Science.gov

Sample records for reducing plasmodium falciparum-infected

  1. Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana.

    PubMed

    Mockenhaupt, F P; Rong, B; Till, H; Eggelte, T A; Beck, S; Gyasi-Sarpong, C; Thompson, W N; Bienzle, U

    2000-03-01

    Malarial parasitaemia below the threshold of microscopy but detectable by polymerase chain reaction (PCR) assays is common in endemic regions. This study was conducted to examine prevalence, predictors, and effects of submicroscopic Plasmodium falciparum infections in pregnancy. In a cross-sectional study among 530 pregnant women in Ghana, plasmodial infections were assessed by microscopy and PCR assays. Concentrations of haemoglobin and C-reactive protein (CRP) were measured and antimalarial drugs (chloroquine, pyrimethamine) in urine were demonstrated by ELISA dipsticks. By microscopy, 32% of the women were found to harbour malaria parasites. This rate increased to 63% adding the results of the parasite-specific PCR. P. falciparum was present in all but one infection. With increasing gravidity, infection rates and parasite densities decreased and the proportions of submicroscopic parasitaemia among infected women grew. Correspondingly, anaemia, fever and evidence of inflammation (CRP > 0.6 mg/dl) were more frequent in primigravidae than in multigravidae. Antimalarial drugs were detected in 65% of the women and were associated with a reduced prevalence of P. falciparum infections and a raised proportion of submicroscopic parasitaemia. Both gravidity and antimalarial drug use were independent predictors of submicroscopic P. falciparum infections. These infections caused a slight reduction of Hb levels and considerably increased serum concentrations of CRP. Conventional microscopy underestimates the actual extent of malarial infections in pregnancy in endemic regions. Submicroscopic P. falciparum infections are frequent and may contribute to mild anaemia and inflammation in seemingly aparasitaemic pregnant women. PMID:10747278

  2. The Dynamics of Natural Plasmodium falciparum Infections

    PubMed Central

    Felger, Ingrid; Maire, Martin; Bretscher, Michael T.; Falk, Nicole; Tiaden, André; Sama, Wilson; Beck, Hans-Peter; Owusu-Agyei, Seth; Smith, Thomas A.

    2012-01-01

    Background Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. Methods An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI) and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. Results Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5–9 year old children (average duration 319 days, 95% confidence interval 318;320). Conclusions The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections. PMID:23029082

  3. Characterization of asymptomatic Plasmodium falciparum infection and its risk factors in pregnant women from the Republic of Congo.

    PubMed

    Francine, Ntoumi; Damien, Bakoua; Anna, Fesser; Michael, Kombo; Christevy, Vouvoungui J; Felix, Koukouikila-Koussounda

    2016-01-01

    Malaria in pregnancy remains a serious public health problem in the Republic of Congo despite the implementation of intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) in 2006. The aim of this cross-sectional study was to characterize Plasmodium falciparum infections and determine possible risk factors in pregnant Congolese women attending an antenatal clinic in a periurban area of southern Brazzaville. This study was conducted from March 2012 to December 2013 in a site where several years ago, high malaria resistance to SP was reported. Pregnant women were enrolled during antenatal visits and the number of received IPTp-SP doses was recorded as well as individual sociodemographic data. Peripheral blood was collected and P. falciparum infection was checked by microscopy and by PCR targeting P. falciparum merozoite surface protein gene (msp2). Haemoglobin concentration was measured and P. falciparum positive samples were typed for msp2 allelic diversity. A total of 363 pregnant women were recruited. The prevalence of asymptomatic P. falciparum infection was 7% and 19% by microscopy and by PCR, respectively. More than one half (51.5%) of the pregnant women were anaemic. Multivariate analysis indicated that P. falciparum infection was associated with anaemia. It was also observed that women who have received IPTp-SP have significantly lower prevalence of infection. The administration of IPTp-SP did not influence the multiplicity of infection (MOI). This first study investigating asymptomatic malaria infection on pregnant women of the Republic of Congo shows that P. falciparum infections were clearly associated with maternal anaemia, and use of IPTp-SP reduced the risk of carrying asymptomatic infections. PMID:26477849

  4. Short Report: Detection of the Dihydrofolate Reductase–164L Mutation in Plasmodium falciparum Infections from Malawi by Heteroduplex Tracking Assay

    PubMed Central

    Juliano, Jonathan J.; Trottman, Paul; Mwapasa, Victor; Meshnick, Steven R.

    2008-01-01

    Standard polymerase chain reaction methods often cannot detect drug-resistance mutations in Plasmodium falciparum infections if the mutation is present in ≤ 20% of the parasites. A heteroduplex tracking assay was developed that can detect dihydrofolate reductase 164-L mutations in variants representing 1% of the parasites in an individual host. Using this assay, we confirmed the presence of the mutation in P. falciparum infections in Malawi. PMID:18541765

  5. Extraction of Hydrophilic Metabolites from Plasmodium falciparum-Infected Erythrocytes for Metabolomic Analysis

    PubMed Central

    Olszewski, Kellen L.; Llinás, Manuel

    2012-01-01

    Metabolomics is an increasingly common analytical approach for investigating metabolic networks of pathogenic organisms. This may be of particular use in the study of parasitic infections due to the intrinsic metabolic connection between the parasite and its host. In vitro cultures of the malaria parasite Plasmodium falciparum present a valuable platform to elucidate the structure and dynamics of the parasite’s metabolic network and to determine the mechanisms of action of antimalarial drugs and drug resistance mutations. Accurately measuring metabolite levels requires a reproducible method for quantifying intracellular metabolites. Here we present a simple protocol for extracting hydrophilic metabolites from P. falciparum-infected erythrocyte cultures. PMID:22990783

  6. Theoretical models for near forward light scattering by a Plasmodium falciparum infected red blood cell

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.

    2012-12-01

    A number of experimental elastic light scattering studies have been performed in the past few years with the aim of developing automated in vivo tools for differentiating a healthy red blood cell from a Plasmodium falciparum infected cell. This paper examines some theoretical aspects of the problem. An attempt has been made to simulate the scattering patterns of healthy as well as infected individual red blood cells. Two models, namely, a homogeneous sphere model and a coated sphere model have been considered. The scattering patterns predicted by these models are examined. A possible method for discriminating infected red blood cells from healthy ones has been suggested.

  7. Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection

    PubMed Central

    Berna, Amalia Z.; McCarthy, James S.; Wang, Rosalind X.; Saliba, Kevin J.; Bravo, Florence G.; Cassells, Julie; Padovan, Benjamin; Trowell, Stephen C.

    2015-01-01

    Currently, the majority of diagnoses of malaria rely on a combination of the patient's clinical presentation and the visualization of parasites on a stained blood film. Breath offers an attractive alternative to blood as the basis for simple, noninvasive diagnosis of infectious diseases. In this study, breath samples were collected from individuals during controlled malaria to determine whether specific malaria-associated volatiles could be detected in breath. We identified 9 compounds whose concentrations varied significantly over the course of malaria: carbon dioxide, isoprene, acetone, benzene, cyclohexanone, and 4 thioethers. The latter group, consisting of allyl methyl sulfide, 1-methylthio-propane, (Z)-1-methylthio-1-propene, and (E)-1-methylthio-1-propene, had not previously been associated with any disease or condition. Before the availability of antimalarial drug treatment, there was evidence of concurrent 48-hour cyclical changes in the levels of both thioethers and parasitemia. When thioether concentrations were subjected to a phase shift of 24 hours, a direct correlation between the parasitemia and volatile levels was revealed. Volatile levels declined monotonically approximately 6.5 hours after initial drug treatment, correlating with clearance of parasitemia. No thioethers were detected in in vitro cultures of Plasmodium falciparum. The metabolic origin of the thioethers is not known, but results suggest that interplay between host and parasite metabolic pathways is involved in the production of these thioethers. PMID:25810441

  8. Molecular Aspects of Plasmodium falciparum Infection during Pregnancy

    PubMed Central

    Ndam, Nicaise Tuikue; Deloron, Philippe

    2007-01-01

    Cytoadherence of Plasmodium-falciparum-parasitized red blood cells (PRBCs) to host receptors is the key phenomenon in the pathological process of the malaria disease. Some of these interactions can originate poor outcomes responsible for 1 to 3 million annual deaths mostly occurring among children in sub-Saharan Africa. Pregnancy-associated malaria (PAM) represents an important exception of the disease occurring at adulthood in malaria endemic settings. Consequences of this are shared between the mother (maternal anemia) and the baby (low birth weight and infant mortality). Demonstrating that parasites causing PAM express specific variant surface antigens (VSAPAM), including the P. falciparum erythrocyte membrane protein 1 (P f EMP1) variant VAR2CSA, that are targets for protective immunity has strengthened the possibility for the development of PAM-specific vaccine. In this paper, we review the molecular basis of malaria pathogenesis attributable to the erythrocyte stages of the parasites, and findings supporting potential anti-PAM vaccine components evidenced in PAM. PMID:17641725

  9. Marked Rise in the Prevalence of Asymptomatic Plasmodium falciparum Infection in Rural Gabon.

    PubMed

    Pegha Moukandja, Irène; Biteghe Bi Essone, Jean Claude; Sagara, Issaka; Kassa Kassa, Roland Fabrice; Ondzaga, Julien; Lékana Douki, Jean-Bernard; Bouyou Akotet, Marielle; Nkoghe Mba, Dieudonne; Touré Ndouo, Fousseyni S

    2016-01-01

    Control strategies implemented a decade ago led to a marked reduction in the prevalence of malaria in many countries. In Dienga, southeastern Gabon, the prevalence of microscopic P. falciparum infection was 7% in 2003, close to the pre-elimination threshold of 5%. The aim of this work was to determine the prevalence of P. falciparum infection in the same community a decade later. A cohort of 370 individuals aged from 3 to 85 years living in Dienga was investigated for P. falciparum infection; during six passages (P) in 15-month period. Demographic data were collected, along with behaviors and attitudes towards malaria. Plasmodium infection was diagnosed by microscopy (ME), followed by PCR to detect submicroscopic infection. The prevalence of P. falciparum infection in P1, P2, P3, P4, P5 and P6 was respectively 43.5% (25.1% ME+, 18.4% PCR+); 40.9% (27.0% ME+, 13.9% PCR+), 52.7% (26.1% ME+, 26.6% PCR+); 34.1% (14.1% ME+, 20% PCR+), 57.7% (25.4.% ME+, 32.3% PCR+); and 46.2% (21.4% ME+, 24.8% PCR+) with an overall average of 45.9% (95%CI [37.0-54.7], 23.2% ME+ and 22.7% PCR+). P4 and P5 prevalences were statically different throughout the six passages. Microscopic prevalence was significantly higher than that observed ten years ago (23% [n = 370] vs 7% [n = 323], p < 0.001). Asymptomatic infections were the most frequent (96%). Gametocytes were detected in levels ranging from 5.9% to 13.9%. Insecticide-treated nets, indoor residual insecticides, and self-medication were used by respectively 33.2% (95%CI [29.0-37.4]), 17.7% (95%CI [15.5-19.9]) and 12.1% (95%CI [10.6-13.6]) of the study population. A near-threefold increase in P. falciparum infection has been observed in a rural area of southeastern Gabon during a 10-year period. Most infections were asymptomatic, but these subjects likely represent a parasite reservoir. These findings call for urgent reinforcement of preventive measures. PMID:27228058

  10. Marked Rise in the Prevalence of Asymptomatic Plasmodium falciparum Infection in Rural Gabon

    PubMed Central

    Pegha Moukandja, Irène; Biteghe Bi Essone, Jean Claude; Sagara, Issaka; Kassa Kassa, Roland Fabrice; Ondzaga, Julien; Lékana Douki, Jean-Bernard; Bouyou Akotet, Marielle; Nkoghe Mba, Dieudonne; Touré Ndouo, Fousseyni S.

    2016-01-01

    Control strategies implemented a decade ago led to a marked reduction in the prevalence of malaria in many countries. In Dienga, southeastern Gabon, the prevalence of microscopic P. falciparum infection was 7% in 2003, close to the pre-elimination threshold of 5%. The aim of this work was to determine the prevalence of P. falciparum infection in the same community a decade later. A cohort of 370 individuals aged from 3 to 85 years living in Dienga was investigated for P. falciparum infection; during six passages (P) in 15-month period. Demographic data were collected, along with behaviors and attitudes towards malaria. Plasmodium infection was diagnosed by microscopy (ME), followed by PCR to detect submicroscopic infection. The prevalence of P. falciparum infection in P1, P2, P3, P4, P5 and P6 was respectively 43.5% (25.1% ME+, 18.4% PCR+); 40.9% (27.0% ME+, 13.9% PCR+), 52.7% (26.1% ME+, 26.6% PCR+); 34.1% (14.1% ME+, 20% PCR+), 57.7% (25.4.% ME+, 32.3% PCR+); and 46.2% (21.4% ME+, 24.8% PCR+) with an overall average of 45.9% (95%CI [37.0–54.7], 23.2% ME+ and 22.7% PCR+). P4 and P5 prevalences were statically different throughout the six passages. Microscopic prevalence was significantly higher than that observed ten years ago (23% [n = 370] vs 7% [n = 323], p < 0.001). Asymptomatic infections were the most frequent (96%). Gametocytes were detected in levels ranging from 5.9% to 13.9%. Insecticide-treated nets, indoor residual insecticides, and self-medication were used by respectively 33.2% (95%CI [29.0–37.4]), 17.7% (95%CI [15.5–19.9]) and 12.1% (95%CI [10.6–13.6]) of the study population. A near-threefold increase in P. falciparum infection has been observed in a rural area of southeastern Gabon during a 10-year period. Most infections were asymptomatic, but these subjects likely represent a parasite reservoir. These findings call for urgent reinforcement of preventive measures. PMID:27228058

  11. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes.

    PubMed

    Petersen, Wiebke; Külzer, Simone; Engels, Sonja; Zhang, Qi; Ingmundson, Alyssa; Rug, Melanie; Maier, Alexander G; Przyborski, Jude M

    2016-07-01

    Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte. PMID:27063072

  12. Subtle changes in Plasmodium falciparum infection complexity following enhanced intervention in Malawi

    PubMed Central

    Sisya, Tamika J.; Kamn’gona, Raphael M.; Vareta, Jimmy A.; Fulakeza, Joseph M.; Mukaka, Mavuto F.J.; Seydel, Karl B.; Laufer, Miriam K.; Taylor, Terrie E.; Nkhoma, Standwell C.

    2015-01-01

    With support from the Global Fund, the United States President's Malaria Initiative (PMI) and other cooperating partners, Malawi is implementing a comprehensive malaria control programme involving indoor residual spraying in targeted districts, universal coverage with insecticide-treated bed nets, use of rapid diagnostic tests to confirm the clinical diagnosis of malaria and use of the highly effective artemisinin-based combination therapy, artemether-lumefantrine (AL), as the first-line treatment for malaria. We genotyped 24 genome-wide single nucleotide polymorphisms (SNPs) in Plasmodium falciparum infections (n = 316) sampled from a single location in Malawi before (2006 and 2007) and after enhanced intervention (2008 and 2012). The SNP data generated were used to examine temporal changes in the proportion of multiple-genotype infections (MIs), mean number of heterozygous SNPs within MIs, parasite genetic diversity (expected heterozygosity and genotypic richness), multilocus linkage disequilibrium and effective population size (Ne). While the proportion of MIs, expected heterozygosity, genotypic richness, multilocus linkage disequilibrium and Ne were unchanged over time, the mean number (±standard deviation) of heterozygous SNPs within MIs decreased significantly (p = 0.01) from 9(±1) in 2006 to 7(±1) in 2012. These findings indicate that the genetic diversity of P. falciparum malaria parasites in this area remains high, suggesting that only subtle gains, if any, have been made in reducing malaria transmission. Continued surveillance is required to evaluate the impact of malaria control interventions in this area and the rest of Malawi, and to better target control interventions. PMID:25460345

  13. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    PubMed

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells. PMID:19393693

  14. FRET Imaging of Hemoglobin Concentration in Plasmodium falciparum-Infected Red Cells

    PubMed Central

    Esposito, Alessandro; Tiffert, Teresa; Mauritz, Jakob M. A.; Schlachter, Simon; Bannister, Lawrence H.; Kaminski, Clemens F.; Lew, Virgilio L.

    2008-01-01

    Background During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards. Methodology/Principal Findings The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270±30 ps (mean±SD; N = 45). In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290±20 ps for cells with ring stage parasites to 590±13 ps and 1050±60 ps for cells with young trophozoites and late stage trophozoite/ early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites. Conclusions/Significance The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access

  15. CD47-SIRPα Interactions Regulate Macrophage Uptake of Plasmodium falciparum-Infected Erythrocytes and Clearance of Malaria In Vivo.

    PubMed

    Ayi, Kodjo; Lu, Ziyue; Serghides, Lena; Ho, Jenny M; Finney, Constance; Wang, Jean C Y; Liles, W Conrad; Kain, Kevin C

    2016-07-01

    CD47 engagement by the macrophage signal regulatory protein alpha (SIRPα) inhibits phagocytic activity and protects red blood cells (RBCs) from erythrophagocytosis. The role of CD47-SIRPα in the innate immune response to Plasmodium falciparum infection is unknown. We hypothesized that disruption of SIRPα signaling may enhance macrophage uptake of malaria parasite-infected RBCs. To test this hypothesis, we examined in vivo clearance in CD47-deficient mice infected with Plasmodium berghei ANKA and in vitro phagocytosis of P. falciparum-infected RBCs by macrophages from SHP-1-deficient (Shp-1(-/-)) mice and NOD.NOR-Idd13.Prkdc(scid) (NS-Idd13) mice, as well as human macrophages, following disruption of CD47-SIRPα interactions with anti-SIRPα antibodies or recombinant SIRPα-Fc fusion protein. Compared to their wild-type counterparts, Cd47(-/-) mice displayed significantly lower parasitemia, decreased endothelial activation, and enhanced survival. Using macrophages from SHP-1-deficient mice or from NS-Idd13 mice, which express a SIRPα variant that does not bind human CD47, we showed that altered SIRPα signaling resulted in enhanced phagocytosis of P. falciparum-infected RBCs. Moreover, disrupting CD47-SIRPα engagement using anti-SIRPα antibodies or SIRPα-Fc fusion protein also increased phagocytosis of P. falciparum-infected RBCs. These results indicate an important role for CD47-SIRPα interactions in innate control of malaria and suggest novel targets for intervention. PMID:27091932

  16. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway.

    PubMed

    Costa, F T M; Avril, M; Nogueira, P A; Gysin, J

    2006-12-01

    Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM). This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue. PMID:17160261

  17. Field performance of malaria rapid diagnostic test for the detection of Plasmodium falciparum infection in Odisha State, India

    PubMed Central

    Sahu, S.S.; Gunasekaran, K.; Jambulingam, P.

    2015-01-01

    Background & objectives: Rapid diagnostic tests (RDTs) have become an essential surveillance tool in the malaria control programme in India. The current study aimed to assess the performance of ParaHIT-f, a rapid test in diagnosis of Plasmodium falciparum infection through detecting its specific antigen, histidine rich protein 2 (PfHRP-2), in Odisha State, India. Methods: The study was undertaken in eight falciparum malaria endemic southern districts of Odisha State. Febrile patients included through active case detection, were diagnosed by Accredited Social Health Activists (ASHAs) for P. falciparum infection using the RDT, ParaHIT-f. The performance of ParaHIT-f was evaluated using microscopy as the gold standard. Results: A total of 1030 febrile patients were screened by both microscopy and the RDT for P. falciparum infection. The sensitivity of ParaHIT-f was 63.6% (95% CI: 56.0-70.6) and specificity was 98.9% (95% CI: 97.9-99.5), with positive and negative predictive values (PPV and NPV) of 92.6% (95% CI: 86.0-96.3) and 93.0% (95% CI: 91.0-94.5), respectively. When related to parasitaemia, the RDT sensitivity was 47.8% at the low parasitaemia of 4 to 40 parasites/μl of blood. Interpretation & conclusions: The results showed that the performance of the RDT, ParaHIT-f, was not as sensitive as microscopy in detecting true falciparum infections; a high specificity presented a low frequency of false-positive RDT results. The sensitivity of ParaHIT-f was around 60 per cent. It is, therefore, essential to improve the efficiency (sensitivity) of the kit so that the true falciparum infections will not be missed especially in areas where P. falciparum has been the predominant species causing cerebral malaria. PMID:26905242

  18. A microfluidic system to study cytoadhesion of Plasmodium falciparum infected erythrocytes to primary brain microvascularendothelial cells.

    PubMed

    Herricks, Thurston; Seydel, Karl B; Turner, George; Molyneux, Malcolm; Heyderman, Robert; Taylor, Terrie; Rathod, Pradipsinh K

    2011-09-01

    The cellular events leading to severe and complicated malaria in some Plasmodium falciparum infections are poorly understood. Additional tools are required to better understand the pathogenesis of this disease. In this technical report, we describe a microfluidic culture system and image processing algorithms that were developed to observe cytoadhesion interactions of P. falciparum parasitized erythrocytes rolling on primary brain microvascularendothelial cells. We isolated and cultured human primary microvascular brain endothelial cells in a closed loop microfluidic culture system where a peristaltic pump and media reservoirs were integrated onto a microscope stage insert. We developed image processing methods to enhance contrast of rolling parasitized erythrocytes on endothelial cells and to estimate the local wall shear stress. The velocity of parasitized erythrocytes rolling on primary brain microvascularendothelial cells was then measured under physiologically relevant wall shear stresses. Finally, we deployed this method successfully at a field site in Blantyre, Malawi. The method is a promising new tool for the investigation of the pathogenesis of severe malaria. PMID:21743938

  19. Defining the morphology and mechanism of the hemoglobin transport pathway in Plasmodium falciparum-infected erythrocytes.

    PubMed

    Milani, Katharine J; Schneider, Timothy G; Taraschi, Theodore F

    2015-04-01

    Hemoglobin degradation during the asexual cycle of Plasmodium falciparum is an obligate process for parasite development and survival. It is established that hemoglobin is transported from the host erythrocyte to the parasite digestive vacuole (DV), but this biological process is not well characterized. Three-dimensional reconstructions made from serial thin-section electron micrographs of untreated, trophozoite-stage P. falciparum-infected erythrocytes (IRBC) or IRBC treated with different pharmacological agents provide new insight into the organization and regulation of the hemoglobin transport pathway. Hemoglobin internalization commences with the formation of cytostomes from localized, electron-dense collars at the interface of the parasite plasma and parasitophorous vacuolar membranes. The cytostomal collar does not function as a site of vesicle fission but rather serves to stabilize the maturing cytostome. We provide the first evidence that hemoglobin transport to the DV uses an actin-myosin motor system. Short-lived, hemoglobin-filled vesicles form from the distal end of the cytostomes through actin and dynamin-mediated processes. Results obtained with IRBC treated with N-ethylmaleimide (NEM) suggest that fusion of hemoglobin-containing vesicles with the DV may involve a soluble NEM-sensitive factor attachment protein receptor-dependent mechanism. In this report, we identify new key components of the hemoglobin transport pathway and provide a detailed characterization of its morphological organization and regulation. PMID:25724884

  20. Therapeutic efficacy of chloroquine and sulfadoxine/pyrimethamine against Plasmodium falciparum infection in Somalia.

    PubMed Central

    Warsame, M.; Abdillahi, A.; Duale, O. Nur; Ismail, A. Nur; Hassan, A. M.; Mohamed, A.; Warsame, A.

    2002-01-01

    OBJECTIVE: To assess the efficacy of chloroquine and sulfadoxine/pyrimethamine in the treatment of uncomplicated Plasmodium falciparum infections in Somalia. METHODS: Patients with clinical malaria in Merca, an area of high transmission of the disease, were treated with the standard regimens of chloroquine (25 mg/kg) or sulfadoxine/pyrimethamine (25 mg sulfadoxine and 1.25 mg pyrimethamine per kg). Similar patients in Gabiley, an area of low transmission, received the standard regimen of chloroquine. The clinical and parasitological responses were monitored for 14 days. FINDINGS: Chloroquine treatment resulted in clinical failure in 33% (n = 60) and 51% (n = 49) of the patients in Merca and Gabiley respectively. There were corresponding parasitological failures of 77% RII/RIII and 35% RII/RIII. Patients who experienced clinical failure had significantly higher initial parasitaemia than those in whom there was an adequate clinical response, both in Merca (t = 2.2; P t = 2.8; P n = 50) of the patients achieved an adequate clinical response despite a parasitological failure rate of 76% RII/RIII. CONCLUSION: Chloroquine should no longer be considered adequate for treating clinical falciparum malaria in vulnerable groups in the areas studied. Doubts about the therapeutic life of sulfadoxine/pyrimethamine in relation to malaria are raised by the high levels of resistance in the Merca area and underline the need to identify suitable alternatives. PMID:12378287

  1. Studying fitness cost of Plasmodium falciparum infection in malaria vectors: validation of an appropriate negative control

    PubMed Central

    2013-01-01

    Background The question whether Plasmodium falciparum infection affects the fitness of mosquito vectors remains open. A hurdle for resolving this question is the lack of appropriate control, non-infected mosquitoes that can be compared to the infected ones. It was shown recently that heating P. falciparum gametocyte-infected blood before feeding by malaria vectors inhibits the infection. Therefore, the same source of gametocyte-infected blood could be divided in two parts, one heated, serving as the control, the other unheated, allowing the comparison of infected and uninfected mosquitoes which fed on exactly the same blood otherwise. However, before using this method for characterizing the cost of infection to mosquitoes, it is necessary to establish whether feeding on previously heated blood affects the survival and fecundity of mosquito females. Methods Anopheles gambiae M molecular form females were exposed to heated versus non-heated, parasite-free human blood to mimic blood meal on non-infectious versus infectious gametocyte-containing blood. Life history traits of mosquito females fed on blood that was heat-treated or not were then compared. Results The results reveal that heat treatment of the blood did not affect the survival and fecundity of mosquito females. Consistently, blood heat treatment did not affect the quantity of blood ingested. Conclusions The study indicates that heat inactivation of gametocyte-infected blood will only inhibit mosquito infection and that this method is suitable for quantifying the fitness cost incurred by mosquitoes upon infection by P. falciparum. PMID:23282172

  2. Dynamics in the Cytoadherence Phenotypes of Plasmodium falciparum Infected Erythrocytes Isolated during Pregnancy

    PubMed Central

    Doritchamou, Justin; Sossou-tchatcha, Sylvain; Cottrell, Gilles; Moussiliou, Azizath; Hounton Houngbeme, Christophe; Massougbodji, Achille; Deloron, Philippe; Ndam, Nicaise Tuikue

    2014-01-01

    Pregnant women become susceptible to malaria infection despite their acquired immunity to this disease from childhood. The placental sequestration of Plasmodium falciparum infected erythrocytes (IE) is the major feature of malaria during pregnancy, due to ability of these parasites to bind chondroitin sulfate A (CSA) in the placenta through the VAR2CSA protein that parasites express on the surface of IE. We collected parasites at different times of pregnancy and investigated the adhesion pattern of freshly collected isolates on the three well described host receptors (CSPG, CD36 and ICAM-1). Var genes transcription profile and VAR2CSA surface-expression were assessed in these isolates. Although adhesion of IE to CD36 and ICAM-1 was observed in some isolates, CSA-adhesion was the predominant binding feature in all isolates analyzed. Co-existence in the peripheral blood of several adhesion phenotypes in early pregnancy isolates was observed, a diversity that gradually tightens with gestational age in favour of the CSA-adhesion phenotype. Infections occurring in primigravidae were often by parasites that adhered more to CSA than those from multigravidae. Data from this study further emphasize the specificity of CSA adhesion and VAR2CSA expression by parasites responsible for pregnancy malaria, while drawing attention to the phenotypic complexity of infections occurring early in pregnancy as well as in multigravidae. PMID:24905223

  3. Malaria’s Deadly Grip: Cytoadhesion of Plasmodium falciparum Infected Erythrocytes

    PubMed Central

    Smith, Joseph D.; Rowe, J. Alexandra; Higgins, Matthew K.; Lavstsen, Thomas

    2013-01-01

    Summary Cytoadhesion of Plasmodium falciparum infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected-erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. In one extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria. PMID:23957661

  4. Spatially-explicit risk profiling of Plasmodium falciparum infections at a small scale: a geostatistical modelling approach

    PubMed Central

    Silué, Kigbafori D; Raso, Giovanna; Yapi, Ahoua; Vounatsou, Penelope; Tanner, Marcel; N'Goran, Eliézer K; Utzinger, Jürg

    2008-01-01

    Background There is a renewed political will and financial support to eradicate malaria. Spatially-explicit risk profiling will play an important role in this endeavour. Patterns of Plasmodium falciparum infection prevalence were examined among schoolchildren in a highly malaria-endemic area. Methods A questionnaire was administered and finger prick blood samples collected from 3,962 children, aged six to 16 years, attending 55 schools in a rural part of western Côte d'Ivoire. Information was gathered from the questionnaire on children's socioeconomic status and the use of bed nets for the prevention of malaria. Blood samples were processed with standardized, quality-controlled methods for diagnosis of Plasmodium spp. infections. Environmental data were obtained from satellite images and digitized maps. Bayesian variogram models for spatially-explicit risk modelling of P. falciparum infection prevalence were employed, assuming for stationary and non-stationary spatial processes. Findings The overall prevalence of P. falciparum infection was 64.9%, ranging between 34.0% and 91.9% at the unit of the school. Risk factors for a P. falciparum infection included age, socioeconomic status, not sleeping under a bed net, distance to health care facilities and a number of environmental features (i.e. normalized difference vegetation index, rainfall and distance to rivers). After taking into account spatial correlation only age remained significant. Non-stationary models performed better than stationary models. Conclusion Spatial risk profiling of P. falciparum prevalence data provides a useful tool for targeting malaria control intervention, and hence will play a role in the quest of local elimination and ultimate eradication of the disease. PMID:18570685

  5. Adverse Pregnancy Outcomes in an Area Where Multidrug-Resistant Plasmodium vivax and Plasmodium falciparum Infections Are Endemic

    PubMed Central

    Poespoprodjo, Jeanne Rini; Fobia, Wendy; Kenangalem, Enny; Lampah, Daniel A.; Warikar, Noah; Seal, Andrew; McGready, Rose; Sugiarto, Paulus; Tjitra, Emiliana; Anstey, Nicholas M.; Price, Ric N.

    2009-01-01

    Background Plasmodium falciparum infection exerts a considerable burden on pregnant women, but less is known about the adverse consequences of Plasmodium vivax infection. Methods In Papua, Indonesia, where multiple drug resistance to both species has emerged, we conducted a cross-sectional hospital-based study to quantify the risks and consequences of maternal malaria. Results From April 2004 through December 2006, 3046 pregnant women were enrolled in the study. The prevalence of parasitemia at delivery was 16.8% (432 of 2570 women had infections), with 152 (35.2%) of these 432 infections being associated with fever. The majority of infections were attributable to P. falciparum (250 [57.9%]); 146 (33.8%) of the infections were attributable to P. vivax, and 36 (8.3%) were coinfections with both species. At delivery, P. falciparum infection was associated with severe anemia (hemoglobin concentration, <7 g/dL; odds ratio [OR], 2.8; 95% confidence interval [95% CI], 2.0–4.0) and a 192 g (95% CI, 119–265) reduction in mean birth weight (P < .001). P. vivax infection was associated with an increased risk of moderate anemia (hemoglobin concentration, 7–11 g/dL; OR, 1.8; 95% CI, 1.2–2.9; P = .01) and a 108 g (95% CI, 17.5–199) reduction in mean birth weight (P < .019). Parasitemia was associated with preterm delivery (OR, 1.5; 95% CI, 1.1–2.0; P = .02) and stillbirth (OR, 2.3; 95% CI, 1.3–4.1; P = .007) but was not associated with these outcomes after controlling for the presence of fever and severe anemia, suggesting that malaria increases the risk of preterm delivery and stillbirth through fever and contribution to severe anemia rather than through parasitemia per se. Conclusions These observations highlight the need for novel, safe, and effective treatment and prevention strategies against both multidrug-resistant P. falciparum and multidrug-resistant P. vivax infections in pregnant women in areas of mixed endemicity. PMID:18419439

  6. A spiral scaffold underlies cytoadherent knobs in Plasmodium falciparum-infected erythrocytes.

    PubMed

    Watermeyer, Jean M; Hale, Victoria L; Hackett, Fiona; Clare, Daniel K; Cutts, Erin E; Vakonakis, Ioannis; Fleck, Roland A; Blackman, Michael J; Saibil, Helen R

    2016-01-21

    Much of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1. Using electron tomography, we have examined the 3-dimensional structure of knobs in detergent-insoluble skeletons of P falciparum 3D7 schizonts. We describe a highly organized knob skeleton composed of a spiral structure coated by an electron-dense layer underlying the knob membrane. This knob skeleton is connected by multiple links to the erythrocyte cytoskeleton. We used immuno-electron microscopy (EM) to locate KAHRP in these structures. The arrangement of membrane proteins in the knobs, visualized by high-resolution freeze-fracture scanning EM, is distinct from that in the surrounding erythrocyte membrane, with a structure at the apex that likely represents the adhesion site. Thus, erythrocyte knobs in P falciparum infection contain a highly organized skeleton structure underlying a specialized region of membrane. We propose that the spiral and dense coat organize the cytoadherence structures in the knob, and anchor them into the erythrocyte cytoskeleton. The high density of knobs and their extensive mechanical linkage suggest an explanation for the rigidification of the cytoskeleton in infected cells, and for the transmission to the cytoskeleton of shear forces experienced by adhering cells. PMID:26637786

  7. Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes.

