen (Col I), osteocalcin (Ocn), Transforming growth factor-β1 (TGF-β1), interleukin-6 (IL-6) and the bone specific transcription factor Runx2 (Cbfa1). To gain deeper insight into potential cellular mechanisms involved in cellular response after ex-posure to heavy ions, we investigated gene expression modulations after exposure to energetic carbon ions (35 MeV/u, 73.2 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600

  8. Acute radiation syndrome (ARS) - treatment of the reduced host defense.

    PubMed

    Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen

    2012-01-01

    The current radiation threat from the Fukushima power plant accident has prompted rethinking of the contingency plan for prophylaxis and treatment of the acute radiation syndrome (ARS). The well-documented effect of the growth factors (granulocyte colony-stimulating factor [G-CSF] and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in acute radiation injury has become standard treatment for ARS in the United States, based on the fact that growth factors increase number and functions of both macrophages and granulocytes. Review of the current literature. The lungs have their own host defense system, based on alveolar macrophages. After radiation exposure to the lungs, resting macrophages can no longer be transformed, not even during systemic administration of growth factors because G-CSF/GM-CSF does not penetrate the alveoli. Under normal circumstances, locally-produced GM-CSF receptors transform resting macrophages into fully immunocompetent dendritic cells in the sealed-off pulmonary compartment. However, GM-CSF is not expressed in radiation injured tissue due to defervescence of the macrophages. In order to maintain the macrophage's important role in host defense after radiation exposure, it is hypothesized that it is necessary to administer the drug exogenously in order to uphold the barrier against exogenous and endogenous infections and possibly prevent the potentially lethal systemic infection, which is the main cause of death in ARS. Preemptive treatment should be initiated after suspected exposure of a radiation dose of at least <2 Gy by prompt dosing of 250-400 μg GM-CSF/m(2) or 5 μg/kg G-CSF administered systemically and concomitant inhalation of GM-CSF < 300 mcg per day for at least 14-21 days. The present United States standard for prevention and treatment of ARS standard intervention should consequently be modified into the combined systemic administration of growth factors and inhaled GM-CSF to ensure the sustained systemic and pulmonary

  9. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    PubMed Central

    Verreet, Tine; Quintens, Roel; Baatout, Sarah; Benotmane, Mohammed A.

    2016-01-01

    Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic) and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered. PMID:27382490

  10. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: a systematic review.

    PubMed

    Calvente, I; Fernandez, M F; Villalba, J; Olea, N; Nuñez, M I

    2010-07-15

    Childhood exposure to physical contamination, including non-ionizing radiation, has been implicated in numerous diseases, raising concerns about the widespread and increasing sources of exposure to this type of radiation. The primary objective of this review was to analyze the current state of knowledge on the association between environmental exposure to non-ionizing radiation and the risk of childhood leukemia. Scientific publications between 1979 and 2008 that include examination of this association have been reviewed using the MEDLINE/PubMed database. Studies to date have not convincingly confirmed or ruled out an association between non-ionizing radiation and the risk of childhood leukemia. Discrepancies among the conclusions of the studies may also be influenced by confounding factors, selection bias, and misclassification. Childhood defects can result from genetic or epigenetic damage and from effects on the embryo or fetus, which may both be related to environmental exposure of the parent before conception or during the pregnancy. It is therefore critical for researchers to define a priori the type and "window" of exposure to be assessed. Methodological problems to be solved include the proper diagnostic classification of individuals and the estimated exposure to non-ionizing radiation, which may act through various mechanisms of action. There appears to be an urgent need to reconsider exposure limits for low frequency and static magnetic fields, based on combined experimental and epidemiological research into the relationship between exposure to non-ionizing radiation and adverse human health effects.

  11. Airline Pilot Cosmic Radiation and Circadian Disruption Exposure Assessment from Logbooks and Company Records

    PubMed Central

    Grajewski, Barbara; Waters, Martha A.; Yong, Lee C.; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli II, Rick T.

    2011-01-01

    Objectives: US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Methods: Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments’ block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Results: Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (Ptrend < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman’s r = 0.61–0.69). Conclusions: The methods

  12. Airline pilot cosmic radiation and circadian disruption exposure assessment from logbooks and company records.

    PubMed

    Grajewski, Barbara; Waters, Martha A; Yong, Lee C; Tseng, Chih-Yu; Zivkovich, Zachary; Cassinelli, Rick T

    2011-06-01

    US commercial airline pilots, like all flight crew, are at increased risk for specific cancers, but the relation of these outcomes to specific air cabin exposures is unclear. Flight time or block (airborne plus taxi) time often substitutes for assessment of exposure to cosmic radiation. Our objectives were to develop methods to estimate exposures to cosmic radiation and circadian disruption for a study of chromosome aberrations in pilots and to describe workplace exposures for these pilots. Exposures were estimated for cosmic ionizing radiation and circadian disruption between August 1963 and March 2003 for 83 male pilots from a major US airline. Estimates were based on 523 387 individual flight segments in company records and pilot logbooks as well as summary records of hours flown from other sources. Exposure was estimated by calculation or imputation for all but 0.02% of the individual flight segments' block time. Exposures were estimated from questionnaire data for a comparison group of 51 male university faculty. Pilots flew a median of 7126 flight segments and 14 959 block hours for 27.8 years. In the final study year, a hypothetical pilot incurred an estimated median effective dose of 1.92 mSv (absorbed dose, 0.85 mGy) from cosmic radiation and crossed 362 time zones. This study pilot was possibly exposed to a moderate or large solar particle event a median of 6 times or once every 3.7 years of work. Work at the study airline and military flying were the two highest sources of pilot exposure for all metrics. An index of work during the standard sleep interval (SSI travel) also suggested potential chronic sleep disturbance in some pilots. For study airline flights, median segment radiation doses, time zones crossed, and SSI travel increased markedly from the 1990s to 2003 (P(trend) < 0.0001). Dose metrics were moderately correlated with records-based duration metrics (Spearman's r = 0.61-0.69). The methods developed provided an exposure profile of this group

  13. Risk of breast cancer following low-dose radiation exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boice, J.D. Jr.; Land, C.E.; Shore, R.E.

    1979-06-01

    Risk of breast cancer following radiation exposure was studied, based on surveys of tuberculosis patients who had multiple fluoroscopic examinations of the chest, mastitis patients given radiotherapy, and atomic bomb survivors. Analysis suggests that the risk is greatest for persons exposed as adolescents, although exposure at all ages carries some risk. The dose-response relationship was consistent with linearity in all studies. Direct evidence of radiation risk at doses under 0.5 Gy (50 rad) is apparent among A-bomb survivors. Fractionation does not appear to diminish risk, nor does time since exposure (even after 45 years of observation). The interval between exposuremore » and the clinical appearance of radiogenic breast cancer may be mediated by hormonal or other age-related factors but is unrelated to dose. Age-specific absolute risk estimtes for all studies are remarkably similar. The best estimate of risk among American women exposed after age 20 is 6.6 excess cancers/10/sup 4/ WY-Gy (10/sup 6/ WY-rad).« less

  14. Radiation in the workplace-a review of studies of the risks of occupational exposure to ionising radiation.

    PubMed

    Wakeford, Richard

    2009-06-01

    Many individuals are, or have been, exposed to ionising radiation in the course of their work and the epidemiological study of occupationally irradiated groups offers an important opportunity to complement the estimates of risks to health resulting from exposure to radiation that are obtained from other populations, such as the Japanese survivors of the atomic bombings of Hiroshima and Nagasaki in 1945. Moreover, workplace exposure to radiation usually involves irradiation conditions that are of direct relevance to the principal concern of radiological protection: protracted exposure to low level radiation. Further, some workers have been exposed to radioactive material that has been inadvertently taken into the body, and the study of these groups leads to risk estimates derived directly from the experience of those irradiated by these 'internal emitters', intakes of alpha-particle-emitters being of particular interest. Workforces that have been the subject of epidemiological study include medical staff, aircrews, radium dial luminisers, underground hard-rock miners, Chernobyl clean-up workers, nuclear weapons test participants and nuclear industry workers. The first solid epidemiological evidence of the stochastic effects of irradiation came from a study of occupational exposure to medical x-rays that was reported in 1944, which demonstrated a large excess risk of leukaemia among US radiologists; but the general lack of dose records for early medical staff who tended to experience the highest exposures hampers the derivation of risks per unit dose received by medical workers. The instrument dial luminisers who inadvertently ingested large amounts of radium-based paint and underground hard-rock miners who inhaled large quantities of radon and its decay products suffered markedly raised excess risks of, respectively, bone and lung cancers; the miner studies have provided standard risk estimates for radon-induced lung cancer. The large numbers of nuclear industry

  15. A SPACE TRAJECTORY RADIATION EXPOSURE PROCEDURE FOR CISLUNAR MISSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cranford, W.; Falkenbury, R.F.; Miller, R.A.

    1962-07-31

    The Space Trajectory Radiation Exposure Procedure (STREP) is designed for use in computing the timeintegrated spectra for any specified trajectory in cislunar space for any combination of the several components of space radiations. These components include Van Allen protons and electrons; solar-flare protons, electrons, heavy particles, and gamma radiation; cosmic protons and heavy particles; albedo neutrons, and aurora borealis gamma radiation. The program can also be used to calculate the accumulated dose behind a thin vehicle skin at any time after the start of the mission. The technique of interpolation for intermediate points along the prescribed space trajectory is describedmore » in detail. The method of representation of the space radiation data as input for the calculation of the dose and time-integrated spectra is discussed. (auth)« less

  16. Exposure-Reducing Behaviors Among Residents Living Near a Coal Ash Storage Site.

    PubMed

    Zierold, Kristina M; Sears, Clara G; Brock, Guy N

    2016-10-01

    Coal ash, a waste product generated from burning coal for energy, is composed of highly respirable particles containing heavy metals, radioactive elements, and polycylic aromatic hydrocarbons. Coal ash is stored in landfills and surface impoundments frequently located near neighborhoods. Fugitive dust from the storage sites exposes neighborhoods, affecting the health and welfare of residents. The research questions of interest were (1) are community members concerned about coal ash exposure from the storage site; (2) what, if any, behaviors do community members engage in to reduce exposure; and (3) do exposure reducing behaviors differ by level of concern about coal ash. A community-based mixed-methods approach was used. Focus groups (n = 26) were conducted in 2012, and a cross-sectional survey was administered in 2013 (n = 231). The majority of survey respondents (62%) worried "a lot" about being exposed to coal ash; however, most did not engage in exposure-reducing behaviors, such as wearing protective equipment when doing chores. Compared with respondents who worry "some, very little, or none," or responded "I don't know," respondents who worried "a lot" about being exposed to coal ash did more exposure-reducing behaviors outdoors (p < .001) and indoors (p = .01). For people living near environmental hazards, reducing exposure is a priority. Although challenging because of the chronic nature of exposure, some behaviors can be useful in reducing exposure, such as wearing a particle-specific respirator when mowing the lawn. Communities at risk for chronic exposure to environmental toxins could benefit from education about exposure-reducing behaviors. © 2015 Society for Public Health Education.

  17. Metastatic angiosarcoma of the spleen after accidental radiation exposure: a case report.

    PubMed

    Geffen, D B; Zirkin, H J; Mermershtain, W; Cohen, Y; Ariad, S

    1998-04-01

    Angiosarcoma is a rare malignant tumor arising from endothelial cells of blood vessels or lymphatic channels. Therapeutic irradiation, thoriumdioxide administration, pyothorax, and polyvinyl chloride exposure have been shown to be predisposing factors for developing angiosarcoma. Accidental radiation exposure has not been associated with angiosarcoma. We present an unusual case of angiosarcoma of the spleen, with metastases to bone, liver, breast, and bone marrow, in a woman who lived near the Chernobyl nuclear facility in the former Soviet Union at the time of the reactor accident in 1986. To the best of our knowledge, this is the first report of metastatic angiosarcoma after accidental radiation exposure.

  18. Cognitive deficits induced by 56Fe radiation exposure

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; Cantuti-Castelvetri, I.; Rabin, B. M.; Joseph, J. A.

    2003-01-01

    Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Published by Elsevier Science Ltd on behalf of COSPAR.

  19. Reduction of radiation exposure while maintaining high-quality fluoroscopic images during interventional cardiology using novel x-ray tube technology with extra beam filtering.

    PubMed

    den Boer, A; de Feyter, P J; Hummel, W A; Keane, D; Roelandt, J R

    1994-06-01

    Radiographic technology plays an integral role in interventional cardiology. The number of interventions continues to increase, and the associated radiation exposure to patients and personnel is of major concern. This study was undertaken to determine whether a newly developed x-ray tube deploying grid-switched pulsed fluoroscopy and extra beam filtering can achieve a reduction in radiation exposure while maintaining fluoroscopic images of high quality. Three fluoroscopic techniques were compared: continuous fluoroscopy, pulsed fluoroscopy, and a newly developed high-output pulsed fluoroscopy with extra filtering. To ascertain differences in the quality of images and to determine differences in patient entrance and investigator radiation exposure, the radiated volume curve was measured to determine the required high voltage levels (kVpeak) for different object sizes for each fluoroscopic mode. The fluoroscopic data of 124 patient procedures were combined. The data were analyzed for radiographic projections, image intensifier field size, and x-ray tube kilovoltage levels (kVpeak). On the basis of this analysis, a reference procedure was constructed. The reference procedure was tested on a phantom or dummy patient by all three fluoroscopic modes. The phantom was so designed that the kilovoltage requirements for each projection were comparable to those needed for the average patient. Radiation exposure of the operator and patient was measured during each mode. The patient entrance dose was measured in air, and the operator dose was measured by 18 dosimeters on a dummy operator. Pulsed compared with continuous fluoroscopy could be performed with improved image quality at lower kilovoltages. The patient entrance dose was reduced by 21% and the operator dose by 54%. High-output pulsed fluoroscopy with extra beam filtering compared with continuous fluoroscopy improved the image quality, lowered the kilovoltage requirements, and reduced the patient entrance dose by 55% and

  20. KREAM: Korean Radiation Exposure Assessment Model for Aviation Route Dose

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Dokgo, K.; Choi, E. J.; Kim, K. C.; Kim, H. P.; Cho, K. S. F.

    2014-12-01

    Since Korean Air has begun to use the polar route from Seoul/ICN airport to New York/JFK airport on August 2006, there are explosive needs for the estimation and prediction against cosmic radiation exposure for Korean aircrew and passengers in South Korea from public. To keep pace with those needs of public, Korean government made the law on safety standards and managements of cosmic radiation for the flight attendants and the pilots in 2013. And we have begun to develop our own Korean Radiation Exposure Assessment Model (KREAM) for aviation route dose since last year funded by Korea Meteorological Administration (KMA). GEANT4 model and NRLMSIS 00 model are used for calculation of the energetic particles' transport in the atmosphere and for obtaining the background atmospheric neutral densities depending on altitude. For prediction the radiation exposure in many routes depending on the various space weather effects, we constructed a database from pre-arranged simulations using all possible combinations of R, S, and G, which are the space weather effect scales provided by the National Oceanic and Atmospheric Administration (NOAA). To get the solar energetic particles' spectrum at the 100 km altitude which we set as a top of the atmospheric layers in the KREAM, we use ACE and GOES satellites' proton flux observations. We compare the results between KREAM and the other cosmic radiation estimation programs such as CARI-6M which is provided by the Federal Aviation Agency (FAA). We also validate KREAM's results by comparison with the measurement from Liulin-6K LET spectrometer onboard Korean commercial flights and Korean Air Force reconnaissance flights.

  1. Radiation exposure and safety practices during pediatric central line placement

    PubMed Central

    Saeman, Melody R.; Burkhalter, Lorrie S.; Blackburn, Timothy J.; Murphy, Joseph T.

    2015-01-01

    Purpose Pediatric surgeons routinely use fluoroscopy for central venous line (CVL) placement. We examined radiation safety practices and patient/surgeon exposure during fluoroscopic CVL. Methods Fluoroscopic CVL procedures performed by 11 pediatric surgeons in 2012 were reviewed. Fluoroscopic time (FT), patient exposure (mGy), and procedural data were collected. Anthropomorphic phantom simulations were used to calculate scatter and dose (mSv). Surgeons were surveyed regarding safety practices. Results 386 procedures were reviewed. Median FT was 12.8 seconds. Median patient estimated effective dose was 0.13 mSv. Median annual FT per surgeon was 15.4 minutes. Simulations showed no significant difference (p = 0.14) between reported exposures (median 3.5 mGy/min) and the modeled regression exposures from the C-arm default mode (median 3.4 mGy/min). Median calculated surgeon exposure was 1.5 mGy/year. Eight of 11 surgeons responded to the survey. Only three reported 100% lead protection and frequent dosimeter use. Conclusion We found non-standard radiation training, safety practices, and dose monitoring for the 11 surgeons. Based on simulations, the C-arm default setting was typically used instead of low dose. While most CVL procedures have low patient/surgeon doses, every effort should be used to minimize patient and occupational exposure, suggesting the need for formal hands-on training for non-radiologist providers using fluoroscopy. PMID:25837269

  2. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea.

    PubMed

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 ((137)Cs) in Seoul. Using information regarding the frequency and duration of passing via the (137)Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of (137)Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline.

  3. Risk of radiation induced cataracts: investigation of radiation exposure to the eye lens during endourologic procedures.

    PubMed

    Hartmann, Josefin; Distler, Florian A; Baumueller, Martin; Guni, Ewald; Pahernik, Sascha A; Wucherer, Michael

    2018-06-14

    Due to new radiobiological data, the ICRP recommends a dose limit of 20mSv per year to the eye lens. Therefore, the IAEA International Basic Safety Standard and the EU council directive 2013/59/EURATOM requires a reduction of the annual dose limit from 150mSv to 20mSv. Urologists are exposed to an elevated radiation exposure in the head region during fluoroscopic interventions, due to the commonly used overtable X-ray tubes and the rarely used radiation protection for the head. Aim of the study was to analyze real radiation exposure to the eye lens of the urologist during various interventions during which the patient is in the lithotomy position. The partial body doses (forehead and apron collar) of the urologists and surgical staff were measured over a period of two months. 95 interventions were performed on Uroskop Omnia Max workplaces (Siemens Healthineers, Erlangen, Germany). Interventions were class-divided in less (stage I) and more complex (stage II) interventions. Two dosimeter-types were applied: well-calibrated electronic personal dosimeter EPD Mk2 and self-calibrated TLD-100H (both Thermo Fisher Scientific, Waltham, USA). The radiation exposure parameters were documented using the dose area product (DAP) and the fluoroscopy time (FT). The correlation between DAP and the apron dose of the urologist was in average 0.07µSv per 1µGym². The more experienced urologists yielded a mean DAP of 166µGym² for stage I and 415µGym² for stage II procedures. The interventionist was exposed with 10µSv in mean outside the lead apron collar. The mean dose value of the eye lenses per intervention was ascertained to 20µSv (mean DAP: 233µGym²). The study setup allows a differentiated and time-resolved measurement of the radiation exposure, which was found heterogeneous depending on intervention and surgeon. In this setting, approximately 1000 interventions can be performed until the annual eye lens dose limit is achieved.

  4. Novel Human Radiation Exposure Biomarker Panel Applicable for Population Triage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazan, Jose G.; Chang, Polly; Balog, Robert

    2014-11-01

    Purpose: To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Methods and Materials: Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groupsmore » were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. Results: A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). Conclusions: A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear

  5. Novel human radiation exposure biomarker panel applicable for population triage.

    PubMed

    Bazan, Jose G; Chang, Polly; Balog, Robert; D'Andrea, Annalisa; Shaler, Thomas; Lin, Hua; Lee, Shirley; Harrison, Travis; Shura, Lei; Schoen, Lucy; Knox, Susan J; Cooper, David E

    2014-11-01

    To identify a panel of radiation-responsive plasma proteins that could be used in a point-of-care biologic dosimeter to detect clinically significant levels of ionizing radiation exposure. Patients undergoing preparation for hematopoietic cell transplantation using radiation therapy (RT) with either total lymphoid irradiation or fractionated total body irradiation were eligible. Plasma was examined from patients with potentially confounding conditions and from normal individuals. Each plasma sample was analyzed for a panel of 17 proteins before RT was begun and at several time points after RT exposure. Paired and unpaired t tests between the dose and control groups were performed. Conditional inference trees were constructed based on panels of proteins to compare the non-RT group with the RT group. A total of 151 patients (62 RT, 41 infection, 48 trauma) were enrolled on the study, and the plasma from an additional 24 healthy control individuals was analyzed. In comparison with to control individuals, tenascin-C was upregulated and clusterin was downregulated in patients receiving RT. Salivary amylase was strongly radiation responsive, with upregulation in total body irradiation patients and slight downregulation in total lymphoid irradiation patients compared with control individuals. A panel consisting of these 3 proteins accurately distinguished between irradiated patients and healthy control individuals within 3 days after exposure: 97% accuracy, 0.5% false negative rate, 2% false positive rate. The accuracy was diminished when patients with trauma, infection, or both were included (accuracy, 74%-84%; false positive rate, 14%-33%, false negative rate: 8%-40%). A panel of 3 proteins accurately distinguishes unirradiated healthy donors from those exposed to RT (0.8-9.6 Gy) within 3 days of exposure. These findings have significant implications in terms of triaging individuals in the case of nuclear or other radiologic events. Copyright © 2014 Elsevier Inc. All

  6. BOOK REVIEW: NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States

    NASA Astrophysics Data System (ADS)

    Thurston, Jim

    2010-10-01

    This report by Committee 6 of the Council is an extensive update of a previous report on the exposure of the US population to ionizing radiation sources from data gathered in the 1980s (published as Report 93 in 1987). It is combined with an update on the more in-depth assessment of data on medical exposures previously reported in 1989 (Report 100). Individual chapters in this new report are dedicated to specific sources of exposure to the US population—both from natural and artificial radiation—and the level of detail in each chapter is intended to reflect the significance of the contribution of each source to the total collective dose of the population. The first chapter is on the most significant contributor: background radiation. It expands on the concept of natural background radiation in Report 93, renaming it 'ubiquitous background', and describing in detail the contributions from both extra-terrestrial and terrestrial sources. The data demonstrates that the average dose from such exposure has varied little since the previous report (a slight increase from 3.0 mSv to 3.1 mSv). The next chapter is on medical radiation, i.e. the exposure to the population when attending as patients, not including occupational exposure to hospital workers. The most striking data published in the entire report is the increase in the contribution to the total US population dose attributed to such medical exposures. It is now as significant as that from background radiation: medical exposures now account for an average effective dose to the US citizen of 3.00 mSv, up from 0.53 mSv in 1992 (Report 100). The most important contribution to this increase is the 1.46 mSv from CT scanning alone. The nuclear medicine (including PET) contribution is up from 0.14 mSv to 0.77mSv. This evidently must be due to significant changes in medical radiological practice in the US tied to the increase in the availability of CT and PET imaging facilities. These increasing contributions have driven

  7. Effects of exposure to different types of radiation on behaviors mediated by peripheral or central systems

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Erat, S.

    1998-01-01

    The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.

  8. Physical and biological properties of U. S. standard endotoxin EC after exposure to ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csako, G.; Elin, R.J.; Hochstein, H.D.

    Techniques that reduce the toxicity of bacterial endotoxins are useful for studying the relationship between structure and biological activity. We used ionizing radiation to detoxify a highly refined endotoxin preparation. U.S. standard endotoxin EC. Dose-dependent changes occurred by exposure to /sup 60/Co-radiation in the physical properties and biological activities of the endotoxin. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis showed gradual loss of the polysaccharide components (O-side chain and R-core) from the endotoxin molecules. In contrast, although endotoxin revealed a complex absorption pattern in the UV range, radiation treatment failed to modify that pattern. Dose-related destruction of the primary toxic component,more » lipid A, was suggested by the results of activity tests: both the pyrogenicity and limulus reactivity of the endotoxin were destroyed by increasing doses of radiation. The results indicate that the detoxification is probably due to multiple effects of the ionizing radiation on bacterial lipopolysaccharides, and the action involves (i) the destruction of polysaccharide moieties and possibly (ii) the alteration of lipid A component of the endotoxin molecule.« less

  9. What Aircrews Should Know About Their Occupational Exposure to Ionizing Radiation

    DTIC Science & Technology

    2003-10-01

    aircrews, and their children irradiated in utero , the principal health concern is a small increase in the lifetime risk of fatal cancer . For both of...from cancer : adults, p.301; all ages, p.303. — Risks from irradiation in utero , p.302. — Inherited genetic defects from parental...Aircrews, Ionizing Radiation, Galactic Cosmic Radiation, Cancer Risk, Hereditary Risks, Radiation Exposure Limits Springfield, Virginia 22161 19

  10. Effects of Radiation Exposure From Cardiac Imaging: How Good Are the Data?

    PubMed Central

    Einstein, Andrew J.

    2012-01-01

    Concerns about medical exposure to ionizing radiation have become heightened in recent years due to rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This article summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, I address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac-dose-level studies, albeit with exceptions. Using risk projection models developed by the US National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared to benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. PMID:22300689

  11. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, D.R. Jr.; Wondrow, M.A.; Gray, J.E.

    1990-01-01

    The increased application of therapeutic interventional cardiology procedures is associated with increased radiation exposure to physicians, patients and technical personnel. New advances in imaging techniques have the potential for reducing radiation exposure. A progressive scanning video system with a standard vascular phantom has been shown to decrease entrance radiation exposure. The effect of this system on reducing actual radiation exposure to physicians and technicians was assessed from 1984 through 1987. During this time, progressive fluoroscopy was added sequentially to all four adult catheterization laboratories; no changes in shielding procedures were made. During this time, the case load per physician increasedmore » by 63% and the number of percutaneous transluminal coronary angioplasty procedures (a high radiation procedure) increased by 244%. Despite these increases in both case load and higher radiation procedures, the average radiation exposure per physician declined by 37%. During the same time, the radiation exposure for technicians decreased by 35%. Pulsed progressive fluoroscopy is effective for reducing radiation exposure to catheterization laboratory physicians and technical staff.« less

  12. Long-Term Effects of Radiation Exposure and Metabolic Status on Telomere Length of Peripheral Blood T Cells in Atomic Bomb Survivors.