    PubMed

    Udomsangpetch, Rachanee; Pipitaporn, Busaba; Silamut, Kamolrat; Pinches, Robert; Kyes, Sue; Looareesuwan, Sornchai; Newbold, Christopher; White, Nicholas J

    2002-09-01

    In falciparum malaria, the malaria parasite induces changes at the infected red blood cell surface that lead to adherence to vascular endothelium and other red blood cells. As a result, the more mature stages of Plasmodium falciparum are sequestered in the microvasculature and cause vital organ dysfunction, whereas the ring stages circulate in the blood stream. Malaria is characterized by fever. We have studied the effect of febrile temperatures on the cytoadherence in vitro of P. falciparum-infected erythrocytes. Freshly obtained ring-stage-infected red blood cells from 10 patients with acute falciparum malaria did not adhere to the principle vascular adherence receptors CD36 or intercellular adhesion molecule-1 (ICAM-1). However, after a brief period of heating to 40 degrees C, all ring-infected red blood cells adhered to CD36, and some isolates adhered to ICAM-1, whereas controls incubated at 37 degrees C did not. Heating to 40 degrees C accelerated cytoadherence and doubled the maximum cytoadherence observed (P < 0.01). Erythrocytes infected by ring-stages of the ICAM-1 binding clone A4var also did not cytoadhere at 37 degrees C, but after heating to febrile temperatures bound to both CD36 and ICAM-1. Adherence of red blood cells infected with trophozoites was also increased considerably by brief heating. The factor responsible for heat induced adherence was shown to be the parasite derived variant surface protein PfEMP-1. RNA analysis showed that levels of var mRNA did not differ between heated and unheated ring-stage parasites. Thus fever-induced adherence appeared to involve increased trafficking of PfEMP-1 to the erythrocyte membrane. Fever induced cytoadherence is likely to have important pathological consequences and may explain both clinical deterioration with fever in severe malaria and the effects of antipyretics on parasite clearance. PMID:12177447

  8. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes.

    PubMed

    Treutiger, C J; Scholander, C; Carlson, J; McAdam, K P; Raynes, J G; Falksveden, L; Wahlgren, M

    1999-12-01

    Excessive sequestration of Plasmodium falciparum-infected (pRBC) and uninfected erythrocytes (RBC) in the microvasculature, cytoadherence, and rosetting, have been suggested to be correlated with the development of cerebral malaria. P. falciparum erythrocyte membrane protein-1 (PfEMP1) is the parasite-derived adhesin which mediates rosetting. Herein we show that serum proteins are crucial for the rosette formation of four strains of parasites (FCR3S1, TM284, TM180, and R29), whereas the rosettes of a fifth strain (DD2) are serum independent. Some parasites, e.g., FCR3S1, can be depleted of all rosettes by washes in heparin and Na citrate and none of the rosettes remain when the parasite is grown in foetal calf serum or ALBUMAX. Rosettes of other parasites are less sensitive; e.g., 20% of TM180 and R29 and 70% of TM284 rosettes still prevail after cultivation. A serum fraction generated by ion-exchange chromatography and poly-ethylene-glycol precipitation restored 50% of FCR3S1 and approx 40 to 100% of TM180 rosettes. In FCR3S1, antibodies to fibrinogen reverted the effect of the serum fraction and stained fibrinogen bound to the pRBC surface in transmission electron microscopy. Normal, nonimmune IgM and/or IgG was also found attached to the pRBC of the four serum-dependent strains as seen by surface immunofluorescens. Our results suggest that serum proteins, known to participate in rouleaux formation of normal erythrocytes, produce stable rosettes in conjunction with the recently identified parasite-derived rosetting ligand PfEMP1. PMID:10600447

  9. A sensitive, specific and reproducible real-time polymerase chain reaction method for detection of Plasmodium vivax and Plasmodium falciparum infection in field-collected anophelines.

    PubMed

    Bickersmith, Sara A; Lainhart, William; Moreno, Marta; Chu, Virginia M; Vinetz, Joseph M; Conn, Jan E

    2015-06-01

    We describe a simple method for detection of Plasmodium vivax and Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed with Plasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochrome b-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible. PMID:26061150

  10. The practice of jhum cultivation and its relationship to Plasmodium falciparum infection in the Chittagong Hill Districts of Bangladesh.

    PubMed

    Galagan, Sean R; Prue, Chai Shwai; Khyang, Jacob; Khan, Wasif Ali; Ahmed, Sabeena; Ram, Malathi; Alam, Mohammad Shafiul; Haq, M Zahirul; Akter, Jasmin; Streatfield, Peter Kim; Glass, Gregory; Norris, Douglas E; Nyunt, Myaing Myaing; Shields, Timothy; Sullivan, David J; Sack, David A

    2014-08-01

    Malaria is endemic in the Chittagong Hill Districts of southeastern Bangladesh. Previous epidemiological analyses identified the agricultural practice of jhum cultivation as a potential risk factor for malaria infection. We conducted qualitative interviews with jhum cultivators and surveillance workers to describe jhum cultivation and used demographic and malaria surveillance in two study unions from May of 2010 to August of 2012 to better understand the relationship between jhum cultivation and malaria infection. Qualitative interviews revealed that jhum cultivation is conducted on remote, steep hillsides by ethnic tribal groups. Quantitative analyses found that adult jhum cultivators and individuals who live in the same residence had significantly higher incidence rates of symptomatic Plasmodium falciparum infection compared with non-cultivators. These results confirm that jhum cultivation is an independent risk factor for malaria infection and underscore the need for malaria testing and treatment services to reach remote populations in the Chittagong Hill Districts. PMID:24821843

  11. Cytokine-associated neutrophil extracellular traps and antinuclear antibodies in Plasmodium falciparum infected children under six years of age

    PubMed Central

    Baker, Virginia S; Imade, Godwin E; Molta, Norman B; Tawde, Pallavi; Pam, Sunday D; Obadofin, Michael O; Sagay, Soloman A; Egah, Daniel Z; Iya, Daniel; Afolabi, Bangmboye B; Baker, Murray; Ford, Karen; Ford, Robert; Roux, Kenneth H; Keller, Thomas CS

    2008-01-01

    Background In Plasmodium falciparum-infected children, the relationships between blood cell histopathology, blood plasma components, development of immunocompetence and disease severity remain poorly understood. Blood from Nigerian children with uncomplicated malaria was analysed to gain insight into these relationships. This investigation presents evidence for circulating neutrophil extracellular traps (NETs) and antinuclear IgG antibodies (ANA). The presence of NETs and ANA to double-stranded DNA along with the cytokine profiles found suggests autoimmune mechanisms that could produce pathogenesis in children, but immunoprotection in adults. Methods Peripheral blood smear slides and blood samples obtained from 21 Nigerian children under six years of age, presenting with uncomplicated malaria before and seven days after initiation of sulphadoxine-pyrimethamine (SP) treatment were analysed. The slides were stained with Giemsa and with DAPI. Levels of the pro-inflammatory cytokines IFN-γ, IL-2, TNF, CRP, and IL-6, select anti-inflammatory cytokines TGF-β and IL-10, and ANA were determined by immunoassay. Results The children exhibited circulating NETs with adherent parasites and erythrocytes, elevated ANA levels, a Th2 dominated cytokine profile, and left-shifted leukocyte differential counts. Nonspecific ANA levels were significant in 86% of the children pretreatment and in 100% of the children seven days after SP treatment, but in only 33% of age-matched control samples collected during the season of low parasite transmission. Levels of ANA specific for dsDNA were significant in 81% of the children both pre-treatment and post treatment. Conclusion The results of this investigation suggest that NET formation and ANA to dsDNA may induce pathology in falciparum-infected children, but activate a protective mechanism against falciparum malaria in adults. The significance of in vivo circulating chromatin in NETs and dsDNA ANA as a causative factor in the

  12. Differential expression of var gene groups is associated with morbidity caused by Plasmodium falciparum infection in Tanzanian children.

    PubMed

    Rottmann, Matthias; Lavstsen, Thomas; Mugasa, Joseph Paschal; Kaestli, Mirjam; Jensen, Anja T R; Müller, Dania; Theander, Thor; Beck, Hans-Peter

    2006-07-01

    The var gene family of Plasmodium falciparum encodes the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 is considered an important pathogenicity factor in P. falciparum infection because it mediates cytoadherence to host cell endothelial receptors. var genes can be grouped into three major groups, A, B, and C, and the conserved var genes, var1-4, according to sequence similarities in coding and noncoding upstream regions. Using real-time quantitative PCR in a study conducted in Tanzania, the var transcript abundances of the different var gene groups were compared among patients with severe, uncomplicated, and asymptomatic malaria. Transcripts of var group A and B genes were more abundant in patients with severe malaria than in patients with uncomplicated malaria. In general, the transcript abundances of var group A and B genes were higher for children with clinical malaria than for children with asymptomatic infections. The var group C and var1-like transcript abundances were similar between the three sample groups. A transcript abundance pattern similar to that for var group A was observed for var2csa and var3-like genes. These results suggest that substantial and systematic differences in var gene expression exist between different clinical presentations. PMID:16790763

  13. Allelic family-specific humoral responses to merozoite surface protein 2 (MSP2) in Gabonese residents with Plasmodium falciparum infections

    PubMed Central

    EKALA, M-T; JOUIN, H; LEKOULOU, F; MERCEREAU-PUIJALON, O; NTOUMI, F

    2002-01-01

    Merozoite surface protein 2 (MSP2) expressed by Plasmodium falciparum asexual blood stages has been identified as a promising vaccine candidate. In order to explore allelic family-specific humoral responses which may be responsible for parasite neutralization during natural infections, isolates from individuals with either asymptomatic infections or uncomplicated malaria and residing in a Central African area where Plasmodium transmission is high and perennial, were analysed using MSP2 as polymorphic marker. The family-specific antibody responses were assessed by ELISA using MSP2 synthetic peptides. We observed an age-dependence of P. falciparum infection complexity. The decrease of infection complexity around 15 years of age was observed simultaneously with an increase in the mean number of MSP2 variants recognized. No significant difference in the P. falciparum genetic diversity and infection complexity was found in isolates from asymptomatic subjects and patients with uncomplicated malaria. The longitudinal follow-up showed a rapid development of immune responses to various regions of MSP2 variants within one week. Comparing humoral responses obtained with the other major antigen on the merozoite surface, MSP1, our findings suggest that different pathways of responsiveness are involved in antibody production to merozoite surface antigens. PMID:12165090

  14. Impact of trehalose transporter knockdown on Anopheles gambiae stress adaptation and susceptibility to Plasmodium falciparum infection

    PubMed Central

    Liu, Kun; Dong, Yuemei; Huang, Yuzheng; Rasgon, Jason L.; Agre, Peter

    2013-01-01

    Anopheles gambiae is a major vector mosquito for Plasmodium falciparum, the deadly pathogen causing most human malaria in sub-Saharan Africa. Synthesized in the fat body, trehalose is the predominant sugar in mosquito hemolymph. It not only provides energy but also protects the mosquito against desiccation and heat stresses. Trehalose enters the mosquito hemolymph by the trehalose transporter AgTreT1. In adult female A. gambiae, AgTreT1 is predominantly expressed in the fat body. We found that AgTreT1 expression is induced by environmental stresses such as low humidity or elevated temperature. AgTreT1 RNA silencing reduces the hemolymph trehalose concentration by 40%, and the mosquitoes succumb sooner after exposure to desiccation or heat. After an infectious blood meal, AgTreT1 RNA silencing reduces the number of P. falciparum oocysts in the mosquito midgut by over 70% compared with mock-injected mosquitoes. These data reveal important roles for AgTreT1 in stress adaptation and malaria pathogen development in a major vector mosquito. Thus, AgTreT1 may be a potential target for malaria vector control. PMID:24101462

  15. Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin

    PubMed Central

    Cholera, Rushina; Brittain, Nathaniel J.; Gillrie, Mark R.; Lopera-Mesa, Tatiana M.; Diakité, Séidina A. S.; Arie, Takayuki; Krause, Michael A.; Guindo, Aldiouma; Tubman, Abby; Fujioka, Hisashi; Diallo, Dapa A.; Doumbo, Ogobara K.; Ho, May; Wellems, Thomas E.; Fairhurst, Rick M.

    2008-01-01

    Sickle trait, the heterozygous state of normal hemoglobin A (HbA) and sickle hemoglobin S (HbS), confers protection against malaria in Africa. AS children infected with Plasmodium falciparum are less likely than AA children to suffer the symptoms or severe manifestations of malaria, and they often carry lower parasite densities than AA children. The mechanisms by which sickle trait might confer such malaria protection remain unclear. We have compared the cytoadherence properties of parasitized AS and AA erythrocytes, because it is by these properties that parasitized erythrocytes can sequester in postcapillary microvessels of critical tissues such as the brain and cause the life-threatening complications of malaria. Our results show that the binding of parasitized AS erythrocytes to microvascular endothelial cells and blood monocytes is significantly reduced relative to the binding of parasitized AA erythrocytes. Reduced binding correlates with the altered display of P. falciparum erythrocyte membrane protein-1 (PfEMP-1), the parasite's major cytoadherence ligand and virulence factor on the erythrocyte surface. These findings identify a mechanism of protection for HbS that has features in common with that of hemoglobin C (HbC). Coinherited hemoglobin polymorphisms and naturally acquired antibodies to PfEMP-1 may influence the degree of malaria protection in AS children by further weakening cytoadherence interactions. PMID:18192399

  16. Decreased sensitivity of artesunate and chloroquine of Plasmodium falciparum infecting hemoglobin H and/or hemoglobin constant spring erythrocytes.

    PubMed Central

    Yuthavong, Y; Butthep, P; Bunyaratvej, A; Fucharoen, S

    1989-01-01

    Plasmodium falciparum infecting hemoglobin (Hb) H and/or Hb Constant Spring erythrocytes in vitro was relatively more resistant than that infecting normal erythrocytes to artesunate and chloroquine, while the sensitivity to pyrimethamine was unchanged. The 50% inhibitory concentrations (IC50) for artesunate in HbH (alpha-thal 1/alpha-thal 2), HbH (alpha-thal 1/Hb Constant Spring), and homozygous Hb Constant Spring erythrocytes were 4.5 +/- 2.8, 8.5 +/- 3.2, and 2.6 +/- 1.6 nM compared with 0.82 +/- 0.35 nM in normal erythrocytes (P less than 0.002 for all three cases). The IC50 for chloroquine were 97 +/- 46, 162 +/- 67, and 93 +/- 36 nM, respectively, in the variant erythrocytes, compared with 48 +/- 13 nM in normal erythrocytes (P less than 0.002, 0.002, and 0.02, respectively). The differences in sensitivity to artesunate and chloroquine of the parasite infecting HbH erythrocytes are probably related to their oxidative mode of action and relatively high amounts of antioxidant enzymes in the host erythrocytes. This novel example of dependence on the host of the malarial parasite drug sensitivity may have implications for chemotherapy of malaria in patients with genetically variant erythrocytes. PMID:2643631

  17. Use of self-assembling GFP to determine protein topology and compartmentalisation in the Plasmodium falciparum-infected erythrocyte.

    PubMed

    Külzer, Simone; Petersen, Wiebke; Baser, Avni; Mandel, Katharina; Przyborski, Jude M

    2013-02-01

    In recent years, and largely supported by the increasing use of transfection technology, much research attention has been given to protein trafficking in the Plasmodium falciparum infected red blood cell. By expression of fluorescent reporter proteins, much information has been gained on both the signals and mechanisms directing proteins to their correct sub-cellular localisation within the parasite and infected host cell. Generally however, verification of the observed fluorescent phenotype is carried out using more traditional techniques such as co-immunofluorescence, protease protection, and cell fractionation followed by Western blot. Here we apply a self-assembling split GFP (saGFP) system and show that this can be used to determine both membrane topology and compartmentalisation using transfection technology alone. As an example, we verify the topology of an ER membrane protein, hDer1-1, and of an exported parasite Hsp40 co-chaperone, PFE55. Additionally, we can demonstrate that this system has the potential to be applied to analysis of organellar proteins. PMID:23271009

  18. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes

    SciTech Connect

    Howard, R.J.; Uni, S.; Aikawa, M.; Aley, S.B.; Leech, J.H.; Lew, A.M.; Wellems, T.E.; Rener, J.; Taylor, D.W.

    1986-10-01

    Plasmodium falciparum-infected erythrocytes (IRBCs) synthesis several histidine-rich proteins (HRPs) that accumulate high levels of (/sup 3/H)histidine but very low levels of amino acids such as (/sup 3/H)isoleucine or (/sup 35/S)methionine. The authors prepared a monoclonal antibody which reacts specifically with one of these HRPs (Pf HRP II) and studied the location and synthesis of this protein during the parasite's intracellular growth. With the knob-positive Malayan Camp strain of P. falciparum, the monoclonal antibody identified a multiplet of protein of protein bands with major species at M/sub r/ 72,000 and 69,000. Pf HRP II synthesis began with immature parasites (rings) and continued through the trophozoite stage. The M/sub r/ 72,000 band of Pf HRP II, but not the faster moving bands of the multiplet, was recovered as a water-soluble protein from the culture supernatant of intact IRBCs. Approximately 50% of the total (/sup 3/H)histidine radioactivity incorporated into the M/sub r/ 72,000 band was extracellular between 2 and 24 h of culture. Immunofluorescence and cryothin-section immunoelectron microscopy localized Pf HRP II to several cell compartments including the parasite cytoplasm, as concentrated packets in the host erythrocyte cytoplasm and at the IRBC membrane. The results provide evidence for an intracellular route of transport for a secreted malarial protein from the parasite through several membranes and the host cell cytoplasm.

  19. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon

    PubMed Central

    Fratus, Alessandra Sampaio Bassi; Cabral, Fernanda Janku; Fotoran, Wesley Luzetti; Medeiros, Márcia Melo; Carlos, Bianca Cechetto; Martha, Rosimeire dalla; da Silva, Luiz Hildebrando Pereira; Lopes, Stefanie Costa Pinto; Costa, Fabio Trindade Maranhão; Wunderlich, Gerhard

    2014-01-01

    In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms. PMID:25099336

  20. Shrinking a large dataset to identify variables associated with increased risk of Plasmodium falciparum infection in Western Kenya.

    PubMed

    Tremblay, M; Dahm, J S; Wamae, C N; De Glanville, W A; Fèvre, E M; Döpfer, D

    2015-12-01

    Large datasets are often not amenable to analysis using traditional single-step approaches. Here, our general objective was to apply imputation techniques, principal component analysis (PCA), elastic net and generalized linear models to a large dataset in a systematic approach to extract the most meaningful predictors for a health outcome. We extracted predictors for Plasmodium falciparum infection, from a large covariate dataset while facing limited numbers of observations, using data from the People, Animals, and their Zoonoses (PAZ) project to demonstrate these techniques: data collected from 415 homesteads in western Kenya, contained over 1500 variables that describe the health, environment, and social factors of the humans, livestock, and the homesteads in which they reside. The wide, sparse dataset was simplified to 42 predictors of P. falciparum malaria infection and wealth rankings were produced for all homesteads. The 42 predictors make biological sense and are supported by previous studies. This systematic data-mining approach we used would make many large datasets more manageable and informative for decision-making processes and health policy prioritization. PMID:25876816

  1. Renal related disorders in concomitant Schistosoma haematobium-Plasmodium falciparum infection among children in a rural community of Nigeria.

    PubMed

    Morenikeji, Olajumoke A; Eleng, Ituna E; Atanda, Omotayo S; Oyeyemi, Oyetunde T

    2016-01-01

    Schistosomiasis and malaria are two common parasitic diseases that are co-endemic in resource-poor communities of sub-Saharan Africa. This study aims to assess the effects of single and concomitant Plasmodium falciparum and Schistosoma haematobium infections on two indicators of renal injury in school children in a rural community of Nigeria. A cross-sectional epidemiological survey was carried out on a total of 173 schoolchildren between ages 6 and 18 years (mean age 11.4±2.6 years). Urine and blood samples were collected by standard methods for concurrent microscopic diagnosis of S. haematobium and P. falciparum infections. Urinary blood (hematuria) and protein were determined using a urinalysis dipstick. The prevalence of single infections was 75.1% and 78.2% for S. haematobium and P. falciparum, respectively. A total of 57.1% individuals were infected with the two parasites. The prevalence of hematuria was significantly higher in the co-infection status (63.8%) than in single S. haematobium (52.2%) and P. falciparum (43.7%) infection statuses (p=0.04), while no significant variation was recorded in proteinuria in the three infection statuses (p=0.53). The proportion of children with renal injury associated with the co-infection of these parasites is very high, particularly in young children, who seem to have a higher prevalence of hematuria. PMID:26220794

  2. Plasmodium falciparum Infection Induces Expression of a Mosquito Salivary Protein (Agaphelin) That Targets Neutrophil Function and Inhibits Thrombosis without Impairing Hemostasis

    PubMed Central

    Waisberg, Michael; Molina-Cruz, Alvaro; Mizurini, Daniella M.; Gera, Nidhi; Sousa, Beatriz C.; Ma, Dongying; Leal, Ana C.; Gomes, Tainá; Kotsyfakis, Michalis; Ribeiro, José M. C.; Lukszo, Jan; Reiter, Karine; Porcella, Stephen F.; Oliveira, Carlo J.; Monteiro, Robson Q.; Barillas-Mury, Carolina; Pierce, Susan K.; Francischetti, Ivo M. B.

    2014-01-01

    Background Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. Principal Findings Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with a Leu in the P1 position. Agaphelin displays high homology to orthologs present in Aedes sp and Culex sp salivary glands, indicating an evolutionarily expanded family. Kinetics and surface plasmon resonance experiments determined that chemically synthesized Agaphelin behaves as a slow and tight inhibitor of neutrophil elastase (KD∼10 nM), but does not affect other enzymes, nor promotes vasodilation, or exhibit antimicrobial activity. TAXIscan chamber assay revealed that Agaphelin inhibits neutrophil chemotaxis toward fMLP, affecting several parameter associated with cell migration. In addition, Agaphelin reduces paw edema formation and accumulation of tissue myeloperoxidase triggered by injection of carrageenan in mice. Agaphelin also blocks elastase/cathepsin-mediated platelet aggregation, abrogates elastase-mediated cleavage of tissue factor pathway inhibitor, and attenuates neutrophil-induced coagulation. Notably, Agaphelin inhibits neutrophil extracellular traps (NETs) formation and prevents FeCl3-induced arterial thrombosis, without impairing hemostasis. Conclusions Blockade of neutrophil elastase emerges as a novel antihemostatic mechanism in hematophagy; it also supports the notion that neutrophils and the innate immune response are targets for antithrombotic therapy. In addition, Agaphelin is the first antihemostatic whose expression is induced by Plasmodium sp infection. These results suggest that an important interplay takes place in

  3. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes.

    PubMed

    Riglar, David T; Rogers, Kelly L; Hanssen, Eric; Turnbull, Lynne; Bullen, Hayley E; Charnaud, Sarah C; Przyborski, Jude; Gilson, Paul R; Whitchurch, Cynthia B; Crabb, Brendan S; Baum, Jake; Cowman, Alan F

    2013-01-01

    Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex. PMID:23361006

  4. Spatial association with PTEX complexes defines regions for effector export into Plasmodium falciparum-infected erythrocytes

    PubMed Central

    Riglar, David T.; Rogers, Kelly L.; Hanssen, Eric; Turnbull, Lynne; Bullen, Hayley E.; Charnaud, Sarah C.; Przyborski, Jude; Gilson, Paul R.; Whitchurch, Cynthia B.; Crabb, Brendan S.; Baum, Jake; Cowman, Alan F.

    2013-01-01

    Export of proteins into the infected erythrocyte is critical for malaria parasite survival. The majority of effector proteins are thought to export via a proteinaceous translocon, resident in the parasitophorous vacuole membrane surrounding the parasite. Identification of the Plasmodium translocon of exported proteins and its biochemical association with exported proteins suggests it performs this role. Direct evidence for this, however, is lacking. Here using viable purified Plasmodium falciparum merozoites and three-dimensional structured illumination microscopy, we investigate remodelling events immediately following parasite invasion. We show that multiple complexes of the Plasmodium translocon of exported proteins localize together in foci that dynamically change in clustering behaviour. Furthermore, we provide conclusive evidence of spatial association between exported proteins and exported protein 2, a core component of the Plasmodium translocon of exported proteins, during native conditions and upon generation of translocation intermediates. These data provide the most direct cellular evidence to date that protein export occurs at regions of the parasitophorous vacuole membrane housing the Plasmodium translocon of exported proteins complex. PMID:23361006

  5. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmodium parasites are known to manipulate the behaviour of their vectors so as to enhance their transmission. However, it is unknown if this vector manipulation also affects mosquito-plant interaction and sugar uptake. Dual-choice olfactometer and probing assays were used to study plant seeking b...

  6. Abnormal PfEMP1/knob display on Plasmodium falciparum-infected erythrocytes containing hemoglobin variants: fresh insights into malaria pathogenesis and protection

    PubMed Central

    Fairhurst, Rick M.; Bess, Cameron D.; Krause, Michael A.

    2012-01-01

    Hemoglobin (Hb) variants are associated with reduced risk of life-threatening Plasmodium falciparum malaria syndromes, including cerebral malaria and severe malarial anemia. Despite decades of research, the mechanisms by which common Hb variants – sickle HbS, HbC, α-thalassemia, fetal HbF – protect African children against severe and fatal malaria have not been fully elucidated. In vitro experimental and epidemiological data have long suggested that Hb variants do not confer malaria protection by restricting the growth of parasites in red blood cells (RBCs). Recently, four Hb variants were found to impair cytoadherence, the binding of P. falciparum-infected RBCs (PfRBCs) to microvascular endothelial cells (MVECs), a centrally important event in both parasite survival and malaria pathogenesis in humans. Impaired cytoadherence is associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite’s major cytoadherence ligand and virulence factor, on the surface of host RBCs. We propose a model in which Hb variants allow parasites to display relatively low levels of PfEMP1, sufficient for sequestering PfRBCs in microvessels and avoiding their clearance from the bloodstream by the spleen. By preventing the display of high levels of PfEMP1, Hb variants may weaken the binding of PfRBCs to MVECs, compromising their ability to activate endothelium and initiate the downstream microvascular events that drive the pathogenesis of malaria. PMID:22634344

  7. α-Thalassemia Impairs the Cytoadherence of Plasmodium falciparum-Infected Erythrocytes

    PubMed Central

    Krause, Michael A.; Diakite, Seidina A. S.; Lopera-Mesa, Tatiana M.; Amaratunga, Chanaki; Arie, Takayuki; Traore, Karim; Doumbia, Saibou; Konate, Drissa; Keefer, Jeffrey R.; Diakite, Mahamadou; Fairhurst, Rick M.

    2012-01-01

    Background α-thalassemia results from decreased production of α-globin chains that make up part of hemoglobin tetramers (Hb; α2β2) and affects up to 50% of individuals in some regions of sub-Saharan Africa. Heterozygous (−α/αα) and homozygous (−α/−α) genotypes are associated with reduced risk of severe Plasmodium falciparum malaria, but the mechanism of this protection remains obscure. We hypothesized that α-thalassemia impairs the adherence of parasitized red blood cells (RBCs) to microvascular endothelial cells (MVECs) and monocytes – two interactions that are centrally involved in the pathogenesis of severe disease. Methods and Findings We obtained P. falciparum isolates directly from Malian children with malaria and used them to infect αα/αα (normal), −α/αα and −α/−α RBCs. We also used laboratory-adapted P. falciparum clones to infect −/−α RBCs obtained from patients with HbH disease. Following a single cycle of parasite invasion and maturation to the trophozoite stage, we tested the ability of parasitized RBCs to bind MVECs and monocytes. Compared to parasitized αα/αα RBCs, we found that parasitized −α/αα, −α/−α and −/−α RBCs showed, respectively, 22%, 43% and 63% reductions in binding to MVECs and 13%, 33% and 63% reductions in binding to monocytes. α-thalassemia was associated with abnormal display of P. falciparum erythrocyte membrane protein 1 (PfEMP1), the parasite’s main cytoadherence ligand and virulence factor, on the surface of parasitized RBCs. Conclusions Parasitized α-thalassemic RBCs show PfEMP1 display abnormalities that are reminiscent of those on the surface of parasitized sickle HbS and HbC RBCs. Our data suggest a model of malaria protection in which α-thalassemia ameliorates the pro-inflammatory effects of cytoadherence. Our findings also raise the possibility that other unstable hemoglobins such as HbE and unpaired α-globin chains (in the case of β-thalassemia) protect against

  8. Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics

    PubMed Central

    2013-01-01

    Background At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Methods Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Results Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. Conclusion The negative relationship

  9. An epidemiologically successful Escherichia coli sequence type modulates Plasmodium falciparum infection in the mosquito midgut.

    PubMed

    Tchioffo, Majoline T; Abate, Luc; Boissière, Anne; Nsango, Sandrine E; Gimonneau, Geoffrey; Berry, Antoine; Oswald, Eric; Dubois, Damien; Morlais, Isabelle

    2016-09-01

    Malaria transmission relies on the successful development of Plasmodium parasites in the Anopheles mosquito vector. Within the mosquito midgut, malaria parasites encounter a resident bacterial flora and parasite-bacteria interactions modulate Plasmodium development. The mechanisms by which the bacteria interact with malaria parasites are still unknown. The intestinal microbiota could regulate immune signaling pathways or produce bacterial compounds that block Plasmodium development. In this study, we characterized Escherichia coli strains previously isolated from the Anopheles mosquito midgut and investigated the putative role of two E. coli clones, 444ST95 and 351ST73, on parasite development. Sporogonic development was significantly impacted by exposure to clone 444ST95 whereas prevalence and intensity of infection were not different in mosquitoes challenged with 351ST73 as compared to control mosquitoes. This result indicates midgut bacteria exhibit intra-specific variation in their ability to inhibit Plasmodium development. Expression patterns of immune genes differed between mosquitoes challenged with 444ST95 and 351ST73 and examination of the luminal midgut surface by transmission electron microscopy revealed distinct effects of bacterial exposure on midgut epithelial cells. The 444ST95 clone strongly affected mosquito survival and parasite development and this could be associated to the Hemolysin F or other toxins released by the bacteria. Further studies will be needed to decipher the virulence factors and to determine their contribution to the observed phenotype of the 444ST95E. coli strain that belongs to the epidemiological ST95 clonal group responsible for extra intestinal infections in human and other animals. PMID:27154329

  10. Detection of Plasmodium falciparum-infected red blood cells by optical stretching

    NASA Astrophysics Data System (ADS)

    Mauritz, Jakob M. A.; Tiffert, Teresa; Seear, Rachel; Lautenschläger, Franziska; Esposito, Alessandro; Lew, Virgilio L.; Guck, Jochen; Kaminski, Clemens F.

    2010-05-01

    We present the application of a microfluidic optical cell stretcher to measure the elasticity of malaria-infected red blood cells. The measurements confirm an increase in host cell rigidity during the maturation of the parasite Plasmodium falciparum. The device combines the selectivity and sensitivity of single-cell elasticity measurements with a throughput that is higher than conventional single-cell techniques. The method has potential to detect early stages of infection with excellent sensitivity and high speed.