    PubMed

    Yoshida, Kengo; Misumi, Munechika; Kubo, Yoshiko; Yamaoka, Mika; Kyoizumi, Seishi; Ohishi, Waka; Hayashi, Tomonori; Kusunoki, Yoichiro

    2016-10-01

    In a series of studies of atomic bomb survivors, radiation-dose-dependent alterations in peripheral T-cell populations have been reported. For example, reduced size in naïve T-cell pools and impaired proliferation ability of T cells were observed. Because these alterations are also generally observed with human aging, we hypothesized that radiation exposure may accelerate the aging process of the T-cell immune system. To further test this hypothesis, we conducted cross-sectional analyses of telomere length, a hallmark of cellular aging, of naïve and memory CD4 T cells and total CD8 T cells in the peripheral blood of 620 atomic bomb survivors as it relates to age and radiation dose, using fluorescence in situ hybridization with flow cytometry. Since telomere shortening has been recently demonstrated in obesity-related metabolic abnormalities and diseases, the modifying effects of metabolic status were also examined. Our results indicated nonlinear relationships between T-cell telomere length and prior radiation exposure, i.e., longer telomeres with lower dose exposure and a decreasing trend of telomere length with individuals exposed to doses higher than 0.5 Gy. There were associations between shorter T-cell telomeres and higher hemoglobin Alc levels or fatty liver development. In naïve and memory CD4 T cells, radiation dose and high-density lipoprotein (HDL) cholesterol were found to positively interact with telomere length, suggesting that the decreasing trend of telomere length from a higher radiation dose was less conspicuous in individuals with a higher HDL cholesterol. It is therefore likely that radiation exposure perturbs T-cell homeostasis involving telomere length maintenance by multiple biological mechanisms, depending on dose, and that long-term-radiation-induced effects on the maintenance of T-cell telomeres may be modified by the subsequent metabolic conditions of individuals.

  13. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    PubMed

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  14. Radiation exposure of the radiologist's eye lens during CT-guided interventions.

    PubMed

    Heusch, Philipp; Kröpil, Patric; Buchbender, Christian; Aissa, Joel; Lanzman, Rotem S; Heusner, Till A; Ewen, Klaus; Antoch, Gerald; Fürst, Günther

    2014-02-01

    In the past decade the number of computed tomography (CT)-guided procedures performed by interventional radiologists have increased, leading to a significantly higher radiation exposure of the interventionalist's eye lens. Because of growing concern that there is a stochastic effect for the development of lens opacification, eye lens dose reduction for operators and patients should be of maximal interest. To determine the interventionalist's equivalent eye lens dose during CT-guided interventions and to relate the results to the maximum of the recommended equivalent dose limit. During 89 CT-guided interventions (e.g. biopsies, drainage procedures, etc.) measurements of eye lens' radiation doses were obtained from a dedicated dosimeter system for scattered radiation. The sensor of the personal dosimeter system was clipped onto the side of the lead glasses which was located nearest to the CT gantry. After the procedure, radiation dose (µSv), dose rate (µSv/min) and the total exposure time (s) were recorded. For all 89 interventions, the median total exposure lens dose was 3.3 µSv (range, 0.03-218.9 µSv) for a median exposure time of 26.2 s (range, 1.1-94.0 s). The median dose rate was 13.9 µSv/min (range, 1.1-335.5 µSv/min). Estimating 50-200 CT-guided interventions per year performed by one interventionalist, the median dose of the eye lens of the interventional radiologist does not exceed the maximum of the ICRP-recommended equivalent eye lens dose limit of 20 mSv per year.

  15. Trait and state anxiety reduce the mere exposure effect

    PubMed Central

    Ladd, Sandra L.; Gabrieli, John D. E.

    2015-01-01

    The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants’ trait (Study 1) and state (Study 2) anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test) were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity. PMID:26074851

  16. Trait and state anxiety reduce the mere exposure effect.

    PubMed

    Ladd, Sandra L; Gabrieli, John D E

    2015-01-01

    The mere exposure effect refers to an affective preference elicited by exposure to previously unfamiliar items. Although it is a well-established finding, its mechanism remains uncertain, with some positing that it reflects affective processes and others positing that it reflects perceptual or motor fluency with repeated items. Here we examined whether individual differences in trait and state anxiety, which have been associated with the experience of emotion, influence the mere exposure effect. Participants' trait (Study 1) and state (Study 2) anxiety were characterized with the State-Trait Anxiety Inventory. Greater trait and state anxiety correlated with greater negative affect and lesser positive affect. In both experiments, greater anxiety was associated with a reduced mere exposure effect. Measures of fluency (response times at study and test) were unrelated to the mere exposure effect. These findings support the role of affective processes in the mere exposure effect, and offer a new insight into the nature of anxiety such that anxiety is associated with a reduced experience of positive affect typically associated with familiarity.

  17. Indirect lead exposure among children of radiator repair workers.

    PubMed

    Aguilar-Garduño, C; Lacasaña, M; Tellez-Rojo, M M; Aguilar-Madrid, G; Sanin-Aguirre, L H; Romieu, I; Hernandez-Avila, M

    2003-06-01

    Secondary exposure to lead has been identified as a public health problem since the late 1940s; we investigate the risk of lead exposure among families of radiator repair workers. A sample of the wives and children, aged 6 months to 6 years (exposed children) (n = 19), of radiator repair workers and a sample of children whose parents were not occupationally exposed to lead (non-exposed children) (n = 29) were matched for age and residence; their geometric mean blood lead levels are compared. Blood samples were obtained by the finger stick method and environmental dust samples by the wipe method; both were analyzed using a portable anodic stripping voltameter. Dust lead levels were significantly higher in the houses of exposed children (143.8 vs. 3.9 microg/g; P < 0.01). In crude analyses, the highest lead levels were observed among children whose fathers worked in home-based workshops (22.4 microg/dl)(n = 6). Children whose fathers worked in an external workshop (n = 13) also had high levels (14.2 microg/dl) (P < 0.01), while blood lead levels in non-exposed children were significantly lower (5.6 microg/dl)(P < 0.01). The observed differences remained significant after adjustment for age and gender. This study confirms that children of radiator repair workers are at increased risk of lead exposure and public health interventions are needed to protect them. Copyright 2003 Wiley-Liss, Inc.

  18. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity.

    PubMed

    Wang, Hua; Sun, Rui-Ting; Li, Yang; Yang, Yue-Feng; Xiao, Feng-Jun; Zhang, Yi-Kun; Wang, Shao-Xia; Sun, Hui-Yan; Zhang, Qun-Wei; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer's patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.

  19. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures.

  20. Inferring ultraviolet anatomical exposure patterns while distinguishing the relative contribution of radiation components

    NASA Astrophysics Data System (ADS)

    Vuilleumier, Laurent; Milon, Antoine; Bulliard, Jean-Luc; Moccozet, Laurent; Vernez, David

    2013-05-01

    Exposure to solar ultraviolet (UV) radiation is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors, but individual exposure data remain scarce. While ground UV irradiance is monitored via different techniques, it is difficult to translate such observations into human UV exposure or dose because of confounding factors. A multi-disciplinary collaboration developed a model predicting the dose and distribution of UV exposure on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a simulation tool that estimates solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by various body locations is computed for direct, diffuse and reflected radiation separately. Dosimetric measurements obtained in field conditions were used to assess the model performance. The model predicted exposure to solar UV adequately with a symmetric mean absolute percentage error of 13% and half of the predictions within 17% range of the measurements. Using this tool, solar UV exposure patterns were investigated with respect to the relative contribution of the direct, diffuse and reflected radiation. Exposure doses for various body parts and exposure scenarios of a standing individual were assessed using erythemally-weighted UV ground irradiance data measured in 2009 at Payerne, Switzerland as input. For most anatomical sites, mean daily doses were high (typically 6.2-14.6 Standard Erythemal Dose, SED) and exceeded recommended exposure values. Direct exposure was important during specific periods (e.g. midday during summer), but contributed moderately to the annual dose, ranging from 15 to 24% for vertical and horizontal body parts, respectively. Diffuse irradiation explained about 80% of the cumulative annual exposure dose.

  1. Measurements of Solar Ultraviolet Radiation Exposure at Work and at Leisure in Danish Workers.

    PubMed

    Grandahl, Kasper; Eriksen, Paul; Ibler, Kristina Sophie; Bonde, Jens Peter; Mortensen, Ole Steen

    2018-03-30

    Exposure to solar ultraviolet radiation is the main cause of skin cancer and may well present an occupational health and safety problem. In Denmark, skin cancer is a common disease in the general population, but detailed data on solar ultraviolet radiation exposure among outdoor workers are lacking. The aim of this study was to provide objective measurements of solar ultraviolet radiation exposure on working days and at leisure and compare levels of exposure between groups of mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers. To this end, UV-B dosimeters with an aluminum gallium nitride (AlGaN) photodiode detector were used to measure the solar ultraviolet radiation exposure of 457 workers in the Danish summer season. Presented as semi-annual standard erythemal dose (SED) on working days, respectively, at leisure, the results are for mainly outdoor workers 214.2 SED and 64.8 SED, equal-parts-outdoor-and-indoor workers 131.4 SED and 64.8 SED, indoor workers 55.8 SED and 57.6 SED. The daily SED by month is significantly different (α = 0.05) between mainly outdoor, equal-parts-outdoor-and-indoor and indoor workers and across professional groups; some of which are exposed at very high levels that is roofers 361.8 SED. These findings substantiate that exposure to solar ultraviolet radiation is indeed an occupational health and safety problem in Denmark. © 2018 The Authors. Photochemistry and Photobiology published by Wiley Periodicals, Inc. on behalf of American Society for Photobiology.

  2. Reducing Underserved Children’s Exposure to Secondhand Smoke

    PubMed Central

    Collins, Bradley N.; Nair, Uma S.; Hovell, Melbourne F.; DiSantis, Katie I.; Jaffe, Karen; Tolley, Natalie; Wileyto, E. Paul; Audrain-McGovern, Janet

    2015-01-01

    Introduction Addressing maternal smoking and child secondhand smoke exposure is a public health priority. Standard care advice and self-help materials to help parents reduce child secondhand smoke exposure is not sufficient to promote change in underserved populations. We tested the efficacy of a behavioral counseling approach with underserved maternal smokers to reduce infant’s and preschooler’s secondhand smoke exposure. Design A two-arm randomized trial: experimental behavior counseling versus enhanced standard care (control). Assessment staff members were blinded. Setting/participants Three hundred randomized maternal smokers were recruited from low-income urban communities. Participants had a child aged <4 years exposed to two or more maternal cigarettes/day at baseline. Intervention Philadelphia Family Rules for Establishing Smokefree Homes (FRESH) included 16 weeks of counseling. Using a behavioral shaping approach within an individualized cognitive–behavioral therapy framework, counseling reinforced efforts to adopt increasingly challenging secondhand smoke exposure–protective behaviors with the eventual goal of establishing a smokefree home. Main outcome measures Primary outcomes were end-of-treatment child cotinine and reported secondhand smoke exposure (maternal cigarettes/day exposed). Secondary outcomes were end-of-treatment 7-day point-prevalence self-reported cigarettes smoked/day and bioverified quit status. Results Participation in FRESH behavioral counseling was associated with lower child cotinine (β= −0.18, p=0.03) and secondhand smoke exposure (β= −0.57, p=0.03) at end of treatment. Mothers in behavioral counseling smoked fewer cigarettes/day (β= –1.84, p=0.03) and had higher bioverified quit rates compared with controls (13.8% vs 1.9%, χ2=10.56, p<0.01). There was no moderating effect of other smokers living at home. Conclusions FRESH behavioral counseling reduces child secondhand smoke exposure and promotes smoking quit

  3. Residential Exposure to Natural Background Radiation and Risk of Childhood Acute Leukemia in France, 1990–2009

    PubMed Central

    Demoury, Claire; Marquant, Fabienne; Ielsch, Géraldine; Goujon, Stéphanie; Debayle, Christophe; Faure, Laure; Coste, Astrid; Laurent, Olivier; Guillevic, Jérôme; Laurier, Dominique; Hémon, Denis; Clavel, Jacqueline

    2016-01-01

    Background: Exposures to high-dose ionizing radiation and high-dose rate ionizing radiation are established risk factors for childhood acute leukemia (AL). The risk of AL following exposure to lower doses due to natural background radiation (NBR) has yet to be conclusively determined. Methods: AL cases diagnosed over 1990–2009 (9,056 cases) were identified and their municipality of residence at diagnosis collected by the National Registry of Childhood Cancers. The Geocap study, which included the 2,763 cases in 2002–2007 and 30,000 population controls, was used for complementary analyses. NBR exposures were modeled on a fine scale (36,326 municipalities) based on measurement campaigns and geological data. The power to detect an association between AL and dose to the red bone marrow (RBM) fitting UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) predictions was 92%, 45% and 99% for exposure to natural gamma radiation, radon and total radiation, respectively. Results: AL risk, irrespective of subtype and age group, was not associated with the exposure of municipalities to radon or gamma radiation in terms of yearly exposure at age reached, cumulative exposure or RBM dose. There was no confounding effect of census-based socio-demographic indicators, or environmental factors (road traffic, high voltage power lines, vicinity of nuclear plants) related to AL in the Geocap study. Conclusions: Our findings do not support the hypothesis that residential exposure to NBR increases the risk of AL, despite the large size of the study, fine scale exposure estimates and wide range of exposures over France. However, our results at the time of diagnosis do not rule out a slight association with gamma radiation at the time of birth, which would be more in line with the recent findings in the UK and Switzerland. Citation: Demoury C, Marquant F, Ielsch G, Goujon S, Debayle C, Faure L, Coste A, Laurent O, Guillevic J, Laurier D, Hémon D, Clavel J

  4. Assessing the health effects associated with occupational radiation exposure in Korean radiation workers: protocol for a prospective cohort study.

    PubMed

    Seo, Songwon; Lim, Wan Young; Lee, Dal Nim; Kim, Jung Un; Cha, Eun Shil; Bang, Ye Jin; Lee, Won Jin; Park, Sunhoo; Jin, Young Woo

    2018-03-30

    The cancer risk of radiation exposure in the moderate-to-high dose range has been well established. However, the risk remains unclear at low-dose ranges with protracted low-dose rate exposure, which is typical of occupational exposure. Several epidemiological studies of Korean radiation workers have been conducted, but the data were analysed retrospectively in most cases. Moreover, groups with relatively high exposure, such as industrial radiographers, have been neglected. Therefore, we have launched a prospective cohort study of all Korean radiation workers to assess the health effects associated with occupational radiation exposure. Approximately 42 000 Korean radiation workers registered with the Nuclear Safety and Security Commission from 2016 to 2017 are the initial target population of this study. Cohort participants are to be enrolled through a nationwide self-administered questionnaire survey between 24 May 2016 and 30 June 2017. As of 31 March 2017, 22 982 workers are enrolled in the study corresponding to a response rate of 75%. This enrolment will be continued at 5-year intervals to update information on existing study participants and recruit newly hired workers. Survey data will be linked with the national dose registry, the national cancer registry, the national vital statistics registry and national health insurance data via personal identification numbers. Age-specific and sex-specific standardised incidence and mortality ratios will be calculated for overall comparisons of cancer risk. For dose-response assessment, excess relative risk (per Gy) and excess absolute risk (per Gy) will be estimated with adjustments for birth year and potential confounders, such as lifestyle factors and socioeconomic status. This study has received ethical approval from the institutional review board of the Korea Institute of Radiological and Medical Sciences (IRB No. K-1603-002-034). All participants provided written informed consent prior to enrolment. The findings

  5. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1981-05-01

    The current knowledge of the carcinogenic effect of radiation in man is considered. The discussion is restricted to dose-incidence data in humans, particularly to certain of those epidemiological studies of human populations that are used most frequently for risk estimation for low-dose radiation carcinogenesis in man. Emphasis is placed solely on those surveys concerned with nuclear explosions and medical exposures. (ACR)

  6. Responses of a marine red tide alga Skeletonema costatum (Bacillariophyceae) to long-term UV radiation exposures.

    PubMed

    Wu, Hongyan; Gao, Kunshan; Wu, Haiyan

    2009-02-09

    UV radiation (280-400 nm) is known to affect phytoplankton in negative, neutral and positive ways depending on the species or levels of irradiation energy. However, little has been documented on how photosynthetic physiology and growth of red tide alga respond to UVR in a long-term period. We exposed the cells of the marine red tide diatom Skeletonema costatum for 6 days to simulated solar radiations with UV-A (320-400 nm) or UV-A+UV-B (295-400 nm) and examined their changes in photosynthesis and growth. Presence of UV-B continuously reduced the effective photosynthetic quantum yield of PSII, and resulted in complete growth inhibition and death of cells. When UV-B or UV-B+UV-A was screened off, the growth rate decreased initially but regained thereafter. UV-absorbing compounds and carotenoids increased in response to the exposures with UVR. However, mechanisms for photoprotection associated with the increased carotenoids or UV-absorbing compounds were not adequate under the continuous exposure to a constant level of UV-B (0.09 Wm(-2), DNA-weighted). In contrast, under solar radiation screened off UV-B, the photoprotection was first accomplished by an initial increase of carotenoids and a later increase in UV-absorbing compounds. The overall response of this red tide alga to prolonged UV exposures indicates that S. costatum is a UV-B-sensitive species and increased UV-B irradiance would influence the formation of its blooms.

  7. Occupational dust and radiation exposure and mortality from stomach cancer among German uranium miners, 1946-2003.

    PubMed

    Kreuzer, M; Straif, K; Marsh, J W; Dufey, F; Grosche, B; Nosske, D; Sogl, M

    2012-03-01

    'Dusty occupations' and exposure to low-dose radiation have been suggested as potential risk factors for stomach cancer. Data from the German uranium miner cohort study are used to further evaluate this topic. The cohort includes 58 677 miners with complete information on occupational exposure to dust, arsenic and radiation dose based on a detailed job-exposure matrix. A total of 592 stomach cancer deaths occurred in the follow-up period from 1946 to 2003. A Poisson regression model stratified by age and calendar year was used to calculate the excess relative risk (ERR) per unit of cumulative exposure to fine dust or from cumulative absorbed dose to stomach from α or low-LET (low linear energy transfer) radiation. For arsenic exposure, a binary quadratic model was applied. After adjustment for each of the three other variables, a statistically non-significant linear relationship was observed for absorbed dose from low-LET radiation (ERR/Gy=0.30, 95% CI -1.26 to 1.87), α radiation (ERR/Gy=22.5, 95% CI -26.5 to 71.5) and fine dust (ERR/dust-year=0.0012, 95% CI -0.0020 to 0.0043). The relationship between stomach cancer and arsenic exposure was non-linear with a 2.1-fold higher RR (95% CI 0.9 to 3.3) in the exposure category above 500 compared with 0 dust-years. Positive statistically non-significant relationships between stomach cancer and arsenic dust, fine dust and absorbed dose from α and low-LET radiation were found. Overall, low statistical power due to low doses from radiation and dust are of concern.

  8. Radiation exposure to the eye lens of orthopaedic surgeons during various orthopaedic procedures.

    PubMed

    Romanova, K; Vassileva, J; Alyakov, M

    2015-07-01

    The aim of the present study was to assess the radiation dose to the eye lens of orthopaedic surgeons during various orthopaedic procedures and to make efforts to ensure that radiation protection is optimised. The study was performed for Fractura femoris and Fractura cruris procedures performed in orthopaedic operating theatres, as well as for fractures of wrist, ankle and hand/shoulder performed in the emergency trauma room. The highest mean value of the eye lens dose of 47.2 μSv and higher mean fluoroscopy time of 3 min, as well as the corresponding highest maximum values of 77.1 μSv and 5.0 min were observed for the Fractura femoris procedure performed with the Biplanar 500e fluoroscopy systems. At a normal workload, the estimated mean annual dose values do not exceed the annual occupational dose limit for the lens of eye, but at a heavy workload in the department, this dose limit could be achieved or exceeded. The use of protective lead glasses is recommended as they could reduce the radiation exposure of the lens of the eye. The phantom measurements demonstrated that the use of half-dose mode could additionally reduce dose to the operator's eye lens. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    NASA Technical Reports Server (NTRS)

    Parnell, T. A.

    1991-01-01

    The Ionizing Radiation Special Investigation Group (IRSIG) for the Long Duration Exposure Facility (LDEF) was established to perform radiation measurements and analysis not planned in the original experiments, and to assure availability of LDEF analysis results in a form useful to future missions. The IRSIG has organized extensive induced radioactivity measurements throughout LDEF, and a comprehensive program to compare the LDEF radiation measurements to values calculated using environment models. The activities and present status of the Group is described. The ionizing radiation results presented is summarized.

  10. Radiation dose from common radiological investigations and cumulative exposure in children with cystic fibrosis: an observational study from a single UK centre

    PubMed Central

    Ward, Rebecca; Carroll, William D; Cunningham, Paula; Ho, Sheng-Ang; Jones, Mary; Lenney, Warren; Thompson, David

    2017-01-01

    Objectives Cumulative radiation exposure is associated with increased risk of malignancy. This is important in cystic fibrosis (CF) as frequent imaging is required to monitor disease progression and diagnose complications. Previous estimates of cumulative radiation are outdated as the imaging was performed on older equipment likely to deliver higher radiation. Our objectives were to determine the radiation dose delivered to children during common radiological investigations using modern equipment and to identify the number of such investigations performed in a cohort of children with CF to calculate their cumulative radiation exposure. Design, setting and participants Data including age at investigation and radiation exposure measured as estimated effective dose (EED) were collected on 2827 radiological studies performed on children at one UK paediatric centre. These were combined with the details of all radiological investigations performed on 65 children with CF attending the same centre to enable calculation of each child’s cumulative radiation exposure. Results The mean EED for the common radiological investigations varied according to age. The range was 0.01–0.02 mSv for chest X-rays, 0.03–0.11 mSv for abdominal X-rays, 0.57–1.69 mSv for CT chest, 2.9–3.9 mSv for abdominal and pelvic CT, 0.20–0.21 mSv for sinus CT and 0.15–0.52 mSv for fluoroscopy-guided procedures. The mean EED was three to five times higher for helical compared with axial chest CT scans. The mean annual cumulative EED for our cohort of children with CF was 0.15 mSv/year with an estimated cumulative paediatric lifetime EED (0–18 years) of 3.5 mSv. Conclusions This study provides up-to-date estimations of the radiation exposure when using common radiological investigations. These doses and the estimates of cumulative radiation exposure in children with CF are lower than previously reported. This reflects the reduced EED associated with modern equipment and the

  11. Assessment of radiation exposure from cesium-137 contaminated roads for epidemiological studies in Seoul, Korea

    PubMed Central

    Lee, Yun-Keun; Ju, Young-Su; Lee, Won Jin; Hwang, Seung Sik; Yim, Sang-Hyuk; Yoo, Sang-Chul; Lee, Jieon; Choi, Kyung-Hwa; Burm, Eunae; Ha, Mina

    2015-01-01

    Objectives We aimed to assess the radiation exposure for epidemiologic investigation in residents exposed to radiation from roads that were accidentally found to be contaminated with radioactive cesium-137 (137Cs) in Seoul. Methods Using information regarding the frequency and duration of passing via the 137Cs contaminated roads or residing/working near the roads from the questionnaires that were obtained from 8875 residents and the measured radiation doses reported by the Nuclear Safety and Security Commission, we calculated the total cumulative dose of radiation exposure for each person. Results Sixty-three percent of the residents who responded to the questionnaire were considered as ever-exposed and 1% of them had a total cumulative dose of more than 10 mSv. The mean (minimum, maximum) duration of radiation exposure was 4.75 years (0.08, 11.98) and the geometric mean (minimum, maximum) of the total cumulative dose was 0.049 mSv (<0.001, 35.35) in the exposed. Conclusions An individual exposure assessment was performed for an epidemiological study to estimate the health risk among residents living in the vicinity of 137Cs contaminated roads. The average exposure dose in the exposed people was less than 5% of the current guideline. PMID:26184047

  12. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Mulder, Abbey; Elmore, Matthew; Campbell, Jessica; Borgman, Andrew; Parker, Jessica; Wohns, David

    Reports of left-sided brain malignancies among interventional cardiologists have heightened concerns regarding physician radiation exposure. This study evaluated the impact of a suspended lead suit and robotic system on physician radiation exposure during percutaneous coronary intervention (PCI). Real-time radiation exposure data were prospectively collected from dosimeters worn by operating physicians at the head- and chest-level during consecutive PCI cases. Exposures were compared in three study groups: 1) manual PCI performed with traditional lead apparel; 2) manual PCI performed using suspended lead; and 3) robotic PCI performed in combination with suspended lead. Among 336 cases (86.6% manual, 13.4% robotic) performed over 30weeks, use of suspended lead during manual PCI was associated with significantly less radiation exposure to the chest and head of operating physicians than traditional lead apparel (chest: 0.0 [0.1] μSv vs 0.4 [4.0] μSv, p<0.001; head: 0.5 [1.9] μSv vs 14.9 [51.5] μSv, p<0.001). Chest-level radiation exposure during robotic PCI performed in combination with suspended lead was 0.0 [0.0] μSv, which was significantly less chest exposure than manual PCI performed with traditional lead (p<0.001) or suspended lead (p=0.046). In robotic PCI the median head-level exposure was 0.1 [0.2] μSv, which was 99.3% less than manual PCI performed with traditional lead (p<0.001) and 80.0% less than manual PCI performed with suspended lead (p<0.001). Utilization of suspended lead and robotics were observed to result in significantly less radiation exposure to the chest and head of operating physicians during PCI. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cari Kitahara Explores Medical Radiation Exposures and Thyroid Cancer Etiology

    Cancer.gov

    Dr. Cari Kitahara has built a multidisciplinary research program to explore cancer risks from occupational and medical radiation exposures, and to investigate the etiology of radiosensitive tumors, including thyroid cancer.

  14. Computer Aided Dosimetry and Verification of Exposure to Radiation

    NASA Astrophysics Data System (ADS)

    Waller, Edward; Stodilka, Robert Z.; Leach, Karen E.; Lalonde, Louise

    2002-06-01

    In the timeframe following the September 11th attacks on the United States, increased emphasis has been placed on Chemical, Biological, Radiological and Nuclear (CBRN) preparedness. Of prime importance is rapid field assessment of potential radiation exposure to Canadian Forces field personnel. This work set up a framework for generating an 'expert' computer system for aiding and assisting field personnel in determining the extent of radiation insult to military personnel. Data was gathered by review of the available literature, discussions with medical and health physics personnel having hands-on experience dealing with radiation accident victims, and from experience of the principal investigator. Flow charts and generic data fusion algorithms were developed. Relationships between known exposure parameters, patient interview and history, clinical symptoms, clinical work-ups, physical dosimetry, biological dosimetry, and dose reconstruction as critical data indicators were investigated. The data obtained was examined in terms of information theory. A main goal was to determine how best to generate an adaptive model (i.e. when more data becomes available, how is the prediction improved). Consideration was given to determination of predictive algorithms for health outcome. In addition. the concept of coding an expert medical treatment advisor system was developed (U)

  15. High Dietary Iron and Radiation Exposure Increase Biomarkers of Oxidative Stress in Blood and Liver of Rats

    NASA Technical Reports Server (NTRS)

    Morgan, Jennifer L. L.; Theriot, Corey A.; Wu, Honglu; Smith, Scott M.; Zwart, Sara R.