  11. High Prevalence of Plasmodium falciparum Infection in Asymptomatic Individuals from the Democratic Republic of the Congo

    PubMed Central

    Mvumbi, Dieudonné Makaba; Bobanga, Thierry Lengu; Melin, Pierrette; De Mol, Patrick; Kayembe, Jean-Marie Ntumba; Situakibanza, Hippolyte Nani-Tuma; Mvumbi, Georges Lelo; Nsibu, Célestin Ndosimao; Umesumbu, Solange Efundu; Hayette, Marie-Pierre

    2016-01-01

    Malaria remains a major public health problem in the Democratic Republic of Congo (DRC) with 14 million cases reported by the WHO Malaria Report in 2014. Asymptomatic malaria cases are known to be prevalent in endemic areas and are generally untreated, resulting in a significant source of gametocytes that may serve as reservoir of disease transmission. Considering that microscopy certainly underestimates the prevalence of Plasmodium infections within asymptomatic carriers and that PCR assays are currently recognized as the most sensitive methods for Plasmodium identification, this study was conducted to weigh the asymptomatic carriage in DRC by a molecular method. Six provinces were randomly selected for blood collection in which 80 to 100 individuals were included in the study. Five hundred and eighty blood samples were collected and molecular diagnosis was performed. Globally, almost half of the samples collected from asymptomatic individuals (280/580; 48.2%) had Plasmodium infections and the most species identified was P. falciparum alone in combination with P. malariae. The high prevalence reported here should interpellate the bodies involved in malaria control in DR Congo to take into account asymptomatic carriers in actions taken and consider asymptomatic malaria as a major hurdle for malaria elimination. PMID:26942036

  12. Equivalent susceptibility of Anopheles gambiae M and S molecular forms and Anopheles arabiensis to Plasmodium falciparum infection in Burkina Faso

    PubMed Central

    2013-01-01

    Background The Anopheles gambiae sensu lato (s.l.) species complex in Burkina Faso consists of Anopheles arabiensis, and molecular forms M and S of Anopheles gambiae sensu stricto (s.s.). Previous studies comparing the M and S forms for level of infection with Plasmodium falciparum have yielded conflicting results. Methods Mosquito larvae were sampled from natural pools, reared to adulthood under controlled conditions, and challenged with natural P. falciparum by experimental feeding with blood from gametocyte carriers. Oocyst infection prevalence and intensity was determined one week after infection. DNA from carcasses was genotyped to identify species and molecular form. Results In total, 7,400 adult mosquitoes grown from wild-caught larvae were challenged with gametocytes in 29 experimental infections spanning four transmission seasons. The overall infection prevalence averaged 40.7% for A. gambiae M form, 41.4% for A. gambiae S form, and 40.1% for A. arabiensis. There was no significant difference in infection prevalence or intensity between the three population groups. Notably, infection experiments in which the population groups were challenged in parallel on the same infective blood displayed less infection difference between population groups, while infections with less balanced composition of population groups had lower statistical power and displayed apparent differences that fluctuated more often from the null average. Conclusion The study clearly establishes that, at the study site in Burkina Faso, there is no difference in genetic susceptibility to P. falciparum infection between three sympatric population groups of the A. gambiae s.l. complex. Feeding the mosquito groups on the same infective blood meal greatly increases statistical power. Conversely, comparison of the different mosquito groups between, rather than within, infections yields larger apparent difference between mosquito groups, resulting from lower statistical power and greater noise

  13. Ticket to ride: export of proteins to the Plasmodium falciparum-infected erythrocyte.

    PubMed

    Przyborski, Jude M; Nyboer, Britta; Lanzer, Michael

    2016-07-01

    The malaria parasite Plasmodium falciparum exports numerous proteins to its chosen host cell, the mature human erythrocyte. Many of these proteins are important for parasite survival. To reach the host cell, parasites must cross multiple membrane barriers and then furthermore be targeted to their correct sub-cellular localisation. This novel transport pathway has received much research attention in the past decades, especially as many of the mechanisms are expected to be parasite-specific and thus potential targets for drug development. In this article we summarize some of the most recent advances in this field, and highlight areas in which further research is needed. PMID:26996123

  14. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    PubMed

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  15. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections

    PubMed Central

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A. M.; Li, Tao; Sim, B. Kim Lee; Hoffman, Stephen L.; Kremsner, Peter G.; Mordmüller, Benjamin; Duffy, Michael F.; Tannich, Egbert

    2016-01-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase. PMID:27070311

  16. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    NASA Astrophysics Data System (ADS)

    Edward, Kert; Farahi, Faramarz

    2014-05-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition.

  17. Comparison of Plasmodium falciparum infections in Panamanian and Colombian owl monkeys.

    PubMed

    Rossan, R N; Harper, J S; Davidson, D E; Escajadillo, A; Christensen, H A

    1985-11-01

    Parameters of blood-induced infections of the Vietnam Oak Knoll, Vietnam Smith, and Uganda Palo Alto strains of Plasmodium falciparum studied in 395 Panamanian owl monkeys in this laboratory between 1976-1984 were compared with those reported from another laboratory for 665 Colombian owl monkeys, studied between 1968-1975, and, at the time, designated Aotus trivirgatus griseimembra. The virulence of these strains was less in Panamanian than in Colombian owl monkeys, as indicated by lower mortality rates of the Panamanian monkeys during the first 30 days of patency. Maximum parasitemias of the Vietnam Smith and Uganda Palo Alto strain, in Panamanian owl monkeys dying during the first 15 days of patent infection, were significantly higher than in Colombian owl monkeys. Panamanian owl monkeys that survived the primary attack had significantly higher maximum parasitemias than the surviving Colombian owl monkeys. Peak parasitemias were attained significantly earlier after patency in Panamanian than in Colombian owl monkeys, irrespective of the strain of P. falciparum. More Panamanian than Colombian owl monkeys evidenced self-limited infection after the primary attack of either the Vietnam Smith or Uganda Palo Alto strain. The duration of the primary attacks and recrudescences were significantly shorter in Panamanian than in Colombian owl monkeys. Mean peak parasitemias during recrudescence were usually higher in Panamanian owl monkeys than in Colombian monkeys. Differences of infection parameters were probably attributable, in part, to geographical origin of the two monkey hosts and parasite strains. PMID:3914842

  18. A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes.

    PubMed

    Shelby, J Patrick; White, John; Ganesan, Karthikeyan; Rathod, Pradipsinh K; Chiu, Daniel T

    2003-12-01

    Severe malaria by Plasmodium falciparum is a potentially fatal disease, frequently unresponsive to even the most aggressive treatments. Host organ failure is associated with acquired rigidity of infected red blood cells and capillary blockage. In vitro techniques have played an important role in modeling cell deformability. Although, historically they have either been applied to bulk cell populations or to measure single physical parameters of individual cells. In this article, we demonstrate the unique abilities and benefits of elastomeric microchannels to characterize complex behaviors of single cells, under flow, in multicellular capillary blockages. Channels of 8-, 6-, 4-, and 2-microm widths were readily traversed by the 8 microm-wide, highly elastic, uninfected red blood cells, as well as by infected cells in the early ring stages. Trophozoite stages failed to freely traverse 2- to 4-microm channels; some that passed through the 4-microm channels emerged from constricted space with deformations whose shape-recovery could be observed in real time. In 2-microm channels, trophozoites mimicked "pitting," a normal process in the body where spleen beds remove parasites without destroying the red cell. Schizont forms failed to traverse even 6-microm channels and rapidly formed a capillary blockage. Interestingly, individual uninfected red blood cells readily squeezed through the blockages formed by immobile schizonts in a 6-microm capillary. The last observation can explain the high parasitemia in a growing capillary blockage and the well known benefits of early blood transfusion in severe malaria. PMID:14638939

  19. Trafficking of STEVOR to the Maurer's clefts in Plasmodium falciparum-infected erythrocytes

    PubMed Central

    Przyborski, Jude M; Miller, Susanne K; Pfahler, Judith M; Henrich, Philipp P; Rohrbach, Petra; Crabb, Brendan S; Lanzer, Michael

    2005-01-01

    The human malarial parasite Plasmodium falciparum exports proteins to destinations within its host erythrocyte, including cytosol, surface and membranous profiles of parasite origin termed Maurer's clefts. Although several of these exported proteins are determinants of pathology and virulence, the mechanisms and trafficking signals underpinning protein export are largely uncharacterized—particularly for exported transmembrane proteins. Here, we have investigated the signals mediating trafficking of STEVOR, a family of transmembrane proteins located at the Maurer's clefts and believed to play a role in antigenic variation. Our data show that, apart from a signal sequence, a minimum of two addition signals are required. This includes a host cell targeting signal for export to the host erythrocyte and a transmembrane domain for final sorting to Maurer's clefts. Biochemical studies indicate that STEVOR traverses the secretory pathway as an integral membrane protein. Our data suggest general principles for transport of transmembrane proteins to the Maurer's clefts and provide new insights into protein sorting and trafficking processes in P. falciparum. PMID:15961998

  20. Peripheral Blood Stem Cell Transplant Related Plasmodium falciparum Infection in a Patient with Sickle Cell Disease

    PubMed Central

    Mejia, Rojelio; Booth, Garrett S.; Fedorko, Daniel P.; Hsieh, Matthew M.; Khuu, Hanh M.; Klein, Harvey G.; Mu, Jianbing; Fahle, Gary; Nutman, Thomas B.; Su, Xin-Zhuan; Williams, Esther C.; Flegel, Willy A.; Klion, Amy

    2012-01-01

    Background Although transmission of Plasmodium falciparum (Pf) infection during red blood cell transfusion from an infected donor has been well documented, malaria parasites are not known to infect hematopoietic stem cells. We report a case of Pf infection in a patient 11 days after peripheral blood stem cell transplant for sickle cell disease. Study Design and Methods Malaria parasites were detected in thick blood smears by Giemsa staining. Pf HRP2 antigen was measured by ELISA on whole blood and plasma. Pf DNA was detected in whole blood and stem cell retention samples by real-time PCR using Pf species–specific primers and probes. Genotyping of 8 Pf microsatellites was performed on genomic DNA extracted from whole blood. Results Pf was not detected by molecular, serologic or parasitologic means in samples from the recipient until day 11 post-transplant, coincident with the onset of symptoms. In contrast, Pf antigen was retrospectively detected in stored plasma collected 3 months prior to transplant from the asymptomatic donor. Pf DNA was detected in whole blood from both the donor and recipient post-transplant, and genotyping confirmed shared markers between donor and recipient Pf strains. Look back analysis of red blood cell donors was negative for Pf infection. Conclusions These findings are consistent with transmission by the stem cell product and have profound implications with respect to the screening of potential stem cell donors and recipients from malaria-endemic regions. PMID:22536941

  1. Placental Malaria in Colombia: Histopathologic Findings in Plasmodium vivax and P. falciparum Infections

    PubMed Central

    Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda

    2013-01-01

    Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807

  2. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    PubMed

    Luckhart, Shirley; Giulivi, Cecilia; Drexler, Anna L; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S; Eigenheer, Richard; Phinney, Brett S; Pakpour, Nazzy; Pietri, Jose E; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-02-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  3. Sustained Activation of Akt Elicits Mitochondrial Dysfunction to Block Plasmodium falciparum Infection in the Mosquito Host

    PubMed Central

    Drexler, Anna L.; Antonova-Koch, Yevgeniya; Sakaguchi, Danielle; Napoli, Eleonora; Wong, Sarah; Price, Mark S.; Eigenheer, Richard; Phinney, Brett S.; Pakpour, Nazzy; Pietri, Jose E.; Cheung, Kong; Georgis, Martha; Riehle, Michael

    2013-01-01

    The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS) rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d), energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3–5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial function in the

  4. Trends in multiplicity of Plasmodium falciparum infections among asymptomatic residents in the middle belt of Ghana

    PubMed Central

    2013-01-01

    Background Malaria is the most important cause of mortality and morbidity in children living in the Kintampo districts in the middle part of Ghana. This study has investigated the multiplicity of infection (MOI) within asymptomatic residents of the Kintampo districts, and the influence of age and seasonality on MOI, by studying the distribution of the polymorphic Plasmodium falciparum antigen merozoite surface protein 2 (MSP2). Methods DNA was extracted from an asymptomatic cohort of children and adults infected with P. falciparum during the period November 2003 to October 2004. Polymerase chain reaction was carried out and multiplicity of infection (MOI) was determined. Results Children under 10 years of age had an average MOI of 2.3 while adults 18 years and above had an average MOI of 1.4. Children below five years had high and low average MOIs of 2.8 in the March/April survey and 0.9 in the May/June survey respectively. A similar trend in the monthly distribution of MOI was observed for the entire cohort. IC/3D7 strains outnumbered the FC27 strains throughout the year by a ratio of about 4:1 with the difference between the prevalence of the two strains being least marked in the March/April survey, at the beginning of the rainy season. MOI was not linked to the level of malaria transmission as measured by the entomological inoculation rate. Discussion/conclusion The impact of interventions, introduced since this baseline study was carried out on the parasite diversity of asymptomatic residents will be the subject of further investigations. PMID:23327681

  5. The Density of Knobs on Plasmodium falciparum-Infected Erythrocytes Depends on Developmental Age and Varies among Isolates

    PubMed Central

    Quadt, Katharina A.; Barfod, Lea; Andersen, Daniel; Bruun, Jonas; Gyan, Ben; Hassenkam, Tue; Ofori, Michael F.; Hviid, Lars

    2012-01-01

    Background The virulence of Plasmodium falciparum malaria is related to the parasite’s ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density. Methodology/Principal Findings We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA) were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions. Conclusions/Significance The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the infected host. PMID

  6. Absence of an association between Plasmodium falciparum infection and post-ivermectin Loa-related non-neurologic serious adverse events.

    PubMed

    Fokom-Domgue, Joël; Pion, Sébastien D; Gounoue, Raceline; Akame, Julie; Nguipdop-Djomo, Patrick; Twum-Danso, Nana A Y; Thylefors, Björn; Boussinesq, Michel; Kamgno, Joseph

    2014-02-01

    Although ivermectin treatment can induce serious adverse events (SAEs) in individuals harboring high Loa loa microfilaremia (mf), not all patients with high mf levels develop such reactions, suggesting that cofactors may be involved. A study was conducted in Cameroon to investigate the possible role of Plasmodium coinfection at the time of ivermectin treatment in the development of SAEs. Before their first ivermectin treatment, thick smears were obtained from 4,175 individuals to determine the burden of Plasmodium sp., L. loa, and Mansonella perstans. After treatment, 18 (4.3 per 1,000) patients developed a non-neurologic SAE. Logistic regression analysis, adjusting for age, sex, P. falciparum infection, and M. perstans infection intensities, confirmed that L. loa mf was the main risk factor for SAEs. We found no evidence that coinfection with P. falciparum at the time of ivermectin treatment was associated with the occurrence of Loa-related SAEs in this population. PMID:24420781

  7. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    SciTech Connect

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-11-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an /sup 125/I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes.

  8. Expression of Merozoite Surface Protein Markers by Plasmodium falciparum-Infected Erythrocytes in Peripheral Blood and Tissues of Children with Fatal Malaria▿

    PubMed Central

    Dobaño, Carlota; Rogerson, Stephen J.; Taylor, Terrie E.; McBride, Jana S.; Molyneux, Malcolm E.

    2007-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes is a pathological feature of fatal cerebral malaria. P. falciparum is genetically diverse among, and often within, patients. Preferential sequestration of certain genotypes might be important in pathogenesis. We compared circulating parasites with parasites sequestered in the brain, spleen, liver, and lung in the same Malawian children with fatal malaria, classifying serotypes using antibodies to merozoite surface proteins 1 and 2 and immunofluorescence in order to differentiate parasites and to quantify the proportions of each serotype. We found (i) similar distributions of various serotypes in different tissues and (ii) concordance between parasite serotypes in peripheral blood and parasite serotypes in tissues. No serotypes predominated in the brain in cerebral malaria, and parasites belonging to a single serotype did not cluster within individual vessels or within single tissues. These findings do not support the hypothesis that cerebral malaria is caused by cerebral sequestration of certain virulent types. PMID:17118989

  9. The effect of timing and frequency of Plasmodium falciparum infection during pregnancy on the risk of low birth weight and maternal anemia

    PubMed Central

    Kalilani, Linda; Mofolo, Innocent; Chaponda, Marjorie; Rogerson, Stephen J.; Meshnick, Steven R.

    2016-01-01

    Plasmodium falciparum infection during pregnancy causes maternal anemia and low birth weight (LBW), but the effect of frequency and timing of infection on the severity of these adverse effects is unknown. We conducted a cohort study recruiting 2462 pregnant women in Malawi. Microscopy was used to diagnose malaria at enrollment, follow-up and delivery. Birth weight and maternal hemoglobin were measured at delivery. The association between timing and frequency of infection and LBW and maternal anemia was analyzed using a binomial regression model. Compared with uninfected women, (i) the risk of LBW increased with the number of malaria episodes [one episode: prevalence ratio (PR) 1.62 (95% CI 1.07–2.46); two episodes: PR 2.41 (95% CI 1.39–4.18)]; (ii) the risk for maternal anemia increased with the number of malaria episodes [one episode: PR 1.15 (95% CI 0.86–1.54); two episodes: PR 1.82 (95% CI 1.28–2.62)]; and (iii) the risk of LBW was higher with infection in the second (PR 1.71; 95% CI 1.06–2.74) than third trimester or at delivery (PR 1.55; 95% CI 0.88–2.75). The timing and frequency of P. falciparum infection during pregnancy affected the risk of LBW but only frequency of infection had an effect on the risk of maternal anemia. Identification of gestational periods when malaria causes most adverse outcomes will facilitate effective targeting of interventions. PMID:20207387

  10. Copper pathways in Plasmodium falciparum infected erythrocytes indicate an efflux role for the copper P-ATPase

    PubMed Central

    2004-01-01

    Copper, like iron, is a transition metal that can generate oxygen radicals by the Fenton reaction. The Plasmodium parasite invades an erythrocyte host cell containing 20 μM copper, of which 70% is contained in the Cu/Zn SOD (cuprozinc superoxide dismutase). In the present study, we follow the copper pathways in the Plasmodium-infected erythrocyte. Metal-determination analysis shows that the total copper content of Percoll-purified trophozoite-stage-infected erythrocytes is 66% that of uninfected erythrocytes. This decrease parallels the decrease seen in Cu/Zn SOD levels in parasite-infected erythrocytes. Neocuproine, an intracellular copper chelator, arrests parasites at the ring-to-trophozoite stage transition and also specifically decreases intraparasitic levels of Cu/Zn SOD and catalase. Up to 150 μM BCS (2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulphonic acid), an extracellular copper chelator, has no effect on parasite growth. We characterized a single copy PfCuP-ATPase (Plasmodium falciparum copper P-ATPase) transporter, which, like the Crypto-sporidium parvum copper P-ATPase, has a single copper-binding domain: ‘Met-Xaa-Cys-Xaa-Xaa-Cys’. Recombinant expression of the N-terminal metal-binding domain reveals that the protein specifically binds reduced copper. Transcription of the PfCuP-ATPase gene is the highest at late ring stage/early trophozoite, and is down-regulated in the presence of neocuproine. Immunofluorescence and electron microscopy indicate the transporter to be both in the parasite and on the erythrocyte membrane. Both the decrease in total copper and the location of the PfCuP-ATPase gene indicate a copper-efflux pathway from the infected erythrocyte. PMID:15125686

  11. Demonstration of specific binding of heparin to Plasmodium falciparum-infected vs. non-infected red blood cells by single-molecule force spectroscopy

    NASA Astrophysics Data System (ADS)

    Valle-Delgado, Juan José; Urbán, Patricia; Fernàndez-Busquets, Xavier

    2013-04-01

    Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force ranging between 28 and 46 pN depending on the loading rate. No significant binding of heparin to non-infected RBCs has been observed in control experiments. This work represents the first approach to quantitatively evaluate GAG-pRBC molecular interactions at the individual molecule level.Glycosaminoglycans (GAGs) play an important role in the sequestration of Plasmodium falciparum-infected red blood cells (pRBCs) in the microvascular endothelium of different tissues, as well as in the formation of small clusters (rosettes) between infected and non-infected red blood cells (RBCs). Both sequestration and rosetting have been recognized as characteristic events in severe malaria. Here we have used heparin and pRBCs infected by the 3D7 strain of P. falciparum as a model to study GAG-pRBC interactions. Fluorescence microscopy and fluorescence-assisted cell sorting assays have shown that exogenously added heparin has binding specificity for pRBCs (preferentially for those infected with late forms of the parasite) vs. RBCs. Heparin-pRBC adhesion has been probed by single-molecule force spectroscopy, obtaining an average binding force

  12. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells

    NASA Astrophysics Data System (ADS)

    Diez-Silva, Monica; Park, Yongkeun; Huang, Sha; Bow, Hansen; Mercereau-Puijalon, Odile; Deplaine, Guillaume; Lavazec, Catherine; Perrot, Sylvie; Bonnefoy, Serge; Feld, Michael S.; Han, Jongyoon; Dao, Ming; Suresh, Subra

    2012-08-01

    Proteins exported by Plasmodium falciparum to the red blood cell (RBC) membrane modify the structural properties of the parasitized RBC (Pf-RBC). Although quasi-static single cell assays show reduced ring-stage Pf-RBCs deformability, the parameters influencing their microcirculatory behavior remain unexplored. Here, we study the dynamic properties of ring-stage Pf-RBCs and the role of the parasite protein Pf155/Ring-Infected Erythrocyte Surface Antigen (RESA). Diffraction phase microscopy revealed RESA-driven decreased Pf-RBCs membrane fluctuations. Microfluidic experiments showed a RESA-dependent reduction in the Pf-RBCs transit velocity, which was potentiated at febrile temperature. In a microspheres filtration system, incubation at febrile temperature impaired traversal of RESA-expressing Pf-RBCs. These results show that RESA influences ring-stage Pf-RBCs microcirculation, an effect that is fever-enhanced. This is the first identification of a parasite factor influencing the dynamic circulation of young asexual Pf-RBCs in physiologically relevant conditions, offering novel possibilities for interventions to reduce parasite survival and pathogenesis in its human host.

  13. The Prevalence of α-Thalassemia and Its Relation to Plasmodium falciparum Infection in Patients Presenting to Clinics in Two Distinct Ecological Zones in Ghana.

    PubMed

    Ghartey-Kwansah, George; Boampong, Johnson N; Aboagye, Benjamin; Afoakwah, Richmond; Ameyaw, Elvis O; Quashie, Neils B

    2016-01-01

    Thalassemia and sickle cell disease constitute the most monogenic hemoglobin (Hb) disorders worldwide. Clinical symptoms of α(+)-thalassemia (α(+)-thal) are related to inadequate Hb production and accumulation of β- and/or γ-globin subunits. The association of thalassemia with malaria remains contentious, though from its distribution it appears to have offered some protection against the disease. Data on the prevalence of thalassemia in Ghana and its link with malaria is scanty and restricted. It was an objective of this cross-sectional study to determine the prevalence of thalassemia in areas representing two of Ghana's distinct ecological zones. The relationship between thalassemia and Plasmodium falciparium (P. falciparum) infection was also ascertained. Overall, 277 patients presenting to health facilities in the study areas were recruited to participate. Tests were carried out to determine the presence of α(+)-thal, sickle cell and malaria parasites in the blood samples of participants. The outcome of this study showed an α(+)-thal frequency of 19.9% for heterozygotes (-α/αα) and 6.8% for homozygotes (-α/-α). Plasmodium falciparum was detected in 17.7% of the overall study population and 14.9% in those with α(+)-thal. No association was observed between those with α(+)-thal and the study sites (p > 0.05). A test of the Hardy-Weinberg law yielded no significant difference (p < 0.001). Findings from this study suggest a modest distribution of α(+)-thal in Ghana with no bias to the ecological zones. Although the prevalence and parasite density were relatively low in those with the disorder, no association was found between them. PMID:26575356

  14. Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells

    PubMed Central

    Avril, Marion; Bernabeu, Maria; Benjamin, Maxwell; Brazier, Andrew Jay

    2016-01-01

    ABSTRACT Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. PMID:27406562

  15. Antibodies to variant surface antigens of Plasmodium falciparum infected erythrocytes associated with protection from treatment failure and development of anaemia in pregnancy

    PubMed Central

    Feng, Gaoqian; Aitken, Elizabeth; Yosaatmadja, Francisca; Kalilani, Linda; Meshnick, Steven R; Jaworowski, Anthony; Simpson, Julie A; Rogerson, Stephen J

    2009-01-01

    Background In pregnancy associated malaria (PAM), Plasmodium falciparum infected erythrocytes (IEs) express variant surface antigens (VSA-PAM) that evade existing immunity and mediate placental sequestration. Antibodies to VSA-PAM develop with gravidity and block placental adhesion or opsonise IEs for phagocytic clearance, protecting women from anemia and low birth weight Methods and findings Using sera from 141 parasitemic pregnant Malawian women enrolled in a randomized trial of antimalarials and VSA-PAM-expressing CS2 IEs, we quantitated levels of IgG to VSA-PAM by flow cytometry and opsonizing antibodies by measuring uptake of IEs by THP1 promonocytes. After controlling for gravidity and antimalarial treatment, IgG against VSA-PAM was associated with decreased anemia at delivery (OR=0.66, 95% confidence interval [CI] 0.46, 0.93; P=0.018) and weakly associated with decreased parasitological failure (OR=0.78; 95% CI, 0.60, 1.03; P=0.075), especially re-infection (OR=0.73; CI, 0.53,1.01; P=0.057). Opsonizing antibodies to CS2 IE were associated with less maternal anemia. (OR=0.31, 95% CI, 0.13, 0.74; P=0.008) and treatment failure (OR=0.48; 95% CI, 0.25, 0.90; P=0.023), primarily due to recrudescent infection (OR=0.49; 95% CI, 0.21, 1.12; P=0.089). Conclusion Both IgG antibody to VSA-PAM and opsonizing antibody, a functional measure of immunity correlate with parasite clearance and less anemia in pregnancy malaria. PMID:19500037

  16. Heterozygous mutants of TIRAP (S180L) polymorphism protect adult patients with Plasmodium falciparum infection against severe disease and mortality.

    PubMed

    Panda, Aditya K; Das, Bidyut K; Panda, Abhinash; Tripathy, Rina; Pattnaik, Sarit S; Mahto, Harishankar; Pied, Sylviane; Pathak, Sulabha; Sharma, Shobhona; Ravindran, Balachandran

    2016-09-01

    Toll-interleukin-1 receptor domain containing adapter protein (TIRAP) plays a crucial role in TLR2 and TLR4 signaling pathways. Glycosylphospatidylinositol (GPI), considered a toxin molecule of Plasmodium falciparum, interacts with TLR2 and 4 to induce an immune inflammatory response. A single nucleotide polymorphism at coding region of TIRAP (S180L) has been reported to influence TLRs signaling. In the present study, we investigated the association of TIRAP (S180L) polymorphism with susceptibility/resistance to severe P. falciparum malaria in a cohort of adult patients from India. TIRAP S180L polymorphism was typed in 347 cases of severe malaria (SM), 232 uncomplicated malaria and 150 healthy controls. Plasma levels of TNF-α was quantified by ELISA. Heterozygous mutation (S/L) conferred significant protection against MOD (multi organ dysfunction), NCSM (non-cerebral severe malaria) as well as mortality. Interestingly, homozygous mutants (L/L) had 16 fold higher susceptibility to death. TIRAP mutants (S/L and L/L) were associated with significantly higher plasma TNF-α levels compared to wild type (S/S). The results of the present study demonstrate that TIRAP S180L heterozygous mutation may protect patients against severe malaria and mortality. PMID:27166096

  17. Plasmodium falciparum infection and age influence parasite growth inhibition mediated by IgG in Beninese infants.

    PubMed

    Adamou, Rafiou; Chénou, Francine; Sadissou, Ibrahim; Sonon, Paulin; Dechavanne, Célia; Djilali-Saïah, Abdelkader; Cottrell, Gilles; Le Port, Agnès; Massougbodji, Achille; Remarque, Edmond J; Luty, Adrian J F; Sanni, Ambaliou; Garcia, André; Migot-Nabias, Florence; Milet, Jacqueline; Courtin, David

    2016-07-01

    Antibodies that impede the invasion of Plasmodium falciparum (P. falciparum) merozoites into erythrocytes play a critical role in anti-malarial immunity. The Growth Inhibition Assay (GIA) is an in vitro measure of the functional capacity of such antibodies to limit erythrocyte invasion and/or parasite growth. Up to now, it is unclear whether growth-inhibitory activity correlates with protection from clinical disease and there are inconsistent results from studies performed with GIA. Studies that have focused on the relationship between IgGs and their in vitro parasite Growth Inhibition Activity (GIAc) in infants aged less than two years old are rare. Here, we used clinical and parasitological data to precisely define symptomatic or asymptomatic infection with P. falciparum in groups of infants followed-up actively for 18 months post-natally. We quantified the levels of IgG1 and IgG3 directed to a panel of candidate P. falciparum vaccine antigens (AMA-1, MSP1, 2, 3 and GLURP) using ELISA and the functional activity of IgG was quantified using GIA. Data were then correlated with individuals' infection status. At 18 months of age, infants harbouring infections at the time of blood sampling had an average 19% less GIAc than those not infected (p=0.004, multivariate linear regression). GIAc decreased from 12 to 18 months of age (p=0.003, Wilcoxon matched pairs test). Antibody levels quantified at 18 months in infants were strongly correlated with their exposure to malarial infection, however GIAc was not correlated with malaria infectious status (asymptomatic and symptomatic groups). In conclusion, both infection status at blood draw and age influence parasite growth inhibition mediated by IgG in the GIA. Both factors must be taken into account when correlations between GIAc and anti-malarial protection or vaccine efficacy have to be made. PMID:27001144

  18. Induction of pro-inflammatory response of the placental trophoblast by Plasmodium falciparum infected erythrocytes and TNF

    PubMed Central

    2013-01-01

    Background Plasmodium falciparum placental malaria is characterized by the sequestration of infected erythrocytes (IEs) in the placental intervillous space via adherence to chondroitin sulphate A (CSA), production of inflammatory molecules, and leukocytes infiltration. Previous reports suggest that the syncytiotrophoblast (ST) immunologically responds to IEs contact. This study explores the inflammatory response induced in BeWo cells by adherence of IEs and TNFstimulation. Methods A non-syncitialized BeWo cells (trophoblast model) were used to evaluate its response to CSA-adherents IEs (FCB1csa, FCB2csa, FCR3csa, 3D7csa) and TNF stimulation. Expression of membrane ICAM-1 (mICAM-1) receptor in BeWo cells was quantified by flow cytometry and the IL-8, IL-6 and soluble ICAM-1 (sICAM-1) concentrations were quantified by enzyme-linked immunosorbentassay (ELISA) in BeWo stimulated supernatants. Results BeWo cells stimulated with TNF and CSA-adherents IEs of FCB1csa and 3D7csa (strains with higher adhesion) increase the expression of ICAM-1 on the surface of cells and the secretion of immune factors IL-8, IL-6 and sICAM-1. This inflammatory response appears to be related to the level of adherence of IEs because less adherent strains do not induce significant changes. Conclusions It was found that BeWo cells responds to CSA-IEs and to TNF favouring a placental pro-inflammatory environment, evidenced by increases in the expression of membrane mICAM-1 and release of soluble ICAM-1, as well as the IL-8 and IL-6 secretion. The expression of ICAM-1 in BeWo cells might be associated to an increase in leukocyte adhesion to the trophoblast barrier, promoting greater inflammation, while the sICAM-1 release could be a protection mechanism activated by trophoblastic cells, in order to regulate the local inflammatory response. PMID:24237643

  19. Plasmodium falciparum-Infected Erythrocyte Knob Density Is Linked to the PfEMP1 Variant Expressed

    PubMed Central

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine E.; Hempel, Casper; Petersen, Jens Emil Vang; Hassenkam, Tue; Hviid, Lars

    2015-01-01

    ABSTRACT Members of the clonally variant Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediate adhesion of infected erythrocytes (IEs) to vascular receptors. PfEMP1 expression is normally confined to nanoscale knob protrusions on the IE surface membrane. To investigate the relationship between the densities of these IE surface knobs and the PfEMP1 variant expressed, we used specific antibody panning to generate three sublines of the P. falciparum clone IT4, which expresses the PfEMP1 variants IT4VAR04, IT4VAR32b, and IT4VAR60. The knob density in each subline was then determined by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and compared to PfEMP1 and knob-associated histidine-rich protein (KAHRP) expression. Selection for uniform expression of IT4VAR04 produced little change in knob density, compared to unselected IEs. In contrast, selection for IT4VAR32b expression increased knob density approximately 3-fold, whereas IEs selected for IT4VAR60 expression were essentially knobless. When IT4VAR60+ IEs were subsequently selected to express IT4VAR04 or IT4VAR32b, they again displayed low and high knob densities, respectively. All sublines expressed KAHRP regardless of the PfEMP1 expressed. Our study documents for the first time that knob density is related to the PfEMP1 variant expressed. This may reflect topological requirements to ensure optimal adhesive properties of the IEs. PMID:26443460

  20. Prime-boost vaccination with chimpanzee adenovirus and modified vaccinia Ankara encoding TRAP provides partial protection against Plasmodium falciparum infection in Kenyan adults.