    2012-01-01

    Radiation exposure and increased iron (Fe) status independently cause oxidative damage that can result in protein, lipid, and DNA oxidation. During space flight astronauts are exposed to both increased radiation and increased Fe stores. Increased body Fe results from a decrease in red blood cell mass and the typically high Fe content of the food system. In this study we investigated the combined effects of radiation exposure (0.375 Gy of Cs-137 every other day for 16 days for a total of 3 Gy) and high dietary Fe (650 mg Fe/kg diet compared to 45 mg Fe/kg for controls) in Sprague-Dawley rats (n=8/group). Liver and serum Fe were significantly increased in the high dietary Fe groups. Likewise, radiation treatment increased serum ferritin and Fe concentrations. These data indicate that total body Fe stores increase with both radiation exposure and excess dietary Fe. Hematocrit decreased in the group exposed to radiation, providing a possible mechanism for the shift in Fe indices after radiation exposure. Markers of oxidative stress were also affected by both radiation and high dietary Fe, evidenced by increased liver glutathione peroxidase (GPX) and serum catalase as well as decreased serum GPX. We thus found preliminary indications of synergistic effects of radiation exposure and increased dietary Fe, warranting further study. This study was funded by the NASA Human Research Project.

  16. Measurements and Modeling of Radiation Exposure Due to Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Beck, P.; Conrad Wp6-Sgb Team

    Dose assessment procedures of cosmic radiation to aircraft crew are introduced in most of the European countries according the corresponding European directive and national regulations 96 29 Euratom However the radiation exposure due to solar particle events is still a matter of scientific research Several in-flight measurements were performed during solar storm conditions First models to estimate the exposure due to solar particle events were discussed previously Recently EURADOS European Radiation Dosimetry Group http www eurados org started to coordinate research activities in model improvements for dose assessment of solar particle events The coordinated research is a work package of the European research project CONRAD Coordinated Network for Radiation Dosimetry on complex mixed radiation fields at workplaces Major aim of sub group B of that work package is the validation of models for dose assessment of solar particle events using data from neutron ground level monitors in-flight measurement results obtained during a solar particle event and proton satellite data The paper describes the current status of obtainable solar storm measurements and gives an overview of the existing models for dose assessment of solar particle events in flight altitudes

  17. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    NASA Technical Reports Server (NTRS)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  18. Ultraviolet radiation exposure from UV-transilluminators.

    PubMed

    Akbar-Khanzadeh, Farhang; Jahangir-Blourchian, Mahdi

    2005-10-01

    UV-transilluminators use ultraviolet radiation (UVR) to visualize proteins, DNA, RNA, and their precursors in a gel electrophoresis procedure. This study was initiated to evaluate workers' exposure to UVR during their use of UV-transilluminators. The levels of irradiance of UV-A, UV-B, and UV-C were determined for 29 UV-transilluminators at arbitrary measuring locations of 6, 25, 62, and 125 cm from the center of the UV-transilluminator's filter surface in the direction of the operator's head. The operators (faculty, research staff, and graduate students) worked within 62 cm of the transilluminators, with most subjects commonly working at < or =25 cm from the UV-transilluminator's filter surface. Daily exposure time ranged from 1 to 60 min. Actinic hazard (effective irradiance level of UVR) was also determined for three representative UV-transilluminators at arbitrary measuring locations of 2.5, 5, 10, 15, 20, 30, 40, and 50 cm from these sets' filter surface in the direction of the operator's head. The allowable exposure time for these instruments was less than 20 sec within 15 cm, less than 35 sec within 25 cm, and less than 2 min within 50 cm from the UV-transilluminators' filter surface. The results of this study suggest that the use of UV-transilluminators exposes operators to levels of UVR in excess of exposure guidelines. It is recommended that special safety training be provided for the affected employees and that exposure should be controlled by one or the combination of automation, substitution, isolation, posted warning signs, shielding, and/or personal protective equipment.

  19. The effect of prescription eyewear on ocular exposure to ultraviolet radiation.

    PubMed Central

    Rosenthal, F S; Bakalian, A E; Taylor, H R

    1986-01-01

    Several studies have suggested that ultraviolet radiation in sunlight may cause cataracts and other eye disease. We evaluated the effect of prescription eyewear in attenuating ocular exposure to ultraviolet radiation (UVR) in the sunlight portions of the ultraviolet spectrum (295-350 nm). Using natural sunlight as the source, the attenuation was measured with two ultraviolet detectors, one sensitive to only UVB (295-315 nm) and one sensitive to both UVA and UVB (295-350 nm). A random sample of spectacles, spectacle lenses, and contact lenses was examined. The average transmission, as measured with either detector, was highest for soft contact lenses, followed by glass spectacle lenses, untinted hard contact lenses, and plastic spectacle lenses. Measurements performed with mannikins wearing spectacles showed that an average of 6.6 per cent of incident radiation reached the eye even when the lenses were covered with black opaque tape. The amount of exposure was increased substantially when the spectacles were moved 0.6 cm away from the forehead. The results show that the protection against ultraviolet exposure provided by prescription eyewear is highly variable and depends largely on its composition, size, and wearing position. PMID:3752323

  20. Radiation Exposure and Health Effects – is it Time to Reassess the Real Consequences?

    PubMed Central

    Thomas, G.A.; Symonds, P.

    2017-01-01

    Our acceptance of exposure to radiation is somewhat schizophrenic. We accept that the use of high doses of radiation is still one of the most valuable weapons in our fight against cancer, and believe that bathing in radioactive spas is beneficial. On the other hand, as a species, we are fearful of exposure to man-made radiation as a result of accidents related to power generation, even though we understand that the doses are orders of magnitude lower than those we use everyday in medicine. The 70th anniversary of the detonation of the atomic bombs in Hiroshima and Nagasaki was marked in 2015. The 30th anniversary of the Chernobyl nuclear power plant accident will be marked in April 2016. March 2016 also sees the fifth anniversary of the accident at the Fukushima nuclear power plant. Perhaps now is an opportune time to assess whether we are right to be fearful of the effects of low doses of radiation, or whether actions taken because of our fear of radiation actually cause a greater detriment to health than the direct effect of radiation exposure. PMID:26880062

  1. Radiation Exposure

    MedlinePlus

    Radiation is energy that travels in the form of waves or high-speed particles. It occurs naturally in sunlight. Man-made radiation is used in X-rays, nuclear weapons, nuclear power plants and cancer treatment. If you are exposed to small amounts of radiation over a ...

  2. Reducing Cross-Polarized Radiation From A Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    1991-01-01

    Change in configuration of feed of nominally linearly polarized microstrip-patch transmitting array antenna reduces cross-polarized component of its radiation. Patches fed on opposing sides, in opposite phases. Combination of spatial symmetry and temporal asymmetry causes copolarized components of radiation from fundamental modes of patches to reinforce each other and cross-polarized components of radiation from higher-order modes to cancel each other.

  3. Potential impact of clinical use of noninvasive FFRCT on radiation dose exposure and downstream clinical event rate.

    PubMed

    Bilbey, Nicolas; Blanke, Philipp; Naoum, Christopher; Arepalli, Chesnel Dey; Norgaard, Bjarne Linde; Leipsic, Jonathon

    2016-01-01

    This study aims to determine the potential impact of introducing noninvasive fractional flow reserve based on coronary computed tomography angiography (CTA) into clinical practice, with respect to radiation dose exposure and downstream event rate. We modeled a population of 1000 stable, symptomatic patients with suspected coronary artery disease, using the disease prevalence from the CONFIRM registry to estimate the pretest likelihood. Four potential clinical pathways were modeled based on the first noninvasive diagnostic test performed: (1) dobutamine echo; (2) single-photon emission computerized tomography (SPECT); (3) coronary CTA; and (4) CTA+FFRCT and leading to possible invasive coronary angiography. The posttest likelihood of testing positive/negative by each test was based on the presenting disease burden and diagnostic accuracy of each test. The dobutamine echo pathway resulted in the lowest radiation dose of 5.4 mSv, with 4.0 mSv from angiography and 1.4 mSv from percutaneous coronary intervention (PCI). The highest dose was with SPECT, with 26.5 mSv. The coronary computed tomography angiography (cCTA) pathway demonstrated a dose of 14.2 mSv, 3.7 mSv from cCTA, 7.7 mSv from angiography, and 2.8 mSv from PCI. The CTA+FFRCT pathway exhibited a radiation dose of 9.7 mSv, 3.7 mSv for cCTA, 4.2 mSv for angiography, and 1.8 mSv for PCI. Radiation dose exposure for CTA+FFRCT was lower than for SPECT (P<.001). The CTA+FFRCT pathway resulted in the lowest projected death/myocardial infarction rate at 1 year (2.44%) while the dobutamine stress pathway had the highest 1-year event rate (2.84%). Our analysis suggests that integrating FFRCT into the CTA clinical pathway may result in reduced cumulative radiation exposure, while promoting favorable clinical outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Correlated Uncertainties in Radiation Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Werneth, Charles M.; Maung, Khin Maung; Blattnig, Steve R.; Clowdsley, Martha S.; Townsend, Lawrence W.

    2013-01-01

    The space radiation environment is composed of energetic particles which can deliver harmful doses of radiation that may lead to acute radiation sickness, cancer, and even death for insufficiently shielded crew members. Spacecraft shielding must provide structural integrity and minimize the risk associated with radiation exposure. The risk of radiation exposure induced death (REID) is a measure of the risk of dying from cancer induced by radiation exposure. Uncertainties in the risk projection model, quality factor, and spectral fluence are folded into the calculation of the REID by sampling from probability distribution functions. Consequently, determining optimal shielding materials that reduce the REID in a statistically significant manner has been found to be difficult. In this work, the difference of the REID distributions for different materials is used to study the effect of composition on shielding effectiveness. It is shown that the use of correlated uncertainties allows for the determination of statistically significant differences between materials despite the large uncertainties in the quality factor. This is in contrast to previous methods where uncertainties have been generally treated as uncorrelated. It is concluded that the use of correlated quality factor uncertainties greatly reduces the uncertainty in the assessment of shielding effectiveness for the mitigation of radiation exposure.

  5. Basal cell carcinoma of the eyelids and solar ultraviolet radiation exposure

    PubMed Central

    Lindgren, G.; Diffey, B.; Larko, O.

    1998-01-01

    AIMS—To compare the distribution of eyelid basal cell carcinoma (BCC) with the relative ultraviolet radiation (UVR) exposure to different sites on the eyelids.
METHODS—The location of BCC on the eyelids was allocated to one of seven regions. The UVR exposure was recorded with a polymer film attached to the eyelids at seven sites in a manikin and in human subjects.
RESULTS—Localisation of the 329 tumours was mainly on the lower eyelids (225 tumours), and the medial canthal regions (87 tumours). There was no association between UVR doses at the seven sites of the eyelids and the location of BCCs. The UVR exposure was similar on the upper and lower eyelids, while the number of tumours on the lower eyelids outnumbered the upper lids by a factor of 13 (17 upper, 225 lower)
CONCLUSION—UVR exposure only partially explains the aetiology of periorbital BCC.

 Keywords: polysulphone film; basal cell carcinoma; ultraviolet radiation; eyelid PMID:9930273

  6. Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.

    2007-01-01

    Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.

  7. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    PubMed

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  8. Reduction of Radiation Exposure Using Dynamic Trace Digital Angiography and Spot Fluoroscopy During Adrenal Venous Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Satoru, E-mail: i@imodey.com; Endo, Kenji; Suzaki, Shingo

    PurposeTo compare radiation exposure of adrenal venous sampling (AVS) using dynamic trace digital angiography (DTDA) and spot fluoroscopy with that using conventional methods.Materials and MethodsAVS was performed in 11 patients using DTDA and spot fluoroscopy (Group A) and 11 patients using conventional digital subtraction angiography (DSA) with collimation (Group B). Radiation exposure and image quality of adrenal venography using a five-point scale were compared between the groups.ResultsThe acquisition dose–area product (DAP) using DTDA and fluoro-DAP using spot fluoroscopy in Group A were lower than those using conventional DSA (5.3 ± 3.7 vs. 29.1 ± 20.1 Gy cm{sup 2}, p < 0.001) and collimation (33.3 ± 22.9 vs. 59.1 ± 35.7 Gy cm{sup 2}, p = 0.088)more » in Group B. The total DAP in Group A was significantly lower than that in Group B (38.6 ± 25.9 vs. 88.2 ± 53.6 Gy cm{sup 2}, p = 0.006). The peak skin dose for patients and operator radiation exposure in Group A were significantly lower than those in Group B (403 ± 340 vs. 771 ± 416 mGy, p = 0.030, and 17.1 ± 14.8 vs. 36.6 ± 21.7 μSv, p = 0.013). The image quality of DTDA (4.4 ± 0.6) was significantly higher than that of digital angiography (3.8 ± 0.9, p = 0.011) and equivalent to that of DSA (4.3 ± 0.8, p = 0.651).ConclusionsRadiation exposure during AVS can be reduced by approximately half for both patients and operators by using DTDA and spot fluoroscopy without sacrificing image quality.« less

  9. An evaluation of early countermeasures to reduce the risk of internal radiation exposure after the Fukushima nuclear incident in Japan.

    PubMed

    Nomura, Shuhei; Tsubokura, Masaharu; Gilmour, Stuart; Hayano, Ryugo S; Watanabe, Yuni N; Kami, Masahiro; Kanazawa, Yukio; Oikawa, Tomoyoshi

    2016-05-01

    After a radiation-release incident, intake of radionuclides in the initial stage immediately following the incident may be the major contributor to total internal radiation exposure for individuals in affected areas. However, evaluation of early internal contamination risk is greatly lacking. This study assessed the relationship between initial stage evacuation/indoor sheltering and internal radiation contamination levels 4 months after the 2011 Fukushima nuclear incident in Japan and estimated potential pathways of the contamination. The study population comprised 525 participants in the internal radiation screening program at Minamisoma Municipal General Hospital, 23 km north of the Fukushima nuclear plant. The analysed dataset included the results of a screening performed in July 2011, 4 months after the incident, and of a questionnaire on early-incident response behaviours, such as sheltering indoors and evacuations, completed by participants. Association between such early countermeasures and internal contamination levels of cesium-134 were assessed using Tobit multiple regression analyses. Our study shows that individuals who evacuated to areas outside Fukushima Prefecture had similar contamination levels of cesium-134 to individuals who stayed in Fukushima (relative risk: 0.86; 95% confidence interval: 0.74-0.99). Time spent outdoors had no significant relationship with contamination levels. The effects of inhalation from radiological plumes released from the nuclear plant on total internal radiation contamination might be so low as to be undetectable by the whole-body counting unit used to examine participants. Given the apparent limited effectiveness of evacuation and indoor sheltering on internal contamination, the decision to implement such early responses to a radiation-release incident should be made by carefully balancing their potential benefits and health risks. © The Author 2015. Published by Oxford University Press. All rights reserved. For

  10. Evaluation of radiation exposure from diagnostic radiology examination; availability of final recommendations--FDA. Notice.

    PubMed

    1986-02-19

    The Food and Drug Administration (FDA) is announcing the availability of a document entitled "Recommendations for Evaluation of Radiation Exposure from Diagnostic Radiology Examinations". The recommendations, prepared by FDA's Center for Devices and Radiological Health (CDRH), encourage diagnostic radiology facilities to take voluntary action to: Become aware of the radiation levels experienced by patients undergoing the projections commonly given in the facility; compare their radiation levels to generally accepted levels for these projections; and bring the exposures back into line if their levels fall consistently outside these generally accepted levels.

  11. Exposure of the surgeon's hands to radiation during hand surgery procedures.

    PubMed

    Żyluk, Andrzej; Puchalski, Piotr; Szlosser, Zbigniew; Dec, Paweł; Chrąchol, Joanna

    2014-01-01

    The objective of the study was to assess the time of exposure of the surgeon's hands to radiation and calculate of the equivalent dose absorbed during surgery of hand and wrist fractures with C-arm fluoroscope guidance. The necessary data specified by the objective of the study were acquired from operations of 287 patients with fractures of fingers, metacarpals, wrist bones and distal radius. 218 operations (78%) were percutaneous procedures and 60 (22%) were performed by open method. Data on the time of exposure and dose of radiation were acquired from the display of the fluoroscope, where they were automatically generated. These data were assigned to the individual patient, type of fracture, method of surgery and the operating surgeon. Fixations of distal radial fractures required longer times of radiation exposure (mean 61 sec.) than fractures of the wrist/metacarpals and fingers (38 and 32 sec., respectively), which was associated with absorption of significantly higher equivalent doses. Fixations of distal radial fractures by open method were associated with statistically significantly higher equivalent doses (0.41 mSv) than percutaneous procedures (0.3 mSv). Fixations of wrist and metacarpal bone fractures by open method were associated with lower equivalent doses (0.34 mSv) than percutaneous procedures (0.37 mSv),but the difference was not significant. Fixations of finger fractures by open method were associated with lower equivalent doses (0.13 mSv) than percutaneous procedures (0.24 mSv), the difference being statistically non-significant. Statistically significant differences in exposure time and equivalent doses were noted between 4 surgeons participating in the study, but no definitive relationship was found between these parameters and surgeons' employment time. 1. Hand surgery procedures under fluoroscopic guidance are associated with mild exposure of the surgeons' hands to radiation. 2. The equivalent dose was related to the type of fracture

  12. The Effects of Gamma and Proton Radiation Exposure on Hematopoietic Cell Counts in the Ferret Model

    PubMed Central

    Sanzari, Jenine K.; Wan, X. Steven; Krigsfeld, Gabriel S.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.

    2014-01-01

    Exposure to total-body radiation induces hematological changes, which can detriment one's immune response to wounds and infection. Here, the decreases in blood cell counts after acute radiation doses of γ-ray or proton radiation exposure, at the doses and dose-rates expected during a solar particle event (SPE), are reported in the ferret model system. Following the exposure to γ-ray or proton radiation, the ferret peripheral total white blood cell (WBC) and lymphocyte counts decreased whereas neutrophil count increased within 3 hours. At 48 hours after irradiation, the WBC, neutrophil, and lymphocyte counts decreased in a dose-dependent manner but were not significantly affected by the radiation type (γ-rays verses protons) or dose rate (0.5 Gy/minute verses 0.5 Gy/hour). The loss of these blood cells could accompany and contribute to the physiological symptoms of the acute radiation syndrome (ARS). PMID:25356435

  13. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies.

    PubMed

    Veiga, Lene H S; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M Jacob; Sakata, Ritsu; Schneider, Arthur B; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M; Tucker, Margaret; Lundell, Marie; Lubin, Jay H

    2016-05-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2-4 Gy, leveled off between 10-30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94-4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation.

  14. Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management

    PubMed Central

    Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua

    2011-01-01

    Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors

  15. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    PubMed Central

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  16. Influence of tropospheric ozone control on exposure to ultraviolet radiation at the surface.

    PubMed

    Madronich, Sasha; Wagner, Mark; Groth, Philip

    2011-08-15

    Improving air quality by reducing ambient ozone (O(3)) will likely lower O(3) concentrations throughout the troposphere and increase the transmission of solar ultraviolet (UV) radiation to the surface. The changes in surface UV radiation between two control scenarios (nominally 84 and 70 ppb O(3) for summer 2020) in the Eastern two-thirds of the contiguous U.S. are estimated, using tropospheric O(3) profiles calculated with a chemistry-transport model (Community Multi-Scale Air Quality, CMAQ) as inputs to a detailed model of the transfer of solar radiation through the atmosphere (tropospheric ultraviolet-visible, TUV) for clear skies, weighed for the wavelengths known to induce sunburn and skin cancer. Because the incremental emission controls differ according to region, strong spatial variability in O(3) reductions and in corresponding UV radiation increments is seen. The geographically averaged UV increase is 0.11 ± 0.03%, whereas the population-weighted increase is larger, 0.19 ± 0.06%, because O(3) reductions are greater in more densely populated regions. These relative increments in exposure are non-negligible given the already high incidence of UV-related health effects, but are lower by an order of magnitude or more than previous estimates.

  17. [The remote effects of chronic exposure to ionizing radiation and electromagnetic fields with respect to hygienic standardization].

    PubMed

    Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L

    2003-01-01

    A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.

  18. Radiation exposure--do urologists take it seriously in Turkey?

    PubMed

    Söylemez, Haluk; Altunoluk, Bülent; Bozkurt, Yaşar; Sancaktutar, Ahmet Ali; Penbegül, Necmettin; Atar, Murat

    2012-04-01

    A questionnaire was administered to urologists to evaluate attitudes and behaviors about protection from radiation exposure during fluoroscopy guided endourological procedures. The questionnaire was e-mailed to 1,482 urologists, including urology residents, specialists and urologists holding all levels of academic degrees, between May and June 2011. The questionnaire administered to study participants was composed of demographic questions, and questions on radiation exposure frequency, and the use of dosimeters and flexible protective clothes. If a respondent reported not using dosimeters or protective clothes, additional questions asked for the reason. Of the 1,482 questionnaires 394 (26.58%) were returned, of which 363 had completed answers. A total of 307 physicians (84.58%) were exposed to ionizing radiation, of whom 79.61% stated that they perform percutaneous nephrolithotomy at the clinic. Fluoroscopy guidance was the initial choice of 96.19% of urologists during percutaneous nephrolithotomy. Despite the common use of lead aprons (75.24%) most urologists did not use dosimeters (73.94%), eyeglasses (76.95%) or gloves (66.67%) while 46.44% always used thyroid shields during fluoroscopy. When asked why they did not use protective clothing, the most common answers were that protective clothes are not ergonomic and not practical. Results clearly highlight the lack of use of ionizing radiation protection devices and dosimeters during commonly performed fluoroscopy guided endourological procedures among urologists in Turkey. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Primary water chemistry improvement for radiation exposure reduction at Japanese PWR Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizawa, Eiichi

    1995-03-01

    Radiation exposure during the refueling outages at Japanese Pressurized Water Reactor (PWR) Plants has been gradually decreased through continuous efforts keeping the radiation dose rates at relatively low level. The improvement of primary water chemistry in respect to reduction of the radiation sources appears as one of the most important contributions to the achieved results and can be classified by the plant operation conditions as follows

  20. Fetal Radiation Exposure Induces Testicular Cancer in Genetically Susceptible Mice

    PubMed Central

    Shetty, Gunapala; Comish, Paul B.; Weng, Connie C. Y.; Matin, Angabin; Meistrich, Marvin L.

    2012-01-01

    The prevalence of testicular germ cell tumors (TGCT), a common solid tissue malignancy in young men, has been annually increasing at an alarming rate of 3%. Since the majority of testicular cancers are derived from germ cells at the stage of transformation of primordial germ cell (PGC) into gonocytes, the increase has been attributed to maternal/fetal exposures to environmental factors. We examined the effects of an estrogen (diethylstilbestrol, DES), an antiandrogen (flutamide), or radiation on the incidence of testicular germ cell tumors in genetically predisposed 129.MOLF-L1 (L1) congenic mice by exposing them to these agents on days 10.5 and 11.5 of pregnancy. Neither flutamide nor DES produced noticeable increases in testis cancer incidence at 4 weeks of age. In contrast, two doses of 0.8-Gy radiation increased the incidence of TGCT from 45% to 100% in the offspring. The percentage of mice with bilateral tumors, weights of testes with TGCT, and the percentage of tumors that were clearly teratomas were higher in the irradiated mice than in controls, indicating that irradiation induced more aggressive tumors and/or more foci of initiation sites in each testis. This radiation dose did not disrupt spermatogenesis, which was qualitatively normal in tumor-free testes although they were reduced in size. This is the first proof of induction of testicular cancer by an environmental agent and suggests that the male fetus of women exposed to radiation at about 5–6 weeks of pregnancy might have an increased risk of developing testicular cancer. Furthermore, it provides a novel tool for studying the molecular and cellular events of testicular cancer pathogenesis. PMID:22348147

  1. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  2. Space radiation protection: Destination Mars.

    PubMed

    Durante, Marco

    2014-04-01

    National space agencies are planning a human mission to Mars in the XXI century. Space radiation is generally acknowledged as a potential showstopper for this mission for two reasons: a) high uncertainty on the risk of radiation-induced morbidity, and b) lack of simple countermeasures to reduce the exposure. The need for radiation exposure mitigation tools in a mission to Mars is supported by the recent measurements of the radiation field on the Mars Science Laboratory. Shielding is the simplest physical countermeasure, but the current materials provide poor reduction of the dose deposited by high-energy cosmic rays. Accelerator-based tests of new materials can be used to assess additional protection in the spacecraft. Active shielding is very promising, but as yet not applicable in practical cases. Several studies are developing technologies based on superconducting magnetic fields in space. Reducing the transit time to Mars is arguably the best solution but novel nuclear thermal-electric propulsion systems also seem to be far from practical realization. It is likely that the first mission to Mars will employ a combination of these options to reduce radiation exposure. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  3. Early exposure to ultraviolet-B radiation decreases immune function later in life

    PubMed Central

    Ceccato, Emma; Cramp, Rebecca L.; Seebacher, Frank; Franklin, Craig E.

    2016-01-01

    Amphibians have declined dramatically worldwide. Many of these declines are occurring in areas where no obvious anthropogenic stressors are present. It is proposed that in these areas, environmental factors such as elevated solar ultraviolet-B (UV-B) radiation could be responsible. Ultraviolet-B levels have increased in many parts of the world as a consequence of the anthropogenic destruction of the ozone layer. Amphibian tadpoles are particularly sensitive to the damaging effects of UV-B radiation, with exposure disrupting growth and fitness in many species. Given that UV-B can disrupt immune function in other animals, we tested the hypothesis that early UV-B exposure suppresses the immune responses of amphibian tadpoles and subsequent juvenile frogs. We exposed Limnodynastes peronii tadpoles to sublethal levels of UV-B radiation for 6 weeks after hatching, then examined indices of immune function in both the tadpoles and the subsequent metamorphs. There was no significant effect of UV-B on tadpole leucocyte counts or on their response to an acute antigen (phytohaemagglutinin) challenge. However, early UV-B exposure resulted in a significant reduction in both metamorph leucocyte abundance and their response to an acute phytohaemagglutinin challenge. These data demonstrate that early UV-B exposure can have carry-over effects on later life-history traits even if the applied stressor has no immediately discernible effect. These findings have important implications for our understanding of the effects of UV-B exposure on amphibian health and susceptibility to diseases such as chytridiomycosis. PMID:27668081

  4. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  5. Effects of radiation exposure from cardiac imaging: how good are the data?