    PubMed

    Ogwang, Caroline; Kimani, Domtila; Edwards, Nick J; Roberts, Rachel; Mwacharo, Jedidah; Bowyer, Georgina; Bliss, Carly; Hodgson, Susanne H; Njuguna, Patricia; Viebig, Nicola K; Nicosia, Alfredo; Gitau, Evelyn; Douglas, Sandy; Illingworth, Joe; Marsh, Kevin; Lawrie, Alison; Imoukhuede, Egeruan B; Ewer, Katie; Urban, Britta C; S Hill, Adrian V; Bejon, Philip

    2015-05-01

    Protective immunity to the liver stage of the malaria parasite can be conferred by vaccine-induced T cells, but no subunit vaccination approach based on cellular immunity has shown efficacy in field studies. We randomly allocated 121 healthy adult male volunteers in Kilifi, Kenya, to vaccination with the recombinant viral vectors chimpanzee adenovirus 63 (ChAd63) and modified vaccinia Ankara (MVA), both encoding the malaria peptide sequence ME-TRAP (the multiple epitope string and thrombospondin-related adhesion protein), or to vaccination with rabies vaccine as a control. We gave antimalarials to clear parasitemia and conducted PCR (polymerase chain reaction) analysis on blood samples three times a week to identify infection with the malaria parasite Plasmodium falciparum. On Cox regression, vaccination reduced the risk of infection by 67% [95% confidence interval (CI), 33 to 83%; P = 0.002] during 8 weeks of monitoring. T cell responses to TRAP peptides 21 to 30 were significantly associated with protection (hazard ratio, 0.24; 95% CI, 0.08 to 0.75; P = 0.016). PMID:25947165

  1. Nutritional and socio-economic factors associated with Plasmodium falciparum infection in children from Equatorial Guinea: results from a nationally representative survey

    PubMed Central

    Custodio, Estefanía; Descalzo, Miguel Ángel; Villamor, Eduardo; Molina, Laura; Sánchez, Ignacio; Lwanga, Magdalena; Bernis, Cristina; Benito, Agustín; Roche, Jesús

    2009-01-01

    Background Malaria has traditionally been a major endemic disease in Equatorial Guinea. Although parasitaemia prevalence on the insular region has been substantially reduced by vector control in the past few years, the prevalence in the mainland remains over 50% in children younger than five years. The aim of this study is to investigate the risk factors for parasitaemia and treatment seeking behaviour for febrile illness at country level, in order to provide evidence that will reinforce the EG National Malaria Control Programme. Methods The study was a cross-sectional survey of children 0 to 5 years old, using a multistaged, stratified, cluster-selected sample at the national level. It included a socio-demographic, health and dietary questionnaires, anthropometric measurements, and thick and thin blood smears to determine the Plasmodium infection. A multivariate logistic regression model was used to determine risk factors for parasitaemia, taking into account the cluster design. Results The overall prevalence of parasitemia was 50.9%; it was higher in rural (58.8%) compared to urban areas (44.0%, p = 0.06). Age was positively associated with parasitemia (p < 0.0001). In rural areas, risk factors included longer distance to health facilities (p = 0.01) and a low proportion of households with access to protected water in the community (p = 0.02). Having had an episode of cough in the 15 days prior to the survey was inversely related to parasitemia (p = 0.04). In urban areas, the risk factors were stunting (p = 0.005), not having taken colostrum (p = 0.01), and that someone in the household slept under a bed net (p = 0.002); maternal antimalarial medication intake during pregnancy (p = 0.003) and the household socio-economic status (p = 0.0002) were negatively associated with parasitemia. Only 55% of children with fever were taken outside their homes for care, and treatment seeking behaviour differed substantially between rural and urban populations. Conclusion

  2. Effectiveness of quinine monotherapy for the treatment of Plasmodium falciparum infection in pregnant women in Lambaréné, Gabon.

    PubMed

    Adegnika, Ayôla A; Breitling, Lutz Ph; Agnandji, Selidji T; Chai, Sanders K; Schütte, Daniela; Oyakhirome, Sunny; Schwarz, Norbert G; Grobusch, Martin P; Missinou, Michel A; Ramharter, Michael; Issifou, Saadou; Kremsner, Peter G

    2005-08-01

    Pregnant women participating in a longitudinal immuno-epidemiologic survey in Lambaréné, Gabon, and presenting with Plasmodium falciparum parasitemia at monthly blood smear examinations were offered treatment with oral 7-day quinine monotherapy according to national health guidelines. A total of 50 pregnant women were offered 7-day oral quinine sulfate 10 mg/kg thrice daily. Clinical examinations and laboratory tests were performed on Days 28 and 56 to assess the effectiveness of this standard regimen. By Day 28, the effectiveness of the 7-day quinine regimen was 60% (95% confidence interval: 46-72%). We conclude that a 7-day course of quinine has a poor effectiveness and that alternative treatment regimens for malaria in pregnant women should be assessed. PMID:16103585

  3. Monitoring the uptake of glycosphingolipids in Plasmodium falciparum-infected erythrocytes using both fluorescence microscopy and capillary electrophoresis with laser-induced fluorescence detection

    PubMed Central

    Essaka, David C.; White, John; Rathod, Pradip; Whitmore, Colin D.; Hindsgaul, Ole; Palcic, Monica M.

    2010-01-01

    The metabolism of glycosphingolipids by the malaria-causing parasite Plasmodium falciparum plays an important role in the progression of the disease. We report a new and highly sensitive method to monitor the uptake of glycosphingolipids in infected red blood cells (iRBCs). A tetramethylrhodamine-labeled glycosphingolipid (GM1-TMR) was used as a substrate. Uptake was demonstrated by fluorescence microscopy. The iRBCs were lysed with a 15% solution of saponin and washed with phosphate buffered saline to release intact parasites. The parasites were further lysed and the resulting homogenates were analyzed by capillary electrophoresis with laser-induced fluorescence detection. The lysate from erythrocytes infected at 1% parasitemia generated a signal twenty standard deviations larger than uninfected erythrocytes, which suggests that relatively low infection levels can be studied with this technique. PMID:21043509

  4. A PfRH5-Based Vaccine Is Efficacious against Heterologous Strain Blood-Stage Plasmodium falciparum Infection in Aotus Monkeys

    PubMed Central

    Douglas, Alexander D.; Baldeviano, G. Christian; Lucas, Carmen M.; Lugo-Roman, Luis A.; Crosnier, Cécile; Bartholdson, S. Josefin; Diouf, Ababacar; Miura, Kazutoyo; Lambert, Lynn E.; Ventocilla, Julio A.; Leiva, Karina P.; Milne, Kathryn H.; Illingworth, Joseph J.; Spencer, Alexandra J.; Hjerrild, Kathryn A.; Alanine, Daniel G.W.; Turner, Alison V.; Moorhead, Jeromy T.; Edgel, Kimberly A.; Wu, Yimin; Long, Carole A.; Wright, Gavin J.; Lescano, Andrés G.; Draper, Simon J.

    2015-01-01

    Summary Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. PMID:25590760

  5. Surface co-expression of two different PfEMP1 antigens on single plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1.

    PubMed

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja; Ronander, Elena; Berger, Sanne S; Turner, Louise; Dalgaard, Michael B; Cham, Gerald K K; Victor, Michala E; Lavstsen, Thomas; Theander, Thor G; Arnot, David E; Jensen, Anja T R

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required. PMID:20824088

  6. Membrane specific mapping and colocalization of malarial and host skeletal proteins in the Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy.

    PubMed

    Enderle, T; Ha, T; Ogletree, D F; Chemla, D S; Magowan, C; Weiss, S

    1997-01-21

    Accurate localization of proteins within the substructure of cells and cellular organelles enables better understanding of structure-function relationships, including elucidation of protein-protein interactions. We describe the use of a near-field scanning optical microscope (NSOM) to simultaneously map and detect colocalized proteins within a cell, with superresolution. The system we elected to study was that of human red blood cells invaded by the human malaria parasite Plasmodium falciparum. During intraerythrocytic growth, the parasite expresses proteins that are transported to the erythrocyte cell membrane. Association of parasite proteins with host skeletal proteins leads to modification of the erythrocyte membrane. We report on colocalization studies of parasite proteins with an erythrocyte skeletal protein. Host and parasite proteins were selectively labeled in indirect immunofluorescence antibody assays. Simultaneous dual-color excitation and detection with NSOM provided fluorescence maps together with topography of the cell membrane with subwavelength (100 nm) resolution. Colocalization studies with laser scanning confocal microscopy provided lower resolution (310 nm) fluorescence maps of cross sections through the cell. Because the two excitation colors shared the exact same near-field aperture, the two fluorescence images were acquired in perfect, pixel-by-pixel registry, free from chromatic aberrations, which contaminate laser scanning confocal microscopy measurements. Colocalization studies of the protein pairs of mature parasite-infected erythrocyte surface antigen (MESA) (parasite)/protein4.1(host) and P. falciparum histidine rich protein (PfHRP1) (parasite)/protein4.1(host) showed good real-space correlation for the MESA/protein4.1 pair, but relatively poor correlation for the PfHRP1/protein4.1 pair. These data imply that NSOM provides high resolution information on in situ interactions between proteins in biological membranes. This method of

  7. Similar Efficacy and Tolerability of Double-Dose Chloroquine and Artemether-Lumefantrine for Treatment of Plasmodium falciparum Infection in Guinea-Bissau: A Randomized Trial

    PubMed Central

    Kofoed, Poul-Erik; Rodrigues, Amabelia; Blessborn, Daniel; Thoft-Nielsen, Rikke; Björkman, Anders; Rombo, Lars

    2011-01-01

    Background. In 2008, Guinea-Bissau introduced artemether-lumefantrine for treatment of uncomplicated malaria. Previously, 3 times the standard dose of chloroquine, that was probably efficacious against Plasmodium falciparum with the resistance-associated chloroquine-resistance transporter (pfcrt) 76T allele, was routinely used. The present study compared the efficacy and tolerability of a double standard dose of chloroquine with the efficacy and tolerability of artemether-lumefantrine. Methods. In a randomized open-label clinical trial, artemether-lumefantrine or chloroquine (50 mg/kg) were given as 6 divided doses over 3 days to children aged 6 months - 15 years who had uncomplicated P. falciparum monoinfection. Drug concentrations were measured on day 7. P. falciparum multidrug resistance gene N86Y and pfcrt K76T alleles were identified. Results. The polymerase chain reaction–adjusted day 28 and 42 treatment efficacies were 162 (97%) of 168 and 155 (97%) of 161, respectively, for artemether-lumefantrine and 150 (95%) of 158 and 138 (94%) of 148, respectively, for chloroquine. When parasites with resistance-associated pfcrt 76T were treated, the day 28 efficacy of chloroquine was 87%. No severe drug-related adverse events were detected. Symptom resolution was similar with both treatments. Conclusions. Both treatments achieved the World Health Organization–recommended efficacy for antimalarials that will be adopted as policy. High-dose chloroquine treatment regimes should be further evaluated with the aim of assessing chloroquine as a potential partner drug to artemisinin derivatives. Clinical trials registration. NCT00426439 PMID:21148503

  8. The Effect of Insecticide Treated Nets (ITNs) on Plasmodium falciparum Infection in Rural and Semi-Urban Communities in the South West Region of Cameroon

    PubMed Central

    Apinjoh, Tobias O.; Anchang-Kimbi, Judith K.; Mugri, Regina N.; Tangoh, Delphine A.; Nyingchu, Robert V.; Chi, Hanesh F.; Tata, Rolland B.; Njumkeng, Charles; Njua-Yafi, Clarisse; Achidi, Eric A.

    2015-01-01

    Insecticide Treated Nets (ITNs) have been shown to reduce morbidity and mortality, but coverage and proper utilization continues to be moderate in many parts of sub-Saharan Africa. The gains made through a nationwide free distribution were explored as well as the effect on malaria prevalence in semi-urban and rural communities in south western Cameroon. A cross sectional survey was conducted between August and December 2013. Information on net possession, status and use were collected using a structured questionnaire while malaria parasitaemia was determined on Giemsa-stained blood smears by light microscopy. ITN ownership increased from 41.9% to 68.1% following the free distribution campaign, with 58.3% (466/799) reportedly sleeping under the net. ITN ownership was lower in rural settings (adjusted OR = 1.93, 95%CI = 1.36–2.74, p<0.001) and at lower altitude (adjusted OR = 1.79, 95%CI = 1.22–2.62, p = 0.003) compared to semi-urban settings and intermediate altitude respectively. Conversely, ITN usage was higher in semi-urban settings (p = 0.002) and at intermediate altitude (p = 0.002) compared with rural localities and low altitude. Malaria parasitaemia prevalence was higher in rural (adjusted OR = 1.63, 95%CI = 1.07–2.49) compared to semi-urban settings and in those below 15 years compared to those 15 years and above. Overall, participants who did not sleep under ITN were more susceptible to malaria parasitaemia (adjusted OR = 1.70, 95%CI = 1.14–2.54, p = 0.009). Despite the free distribution campaign, ITN ownership and usage, though improved, is still low. As children who reside in rural settings have greater disease burden (parasitemia) than children in semi-urban settings, the potential gains on both reducing inequities in ITN possession as well as disease burden might be substantial if equitable distribution strategies are adopted. PMID:25714837

  9. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections

    PubMed Central

    2012-01-01

    Background Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. Methods Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. Results Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 – 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 – 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 – 11.6) versus 16.3 (10.7 – 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. Conclusions These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed. PMID:22540925

  10. Alga-produced malaria transmission-blocking vaccine candidate Pfs25 formulated with a human use-compatible potent adjuvant induces high-affinity antibodies that block Plasmodium falciparum infection of mosquitoes.

    PubMed

    Patra, Kailash P; Li, Fengwu; Carter, Darrick; Gregory, James A; Baga, Sheyenne; Reed, Steven G; Mayfield, Stephen P; Vinetz, Joseph M

    2015-05-01

    A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene-oil-in-water emulsion, and GLA plus squalene-oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene-oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene-oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration. PMID:25690099

  11. Alga-Produced Malaria Transmission-Blocking Vaccine Candidate Pfs25 Formulated with a Human Use-Compatible Potent Adjuvant Induces High-Affinity Antibodies That Block Plasmodium falciparum Infection of Mosquitoes

    PubMed Central

    Patra, Kailash P.; Li, Fengwu; Carter, Darrick; Gregory, James A.; Baga, Sheyenne; Reed, Steven G.; Mayfield, Stephen P.

    2015-01-01

    A vaccine to prevent the transmission of malaria parasites from infected humans to mosquitoes is an important component for the elimination of malaria in the 21st century, yet it remains neglected as a priority of malaria vaccine development. The lead candidate for Plasmodium falciparum transmission-blocking vaccine development, Pfs25, is a sexual stage surface protein that has been produced for vaccine testing in a variety of heterologous expression systems. Any realistic malaria vaccine will need to optimize proper folding balanced against cost of production, yield, and potentially reactogenic contaminants. Here Chlamydomonas reinhardtii microalga-produced recombinant Pfs25 protein was formulated with four different human-compatible adjuvants (alum, Toll-like receptor 4 [TLR-4] agonist glucopyranosal lipid A [GLA] plus alum, squalene–oil-in-water emulsion, and GLA plus squalene–oil-in-water emulsion) and compared for their ability to induce malaria transmission-blocking antibodies. Alga-produced recombinant Pfs25 plus GLA plus squalene–oil-in-water adjuvant induced the highest titer and avidity in IgG antibodies, measured using alga-produced recombinant Pfs25 as the enzyme-linked immunosorbent assay (ELISA) antigen. These antibodies specifically reacted with the surface of P. falciparum macrogametes and zygotes and effectively prevented parasites from developing within the mosquito vector in standard membrane feeding assays. Alga-produced Pfs25 in combination with a human-compatible adjuvant composed of a TLR-4 agonist in a squalene–oil-in-water emulsion is an attractive new vaccine candidate that merits head-to-head comparison with other modalities of vaccine production and administration. PMID:25690099

  12. Clonal Outbreak of Plasmodium falciparum Infection in Eastern Panama

    PubMed Central

    Obaldia, Nicanor; Baro, Nicholas K.; Calzada, Jose E.; Santamaria, Ana M.; Daniels, Rachel; Wong, Wesley; Chang, Hsiao-Han; Hamilton, Elizabeth J.; Arevalo-Herrera, Myriam; Herrera, Socrates; Wirth, Dyann F.; Hartl, Daniel L.; Marti, Matthias; Volkman, Sarah K.

    2015-01-01

    Identifying the source of resurgent parasites is paramount to a strategic, successful intervention for malaria elimination. Although the malaria incidence in Panama is low, a recent outbreak resulted in a 6-fold increase in reported cases. We hypothesized that parasites sampled from this epidemic might be related and exhibit a clonal population structure. We tested the genetic relatedness of parasites, using informative single-nucleotide polymorphisms and drug resistance loci. We found that parasites were clustered into 3 clonal subpopulations and were related to parasites from Colombia. Two clusters of Panamanian parasites shared identical drug resistance haplotypes, and all clusters shared a chloroquine-resistance genotype matching the pfcrt haplotype of Colombian origin. Our findings suggest these resurgent parasite populations are highly clonal and that the high clonality likely resulted from epidemic expansion of imported or vestigial cases. Malaria outbreak investigations that use genetic tools can illuminate potential sources of epidemic malaria and guide strategies to prevent further resurgence in areas where malaria has been eliminated. PMID:25336725

  13. Biliverdin targets enolase and eukaryotic initiation factor 2 (eIF2α) to reduce the growth of intraerythrocytic development of the malaria parasite Plasmodium falciparum

    PubMed Central

    Alves, Eduardo; Maluf, Fernando V.; Bueno, Vânia B.; Guido, Rafael V. C.; Oliva, Glaucius; Singh, Maneesh; Scarpelli, Pedro; Costa, Fahyme; Sartorello, Robson; Catalani, Luiz H.; Brady, Declan; Tewari, Rita; Garcia, Celia R. S.

    2016-01-01

    In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action. PMID:26915471

  14. Wherever I may roam: protein and membrane trafficking in P. falciparum-infected red blood cells.

    PubMed

    Deponte, Marcel; Hoppe, Heinrich C; Lee, Marcus C S; Maier, Alexander G; Richard, Dave; Rug, Melanie; Spielmann, Tobias; Przyborski, Jude M

    2012-12-01

    Quite aside from its immense importance as a human pathogen, studies in recent years have brought to light the fact that the malaria parasite Plasmodium falciparum is an interesting eukaryotic model system to study protein trafficking. Studying parasite cell biology often reveals an overrepresentation of atypical cell biological features, possibly driven by the parasites' need to survive in an unusual biological niche. Malaria parasites possess uncommon cellular compartments to which protein traffic must be directed, including secretory organelles such as rhoptries and micronemes, a lysosome-like compartment referred to as the digestive vacuole and a complex (four membrane-bound) plastid, the apicoplast. In addition, the parasite must provide proteins to extracellular compartments and structures including the parasitophorous vacuole, the parasitophorous vacuolar membrane, the Maurer's clefts and both cytosol and plasma membrane of the host cell, the mature human red blood cell. Although some of these unusual destinations are possessed by other cell types, only Plasmodium parasites contain them all within one cell. Here we review what is known about protein and membrane transport in the P. falciparum-infected cell, highlighting novel features of these processes. A growing body of evidence suggests that this parasite is a real "box of tricks" with regards to protein traffic. Possibly, these tricks may be turned against the parasite by exploiting them as novel therapeutic targets. PMID:23043991

  15. Reduced prevalence of placental malaria in primiparae with blood group O

    PubMed Central

    2014-01-01

    Background Blood group O protects African children against severe malaria and has reached high prevalence in malarious regions. However, its role in malaria in pregnancy is ambiguous. In 839 delivering Ghanaian women, associations of ABO blood groups with Plasmodium falciparum infection were examined. Methods Plasmodium falciparum infection was diagnosed in placental blood samples by microscopy and PCR assays. Present or past infection was defined as the detection of parasitaemia or haemozoin by microscopy, or a positive PCR result. Blood groups were inferred from genotyping rs8176719 (indicating the O allele) and rs8176746/rs8176747 (distinguishing the B allele from the A allele). Results The majority of women had blood group O (55.4%); present or past P. falciparum infection was seen in 62.3% of all women. Among multiparae, the blood groups had no influence on P. falciparum infection. In contrast, primiparae with blood group O had significantly less present or past infection than women with non-O blood groups (61.5 vs 76.2%, P = 0.007). In multivariate analysis, the odds of present or past placental P. falciparum infection were reduced by 45% in blood group O primiparae (aOR, 0.55 [95% CI, 0.33–0.94]). Conclusions The present study shows a clear protective effect of blood group O against malaria in primiparae. This accords with findings in severe malaria and in vitro results. The data underline the relevance of host genetic protection among primiparae, i.e. the high-risk group for malaria in pregnancy, and contribute to the understanding of high O allele frequencies in Africa. PMID:25066505

  16. Reduced erythrocyte deformability associated with hypoargininemia during Plasmodium falciparum malaria

    PubMed Central

    Rey, Juliana; Buffet, Pierre A.; Ciceron, Liliane; Milon, Geneviève; Mercereau-Puijalon, Odile; Safeukui, Innocent

    2014-01-01

    The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = −0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p < 0.0001). Moreover, addition of exogenous L-arginine to the cultures increased deformability of both Pf-free and trophozoite-harboring RBCs. NO synthase activity, evidenced in Pf-infected RBCs, induced L-arginine-dependent NO production. These data show that hypoargininemia during P. falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature. PMID:24441939

  17. In Vitro Alterations Do Not Reflect a Requirement for Host Cell Cycle Progression during Plasmodium Liver Stage Infection

    PubMed Central

    Hanson, Kirsten K.; March, Sandra; Ng, Shengyong; Bhatia, Sangeeta N.

    2014-01-01

    Prior to invading nonreplicative erythrocytes, Plasmodium parasites undergo their first obligate step in the mammalian host inside hepatocytes, where each sporozoite replicates to generate thousands of merozoites. While normally quiescent, hepatocytes retain proliferative capacity and can readily reenter the cell cycle in response to diverse stimuli. Many intracellular pathogens, including protozoan parasites, manipulate the cell cycle progression of their host cells for their own benefit, but it is not known whether the hepatocyte cell cycle plays a role during Plasmodium liver stage infection. Here, we show that Plasmodium parasites can be observed in mitotic hepatoma cells throughout liver stage development, where they initially reduce the likelihood of mitosis and ultimately lead to significant acquisition of a binucleate phenotype. However, hepatoma cells pharmacologically arrested in S phase still support robust and complete Plasmodium liver stage development, which thus does not require cell cycle progression in the infected cell in vitro. Furthermore, murine hepatocytes remain quiescent throughout in vivo infection with either Plasmodium berghei or Plasmodium yoelii, as do Plasmodium falciparum-infected primary human hepatocytes, demonstrating that the rapid and prodigious growth of liver stage parasites is accomplished independent of host hepatocyte cell cycle progression during natural infection. PMID:25416236

  18. Primaquine or other 8-aminoquinoline for reducing Plasmodium falciparum transmission

    PubMed Central

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2015-01-01

    Background Mosquitoes become infected with Plasmodium when they ingest gametocyte-stage parasites from an infected person's blood. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ) and other 8-aminoquinolines (8AQ); these drugs could prevent parasite transmission from infected people to mosquitoes, and consequently reduce the incidence of malaria. However, PQ will not directly benefit the individual, and could be harmful to those with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In 2010, The World Health Organization (WHO) recommended a single dose of PQ at 0.75 mg/kg, alongside treatment for P. falciparum malaria to reduce transmission in areas approaching malaria elimination. In 2013 the WHO revised this to 0.25 mg/kg due to concerns about safety. Objectives To assess whether giving PQ or an alternative 8AQ alongside treatment for P. falciparum malaria reduces malaria transmission, and to estimate the frequency of severe or haematological adverse events when PQ is given for this purpose. Search methods We searched the following databases up to 10 Feb 2014 for trials: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT); and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and contacted researchers and organizations. Selection criteria Randomized controlled trials (RCTs) or quasi-RCTs comparing PQ (or alternative 8AQ) given as a single dose or short course alongside treatment for P. falciparum malaria with malaria treatment given without PQ/8AQ in adults or children. Data collection and analysis Two authors independently screened all abstracts, applied inclusion criteria, and extracted data. We sought evidence of an impact on

  19. Treatment uptake by individuals infected with Plasmodium falciparum in rural Gambia, West Africa.

    PubMed Central

    von Seidlein, Lorenz; Clarke, Sian; Alexander, Neâl; Manneh, Fandingding; Doherty, Tom; Pinder, Margaret; Walraven, Gijs; Greenwood, Brian

    2002-01-01

    OBJECTIVE: To find out what proportion of Plasmodium falciparum infections are treated in rural Gambia. METHODS: Subjects from four villages in the Gambia were followed over nine months through visits to village health workers. Monthly cross-sectional malaria surveys measured the prevalence of P. falciparum infection. Linked databases were searched for treatment requests. Treated cases were individuals with parasitaemia who requested treatment during narrow or extended periods (14 or 28 days, respectively) before or after a positive blood film was obtained. FINDINGS: Parasite prevalence peaked in November 1998, when 399/653 (61%) individuals had parasitaemia. Parasite prevalence was highest throughout the study in children aged 5-10 years. Although access to treatment was better than in most of sub-Saharan Africa, only 20% of infected individuals sought medical treatment up to 14 days before or after a positive blood film. Within two months of a positive blood film, 199/726 (27%) individuals with parasitaemia requested treatment. Despite easy access to health care, less than half (42%) of those with parasite densities consistent with malaria attacks (5000/ l) requested treatment. High parasite density and infection during October-November were associated with more frequent treatment requests. Self-treatment was infrequent in study villages: in 3/120 (2.5%) households antimalarial drugs had been used in the preceding malaria season. CONCLUSION: Many P. falciparum infections may be untreated because of their subclinical nature. Intermittent presumptive treatment may reduce morbidity and mortality. It is likely that not all untreated infections were asymptomatic. Qualitative research should explore barriers to treatment uptake, to allow educational interventions to be planned. PMID:12471399

  20. Antibody response dynamics to the Plasmodium falciparum conserved vaccine candidate antigen, merozoite surface protein-1 C-terminal 19kD (MSP1-19kD), in Peruvians exposed to hypoendemic malaria transmission

    PubMed Central

    Torres, Katherine J; Clark, Eva H; Hernandez, Jean N; Soto-Cornejo, Katherine E; Gamboa, Dionicia; Branch, OraLee H

    2008-01-01

    Background In high-transmission areas, developing immunity to symptomatic Plasmodium falciparum infections requires 2–10 years of uninterrupted exposure. Delayed malaria-immunity has been attributed to difficult-to-develop and then short-lived antibody responses. Methods In a study area with <0.5 P. falciparum infections/person/year, antibody responses to the MSP1-19kD antigen were evaluated and associations with P. falciparum infections in children and adults. In months surrounding and during the malaria seasons of 2003–2004, 1,772 participants received ≥6 active visits in one study-year. Community-wide surveys were conducted at the beginning and end of each malaria season, and weekly active visits were completed for randomly-selected individuals each month. There were 79 P. falciparum infections with serum samples collected during and approximately one month before and after infection. Anti-MSP1-19kD IgG levels were measured by ELISA. Results The infection prevalence during February-July was similar in children (0.02–0.12 infections/person/month) and adults (0.03–0.14 infections/person/month) and was negligible in the four-month dry season. In children and adults, the seroprevalence was maintained in the beginning (children = 28.9%, adults = 61.8%) versus ending malaria-season community survey (children = 26.7%, adults = 64.6%). Despite the four-month non-transmission season, the IgG levels in Plasmodium-negative adults were similar to P. falciparum-positive adults. Although children frequently responded upon infection, the transition from a negative/low level before infection to a high level during/after infection was slower in children. Adults and children IgG-positive before infection had reduced symptoms and parasite density. Conclusion Individuals in low transmission areas can rapidly develop and maintain αMSP1-19kD IgG responses for >4 months, unlike responses reported in high transmission study areas. A greater immune capacity might contribute

  1. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    PubMed Central

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  2. The Association of High Prevalence of Trophozoites in Peripheral Blood with Lower Antibody Response to P. falciparum Infected Erythrocytes among Asymptomatic Children in Sudan

    PubMed Central

    Mohamed, Sara N.; Hassan, Dina A.; El Hussein, Abdelrahim M.; Osman, Ihssan M.; Ibrahim, Muntasir E.; Nour, Bakri Y.

    2016-01-01

    Background. The most prominent variant surface antigens (VSAs) of Plasmodium falciparum are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which serves as a parasite-sequestering ligand to endothelial cells. In this study we have examined the antibody reactivity of autologous plasma from symptomatic and asymptomatic malaria infected children against the infected erythrocytes' surface antigens using flow cytometry. Methods. Ethidium-bromide-labelled erythrocytic mature forms of P. falciparum parasites obtained from symptomatic and asymptomatic children were sequentially incubated with autologous plasma and fluorescein isothiocyanate-conjugated (FITC) antihuman IgG. Plasma antibody reactivity was detected by flow cytometry. Results. Asymptomatic children had more prevalence of trophozoites in peripheral blood (66%) compared to symptomatic children (16%), p = 0.002. The mean percentage of infected RBCs reacting with autologous sera was 89.78 among symptomatic children compared to 79.62 among asymptomatic children (p = 0.09). Moreover, the mean fluorescence intensity (MFI) in the asymptomatic was significantly higher compared to symptomatic children (p value = 0.040). Conclusion. Variant surface antigens on Plasmodium falciparum infected RBCs from symptomatic malaria children tend to be better recognized by IgG antibodies. This may suggest a role of some IgG antibodies in severity of malaria. PMID:27433028

  3. The Association of High Prevalence of Trophozoites in Peripheral Blood with Lower Antibody Response to P. falciparum Infected Erythrocytes among Asymptomatic Children in Sudan.

    PubMed

    Mohamed, Sara N; Hassan, Dina A; El Hussein, Abdelrahim M; Osman, Ihssan M; Ibrahim, Muntasir E; Mohamed, Hiba S; Nour, Bakri Y; Abdulhadi, Nasreldin H

    2016-01-01

    Background. The most prominent variant surface antigens (VSAs) of Plasmodium falciparum are the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which serves as a parasite-sequestering ligand to endothelial cells. In this study we have examined the antibody reactivity of autologous plasma from symptomatic and asymptomatic malaria infected children against the infected erythrocytes' surface antigens using flow cytometry. Methods. Ethidium-bromide-labelled erythrocytic mature forms of P. falciparum parasites obtained from symptomatic and asymptomatic children were sequentially incubated with autologous plasma and fluorescein isothiocyanate-conjugated (FITC) antihuman IgG. Plasma antibody reactivity was detected by flow cytometry. Results. Asymptomatic children had more prevalence of trophozoites in peripheral blood (66%) compared to symptomatic children (16%), p = 0.002. The mean percentage of infected RBCs reacting with autologous sera was 89.78 among symptomatic children compared to 79.62 among asymptomatic children (p = 0.09). Moreover, the mean fluorescence intensity (MFI) in the asymptomatic was significantly higher compared to symptomatic children (p value = 0.040). Conclusion. Variant surface antigens on Plasmodium falciparum infected RBCs from symptomatic malaria children tend to be better recognized by IgG antibodies. This may suggest a role of some IgG antibodies in severity of malaria. PMID:27433028

  4. Reduced polymorphism in the Kelch propeller domain in Plasmodium vivax isolates from Cambodia.

    PubMed

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin; Ménard, Didier

    2015-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism. PMID:25385109

  5. Reduced Polymorphism in the Kelch Propeller Domain in Plasmodium vivax Isolates from Cambodia

    PubMed Central

    Popovici, Jean; Kao, Sokheng; Eal, Leanghor; Bin, Sophalai; Kim, Saorin

    2014-01-01

    Polymorphism in the ortholog gene of the Plasmodium falciparum K13 gene was investigated in Plasmodium vivax isolates collected in Cambodia. All of them were Sal-1 wild-type alleles except two (2/284, 0.7%), and P. vivax K12 polymorphism was reduced compared to that of the P. falciparum K13 gene. Both mutant allele isolates had the same nonsynonymous mutation at codon 552 (V552I) and were from Ratanak Kiri province. These preliminary data should encourage additional studies for associating artemisinin or chloroquine resistance and K12 polymorphism. PMID:25385109

  6. Immunoregulatory alterations in Plasmodium falciparum and Plasmodium vivax infections.

    PubMed

    Merino, F; Layrisse, Z; Godoy, G; Volcán, G

    1986-09-01

    Studies on the immune function of patients with acute Plasmodium vivax or P. falciparum infections were performed. All subjects were residing in recent malaria endemic areas of Venezuela. Lymphopenia, reduction of peripheral blood T-lymphocytes positive for monoclonal antibody OKT4 (T helper) a decrease of in vitro mitogenic proliferative response and natural killer cell activity were observed. Serum lymphocytotoxic antibodies reactive at 37 degrees C were detected in both groups of patients as well as serum autoantibodies. The possible role of lymphocytotoxic autoantibodies in the etiology of the T-lymphocyte depletion and acquired immunological perturbations in human malaria is discussed. PMID:2947313

  7. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India

    PubMed Central

    Korgaonkar, Nandini S.; Kumar, Ashwani; Yadav, Rajpal S.; Kabadi, Dipak; Dash, Aditya P.