    PubMed

    Einstein, Andrew J

    2012-02-07

    Concerns about medical exposure to ionizing radiation have become heightened in recent years as a result of rapid growth in procedure volumes and the high radiation doses incurred from some procedures. This paper summarizes the evidence base undergirding concerns about radiation exposure in cardiac imaging. After classifying radiation effects, explaining terminology used to quantify the radiation received by patients, and describing typical doses from cardiac imaging procedures, this paper will address the major epidemiological studies having bearing on radiation effects at doses comparable to those received by patients undergoing cardiac imaging. These include studies of atomic bomb survivors, nuclear industry workers, and children exposed in utero to x-rays, all of which have evidenced increased cancer risks at low doses. Additional higher-dose epidemiological studies of cohorts exposed to radiation in the context of medical treatment are described and found to be generally compatible with these cardiac dose-level studies, albeit with exceptions. Using risk projection models developed by the U.S. National Academies that incorporate these data and reflect several evidence-based assumptions, cancer risk from cardiac imaging can be estimated and compared with the benefits from imaging. Several ongoing epidemiological studies will provide better understanding of radiation-associated cancer risks. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  6. Workshop report on atomic bomb dosimetry-residual radiation exposure: recent research and suggestions for future studies.

    PubMed

    Kerr, George D; Egbert, Stephen D; Al-Nabulsi, Isaf; Beck, Harold L; Cullings, Harry M; Endo, Satoru; Hoshi, Masaharu; Imanaka, Tetsuji; Kaul, Dean C; Maruyama, Satoshi; Reeves, Glen I; Ruehm, Werner; Sakaguchi, Aya; Simon, Steven L; Spriggs, Gregory D; Stram, Daniel O; Tonda, Tetsuji; Weiss, Joseph F; Weitz, Ronald L; Young, Robert W

    2013-08-01

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewed at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.

  7. Workshop Report on Atomic Bomb Dosimetry--Residual Radiation Exposure: Recent Research and Suggestions for Future Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-06

    There is a need for accurate dosimetry for studies of health effects in the Japanese atomic bomb survivors because of the important role that these studies play in worldwide radiation protection standards. International experts have developed dosimetry systems, such as the Dosimetry System 2002 (DS02), which assess the initial radiation exposure to gamma rays and neutrons but only briefly consider the possibility of some minimal contribution to the total body dose by residual radiation exposure. In recognition of the need for an up-to-date review of the topic of residual radiation exposure in Hiroshima and Nagasaki, recently reported studies were reviewedmore » at a technical session at the 57th Annual Meeting of the Health Physics Society in Sacramento, California, 22-26 July 2012. A one-day workshop was also held to provide time for detailed discussion of these newer studies and to evaluate their potential use in clarifying the residual radiation exposures to the atomic-bomb survivors at Hiroshima and Nagasaki. Suggestions for possible future studies are also included in this workshop report.« less

  8. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray

  9. [Paternal exposure to occupational electromagnetic radiation and sex ratio of the offspring: a meta-analysis].

    PubMed

    Tong, Shu-Hui; Liu, Yi-Ting; Liu, Yang

    2013-02-01

    To investigate the association between paternal exposure to occupational electromagnetic radiation and the sex ratio of the offspring. We searched various databases, including PubMed, Embase, Cochrane Library, OVID, Bioscience Information Service (BIOSIS), China National Knowledge Infrastructure, VIP Database for Chinese Technical Periodicals and Wanfang Database, for the literature relevant to the association of paternal exposure to occupational electromagnetic radiation with the sex ratio of the offspring. We conducted a meta-analysis on their correlation using Stata 11.0. There was no statistically significant difference in the sex ratio between the offspring with paternal exposure to occupational electromagnetic radiation and those without (pooled OR = 1.00 [95% CI: 0.95 -1.05], P = 0.875). Subgroup analysis of both case-control and cohort studies revealed no significant difference (pooled OR = 1.03 [95% CI: 0.99 -1.08], P = 0.104 and pooled OR = 0.98 [95% CI: 0.99 -1.08], P = 0.186, respectively). Paternal exposure to occupational electromagnetic radiation is not correlated with the sex ratio of the offspring.

  10. Medical exposure to ionising radiation and the risk of brain tumours: Interphone study group, Germany.

    PubMed

    Blettner, Maria; Schlehofer, Brigitte; Samkange-Zeeb, Florence; Berg, Gabriele; Schlaefer, Klaus; Schüz, Joachim

    2007-09-01

    The role of exposure to low doses of ionising radiation in the aetiology of brain tumours has yet to be clarified. The objective of this study was to investigate the association between medically or occupationally related exposure to ionising radiation and brain tumours. We used self-reported medical and occupational data collected during the German part of a multinational case-control study on mobile phone use and the risk of brain tumours (Interphone study) for the analyses. For any exposure to medical ionising radiation we found odds ratios (ORs) of 0.63 (95% confidence interval (CI)=0.48-0.83), 1.08 (95% CI=0.80-1.45) and 0.97 (95% CI=0.54-1.75) for glioma, meningioma and acoustic neuroma, respectively. Elevated ORs were found for meningioma (OR 2.32, 95% CI: 0.90-5.96) and acoustic neuroma (OR 6.45, 95% CI: 0.62-67.16) for radiotherapy to the head and neck regions. We did not find any significant increased risk of brain tumours for exposure to medical ionising radiation.

  11. Behavioral consequences of radiation exposure to simulated space radiation in the C57BL/6 mouse: open field, rotorod, and acoustic startle

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Haerich, Paul; Zuccarelli, Cara N.; Smith, Anna L.; Zendejas, Eric D.; Nelson, Gregory A.

    2002-01-01

    Two experiments were carried out to investigate the consequences of exposure to proton radiation, such as might occur for astronauts during space flight. C57BL/6 mice were exposed, either with or without 15-g/cm2 aluminum shielding, to 0-, 3-, or 4-Gy proton irradiation mimicking features of a solar particle event. Irradiation produced transient direct deficits in open-field exploratory behavior and acoustic startle habituation. Rotorod performance at 18 rpm was impaired by exposure to proton radiation and was impaired at 26 rpm, but only for mice irradiated with shielding and at the 4-Gy dose. Long-term (>2 weeks) indirect deficits in open-field activity appeared as a result of impaired experiential encoding immediately following exposure. A 2-week recovery prior to testing decreased most of the direct effects of exposure, with only rotorod performance at 26 rpm being impaired. These results suggest that the performance deficits may have been mediated by radiation damage to hippocampal, cerebellar, and possibly, forebrain dopaminergic function.

  12. Community-Based Intervention to Reduce Pesticide Exposure to Farmworkers and Potential Take-Home Exposure to their Families

    PubMed Central

    Bradman, Asa; Salvatore, Alicia L.; Boeniger, Mark; Castorina, Rosemary; Snyder, John; Barr, Dana B.; Jewell, Nicholas P.; Kavanagh-Baird, Geri; Striley, Cynthia; Eskenazi, Brenda

    2015-01-01

    The U.S. EPA Worker Protection Standard requires pesticide safety training for farmworkers. Combined with re-entry intervals, these regulations are designed to reduce pesticide exposure. Little research has been conducted on whether additional steps may reduce farmworker exposure and the potential for take-home exposure to their families. We conducted an intervention with 44 strawberry harvesters (15 control and 29 intervention group members) to determine whether education, encouragement of handwashing, and the use of gloves and removable coveralls reduced exposure. Post-intervention, we collected foliage and urine samples, as well as hand rinse, lower-leg skin patch, and clothing patch samples. Post-intervention loading of malathion on hands was lower among workers who wore gloves compared to those who did not (median = 8.2 vs 777.2 μg/pair, respectively (p<0.001)); similarly, median MDA levels in urine were lower among workers who wore gloves (45.3 vs 131.2 μg/g creatinine, p<0.05). Malathion was detected on clothing (median = 0.13 μg/cm2), but not on skin. Workers who ate strawberries had higher MDA levels in urine (median=114.5 vs 39.4 μg/g creatinine, p<0.01). These findings suggest that wearing gloves reduces pesticide exposure to workers contacting strawberry foliage containing dislodgeable residues. Additionally, wearing gloves and removing work clothes before returning home could reduce transport of pesticides to worker homes. Behavioral interventions are needed to reduce consumption of strawberries in the field. PMID:18368011

  13. Health risks of exposure to non-ionizing radiation--myths or science-based evidence.

    PubMed

    Hietanen, Maila

    2006-01-01

    The non-ionizing radiation (NIR) contains large range of wavelengths and frequencies from vacuum ultraviolet (UV) radiation to static electric and magnetic fields. Biological effects of electromagnetic (EM) radiation depend greatly on wavelength and other physical parameters. The Sun is the most significant source of environmental UV exposure, so that outdoor workers are at risk of chronic over-exposure. Also exposure to short-wave visible light is associated with the aging and degeneration of the retina. Especially hazardous are laser beams focused to a small spot at the retina, resulting in permanent visual impairment. Exposure to EM fields induces body currents and energy absorption in tissues, depending on frequencies and coupling mechanisms. Thermal effects caused by temperature rise are basically understood, whereas the challenge is to understand the suspected non-thermal effects. Radiofrequency (RF) fields around frequencies of 900 MHz and 1800 MHz are of special interest because of the rapid advances in the telecommunication technology. The field levels of these sources are so low that temperature rise is unlikely to explain possible health effects. Other mechanisms of interaction have been proposed, but biological experiments have failed to confirm their existence.

  14. Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A.

    PubMed

    Misra, Ravi S; Johnston, Carl J; Groves, Angela M; DeDiego, Marta L; St Martin, Joe; Reed, Christina; Hernady, Eric; Miller, Jen-Nie; Love, Tanzy; Finkelstein, Jacob N; Williams, Jacqueline P

    2015-07-01

    A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble (137)Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally (137)Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.

  15. Radiation exposure during in-situ pinning of slipped capital femoral epiphysis hips: does the patient positioning matter?

    PubMed

    Mohammed, Riazuddin; Johnson, Karl; Bache, Ed

    2010-07-01

    Multiple radiographic images may be necessary during the standard procedure of in-situ pinning of slipped capital femoral epiphysis (SCFE) hips. This procedure can be performed with the patient positioned on a fracture table or a radiolucent table. Our study aims to look at any differences in the amount and duration of radiation exposure for in-situ pinning of SCFE performed using a traction table or a radiolucent table. Sixteen hips in thirteen patients who were pinned on radiolucent table were compared for the cumulative radiation exposure to 35 hips pinned on a fracture table in 33 patients during the same time period. Cumulative radiation dose was measured as dose area product in Gray centimeter2 and the duration of exposure was measured in minutes. Appropriate statistical tests were used to test the significance of any differences. Mean cumulative radiation dose for SCFE pinned on radiolucent table was statistically less than for those pinned on fracture table (P<0.05). The mean duration of radiation exposure on either table was not significantly different. Lateral projections may increase the radiation doses compared with anteroposterior projections because of the higher exposure parameters needed for side imaging. Our results showing decreased exposure doses on the radiolucent table are probably because of the ease of a frog leg lateral positioning obtained and thereby the ease of lateral imaging. In-situ pinning of SCFE hips on a radiolucent table has an additional advantage that the radiation dose during the procedure is significantly less than that of the procedure that is performed on a fracture table.

  16. The Relative Effects of Manual Versus Automatic Exposure Control on Radiation Dose to Vital Organs in Total Hip Arthroplasty.

    PubMed

    Harper, Katharine D; Li, Shidong; Jennings, Rachel; Amer, Kamil M; Haydel, Christopher; Ali, Sayed

    2018-01-01

    Technologic advances have reduced medical radiation exposure while maintaining image quality. The purpose of this study was to determine the effects of the presence of total hip arthroplasty implants, compared with native hips, on radiation exposure of the most radiosensitive organs when manual and automatic exposure control settings are used. Detection probes were placed at six locations (stomach, sigmoid colon, right pelvic wall, left pelvic wall, pubic symphysis, and anterior pubic skin) in a cadaver. Radiographs were obtained with the use of manual and automatic exposure control protocols, with exposures recorded. A total hip arthroplasty implant was placed in the cadaver, probe positioning was confirmed, and the radiographs were repeated, with exposure values recorded. The control probe placed at the stomach had values ranging from 0.00 mSv to 0.01 mSv in protocols with and without implants. With the manual protocol, exposures in the pelvis ranged from 0.36 mSv to 2.74 mSv in the native hip and from 0.33 mSv to 2.24 mSv after implant placement. The increases in exposure after implant placement, represented as relative risk, were as follows: stomach, 1.000; pubic symphysis, 0.818; left pelvic wall, 1.381; sigmoid colon, 1.550; right pelvic wall, 0.917; and anterior pubic skin, 1.015. With automatic exposure control, exposures in the pelvis ranged from 0.07 mSv to 0.89 mSv in the native hip and from 0.21 mSv to 1.15 mSv after implant placement. With automatic exposure control, the increases in exposure after implant placement, represented as relative risk, were as follows: stomach, 1.000; pubic symphysis, 1.292; left pelvic wall, 1.476; sigmoid colon, 2.182; right pelvic wall, 3.000; and anterior pubic skin, 1.378. The amount of radiation to which patients are exposed as a result of medical procedures or imaging, and whether exposure is associated with an increased risk of malignant transformation, are the subject of ongoing debate. We found that after insertion

  17. Awareness of medical radiation exposure among patients: A patient survey as a first step for effective communication of ionizing radiation risks.

    PubMed

    Ria, F; Bergantin, A; Vai, A; Bonfanti, P; Martinotti, A S; Redaelli, I; Invernizzi, M; Pedrinelli, G; Bernini, G; Papa, S; Samei, E

    2017-11-01

    The European Directive 2013/59/EURATOM requires patient radiation dose information to be included in the medical report of radiological procedures. To provide effective communication to the patient, it is necessary to first assess the patient's level of knowledge regarding medical exposure. The goal of this work is to survey patients' current knowledge level of both medical exposure to ionizing radiation and professional disciplines and communication means used by patients to garner information. A questionnaire was designed comprised of thirteen questions: 737 patients participated in the survey. The data were analysed based on population age, education, and number of radiological procedures received in the three years prior to survey. A majority of respondents (56.4%) did not know which modality uses ionizing radiation. 74.7% had never discussed with healthcare professionals the risk concerning their medical radiological procedures. 70.1% were not aware of the professionals that have expertise to discuss the use of ionizing radiation for medical purposes, and 84.7% believe it is important to have the radiation dose information stated in the medical report. Patients agree with new regulations that it is important to know the radiation level related to the medical exposure, but there is little awareness in terms of which modalities use X-Rays and the professionals and channels that can help them to better understand the exposure information. To plan effective communication, it is essential to devise methods and adequate resources for key professionals (medical physicists, radiologists, referring physicians) to convey correct and effective information. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  19. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  20. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  1. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  2. 10 CFR 20.2203 - Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Reports of exposures, radiation levels, and concentrations of radioactive material exceeding the constraints or limits. 20.2203 Section 20.2203 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Reports § 20.2203 Reports of exposures...

  3. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  4. 28 CFR Appendix C to Part 79 - Radiation Exposure Compensation Act Offset Worksheet-On Site Participants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Radiation Exposure Compensation Act Offset Worksheet-On Site Participants C Appendix C to Part 79 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) CLAIMS UNDER THE RADIATION EXPOSURE COMPENSATION ACT Pt. 79, App. C Appendix C to Part...

  5. IONIZING RADIATION EXPOSURE OF THE POPULATION OF THE U.S.

    EPA Science Inventory

    This report updates information published by the National Council on Radiation Protection and Measurements (NCRP) in 1987. NCRP reports are considered the authoritative reference for the sources and magnitude of average background exposure to the U.S. population.

  6. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  7. Thyroid Cancer after Childhood Exposure to External Radiation: An Updated Pooled Analysis of 12 Studies

    PubMed Central

    Veiga, Lene H. S.; Holmberg, Erik; Anderson, Harald; Pottern, Linda; Sadetzki, Siegal; Adams, M. Jacob; Sakata, Ritsu; Schneider, Arthur B.; Inskip, Peter; Bhatti, Parveen; Johansson, Robert; Neta, Gila; Shore, Roy; de Vathaire, Florent; Damber, Lena; Kleinerman, Ruth; Hawkins, Michael M.; Tucker, Margaret; Lundell, Marie; Lubin, Jay H.

    2016-01-01

    Studies have causally linked external thyroid radiation exposure in childhood with thyroid cancer. In 1995, investigators conducted relative risk analyses of pooled data from seven epidemiologic studies. Doses were mostly <10 Gy, although childhood cancer therapies can result in thyroid doses >50 Gy. We pooled data from 12 studies of thyroid cancer patients who were exposed to radiation in childhood (ages <20 years), more than doubling the data, including 1,070 (927 exposed) thyroid cancers and 5.3 million (3.4 million exposed) person-years. Relative risks increased supralinearly through 2–4 Gy, leveled off between 10–30 Gy and declined thereafter, remaining significantly elevated above 50 Gy. There was a significant relative risk trend for doses <0.10 Gy (P < 0.01), with no departure from linearity (P = 0.36). We observed radiogenic effects for both papillary and nonpapillary tumors. Estimates of excess relative risk per Gy (ERR/Gy) were homogeneous by sex (P = 0.35) and number of radiation treatments (P = 0.84) and increased with decreasing age at the time of exposure. The ERR/Gy estimate was significant within ten years of radiation exposure, 2.76 (95% CI, 0.94–4.98), based on 42 exposed cases, and remained elevated 50 years and more after exposure. Finally, exposure to chemotherapy was significantly associated with thyroid cancer, with results supporting a nonsynergistic (additive) association with radiation. PMID:27128740

  8. Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability.

    PubMed

    Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Dore, Antonio; Aringhieri, Giacomo; Caramella, Davide

    2018-03-01

    To assess the variability of radiation dose exposure in patients affected by lymphoma undergoing repeat CT (computed tomography) examinations and to evaluate the influence of different scan parameters on the overall radiation dose. A series of 34 patients (12 men and 22 women with a median age of 34.4 years) with lymphoma, after the initial staging CT underwent repeat follow-up CT examinations. For each patient and each repeat examination, age, sex, use of AEC system (Automated Exposure Control, i.e. current modulation), scan length, kV value, number of acquired scans (i.e. number of phases), abdominal size diameter and dose length product (DLP) were recorded. The radiation dose of just one venous phase was singled out from the DLP of the entire examination. All scan data were retrieved by our PACS (Picture Archiving and Communication System) by means of a dose monitoring software. Among the variables we considered, no significant difference of radiation dose was observed among patients of different ages nor concerning tube voltage. On the contrary the dose delivered to the patients varied depending on sex, scan length and usage of AEC. No significant difference was observed depending on the behaviour of technologists, while radiologists' choices had indirectly an impact on the radiation dose due to the different number of scans requested by each of them. Our results demonstrate that patients affected by lymphoma who undergo repeat whole body CT scanning may receive unnecessary overexposure. We quantified and analyzed the most relevant variables in order to provide a useful tool to manage properly CT dose variability, estimating the amount of additional radiation dose for every single significant variable. Additional scans, incorrect scan length and incorrect usage of AEC system are the most relevant cause of patient radiation exposure.

  9. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    PubMed

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Thyroid Cancer Following Childhood Low-Dose Radiation Exposure: A Pooled Analysis of Nine Cohorts.

    PubMed

    Lubin, Jay H; Adams, M Jacob; Shore, Roy; Holmberg, Erik; Schneider, Arthur B; Hawkins, Michael M; Robison, Leslie L; Inskip, Peter D; Lundell, Marie; Johansson, Robert; Kleinerman, Ruth A; de Vathaire, Florent; Damber, Lena; Sadetzki, Siegal; Tucker, Margaret; Sakata, Ritsu; Veiga, Lene H S

    2017-07-01

    The increased use of diagnostic and therapeutic procedures that involve radiation raises concerns about radiation effects, particularly in children and the radiosensitive thyroid gland. Evaluation of relative risk (RR) trends for thyroid radiation doses <0.2 gray (Gy); evidence of a threshold dose; and possible modifiers of the dose-response, e.g., sex, age at exposure, time since exposure. Pooled data from nine cohort studies of childhood external radiation exposure and thyroid cancer with individualized dose estimates, ≥1000 irradiated subjects or ≥10 thyroid cancer cases, with data limited to individuals receiving doses <0.2 Gy. Cohorts included the following: childhood cancer survivors (n = 2); children treated for benign diseases (n = 6); and children who survived the atomic bombings in Japan (n = 1). There were 252 cases and 2,588,559 person-years in irradiated individuals and 142 cases and 1,865,957 person-years in nonirradiated individuals. There were no interventions. Incident thyroid cancers. For both <0.2 and <0.1 Gy, RRs increased with thyroid dose (P < 0.01), without significant departure from linearity (P = 0.77 and P = 0.66, respectively). Estimates of threshold dose ranged from 0.0 to 0.03 Gy, with an upper 95% confidence bound of 0.04 Gy. The increasing dose-response trend persisted >45 years after exposure, was greater at younger age at exposure and younger attained age, and was similar by sex and number of treatments. Our analyses reaffirmed linearity of the dose response as the most plausible relationship for "as low as reasonably achievable" assessments for pediatric low-dose radiation-associated thyroid cancer risk. Copyright © 2017 Endocrine Society

  11. Monitoring and reducing exposure of infants to pollutants in house dust.

    PubMed

    Roberts, John W; Wallace, Lance A; Camann, David E; Dickey, Philip; Gilbert, Steven G; Lewis, Robert G; Takaro, Tim K

    2009-01-01

    The health risks to babies from pollutants in house dust may be 100 times greater than for adults. The young ingest more dust and are up to ten times more vulnerable to such exposures. House dust is the main exposure source for infants to allergens, lead, and PBDEs, as well as a major source of exposure to pesticides, PAHs, Gram-negative bacteria, arsenic, cadmium, chromium, phthalates, phenols, and other EDCs, mutagens, and carcinogens. Median or upper percentile concentrations in house dust of lead and several pesticides and PAHs may exceed health-based standards in North America. Early contact with pollutants among the very young is associated with higher rates of chronic illness such as asthma, loss of intelligence, ADHD, and cancer in children and adults. The potential of infants, who live in areas with soil contaminated by automotive and industrial emissions, can be given more protection by improved home cleaning and hand washing. Babies who live in houses built before 1978 have a prospective need for protection against lead exposures; homes built before 1940 have even higher lead exposure risks. The concentration of pollutants in house dust may be 2-32 times higher than that found in the soil near a house. Reducing infant exposures, at this critical time in their development, may reduce lifetime health costs, improve early learning, and increase adult productivity. Some interventions show a very rapid payback. Two large studies provide evidence that home visits to reduce the exposure of children with poorly controlled asthma triggers may return more than 100% on investment in 1 yr in reduced health costs. The tools provided to families during home visits, designed to reduce dust exposures, included vacuum cleaners with dirt finders and HEPA filtration, allergy control bedding covers, high-quality door mats, and HEPA air filters. Infants receive their highest exposure to pollutants in dust at home, where they spend the most time, and where the family has the

  12. Combined Effects of Simulated Microgravity and Radiation Exposure on Osteoclast Cell Fusion.

    PubMed

    Shanmugarajan, Srinivasan; Zhang, Ye; Moreno-Villanueva, Maria; Clanton, Ryan; Rohde, Larry H; Ramesh, Govindarajan T; Sibonga, Jean D; Wu, Honglu

    2017-11-18

    The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase ( Trap ) and dendritic cell-specific transmembrane protein ( Dcstamp ). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein ( Ocstamp ) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the

  13. ADVISORY ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) published the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in 2006. The Committee analyzed the most recent epidemiology from the important exposed cohorts and factor...

  14. Non-Malignant Thyroid Diseases Following a Wide Range of Radiation Exposures

    PubMed Central

    Ron, Elaine; Brenner, Alina

    2013-01-01

    Background The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. Objectives The aim of this review is to evaluate the effects of high and low dose radiation on benign structural and functional diseases of the thyroid. Methods We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate to high dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. Results Following a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades following exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak and significant radiation effects were most often observed following high doses, particularly for hypothyroidism. Conclusions A significant radiation dose-response relation was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties studying these diseases. PMID:21128812

  15. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... produce ionizations directly or indirectly, but does not include electromagnetic radiations other than... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations...

  16. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of clinically significant cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that sub-clinical cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  17. Historical Study of Radiation Exposures and the Incidence of Cataracts in Astronauts

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Manuel, F. K.; Iszard, G.; Feiveson, A.; Peterson, L. E.; Hardy, D.; Marak, L.; Tung, W.; Wear, M.; Chylack, L. T., Jr.

    2004-01-01

    For over 35 years, astronauts in low Earth orbit or on missions to the moon have been exposed to space radiation comprised of high-energy protons, heavy ions, and secondary neutrons. We reviewed the radiation exposures received by astronauts in space and on Earth, and presented results from the first epidemiological study of cataract incidence in the astronauts. Our data suggested an increased risk for cataracts from space radiation exposures*. Using parametric survival analysis and the maximum likelihood method, we estimated the dose-response and age distribution for cataract incidence in astronauts by space radiation. Considering the high-LET dose contributions on specific space missions as well as data from animal studies with neutrons and heavy ions, suggested a linear response with no dose-threshold for cataracts. However, there are unanswered questions related to the importance and the definition of "clinically significant" cataracts commonly used in radiation protection, especially in light of epidemiological data suggesting that the probability that "sub-clinical" cataracts will progress is highly dependent on the age at which cataracts appear. We briefly describe a new study that will address the measurement of cataract progression-rates in astronauts and a ground-based comparison group.

  18. Galactic and solar radiation exposure to aircrew during a solar cycle.

    PubMed

    Lewis, B J; Bennett, L G I; Green, A R; McCall, M J; Ellaschuk, B; Butler, A; Pierre, M

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.