    2012-01-01

    Background & objectives: Knowledge of the bionomics of mosquitoes, especially of disease vectors, is essential to plan appropriate vector avoidance and control strategies. Information on biting activity of vectors during the night hours in different seasons is important for choosing personal protection measures. This study was carried out to find out the composition of mosquito fauna biting on humans and seasonal biting trends in Goa, India. Methods: Biting activities of all mosquitoes including vectors were studied from 1800 to 0600 h during 85 nights using human volunteers in 14 different localities of three distinct ecotypes in Goa. Seasonal biting trends of vector species were analysed and compared. Seasonal biting periodicity during different phases of night was also studied using William's mean. Results: A total of 4,191 mosquitoes of five genera and 23 species were collected. Ten species belonged to Anopheles, eight to Culex, three to Aedes and one each to Mansonia and Armigeres. Eleven vector species had human hosts, including malaria vectors Anopheles stephensi (1.3%), An. fluviatilis (1.8%), and An. culicifacies (0.76%); filariasis vectors Culex quinquefasciatus (40.8%) and Mansonia uniformis (1.8%); Japanese encephalitis vectors Cx. tritaeniorhynchus (17.4%), Cx. vishnui (7.7%), Cx. pseudovishnui (0.1%), and Cx. gelidus (2.4%); and dengue and chikungunya vectors Aedes albopictus (0.9%) and Ae. aegypti (0.6%). Two An. stephensi of the total 831 female anophelines, were found positive for P. falciparum sporozoites. The entomological inoculation rate (EIR) of P. falciparum was 18.1 and 2.35 for Panaji city and Goa, respectively. Interpretation & conclusions: Most of the mosquito vector species were collected in all seasons and throughout the scotophase. Biting rates of different vector species differed during different phases of night and seasons. Personal protection methods could be used to stop vector-host contact. PMID:22382193

  8. Population Genetics of GYPB and Association Study between GYPB*S/s Polymorphism and Susceptibility to P. falciparum Infection in the Brazilian Amazon

    PubMed Central

    Amaral, Daphne R. T.; Costa, Daiane C.; Furlani, Natália G.; Zuccherato, Luciana W.; Machado, Moara; Reid, Marion E.; Zalis, Mariano G.; Rossit, Andréa R.; Santos, Sidney E. B.; Machado, Ricardo L.; Lustigman, Sara

    2011-01-01

    Background Merozoites of Plasmodium falciparum invade through several pathways using different RBC receptors. Field isolates appear to use a greater variability of these receptors than laboratory isolates. Brazilian field isolates were shown to mostly utilize glycophorin A-independent invasion pathways via glycophorin B (GPB) and/or other receptors. The Brazilian population exhibits extensive polymorphism in blood group antigens, however, no studies have been done to relate the prevalence of the antigens that function as receptors for P. falciparum and the ability of the parasite to invade. Our study aimed to establish whether variation in the GYPB*S/s alleles influences susceptibility to infection with P. falciparum in the admixed population of Brazil. Methods Two groups of Brazilian Amazonians from Porto Velho were studied: P. falciparum infected individuals (cases); and uninfected individuals who were born and/or have lived in the same endemic region for over ten years, were exposed to infection but have not had malaria over the study period (controls). The GPB Ss phenotype and GYPB*S/s alleles were determined by standard methods. Sixty two Ancestry Informative Markers were genotyped on each individual to estimate admixture and control its potential effect on the association between frequency of GYPB*S and malaria infection. Results GYPB*S is associated with host susceptibility to infection with P. falciparum; GYPB*S/GYPB*S and GYPB*S/GYPB*s were significantly more prevalent in the in the P. falciparum infected individuals than in the controls (69.87% vs. 49.75%; P<0.02). Moreover, population genetics tests applied on the GYPB exon sequencing data suggest that natural selection shaped the observed pattern of nucleotide diversity. Conclusion Epidemiological and evolutionary approaches suggest an important role for the GPB receptor in RBC invasion by P. falciparum in Brazilian Amazons. Moreover, an increased susceptibility to infection by this parasite is

  9. Parasite-encoded Hsp40 proteins define novel mobile structures in the cytosol of the P. falciparum-infected erythrocyte.

    PubMed

    Külzer, Simone; Rug, Melanie; Brinkmann, Klaus; Cannon, Ping; Cowman, Alan; Lingelbach, Klaus; Blatch, Gregory L; Maier, Alexander G; Przyborski, Jude M

    2010-10-01

    Plasmodium falciparum is predicted to transport over 300 proteins to the cytosol of its chosen host cell, the mature human erythrocyte, including 19 members of the Hsp40 family. Here, we have generated transfectant lines expressing GFP- or HA-Strep-tagged versions of these proteins, and used these to investigate both localization and other properties of these Hsp40 co-chaperones. These fusion proteins labelled punctate structures within the infected erythrocyte, initially suggestive of a Maurer's clefts localization. Further experiments demonstrated that these structures were distinct from the Maurer's clefts in protein composition. Transmission electron microscopy verifies a non-cleft localization for HA-Strep-tagged versions of these proteins. We were not able to label these structures with BODIPY-ceramide, suggesting a lower size and/or different lipid composition compared with the Maurer's clefts. Solubility studies revealed that the Hsp40-GFP fusion proteins appear to be tightly associated with membranes, but could be released from the bilayer under conditions affecting membrane cholesterol content or organization, suggesting interaction with a binding partner localized to cholesterol-rich domains. These novel structures are highly mobile in the infected erythrocyte, but based on velocity calculations, can be distinguished from the 'highly mobile vesicles' previously described. Our study identifies a further extra-parasitic structure in the P. falciparum-infected erythrocyte, which we name 'J-dots' (as their defining characteristic so far is the content of J-proteins). We suggest that these J-dots are involved in trafficking of parasite-encoded proteins through the cytosol of the infected erythrocyte. PMID:20482550

  10. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae

    PubMed Central

    Alout, Haoues; Dabiré, Roch K.; Djogbénou, Luc S.; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1R mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  11. Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae.

    PubMed

    Alout, Haoues; Dabiré, Roch K; Djogbénou, Luc S; Abate, Luc; Corbel, Vincent; Chandre, Fabrice; Cohuet, Anna

    2016-01-01

    Insecticide resistance raises concerns for the control of vector-borne diseases. However, its impact on parasite transmission could be diverse when considering the ecological interactions between vector and parasite. Thus we investigated the fitness cost associated with insecticide resistance and Plasmodium falciparum infection as well as their interactive cost on Anopheles gambiae survival and fecundity. In absence of infection, we observed a cost on fecundity associated with insecticide resistance. However, survival was higher for mosquito bearing the kdr mutation and equal for those with the ace-1(R) mutation compared to their insecticide susceptible counterparts. Interestingly, Plasmodium infection reduced survival only in the insecticide resistant strains but not in the susceptible one and infection was associated with an increase in fecundity independently of the strain considered. This study provides evidence for a survival cost associated with infection by Plasmodium parasite only in mosquito selected for insecticide resistance. This suggests that the selection of insecticide resistance mutation may have disturbed the interaction between parasites and vectors, resulting in increased cost of infection. Considering the fitness cost as well as other ecological aspects of this natural mosquito-parasite combination is important to predict the epidemiological impact of insecticide resistance. PMID:27432257

  12. Purification Methodology for Viable and Infective Plasmodium vivax Gametocytes That Is Compatible with Transmission-Blocking Assays

    PubMed Central

    Vera, Omaira; Brelas de Brito, Paula; Albrecht, Letusa; Martins-Campos, Keillen Monick; Pimenta, Paulo F. P.; Monteiro, Wuelton M.; Lacerda, Marcus V. G.

    2015-01-01

    Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies. PMID:26239989

  13. Purification Methodology for Viable and Infective Plasmodium vivax Gametocytes That Is Compatible with Transmission-Blocking Assays.

    PubMed

    Vera, Omaira; Brelas de Brito, Paula; Albrecht, Letusa; Martins-Campos, Keillen Monick; Pimenta, Paulo F P; Monteiro, Wuelton M; Lacerda, Marcus V G; Lopes, Stefanie C P; Costa, Fabio T M

    2015-10-01

    Significant progress toward the control of malaria has been achieved, especially regarding Plasmodium falciparum infections. However, the unique biology of Plasmodium vivax hampers current control strategies. The early appearance of P. vivax gametocytes in the peripheral blood and the impossibility of culturing this parasite are major drawbacks. Using blood samples from 40 P. vivax-infected patients, we describe here a methodology to purify viable gametocytes and further infect anophelines. This method opens new avenues to validate transmission-blocking strategies. PMID:26239989

  14. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity

    PubMed Central

    Lawson-Hogban, Nadou; Boisson, Bertrand; Soares, Miguel P.; Péronet, Roger; Smith, Leanna; Ménard, Robert; Huerre, Michel; Mécheri, Salah

    2015-01-01

    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4+ and CD8+ T cells, including CD8+ granzyme B+ and CD8+ IFN-γ+ cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria. PMID:25916985

  15. Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity.

    PubMed

    Briquet, Sylvie; Lawson-Hogban, Nadou; Boisson, Bertrand; Soares, Miguel P; Péronet, Roger; Smith, Leanna; Ménard, Robert; Huerre, Michel; Mécheri, Salah; Vaquero, Catherine

    2015-07-01

    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria. PMID:25916985

  16. Modeling Combinations of Pre-erythrocytic Plasmodium falciparum Malaria Vaccines.

    PubMed

    Walker, Andrew S; Lourenço, José; Hill, Adrian V S; Gupta, Sunetra

    2015-12-01

    Despite substantial progress in the control of Plasmodium falciparum infection due to the widespread deployment of insecticide-treated bed nets and artemisinin combination therapies, malaria remains a prolific killer, with over half a million deaths estimated to have occurred in 2013 alone. Recent evidence of the development of resistance to treatments in both parasites and their mosquito vectors has underscored the need for a vaccine. Here, we use a mathematical model of the within-host dynamics of P. falciparum infection, fit to data from controlled human malaria infection clinical trials, to predict the efficacy of co-administering the two most promising subunit vaccines, RTS,S/AS01 and ChAd63-MVA ME-TRAP. We conclude that currently available technologies could be combined to induce very high levels of sterile efficacy, even in immune-naive individuals. PMID:26503278

  17. Metabolic Signature Profiling as a Diagnostic and Prognostic Tool in Pediatric Plasmodium falciparum Malaria

    PubMed Central

    Surowiec, Izabella; Orikiiriza, Judy; Karlsson, Elisabeth; Nelson, Maria; Bonde, Mari; Kyamanwa, Patrick; Karenzi, Ben; Bergström, Sven; Trygg, Johan; Normark, Johan

    2015-01-01

    Background. Accuracy in malaria diagnosis and staging is vital to reduce mortality and post infectious sequelae. In this study, we present a metabolomics approach to diagnostic staging of malaria infection, specifically Plasmodium falciparum infection in children. Methods. A group of 421 patients between 6 months and 6 years of age with mild and severe states of malaria with age-matched controls were included in the study, 107, 192, and 122, individuals, respectively. A multivariate design was used as basis for representative selection of 20 patients in each category. Patient plasma was subjected to gas chromatography-mass spectrometry analysis, and a full metabolite profile was produced from each patient. In addition, a proof-of-concept model was tested in a Plasmodium berghei in vivo model where metabolic profiles were discernible over time of infection. Results. A 2-component principal component analysis revealed that the patients could be separated into disease categories according to metabolite profiles, independently of any clinical information. Furthermore, 2 subgroups could be identified in the mild malaria cohort who we believe represent patients with divergent prognoses. Conclusions. Metabolite signature profiling could be used both for decision support in disease staging and prognostication. PMID:26110164

  18. Plasmodium falciparum in Haiti: susceptibility to pyrimethamine and sulfadoxine-pyrimethamine

    PubMed Central

    Nguyen-Dinh, Phuc; Zevallos-Ipenza, Arturo; Magloire, Roc

    1984-01-01

    Eighteen patients with Plasmodium falciparum infection were studied in Port-au-Prince, Haiti, to monitor the response of the malaria parasite to sulfadoxine-pyrimethamine. In all infections the parasitaemia was cleared rapidly following treatment with standard dose of the drug combination; no recrudescence was observed during follow-up periods of 1 week (4 patients) and 4 weeks (14 patients). Parallel in vitro tests indicated that 5 of the 16 isolates successfully tested were resistant to pyrimethamine alone. PMID:6386210

  19. Clinical Indicators for Bacterial Co-Infection in Ghanaian Children with P. falciparum Infection

    PubMed Central

    Nielsen, Maja Verena; Amemasor, Solomon; Agyekum, Alex; Loag, Wibke; Marks, Florian; Sarpong, Nimako; Dekker, Denise; Adu-Sarkodie, Yaw; May, Jürgen

    2015-01-01

    Differentiation of infectious causes in severely ill children is essential but challenging in sub- Saharan Africa. The aim of the study was to determine clinical indicators that are able to identify bacterial co-infections in P. falciparum infected children in rural Ghana. In total, 1,915 severely ill children below the age of 15 years were recruited at Agogo Presbyterian Hospital in Ghana between May 2007 and February 2011. In 771 (40%) of the children malaria parasites were detected. This group was analyzed for indicators of bacterial co-infections using bivariate and multivariate regression analyses with 24 socio-economic variables, 16 terms describing medical history and anthropometrical information and 68 variables describing clinical symptoms. The variables were tested for sensitivity, specificity, positive predictive value and negative predictive value. In 46 (6.0%) of the children with malaria infection, bacterial co-infection was detected. The most frequent pathogens were non-typhoid salmonellae (45.7%), followed by Streptococcus spp. (13.0%). Coughing, dehydration, splenomegaly, severe anemia and leukocytosis were positively associated with bacteremia. Domestic hygiene and exclusive breastfeeding is negatively associated with bacteremia. In cases of high parasitemia (>10,000/μl), a significant association with bacteremia was found for splenomegaly (OR 8.8; CI 1.6–48.9), dehydration (OR 18.2; CI 2.0–166.0) and coughing (OR 9.0; CI 0.7–118.6). In children with low parasitemia, associations with bacteremia were found for vomiting (OR 4.7; CI 1.4–15.8), severe anemia (OR 3.3; CI 1.0–11.1) and leukocytosis (OR 6.8 CI 1.9–24.2). Clinical signs of impaired microcirculation were negatively associated with bacteremia. Ceftriaxone achieved best coverage of isolated pathogens. The results demonstrate the limitation of clinical symptoms to determine bacterial co-infections in P. falciparum infected children. Best clinical indicators are dependent on the

  20. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia.

    PubMed

    Witkowski, Benoit; Khim, Nimol; Chim, Pheaktra; Kim, Saorin; Ke, Sopheakvatey; Kloeung, Nimol; Chy, Sophy; Duong, Socheat; Leang, Rithea; Ringwald, Pascal; Dondorp, Arjen M; Tripura, Rupam; Benoit-Vical, Françoise; Berry, Antoine; Gorgette, Olivier; Ariey, Frédéric; Barale, Jean-Christophe; Mercereau-Puijalon, Odile; Menard, Didier

    2013-02-01

    The declining efficacy of artemisinin derivatives against Plasmodium falciparum in western Cambodia is a major concern. The knowledge gap in the understanding of the mechanisms involved hampers designing monitoring tools. Here, we culture-adapted 20 isolates from Pailin and Ratanakiri (areas of artemisinin resistance and susceptibility in western and eastern Cambodia, respectively) and studied their in vitro response to dihydroartemisinin. No significant difference between the two sets of isolates was observed in the classical isotopic test. However, a 6-h pulse exposure to 700 nM dihydroartemisinin (ring-stage survival assay -RSA]) revealed a clear-cut geographic dichotomy. The survival rate of exposed ring-stage parasites (ring stages) was 17-fold higher in isolates from Pailin (median, 13.5%) than in those from Ratanakiri (median, 0.8%), while exposed mature stages were equally and highly susceptible (0.6% and 0.7%, respectively). Ring stages survived drug exposure by cell cycle arrest and resumed growth upon drug withdrawal. The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailin in the RSA. PMID:23208708

  1. A high-sensitivity HPLC assay for measuring intracellular Na+ and K+ and its application to Plasmodium falciparum infected erythrocytes

    PubMed Central

    Winterberg, Markus; Kirk, Kiaran

    2016-01-01

    The measurement of intracellular ion concentrations, and the screening of chemical agents to identify molecules targeting ion transport, has traditionally involved low-throughput techniques. Here we present a novel HPLC method that allows the rapid, high-sensitivity measurement of cell Na+ and K+ content, demonstrating its utility by monitoring the ionic changes induced in the intracellular malaria parasite by the new spiroindolone antimalarial KAE609. PMID:27385291

  2. A high-sensitivity HPLC assay for measuring intracellular Na(+) and K(+) and its application to Plasmodium falciparum infected erythrocytes.

    PubMed

    Winterberg, Markus; Kirk, Kiaran

    2016-01-01

    The measurement of intracellular ion concentrations, and the screening of chemical agents to identify molecules targeting ion transport, has traditionally involved low-throughput techniques. Here we present a novel HPLC method that allows the rapid, high-sensitivity measurement of cell Na(+) and K(+) content, demonstrating its utility by monitoring the ionic changes induced in the intracellular malaria parasite by the new spiroindolone antimalarial KAE609. PMID:27385291

  3. Substantially reduced pre-patent parasite multiplication rates are associated with naturally acquired immunity to Plasmodium falciparum.

    PubMed

    Douglas, A D; Andrews, L; Draper, S J; Bojang, K; Milligan, P; Gilbert, S C; Imoukhuede, E B; Hill, A V S

    2011-05-01

    Naturally acquired immunity to Plasmodium falciparum's asexual blood stage reduces parasite multiplication at microscopically detectable densities. The effect of natural immunity on initial prepatent parasite multiplication during the period following a new infection has been uncertain, contributing to doubt regarding the utility of experimental challenge models for blood-stage vaccine trials. Here we present data revealing that parasite multiplication rates during the initial prepatent period in semi-immune Gambian adults are substantially lower than in malaria-naive participants. This supports the view that a blood-stage vaccine capable of emulating the disease-reducing effect of natural immunity could achieve a detectable effect during the prepatent period. PMID:21459819

  4. Dynamic association of PfEMP1 and KAHRP in knobs mediates cytoadherence during Plasmodium invasion

    PubMed Central

    Ganguly, Akshay Kumar; Ranjan, Priyatosh; Kumar, Ashutosh; Bhavesh, Neel Sarovar

    2015-01-01

    Plasmodium falciparum infected erythrocytes display membrane knobs that are essential for their adherence to vascular endothelia and for prevention of clearance by the spleen. The knob associated histidine rich protein (KAHRP) is indispensable to knob formation and has been implicated in the recruitment and tethering of P. falciparum erythrocyte membrane protein–1 (PfEMP1) by binding to its cytoplasmic domain termed VARC. However, the precise mechanism of interaction between KAHRP and VARC is not very well understood. Here we report that both the proteins co-localize to membrane knobs of P. falciparum infected erythrocytes and have identified four positively charged linear sequence motifs of high intrinsic mobility on KAHRP that interact electrostatically with VARC in solution to form a fuzzy complex. The current study provides molecular insight into interaction between KAHRP and VARC in solution that takes place at membrane knobs. PMID:25726759

  5. The malaria parasite Plasmodium falciparum: cell biological peculiarities and nutritional consequences.

    PubMed

    Baumeister, Stefan; Winterberg, Markus; Przyborski, Jude M; Lingelbach, Klaus

    2010-04-01

    Apicomplexan parasites obligatorily invade and multiply within eukaryotic cells. Phylogenetically, they are related to a group of algae which, during their evolution, have acquired a secondary endosymbiont. This organelle, which in the parasite is called the apicoplast, is highly reduced compared to the endosymbionts of algae, but still contains many plant-specific biosynthetic pathways. The malaria parasite Plasmodium falciparum infects mammalian erythrocytes which are devoid of intracellular compartments and which largely lack biosynthetic pathways. Despite the limited resources of nutrition, the parasite grows and generates up to 32 merozoites which are the infectious stages of the complex life cycle. A large part of the intra-erythrocytic development takes place in the so-called parasitophorous vacuole, a compartment which forms an interface between the parasite and the cytoplasm of the host cell. In the course of parasite growth, the host cell undergoes dramatic alterations which on one hand contribute directly to the symptoms of severe malaria and which, on the other hand, are also required for parasite survival. Some of these alterations facilitate the acquisition of nutrients from the extracellular environment which are not provided by the host cell. Here, we describe the cell biologically unique interactions between an intracellular eukaryotic pathogen and its metabolically highly reduced host cell. We further discuss current models to explain the appearance of pathogen-induced novel physiological properties in a host cell which has lost its genetic programme. PMID:19949823

  6. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study

    PubMed Central

    2011-01-01

    Background The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. Methods A cohort of primary schoolchildren (5-17 years) received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. Results Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p < 0.001, p < 0.001, p < 0.001, p < 0.001 respectively). More importantly, the prevalence of STH + schistosomes, P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months

  7. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter

    PubMed Central

    Petersen, Ines; Gabryszewski, Stanislaw J.; Johnston, Geoffrey L.; Dhingra, Satish K.; Ecker, Andrea; Lewis, Rebecca E.; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp H.; Palatulan, Eugene; Johnson, David J.; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M.; Lanzer, Michael; Fidock, David A.

    2015-01-01

    Summary The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  8. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015.

    PubMed

    Bhatt, S; Weiss, D J; Cameron, E; Bisanzio, D; Mappin, B; Dalrymple, U; Battle, K E; Moyes, C L; Henry, A; Eckhoff, P A; Wenger, E A; Briët, O; Penny, M A; Smith, T A; Bennett, A; Yukich, J; Eisele, T P; Griffin, J T; Fergus, C A; Lynch, M; Lindgren, F; Cohen, J M; Murray, C L J; Smith, D L; Hay, S I; Cibulskis, R E; Gething, P W

    2015-10-01

    Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542-753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies. PMID:26375008

  9. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains.

    PubMed

    Jespersen, Jakob S; Wang, Christian W; Mkumbaye, Sixbert I; Minja, Daniel Tr; Petersen, Bent; Turner, Louise; Petersen, Jens Ev; Lusingu, John Pa; Theander, Thor G; Lavstsen, Thomas

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR-binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full-length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support the hypothesis that the CIDRα1-EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction. PMID:27354391

  10. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015

    PubMed Central

    Bisanzio, D.; Mappin, B.; Dalrymple, U.; Battle, K.; Moyes, C.L.; Henry, A.; Eckhoff, P.A.; Wenger, E.A.; Briët, O.; Penny, M.A.; Smith, T.A.; Bennett, A.; Yukich, J.; Eisele, T.P.; Griffin, J.T.; Fergus, C.A.; Lynch, M.; Lindgren, F.; Cohen, J.M.; Murray, C.L.J.; Smith, D.L.; Hay, S.I.; Cibulskis, R.E.; Gething, P.W.

    2016-01-01

    Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning. However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing intervention coverage to directly evaluate trends from 2000 to 2015 and quantify the attributable effect of malaria disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015 control strategies. PMID:26375008

  11. No Clinical or Molecular Evidence of Plasmodium falciparum Resistance to Artesunate-Mefloquine in Northwestern Brazil.

    PubMed

    Ladeia-Andrade, Simone; de Melo, Gladson Naber P; de Souza-Lima, Rita de Cássia; Salla, Laís C; Bastos, Melissa S; Rodrigues, Priscila T; Luz, Francisco das Chagas O; Ferreira, Marcelo U

    2016-07-01

    We evaluated the clinical efficacy of artesunate-mefloquine (ASMQ) fixed-dose combination to treat uncomplicated malaria in Juruá Valley, the main Plasmodium falciparum transmission hotspot in Brazil. Between November 2010 and February 2013, we enrolled 162 patients aged 4-73 years, with fever or a history of fever, and a single-species P. falciparum infection confirmed by microscopy and polymerase chain reaction (PCR). All 154 patients who completed the 42-day follow-up presented an adequate clinical and parasitologic response. ASMQ was well tolerated and no adverse event caused treatment interruption. Gametocytes were detected in 46.3% patients; 35.2% had gametocytes at enrollment, whereas others developed patent gametocytemia 1-14 days after starting ASMQ. By day 3 of treatment, all subjects had cleared asexual parasitemia, but parasite DNA remained PCR detectable in 37.6% of them. Day-3 PCR positivity was associated with prolonged gametocyte carriage. We found no molecular evidence of resistance to either MQ (pfmdr1 gene amplification) or AS (mutations in selected kelch13 gene domains known to be associated with AS resistance) in the local P. falciparum population. These results strongly support the use of ASMQ as a first-line regimen to treat uncomplicated P. falciparum malaria in northwestern Brazil, but underscore the need for gametocytocidal drugs to reduce the transmission potential of ASMQ-treated patients (ClinicalTrials.gov number NCT01144702). PMID:27068396

  12. Cytokine Profiling in Immigrants with Clinical Malaria after Extended Periods of Interrupted Exposure to Plasmodium falciparum

    PubMed Central

    Moncunill, Gemma; Mayor, Alfredo; Bardají, Azucena; Puyol, Laura; Nhabomba, Augusto; Barrios, Diana; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Gascón, Joaquim; Dobaño, Carlota

    2013-01-01

    Immunity to malaria is believed to wane with time in the absence of exposure to Plasmodium falciparum infection, but immunoepidemiological data on longevity of immunity remain controversial. We quantified serum cytokines and chemokines by suspension array technology as potential biomarkers for durability of immunity in immigrants with clinical malaria after years without parasite exposure. These were compared to serum/plasma profiles in naïve adults (travelers) and semi-immune adults under continuous exposure, with malaria, along with immigrant and traveler patients without malaria. Immigrants had higher levels of IL-2, IL-5 and IL-8 compared to semi-immune adults with malaria (P≤0.0200). Time since immigration correlated with increased IL-2 (rho=0.2738P=0.0495) and IFN-γ (rho=0.3044P=0.0282). However, immigrants did not show as high IFN-γ concentrations as travelers during a first malaria episode (P<0.0001). Immigrants and travelers with malaria had higher levels of IFN-γ, IL-6, and IL-10 (P<0.0100) than patients with other diseases, and IL-8 and IL-1β were elevated in immigrants with malaria (P<0.0500). Therefore, malaria patients had a characteristic strong pro-inflammatory/Th1 signature. Upon loss of exposure, control of pro-inflammatory responses and tolerance to P. falciparum appeared to be reduced. Understanding the mechanisms to maintain non-pathogenic effector responses is important to develop new malaria control strategies. PMID:23967342

  13. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    PubMed

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  14. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    PubMed Central

    Tran, Tuan M.; Jones, Marcus B.; Ongoiba, Aissata; Bijker, Else M.; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G.; Whalen, Elizabeth; Presnell, Scott; O’Connell, Elise M.; Kayentao, Kassoum; Doumbo, Ogobara K.; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B.; Ottenhoff, Tom H. M.; Haks, Mariëlle C.; Traore, Boubacar; Kirkness, Ewen F.; Sauerwein, Robert W.; Crompton, Peter D.

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria. PMID:27506615

  15. Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.

    PubMed

    Tran, Tuan M; Jones, Marcus B; Ongoiba, Aissata; Bijker, Else M; Schats, Remko; Venepally, Pratap; Skinner, Jeff; Doumbo, Safiatou; Quinten, Edwin; Visser, Leo G; Whalen, Elizabeth; Presnell, Scott; O'Connell, Elise M; Kayentao, Kassoum; Doumbo, Ogobara K; Chaussabel, Damien; Lorenzi, Hernan; Nutman, Thomas B; Ottenhoff, Tom H M; Haks, Mariëlle C; Traore, Boubacar; Kirkness, Ewen F; Sauerwein, Robert W; Crompton, Peter D

    2016-01-01

    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria. PMID:27506615

  16. Within-host competition and drug resistance in the human malaria parasite Plasmodium falciparum.

    PubMed

    Bushman, Mary; Morton, Lindsay; Duah, Nancy; Quashie, Neils; Abuaku, Benjamin; Koram, Kwadwo A; Dimbu, Pedro Rafael; Plucinski, Mateusz; Gutman, Julie; Lyaruu, Peter; Kachur, S Patrick; de Roode, Jacobus C; Udhayakumar, Venkatachalam

    2016-03-16

    Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures. PMID:26984625

  17. Reduced CD36-dependent tissue sequestration of Plasmodium-infected erythrocytes is detrimental to malaria parasite growth in vivo

    PubMed Central

    Fonager, Jannik; Pasini, Erica M.; Braks, Joanna A.M.; Klop, Onny; Ramesar, Jai; Remarque, Edmond J.; Vroegrijk, Irene O.C.M.; van Duinen, Sjoerd G.; Thomas, Alan W.; Khan, Shahid M.; Mann, Matthias; Kocken, Clemens H.M.; Janse, Chris J.

    2012-01-01

    Adherence of parasite-infected red blood cells (irbc) to the vascular endothelium of organs plays a key role in the pathogenesis of Plasmodium falciparum malaria. The prevailing hypothesis of why irbc adhere and sequester in tissues is that this acts as a mechanism of avoiding spleen-mediated clearance. Irbc of the rodent parasite Plasmodium berghei ANKA sequester in a fashion analogous to P. falciparum by adhering to the host receptor CD36. To experimentally determine the significance of sequestration for parasite growth, we generated a mutant P. berghei ANKA parasite with a reduced CD36-mediated adherence. Although the cognate parasite ligand binding to CD36 is unknown, we show that nonsequestering parasites have reduced growth and we provide evidence that in addition to avoiding spleen removal, other factors related to CD36-mediated sequestration are beneficial for parasite growth. These results reveal for the first time the importance of sequestration to a malaria infection, with implications for the development of strategies aimed at reducing pathology by inhibiting tissue sequestration. PMID:22184632

  18. Caspar Controls Resistance to Plasmodium falciparum in Diverse Anopheline Species

    PubMed Central

    Garver, Lindsey S.; Dong, Yuemei; Dimopoulos, George

    2009-01-01

    Immune responses mounted by the malaria vector Anopheles gambiae are largely regulated by the Toll and Imd (immune deficiency) pathways via the NF-kappaB transcription factors Rel1 and Rel2, which are controlled by the negative regulators Cactus and Caspar, respectively. Rel1- and Rel2-dependent transcription in A. gambiae has been shown to be particularly critical to the mosquito's ability to manage infection with the rodent malaria parasite Plasmodium berghei. Using RNA interference to deplete the negative regulators of these pathways, we found that Rel2 controls resistance of A. gambiae to the human malaria parasite Plasmodium falciparum, whereas Rel 1 activation reduced infection levels. The universal relevance of this defense system across Anopheles species was established by showing that caspar silencing also prevents the development of P. falciparum in the major malaria vectors of Asia and South America, A. stephensi and A. albimanus, respectively. Parallel studies suggest that while Imd pathway activation is most effective against P. falciparum, the Toll pathway is most efficient against P. berghei, highlighting a significant discrepancy between the human pathogen and its rodent model. High throughput gene expression analyses identified a plethora of genes regulated by the activation of the two Rel factors and revealed that the Toll pathway played a more diverse role in mosquito biology than the Imd pathway, which was more immunity-specific. Further analyses of key anti-Plasmodium factors suggest they may be responsible for the Imd pathway–mediated resistance phenotype. Additionally, we found that the fitness cost caused by Rel2 activation through caspar gene silencing was undetectable in sugar-fed, blood-fed, and P. falciparum-infected female A. gambiae, while activation of the Toll pathway's Rel1 had a major impact. This study describes for the first time a single gene that influences an immune mechanism that is able to abort development of P

  19. How specific is Plasmodium falciparum adherence to chondroitin 4-sulfate?

    PubMed Central

    Goel, Suchi; Gowda, D. Channe

    2011-01-01

    Plasmodium falciparum infection during pregnancy results in the sequestration of infected red blood cells (IRBCs) in the placenta, contributing to pregnancy associated malaria (PAM). IRBC adherence is mediated by the binding of a variant Plasmodium falciparum erythrocyte binding protein 1 named VAR2CSA to the low sulfated chondroitin 4-sulfate (C4S) proteoglycan (CSPG) present predominantly in the intervillous space of the placenta. IRBC binding is highly specific to the level and distribution of 4-sulfate groups in C4S. Given the strict specificity of IRBC-C4S interactions, it is better to use either placental CSPG or CSPGs bearing structurally similar C4S chains in defining VAR2CSA structural architecture that interact with C4S, evaluating VAR2CSA constructs for vaccine development or studying structure-based inhibitors as therapeutics for PAM. PMID:21507719

  20. Hemoglobinopathies: slicing the Gordian knot of Plasmodium falciparum malaria pathogenesis.

    PubMed

    Taylor, Steve M; Cerami, Carla; Fairhurst, Rick M

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits--including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia--are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a "natural experiment" to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the "Gordian knot" of host and parasite

  1. Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis

    PubMed Central

    Pal, Priya; Daniels, Brian P.; Oskman, Anna; Diamond, Michael S.; Klein, Robyn S.

    2016-01-01

    ABSTRACT Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium falciparum. It is characterized by parasite sequestration, inflammatory cytokine production, and vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic marker for falciparum malaria. We demonstrate that disruption of a human cerebral microvascular endothelial barrier by P. falciparum-infected erythrocytes depends on expression of HRPII. Purified recombinant or native HRPII can recapitulate these effects. HRPII action occurs via activation of the inflammasome, resulting in decreased integrity of tight junctions and increased endothelial permeability. We propose that HRPII is a virulence factor that may contribute to cerebral malaria by compromising endothelial barrier integrity within the central nervous system. PMID:27273825

  2. Long-term persistence of sterile immunity in a volunteer immunized with X-irradiated Plasmodium falciparum sporozoites.

    PubMed

    Edelman, R; Hoffman, S L; Davis, J R; Beier, M; Sztein, M B; Losonsky, G; Herrington, D A; Eddy, H A; Hollingdale, M R; Gordon, D M

    1993-10-01

    Three volunteers were immunized by repeated exposure to the bites of Plasmodium falciparum-infected, X-irradiated mosquitoes to characterize immunologic responses and duration of protective immunity. A primary series of immunizations had been shown previously to induce sterile immunity in these volunteers against sporozoite-induced P. falciparum malaria. In the current study, antibodies to sporozoites circulated at high levels for at least 9-12 months after the volunteers were administered booster bites from X-irradiated infective mosquitoes. One volunteer challenged a second time with P. falciparum 9 months after his last immunization was again shown to be protected, whereas all 5 control subjects developed patent infections. These results set a new standard for persistence of sterile immunity against experimental P. falciparum infection. PMID:8376823

  3. Exposure of Plasmodium sporozoites to the intracellular concentration of potassium enhances infectivity and reduces cell passage activity.