  19. Radiation exposure and disease questionnaires of early entrants after the Hiroshima bombing.

    PubMed

    Imanaka, Tetsuji; Endo, Satoru; Kawano, Noriyuki; Tanaka, Kenichi

    2012-03-01

    It is popularly known that people who entered into the ground-zero area shortly after the atomic bombings in Hiroshima and Nagasaki suffered from various syndromes similar to acute radiation effects. External exposures from neutron-induced radionuclides in soil have recently been reassessed based on DS02 calculations as functions of both distance from the hypocentres and elapsed time after the explosions. Significant exposure due to induced radiation can be determined for those who entered the area within 1000 m from the hypocentres shortly after the bombing. Although it was impossible to track the action of each of the survivors over the days or weeks following the bombings in order to make reliable dose estimates for their exposures to soil activation or fallout, four individuals among those early entrants were investigated here to describe useful information of what happened shortly after the bombing.

  20. Life-span carcinogenicity studies on Sprague-Dawley rats exposed to γ-radiation: design of the project and report on the tumor occurrence after post-natal radiation exposure (6 weeks of age) delivered in a single acute exposure.

    PubMed

    Soffritti, Morando; Tibaldi, Eva; Bua, Luciano; Padovani, Michela; Falcioni, Laura; Lauriola, Michelina; Manservigi, Marco; Manservisi, Fabiana; Belpoggi, Fiorella

    2015-01-01

    Experimental long-term carcinogenicity bioassays conducted on rats and mice proved that ionizing radiation can induce a variety of tumor types. However few studies have been conducted on rats. This report deals with the effects of γ-radiation in groups of 416-1,051 6-weeks old Sprague-Dawley rats exposed to 0, 0.1, 1, or 3 Gy of γ-radiation delivered in a single acute exposure. The experiment lasted for the animals' lifespan and all were necropsied and underwent full histopathological evaluation. The results confirm the dose-related carcinogenic effects of γ-radiation for several organs and tissues. Moreover they indicate that exposure to 0.1 Gy induces a statistically significant increased incidence in Zymbal gland carcinomas and pancreas islet cell carcinomas in females. Our data show that exposure to γ-radiation induces carcinogenic effects at all tested doses. © 2014 Wiley Periodicals, Inc.

  1. Evaluation of Kidney Stones with Reduced-Radiation Dose CT: Progress from 2011-2012 to 2015-2016-Not There Yet.

    PubMed

    Weisenthal, Karrin; Karthik, Priyadarshini; Shaw, Melissa; Sengupta, Debapriya; Bhargavan-Chatfield, Mythreyi; Burleson, Judy; Mustafa, Adel; Kalra, Mannudeep; Moore, Christopher

    2018-02-01

    Purpose To determine if the use of reduced-dose computed tomography (CT) for evaluation of kidney stones increased in 2015-2016 compared with that in 2011-2012, to determine variability in radiation exposure according to facility for this indication, and to establish a current average radiation dose for CT evaluation for kidney stones by querying a national dose registry. Materials and Methods This cross-sectional study was exempt from institutional review board approval. Data were obtained from the American College of Radiology dose registry for CT examinations submitted from July 2015 to June 2016. Study descriptors consistent with single-phase unenhanced CT for evaluation of kidney stones and associated RadLex® Playbook identifiers (RPIDs) were retrospectively identified. Facilities actively submitting data on kidney stone-specific CT examinations were included. Dose metrics including volumetric CT dose index, dose-length product, and size-specific dose estimate, when available, were reported, and a random effects model was run to account for clustering of CT examinations at facilities. A z-ratio was calculated to test for a significant difference between the proportion of reduced-radiation dose CT examinations (defined as those with a dose-length product of 200 mGy · cm or less) performed in 2015-2016 and the proportion performed in 2011-2012. Results Three hundred four study descriptors for kidney stone CT corresponding to data from 328 facilities that submitted 105 334 kidney stone CT examinations were identified. Reduced-dose CT examinations accounted for 8040 of 105 334 (7.6%) CT examinations, a 5.6% increase from the 1010 of 49 903 (2%) examinations in 2011-2012 (P < .001). Mean overall dose-length product was 689 mGy · cm (95% confidence interval: 667, 712), decreased from the mean of 746 mGy · cm observed in 2011-2012. Median facility dose-length product varied up to sevenfold, from less than 200 mGy · cm to greater than 1600 mGy · cm. Conclusion

  2. Occupational exposures to antineoplastic drugs and ionizing radiation in Canadian veterinary settings: findings from a national surveillance project.

    PubMed

    Hall, Amy L; Davies, Hugh W; Demers, Paul A; Nicol, Anne-Marie; Peters, Cheryl E

    2013-11-01

    Although veterinary workers may encounter various occupational health hazards, a national characterization of exposures is lacking in Canada. This study used secondary data sources to identify veterinary exposure prevalence for ionizing radiation and antineoplastic agents, as part of a national surveillance project. For ionizing radiation, data from the Radiation Protection Bureau of Health Canada were used to identify veterinarians and veterinary technicians monitored in 2006. This was combined with Census statistics to estimate a prevalence range and dose levels. For antineoplastic agents, exposure prevalence was estimated using statistics on employment by practice type and antineoplastic agent usage rates, obtained from veterinary licensing bodies and peer-reviewed literature. In 2006, 7,013 (37% of all) Canadian veterinary workers were monitored for ionizing radiation exposure. An estimated 3.3% to 8.2% of all veterinarians and 2.4% to 7.2% of veterinary technicians were exposed to an annual ionizing radiation dose above 0.1 mSv, representing a total of between 536 and 1,450 workers. All monitored doses were below regulatory limits. For antineoplastic agents, exposure was predicted in up to 5,300 (23%) of all veterinary workers, with an estimated prevalence range of 22% to 24% of veterinarians and 20% to 21% of veterinary technicians. This is the first national-level assessment of exposure to ionizing radiation and antineoplastic agents in Canadian veterinary settings. These hazards may pose considerable health risks. Exposures appeared to be low, however our estimates should be validated with comprehensive exposure monitoring and examination of determinants across practice areas, occupations, and tasks.

  3. Molecular pathway activation in cancer and tissue following space radiation exposure

    NASA Astrophysics Data System (ADS)

    Kovyrshina, Tatiana A.

    Space radiation exposure is an important safety concern for astronauts, especially since one of the risks is carcinogenesis. This thesis explores the link between lung, colorectal, and breast cancer and iron particles and gamma radiation on a molecular level. We obtained DNA microarrays for each condition from the Gene Expression Omnibus (GEO), a public functional genomics data repository, cleaned up the data, and analysed overexpression and underexpression of pathway analysis. Our results show that pathways which participate in DNA replication appear to be overexpressed in cancer cells and cells exposed to ionizing radiation.

  4. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis

    PubMed Central

    Li, Changzhao; Athar, Mohammad

    2016-01-01

    This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology. PMID:26930381

  5. CONSULTATION ON UPDATED METHODOLOGY FOR ESTIMATING CANCER RISKS FROM EXPOSURE TO IONIZING RADIATION

    EPA Science Inventory

    The National Academy of Sciences (NAS) expects to publish the Biological Effects of Ionizing Radiation (BEIR) committee's report (BEIR VII) on risks from ionizing radiation exposures in calendar year 2005. The committee is expected to have analyzed the most recent epidemiology f...

  6. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  7. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  8. 29 CFR 570.57 - Exposure to radioactive substances and to ionizing radiations (Order 6).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... radiations (Order 6). 570.57 Section 570.57 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR... to Their Health or Well-Being § 570.57 Exposure to radioactive substances and to ionizing radiations... radioactive substances and to ionizing radiations are particularly hazardous and detrimental to health for...

  9. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  10. Impact of ionizing radiation exposure on in vitro differentiation of preosteoblastic cell lines

    NASA Astrophysics Data System (ADS)

    Hu, Yueyuan; Lau, Patrick; Hellweg, Christine; Baumstark-Khan, Christa; Reitz, Guenther

    Bone demineralization of astronauts during residence in microgravity is a well known phe-nomenon during space travel. Besides altered gravity conditions, radiation risk is considered to be one of the major health hazards for astronauts in both orbital and interplanetary space. Un-til know, little is known about the effects of space radiation on the skeletal system especially on the bone forming osteoblasts. Accelerator facilities are used to simulate parts of the radiation environment in space. We examined the effects of heavy ion exposure on osteoblastic differ-entiation of murine preosteoblastic cell lines to gain insight into potential cellular mechanisms involved in bone cellular response after exposure to heavy ions. Therefore, we examined gene expression modulation of bone specific transcription factors, osteoblast specific marker genes as well as genes function as coupling factors that link bone resorption to bone formation. mRNA levels were determined using quantitative real time reverse transcriptase PCR (qRT-PCR). Expression of a target gene was standardized to unregulated reference genes. We investigated the transcriptional regulation of Osteocalcin (OCN) as well as TGF-β1, p21(CDKN1A) and the bone specific transcription factor Runx2 (cbfa1). We investigated gene expression modula-tions after exposure to energetic carbon ions (35 MeV/u, 73 keV/µm), iron ions (1000 MeV/u, 150 keV/µm) and lead ions (29 MeV/u, 9600 keV/µm) versus low LET X-rays. X-irradiation dose-dependently increased the mRNA levels of p21(CDKN1A) and Runx2 (cbfa1) whereas expression of OCN and TGF-β1 were elevated at later time points. Exposure to heavy ions provoked a more pronounced effect on osteoblastic specific gene expression within the dif-ferentiation process. Collectively, our results indicate that heavy ions facilitate osteoblastic differentiation more effectively than X-ray. Using the proposed in vitro model we confirmed that exposure to ionizing radiation significantly

  11. Appearance-based interventions to reduce UV exposure: A systematic review.

    PubMed

    Persson, Sofia; Benn, Yael; Dhingra, Katie; Clark-Carter, David; Owen, Alison L; Grogan, Sarah

    2018-05-01

    As a majority of skin cancer cases are behaviourally preventable, it is crucial to develop effective strategies to reduce UV exposure. Health-focused interventions have not proved to be sufficiently effective, and it has been suggested that people might be more susceptible to information about the negative effects of the sun on their appearance. This systematic review of 30 separate papers, reporting 33 individual studies published between 2005 and 2017, assesses the overall effectiveness of appearance interventions on participants' UV exposure and sun protection behaviour. Appearance-based interventions have positive effects on sun exposure and sun protection, immediately after the intervention as well as up to 12 months afterwards. The meta-analysis found a medium effect size on sun protection intentions for interventions which combined UV photography and photoageing information: r +  = .424; k = 3, N = 319, CI = 0.279-0.568, p = .023. This review provides a current perspective on the effectiveness of appearance-based interventions to reduce UV exposure, and also highlights methodological issues. It recommends that practitioners administer a UV photo intervention in combination with photoageing information to reduce UV exposure. Furthermore, the review specifically recommends that future research focuses on the use of theoretical constructs to enhance photoageing information and is conducted with older participants and in countries where people have less opportunity for sun exposure. Statement of contribution What is already known on this subject? Appearance-focused interventions may in some cases be more effective than health-focused interventions in reducing UV exposure, as the underlying motivations for tanning are associated with appearance concerns. Previous reviews and meta-analyses have indicated that appearance-focused interventions such as photoageing and UV photo are associated with positive effects in reducing UV exposure and/or increasing

  12. Occupational exposure to solar ultraviolet radiation and the risk of prostate cancer.

    PubMed

    Peters, Cheryl E; Demers, Paul A; Kalia, Sunil; Hystad, Perry; Villeneuve, Paul J; Nicol, Anne-Marie; Kreiger, Nancy; Koehoorn, Mieke W

    2016-11-01

    Preventable risk factors for prostate cancer are poorly understood; sun exposure is a possible protective factor. The goal of this study was to investigate prostate cancer risk in outdoor workers, a population with high sun exposure. Prostate cancer cases and controls from a large study (conducted between 1994 and 1997) were used for this analysis. A job exposure matrix (JEM) was used to assign solar ultraviolet radiation (UVR) at work as moderate (2 to <6 hours outside/day) or high (≥6 hours). Average daily satellite UV-B measures were linked to the latitude/longitude of the residences of each participant. Several other exposure metrics were also examined, including ever/never exposed and standard erythemal dose by years (SED×years). Logistic regression was used to evaluate the association between solar UVR exposure and the odds of prostate cancer. A total of 1638 cases and 1697 controls were included. Men of Indian and Asian descent had reduced odds of prostate cancer (ORs 0.17 (0.08 to 0.35) and 0.25 (0.15 to 0.41), respectively) compared with Caucasian men, as did single men (OR 0.76 (0.58 to 0.98)) compared with married men. Overall, no statistically significant associations were observed between sun exposure and prostate cancer with 1 exception. In the satellite-enhanced JEM that considered exposure in high category jobs only, prostate cancer odds in the highest quartile of cumulative exposure was decreased compared with unexposed men (OR 0.68 (0.51 to 0.92)). This study found limited evidence for an association with prostate cancer, with the exception of 1 statistically significant finding of a decreased risk among workers with the longest term and highest sun exposure. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Sunscreen use and intentional exposure to ultraviolet A and B radiation: a double blind randomized trial using personal dosimeters

    PubMed Central

    Autier, P; Doré, J-F; Reis, A C; Grivegnée, A; Ollivaud, L; Truchetet, F; Chamoun, E; Rotmensz, N; Severi, G; Césarini, J-P

    2000-01-01

    A previous randomized trial found that sunscreen use could extend intentional sun exposure, thereby possibly increasing the risk of cutaneous melanoma. In a similarly designed trial, we examined the effect of the use of sunscreens having different sun protection factor (SPF) on actual exposure to ultraviolet B (UVB) and ultraviolet A (UVA) radiation. In June 1998, 58 European participants 18–24 years old were randomized to receive a SPF 10 or 30 sunscreens and were asked to complete daily records of their sun exposure during their summer holidays of whom 44 utilized a personal UVA and UVB dosimeter in a standard way during their sunbathing sessions. The median daily sunbathing duration was 2.4 hours in the SPF 10 group and 3.0 hours in the SPF 30 group (P = 0.054). The increase in daily sunbathing duration was paralleled by an increase in daily UVB exposure, but not by changes in UVA or UVB accumulated over all sunbathing sessions, or in daily UVA exposure. Of all participants, those who used the SPF 30 sunscreen and had no sunburn spent the highest number of hours in sunbathing activities. Differences between the two SPF groups in total number of sunbathing hours, daily sunbathing duration, and daily UVB exposure were largest among participants without sunburn during holidays. Among those with sunburn, the differences between the two groups tended to reduce. In conclusion, sunscreens used during sunbathing tended to increase the duration of exposures to doses of ultraviolet radiation below the sunburn threshold. © 2000 Cancer Research Campaign PMID:11027441

  14. Recirculating Air Filtration Significantly Reduces Exposure to Airborne Nanoparticles

    PubMed Central

    Pui, David Y.H.; Qi, Chaolong; Stanley, Nick; Oberdörster, Günter; Maynard, Andrew

    2008-01-01

    Background Airborne nanoparticles from vehicle emissions have been associated with adverse effects in people with pulmonary and cardiovascular disease, and toxicologic studies have shown that nanoparticles can be more hazardous than their larger-scale counterparts. Recirculating air filtration in automobiles and houses may provide a low-cost solution to reducing exposures in many cases, thus reducing possible health risks. Objectives We investigated the effectiveness of recirculating air filtration on reducing exposure to incidental and intentionally produced airborne nanoparticles under two scenarios while driving in traffic, and while generating nanomaterials using gas-phase synthesis. Methods We tested the recirculating air filtration in two commercial vehicles when driving in traffic, as well as in a nonventilation room with a nanoparticle generator, simulating a nanomaterial production facility. We also measured the time-resolved aerosol size distribution during the in-car recirculation to investigate how recirculating air filtration affects particles of different sizes. We developed a recirculation model to describe the aerosol concentration change during recirculation. Results The use of inexpensive, low-efficiency filters in recirculation systems is shown to reduce nanoparticle concentrations to below levels found in a typical office within 3 min while driving through heavy traffic, and within 20 min in a simulated nanomaterial production facility. Conclusions Development and application of this technology could lead to significant reductions in airborne nanoparticle exposure, reducing possible risks to health and providing solutions for generating nanomaterials safely. PMID:18629306

  15. [Occupational risk related to optical radiation exposure in construction workers].

    PubMed

    Gobba, F; Modenese, A

    2012-01-01

    Optical Radiation is a relevant occupational risk in construction workers, mainly as a consequence of the exposure to the ultraviolet (UV) component of solar radiation (SR). Available data show that UV occupational limits are frequently exceeded in these workers, resulting in an increased occupational risk of various acute and chronic effects, mainly to skin and to the eye. One of the foremost is the carcinogenic effect: SR is indeed included in Group 1 IARC (carcinogenic to humans). UV exposure is related to an increase of the incidence of basal cell carcinoma, squamous cell carcinoma of the skin and cutaneous malignant melanoma (CMM). The incidence of these tumors, especially CMM, is constantly increasing in Caucasians in the last 50 years. As a conclusion, an adequate evaluation of the occupational risk related to SR, and adequate preventive measures are essential in construction workers. The role of occupational physicians in prevention is fundamental.

  16. Radiation Exposure Decreases the Quantity and Quality of Cardiac Stem Cells in Mice

    PubMed Central

    Luo, Lan; Urata, Yoshishige; Yan, Chen; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Tou, Fang-Fang; Xie, Yucai; Li, Tao-Sheng

    2016-01-01

    Radiation exposure may increase cardiovascular disease risks; however, the precise molecular/cellular mechanisms remain unclear. In the present study, we examined the hypothesis that radiation impairs cardiac stem cells (CSCs), thereby contributing to future cardiovascular disease risks. Adult C57BL/6 mice were exposed to 3 Gy γ-rays, and heart tissues were collected 24 hours later for further experiments. Although c-kit-positive cells were rarely found, radiation exposure significantly induced apoptosis and DNA damage in the cells of the heart. The ex vivo expansion of CSCs from freshly harvested atrial tissues showed a significantly lower production of CSCs in irradiated mice compared with healthy mice. The proliferative activity of CSCs evaluated by Ki-67 expression was not significantly different between the groups. However, compared to the healthy control, CSCs expanded from irradiated mice showed significantly lower telomerase activity, more 53BP1 foci in the nuclei, lower expression of c-kit and higher expression of CD90. Furthermore, CSCs expanded from irradiated mice had significantly poorer potency in the production of insulin-like growth factor-1. Our data suggest that radiation exposure significantly decreases the quantity and quality of CSCs, which may serve as sensitive bio-parameters for predicting future cardiovascular disease risks. PMID:27195709

  17. [Evaluation of radiation exposure of personnel in an orthopaedic and trauma operation theatre using the new real-time dosimetry system "dose aware"].

    PubMed

    Müller, M C; Strauss, A; Pflugmacher, R; Nähle, C P; Pennekamp, P H; Burger, C; Wirtz, D C

    2014-08-01

    There is a positive correlation between operation time and staff exposure to radiation during intraoperative use of C-arm fluoroscopy. Due to harmful effects of exposure to long-term low-dose radiation for both the patient and the operating team it should be kept to a minimum. AIM of this study was to evaluate a novel dosimeter system called Dose Aware® (DA) enabling radiation exposure feedback of the personal in an orthopaedic and trauma operation theatre in real-time. Within a prospective study over a period of four month, DA was applied by the operation team during 104 orthopaedic and trauma operations in which the C-arm fluoroscope was used in 2D-mode. During ten operation techniques, radiation exposure of the surgeon, the first assistant, the theatre nurse and the anaesthesiologist was evaluated. Seventy-three operations were analysed. The surgeon achieved the highest radiation exposure during dorsolumbar spinal osteosynthesis, kyphoplasty and screw fixation of sacral fractures. The first assistant received a higher radiation exposure compared to the surgeon during plate osteosynthesis of distal radius fractures (157 %), intramedullary nailing of pertrochanteric fractures (143 %) and dorsolumbar spinal osteosynthesis (240 %). During external fixation of ankle fractures (68 %) and screw fixation of sacral fractures (66 %) radiation exposure of the theatre nurse exceeded 50 % of the surgeon's radiation exposure. During plate osteosynthesis of distal radius fractures (157 %) and intramedullary splinting of clavicular fractures (115 %), the anaesthesiologist received a higher radiation exposure than the surgeon. The novel dosimeter system DA provides real-time radiation exposure feedback of the personnel in an orthopaedic and trauma operation theatre for the first time. Data of this study demonstrate that radiation exposure of the personnel depends on the operation type. The first assistant, the theatre nurse and the anaesthesiologist might be

  18. Estimated Internal and External Radiation Exposure of Caregivers of Patients With Pediatric Neuroblastoma Undergoing 131I Metaiodobenzylguanidine Therapy: A Prospective Pilot Study.

    PubMed

    Han, Sangwon; Yoo, Seon Hee; Koh, Kyung-Nam; Lee, Jong Jin

    2017-04-01

    Current recommendations suggest that family members should participate in the care of children receiving in-hospital I metaiodobenzylguanidine (MIBG) therapy for neuroblastoma. The present study aimed to measure the external radiation exposure and estimate the internal radiation exposure of caregivers during the hospital stay for I MIBG therapy. Caregivers received radiation safety instructions and a potassium iodide solution for thyroid blockade before patient admission. External radiation exposure was determined using a personal pocket dosimeter. Serial 24-hour urine samples were collected from caregivers during the hospital stay. Estimated internal radiation exposure was calculated based on the urine activity. Twelve cases (mean age, 6.2 ± 3.5 years; range, 2-13 years) were enrolled. The mean administered activity was 233.3 ± 74.9 (range, 150.0-350.0) mCi. The mean external radiation dose was 5.8 ± 7.2 (range, 0.8-19.9) mSv. Caregivers of children older than 4 years had significantly less external radiation exposure than those of children younger than 4 years (1.9 ± 1.0 vs 16.4 ± 5.0 mSv; P = 0.012). The mean estimated internal radiation dose was 11.3 ± 10.2 (range, 1.0-29.8) μSv. Caregivers receive both external and internal radiation exposure while providing in-hospital care to children receiving I MIBG therapy for neuroblastoma. However, the internal radiation exposure was negligible compared with the external radiation exposure.

  19. Neuropsychological Testing in Interventional Cardiology Staff after Long-Term Exposure to Ionizing Radiation.

    PubMed

    Marazziti, Donatella; Tomaiuolo, Francesco; Dell'Osso, Liliana; Demi, Virginia; Campana, Serena; Piccaluga, Emanuela; Guagliumi, Giulio; Conversano, Ciro; Baroni, Stefano; Andreassi, Maria Grazia; Picano, Eugenio

    2015-10-01

    This study aimed at comparing neuropsychological test scores in 83 cardiologists and nurses (exposed group, EG) working in the cardiac catheterization laboratory, and 83 control participants (non exposed group, nEG), to explore possible cognitive impairments. The neuropsychological assessment was carried out by means of a battery called "Esame Neuropsicologico Breve." EG participants showed significantly lower scores on the delayed recall, visual short-term memory, and semantic lexical access ability than the nEG ones. No dose response could be detected. EG participants showed lower memory and verbal fluency performances, as compared with nEG. These reduced skills suggest alterations of some left hemisphere structures that are more exposed to IR in interventional cardiology staff. On the basis of these findings, therefore, head protection would be a mandatory good practice to reduce effects of head exposure to ionizing radiation among invasive cardiology personnel (and among other exposed professionals).

  20. Modelling of aircrew radiation exposure from galactic cosmic rays and solar particle events.

    PubMed

    Takada, M; Lewis, B J; Boudreau, M; Al Anid, H; Bennett, L G I

    2007-01-01

    Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.

  1. Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.

    PubMed

    Abuzeid, Wael; Abunassar, Joseph; Leis, Jerome A; Tang, Vicky; Wong, Brian; Ko, Dennis T; Wijeysundera, Harindra C

    Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period. We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time. Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose. There was a significant reduction (91%, p<0.05) in the frequency of radiation exposure above 1.5Gy after utilizing a novel software (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly. While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  2. Parental knowledge of radiation exposure in medical imaging used in the pediatric emergency department.

    PubMed

    Hartwig, Hans-David R; Clingenpeel, Joel; Perkins, Amy M; Rose, Whitney; Abdullah-Anyiwo, Joel

    2013-06-01

    We sought to quantify the knowledge base among parents and legal guardians presenting to our pediatric emergency department regarding radiation exposure during medical imaging and potential risks to children resulting from ionizing radiation. We sought to examine if a child's previous exposure to medical imaging changed caregiver knowledge base and discern caregivers' preference for future education on this topic. A prospective convenience sample survey was performed of caregivers who presented with their child to our tertiary pediatric emergency department. Parents or legal guardians (18-89 years) who accompanied a child (0-17 years) were eligible for inclusion and approached for enrollment. A structured questionnaire was administered by trained interviewers, and a chart review was conducted to ascertain if their child had a history of previous imaging. Sixty percent of caregivers interviewed (n = 205 of 340) did not associate any long-term negative effects with medical imaging. Among participants who did express a perceived risk from medical imaging radiation exposure, only 50% could indicate a known negative effect from exposure. We found no significant association between a child having had documented imaging studies and awareness of long-term negative effects (P = 0.22). Participants preferred to learn more about this topic from an Internet-based resource (50%), informational pamphlet (38%), or via treating physician (33%). Parents and legal guardians are largely unaware that exposure to radiation during medical imaging carries an inherent risk for their child. Health care providers wishing to educate caregivers should utilize reliable Internet sources, educational pamphlets, and direct communication.

  3. A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures

    DTIC Science & Technology

    2016-08-01

    Acronyms and Symbols ARA Applied Research Associates, Inc. ARS Acute radiation syndrome d Days DE Differential Evolution DTRA Defense Threat...04-08-2016 Technical Report A Mathematical Model of the Human Small Intestine Following Acute Radiation and Burn Exposures HDTRA1...epithelial cells to acute radiation alone. The model has been modified for improved radiation response, and an addition to the model allows for thermal injury

  4. Reducing chemical exposures at home: opportunities for action

    PubMed Central

    Zota, Ami R; Singla, Veena; Adamkiewicz, Gary; Mitro, Susanna D; Dodson, Robin E

    2017-01-01

    Indoor environments can influence human environmental chemical exposures and, ultimately, public health. Furniture, electronics, personal care and cleaning products, floor coverings and other consumer products contain chemicals that can end up in the indoor air and settled dust. Consumer product chemicals such as phthalates, phenols, flame retardants and per- and polyfluorinated alkyl substances are widely detected in the US general population, including vulnerable populations, and are associated with adverse health effects such as reproductive and endocrine toxicity. We discuss the implications of our recent meta-analysis describing the patterns of chemical exposures and the ubiquity of multiple chemicals in indoor environments. To reduce the likelihood of exposures to these toxic chemicals, we then discuss approaches for exposure mitigation: targeting individual behaviour change, household maintenance and purchasing decisions, consumer advocacy and corporate responsibility in consumer markets, and regulatory action via state/federal policies. There is a need to further develop evidence-based strategies for chemical exposure reduction in each of these areas, given the multi-factorial nature of the problem. Further identifying those at greatest risk; understanding the individual, household and community factors that influence indoor chemical exposures; and developing options for mitigation may substantially improve individuals’ exposures and health. PMID:28756396

  5. Contamination and radiation exposure in central Europe after the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, A.; Mueck, K.; Loosli, H.H.