    PubMed

    Kumar, Kota Arun; Garcia, Celia R S; Chandran, Vandana R; Van Rooijen, N; Zhou, Yingyao; Winzeler, Elizabeth; Nussenzweig, Victor

    2007-11-01

    Malaria sporozoites migrate through several cells prior to a productive invasion that involves the formation of a parasitophorous vacuole (PV) where sporozoites undergo transformation into Exo-erythorcytic forms (EEFs). The precise mechanism leading to sporozoite activation for invasion is unknown, but prior traversal of host cells is required. During cell migration sporozoites are exposed to large shifts in K(+) concentration. We report here that incubation of sporozoites to the intracellular K(+) concentration enhances 8-10 times the infectivity of Plasmodium berghei and 4-5 times the infectivity of Plasmodium yoelli sporozoites for a hepatocyte cell line, while simultaneously decreasing cell passage activity. The K(+) enhancing effect was time and concentration dependent, and was significantly decreased by K(+) channel inhibitors. Potassium-treated P. berghei sporozoites also showed enhanced numbers of EEFs in non-permissive cell lines. Treated sporozoites had reduced infectivity for mice, but infectivity was enhanced upon Kupffer cell depletion. Transcriptional analysis of K(+) treated and control sporozoites revealed a high degree of correlation in their levels of gene expression, indicating that the observed phenotypic changes are not due to radical changes in gene transcription. Only seven genes were upregulated by more than two-fold in K(+) treated sporozoites. The highest level was noted in PP2C, a phosphatase known to dephosphorylate the AKT potassium channel in plants. PMID:17714805

  4. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum.

    PubMed

    Guo, Quan; Duffy, Simon P; Matthews, Kerryn; Deng, Xiaoyan; Santoso, Aline T; Islamzada, Emel; Ma, Hongshen

    2016-02-21

    The loss of red blood cell (RBC) deformability is part of the pathology of many diseases. In malaria caused by Plasmodium falciparum infection, metabolism of hemoglobin by the parasite results in progressive reduction in RBC deformability that is directly correlated with the growth and development of the parasite. The ability to sort RBCs based on deformability therefore provides a means to isolate pathological cells and to study biochemical events associated with disease progression. Existing methods have not been able to sort RBCs based on deformability or to effectively enrich for P. falciparum infected RBCs at clinically relevant concentrations. Here, we develop a method to sort RBCs based on deformability and demonstrate the ability to enrich the concentration of ring-stage P. falciparum infected RBCs (Pf-iRBCs) by >100× from clinically relevant parasitemia (<0.01%). Deformability based sorting of RBCs is accomplished using ratchet transport through asymmetrical constrictions using oscillatory flow. This mechanism provides dramatically improved selectivity over previous biophysical methods by preventing the accumulation of cells in the filter microstructure to ensure that consistent filtration forces are applied to each cell. We show that our approach dramatically improves the sensitivity of malaria diagnosis performed using both microscopy and rapid diagnostic test by converting samples with difficult-to-detect parasitemia (<0.01%) into samples with easily detectable parasitemia (>0.1%). PMID:26768227

  5. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum

    PubMed Central

    Ibitokou, Samad; Vianou, Bertin; Houngbegnon, Parfait; Ezinmegnon, Sem; Borgella, Sophie; Akplogan, Carine; Cottrell, Gilles; Varani, Stefania; Massougbodji, Achille; Moutairou, Kabirou; Troye-Blomberg, Marita; Deloron, Philippe; Luty, Adrian J. F.; Fievet, Nadine

    2015-01-01

    Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them. PMID:26580401

  6. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum.

    PubMed

    Nouatin, Odilon; Gbédandé, Komi; Ibitokou, Samad; Vianou, Bertin; Houngbegnon, Parfait; Ezinmegnon, Sem; Borgella, Sophie; Akplogan, Carine; Cottrell, Gilles; Varani, Stefania; Massougbodji, Achille; Moutairou, Kabirou; Troye-Blomberg, Marita; Deloron, Philippe; Luty, Adrian J F; Fievet, Nadine

    2015-01-01

    Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them. PMID:26580401

  7. Typing of Plasmodium falciparum DNA from 2 years old Giemsa-stained dried blood spots using nested polymerase chain reaction assay.

    PubMed

    Kumar, D; Dhiman, S; Rabha, B; Goswami, D; Yadav, K; Deka, M; Veer, V; Baruah, I

    2016-01-01

    A panel of 129 Giemsa-stained thick blood spots (TBS) confirmed for Plasmodium falciparum infection having different levels of parasite density were collected from a malaria endemic area. DNA was extracted and nested polymerase chain reaction (PCR) assay was performed to amplify P. falciparum DNA. Nested PCR assay successfully amplified P. falciparum DNA at a very low parasitaemia of ~10 parasites/μl of blood. Current PCR assay is very simple and can be used retrospectively to monitor the invasion and prevalence of different Plasmodium species in endemic areas. PMID:27080775

  8. Misclassification of Plasmodium infections by conventional microscopy and the impact of remedial training on the proficiency of laboratory technicians in species identification

    PubMed Central

    2013-01-01

    Background Malaria diagnosis is largely dependent on the demonstration of parasites in stained blood films by conventional microscopy. Accurate identification of the infecting Plasmodium species relies on detailed examination of parasite morphological characteristics, such as size, shape, pigment granules, besides the size and shape of the parasitized red blood cells and presence of cell inclusions. This work explores misclassifications of four Plasmodium species by conventional microscopy relative to the proficiency of microscopists and morphological characteristics of the parasites on Giemsa-stained blood films. Case description Ten-day malaria microscopy remedial courses on parasite detection, species identification and parasite counting were conducted for public health and research laboratory personnel. Proficiency in species identification was assessed at the start (pre) and the end (post) of each course using known blood films of Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale and Plasmodium vivax infections with densities ranging from 1,000 to 30,000 parasites/μL. Outcomes were categorized as false negative, positive without speciation, P. falciparum, P. malariae, P. ovale, P. vivax and mixed infections. Discussion and evaluation Reported findings are based on 1,878 P. falciparum, 483 P. malariae, 581 P. ovale and 438 P. vivax cumulative results collated from 2008 to 2010 remedial courses. Pre-training false negative and positive misclassifications without speciation were significantly lower on P. falciparum infections compared to non-falciparum infections (p < 0.0001). Post-training misclassifications decreased significantly compared to pre- training misclassifications which in turn led to significant improvements in the identification of the four species. However, P. falciparum infections were highly misclassified as mixed infections, P. ovale misclassified as P. vivax and P. vivax similarly misclassified as P. ovale (p < 0

  9. Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte

    PubMed Central

    Hayakawa, Eri H.; Kobayashi, Seiki; Matsuoka, Hiroyuki

    2015-01-01

    Membrane electrochemical potential is a feature of the molecular profile of the cell membrane and the two-dimensional arrangement of its charge-bearing molecules. Plasmodium species, the causative agents of malaria, are intracellular parasites that remodel host erythrocytes by expressing their own proteins on erythrocyte membranes. Although various aspects of the modifications made to the host erythrocyte membrane have been extensively studied in some human Plasmodium species (such as Plasmodium falciparum), details of the structural and molecular biological modifications made to host erythrocytes by nonhuman Plasmodium parasites have not been studied. We employed zeta potential analysis of erythrocytes parasitized by P. chabaudi, a nonhuman Plasmodium parasite. From these measurements, we found that the surface potential shift was more negative for P. chabaudi-infected erythrocytes than for P. falciparum-infected erythrocytes. However, electron microscopic analysis of the surface of P. chabaudi-infected erythrocytes did not reveal any modifications as compared with nonparasitized erythrocytes. These results suggest that differences in the membrane modifications found herein represent unique attributes related to the pathogenesis profiles of the two different malaria parasite species in different host animals and that these features have been acquired through parasite adaptations acquired over long evolutionary time periods. PMID:26557685

  10. Blackwater fever in an uncomplicated Plasmodium falciparum patient treated with dihydroartemisinin-piperaquine

    PubMed Central

    2014-01-01

    The mechanism of massive intravascular haemolysis occurring during the treatment of malaria infection resulting in haemoglobinuria, commonly known as blackwater fever (BWF), remains unknown. BWF is most often seen in those with severe malaria treated with amino-alcohol drugs, including quinine, mefloquine and halofantrine. The potential for drugs containing artemisinins, chloroquine or piperaquine to cause oxidant haemolysis is believed to be much lower, particularly during treatment of uncomplicated malaria. Here is an unusual case of BWF, which developed on day 2 of treatment for uncomplicated Plasmodium falciparum infection with dihydroartemisinin-piperaquine (DHA-PIP) with documented evidence of concomitant seropositivity for Chikungunya infection. PMID:24629047

  11. Evaluation of Artemisone Combinations in Aotus Monkeys Infected with Plasmodium falciparum▿

    PubMed Central

    Obaldia, Nicanor; Kotecka, Barbara M.; Edstein, Michael D.; Haynes, Richard K.; Fugmann, Burkhard; Kyle, Dennis E.; Rieckmann, Karl H.

    2009-01-01

    Artemisone (single oral dose, 10 mg/kg of body weight) cured nonimmune Aotus monkeys of their Plasmodium falciparum infections when combined with mefloquine (single oral dose, 5 and 10 mg/kg but not 2.5 mg/kg). In combination with amodiaquine (20 mg/kg/day), artemisone (10 mg/kg/day) given orally for 3 days cured all infected monkeys. Three days of treatment with artemisone (30 mg/kg/day) and clindamycin (100 mg/kg/day) was also curative. PMID:19506062

  12. Evaluation of artemisone combinations in Aotus monkeys infected with Plasmodium falciparum.

    PubMed

    Obaldia, Nicanor; Kotecka, Barbara M; Edstein, Michael D; Haynes, Richard K; Fugmann, Burkhard; Kyle, Dennis E; Rieckmann, Karl H

    2009-08-01

    Artemisone (single oral dose, 10 mg/kg of body weight) cured nonimmune Aotus monkeys of their Plasmodium falciparum infections when combined with mefloquine (single oral dose, 5 and 10 mg/kg but not 2.5 mg/kg). In combination with amodiaquine (20 mg/kg/day), artemisone (10 mg/kg/day) given orally for 3 days cured all infected monkeys. Three days of treatment with artemisone (30 mg/kg/day) and clindamycin (100 mg/kg/day) was also curative. PMID:19506062

  13. Blackwater fever in an uncomplicated Plasmodium falciparum patient treated with dihydroartemisinin-piperaquine.

    PubMed

    Lon, Chanthap; Spring, Michele; Sok, Somethy; Chann, Soklyda; Bun, Rathvichet; Ittiverakul, Mali; Buathong, Nillawan; Thay, Khengheng; Kong, Nareth; You, Yom; Kuntawunginn, Worachet; Lanteri, Charlotte A; Saunders, David L

    2014-01-01

    The mechanism of massive intravascular haemolysis occurring during the treatment of malaria infection resulting in haemoglobinuria, commonly known as blackwater fever (BWF), remains unknown. BWF is most often seen in those with severe malaria treated with amino-alcohol drugs, including quinine, mefloquine and halofantrine. The potential for drugs containing artemisinins, chloroquine or piperaquine to cause oxidant haemolysis is believed to be much lower, particularly during treatment of uncomplicated malaria. Here is an unusual case of BWF, which developed on day 2 of treatment for uncomplicated Plasmodium falciparum infection with dihydroartemisinin-piperaquine (DHA-PIP) with documented evidence of concomitant seropositivity for Chikungunya infection. PMID:24629047

  14. The Maurer's clefts of Plasmodium falciparum: parasite-induced islands within an intracellular ocean.

    PubMed

    Przyborski, Jude M

    2008-07-01

    It is suggested that Maurer's clefts, membranous structures observed within the cytoplasm of Plasmodium-falciparum-infected human erythrocytes, play an important role in trafficking virulence proteins from the parasite to the surface of the host cell. How they fulfil this role, however, still is unclear. A recent study by Bhattacharjee et al. now suggests that the clefts function as the major conduit through which parasite-encoded proteins pass before entering the host cell. In this article we comment on the significance of this information in our understanding of the novel 'extracellular' secretory pathway of this important human pathogen. PMID:18514031

  15. Strategies for Understanding and Reducing the Plasmodium vivax and Plasmodium ovale Hypnozoite Reservoir in Papua New Guinean Children: A Randomised Placebo-Controlled Trial and Mathematical Model

    PubMed Central

    Robinson, Leanne J.; Wampfler, Rahel; Betuela, Inoni; Karl, Stephan; White, Michael T.; Li Wai Suen, Connie S. N.; Hofmann, Natalie E.; Kinboro, Benson; Waltmann, Andreea; Brewster, Jessica; Lorry, Lina; Tarongka, Nandao; Samol, Lornah; Silkey, Mariabeth; Bassat, Quique; Siba, Peter M.; Schofield, Louis; Felger, Ingrid; Mueller, Ivo

    2015-01-01

    Background The undetectable hypnozoite reservoir for relapsing Plasmodium vivax and P. ovale malarias presents a major challenge for malaria control and elimination in endemic countries. This study aims to directly determine the contribution of relapses to the burden of P. vivax and P. ovale infection, illness, and transmission in Papua New Guinean children. Methods and Findings From 17 August 2009 to 20 May 2010, 524 children aged 5–10 y from East Sepik Province in Papua New Guinea (PNG) participated in a randomised double-blind placebo-controlled trial of blood- plus liver-stage drugs (chloroquine [CQ], 3 d; artemether-lumefantrine [AL], 3 d; and primaquine [PQ], 20 d, 10 mg/kg total dose) (261 children) or blood-stage drugs only (CQ, 3 d; AL, 3 d; and placebo [PL], 20 d) (263 children). Participants, study staff, and investigators were blinded to the treatment allocation. Twenty children were excluded during the treatment phase (PQ arm: 14, PL arm: 6), and 504 were followed actively for 9 mo. During the follow-up time, 18 children (PQ arm: 7, PL arm: 11) were lost to follow-up. Main primary and secondary outcome measures were time to first P. vivax infection (by qPCR), time to first clinical episode, force of infection, gametocyte positivity, and time to first P. ovale infection (by PCR). A basic stochastic transmission model was developed to estimate the potential effect of mass drug administration (MDA) for the prevention of recurrent P. vivax infections. Targeting hypnozoites through PQ treatment reduced the risk of having at least one qPCR-detectable P. vivax or P. ovale infection during 8 mo of follow-up (P. vivax: PQ arm 0.63/y versus PL arm 2.62/y, HR = 0.18 [95% CI 0.14, 0.25], p < 0.001; P. ovale: 0.06 versus 0.14, HR = 0.31 [95% CI 0.13, 0.77], p = 0.011) and the risk of having at least one clinical P. vivax episode (HR = 0.25 [95% CI 0.11, 0.61], p = 0.002). PQ also reduced the molecular force of P. vivax blood-stage infection in the first 3 mo of

  16. Effects of Mefloquine Use on Plasmodium vivax Multidrug Resistance

    PubMed Central

    Khim, Nimol; Andrianaranjaka, Voahangy; Popovici, Jean; Kim, Saorin; Ratsimbasoa, Arsene; Benedet, Christophe; Barnadas, Celine; Durand, Remy; Thellier, Marc; Legrand, Eric; Musset, Lise; Menegon, Michela; Severini, Carlo; Nour, Bakri Y.M.; Tichit, Magali; Bouchier, Christiane; Mercereau-Puijalon, Odile

    2014-01-01

    Numerous studies have indicated a strong association between amplification of the multidrug resistance-1 gene and in vivo and in vitro mefloquine resistance of Plasmodium falciparum. Although falciparum infection usually is not treated with mefloquine, incorrect diagnosis, high frequency of undetected mixed infections, or relapses of P. vivax infection triggered by P. falciparum infections expose non–P. falciparum parasites to mefloquine. To assess the consequences of such unintentional treatments on P. vivax, we studied variations in number of Pvmdr-1 (PlasmoDB accession no. PVX_080100, NCBI reference sequence NC_009915.1) copies worldwide in 607 samples collected in areas with different histories of mefloquine use from residents and from travelers returning to France. Number of Pvmdr-1 copies correlated with drug use history. Treatment against P. falciparum exerts substantial collateral pressure against sympatric P. vivax, jeopardizing future use of mefloquine against P. vivax. A drug policy is needed that takes into consideration all co-endemic species of malaria parasites. PMID:25272023

  17. Chickens treated with a nitric oxide inhibitor became more resistant to Plasmodium gallinaceum infection due to reduced anemia, thrombocytopenia and inflammation

    PubMed Central

    2013-01-01

    Malaria is a serious infectious disease caused by parasites of the Plasmodium genus that affect different vertebrate hosts. Severe malaria leads to host death and involves different pathophysiological phenomena such as anemia, thrombocytopenia and inflammation. Nitric oxide (NO) is an important effector molecule in this disease, but little is known about its role in avian malaria models. Plasmodium gallinaceum- infected chickens were treated with aminoguanidine (AG), an inhibitor of inducible nitric oxide synthase, to observe the role of NO in the pathogenesis of this avian model. AG increased the survival of chickens, but also induced higher parasitemia. Treated chickens demonstrated reduced anemia and thrombocytopenia. Moreover, erythrocytes at different stages of maturation, heterophils, monocytes and thrombocytes were infected by Plasmodium gallinaceum and animals presented a generalized leucopenia. Activated leukocytes and thrombocytes with elongated double nuclei were observed in chickens with higher parasitemia; however, eosinophils were not involved in the infection. AG reduced levels of hemozoin in the spleen and liver, indicating lower inflammation. Taken together, the results suggest that AG reduced anemia, thrombocytopenia and inflammation, explaining the greater survival rate of the treated chickens. PMID:23398940

  18. Chloroquine-Resistant Haplotype Plasmodium falciparum Parasites, Haiti

    PubMed Central

    Londono, Berlin L.; Eisele, Thomas P.; Keating, Joseph; Bennett, Adam; Chattopadhyay, Chandon; Heyliger, Gaetan; Mack, Brian; Rawson, Ian; Vely, Jean-Francois; Désinor, Olbeg

    2009-01-01

    Plasmodium falciparum parasites have been endemic to Haiti for >40 years without evidence of chloroquine (CQ) resistance. In 2006 and 2007, we obtained blood smears for rapid diagnostic tests (RDTs) and filter paper blots of blood from 821 persons by passive and active case detection. P. falciparum infections diagnosed for 79 persons by blood smear or RDT were confirmed by PCR for the small subunit rRNA gene of P. falciparum. Amplification of the P. falciparum CQ resistance transporter (pfcrt) gene yielded 10 samples with amplicons resistant to cleavage by ApoI. A total of 5 of 9 samples had threonine at position 76 of pfcrt, which is consistent with CQ resistance (haplotypes at positions 72–76 were CVIET [n = 4] and CVMNT [n = 1]); 4 had only the wild-type haplotype associated with CQ susceptibility (CVMNK). These results indicate that CQ-resistant haplotype P. falciparum malaria parasites are present in Haiti. PMID:19402959

  19. Plasmodium falciparum: growth response to potassium channel blocking compounds.

    PubMed

    Waller, Karena L; Kim, Kami; McDonald, Thomas V

    2008-11-01

    Potassium channels are essential for cell survival and regulate the cell membrane potential and electrochemical gradient. During its lifecycle, Plasmodium falciparum parasites must rapidly adapt to dramatically variant ionic conditions within the mosquito mid-gut, the hepatocyte and red blood cell (RBC) cytosols, and the human circulatory system. To probe the participation of K(+) channels in parasite viability, growth response assays were performed in which asexual stage P. falciparum parasites were cultured in the presence of various Ca(2+)-activated K(+) channel blocking compounds. These data describe the novel anti-malarial effects of bicuculline methiodide and tubocurarine chloride and the novel lack of effect of apamine and verruculogen. Taken together, the data herein imply the presence of K(+) channels, or other parasite-specific targets, in P. falciparum-infected RBCs that are sensitive to blockade with Ca(2+)-activated K(+) channel blocking compounds. PMID:18703053

  20. Reduced erythrocyte susceptibility and increased host clearance of young parasites slows Plasmodium growth in a murine model of severe malaria

    NASA Astrophysics Data System (ADS)

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Sebina, Ismail; Haque, Ashraful; Davenport, Miles P.

    2015-05-01

    The best correlate of malaria severity in human Plasmodium falciparum (Pf) infection is the total parasite load. Pf-infected humans could control parasite loads by two mechanisms, either decreasing parasite multiplication, or increasing parasite clearance. However, few studies have directly measured these two mechanisms in vivo. Here, we have directly quantified host clearance of parasites during Plasmodium infection in mice. We transferred labelled red blood cells (RBCs) from Plasmodium infected donors into uninfected and infected recipients, and tracked the fate of donor parasites by frequent blood sampling. We then applied age-based mathematical models to characterise parasite clearance in the recipient mice. Our analyses revealed an increased clearance of parasites in infected animals, particularly parasites of a younger developmental stage. However, the major decrease in parasite multiplication in infected mice was not mediated by increased clearance alone, but was accompanied by a significant reduction in the susceptibility of RBCs to parasitisation.

  1. Placental Histopathological Changes Associated with Plasmodium vivax Infection during Pregnancy

    PubMed Central

    Dombrowski, Jamille G.; Ippólito, Vanessa; Aitken, Elizabeth H.; Valle, Suiane N.; Álvarez, José M.; Epiphânio, Sabrina; Marinho, Claudio R. F.

    2013-01-01

    Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41), P. vivax exposure (n = 59) or P. falciparum exposure (n = 19). We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045), placental barrier thickness (OR, 25.59, P = 0.021) and mononuclear cells (OR, 4.02, P = 0.046) were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A vivax-score was

  2. Prevalence of Plasmodium falciparum transmission reducing immunity among primary school children in a malaria moderate transmission region in Zimbabwe.

    PubMed

    Paul, Noah H; Vengesai, Arthur; Mduluza, Takafira; Chipeta, James; Midzi, Nicholas; Bansal, Geetha P; Kumar, Nirbhay

    2016-11-01

    Malaria continues to cause alarming morbidity and mortality in more than 100 countries worldwide. Antigens in the various life cycle stages of malaria parasites are presented to the immune system during natural infection and it is widely recognized that after repeated malaria exposure, adults develop partially protective immunity. Specific antigens of natural immunity represent among the most important targets for the development of malaria vaccines. Immunity against the transmission stages of the malaria parasite represents an important approach to reduce malaria transmission and is believed to become an important tool for gradual elimination of malaria. Development of immunity against Plasmodium falciparum sexual stages was evaluated in primary school children aged 6-16 years in Makoni district of Zimbabwe, an area of low to modest malaria transmission. Malaria infection was screened by microscopy, rapid diagnostic tests and finally using nested PCR. Plasma samples were tested for antibodies against recombinant Pfs48/45 and Pfs47 by ELISA. Corresponding serum samples were used to test for P. falciparum transmission reducing activity in Anopheles stephensi and An. gambiae mosquitoes using the membrane feeding assay. The prevalence of malaria diagnosed by rapid diagnostic test kit (Paracheck)™ was 1.7%. However, of the randomly tested blood samples, 66% were positive by nested PCR. ELISA revealed prevalence (64% positivity at 1:500 dilution, in randomly selected 66 plasma samples) of antibodies against recombinant Pfs48/45 (mean A 405nm=0.53, CI=0.46-0.60) and Pfs47 (mean A405nm=0.91, CI=0.80-1.02); antigens specific to the sexual stages. The mosquito membrane feeding assay demonstrated measurable transmission reducing ability of the samples that were positive for Pfs48/45 antibodies by ELISA. Interestingly, 3 plasma samples revealed enhancement of infectivity of P. falciparum in An. stephensi mosquitoes. These studies revealed the presence of antibodies with

  3. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes.

    PubMed

    Mharakurwa, Sungano; Kumwenda, Taida; Mkulama, Mtawa A P; Musapa, Mulenga; Chishimba, Sandra; Shiff, Clive J; Sullivan, David J; Thuma, Philip E; Liu, Kun; Agre, Peter

    2011-11-15

    Surveillance for drug-resistant parasites in human blood is a major effort in malaria control. Here we report contrasting antifolate resistance polymorphisms in Plasmodium falciparum when parasites in human blood were compared with parasites in Anopheles vector mosquitoes from sleeping huts in rural Zambia. DNA encoding P. falciparum dihydrofolate reductase (EC 1.5.1.3) was amplified by PCR with allele-specific restriction enzyme digestions. Markedly prevalent pyrimethamine-resistant mutants were evident in human P. falciparum infections--S108N (>90%), with N51I, C59R, and 108N+51I+59R triple mutants (30-80%). This resistance level may be from selection pressure due to decades of sulfadoxine/pyrimethamine use in the region. In contrast, cycloguanil-resistant mutants were detected in very low frequency in parasites from human blood samples-S108T (13%), with A16V and 108T+16V double mutants (∼4%). Surprisingly, pyrimethamine-resistant mutants were of very low prevalence (2-12%) in the midguts of Anopheles arabiensis vector mosquitoes, but cycloguanil-resistant mutants were highly prevalent-S108T (90%), with A16V and the 108T+16V double mutant (49-57%). Structural analysis of the dihydrofolate reductase by in silico modeling revealed a key difference in the enzyme within the NADPH binding pocket, predicting the S108N enzyme to have reduced stability but the S108T enzyme to have increased stability. We conclude that P. falciparum can bear highly host-specific drug-resistant polymorphisms, most likely reflecting different selective pressures found in humans and mosquitoes. Thus, it may be useful to sample both human and mosquito vector infections to accurately ascertain the epidemiological status of drug-resistant alleles. PMID:22065788

  4. VAR2CSA Signatures of High Plasmodium falciparum Parasitemia in the Placenta

    PubMed Central

    Rovira-Vallbona, Eduard; Monteiro, Isadora; Bardají, Azucena; Serra-Casas, Elisa; Neafsey, Daniel E.; Quelhas, Diana; Valim, Clarissa; Alonso, Pedro; Dobaño, Carlota; Ordi, Jaume

    2013-01-01

    Plasmodium falciparum infected erythrocytes (IE) accumulate in the placenta through the interaction between Duffy-binding like (DBL) domains of parasite-encoded ligand VAR2CSA and chondroitin sulphate-A (CSA) receptor. Polymorphisms in these domains, including DBL2X and DBL3X, may affect their antigenicity or CSA-binding affinity, eventually increasing parasitemia and its adverse effects on pregnancy outcomes. A total of 373 DBL2X and 328 DBL3X sequences were obtained from transcripts of 20 placental isolates infecting Mozambican women, resulting in 176 DBL2X and 191 DBL3X unique sequences at the protein level. Sequence alignments were divided in segments containing combinations of correlated polymorphisms and the association of segment sequences with placental parasite density was tested using Bonferroni corrected regression models, taking into consideration the weight of each sequence in the infection. Three DBL2X and three DBL3X segments contained signatures of high parasite density (P<0.003) that were highly prevalent in the parasite population (49–91%). Identified regions included a flexible loop that contributes to DBL3X-CSA interaction and two DBL3X motifs with evidence of positive natural selection. Limited antibody responses against signatures of high parasite density among malaria-exposed pregnant women could not explain the increased placental parasitemia. These results suggest that a higher binding efficiency to CSA rather than reduced antigenicity might provide a biological advantage to parasites with high parasite density signatures in VAR2CSA. Sequences contributing to high parasitemia may be critical for the functional characterization of VAR2CSA and the development of tools against placental malaria. PMID:23936092

  5. Tracing the origins and signatures of selection of antifolate resistance in island populations of Plasmodium falciparum

    PubMed Central

    2010-01-01

    Background Resistance of the malaria parasite Plasmodium falciparum to sulfadoxine-pyrimethamine (SP) has evolved worldwide. In the archipelago of São Tomé and Principe (STP), West Africa, although SP resistance is highly prevalent the drug is still in use in particular circumstances. To address the evolutionary origins of SP resistance in these islands, we genotyped point mutations at P. falciparum dhfr and dhps genes and analysed microsatellites flanking those genes. Methods Blood samples were collected in July and December 2004 in three localities of São Tomé Island and one in Principe Island. Species-specific nested-PCR was used to identify P. falciparum infected samples. Subsequently, SNPs at the dhfr and dhps genes were identified through PCR-RFLP. Isolates were also analysed for three microsatellite loci flanking the dhfr gene, three loci flanking dhps and four loci located at putative neutral genomic regions. Results An increase of resistance-associated mutations at dhfr and dhps was observed, in particular for the dhfr/dhps quintuple mutant, associated with clinical SP failure. Analysis of flanking microsatellites suggests multiple independent introductions for dhfr and dhps mutant haplotypes, possibly from West Africa. A reduced genetic diversity and increased differentiation at flanking microsatellites when compared to neutral loci is consistent with a selective sweep for resistant alleles at both loci. Conclusions This study provides additional evidence for the crucial role of gene flow and drug selective pressures in the rapid spread of SP resistance in P. falciparum populations, from only a few mutation events giving rise to resistance-associated mutants. It also highlights the importance of human migration in the spread of drug resistant malaria parasites, as the distance between the islands and mainland is not consistent with mosquito-mediated parasite dispersal. PMID:20534146

  6. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission.

    PubMed

    Glennon, Elizabeth K K; Adams, L Garry; Hicks, Derrick R; Dehesh, Katayoon; Luckhart, Shirley

    2016-06-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  7. Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection.

    PubMed

    Loughland, Jessica R; Minigo, Gabriela; Burel, Julie; Tipping, Peta E; Piera, Kim A; Amante, Fiona H; Engwerda, Christian R; Good, Michael F; Doolan, Denise L; Anstey, Nicholas M; McCarthy, James S; Woodberry, Tonia

    2016-05-01

    Dendritic cells (DCs) are sentinels of the immune system that uniquely prime naive cells and initiate adaptive immune responses. CD1c (BDCA-1) myeloid DCs (CD1c(+) mDCs) highly express HLA-DR, have a broad Toll-like receptor (TLR) repertoire, and secrete immune modulatory cytokines. To better understand immune responses to malaria, CD1c(+) mDC maturation and cytokine production were examined in healthy volunteers before and after experimental intravenous Plasmodium falciparum infection with 150- or 1,800-parasite-infected red blood cells (pRBCs). After either dose, CD1c(+) mDCs significantly reduced HLA-DR expression in prepatent infections. Circulating CD1c(+) mDCs did not upregulate HLA-DR after pRBC or TLR ligand stimulation and exhibited reduced CD86 expression. At peak parasitemia, CD1c(+) mDCs produced significantly more tumor necrosis factor (TNF), whereas interleukin-12 (IL-12) production was unchanged. Interestingly, only the 1,800-pRBC dose caused a reduction in the circulating CD1c(+) mDC count with evidence of apoptosis. The 1,800-pRBC dose produced no change in T cell IFN-γ or IL-2 production at peak parasitemia or at 3 weeks posttreatment. Overall, CD1c(+) mDCs are compromised by P. falciparum exposure, with impaired HLA-DR and CD86 expression, and have an increased capacity for TNF but not IL-12 production. A first prepatent P. falciparum infection is sufficient to modulate CD1c(+) mDC responsiveness, likely contributing to hampered effector T cell cytokine responses and assisting parasite immune evasion. PMID:26902728

  8. Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations

    PubMed Central

    Lawpoolsri, Saranath; Klein, Eili Y; Singhasivanon, Pratap; Yimsamran, Surapon; Thanyavanich, Nipon; Maneeboonyang, Wanchai; Hungerford, Laura L; Maguire, James H; Smith, David L

    2009-01-01

    Background Effective malaria control has successfully reduced the malaria burden in many countries, but to eliminate malaria, these countries will need to further improve their control efforts. Here, a malaria control programme was critically evaluated in a very low-endemicity Thai-Myanmar border population, where early detection and prompt treatment have substantially reduced, though not ended, Plasmodium falciparum transmission, in part due to carriage of late-maturing gametocytes that remain post-treatment. To counter this effect, the WHO recommends the use of a single oral dose of primaquine along with an effective blood schizonticide. However, while the effectiveness of primaquine as a gametocidal agent is widely documented, the mismatch between primaquine's short half-life, the long-delay for gametocyte maturation and the proper timing of primaquine administration have not been studied. Methods Mathematical models were constructed to simulate 8-year surveillance data, between 1999 and 2006, of seven villages along the Thai-Myanmar border. A simple model was developed to consider primaquine pharmacokinetics and pharmacodynamics, gametocyte carriage, and infectivity. Results In these populations, transmission intensity is very low, so the P. falciparum parasite rate is strongly linked to imported malaria and to the fraction of cases not treated. Given a 3.6-day half-life of gametocyte, the estimated duration of infectiousness would be reduced by 10 days for every 10-fold reduction in initial gametocyte densities. Infectiousness from mature gametocytes would last two to four weeks and sustain some transmission, depending on the initial parasite densities, but the residual mature gametocytes could be eliminated by primaquine. Because of the short half-life of primaquine (approximately eight hours), it was immediately obvious that with early administration (within three days after an acute attack), primaquine would not be present when mature gametocytes emerged

  9. Atovaquone-Proguanil Remains a Potential Stopgap Therapy for Multidrug-Resistant Plasmodium falciparum in Areas along the Thai-Cambodian Border.

    PubMed

    Saunders, David L; Chaorattanakawee, Suwanna; Gosi, Panita; Lanteri, Charlotte; Somethy, Sok; Kuntawunginn, Worachet; Ittiverakul, Mali; Chann, Soklyda; Gregory, Carrie; Chuor, Char Meng; Prom, Satharath; Spring, Michele D; Lon, Chanthap

    2016-03-01

    Our recent report of dihydroartemisinin-piperaquine failure to treat Plasmodium falciparum infections in Cambodia adds new urgency to the search for alternative treatments. Despite dihydroartemisinin-piperaquine failure, and higher piperaquine 50% inhibitory concentrations (IC50s) following reanalysis than those previously reported, P. falciparum remained sensitive to atovaquone (ATQ) in vitro. There were no point mutations in the P. falciparum cytochrome b ATQ resistance gene. Mefloquine, artemisinin, chloroquine, and quinine IC50s remained comparable to those from other recent reports. Atovaquone-proguanil may be a useful stopgap but remains susceptible to developing resistance when used as blood-stage therapy. PMID:26711753

  10. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting.

    PubMed

    Charnaud, Sarah C; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S; Gilson, Paul R; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L; Pimanpanarak, Mupawjay; Simpson, Julie A; Beeson, James G; Nosten, François; Fowkes, Freya J I

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57-0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33-0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09-0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  11. Maternal-foetal transfer of Plasmodium falciparum and Plasmodium vivax antibodies in a low transmission setting

    PubMed Central

    Charnaud, Sarah C.; McGready, Rose; Herten-Crabb, Asha; Powell, Rosanna; Guy, Andrew; Langer, Christine; Richards, Jack S.; Gilson, Paul R.; Chotivanich, Kesinee; Tsuboi, Takafumi; Narum, David L.; Pimanpanarak, Mupawjay; Simpson, Julie A.; Beeson, James G.; Nosten, François; Fowkes, Freya J. I.

    2016-01-01

    During pregnancy immunolglobulin G (IgG) antibodies are transferred from mother to neonate across the placenta. Studies in high transmission areas have shown transfer of P. falciparum-specific IgG, but the extent and factors influencing maternal-foetal transfer in low transmission areas co-endemic for both P. falciparum and P. vivax are unknown. Pregnant women were screened weekly for Plasmodium infection. Mother-neonate paired serum samples at delivery were tested for IgG to antigens from P. falciparum, P. vivax and other infectious diseases. Antibodies to malarial and non-malarial antigens were highly correlated between maternal and neonatal samples (median [range] spearman ρ = 0.78 [0.57–0.93]), although Plasmodium spp. antibodies tended to be lower in neonates than mothers. Estimated gestational age at last P. falciparum infection, but not P. vivax infection, was positively associated with antibody levels in the neonate (P. falciparum merozoite, spearman ρ median [range] 0.42 [0.33–0.66], PfVAR2CSA 0.69; P. vivax ρ = 0.19 [0.09–0.3]). Maternal-foetal transfer of anti-malarial IgG to Plasmodium spp. antigens occurs in low transmission settings. P. vivax IgG acquisition is not associated with recent exposure unlike P. falciparum IgG, suggesting a difference in acquisition of antibodies. IgG transfer is greatest in the final weeks of pregnancy which has implications for the timing of future malaria vaccination strategies in pregnant women. PMID:26861682

  12. Social Acceptability and Durability of Two Different House Screening Interventions against Exposure to Malaria Vectors, Plasmodium falciparum Infection, and Anemia in Children in The Gambia, West Africa

    PubMed Central

    Kirby, Matthew J.; Bah, Pateh; Jones, Caroline O. H.; Kelly, Ann H.; Jasseh, Momodou; Lindsay, Steve W.

    2010-01-01

    The social acceptability and durability of two house screening interventions were addressed using focus group discussions, questionnaires, indoor climate measurements, and durability surveys. Participants recognized that screening stopped mosquitoes (79–96%) and other insects (86–98%) entering their houses. These and other benefits were appreciated by significantly more recipients of full screening than users of screened ceilings. Full screened houses were 0.26°C hotter at night (P = 0.05) than houses with screened ceilings and 0.51°C (P < 0.001) hotter than houses with no screening (28.43°C), though only 9% of full screened house users and 17% of screened ceiling users complained about the heat. Although 71% of screened doors and 85% of ceilings had suffered some damage after 12 months, the average number of holes of any size was < 5 for doors and < 7 for ceilings. In conclusion, house screening is a well-appreciated and durable vector control tool. PMID:21036822

  13. Piperaquine Monotherapy of Drug-Susceptible Plasmodium falciparum Infection Results in Rapid Clearance of Parasitemia but Is Followed by the Appearance of Gametocytemia

    PubMed Central

    Pasay, Cielo J.; Rockett, Rebecca; Sekuloski, Silvana; Griffin, Paul; Marquart, Louise; Peatey, Christopher; Wang, Claire Y. T.; O'Rourke, Peter; Elliott, Suzanne; Baker, Mark; Möhrle, Jörg J.; McCarthy, James S.

    2016-01-01

    Background. Piperaquine, coformulated with dihydroartemisinin, is a component of a widely used artemisinin combination therapy. There is a paucity of data on its antimalarial activity as a single agent. Such data, if available, would inform selection of new coformulations. Methods. We undertook a study in healthy subjects, using the induced blood stage malaria (IBSM) model to test the antimalarial activity of single doses of piperaquine (960, 640, and 480 mg) in 3 cohorts. In a pilot study in the third cohort, gametocyte clearance following administration of 15 mg, or 45 mg or no primaquine was investigated. Results. Parasite clearance over the 48-hour period after piperaquine administration was more rapid in the 960 mg cohort, compared with the 640 mg cohort (parasite reduction ratio, 2951 [95% confidence interval {CI}, 1520–5728] vs 586 [95% CI, 351–978]; P < .001). All 24 subjects developed gametocytemia as determined by pfs25 transcripts. Clearance of pfs25 was significantly faster in those receiving primaquine than in those not receiving primaquine (P < .001). Conclusions. Piperaquine possesses rapid parasite-clearing activity, but monotherapy is followed by the appearance of gametocytemia, which could facilitate the spread of malaria. This new information should be taken into account when developing future antimalarial coformulations. Clinical Trials Registration ACTRN12613000565741. PMID:27056954

  14. Current clinical efficacy of chloroquine for the treatment of Plasmodium falciparum infections in urban Dar es Salaam, United Republic of Tanzania.

    PubMed Central

    Premji, Z.; Makwaya, C.; Minjas, J. N.

    1999-01-01

    Reported is the use of a 14-day WHO protocol, which takes into account the clinical, parasitological and haematological responses to antimalarial drugs, to determine the efficacy of chloroquine in the treatment of uncomplicated malaria in young children (n = 200) in urban Dar es Salaam. Chloroquine failure was found in 43% of the children. Of these, 12.5% were considered to be early treatment failures and were given a single dose of sulfadoxine-pyrimethamine. Fever subsided in all children treated with sulfadoxine-pyrimethamine and there were no parasitological failures. In addition, children treated with sulfadoxine-pyrimethamine because of early treatment failure with chloroquine had better haematological recovery than the chloroquine-sensitive group. It is concluded that chloroquine can no longer be considered an effective therapy for P. falciparum malaria in young children in Dar es Salaam. PMID:10534897

  15. ama1 Genes of Sympatric Plasmodium vivax and P. falciparum from Venezuela Differ Significantly in Genetic Diversity and Recombination Frequency

    PubMed Central

    Ord, Rosalynn L.; Tami, Adriana; Sutherland, Colin J.

    2008-01-01

    Background We present the first population genetic analysis of homologous loci from two sympatric human malaria parasite populations sharing the same human hosts, using full-length sequences of ama1 genes from Plasmodium vivax and P. falciparum collected in the Venezuelan Amazon. Methodology/Principal Findings Significant differences between the two species were found in genetic diversity at the ama1 locus, with 18 distinct haplotypes identified among the 73 Pvama1 sequences obtained, compared to 6 unique haplotypes from 30 Pfama1 sequences, giving overall diversity estimates of h = 0.9091, and h = 0.538 respectively. Levels of recombination were also found to differ between the species, with P. falciparum exhibiting very little recombination across the 1.77kb sequence. In contrast, analysis of patterns of nucleotide substitutions provided evidence that polymorphisms in the ama1 gene of both species are maintained by balancing selection, particularly in domain I. The two distinct population structures observed are unlikely to result from different selective forces acting upon the two species, which share both human and mosquito hosts in this setting. Rather, the highly structured P. falciparum population appears to be the result of a population bottleneck, while the much less structured P. vivax population is likely to be derived from an ancient pool of diversity, as reflected in a larger estimate of effective population size for this species. Greatly reduced mosquito transmission in 1997, due to low rainfall prior to the second survey, was associated with far fewer P. falciparum infections, but an increase in P. vivax infections, probably due to hypnozoite activation. Conclusions/Significance The relevance of these findings to putative competitive interactions between these two important human pathogen species is discussed. These results highlight the need for future control interventions to employ strategies targeting each of the parasite species present

  16. The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis*

    PubMed Central

    Spry, Christina; Saliba, Kevin J.

    2009-01-01

    Pantothenate, a precursor of the fundamental enzyme cofactor coenzyme A (CoA), is essential for growth of the intraerythrocytic stage of human and avian malaria parasites. Avian malaria parasites have been reported to be incapable of de novo CoA synthesis and instead salvage CoA from the host erythrocyte; hence, pantothenate is required for CoA biosynthesis within the host cell and not the parasite itself. Whether the same is true of the intraerythrocytic stage of the human malaria parasite, Plasmodium falciparum, remained to be established. In this study we investigated the metabolic fate of [14C]pantothenate within uninfected and P. falciparum-infected human erythrocytes. We provide evidence consistent with normal human erythrocytes, unlike rat erythrocytes (which have been reported to possess an incomplete CoA biosynthesis pathway), being capable of CoA biosynthesis from pantothenate. We also show that CoA biosynthesis is substantially higher in P. falciparum-infected erythrocytes and that P. falciparum, unlike its avian counterpart, generates most of the CoA synthesized in the infected erythrocyte, presumably necessitated by insufficient CoA biosynthesis in the host erythrocyte. Our data raise the possibility that malaria parasites rationalize their biosynthetic activity depending on the capacity of their host cell to synthesize the metabolites they require. PMID:19584050

  17. Efficacy of Chloroquine for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Honduras

    PubMed Central

    Torres, Rosa Elena Mejia; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A.; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-01-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization—World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras. PMID:23458957

  18. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum.

    PubMed

    Clark, Martha A; Goheen, Morgan M; Fulford, Anthony; Prentice, Andrew M; Elnagheeb, Marwa A; Patel, Jaymin; Fisher, Nancy; Taylor, Steve M; Kasthuri, Raj S; Cerami, Carla

    2014-01-01

    Iron deficiency and malaria have similar global distributions, and frequently co-exist in pregnant women and young children. Where both conditions are prevalent, iron supplementation is complicated by observations that iron deficiency anaemia protects against falciparum malaria, and that iron supplements increase susceptibility to clinically significant malaria, but the mechanisms remain obscure. Here, using an in vitro parasite culture system with erythrocytes from iron-deficient and replete human donors, we demonstrate that Plasmodium falciparum infects iron-deficient erythrocytes less efficiently. In addition, owing to merozoite preference for young erythrocytes, iron supplementation of iron-deficient individuals reverses the protective effects of iron deficiency. Our results provide experimental validation of field observations reporting protective effects of iron deficiency and harmful effects of iron administration on human malaria susceptibility. Because recovery from anaemia requires transient reticulocytosis, our findings imply that in malarious regions iron supplementation should be accompanied by effective measures to prevent falciparum malaria. PMID:25059846

  19. Impact of Plasmodium falciparum Coinfection on Longitudinal Epstein-Barr Virus Kinetics in Kenyan Children.

    PubMed

    Reynaldi, Arnold; Schlub, Timothy E; Chelimo, Kiprotich; Sumba, Peter Odada; Piriou, Erwan; Ogolla, Sidney; Moormann, Ann M; Rochford, Rosemary; Davenport, Miles P

    2016-03-15

    Endemic Burkitt lymphoma is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum coinfection, although how P. falciparum exposure affects the dynamics of EBV infection is unclear. We have used a modeling approach to study EBV infection kinetics in a longitudinal cohort of children living in regions of high and low malaria transmission in Kenya. Residence in an area of high malaria transmission was associated with a higher rate of EBV expansion during primary EBV infection in infants and during subsequent episodes of EBV DNA detection, as well as with longer episodes of EBV DNA detection and shorter intervals between subsequent episodes of EBV DNA detection. In addition, we found that concurrent P. falciparum parasitemia also increases the likelihood of the first and subsequent peaks of EBV in peripheral blood. This suggests that P. falciparum infection is associated with increased EBV growth and contributes to endemic Burkitt lymphoma pathogenesis. PMID:26531246

  20. Malaria morbidity in Papua Indonesia, an area with multidrug resistant Plasmodium vivax and Plasmodium falciparum

    PubMed Central

    Karyana, Muhammad; Burdarm, Lenny; Yeung, Shunmay; Kenangalem, Enny; Wariker, Noah; Maristela, Rilia; Umana, Ketut Gde; Vemuri, Ram; Okoseray, Maurits J; Penttinen, Pasi M; Ebsworth, Peter; Sugiarto, Paulus; Anstey, Nicholas M; Tjitra, Emiliana; Price, Richard N

    2008-01-01

    Background Multidrug resistance has emerged to both Plasmodium vivax and Plasmodium falciparum and yet the comparative epidemiology of these infections is poorly defined. Methods All laboratory-confirmed episodes of malaria in Timika, Papua, Indonesia, presenting to community primary care clinics and an inpatient facility were reviewed over a two-year period. In addition information was gathered from a house-to-house survey to quantify the prevalence of malaria and treatment-seeking behaviour of people with fever. Results Between January 2004 and December 2005, 99,158 laboratory-confirmed episodes of malaria were reported, of which 58% (57,938) were attributable to P. falciparum and 37% (36,471) to P. vivax. Malaria was most likely to be attributable to pure P. vivax in children under one year of age (55% 2,684/4,889). In the household survey, the prevalence of asexual parasitaemia was 7.5% (290/3,890) for P. falciparum and 6.4% (248/3,890) for P. vivax. The prevalence of P. falciparum infection peaked in young adults aged 15–25 years (9.8% 69/707), compared to P. vivax infection which peaked in children aged 1 to 4 years (9.5% 61/642). Overall 35% (1,813/5,255) of people questioned reported a febrile episode in the preceding month. Of the 60% of people who were estimated to have had malaria, only 39% would have been detected by the surveillance network. The overall incidence of malaria was therefore estimated as 876 per 1,000 per year (Range: 711–906). Conclusion In this region of multidrug-resistant P. vivax and P. falciparum, both species are associated with substantial morbidity, but with significant differences in the age-related risk of infection. PMID:18673572

  1. Caudal is a negative regulator of the Anopheles IMD Pathway that controls resistance to P. falciparum infection

    PubMed Central

    Clayton, April M.; Cirimotich, Chris M.; Dong, Yuemei; Dimopoulos, George

    2013-01-01

    Malaria parasite transmission depends upon the successful development of Plasmodium in its Anopheles mosquito vector. The mosquito’s innate immune system constitutes a major bottleneck for parasite population growth. We show here that in Anopheles gambiae, the midgut-specific transcription factor Caudal acts as a negative regulator in the Imd pathway-mediated immune response against the human malaria parasite P. falciparum. Caudal also modulates the mosquito midgut bacterial flora. RNAi-mediated silencing of Caudal enhanced the mosquito’s resistance to bacterial infections and increased the transcriptional abundance of key immune effector genes. Interestingly, Caudal’s silencing resulted in an increased lifespan of the mosquito, while it impaired reproductive fitness with respect to egg laying and hatching. PMID:23178401

  2. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times.

    PubMed

    Okoth, Sheila Akinyi; Chenet, Stella M; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  3. Multiplicity of Infection and Disease Severity in Plasmodium vivax

    PubMed Central

    Pacheco, M. Andreína; Lopez-Perez, Mary; Vallejo, Andrés F.; Herrera, Sócrates; Arévalo-Herrera, Myriam; Escalante, Ananias A.

    2016-01-01

    Background Multiplicity of infection (MOI) refers to the average number of distinct parasite genotypes concurrently infecting a patient. Although several studies have reported on MOI and the frequency of multiclonal infections in Plasmodium falciparum, there is limited data on Plasmodium vivax. Here, MOI and the frequency of multiclonal infections were studied in areas from South America where P. vivax and P. falciparum can be compared. Methodology/Principal Findings As part of a passive surveillance study, 1,328 positive malaria patients were recruited between 2011 and 2013 in low transmission areas from Colombia. Of those, there were only 38 P. vivax and 24 P. falciparum clinically complicated cases scattered throughout the time of the study. Samples from uncomplicated cases were matched in time and location with the complicated cases in order to compare the circulating genotypes for these two categories. A total of 92 P. vivax and 57 P. falciparum uncomplicated cases were randomly subsampled. All samples were genotyped by using neutral microsatellites. Plasmodium vivax showed more multiclonal infections (47.7%) than P. falciparum (14.8%). Population genetics and haplotype network analyses did not detect differences in the circulating genotypes between complicated and uncomplicated cases in each parasite. However, a Fisher exact test yielded a significant association between having multiclonal P. vivax infections and complicated malaria. No association was found for P. falciparum infections. Conclusion The association between multiclonal infections and disease severity in P. vivax is consistent with previous observations made in rodent malaria. The contrasting pattern between P. vivax and P. falciparum could be explained, at least in part, by the fact that P. vivax infections have lineages that were more distantly related among them than in the case of the P. falciparum multiclonal infections. Future research should address the possible role that acquired

  4. N'Dribala (Cochlospermum planchonii) versus chloroquine for treatment of uncomplicated Plasmodium falciparum malaria.

    PubMed

    Benoit-Vical, F; Valentin, A; Da, B; Dakuyo, Z; Descamps, L; Mallié, M

    2003-11-01

    The aim of this work was to assess the efficacy of oral N'Dribala (tuberous roots decoction of Cochlospermum planchonii Hook) treatment versus chloroquine in non-severe malaria. The study included 85 patients with uncomplicated Plasmodium falciparum infection in Banfora, Burkina Faso. Forty-six patients that received N'Dribala beverage were compared to 21 patients treated with chloroquine. All patients were monitored with clinical examination and a parasitemia control by Giemsa-stained thick films. N'Dribala appeared safe and statistically as efficient as chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria. At day 5 (D5), 57% of chloroquine-treated and 52% of N'Dribala-treated patients were cured with no detectable parasitemia (parasite density (Pd): 0) and more than 90% of whole patients were asymptomatic. N'Dribala is easily available in this country, cheap, without significant side effects and efficient with a clearly demonstrated activity on Plasmodium falciparum blood stages. This study enhances the traditional use of the Cochlospermum planchonii as alternative therapy for treatment of non-severe malaria. PMID:14522441

  5. [Falciform anemia and Plasmodium falciparum malaria: a threat to flap survival?].

    PubMed

    Mariéthoz, S; Pittet, B; Loutan, L; Humbert, J; Montandon, D

    1999-02-01

    Plasmodium falciparum malaria, a parasitic disease, and sickle cell anemia, a hereditary disease, are two diseases affecting erythrocyte cycle, occurring with a high prevalence in tropical Africa. They may induce microthrombosis inducing vaso-occlusion, organ dysfunction and flap necrosis. During the acute phase of Plasmodium falciparum malaria, destruction of parasitized and healthy erythrocytes, release of parasite and erythrocyte material into the circulation, and secondary host reaction occur. Plasmodium falciparum infected erythrocytes also sequester in the microcirculation of vital organs and may interfere with microcirculatory flow in the flap during the postoperative period. The lower legs of homozygous sickle cell anemia patients are areas of marginal vascularity where minor abrasions become foci of inflammation. Inflammation results in decreased local oxygen tension, sickling of erythrocytes, increased blood viscosity and thrombosis with consequent ischemia, tissue breakdown and leg ulcer. Tissue transfer has become the procedure of choice for reconstruction of the lower third of the leg although flaps may become necrotic. The aim of this study is to analyse circumstances predisposing to surgical complications and to define preventive and therapeutic measures. A review of the literature will describe the current research and the new perspectives to treat sickle cell anemia, for example hydroxyurea and vasoactive substances (pentoxifylline, naftidrofuryl, buflomedil). PMID:10188298

  6. Elevated Levels of High-Mobility Group Box-1 (HMGB1) in Patients with Severe or Uncomplicated Plasmodium falciparum Malaria

    PubMed Central

    Angeletti, Davide; Kiwuwa, Mpungu Steven; Byarugaba, Justus; Kironde, Fred; Wahlgren, Mats

    2013-01-01

    Severe malaria is characterized by a massive release of proinflammatory cytokines in the context of sequestration of parasitized and normal red cells (RBCs). High-mobility group box 1 (HMGB1) is a DNA- and heparin-binding protein that also acts as a cytokine when released from cells in the extracellular milieu after a proinflammatory stimulus. In this study, we have measured the circulating levels of HMGB1 in 76 children with severe or uncomplicated malaria. Sera from both severe (P = 0.0022) and uncomplicated (P = 0.0049) patients had significantly higher circulating HMGB1 levels compared with healthy controls. Elevated HMGB1 in patients with ongoing Plasmodium falciparum infections might prolong inflammation and the febrile state of malaria and could offer a potential target for therapeutic intervention. PMID:23400574

  7. [Multiple and successive treatment failures in a patient infected by Plasmodium falciparum in Cambodia and treated by dihydroartemisinin-piperaquine].

    PubMed

    Witkowski, B; Khim, N; Kim, S; Domergue, A; Duru, V; Menard, D

    2016-05-01

    Cases of treatment failures following administration of artemisinin-based combination therapies (ACT) remain rare in malaria endemic areas. In Cambodia, however, failures of these treatments are now commonly observed. Usually, these post-treatment recurrences occur only once and a second course of the same treatment is sufficient to cure patients.We describe here an atypical case of a Plasmodium falciparum-infected patient manifesting several malaria recrudescence episodes following dihydroartemisinin-piperaquine (Eurartesim®) treatment. This case report illustrates the current issue of resistance to the latest generation of antimalarial drugs in Southeast Asia and highlights the difficulty in efficaciously fighting malaria in this region if new therapy remains unimplemented. PMID:27100863

  8. A clonal Plasmodium falciparum population in an isolated outbreak of malaria in the Republic of Cabo Verde.

    PubMed

    Arez, A P; Snounou, G; Pinto, J; Sousa, C A; Modiano, D; Ribeiro, H; Franco, A S; Alves, J; do Rosario, V E

    1999-04-01

    We present the first parasitological, molecular and longitudinal analysis of an isolated outbreak of malaria. This outbreak occurred on Santiago Island (Republic of Cabo Verde), a region where malaria is hypoendemic and controlled, and thus the population is considered non-immune. Blood samples were collected from the inhabitants over 1 month and during cross-sectional surveys in the following year. The presence and nature of the parasites was determined by PCR. Plasmodium falciparum was the only species detected. Genetic analysis revealed that the circulating parasites were genetically homogeneous, and probably clonal. Gametocytes were found throughout this period. Our data suggest that this represented a focal outbreak, resulting in the infection of at least 40% of the villagers with a clonal parasite line. Thus, P. falciparum infections can persist for at least 1 year in a substantial proportion (10%) of the hosts. Implications for malaria control and the interpretation of epidemiological data are discussed. PMID:10340324

  9. Plasmodium falciparum schizont sonic extracts suppress lymphoproliferative responses to mitogens and antigens in malaria-immune adults.

    PubMed Central

    Riley, E M; Jobe, O; Blackman, M; Whittle, H C; Greenwood, B M

    1989-01-01

    Cellular immune responses to malaria antigens are suppressed during acute Plasmodium falciparum infection, and evidence from both murine and human studies suggests that parasite-derived factors may be directly immunosuppressive. In this study we have shown that P. falciparum schizont sonic extract will suppress in vitro lymphoproliferative responses to purified malaria antigens and other soluble antigens. The degree of suppression appears to correlate with the level of the lymphoproliferative response to the schizont preparation and is correspondingly more marked in malaria-immune donors than in nonimmune individuals. The effect can be transferred with primed mononuclear cells and is partially abrogated by removal of CD8+ lymphocytes. The suppressive component of the schizont preparation is nondialyzable and partially heat labile and comigrates with hemoglobin-derived proteins in the molecular mass range 10 to 20 kilodaltons. PMID:2528508

  10. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype.

    PubMed

    Brown, Tyler S; Jacob, Christopher G; Silva, Joana C; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V; Cummings, Michael P

    2015-03-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives. PMID:25514047

  11. Plasmodium falciparum field isolates from areas of repeated emergence of drug resistant malaria show no evidence of hypermutator phenotype

    PubMed Central

    Brown, Tyler S.; Jacob, Christopher G.; Silva, Joana C.; Takala-Harrison, Shannon; Djimdé, Abdoulaye; Dondorp, Arjen M.; Fukuda, Mark; Noedl, Harald; Nyunt, Myaing Myaing; Kyaw, Myat Phone; Mayxay, Mayfong; Hien, Tran Tinh; Plowe, Christopher V.; Cummings, Michael P.

    2015-01-01

    Multiple transcontinental waves of drug resistance in Plasmodium falciparum have originated in Southeast Asia before spreading westward, first into the rest of Asia and then to sub-Saharan Africa. In vitro studies have suggested that hypermutator P. falciparum parasites may exist in Southeast Asia and that an increased rate of acquisition of new mutations in these parasites may explain the repeated emergence of drug resistance in Southeast Asia. This study is the first to test the hypermutator hypothesis using field isolates. Using genome-wide SNP data from human P. falciparum infections in Southeast Asia and West Africa and a test for relative rate differences we found no evidence of increased relative substitution rates in P. falciparum isolates from Southeast Asia. Instead, we found significantly increased substitution rates in Mali and Bangladesh populations relative to those in populations from Southeast Asia. Additionally we found no association between increased relative substitution rates and parasite clearance following treatment with artemisinin derivatives. PMID:25514047

  12. Human cerebral malaria and Plasmodium falciparum genotypes in Malawi

    PubMed Central

    2012-01-01

    Background Cerebral malaria, a severe form of Plasmodium falciparum infection, is an important cause of mortality in sub-Saharan African children. A Taqman 24 Single Nucleotide Polymorphisms (SNP) molecular barcode assay was developed for use in laboratory parasites which estimates genotype number and identifies the predominant genotype. Methods The 24 SNP assay was used to determine predominant genotypes in blood and tissues from autopsy and clinical patients with cerebral malaria. Results Single genotypes were shared between the peripheral blood, the brain, and other tissues of cerebral malaria patients, while malaria-infected patients who died of non-malarial causes had mixed genetic signatures in tissues examined. Children with retinopathy-positive cerebral malaria had significantly less complex infections than those without retinopathy (OR = 3.7, 95% CI [1.51-9.10]).The complexity of infections significantly decreased over the malaria season in retinopathy-positive patients compared to retinopathy-negative patients. Conclusions Cerebral malaria patients harbour a single or small set of predominant parasites; patients with incidental parasitaemia sustain infections involving diverse genotypes. Limited diversity in the peripheral blood of cerebral malaria patients and correlation with tissues supports peripheral blood samples as appropriate for genome-wide association studies of parasite determinants of pathogenicity. PMID:22314206

  13. In vitro drug sensitivity of Plasmodium falciparum in Acre, Brazil.

    PubMed Central

    Kremsner, P. G.; Zotter, G. M.; Feldmeier, H.; Graninger, W.; Kollaritsch, M.; Wiedermann, G.; Rocha, R. M.; Wernsdorfer, W. H.

    1989-01-01

    In Acre, the westernmost state of Brazil in the Amazon region, the sensitivity of Plasmodium falciparum to chloroquine, amodiaquine, mefloquine, quinine and sulfadoxine/pyrimethamine was determined in vitro by the Rieckmann microtechnique. The study was performed between January and June 1987; the in vitro parasite responses to all antimalarial drugs were determined according to the recommendations of WHO. Of 83 isolates of P. falciparum, all were sensitive to mefloquine and of 87 isolates of P. falciparum, 84 (97%) were sensitive to quinine. The EC50 for mefloquine was 0.27 mumol/l and for quinine 4.60 mumol/l. In contrast, 65 of 89 (73%) and 70 of 83 (84%) isolates were resistant to amodiaquine and chloroquine, respectively; 11 isolates even grew at 6.4 mumol chloroquine/l. The EC50 for amodiaquine was 0.34 mumol/l and for chloroquine 0.73 mumol/l. Sulfadoxine/pyrimethamine resistance was seen in 23 of 25 (92%) cases. These data clearly indicate that in the western part of the Amazon region the 4-aminoquinolines, as well as sulfadoxine/pyrimethamine, can no longer be recommended for the treatment of P. falciparum infections. PMID:2670298

  14. Parity and Placental Infection Affect Antibody Responses against Plasmodium falciparum during Pregnancy▿ †

    PubMed Central

    Mayor, Alfredo; Rovira-Vallbona, Eduard; Machevo, Sonia; Bassat, Quique; Aguilar, Ruth; Quintó, Llorenç; Jiménez, Alfons; Sigauque, Betuel; Dobaño, Carlota; Kumar, Sanjeev; Singh, Bijender; Gupta, Puneet; Chauhan, Virander S.; Chitnis, Chetan E.; Alonso, Pedro L.; Menéndez, Clara

    2011-01-01

    Women are at higher risk of Plasmodium falciparum infection when pregnant. The decreasing risk of malaria with subsequent pregnancies is attributed to parity-dependent acquisition of antibodies against placental parasites expressing variant surface antigens, VAR2CSA, that mediate placental sequestration through adhesion to chondroitin sulfate A (CSA). However, modulation of immunity during pregnancy may also contribute to increase the risk of malaria. We compared antibody responses among 30 Mozambican primigravidae and 60 multigravidae at delivery, 40 men, and 40 children. IgG levels were measured against the surface antigens of erythrocytes infected with P. falciparum isolated from 12 pregnant women (4 placental and 8 peripheral blood isolates) and 26 nonpregnant hosts. We also measured IgG levels against merozoite recombinant antigens and total IgG. Placental P. falciparum infection was associated with increased levels of total IgG as well as IgG levels against merozoite antigens and parasite isolates from pregnant and nonpregnant hosts. We therefore stratified comparisons of antibody levels by placental infection. Compared to multigravidae, uninfected primigravidae had lower total IgG as well as lower levels of IgGs against peripheral blood isolates from both pregnant and nonpregnant hosts. These differences were not explained by use of bed nets, season at delivery, neighborhood of residence, or age. Compared to men, infected primigravidae had higher levels of IgGs against isolates from pregnant women and CSA-binding lines but not against other isolates, supporting the concept of a pregnancy-specific development of immunity to these parasite variants. Results of this study show that parity and placental infection can modulate immune responses during pregnancy against malaria parasites. PMID:21300778

  15. Parasitostatic effect of maslinic acid. I. Growth arrest of Plasmodium falciparum intraerythrocytic stages

    PubMed Central

    2011-01-01

    Background Natural products have played an important role as leads for the development of new drugs against malaria. Recent studies have shown that maslinic acid (MA), a natural triterpene obtained from olive pomace, which displays multiple biological and antimicrobial activities, also exerts inhibitory effects on the development of some Apicomplexan, including Eimeria, Toxoplasma and Neospora. To ascertain if MA displays anti-malarial activity, the main objective of this study was to asses the effect of MA on Plasmodium falciparum-infected erythrocytes in vitro. Methods Synchronized P. falciparum-infected erythrocyte cultures were incubated under different conditions with MA, and compared to chloroquine and atovaquone treated cultures. The effects on parasite growth were determined by monitoring the parasitaemia and the accumulation of the different infective stages visualized in thin blood smears. Results MA inhibits the growth of P. falciparum Dd2 and 3D7 strains in infected erythrocytes in, dose-dependent manner, leading to the accumulation of immature forms at IC50 concentrations, while higher doses produced non-viable parasite cells. MA-treated infected-erythrocyte cultures were compared to those treated with chloroquine or atovaquone, showing significant differences in the pattern of accumulation of parasitic stages. Transient MA treatment at different parasite stages showed that the compound targeted intra-erythrocytic processes from early-ring to schizont stage. These results indicate that MA has a parasitostatic effect, which does not inactivate permanently P. falciparum, as the removal of the compound allowed the infection to continue Conclusions MA displays anti-malarial activity at multiple intraerythrocytic stages of the parasite and, depending on the dose and incubation time, behaves as a plasmodial parasitostatic compound. This novel parasitostatic effect appears to be unrelated to previous mechanisms proposed for current anti-malarial drugs, and

  16. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community

    PubMed Central

    Branch, OraLee; Casapia, W Martin; Gamboa, Dionicia V; Hernandez, Jean N; Alava, Freddy F; Roncal, Norma; Alvarez, Eugenia; Perez, Enrique J; Gotuzzo, Eduardo

    2005-01-01

    Background There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections. Methods Passive case-detection (PCD) during the malaria season (February-July) and an active case-detection (ACD) community-wide survey (March) surveyed 1,907 persons. Each month, April-July, 100-metre at-risk zones were defined by location of Plasmodium falciparum infections in the previous month. Longitudinal ACD and PCD (ACP+PCD) occurred within at-risk zones, where 137 houses (573 persons) were randomly selected as sentinels, each with one month of weekly active sampling. Entomological captures were conducted in the sentinel houses. Results The PCD incidence was 0.03 P. falciparum and 0.22 Plasmodium vivax infections/person/malaria-season. However, the ACD+PCD prevalence was 0.13 and 0.39, respectively. One explanation for this 4.33 and 1.77-fold increase, respectively, was infection clustering within at-risk zones and contiguous households. Clustering makes PCD, generalized to the entire population, artificially low. Another attributable-factor was that only 41% and 24% of the P. falciparum and P. vivax infections were associated with fever and 80% of the asymptomatic infections had low-density or absent parasitaemias the following week. After accounting for asymptomatic infections, a 2.6-fold increase in ACD+PCD versus PCD was attributable to clustered transmission in at-risk zones. Conclusion Even in low transmission, there are frequent highly-clustered asymptomatic infections, making PCD an inadequate measure of incidence. These findings support a strategy of concentrating ACD and insecticide campaigns in houses adjacent to houses were malaria was detected one month prior. PMID:15975146

  17. AP-1/Fos-TGase2 Axis Mediates Wounding-induced Plasmodium falciparum Killing in Anopheles gambiae*

    PubMed Central

    Nsango, Sandrine E.; Pompon, Julien; Xie, Ting; Rademacher, Annika; Fraiture, Malou; Thoma, Martine; Awono-Ambene, Parfait H.; Moyou, Roger S.; Morlais, Isabelle; Levashina, Elena A.