    1996-06-01

    Ten years ago, on 26 April 1986, as a consequence of an accident in Unit 4 of the Chernobyl-NPP, a large quantity of radioactive material was released into the atmosphere for some days. This material was spread over wide areas of Europe. Due to variable weather conditions the activity concentrations in air varied considerably in different regions. Also as a consequence of large variations in precipitation intensity-particularly in the regions of Southeastern Germany, Austria and Southern Switzerland-up to 100 kBq m{sup -2} {sup 137}Cs were deposited on the soil. Due to fallout, washout, and/or rainout, a range of foodstuffs weremore » contaminated, and foodstuffs directly exposed to the fallout [vegetables and green fodder (grass)] showed the highest contamination levels. Consequently, milk also showed a significantly increased activity concentration, in particular of {sup 131}I. In the following years contamination in all kinds of foodstuffs decreased, but elevated contamination levels in special pathways like venison and mushrooms are still observed to date. This contamination resulted in additional exposure, mainly due to external radiation from ground and from consumption of contaminated food. The radiation exposure in the most contaminated areas was calculated on the basis of model assumptions and was found to be about 1 mSv during the first year after the accident. Using this model, the ingestion pathway was overestimated by at least a factor of two. This additional exposure decreased and is now less than 1 % on average; in the most contaminated areas, this is a few percent of the average natural radiation exposure.« less

  6. Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress.

    PubMed

    Regier, Nicole; Beauvais-Flück, Rebecca; Slaveykova, Vera I; Cosio, Claudia

    2016-11-01

    The hypothesis that increased UV radiation result in co-tolerance to Hg toxicity in aquatic plants was studied at the physiological and transcriptomic level in Elodea nuttallii. At the transcriptomic level, combined exposure to UV+Hg enhanced the stress response in comparison with single treatments, affecting the expression level of transcripts involved in energy metabolism, lipid metabolism, nutrition, and redox homeostasis. Single and combined UV and Hg treatments dysregulated different genes but with similar functions, suggesting a fine regulation of the plant to stresses triggered by Hg, UV and their combination but lack of co-tolerance. At the physiological level, UV+Hg treatment reduced chlorophyll content and depleted antioxidative compounds such as anthocyanin and GSH/GSSG in E. nuttallii. Nonetheless, combined exposure to UV+Hg resulted in about 30% reduction of Hg accumulation into shoots vs exposure to Hg alone, which was congruent with the level of expression of several transporter genes, as well as the UV effect on Hg bioavailability in water. The findings of the present work underlined the importance of performing experimentation under environmentally realistic conditions and to consider the interplay between contaminants and environmental variables such as light that might have confounding effects to better understand and anticipate the effects of multiple stressors in aquatic environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Occupational exposure to solar radiation in Australia: who is exposed and what protection do they use?

    PubMed

    Carey, Renee N; Glass, Deborah C; Peters, Susan; Reid, Alison; Benke, Geza; Driscoll, Timothy R; Fritschi, Lin

    2014-02-01

    Solar ultraviolet radiation (UVR) exposure is widely recognised as a leading cause of skin cancer, with outdoor workers being particularly at risk. Little is known on a national level about how many workers are exposed to solar radiation, the circumstances in which they are exposed, or their use of protective measures. The Australian Work Exposures Study (AWES) was a cross-sectional telephone survey of 5,023 Australian workers aged 18 to 65. A subset of 1,113 respondents who indicated they worked outdoors was asked about their exposure to solar radiation in terms of the amount of time they spent working outdoors, their working location and their use of sun protective measures. A total of 1,100 respondents (22% overall) were assessed as being exposed to solar radiation at work. Exposure was more likely among males and those residing in lower socioeconomic and regional areas. Sun protection was used by 95% of the respondents, although the level of protection varied among workers, with only 8.7% classified as fully protected. This study provides valuable information regarding solar exposure that has not previously been available. The results of this study will inform strategies for risk reduction. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  8. Lead exposure among automobile radiator repair workers and their children in New York City.

    PubMed

    Nunez, C M; Klitzman, S; Goodman, A

    1993-05-01

    Despite a comprehensive Occupational Safety and Health Administration lead standard, exposure to lead continues in many industries. This paper describes a blood lead screening and education program for automobile radiator repair workers and their families in New York City. Results showed that 67% of automobile radiator repair workers (n = 62) in 89% of the shops tested (n = 24) had blood lead levels in excess of 25 micrograms/dl. The vast majority of workers had never been tested previously, and none had received health and safety training regarding occupational lead exposure. Although none of the workers' children's blood lead levels were in excess of then-current guidelines, several had levels which may be associated with subclinical toxicity and in excess of the revised Centers for Disease Control guidelines of 10 micrograms/dl. This project demonstrates that lead exposure in the automotive radiator repair industry continues to be widespread and that local health departments can assist in hazard identification and remediation.

  9. Performance deficit produced by partial body exposures to space radiation

    USDA-ARS?s Scientific Manuscript database

    On exploratory class missions to other planets, astronauts will be exposed to types of radiation (particles of high energy and charge [HZE particles]) that are not experienced in low earth orbit, where the space shuttle operates. Previous research has shown that exposure to HZE particles can affect...

  10. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    ScienceCinema

    Wiley, Al; Sugarman, Steve

    2018-02-07

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  11. Advising Japan on Medical Aspects of Radiation Exposure | ORAU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, Al; Sugarman, Steve

    2015-03-08

    Because of Japan's March 11, 2011, earthquake and tsunami, the Fukushima Daiichi Nuclear Power Plant suffered catastrophic damage—ultimately leaking dangerously high amounts of radiation that led to the evacuation of more than 80,000 Japanese citizens within a 12-mile radius of the crippled plant. Responding agencies were concerned about the medical impacts of radiation exposure, the effect upon food and water safety and what actions individuals could take to protect themselves. To provide advice and consultation, the physicians and health physicists at REAC/TS were on-call 24/7 and responded to more than 700 inquiries in the days and weeks that followed.

  12. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation

    PubMed Central

    Li, Shuang; Zhang, Qing-Zhao; Zhang, De-Qin; Feng, Jiang-Bin; Luo, Qun; Lu, Xue; Wang, Xin-Ru; Li, Kun-Peng; Chen, De-Qing; Mu, Xiao-Feng; Gao, Ling; Liu, Qing-Jie

    2017-01-01

    The identification of rapid, sensitive and high-throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH-1 human lymphoblastoid cells, following exposure to γ-rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF-15 gene expression in AHH-1 cells and human peripheral blood lymphocytes (HPBLs). GDF-15 mRNA and protein expression levels following exposure to γ-rays and neutron radiation were assessed by reverse transcription-quantitative polymerase chain reaction and western blot analysis in AHH-1 cells. In addition, alterations in GDF-15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF-15 mRNA and protein expression levels in AHH-1 cells were significantly upregulated following exposure to γ-ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose-response relationship was identified in AHH-1 cells at γ-ray doses between 0.4 and 1.6 Gy. GDF-15 mRNA levels in HPBLs were significantly upregulated following exposure to γ-ray doses between 1 and 8 Gy, within 4–48 h following irradiation. These results suggested that significant time- and dose-dependent alterations in GDF-15 mRNA and protein expression occur in AHH-1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF-15 gene expression may have potential as a biomarker to evaluate radiation exposure. PMID:28440431

  13. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  15. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2015-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  16. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS)

    PubMed Central

    Coy, Stephen L.; Krylov, Evgeny V.; Schneider, Bradley B.; Covey, Thomas R.; Brenner, David J.; Tyburski, John B.; Patterson, Andrew D.; Krausz, Kris W.; Fornace, Albert J.; Nazarov, Erkinjon G.

    2010-01-01

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry – mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also suppress chemical noise created in typical atmospheric-pressure ionization sources (ESI, MALDI, and others). Differential-mobility-based ion selection is based on the field dependence of ion mobility, which, in turn, depends on ion characteristics that include conformation, charge distribution, molecular polarizability, and other properties, and on the transport gas composition which can be modified to enhance resolution. DMS-MS is able to resolve small-molecule biomarkers from nearly-isobaric interferences, and suppresses chemical noise generated in the ion source and in the mass spectrometer, improving selectivity and quantitative accuracy. Our planar DMS design is rapid, operating in a few milliseconds, and analyzes ions before fragmentation. Depending on MS inlet conditions, DMS-selected ions can be dissociated in the MS inlet expansion, before mass analysis, providing a capability similar to MS/MS with simpler instrumentation. This report presents selected DMS-MS experimental results, including resolution of complex test mixtures of isobaric compounds, separation of charge states, separation of isobaric biomarkers (citrate and isocitrate), and separation of nearly-isobaric biomarker anions in direct analysis of a bio-fluid sample from the radiation-treated group of a mouse-model study. These uses of DMS combined with moderate resolution MS instrumentation indicate the feasibility of field-deployable instrumentation for biomarker evaluation. PMID:20305793

  17. Long-term exposure to microwave radiation provokes cancer growth: evidences from radars and mobile communication systems.

    PubMed

    Yakymenko, I; Sidorik, E; Kyrylenko, S; Chekhun, V

    2011-06-01

    In this review we discuss alarming epidemiological and experimental data on possible carcinogenic effects of long term exposure to low intensity microwave (MW) radiation. Recently, a number of reports revealed that under certain conditions the irradiation by low intensity MW can substantially induce cancer progression in humans and in animal models. The carcinogenic effect of MW irradiation is typically manifested after long term (up to 10 years and more) exposure. Nevertheless, even a year of operation of a powerful base transmitting station for mobile communication reportedly resulted in a dramatic increase of cancer incidence among population living nearby. In addition, model studies in rodents unveiled a significant increase in carcinogenesis after 17-24 months of MW exposure both in tumor-prone and intact animals. To that, such metabolic changes, as overproduction of reactive oxygen species, 8-hydroxi-2-deoxyguanosine formation, or ornithine decarboxylase activation under exposure to low intensity MW confirm a stress impact of this factor on living cells. We also address the issue of standards for assessment of biological effects of irradiation. It is now becoming increasingly evident that assessment of biological effects of non-ionizing radiation based on physical (thermal) approach used in recommendations of current regulatory bodies, including the International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines, requires urgent reevaluation. We conclude that recent data strongly point to the need for re-elaboration of the current safety limits for non-ionizing radiation using recently obtained knowledge. We also emphasize that the everyday exposure of both occupational and general public to MW radiation should be regulated based on a precautionary principles which imply maximum restriction of excessive exposure.

  18. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    NASA Technical Reports Server (NTRS)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  19. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities.

    PubMed

    Diegeler, Sebastian; Hellweg, Christine E

    2017-01-01

    Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.

  20. [Assessment of the surgeon radiation exposure during a minimally invasive TLIF: Comparison between fluoroscopy and O-arm system].

    PubMed

    Grelat, M; Zairi, F; Quidet, M; Marinho, P; Allaoui, M; Assaker, R

    2015-08-01

    Transforaminal lumbar interbody fusion with a minimally invasive approach (MIS TLIF) has become a very popular technique in the treatment of degenerative diseases of the lumbar spine, as it allows a decrease in muscle iatrogenic. However, iterative radiological controls inherent to this technique are responsible for a significant increase in exposure to ionizing radiation for the surgeon. New techniques for radiological guidance (O-arm navigation-assisted) would overcome this drawback, but this remains unproven. To analyze the exposure of the surgeon to intraoperative X-ray during a MIS TLIF under fluoroscopy and under O-arm navigation-assisted. This prospective study was conducted at the University Hospital of Lille from February to May 2013. Twelve patients underwent a MIS TLIF for the treatment of low-grade spondylolisthesis; six under standard fluoroscopy (group 1) and six under O-arm system (group 2). Passive dosimeters (rings and glasses) and active dosimeters for thorax were used to measure the radiation exposure of the surgeon. For group 1, the average time of fluoroscopy was 3.718 minutes (3.13-4.56) while no radioscopy was perform on group 2. For the first group, the average exposure dose was 12 μSv (5-20 μSv) on the thorax, 1168 μSv (510-2790 μSv) on the main hand and 179 μSv (103-486 μSv) on the lens. The exposure dose was measured zero on the second group. The maximum recommended doses can be reached, mainly for the lens. In addition to the radioprotection measures, O-arm navigation systems are safe alternatives to significantly reduce surgeon exposure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Predictors of Excess Patient Radiation Exposure During Chronic Total Occlusion Coronary Intervention: Insights from a Contemporary Multicenter Registry

    PubMed Central

    Christakopoulos, Georgios E.; Christopoulos, Georgios; Karmpaliotis, Dimitri; Alaswad, Khaldoon; Yeh, Robert W.; Jaffer, Farouc A.; Wyman, Michael R.; Lombardi, William L.; Tarar, Muhammad Nauman J.; Grantham, J. Aaron; Kandzari, David; Lembo, Nicholas; Moses, Jeffrey W.; Kirtane, Ajay; Parikh, Manish; Green, Philip; Finn, Matthew; Garcia, Santiago; Doing, Anthony; Hatem, Raja; Thompson, Craig A.; Banerjee, Subhash; Brilakis, Emmanouil S.

    2016-01-01

    Background High patient radiation dose during chronic total occlusion (CTO) percutaneous coronary intervention (PCI) may lead to procedural failure and radiation skin injury. Methods We examined the association between several clinical and angiographic variables on patient air kerma (AK) radiation dose among 748 consecutive CTO PCIs performed at 9 experienced US centers between May 2012 and May 2015. Results Mean age was 65±10 years, 87% of patients were men, and 35% had prior coronary artery bypass graft surgery (CABG). Technical and procedural success was 92% and 90%, respectively. The median patient AK dose was 3.40 (2.00, 5.40) Gray and 34% of the patients received >4.8 Gray (high radiation exposure). On univariable analysis male gender (p=0.016), high body mass index (p<0.001), history of hyperlipidemia (p=0.023), prior CABG (p<0.001), moderate or severe calcification (p<0.001), tortuosity (p<0.001), proximal cap ambiguity (p=0.001), distal cap at a bifurcation (p=0.006), longer CTO occlusion length (p<0.001), blunt/no blunt stump (p<0.001), and center (<0.001) were associated with higher patient AK dose. On multivariable analysis high body mass index (p<0.001), prior CABG (p=0.005), moderate or severe calcification (p=0.005), longer CTO occlusion length (p<0.001), and center (p<0.001) were independently associated with higher patient AK dose. Conclusions Approximately 1 in 3 patients undergoing CTO PCI receives high AK radiation dose (>4.8 Gray). Several baseline clinical and angiographic characteristics can help predict the likelihood of high radiation dose and assist with intensifying efforts to reduce radiation exposure for the patient and the operator. PMID:28169091

  2. Knowledge of outdoor workers on the effects of natural UV radiation and methods of protection against exposure.

    PubMed

    Hault, K; Rönsch, H; Beissert, S; Knuschke, P; Bauer, A

    2016-04-01

    The most important but influenceable risk factor in the development of skin cancer is the unprotected exposure to solar ultraviolet (UV) radiation. In order to assure adequate and effective protection against UV exposure, a level of knowledge about solar radiation and its effects is required. The objective of this study was to assess the knowledge of workers in outdoor professions on the effects of natural UV radiation and methods of protection against exposure. Forty outdoor workers were given a standardized questionnaire designed to ascertain their level of knowledge. The majority of participants knew exposure to solar radiation can be detrimental depending on exposure time. Eighty-three percentage recognized that people working regularly in an outdoor environment may be at risk due to high exposure. Long-sleeved clothing plus headgear and sunscreen containing sun-protecting substances were deemed adequate methods of protection by 83% and 85% respectively. Seventy percentage of the outdoor workers were familiar with the definition of the sun protection factor (SPF), yet only 25% correctly identified the amount of sunscreen needed to achieve the SPF as indicated on the product. A mere 8% of participants knew that symptoms of a sunburn first became apparent 3 h after sun exposure and only 18% were able to accurately gauge the amount of time they could spend in the sun before developing one. Although 30% had heard of the ultraviolet index (UVI), only 13% understood that protecting your skin using additional measures is recommended as of UVI 3. Overall, 30% of the outdoor workers thought themselves sufficiently protected against the harmful effects of the sun. While the participants of this study had a basic fundamental understanding of the effects of solar radiation and methods of protection against exposure, there remains an urgent need for further clarification across all demographic groups. © 2016 European Academy of Dermatology and Venereology.

  3. Cataract frequency and subtypes involved in workers assessed for their solar radiation exposure: a systematic review.

    PubMed

    Modenese, Alberto; Gobba, Fabriziomaria

    2018-04-16

    Cataract is currently the primary cause of blindness worldwide, and one of its main risk factors is solar ultraviolet radiation exposure. According to the localization of lens opacities, three main subtypes of cataract are recognized: nuclear, cortical and posterior subcapsular cataract. One of the main determinants of individual long-term solar radiation exposure is outdoor work. We systematically reviewed scientific literature from the last 20 years to update the recent development of research on the risk of cataract in outdoor workers and on the specific subtypes involved, also investigating the methods applied to evaluate the occupational risk. A total of 15 studies were included in the review, of which 12 showed a positive association. The studies confirm the relationship of long-term occupational solar radiation exposure with cortical cataract and give new support for nuclear cataract, although no substantial new data were available to support a relation with the posterior subcapsular subtype. In most of the studies, the exposure assessment was not adequate to support a representative evaluation of the ocular risk; however, outdoor work is clearly a relevant risk factor for cataract. Further research providing a better evaluation of the relation between solar radiation exposure levels and lens damage in workers is needed and aimed to establish adequate occupational exposure limits and better preventive measures, studying also their effectiveness. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    PubMed

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  5. Radiation exposure of contrast-enhanced spectral mammography compared with full-field digital mammography.

    PubMed

    Jeukens, Cécile R L P N; Lalji, Ulrich C; Meijer, Eduard; Bakija, Betina; Theunissen, Robin; Wildberger, Joachim E; Lobbes, Marc B I

    2014-10-01

    Contrast-enhanced spectral mammography (CESM) shows promising initial results but comes at the cost of increased dose as compared with full-field digital mammography (FFDM). We aimed to quantitatively assess the dose increase of CESM in comparison with FFDM. Radiation exposure-related data (such as kilovoltage, compressed breast thickness, glandularity, entrance skin air kerma (ESAK), and average glandular dose (AGD) were retrieved for 47 CESM and 715 FFDM patients. All examinations were performed on 1 mammography unit. Radiation dose values reported by the unit were validated by phantom measurements. Descriptive statistics of the patient data were generated using a statistical software package. Dose values reported by the mammography unit were in good qualitative agreement with those of phantom measurements. Mean ESAK was 10.5 mGy for a CESM exposure and 7.46 mGy for an FFDM exposure. Mean AGD for a CESM exposure was 2.80 mGy and 1.55 mGy for an FFDM exposure. Compared with our institutional FFDM, the AGD of a single CESM exposure is increased by 1.25 mGy (+81%), whereas ESAK is increased by 3.07 mGy (+41%). Dose values of both techniques meet the recommendations for maximum dose in mammography.

  6. Comparative MicroRNA Expression Patterns in Fibroblasts after Low and High Doses of Low-LET Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Maes, Olivier C.; Xu, Suying; Hada, Megumi; Wu, Honglu; Wang, Eugenia

    2007-01-01

    Exposure to ionizing radiation causes DNA damage to cells, and provokes a plethora of cellular responses controlled by unique gene-directed signaling pathways. MicroRNAs (miRNAs) are small (22-nucleotide), non-coding RNAs which functionally silence gene expression by either degrading the messages or inhibiting translation. Here we investigate radiation-dependent changes in these negative regulators by comparing the expression patterns of all 462 known human miRNAs in fibroblasts, after exposure to low (0.1 Gy) or high (2 Gy) doses of X-rays at 30 min, 2, 6 and 24 hrs post-treatment. The expression patterns of microRNAs after low and high doses of radiation show a similar qualitative down-regulation trend at early (0.5 hr) and late (24 hr) time points, with a quantitatively steeper slope following the 2 Gy exposures. Interestingly, an interruption of this downward trend is observed after the 2 Gy exposure, i.e. a significant up-regulation of microRNAs at 2 hrs, then reverting to the downward trend by 6 hrs; this interruption at the intermediate time point was not observed with the 0.1 Gy exposure. At the early time point (0.5 hr), candidate gene targets of selected down-regulated microRNAs, common to both 0.1 and 2 Gy exposures, were those functioning in chromatin remodeling. Candidate target genes of unique up-regulated microRNAs seen at a 2 hr intermediate time point, after the 2 Gy exposure only, are those involved in cell death signaling. Finally, putative target genes of down-regulated microRNAs seen at the late (24 hr) time point after either doses of radiation are those involved in the up-regulation of DNA repair, cell signaling and homeostasis. Thus we hypothesize that after radiation exposure, microRNAs acting as hub negative regulators for unique signaling pathways needed to be down-regulated so as to de-repress their target genes for the proper cellular responses, including DNA repair and cell maintenance. The unique microRNAs up-regulated at 2 hr after 2

  7. Internal Radiation Exposure Dose in Iwaki City, Fukushima Prefecture after the Accident at Fukushima Dai-ichi Nuclear Power Plant

    PubMed Central

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1–86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1–86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01–0.06 mSv in the first screening and 0.01–0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks. PMID:25478794

  8. Internal radiation exposure dose in Iwaki city, Fukushima prefecture after the accident at Fukushima Dai-ichi Nuclear Power Plant.

    PubMed

    Orita, Makiko; Hayashida, Naomi; Nukui, Hiroshi; Fukuda, Naoko; Kudo, Takashi; Matsuda, Naoki; Fukushima, Yoshiko; Takamura, Noboru

    2014-01-01

    As a result of the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) on 11 March 2011, a huge amount of radionuclides, including radiocesium, was released and spread over a wide area of eastern Japan. Although three years have passed since the accident, residents around the FNPP are anxious about internal radiation exposure due to radiocesium. In this study, we screened internal radiation exposure doses in Iwaki city of Fukushima prefecture, using a whole-body counter. The first screening was conducted from October 2012 to February 2013, and the second screening was conducted from May to November 2013. Study participants were employees of ALPINE and their families who underwent examination. A total of 2,839 participants (1,366 men and 1,473 women, 1-86 years old) underwent the first screening, and 2,092 (1,022 men and 1,070 women, 1-86 years old) underwent the second screening. The results showed that 99% of subjects registered below 300 Bq per body in the first screening, and all subjects registered below 300 Bq per body in the second screening. The committed effective dose ranged from 0.01-0.06 mSv in the first screening and 0.01-0.02 mSv in the second screening. Long-term follow-up studies are needed to avoid unnecessary chronic internal exposure and to reduce anxiety among the residents by communicating radiation health risks.

  9. Pure versus guided mirror exposure to reduce body dissatisfaction: a preliminary study with university women.

    PubMed

    Moreno-Domínguez, Silvia; Rodríguez-Ruiz, Sonia; Fernández-Santaella, M Carmen; Jansen, Anita; Tuschen-Caffier, Brunna

    2012-03-01

    While effectiveness of mirror exposure to reduce body dissatisfaction has been demonstrated, the exposure was almost always combined with other interventions. The aim of the study was to evaluate the effectiveness of a pure mirror exposure intervention compared with a guided mirror exposure (participants are guided to describe their body shape in a non-evaluative manner) and an imagery exposure intervention (participants are guided to describe their body through mental representation). Thirty-one women with high body dissatisfaction received five sessions of treatment under one of the three conditions. All interventions reduced body dissatisfaction, but only the mirror exposures successfully reduced the frequency of negative thoughts and feelings of ugliness. Pure mirror exposure was more effective than guided exposure for reducing body discomfort within and between sessions. Pure mirror exposure, based on the traditional extinction paradigm, led to strong emotional activation followed by a fast decrease in emotional reactivity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Visible light exposure reduces the drip loss of fresh-cut watermelon.

    PubMed

    Wang, Yubin; Li, Wu; Cai, Wenqian; Ma, Yue; Xu, Yong; Zhao, Xiaoyan; Zhang, Chao

    2018-05-01

    Drip loss of fresh-cut watermelon has become a concern for both producers and consumers. The effect of visible light exposure on the drip loss of fresh-cut watermelon was evaluated. Visible light treatments of 3000 and 10 Lux were applied to fresh-cut watermelon at 4 °C during the shelf life for 5 days, with light exposure of 150 Lux as the control. The drip loss of the fresh-cut watermelon at 3000 Lux was 74.8% of that at 150 Lux on the fifth day, and the moisture evaporation at 3000 Lux was 1.89 times that at 150 Lux. Moreover, the light exposure of 3000 Lux reduced the activity of polygalacturonase, which is a key hydrolase related to cell wall degradation. The cell wall degradation ratio of the fresh-cut watermelon at 3000 Lux was 81.7% of that at 150 Lux on the fifth day. Overall, light exposure of 3000 Lux reduced drip loss by accelerating moisture evaporation in fresh-cut watermelon, as well as by reducing the activity of polygalacturonase and the ratio of cell wall degradation. Hence, exposing the fresh-cut watermelon to visible light of 3000 Lux during the shelf life was a feasible way of reducing drip loss.

  11. A Review of Radiation Protection Solutions for the Staff in the Cardiac Catheterisation Laboratory.

    PubMed

    Badawy, Mohamed Khaldoun; Deb, Pradip; Chan, Robert; Farouque, Omar

    2016-10-01

    Adverse health effects of radiation exposure to staff in cardiac catheterisation laboratories have been well documented in the literature. Examples include increased risk of cataracts as well as possible malignancies. These risks can be partly mitigated by reducing scatter radiation exposure to staff during diagnostic and interventional cardiac procedures. There are currently commercially available radiation protection tools, including radioprotective caps, gloves, eyewear, thyroid collars, aprons, mounted shields, table skirts and patient drapes to protect staff from excessive radiation exposure. Furthermore, real-time dose feedback could lead to procedural changes that reduce operator dose. The objective of this review is to examine the efficacy of these tools and provide practical recommendations to reduce occupational radiation exposure with the aim of minimising long-term adverse health outcomes. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  12. A reassessment of Galileo radiation exposures in the Jupiter magnetosphere.

    PubMed

    Atwell, William; Townsend, Lawrence; Miller, Thomas; Campbell, Christina

    2005-01-01

    Earlier particle experiments in the 1970s on Pioneer-10 and -11 and Voyager-1 and -2 provided Jupiter flyby particle data, which were used by Divine and Garrett to develop the first Jupiter trapped radiation environment model. This model was used to establish a baseline radiation effects design limit for the Galileo onboard electronics. Recently, Garrett et al. have developed an updated Galileo Interim Radiation Environment (GIRE) model based on Galileo electron data. In this paper, we have used the GIRE model to reassess the computed radiation exposures and dose effects for Galileo. The 34-orbit 'as flown' Galileo trajectory data and the updated GIRE model were used to compute the electron and proton spectra for each of the 34 orbits. The total ionisation doses of electrons and protons have been computed based on a parametric shielding configuration, and these results are compared with previously published results.

  13. Public safety assessment of electromagnetic radiation exposure from mobile base stations.

    PubMed

    Alhekail, Z O; Hadi, M A; Alkanhal, M A

    2012-09-01

    Exposure of the general public to electromagnetic radiation originating from randomly selected GSM/WCDMA base stations in Riyadh, Kingdom of Saudi Arabia has been assessed in the context of the International Commission on Non-Ionising Radiation Protection (ICNIRP) guidelines. The purpose of the measurement was to record the maximum power density of signals to estimate possible worst case exposure at each measurement location. These power density measurements were carried out at 60 mobile base stations located in different regions of the city. For each of these sites, three sectors were operational, yielding a total of 180 sectors. Two positions were identified per site with the greatest power density values. Exposures from these base stations were generally found to be in the range of 0.313 to 0.00000149% of the ICNIRP general public reference level, and the greatest exposure near any of the base stations was 21.96 mW m(-2) for a wideband measurement in the 75-3000 MHz frequency range. Analysis of the measured data reveals several trends for different mobile bands with respect to maximum exposure in those locations. Additionally, a simplified calculation method for the electromagnetic fields was used to compare calculated and the measured data. It was determined, on the basis of both results of the measurements and calculations carried out for these selected base stations, that members of the public would not be exposed to in excess of a small fraction of the ICNIRP guidelines at any of those sites. These are first such measurements to be made in the Middle East and provide assurance that exposures in this region of the world do not seem to be any greater than elsewhere.

  14. SCALING THE PHYSIOLOGICAL EFFECTS OF EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC RADIATION: CONSEQUENCES OF BODY SIZE

    EPA Science Inventory

    The authors have demonstrated that a comparative analysis of the physiological effects of exposure of laboratory mammals to radiofrequency electromagnetic radiation (RFR) may be useful in predicting exposure thresholds for humans if the effect is assumed to be due only to heating...

  15. Analysis of Policy and Doctrine Supporting the Management of Operational Exposures to Ionizing Radiation

    DTIC Science & Technology

    2016-06-01

    discussion of the various subsyndromes of acute radiation syndrome , such as the hematopoietic syndrome , gastrointestinal syndrome , and neurovascular...Protection (Washington, DC: USAF, September 2011), p. 16. 8 probabilities as a function of acute radiation dose. Paragraph 3.d. discusses Risk... syndrome . It includes the use of dosimetry as well as biodosimetry to estimate radiation exposure and prognosis. It also provides guidance on the

  16. Physician exposure to ionizing radiation during trauma resuscitation: A prospective clinical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, E.L.; Singer, C.M.; Benedict, S.H.

    1990-02-01

    A prospective study of emergency physician whole body and extremity exposure to ionizing radiation during trauma resuscitation over a three-month period was conducted. Radiation film badges and thermoluminescent dosimeter finger rings were permanently attached to leaded aprons worn by emergency medicine residents during all trauma resuscitations. One set of apron and finger ring dosimeters was designated for the resident who managed the airway and stabilized the neck, when necessary, during cervical spine radiography (A-CS resident). A separate set of dosimeters was designated for the resident supervising the resuscitation. During the study period, 150 major trauma patients requiring 481 radiographic studiesmore » were treated. The mean monthly cumulative whole body exposures were 136.7 +/- 85.0 and 103.3 +/- 60.3 mrem for A-CS and supervising residents, respectively. The mean weekly cumulative extremity exposures were 523.3 +/- 611.0 and 46.7 +/- 18.6 mrem for A-CS and supervising residents, respectively. Calculated whole body exposures per patient were 2.7 mrem for the A-CS resident and 2.1 mrem for the supervising resident. Calculated extremity exposures per patient were 41.9 +/- 48.9 and 3.7 +/- 1.5 mrem, respectively. To exceed the annual whole body exposure limit established by the National Council of Radiologic Protection, the A-CS resident, working 200 shifts per year, would have to treat 9.2 trauma patients per shift. To exceed the annual extremity exposure limit, the A-CS resident would have to treat 5.9 trauma patients per shift. Of note, European exposure limits are 10% of current US limits. We conclude that significant exposures may occur to physicians working in trauma centers and that the use of shielding devices is indicated.« less

  17. Endovascular aortic sealing with Nellix reduces intraoperative radiation dose when compared to endovascular aortic repair.

    PubMed

    Ockert, Stefan; Heinrich, Mirjam; Kaufmann, Thomas; Syburra, Thomas; Lopez, Ruben; Seelos, Robert

    2018-04-01

    To analyze radiation exposure during endovascular aortic sealing (EVAS) in comparison with standard endovascular aortic repair (EVAR) in clinical practice. From December 2013 to October 2016 (35 months), 60 patients were analyzed for intraoperative radiation exposure during EVAR: 30 consecutive patients (mean age, 73.10 years; 28 male) received EVAS (Nellix Endologix); within the same time frame, 30 patients were treated with standard EVAR (mean age, 71.87 years; 30 male). An indirect dose analysis was performed for both groups of patients, including effective dose and cumulative air kerma. Furthermore, fluoroscopy time (FT), dose area product, and time of procedure were included in the study. The effective dose was significantly reduced in the EVAS group (3.72 mSv) compared with the group treated with standard EVAR (6.8 mSv; P ≤ .001). The cumulative air kerma was also lowered in EVAS (67.65 mGy vs 139 mGy in EVAR; P ≤ .001). FT for the entire group was 13 minutes and was shorter (P < .001) for EVAS (9 minutes) in comparison with EVAR (19 minutes). The dose area product for the entire cohort was 16.95 Gy.cm 2 and was lower during EVAS (12.4 Gy.cm 2 ) than during EVAR (22.6 Gy.cm 2 ; P < .001). The median operating time for the entire group was 123.5 minutes and was significantly shorter (P < .01) for EVAS (119 minutes vs EVAR at 132 minutes). The FT shows a significant correlation with the patient's weight (P = .022), body mass index (P = .004), and time of procedure (P = .005). EVAS is associated with a relevant decrease in indirect measured radiation dose and time of procedure compared with standard EVAR. A relevant reduction in dose during EVAS is highly likely to result in lower exposure to radiation for physicians and staff. Such a result would be highly advantageous and calls for further analysis. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  18. Spaceflight-Relevant Challenges of Radiation and/or Reduced Weight Bearing Cause Arthritic Responses in Knee Articular Cartilage.

    PubMed

    Willey, J S; Kwok, A T; Moore, J E; Payne, V; Lindburg, C A; Balk, S A; Olson, J; Black, P J; Walb, M C; Yammani, R R; Munley, M T

    2016-10-01

    There is little known about the effect of both reduced weight bearing and exposure to radiation during spaceflight on the mechanically-sensitive cartilage lining the knee joint. In this study, we characterized cartilage damage in rat knees after periods of reduced weight bearing with/without exposure to solar-flare-relevant radiation, then cartilage recovery after return to weight bearing. Male Sprague Dawley rats (n = 120) were either hindlimb unloaded (HLU) via tail suspension or remained weight bearing in cages (GROUND). On day 5, half of the HLU and GROUND rats were 1 Gy total-body X-ray irradiated during HLU, and half were sham irradiated (SHAM), yielding 4 groups: GROUND-SHAM; GROUND-IR; HLU-SHAM; and HLU-IR. Hindlimbs were collected from half of each group of rats on day 13. The remaining rats were then removed from HLU or remained weight bearing, and hindlimbs from these rats were collected on day 62. On day 13, glycosaminoglycan (GAG) content in cartilage lining the tibial plateau and femoral condyles of HLU rats was lower than that of the GROUND animals. Likewise, on day 13, immunoreactivity of the collagen type II-degrading matrix metalloproteinase-13 (MMP-13) and of a resultant metalloproteinase-generated neoepitope VDIPEN was increased in all groups versus GROUND-SHAM. Clustering of chondrocytes indicating cartilage damage was present in all HLU and IR groups versus GROUND-SHAM on day 13. On day 62, after 49 days of reloading, the loss of GAG content was attenuated in the HLU-SHAM and HLU-IR groups, and the increased VDIPEN staining in all treatment groups was attenuated. However, the increased chondrocyte clustering remained in all treatment groups on day 62. MMP-13 activity also remained elevated in the GROUND-IR and HLU-IR groups. Increased T2 relaxation times, measured on day 62 using 7T MRI, were greater in GROUND-IR and HLU-IR knees, indicating persistent cartilage damage in the irradiated groups. Both HLU and total-body irradiation resulted in

  19. Cumulative exposure to medical sources of ionizing radiation in the first year after pediatric heart transplantation.

    PubMed

    McDonnell, Alicia; Downing, Tacy E; Zhu, Xiaowei; Ryan, Rachel; Rossano, Joseph W; Glatz, Andrew C

    2014-11-01

    Pediatric heart transplant recipients undergo a variety of radiologic tests with the attendant risk of exposure to ionizing radiation. We sought to quantify and describe the cumulative exposure to all forms of medical radiation during the first year after pediatric heart transplantation and identify factors associated with higher exposure. Pediatric patients who received a heart transplant between January 2009 and May 2012 with follow-up at our institution were retrospectively reviewed. Patients were included if they survived through 1 year and the first coronary angiography. All medical testing using ionizing radiation performed during follow-up was compiled, and exposures were converted to effective dose (mSv). Included were 31 patients who underwent heart transplantation at a median age of 13.6 years (range, 0.3-18.3 years). The median number of radiologic tests performed was 38 (range, 18-154), including 8 catheterizations (range, 2-12), and 28 X-ray images (range, 11-135). Median cumulative effective dose was 53.5 mSv (range, 10.6-153.5 mSv), of which 91% (range, 34%-98%) derived from catheterizations, 31% (range, 8%-89%) of the exposure occurred during the transplant admission, 59% (range, 11%-88%) during planned follow-up, and 3% (0%-56%) during unplanned follow-up. Older age at transplant was a risk factor for increased exposure (p = 0.006). When adjusted for age, a trend toward increased exposure was shown for congenital heart disease as the indication for transplant (p = 0.08), pre-sensitization (p = 0.12), and positive crossmatch (p = 0.09). Pediatric heart transplant patients are exposed to significant amounts of ionizing radiation during the first post-transplant year, most during scheduled catheterization. As survival improves, considering the long-term risks associated with these levels of exposure is important. Copyright © 2014 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  20. Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation.

    PubMed

    Beblo, Kristina; Douki, Thierry; Schmalz, Gottfried; Rachel, Reinhard; Wirth, Reinhard; Huber, Harald; Reitz, Günther; Rettberg, Petra

    2011-11-01

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylogenetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyperthermophilic microorganisms.

  1. Reducing health risks from indoor exposures in rapidly developing urban China.

    PubMed

    Zhang, Yinping; Mo, Jinhan; Weschler, Charles J

    2013-07-01

    Over the past two decades there has been a large migration of China's population from rural to urban regions. At the same time, residences in cities have changed in character from single-story or low-rise buildings to high-rise structures constructed and furnished with many synthetic materials. As a consequence, indoor exposures (to pollutants with outdoor and indoor sources) have changed significantly. We briefly discuss the inferred impact that urbanization and modernization have had on indoor exposures and public health in China. We argue that growing adverse health costs associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. As documented by China's Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years. Evidence suggests that the population's exposure to air pollutants has contributed to increases in lung cancer, cardiovascular disease, pulmonary disease, and birth defects. Whether a pollutant has an outdoor or an indoor source, most exposure to the pollutant occurs indoors. Going forward, indoor exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building's initial design. Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health.

  2. Residential exposure from extremely low frequency electromagnetic field (ELF EMF) radiation

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Shamesh Raj; Tukimin, Roha

    2018-01-01

    ELF EMF radiation have received considerable attention as a potential threat to the safety and health of people living in the vicinity of high voltage transmission lines, electric distribution substations, power stations and even in close proximity to electronics and electrical household appliances. The paper highlights the study on the ELF EMF safety assessment performed at residences comprising of an owner-occupied house, a completed vacant house and an under construction condominium. The objectives of this study were to determine the ELF EMF radiation exposure level from the high voltage transmission line, electric distribution substation, power station and electrical household appliances in the residences, and to assess the potential exposure received by the occupants at the assessed locations. The results were logged in the electric and magnetic field strength with the units of volt per meter (V/m) and miliGauss (mG) respectively. The instrument setup and measurement protocols during the assessment were adopted from standard measurement method and procedures stipulated under the Institute of Electrical and Electronics Engineers (IEEE) Standard. The results were compared with the standards recommended in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines.

  3. Clinical distinctions of radiation sickness with exposure of different parts of the human body to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevskaya, G.F.; Abramova, G.M.; Volkova, M.A.

    1982-01-12

    The clinical picture of radiation sickness of 139 radiological patients exposed to local irradition of the head, chest, and stomach with efficient doses of 210 rad was examined. It was found that at fractionated local irraditions the clinical symptom-complex of radiation sickness was identifical to that seen as a result of total-body irradiation. During head irradiation the major symptom was headache and during stomach irradiation nausea. The severity level of radiation damage measured with respect to the clinical symptom-complex as a whole with the aid of the bioinformation model was similar during irradiations of the head and stomach, much highermore » during irradiation of the chest. During head and stomach irradiations the severity level of radiation damage was proportional to the efficient dose. During chest irradiation there was no correlation between the severity level and the exposure to doses of 210 rad.« less

  4. Technologist radiation exposure in routine clinical practice with 18F-FDG PET.

    PubMed

    Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier

    2005-09-01

    The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between

  5. Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.

    PubMed

    Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien

    2015-08-01

    This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors.

  6. Single-centre experience of radiation exposure in acute surgical patients: assessment of therapeutic impact and future recommendations.

    PubMed

    Fitzmaurice, Gerard J; Brown, Robin; Cranley, Brian; Conlon, Enda F; Todd, R Alan J; O'Donnell, Mark E

    2010-09-01

    Radiological investigations have become a key adjunct in patient management and consequently radiation exposure to patients is increasing. The study objectives were to examine the use of radiological investigations in the management of acute surgical patients and to assess whether a guideline-based radiation exposure risk/benefit analysis can aid in the choice of radiological investigation used. A prospective observational study was completed over a 12-week period from April to July 2008 for all acute surgical admissions. Data recorded included demographics, clinical presentation, differential diagnosis, investigations, surgical interventions, and final clinical outcome. The use of radiological investigative modalities as an adjunct to clinical assessment was then evaluated against The Royal College of Radiologists (RCR) guidelines. A total of 380 acute surgical admissions (M = 174, F = 185, children = 21) were assessed during the study period. Seven hundred thirty-four radiological investigations were performed with a mean of 1.93 investigations per patient. Based on the RCR guidelines, 680 (92.6%) radiological investigations were warranted and included 142 CT scans (19.3%), 129 chest X-rays (17.6%), and 85 abdominal X-rays (11.6%). Clinically, radiological imaging complemented surgical management in 326 patients (85.8%) and the management plan remained unchanged for the remaining 54 patients (14.2%). This accounted for an average radiation dose of 4.18 millisievert (mSv) per patient or 626 days of background radiation exposure. CT imaging was responsible for the majority of the radiation exposure, with a total of 1310 mSv (82.6%) of the total radiation exposure being attributed to CT imaging in 20.8% of acute admissions. Subgroup analysis demonstrated that 92.8% of the CT scans performed were appropriate. Radiation exposure was generally low for the majority of acute surgical admissions. However, it is recommended that CT imaging requests be evaluated carefully

  7. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere.

    PubMed

    Beck, P; Latocha, M; Dorman, L; Pelliccioni, M; Rollet, S

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircrafts have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at).

  8. Ultraviolet radiation exposure triggers neurokinin-1 receptor upregulation in ocular tissues in vivo.

    PubMed

    Gross, Janine; Wegener, Alfred R; Kronschlaeger, Martin; Holz, Frank G; Schönfeld, Carl-Ludwig; Meyer, Linda M

    2018-04-26

    The purpose of this study was to investigate the neurokinin receptor-1 (NKR-1) protein expression in ocular tissues before and after supra-cataract threshold ultraviolet radiation (UVR-B peak at 312 nm) exposure in vivo in a mouse model. Six-week-old C57Bl/6 mice were unilaterally exposed to a single (2.9 kJ/m 2 ) and an above 3-fold UVR-B cataract threshold dose (9.4 kJ/m 2 ) of UVR. UVR-exposure (λpeak = 312 nm) was performed in mydriasis using a Bio-Spectra exposure system. After latency periods of 3 and 7 days, eyes were fixed in 4% paraformaldehyde, embedded in paraffin, sectioned and stained with fluorescence coupled antibody for NKR-1 and DAPI for cell nuclei staining. Control animals received only anesthesia but no UVR-exposure. Cataract development was documented with a Leica dark-field microscope and quantified as integrated optical density (IOD). NKR-1 is ubiquitously present in ocular tissues. An above 3-fold cataract threshold dose of UV-radiation induced NKR-1 upregulation after days 3 and 7 in the epithelium and endothelium of the cornea, the endothelial cells of the iris vessels, the pigmented epithelium/stroma of the ciliary body, the lens epithelium, pronounced in the nuclear bow region and the inner plexiform layer of the retina. A significant upregulation of NKR-1 could not be provoked with a single cataract threshold dose (2.9 kJ/m 2 UVR-B) ultraviolet irradiation. All exposed eyes developed anterior subcapsular cataracts. Neurokinin-1 receptor is present ubiquitously in ocular tissues including the lens epithelium and the nuclear bow region of the lens. UV-radiation exposure to an above 3-fold UVR-B cataract threshold dose triggers NKR-1 upregulation in the eye in vivo. The involvement of inflammation in ultraviolet radiation induced cataract and the role of neuroinflammatory peptides such as substance P and its receptor, NKR-1, might have been underestimated to date. Copyright © 2018. Published by Elsevier Ltd.

  9. Estimation of Whole Body Radiation Exposure to Nuclear Medicine Personnel During Synthesis of 177Lutetium-labeled Radiopharmaceuticals

    PubMed Central

    Arora, Geetanjali; Mishra, Rajesh; Kumar, Praveen; Yadav, Madhav; Ballal, Sanjana; Bal, Chandrasekhar; Damle, Nishikant Avinash

    2017-01-01

    Purpose of the Study: With rapid development in the field of nuclear medicine therapy, radiation safety of the personnel involved in synthesis of radiopharmaceuticals has become imperative. Few studies have been done on estimating the radiation exposure of personnel involved in the radio labeling of 177Lu-compounds in western countries. However, data from the Indian subcontinent are limited. We have estimated whole body radiation exposure to the radiopharmacist involved in the labeling of: 177Lu-DOTATATE, 177Lu-PSMA-617, and 177Lu-EDTMP. Materials and Methods: Background radiation was measured by keeping a pocket dosimeter around the workbench when no radioactive work was conducted. The same pocket dosimeter was given to the radiopharmacist performing the labeling of 177Lu-compounds. All radiopharmaceuticals were synthesized by the same radiopharmacist with 3, 1 and 3 year experience, respectively, in radiolabeling the above compounds. Results: One Curie (1 Ci) of 177Lu was received fortnightly by our department. Data were collected for 12 syntheses of 177Lu-DOTATATE, 8 syntheses of 177Lu-PSMA-617, and 3 syntheses of 177Lu-EDTMP. Mean time required to complete the synthesis was 0.81, 0.65, and 0.58 h, respectively. Mean whole body radiation exposure was 0.023 ± 0.01 mSv, 0.01 ± 0.002 mSv, and 0.002 ± 0.0006 mSv, respectively. Overall mean radiation dose for all the three 177Lu-compounds was 0.014 mSv. Highest exposure was obtained during the synthesis of 177Lu-DOTATATE. Conclusion: Our data suggest that the manual radiolabeling of 177Lu compounds is safe, and the whole body radiation exposure to the involved personnel is well within prescribed limits. PMID:28533634

  10. Biological countermeasures in space radiation health.

    PubMed

    Kennedy, Ann R; Todd, Paul

    2003-06-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  11. Biological countermeasures in space radiation health

    NASA Technical Reports Server (NTRS)

    Kennedy, Ann R.; Todd, Paul

    2003-01-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  12. 47 CFR 2.1091 - Radiofrequency radiation exposure evaluation: mobile devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... their effective radiated power (ERP) is 1.5 watts or more, or if they operate at frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal communications service devices, unlicensed... exposure prior to equipment authorization or use if their ERP is 3 watts or more or if they meet the...

  13. Response of Caenorhabditis elegans to wireless devices radiation exposure.

    PubMed

    Fasseas, Michael K; Fragopoulou, Adamantia F; Manta, Areti K; Skouroliakou, Aikaterini; Vekrellis, Konstantinos; Margaritis, Lukas H; Syntichaki, Popi

    2015-03-01

    To examine the impact of electromagnetic radiation, produced by GSM (Global System for Mobile communications) mobile phones, Wi-Fi (Wireless-Fidelity) routers and wireless DECT (Digital Enhanced Cordless Telecommunications) phones, on the nematode Caenorhabditis elegans. We exposed synchronized populations, of different developmental stages, to these wireless devices at E-field levels below ICNIRP's (International Commission on Non-Ionizing Radiation Protection) guidelines for various lengths of time. WT (wild-type) and aging- or stress-sensitive mutant worms were examined for changes in growth, fertility, lifespan, chemotaxis, short-term memory, increased ROS (Reactive Oxygen Species) production and apoptosis by using fluorescent marker genes or qRT-PCR (quantitative Reverse Transcription-Polymerase Chain Reaction). No statistically significant differences were found between the exposed and the sham/control animals in any of the experiments concerning lifespan, fertility, growth, memory, ROS, apoptosis or gene expression. The worm appears to be robust to this form of (pulsed) radiation, at least under the exposure conditions used.

  14. Maculopathy following exposure to visible and infrared radiation from a laser pointer: a clinical case study.

    PubMed

    Hanson, James V M; Sromicki, Julian; Mangold, Mario; Golling, Matthias; Gerth-Kahlert, Christina

    2016-04-01

    Laser pointer devices have become increasingly available in recent years, and their misuse has caused a number of ocular injuries. Online distribution channels permit trade in devices which may not conform to international standards in terms of their output power and spectral content. We present a case study of ocular injury caused by one such device. The patient was examined approximately 9 months following laser exposure using full-field and multifocal electroretinography (ERG and MF-ERG), electrooculography (EOG), and optical coherence tomography (OCT), in addition to a full ophthalmological examination. MF-ERG, OCT, and the ophthalmological examination were repeated 7 months after the first examination. The output of the laser pointer was measured. Despite severe focal damage to the central retina visible fundoscopically and with OCT, all electrophysiological examinations were quantitatively normal; however, qualitatively the central responses of the MF-ERG appeared slightly reduced. When the MF-ERG was repeated 7 months later, all findings were normal. The laser pointer was found to emit both visible and infrared radiation in dangerous amounts. Loss of retinal function following laser pointer injury may not always be detectable using standard electrophysiological tests. Exposure to non-visible radiation should be considered as a possible aggravating factor when assessing cases of alleged laser pointer injury.

  15. Effect of Radiation Exposure on the Retention of Commercial NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Chen, D.; Friendlich, M.; Carts, M. A.; Seidleck, C. M.; LaBel, K. A.

    2011-01-01

    We have compared the data retention of irradiated commercial NAND flash memories with that of unirradiated controls. Under some circumstanc es, radiation exposure has a significant effect on the retention of f lash memories.

  16. Micro RNA responses to chronic or acute exposures to low dose ionizing radiation

    PubMed Central

    Chaudhry, M. Ahmad; Omaruddin, Romaica A.; Kreger, Bridget; de Toledo, Sonia M.; Azzam, Edouard I.

    2014-01-01

    Human health risks of exposure to low dose ionizing radiation remain ambiguous and are the subject of intense debate. A wide variety of biological effects are induced after cellular exposure to ionizing radiation, but the underlying molecular mechanism(s) remain to be completely understood. We hypothesized that low dose c-radiation-induced effects are controlled by the modulation of micro RNA (miRNA) that participate in the control of gene expression at the posttranscriptional level and are involved in many cellular processes. We monitored the expression of several miRNA in human cells exposed to acute or chronic low doses of 10 cGy or a moderate dose of 400 cGy of 137Cs γ-rays. Dose, dose rate and time dependent differences in the relative expression of several miRNA were investigated. The expression patterns of many miRNA differed after exposure to either chronic or acute 10 cGy. The expression of miRNA let-7e, a negative regulator of RAS oncogene, and the c-MYC miRNA cluster were upregulated after 10 cGy chronic dose but were downregulated after 3 h of acute 10 cGy. The miR-21 was upregulated in chronic or acute low dose and moderate dose treated cells and its target genes hPDCD4, hPTEN, hSPRY2, and hTPM1 were found to be downregulated. These findings provide evidence that low dose and dose rate c-irradiation dictate the modulation of miRNA, which can result in a differential cellular response than occurs at high doses. This information will contribute to understanding the risks to human health after exposure to low dose radiation. PMID:22367372

  17. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  18. Evaluation of internal alpha radiation exposure and subsequent infertility among a cohort of women formerly employed in the radium dial industry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schieve, L. A.; Davis, F.; Roeske, J.

    1997-02-01

    This study examined the effect of internal exposure to {alpha}-particle radiation on subsequent fertility among women employed in the radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n=603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of {alpha} particles emitted, fraction of energy absorbed withmore » in the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of {gamma}-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility.« less

  19. Internal radiation exposure of Ground Self-Defense Force members involved in the management of the Fukushima Nuclear Power Plant disaster.

    PubMed

    Naoi, Yutaka; Fujikawa, Akira; Kyoto, Yukishige; Kunishima, Naoaki; Ono, Masahiro; Watanabe, Yukie

    2013-01-01

    When the Great East Japan Earthquake occurred on March 11, 2011, the Ground Self-Defense Force (GSDF) was dispatched nationally to Northeast area in Japan. The highly trained GSDF members were simultaneously assigned to various missions for the Fukushima Nuclear Power Plants disaster. The missions of GSDF terminated on August 31, 2011. Special medical examinations were conducted for the members as they returned to each military unit. GSDF members who were assigned to the nuclear power plant were at risk of radiation exposure; therefore, pocket dosimeters were used to assess external radiation exposure. A few months after the mission was terminated, measurements of internal radiation exposure were performed. This is the first report of the internal exposure of GSDF members who worked in the restricted radiation contamination area. Here, we report the amounts of internal and external exposure of and the equipment used by the GSDF members.

  20. Reducing Health Risks from Indoor Exposures in Rapidly Developing Urban China

    PubMed Central

    Zhang, Yinping; Mo, Jinhan

    2013-01-01

    Background: Over the past two decades there has been a large migration of China’s population from rural to urban regions. At the same time, residences in cities have changed in character from single-story or low-rise buildings to high-rise structures constructed and furnished with many synthetic materials. As a consequence, indoor exposures (to pollutants with outdoor and indoor sources) have changed significantly. Objectives: We briefly discuss the inferred impact that urbanization and modernization have had on indoor exposures and public health in China. We argue that growing adverse health costs associated with these changes are not inevitable, and we present steps that could be taken to reduce indoor exposures to harmful pollutants. Discussion: As documented by China’s Ministry of Health, there have been significant increases in morbidity and mortality among urban residents over the past 20 years. Evidence suggests that the population’s exposure to air pollutants has contributed to increases in lung cancer, cardiovascular disease, pulmonary disease, and birth defects. Whether a pollutant has an outdoor or an indoor source, most exposure to the pollutant occurs indoors. Going forward, indoor exposures can be reduced by limiting the ingress of outdoor pollutants (while providing adequate ventilation with clean air), minimizing indoor sources of pollutants, updating government policies related to indoor pollution, and addressing indoor air quality during a building’s initial design. Conclusions: Taking the suggested steps could lead to significant reductions in morbidity and mortality, greatly reducing the societal costs associated with pollutant derived ill health. PMID:23665813

  1. Dosimetry for ultraviolet radiation exposure of the eye

    NASA Astrophysics Data System (ADS)

    Sliney, David H.

    1994-07-01

    The eye is exposed daily to UVR from skylight and ground reflections when outdoors in sunlight. Additional exposure occurs daily from artificial sources such as fluorescent lamps. Some workers, notably welders, are exposed to industrial sources of UVR. The geometry of exposure critically influences the actual UVR dose to the cornea and lens. When exposed to bright light, squinting reduces UVR exposure. the optical properties of the eye and behavioral responses to bright light both contribute to limiting actual UVR exposure. The actual daily dos of UVR is considerably less than what many previous investigators have assumed. The geometrical, as well as temporal and spectral, aspects of ocular dosimetry will be reviewed in order to allow participants a better insight into the practical impact of many laboratory studies of UVR effects upon ocular tissues.

  2. Occupational exposure to ionizing radiation and electromagnetic fields in relation to the risk of thyroid cancer in Sweden.

    PubMed

    Lope, Virginia; Pérez-Gómez, Beatriz; Aragonés, Nuria; López-Abente, Gonzalo; Gustavsson, Per; Floderus, Birgitta; Dosemeci, Mustafa; Silva, Agustín; Pollán, Marina

    2006-08-01

    This study sought to ascertain the risk of thyroid cancer in relation to occupational exposure to ionizing radiation and extremely low-frequency magnetic fields (ELFMF) in a cohort representative of Sweden's gainfully employed population. A historical cohort of 2 992 166 gainfully employed Swedish male and female workers was followed up from 1971 through 1989. Exposure to ELFMF and ionizing radiation was assessed using three job exposure matrices based on industrial branch or occupational codes. Relative risks (RR) for male and female workers, adjusted for age and geographic area, were computed using log-linear Poisson models. Occupational ELFMF exposure showed no effect on the risk of thyroid cancer in the study. However, female workers exposed to high intensities of ionizing radiation registered a marked excess risk (RR 1.85, 95% confidence interval (95% CI) 1.02-3.35]. This trend was not in evidence among the men. While the study confirms the etiologic role of ionizing radiation, with a higher incidence of thyroid cancer being recorded for the most-exposed female workers, our results do not support the possibility of occupational exposure to ELFMF being a risk factor for the development of thyroid cancer.

  3. Temporary Blinding Limits versus Maximum Permissible Exposure - A Paradigm Change in Risk Assessment for Visible Optical Radiation

    NASA Astrophysics Data System (ADS)

    Reidenbach, Hans-Dieter

    Safety considerations in the field of laser radiation have traditionally been restricted to maximum permissible exposure levels defined as a function of wavelength and exposure duration. But in Europe according to the European Directive 2006/25/EC on artificial optical radiation the employer has to include in his risk assessment indirect effects from temporary blinding. Whereas sufficient knowledge on various deterministic risks exists, only sparse quantitative data is available for the impairment of visual functions due to temporary blinding from visible optical radiation. The consideration of indirect effects corresponds to a paradigm change in risk assessment when situations have to be treated, where intrabeam viewing of low-power laser radiation is likely or other non-coherent visible radiation might influence certain visual tasks. In order to obtain a sufficient basis for the assessment of certain situations, investigations of the functional relationships between wavelength, exposure time and optical power and the resulting interference on visual functions have been performed and the results are reported. The duration of a visual disturbance is thus predictable. In addition, preliminary information on protective measures is given.

  4. An evaluation of retrofit engineering control interventions to reduce perchloroethylene exposures in commercial dry-cleaning shops.

    PubMed

    Earnest, G Scott; Ewers, Lynda M; Ruder, Avima M; Petersen, Martin R; Kovein, Ronald J

    2002-02-01

    Real-time monitoring was used to evaluate the ability of engineering control devices retrofitted on two existing dry-cleaning machines to reduce worker exposures to perchloroethylene. In one dry-cleaning shop, a refrigerated condenser was installed on a machine that had a water-cooled condenser to reduce the air temperature, improve vapor recovery, and lower exposures. In a second shop, a carbon adsorber was retrofitted on a machine to adsorb residual perchloroethylene not collected by the existing refrigerated condenser to improve vapor recovery and reduce exposures. Both controls were successful at reducing the perchloroethylene exposures of the dry-cleaning machine operator. Real-time monitoring was performed to evaluate how the engineering controls affected exposures during loading and unloading the dry-cleaning machine, a task generally considered to account for the highest exposures. The real-time monitoring showed that dramatic reductions occurred in exposures during loading and unloading of the dry-cleaning machine due to the engineering controls. Peak operator exposures during loading and unloading were reduced by 60 percent in the shop that had a refrigerated condenser installed on the dry-cleaning machine and 92 percent in the shop that had a carbon adsorber installed. Although loading and unloading exposures were dramatically reduced, drops in full-shift time-weighted average (TWA) exposures were less dramatic. TWA exposures to perchloroethylene, as measured by conventional air sampling, showed smaller reductions in operator exposures of 28 percent or less. Differences between exposure results from real-time and conventional air sampling very likely resulted from other uncontrolled sources of exposure, differences in shop general ventilation before and after the control was installed, relatively small sample sizes, and experimental variability inherent in field research. Although there were some difficulties and complications with installation and

  5. Effects of IL-10 haplotype and atomic bomb radiation exposure on gastric cancer risk.

    PubMed

    Hayashi, Tomonori; Ito, Reiko; Cologne, John; Maki, Mayumi; Morishita, Yukari; Nagamura, Hiroko; Sasaki, Keiko; Hayashi, Ikue; Imai, Kazue; Yoshida, Kengo; Kajimura, Junko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Ohishi, Waka; Fujiwara, Saeko; Akahoshi, Masazumi; Nakachi, Kei

    2013-07-01

    Gastric cancer (GC) is one of the cancers that reveal increased risk of mortality and incidence in atomic bomb survivors. The incidence of gastric cancer in the Life Span Study cohort of the Radiation Effects Research Foundation (RERF) increased with radiation dose (gender-averaged excess relative risk per Gy = 0.28) and remains high more than 65 years after exposure. To assess a possible role of gene-environment interaction, we examined the dose response for gastric cancer incidence based on immunosuppression-related IL-10 genotype, in a cohort study with 200 cancer cases (93 intestinal, 96 diffuse and 11 other types) among 4,690 atomic bomb survivors participating in an immunological substudy. Using a single haplotype block composed of four haplotype-tagging SNPs (comprising the major haplotype allele IL-10-ATTA and the minor haplotype allele IL-10-GGCG, which are categorized by IL-10 polymorphisms at -819A>G and -592T>G, +1177T>C and +1589A>G), multiplicative and additive models for joint effects of radiation and this IL-10 haplotyping were examined. The IL-10 minor haplotype allele(s) was a risk factor for intestinal type gastric cancer but not for diffuse type gastric cancer. Radiation was not associated with intestinal type gastric cancer. In diffuse type gastric cancer, the haplotype-specific excess relative risk (ERR) for radiation was statistically significant only in the major homozygote category of IL-10 (ERR = 0.46/Gy, P = 0.037), whereas estimated ERR for radiation with the minor IL-10 homozygotes was close to 0 and nonsignificant. Thus, the minor IL-10 haplotype might act to reduce the radiation related risk of diffuse-type gastric cancer. The results suggest that this IL-10 haplotyping might be involved in development of radiation-associated gastric cancer of the diffuse type, and that IL-10 haplotypes may explain individual differences in the radiation-related risk of gastric cancer. © 2013 by Radiation Research Society

  6. AN ESTIMATION OF THE EXPOSURE OF THE POPULATION OF ISRAEL TO NATURAL SOURCES OF IONIZING RADIATION.

    PubMed

    Epstein, L; Koch, J; Riemer, T; Haquin, G; Orion, I

    2017-11-01

    The radiation dose to the population of Israel due to exposure to natural sources of ionizing radiation was assessed. The main contributor to the dose is radon that accounts for 60% of the exposure to natural sources. The dose due to radon inhalation was assessed by combining the results of a radon survey in single-family houses with the results of a survey in apartments in multi-storey buildings. The average annual dose due to radon inhalation was found to be 1.2 mSv. The dose rate due to exposure to cosmic radiation was assessed using a code that calculates the dose rate at different heights above sea level, taking into account the solar cycle. The annual dose was calculated based on the fraction of time spent indoors and the attenuation provided by buildings and was found to be 0.2 mSv. The annual dose due to external exposure to the terrestrial radionuclides was similarly assessed. The indoor dose rate was calculated using a model that takes into account the concentrations of the natural radionuclides in building materials, the density and the thickness of the walls. The dose rate outdoors was calculated based on the concentrations of the natural radionuclides in different geological units in Israel as measured in an aerial survey and measurements above ground. The annual dose was found to be 0.2 mSv. Doses due to internal exposure other than exposure to radon were also calculated and were found to be 0.4 mSv. The overall annual exposure of the population of Israel to natural sources of ionizing radiation is therefore 2 mSv and ranges between 1.7 and 2.7 mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Exposure to galactic cosmic radiation and solar energetic particles.

    PubMed

    O'Sullivan, D

    2007-01-01

    Several investigations of the radiation field at aircraft altitudes have been undertaken during solar cycle 23 which occurred in the period 1993-2003. The radiation field is produced by the passage of galactic cosmic rays and their nuclear reaction products as well as solar energetic particles through the Earth's atmosphere. Galactic cosmic rays reach a maximum intensity when the sun is least active and are at minimum intensity during solar maximum period. During solar maximum an increased number of coronal mass ejections and solar flares produce high energy solar particles which can also penetrate down to aircraft altitudes. It is found that the very complicated field resulting from these processes varies with altitude, latitude and stage of solar cycle. By employing several active and passive detectors, the whole range of radiation types and energies were encompassed. In-flight data was obtained with the co-operation of many airlines and NASA. The EURADOS Aircraft Crew in-flight data base was used for comparison with the predictions of various computer codes. A brief outline of some recent studies of exposure to radiation in Earth orbit will conclude this contribution.

  8. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure - Validation set.

    PubMed

    Kuzmina, Nina S; Lapteva, Nellya Sh; Rusinova, Galina G; Azizova, Tamara V; Vyazovskaya, Natalya S; Rubanovich, Alexander V

    2018-03-01

    Hypermethylation of СpG islands in the promoter regions of several genes with basic protective function in blood leukocytes of individuals exposed to ionizing radiation long time ago (2-46 years), and differential effects of age and radiation exposure on hypermethylation was reported in our previous work. To validate these results, epigenetic modifications were assessed in an independent series of 49 nuclear industry workers from the "Mayak" facility (67-84 years old at sampling) with documented individual accumulated doses from the prolonged external γ-radiation exposure (95.9-409.5 cGy, end of work with radiation:0.3-39 years ago), and in 50 non-exposed persons matched by age. In addition to the genes analyzed before (RASSF1A, p16/INK4A, p14/ARF, GSTP1), four additional loci were analyzed: TP53, ATM, SOD3, ESR1. The frequency of individuals displaying promoter methylation of at least one of the 8 genes (71.4%) was significantly higher in exposed group as compared to the control group (40%), p = .002, OR = 3.75. A significantly elevated frequency of individuals with hypermethylated СpG islands in GSTP1, TP53, SOD3 promoters was revealed among exposed subjects as compared to the control group (p = .012, OR = 8.41; p = .041, OR = 4.02 and p = .009, OR = 3.42, respectively). A similar trend (p = .12, OR = 3.06) was observed for the p16/INK4A gene. As a whole, p16/INK4A and GSTP1 promoter hypermethylation in irradiated subjects from both previously and currently analyzed groups was pronounced. Thus, the direction of the effects was fully confirmed, suggesting the result reproducibility. No statistically significant correlation between promoter methylation and individual radiation dose was found. Further studies are required to create an array of blood epigenetic markers of radiation exposure associating with premature aging and age-related diseases and to accurately evaluate radiation-added effect across the range of doses

  9. Optical Properties of Thermal Control Coatings After Weathering, Simulated Ascent Heating, and Simulated Space Radiation Exposure

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.

    2008-01-01

    Spacecraft radiators reject heat to their surroundings and coatings play an important role in this heat rejection. The coatings provide the combined optical properties of low solar absorptance and high infrared emittance. The coatings are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not designed for a terrestrial weathering environment, the durability of spacecraft paints, coatings, and appliques upon exposure to weathering and subsequent exposure to ascent heating, solar wind, and ultraviolet radiation was studied. In addition to traditional aluminum panels, new isocyanate ester composite panels were exposed for a total of 90 days at the Atmospheric Exposure Site of Kennedy Space Center's (KSC) Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected panel coupons were subsequently exposed to simulated ascent heating, solar wind, and vacuum ultraviolet (UV) radiation to identify the effect of a simulated space environment on as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints, coatings, and appliques.

  10. Most cancer in firefighters is due to radio-frequency radiation exposure not inhaled carcinogens.

    PubMed

    Milham, S

    2009-11-01

    Recent reviews and reports of cancer incidence and mortality in firefighters conclude that they are at an increased risk of a number of cancers. These include leukemia, multiple myeloma, non-Hodgkin's lymphoma, male breast cancer, malignant melanoma, and cancers of the brain, stomach, colon, rectum, prostate, urinary bladder, testes, and thyroid. Firefighters are exposed to a long list of recognized or probable carcinogens in combustion products and the presumed route of exposure to these carcinogens is by inhalation. Curiously, respiratory system cancers and diseases are usually not increased in firefighters as they are in workers exposed to known inhaled carcinogens. The list of cancers with increased risk in firefighters strongly overlaps the list of cancers at increased risk in workers exposed to electromagnetic fields (EMF) and radiofrequency radiation (RFR). Firefighters have increased exposure to RFR in the course of their work, from the mobile two-way radio communications devices which they routinely use while fighting fires, and at times from firehouse and fire vehicle radio transmitters. I suggest that some of the increased cancer risk in firefighters is caused by RFR exposure, and is therefore preventable. The precautionary principle should be applied to reduce the risk of cancer in firefighters, and workman's compensation rules will necessarily need to be modified.

  11. Current worldwide nuclear cardiology practices and radiation exposure: results from the 65 country IAEA Nuclear Cardiology Protocols Cross-Sectional Study (INCAPS)

    PubMed Central

    Einstein, Andrew J.; Pascual, Thomas N. B.; Mercuri, Mathew; Karthikeyan, Ganesan; Vitola, João V.; Mahmarian, John J.; Better, Nathan; Bouyoucef, Salah E.; Hee-Seung Bom, Henry; Lele, Vikram; Magboo, V. Peter C.; Alexánderson, Erick; Allam, Adel H.; Al-Mallah, Mouaz H.; Flotats, Albert; Jerome, Scott; Kaufmann, Philipp A.; Luxenburg, Osnat; Shaw, Leslee J.; Underwood, S. Richard; Rehani, Madan M.; Kashyap, Ravi; Paez, Diana; Dondi, Maurizio

    2015-01-01

    Aims To characterize patient radiation doses from nuclear myocardial perfusion imaging (MPI) and the use of radiation-optimizing ‘best practices’ worldwide, and to evaluate the relationship between laboratory use of best practices and patient radiation dose. Methods and results We conducted an observational cross-sectional study of protocols used for all 7911 MPI studies performed in 308 nuclear cardiology laboratories in 65 countries for a single week in March–April 2013. Eight ‘best practices’ relating to radiation exposure were identified a priori by an expert committee, and a radiation-related quality index (QI) devised indicating the number of best practices used by a laboratory. Patient radiation effective dose (ED) ranged between 0.8 and 35.6 mSv (median 10.0 mSv). Average laboratory ED ranged from 2.2 to 24.4 mSv (median 10.4 mSv); only 91 (30%) laboratories achieved the median ED ≤ 9 mSv recommended by guidelines. Laboratory QIs ranged from 2 to 8 (median 5). Both ED and QI differed significantly between laboratories, countries, and world regions. The lowest median ED (8.0 mSv), in Europe, coincided with high best-practice adherence (mean laboratory QI 6.2). The highest doses (median 12.1 mSv) and low QI (4.9) occurred in Latin America. In hierarchical regression modelling, patients undergoing MPI at laboratories following more ‘best practices’ had lower EDs. Conclusion Marked worldwide variation exists in radiation safety practices pertaining to MPI, with targeted EDs currently achieved in a minority of laboratories. The significant relationship between best-practice implementation and lower doses indicates numerous opportunities to reduce radiation exposure from MPI globally. PMID:25898845

  12. Radiation exposure and breast cancer: lessons from Chernobyl.

    PubMed

    Ogrodnik, Aleksandra; Hudon, Tyler W; Nadkarni, Prakash M; Chandawarkar, Rajiv Y

    2013-04-01

    The lessons learned from the Chernobyl disaster have become increasingly important after the second anniversary of the Fukushima, Japan nuclear accident. Historically, data from the Chernobyl reactor accident 27 years ago demonstrated a strong correlation with thyroid cancer, but data on the radiation effects of Chernobyl on breast cancer incidence have remained inconclusive. We reviewed the published literature on the effects of the Chernobyl disaster on breast cancer incidence, using Medline and Scopus from the time of the accident to December of 2010. Our findings indicate limited data and statistical flaws. Other confounding factors, such as discrepancies in data collection, make interpretation of the results from the published literature difficult. Re-analyzing the data reveals that the incidence of breast cancer in Chernobyl-disaster-exposed women could be higher than previously thought. We have learned little of the consequences of radiation exposure at Chernobyl except for its effects on thyroid cancer incidence. Marking the 27th year after the Chernobyl event, this report sheds light on a specific, crucial and understudied aspect of the results of radiation from a gruesome nuclear power plant disaster.

  13. Rectangular microstrip antenna with corrugation like defects at radiating edge: A new approach to reduce cross polarization radiation

    NASA Astrophysics Data System (ADS)

    Pawar, U. A.; Mondal, D.; Nagaraju, A.; Chakraborty, S.; Singh, L. L. K.; Chattopadhyay, S.

    2018-03-01

    In this paper, single layer, simple and compact RMA, with corrugation like defects at the radiating edge, is studied thoroughly to reduce XP radiation from the patch. Unlike the earlier works reported on defected ground structure integrated patches and defect patch structures, in this work, corrugation like linear defects have been placed at the radiating edges of the patch to reduce cross polarisation radiation. Around 30-40 dB of CP-XP isolation is observed in H-plane with 7% impedance bandwidth and in E-plane also, more than 55 dB CP-XP isolation is found. The proposed structure is very simple to design and easy to fabricate.

  14. UV exposure in cars.

    PubMed

    Moehrle, Matthias; Soballa, Martin; Korn, Manfred

    2003-08-01

    There is increasing knowledge about the hazards of solar and ultraviolet (UV) radiation to humans. Although people spend a significant time in cars, data on UV exposure during traveling are lacking. The aim of this study was to obtain basic information on personal UV exposure in cars. UV transmission of car glass samples, windscreen, side and back windows and sunroof, was determined. UV exposure of passengers was evaluated in seven German middle-class cars, fitted with three different types of car windows. UV doses were measured with open or closed windows/sunroof of Mercedes-Benz E 220 T, E 320, and S 500, and in an open convertible car (Mercedes-Benz CLK). Bacillus subtilis spore film dosimeters (Viospor) were attached to the front, vertex, cheeks, upper arms, forearms and thighs of 'adult' and 'child' dummies. UV wavelengths longer than >335 nm were transmitted through car windows, and UV irradiation >380 nm was transmitted through compound glass windscreens. There was some variation in the spectral transmission of side windows according to the type of glass. On the arms, UV exposure was 3-4% of ambient radiation when the car windows were shut, and 25-31% of ambient radiation when the windows were open. In the open convertible car, the relative personal doses reached 62% of ambient radiation. The car glass types examined offer substantial protection against short-wave UV radiation. Professional drivers should keep car windows closed on sunny days to reduce occupational UV exposure. In individuals with polymorphic light eruption, produced by long-wave UVA, additional protection by plastic films, clothes or sunscreens appears necessary.

  15. Monitoring and Modeling Astronaut Occupational Radiation Exposures in Space: Recent Advances

    NASA Technical Reports Server (NTRS)

    Weyland, Mark; Golightly, Michael

    1999-01-01

    In 1982 astronauts were declared to be radiation workers by OSHA, and as such were subject to the rules and regulations applied to that group. NASA was already aware that space radiation was a hazard to crewmembers and had been studying and monitoring astronaut doses since 1962 at the Johnson Space Center. It was quickly realized NASA would not be able to accomplish all of its goals if the astronauts were subject to the ground based radiation worker limits, and thus received a waiver from OSHA to establish independent limits. As part of the stipulation attached to setting new limits, OSHA included a requirement to perform preflight dose projections for each crew and inform them of the associated risks. Additional requirements included measuring doses from various sources during the flight, making every effort to prevent a crewmember from exceeding the new limits, and keeping all exposures As Low As Reasonably Achievable (a.k.a. ALARA - a common health physics principle). The assembly of the International Space Station (ISS) and its initial manned operations will coincide with the 4-5 year period of high space weather activity at the next maximum in the solar cycle. For the first time in NASA's manned program, US astronauts will be in orbit continuously throughout a solar maximum period. During this period, crews are at risk of significantly increased radiation exposures due to solar particle events and trapped electron belt enhancements following geomagnetic storms. The problem of protecting crews is compounded by the difficulty of providing continuous real-time monitoring over a period of a decade in an era of tightly constrained budgets. In order to prepare for ISS radiological support needs, the NASA Space Radiation Analysis Group and the NOAA Space Environment Center have undertaken a multiyear effort to improve and automate ground-based space weather monitoring systems and real-time radiation analysis tools. These improvements include a coupled, automated

  16. Long-term correlation of the electrocorticogram as a bioindicator of brain exposure to ionizing radiation.

    PubMed

    Aguiar, L A A; Silva, I M S; Fernandes, T S; Nogueira, R A

    2015-10-01

    Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.

  17. Long-term correlation of the electrocorticogram as a bioindicator of brain exposure to ionizing radiation

    PubMed Central

    Aguiar, L.A.A.; Silva, I.M.S.; Fernandes, T.S.; Nogueira, R.A.

    2015-01-01

    Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR. PMID:26445335

  18. Spacesuit Radiation Shield Design Methods

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Anderson, Brooke M.; Cucinotta, Francis A.; Ware, J.; Zeitlin, Cary J.

    2006-01-01

    Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable. Transition to a new spacesuit design including soft upper-torso and reconfigured life support hardware gives an opportunity to optimize the next generation spacesuit for reduced potential health effects during an accidental exposure.

  19. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    NASA Astrophysics Data System (ADS)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  20. Effects of pre-radiation exposure to LLLT of normal and malignant cells.

    PubMed

    Barasch, Andrei; Raber-Durlacher, Judith; Epstein, Joel B; Carroll, James

    2016-06-01

    Low-level laser therapy (LLLT) efficacy for the prevention of cancer treatment-induced oral mucositis (OM) has been amply described. However, potential protection of malignant cells remains a legitimate concern for clinicians. We tested LLLT-induced protection from ionizing radiation killing in both malignant and normal cells. We treated six groups each of normal human lymphoblasts (TK6) and human leukemia cells (HL60) with He-Ne LLLT (632.8 nm, 35 mW, CW, 1 cm(2), 35 mW/cm(2) for 3-343 s, 0.1-12 J/cm(2)) prior to exposure to ionizing radiation (IR). Cells were then incubated and counted daily to determine their survival. Optimization of IR dose and incubation time was established prior to testing the effect of LLLT. Growth curves for both cell lines showed significant declines after exposure to 50-200 cGy IR when compared to controls. Pre-radiation exposure to LLLT (4.0 J/cm(2)) followed by 1-h incubation blocked this decline in TK6 but not in HL60 cells. The latter cells were sensitized to the killing effects of IR in a dose-dependent manner. This study shows that pre-IR LLLT treatment results in a differential response of normal vs. malignant cells, suggesting that LLLT does not confer protection and may even sensitize cancer cells to IR killing.