    2013-01-01

    Anopheline mosquitoes are the only vectors of human malaria worldwide. It is now widely accepted that mosquito immune responses play a crucial role in restricting Plasmodium development within the vector; therefore, further dissection of the molecular mechanisms underlying these processes should inform new vector control strategies urgently needed to roll back the disease. Here, using genome-wide transcriptional profiling, bioinformatics, and functional gene analysis, we identify a new axis of mosquito resistance to monoclonal Plasmodium falciparum infections that includes the AP-1 transcription factor Fos and the transglutaminase 2 (TGase2), a cross-linking enzyme with known roles in wound responses. We demonstrate that Fos regulates induction of TGase2 expression after wounding but does not affect expression of the components of the well characterized complement-like system. Silencing of Fos or of TGase2 aborts the wounding-induced mosquito killing of P. falciparum. These results reveal multiple signaling pathways that are required for efficient Plasmodium killing in Anopheles gambiae. PMID:23592781

  18. Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and In Vivo Models of Malaria

    PubMed Central

    Khoury, David S.; Cromer, Deborah; Best, Shannon E.; James, Kylie R.; Kim, Peter S.; Engwerda, Christian R.; Haque, Ashraful

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  19. Effect of mature blood-stage Plasmodium parasite sequestration on pathogen biomass in mathematical and in vivo models of malaria.

    PubMed

    Khoury, David S; Cromer, Deborah; Best, Shannon E; James, Kylie R; Kim, Peter S; Engwerda, Christian R; Haque, Ashraful; Davenport, Miles P

    2014-01-01

    Parasite biomass and microvasculature obstruction are strongly associated with disease severity and death in Plasmodium falciparum-infected humans. This is related to sequestration of mature, blood-stage parasites (schizonts) in peripheral tissue. The prevailing view is that schizont sequestration leads to an increase in pathogen biomass, yet direct experimental data to support this are lacking. Here, we first studied parasite population dynamics in inbred wild-type (WT) mice infected with the rodent species of malaria, Plasmodium berghei ANKA. As is commonly reported, these mice became moribund due to large numbers of parasites in multiple tissues. We then studied infection dynamics in a genetically targeted line of mice, which displayed minimal tissue accumulation of parasites. We constructed a mathematical model of parasite biomass dynamics, incorporating schizont-specific host clearance, both with and without schizont sequestration. Combined use of mathematical and in vivo modeling indicated, first, that the slowing of parasite growth in the genetically targeted mice can be attributed to specific clearance of schizonts from the circulation and, second, that persistent parasite growth in WT mice can be explained solely as a result of schizont sequestration. Our work provides evidence that schizont sequestration could be a major biological process driving rapid, early increases in parasite biomass during blood-stage Plasmodium infection. PMID:24144725

  20. Leishmania donovani infection drives the priming of human monocyte-derived dendritic cells during Plasmodium falciparum co-infections.

    PubMed

    van den Bogaart, E; de Bes, H M; Balraadjsing, P P S; Mens, P F; Adams, E R; Grobusch, M P; van Die, I; Schallig, H D F H

    2015-09-01

    Functional impairment of dendritic cells (DCs) is part of a survival strategy evolved by Leishmania and Plasmodium parasites to evade host immune responses. Here, the effects of co-exposing human monocyte-derived DCs to Leishmania donovani promastigotes and Plasmodium falciparum-infected erythrocytes were investigated. Co-stimulation resulted in a dual, dose-dependent effect on DC differentiation which ranged from semi-mature cells, secreting low interleukin(-12p70 levels to a complete lack of phenotypic maturation in the presence of high parasite amounts. The effect was mainly triggered by the Leishmania parasites, as illustrated by their ability to induce semi-mature, interleukin-10-producing DCs, that poorly responded to lipopolysaccharide stimulation. Conversely, P. falciparum blood-stage forms failed to activate DCs and only slightly interfered with lipopolysaccharide effects. Stimulation with high L. donovani concentrations triggered phosphatidylserine translocation, whose onset presented after initiating the maturation impairment process. When added in combination, the two parasites could co-localize in the same DCs, confirming that the leading effects of Leishmania over Plasmodium may not be due to mutual exclusion. Altogether, these results suggest that in the presence of visceral leishmaniasis-malaria co-infections, Leishmania-driven effects may overrule the more silent response elicited by P. falciparum, shaping host immunity towards a regulatory pattern and possibly delaying disease resolution. PMID:26173941

  1. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    PubMed Central

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2015-01-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  2. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells.

    PubMed

    Ramphul, Urvashi N; Garver, Lindsey S; Molina-Cruz, Alvaro; Canepa, Gaspar E; Barillas-Mury, Carolina

    2015-02-01

    The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system. PMID:25552553

  3. Role of the Plasmodium Export Element in Trafficking Parasite Proteins to the Infected Erythrocyte

    PubMed Central

    Boddey, Justin A; Moritz, Robert L; Simpson, Richard J; Cowman, Alan F

    2009-01-01

    The intracellular survival of Plasmodium falciparum within human erythrocytes is dependent on export of parasite proteins that remodel the host cell. Most exported proteins require a conserved motif (RxLxE/Q/D), termed the Plasmodium export element (PEXEL) or vacuolar targeting sequence (VTS), for targeting beyond the parasitophorous vacuole membrane and into the host cell; however, the precise role of this motif in export is poorly defined. We used transgenic P. falciparum expressing chimeric proteins to investigate the function of the PEXEL motif for export. The PEXEL constitutes a bifunctional export motif comprising a protease recognition sequence that is cleaved, in the endoplasmic reticulum, from proteins destined for export, in a PEXEL arginine- and leucine-dependent manner. Following processing, the remaining conserved PEXEL residue is required to direct the mature protein to the host cell. Furthermore, we demonstrate that N acetylation of proteins following N-terminal processing is a PEXEL-independent process that is insufficient for correct export to the host cell. This work defines the role of each residue in the PEXEL for export into the P. falciparum-infected erythrocyte. PMID:19055692

  4. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes

    PubMed Central

    Guillotte, Micheline; Juillerat, Alexandre; Igonet, Sébastien; Hessel, Audrey; Petres, Stéphane; Crublet, Elodie; Le Scanf, Cécile; Lewit-Bentley, Anita; Bentley, Graham A.

    2015-01-01

    Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting. PMID:26222304

  5. Ribose metabolism and nucleic acid synthesis in normal and glucose-6-phosphate dehydrogenase-deficient human erythrocytes infected with Plasmodium falciparum.

    PubMed Central

    Roth, E F; Ruprecht, R M; Schulman, S; Vanderberg, J; Olson, J A

    1986-01-01

    The metabolism of pentose-phosphate was investigated in Plasmodium falciparum-infected normal and glucose-6-phosphate dehydrogenase (G6PD)-deficient human red blood cells in vitro. 5'-Phosphoribosyl-1-pyrophosphate (PRPP) content of infected normal red blood cells was increased 50-60-fold at the parasite trophozoite growth stage over that of uninfected cells. The PRPP increment in infected G6PD-deficient cells at comparable stage and parasitemia was only 40% of the value in normal infected cells. Red blood cell PRPP synthetase activity did not change during the growth cycle of the parasite and was similar in both normal and G6PD-deficient cells. Reduced glutathione (GSH) content of G6PD-deficient cells under conditions of culture fell to low or undetectable levels. These low levels of GSH were shown to inhibit the function of red blood cell PRPP synthetase, which requires GSH for full activity. Measurements of the incorporation of 1-14C or 6-14C selectively labeled glucose into parasite nucleic acids revealed that in normal infected red cells, approximately 20% of the pentose was produced via the oxidation of glucose-6-phosphate, whereas in infected G6PD-deficient cells (Mediterranean type), none of the pentose was produced via the oxidative pathway. It is concluded that the low level of reduced GSH found in G6PD deficiency and the resultant partial inhibition of PRPP synthetase together with the missing oxidative pathway for ribose phosphate production can account fully for the reduced parasite growth rate in G6PD-deficient red blood cells described previously. Of these two mechanisms, the predominant one is the impaired PRPP synthetase activity due to low GSH levels in enzyme-deficient red blood cells. The contribution to the ribose-phosphate pool by the hexose monophosphate shunt is relatively minor. A co-existing oxidative stress (which is often hypothesized to mediate the destruction of parasitized red blood cells) is not required to explain growth inhibition

  6. In vivo response of Plasmodium falciparum to chloroquine in pregnant and non-pregnant women in Siaya District, Kenya*

    PubMed Central

    Steketee, R. W.; Brandling-Bennett, A. D.; Kaseje, D. C. O.; Schwartz, I. K.; Churchill, F. C.

    1987-01-01

    Chemoprophylaxis using chloroquine (CQ) in suppressive doses has been recommended to protect pregnant women in malarious areas from the adverse effects of malaria during pregnancy. In a malaria-endemic area of western Kenya with CQ-resistant Plasmodium falciparum, we determined the prevalence and density of falciparum infection in gravid and nulligravid women and compared the in-vivo parasite response to CQ using two regimens: 25 mg/kg body weight (CQ25) divided over a period of three days (for high-density parasitaemias) and 5 mg/kg body weight (CQ5) weekly for 4 weeks (for low-density parasitaemias). P. falciparum infections were present in 102 (42%) of 244 pregnant women. A greater proportion of primigravidae were parasitaemic (68%) than nulligravidae (50%, P=0.02) or multigravidae (33%, P <10-6). Primigravidae showed a higher geometric mean parasite density. In the CQ25 treatment group, failure to clear parasites by day 7 was more common in primigravidae than nulligravidae (P=0.008) or multigravidae (P=0.15). In the CQ5 treatment group, primigravidae were more likely to show increasing parasite density than nulligravidae or multigravidae. In this area of Kenya, virtually all women in their first pregnancy are exposed to malaria and are at greatest risk for malaria infection; compared with other women, they show higher parasite densities and are least likely to respond to chloroquine treatment in areas of chloroquine resistance. Malaria control strategies might be targeted to this group of women, but we are pessimistic about the efficacy of weekly CQ5 where there is chloroquine resistance. PMID:3325186

  7. Plasmodium falciparum Malaria Challenge by the Bite of Aseptic Anopheles stephensi Mosquitoes: Results of a Randomized Infectivity Trial

    PubMed Central

    Lyke, Kirsten E.; Laurens, Matthew; Adams, Matthew; Billingsley, Peter F.; Richman, Adam; Loyevsky, Mark; Chakravarty, Sumana; Plowe, Christopher V.; Sim, B. Kim Lee; Edelman, Robert; Hoffman, Stephen L.

    2010-01-01

    Background Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs). Methods and Findings Eighteen adults aged 18–40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9–12 days). The geometric mean parasitemia was 15.7 parasites/µL (range: 4–70) by microscopy. Polymerase chain reaction (PCR) detected parasites 3.1 (range: 0–4) days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000–57,500). A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. Conclusions The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6) of volunteers exposed to three mosquito bites and 83% (5/6) of volunteers exposed to one mosquito bite. Trial Registration ClinicalTrials.gov NCT00744133 PMID:21042404

  8. Production, crystallization and X-ray diffraction analysis of two nanobodies against the Duffy binding-like (DBL) domain DBL6∊-FCR3 of the Plasmodium falciparum VAR2CSA protein

    PubMed Central

    Vuchelen, Anneleen; Pardon, Els; Steyaert, Jan; Gamain, Benoît; Loris, Remy; van Nuland, Nico A. J.; Ramboarina, Stéphanie

    2013-01-01

    The VAR2CSA protein has been closely associated with pregnancy-associated malaria and is recognized as the main adhesin exposed on the surface of Plasmodium falciparum-infected erythrocytes. Chondroitin sulfate A was identified as the main host receptor in the placenta. Single-domain heavy-chain camelid antibodies, more commonly called nanobodies, were selected and produced against the DBL6∊-FCR3 domain of VAR2CSA. Crystals of two specific nanobodies, Nb2907 and Nb2919, identified as strong binders to DBL6∊-FCR3 and the full-length VAR2CSA exposed on the surface of FCR3 P. falciparum-infected erythrocytes, were obtained. Crystals of Nb2907 diffract to 2.45 Å resolution and belong to space group C2 with unit-cell parameters a = 136.1, b = 78.5, c = 103.4 Å, β = 118.8°, whereas Nb2919 crystals diffract to 2.15 Å resolution and belong to space group P43212 with unit-cell parameters a = b = 62.7, c = 167.2 Å. PMID:23519802

  9. Chloroquine-resistant Plasmodium vivax malaria in Debre Zeit, Ethiopia

    PubMed Central

    Teka, Hiwot; Petros, Beyene; Yamuah, Lawrence; Tesfaye, Gezahegn; Elhassan, Ibrahim; Muchohi, Simon; Kokwaro, Gilbert; Aseffa, Abraham; Engers, Howard

    2008-01-01

    Background Plasmodium vivax accounts for about 40% of all malaria infection in Ethiopia. Chloroquine (CQ) is the first line treatment for confirmed P. vivax malaria in the country. The first report of CQ treatment failure in P. vivax was from Debre Zeit, which suggested the presence of chloroquine resistance. Methods An in vivo drug efficacy study was conducted in Debre Zeit from June to August 2006. Eighty-seven patients with microscopically confirmed P. vivax malaria, aged between 8 months and 52 years, were recruited and treated under supervision with CQ (25 mg/kg over three days). Clinical and parasitological parameters were assessed during the 28 day follow-up period. CQ and desethylchloroquine (DCQ) blood and serum concentrations were determined with high performance liquid chromatography (HPLC) in patients who showed recurrent parasitaemia. Results Of the 87 patients recruited in the study, one was lost to follow-up and three were excluded due to P. falciparum infection during follow-up. A total of 83 (95%) of the study participants completed the follow-up. On enrolment, 39.8% had documented fever and 60.2% had a history of fever. The geometric mean parasite density of the patients was 7045 parasites/μl. Among these, four patients had recurrent parasitaemia on Day 28. The blood CQ plus DCQ concentrations of these four patients were all above the minimal effective concentration (> 100 ng/ml). Conclusion Chloroquine-resistant P. vivax parasites are emerging in Debre Zeit, Ethiopia. A multi-centre national survey is needed to better understand the extent of P. vivax resistance to CQ in Ethiopia. PMID:18959774

  10. Fucosylated Chondroitin Sulfate Inhibits Plasmodium falciparum Cytoadhesion and Merozoite Invasion

    PubMed Central

    Bastos, Marcele F.; Albrecht, Letusa; Kozlowski, Eliene O.; Lopes, Stefanie C. P.; Blanco, Yara C.; Carlos, Bianca C.; Castiñeiras, Catarina; Vicente, Cristina P.; Werneck, Claudio C.; Wunderlich, Gerhard; Ferreira, Marcelo U.; Marinho, Claudio R. F.; Mourão, Paulo A. S.; Pavão, Mauro S. G.

    2014-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes (Pf-iEs) in the microvasculature of vital organs plays a key role in the pathogenesis of life-threatening malaria complications, such as cerebral malaria and malaria in pregnancy. This phenomenon is marked by the cytoadhesion of Pf-iEs to host receptors on the surfaces of endothelial cells, on noninfected erythrocytes, and in the placental trophoblast; therefore, these sites are potential targets for antiadhesion therapies. In this context, glycosaminoglycans (GAGs), including heparin, have shown the ability to inhibit Pf-iE cytoadherence and growth. Nevertheless, the use of heparin was discontinued due to serious side effects, such as bleeding. Other GAG-based therapies were hampered due to the potential risk of contamination with prions and viruses, as some GAGs are isolated from mammals. In this context, we investigated the effects and mechanism of action of fucosylated chondroitin sulfate (FucCS), a unique and highly sulfated GAG isolated from the sea cucumber, with respect to P. falciparum cytoadhesion and development. FucCS was effective in inhibiting the cytoadherence of Pf-iEs to human lung endothelial cells and placenta cryosections under static and flow conditions. Removal of the sulfated fucose branches of the FucCS structure virtually abolished the inhibitory effects of FucCS. Importantly, FucCS rapidly disrupted rosettes at high levels, and it was also able to block parasite development by interfering with merozoite invasion. Collectively, these findings highlight the potential of FucCS as a candidate for adjunct therapy against severe malaria. PMID:24395239

  11. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites

    PubMed Central

    van Gemert, Geert-Jan; Graumans, Wouter; van de Vegte-Bolmer, Marga; van Lieshout, Lisette; Haks, Mariëlle C.; Hermsen, Cornelus C.; Scholzen, Anja; Visser, Leo G.; Sauerwein, Robert W.

    2015-01-01

    Background Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI) model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization), requiring only 30–45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains. Methods In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa) in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia) at 14 months after the last immunization (NCT01660854). Results Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0–15.5) versus 8.5 days in 5 malaria-naïve controls (p = 0.0005). Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10. Conclusion This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines. Trial Registration Clinicaltrials.gov NCT01660854 PMID:25933168

  12. Plasmodium falciparum var gene expression is modified by host immunity

    PubMed Central

    Warimwe, George M.; Keane, Thomas M.; Fegan, Gregory; Musyoki, Jennifer N.; Newton, Charles R. J. C.; Pain, Arnab; Berriman, Matthew; Marsh, Kevin; Bull, Peter C.

    2009-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of immune targets, which play a central role in the host–parasite interaction by binding to various host molecules. They are encoded by a diverse family of genes called var, of which there are ≈60 copies in each parasite genome. In sub-Saharan Africa, although P. falciparum infection occurs throughout life, severe malarial disease tends to occur only in childhood. This could potentially be explained if (i) PfEMP1 variants differ in their capacity to support pathogenesis of severe malaria and (ii) this capacity is linked to the likelihood of each molecule being recognized and cleared by naturally acquired antibodies. Here, in a study of 217 Kenyan children with malaria, we show that expression of a group of var genes “cys2,” containing a distinct pattern of cysteine residues, is associated with low host immunity. Expression of cys2 genes was associated with parasites from young children, those with severe malaria, and those with a poorly developed antibody response to parasite-infected erythrocyte surface antigens. Cys-2 var genes form a minor component of all genomic var repertoires analyzed to date. Therefore, the results are compatible with the hypothesis that the genomic var gene repertoire is organized such that PfEMP1 molecules that confer the most virulence to the parasite tend also to be those that are most susceptible to the development of host immunity. This may help the parasite to adapt effectively to the development of host antibodies through modification of the host–parasite relationship. PMID:20018734

  13. Reduced immunogenicity of Plasmodium falciparum gamete surface antigen (Pfs48/45) in mice after disruption of disulphide bonds - evaluating effect of interferon-γ-inducible lysosomal thiol reductase.

    PubMed

    Merino, Kristen M; Bansal, Geetha P; Kumar, Nirbhay

    2016-08-01

    Sexual stages of Plasmodium are critical for malaria transmission and stage-specific antigens are important targets for development of malaria transmission-blocking vaccines. Plasmodium falciparum gamete surface antigen (Pfs48/45) is important for male gamete fertility and is being pursued as a candidate vaccine antigen. Vaccine-induced transmission-blocking antibodies recognize reduction-sensitive conformational epitopes in Pfs48/45. Processing and presentation of such disulphide-bond-constrained epitopes is critical for eliciting the desired immune responses. Mice lacking interferon-γ-inducible lysosomal thiol reductase (GILT), an enzyme that mediates reduction of S-S bonds during antigen processing, were employed to investigate immunogenicity of Pfs48/45. It has been well established that the ability to reduce S-S bonds in antigens guides effective T-cell immune responses; however, involvement of GILT in the induction of subsequent B-cell responses has not been explored. We hypothesized that the ability to reduce S-S bonds in Pfs48/45 will impact the generation of T-cell epitopes, and so influence helper T-cell responses required for specific B-cell responses. Non-reduced and reduced and alkylated forms of Pfs48/45 were employed to evaluate immune responses in wild-type and GILT knockout mice and studies revealed important differences in several immune response parameters, including differences in putative T-cell epitope recognition, faster kinetics of waning of Pfs48/45-specific IgG1 antibodies in knockout mice, differential patterns of interferon-γ and interleukin-4 secretions by splenocytes, and possible effects of GILT on induction of long-lived plasma cells and memory B cells responsible for antigen-recall responses. These studies emphasize the importance of antigen structural features that significantly influence the development of effective immune responses. PMID:27177843

  14. Host Erythrocyte Environment Influences the Localization of Exported Protein 2, an Essential Component of the Plasmodium Translocon

    PubMed Central

    Meibalan, Elamaran; Comunale, Mary Ann; Lopez, Ana M.; Bergman, Lawrence W.; Mehta, Anand; Vaidya, Akhil B.

    2015-01-01

    Malaria parasites replicating inside red blood cells (RBCs) export a large subset of proteins into the erythrocyte cytoplasm to facilitate parasite growth and survival. PTEX, the parasite-encoded translocon, mediates protein transport across the parasitophorous vacuolar membrane (PVM) in Plasmodium falciparum-infected erythrocytes. Proteins exported into the erythrocyte cytoplasm have been localized to membranous structures, such as Maurer's clefts, small vesicles, and a tubovesicular network. Comparable studies of protein trafficking in Plasmodium vivax-infected reticulocytes are limited. With Plasmodium yoelii-infected reticulocytes, we identified exported protein 2 (Exp2) in a proteomic screen of proteins putatively transported across the PVM. Immunofluorescence studies showed that P. yoelii Exp2 (PyExp2) was primarily localized to the PVM. Unexpectedly, PyExp2 was also associated with distinct, membrane-bound vesicles in the reticulocyte cytoplasm. This is in contrast to P. falciparum in mature RBCs, where P. falciparum Exp2 (PfExp2) is exclusively localized to the PVM. Two P. yoelii-exported proteins, PY04481 (encoded by a pyst-a gene) and PY06203 (PypAg-1), partially colocalized with these PyExp2-positive vesicles. Further analysis revealed that with P. yoelii, Plasmodium berghei, and P. falciparum, cytoplasmic Exp2-positive vesicles were primarily observed in CD71+ reticulocytes versus mature RBCs. In transgenic P. yoelii 17X parasites, the association of hemagglutinin-tagged PyExp2 with the PVM and cytoplasmic vesicles was retained, but the pyexp2 gene was refractory to deletion. These data suggest that the localization of Exp2 in mouse and human RBCs can be influenced by the host cell environment. Exp2 may function at multiple points in the pathway by which parasites traffic proteins into and through the reticulocyte cytoplasm. PMID:25662767

  15. Schistosoma mansoni Infection Impairs Antimalaria Treatment and Immune Responses of Rhesus Macaques Infected with Mosquito-Borne Plasmodium coatneyi

    PubMed Central

    Semenya, Amma A.; Sullivan, JoAnn S.; Barnwell, John W.

    2012-01-01

    Malaria and schistosomiasis are the world's two most important parasitic infections in terms of distribution, morbidity, and mortality. In areas where Plasmodium and Schistosoma species are both endemic, coinfections are commonplace. Mouse models demonstrate that schistosomiasis worsens a malaria infection; however, just as mice and humans differ greatly, the murine-infecting Plasmodium species differ as much from those that infect humans. Research into human coinfections (Schistosoma haematobium-Plasmodium falciparum versus Schistosoma mansoni-P. falciparum) has produced conflicting results. The rhesus macaque model provides a helpful tool for understanding the role of S. mansoni on malaria parasitemia and antimalarial immune responses using Plasmodium coatneyi, a malaria species that closely resembles P. falciparum infection in humans. Eight rhesus macaques were exposed to S. mansoni cercariae. Eight weeks later, these animals plus 8 additional macaques were exposed to malaria either through bites of infected mosquitos or intravenous inoculation. When malaria infection was initiated from mosquito bites, coinfected animals displayed increased malaria parasitemia, decreased hematocrit levels, and suppressed malaria-specific antibody responses compared to those of malaria infection alone. However, macaques infected by intravenous inoculation with erythrocytic-stage parasites did not display these same differences in parasitemia, hematocrit, or antibody responses between the two groups. Use of the macaque model provides information that begins to unravel differences in pathological and immunological outcomes observed between humans with P. falciparum that are coinfected with S. mansoni or S. haematobium. Our results suggest that migration of malaria parasites through livers harboring schistosome eggs may alter host immune responses and infection outcomes. PMID:22907811

  16. Establishment of a murine model of cerebral malaria in KunMing mice infected with Plasmodium berghei ANKA.

    PubMed

    Ding, Yan; Xu, Wenyue; Zhou, Taoli; Liu, Taiping; Zheng, Hong; Fu, Yong

    2016-10-01

    Malaria remains one of the most devastating diseases. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection resulting in high mortality and morbidity worldwide. Analysis of precise mechanisms of CM in humans is difficult for ethical reasons and animal models of CM have been employed to study malaria pathogenesis. Here, we describe a new experimental cerebral malaria (ECM) model with Plasmodium berghei ANKA infection in KunMing (KM) mice. KM mice developed ECM after blood-stage or sporozoites infection, and the development of ECM in KM mice has a dose-dependent relationship with sporozoites inoculums. Histopathological findings revealed important features associated with ECM, including accumulation of mononuclear cells and red blood cells in brain microvascular, and brain parenchymal haemorrhages. Blood-brain barrier (BBB) examination showed that BBB disruption was present in infected KM mice when displaying clinical signs of CM. In vivo bioluminescent imaging experiment indicated that parasitized red blood cells accumulated in most vital organs including heart, lung, spleen, kidney, liver and brain. The levels of inflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, interleukin (IL)-17, IL-12, IL-6 and IL-10 were all remarkably increased in KM mice infected with P. berghei ANKA. This study indicates that P. berghei ANKA infection in KM mice can be used as ECM model to extend further research on genetic, pharmacological and vaccine studies of CM. PMID:27574013

  17. Plasmodium falciparum msp2 Genotypes and Multiplicity of Infections among Children under Five Years with Uncomplicated Malaria in Kibaha, Tanzania

    PubMed Central

    Kidima, W.; Nkwengulila, G.

    2015-01-01

    Genetic diversity of Plasmodium falciparum may pose challenges in malaria treatment and prevention through chemotherapy and vaccination. We assessed Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) of P. falciparum infections and sort relationship of parasitaemia with P. falciparum msp2 genotypes as well as with the number of infecting clones. The study was carried out in Kibaha, Tanzania. Ninety-nine children under five years with uncomplicated malaria were recruited. Genetic diversity was analyzed by genotyping the msp2 gene using PCR-Restriction Fragment Length Polymorphism. Thirty-two different msp2 alleles were obtained. The msp2 3D7 allelic frequency was higher (48.1%) and more prevalent than FC27 (27.3%) (p < 0.05). Twenty-four percent of the infections were mixed alleles. The individuals with FC27 had high parasitemia compared to those with 3D7 alleles (p = 0.038). The mean MOI was low (1.4 clones, 95% CI 1.2–1.5). The P. falciparum population among children at Kibaha is composed of distinct P. falciparum clones, and parasites having 3D7 are more frequent than those with FC27 alleles. Individuals with parasite having FC27 alleles have high parasite densities suggesting that parasites with FC27 alleles may associate with severity of disease in Kibaha. Low MOI at Kibaha suggests low malaria transmission rate. PMID:26770821

  18. Plasmodium falciparum Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes

    PubMed Central

    Morlais, Isabelle; Nsango, Sandrine E.; Toussile, Wilson; Abate, Luc; Annan, Zeinab; Tchioffo, Majoline T.; Cohuet, Anna; Awono-Ambene, Parfait H.; Fontenille, Didier; Rousset, François; Berry, Antoine

    2015-01-01

    Plasmodium falciparum infections in malaria endemic areas often harbor multiple clones of parasites. However, the transmission success of the different genotypes within the mosquito vector has remained elusive so far. The genetic diversity of malaria parasites was measured by using microsatellite markers in gametocyte isolates from 125 asymptomatic carriers. For a subset of 49 carriers, the dynamics of co-infecting genotypes was followed until their development within salivary glands. Also, individual oocysts from midguts infected with blood from 9 donors were genotyped to assess mating patterns. Multiplicity of infection (MOI) was high both in gametocyte isolates and sporozoite populations, reaching up to 10 genotypes. Gametocyte isolates with multiple genotypes gave rise to lower infection prevalence and intensity. Fluctuations of genotype number occurred during the development within the mosquito and sub-patent genotypes, not detected in gametocyte isolates, were identified in the vector salivary glands. The inbreeding coefficient Fis was positively correlated to the oocyst loads, suggesting that P. falciparum parasites use different reproductive strategies according to the genotypes present in the gametocyte isolate. The number of parasite clones within an infection affects the transmission success and the mosquito has an important role in maintaining P. falciparum genetic diversity. Our results emphasize the crucial importance of discriminating between the different genotypes within an infection when studying the A. gambiae natural resistance to P. falciparum, and the need to monitor parasite diversity in areas where malaria control interventions are implemented. PMID:25875840

  19. Plasmodium falciparum causing hemophagocytic syndrome after allogeneic blood stem cell transplantation.

    PubMed

    Abdelkefi, Abderrahman; Ben Othman, Tarek; Torjman, Lamia; Ladeb, Saloua; Lakhal, Amel; Belhadj, Samir; Ayari, Sameh; Cherif, Nadra; Ben Achour, Oumaya; Chaker, Emna; Ben Abdeladhim, Abdeladhim

    2004-01-01

    We describe a case of Plasmodium falciparum infection in a 25-year-old male patient with a myelodysplastic syndrome, who underwent allogeneic peripheral blood stem cell transplantation (PBSCT) in September 2003. Conditioning regimen consisted of total body irradiation (10 Gy) and cyclophosphamide 60 mg/kg for 2 days. A dose of 4 x 10(6) CD34+ cells/kg was transfused. Engraftment was well documented on day 17 post-transplantation. Spiking fevers occurred on days 19 and 21, associated with a pancytopenia, hepatosplenomegaly and neurological signs. P. falciparum parasites were found on the peripheral blood smear (parasitemia = 23%). Marrow aspiration showed P. falciparum parasites and proliferation of mature histiocytes with hemophagocytosis. Quinine 10 mg/kg i.v. three times a day for 10 consecutive days was given. The fever subsided within 3 days, and pancytopenia vanished in 14 days. Parasitemia cleared in 6 days. The patient left the unit on day 46 with no further complications. The screening of donors showed that infection was acquired from two blood units (from a single donor) given 5 days before transplantation. We report the first case of profound hemophagocytosis in immunosuppressed patient with malaria of high parasitemia after a bone marrow transplant. PMID:15448674

  20. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy

    PubMed Central

    Goh, Yun Shan; Peng, Kaitian; Chia, Wan Ni; Siau, Anthony; Chotivanich, Kesinee; Gruner, Anne-Charlotte; Preiser, Peter; Mayxay, Mayfong; Pukrittayakamee, Sasithon; Sriprawat, Kanlaya; Nosten, Francois; White, Nicholas J.

    2016-01-01

    An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection. PMID:27427762

  1. Metabolic Dysregulation Induced in Plasmodium falciparum by Dihydroartemisinin and Other Front-Line Antimalarial Drugs.

    PubMed

    Cobbold, Simon A; Chua, Hwa H; Nijagal, Brunda; Creek, Darren J; Ralph, Stuart A; McConville, Malcolm J

    2016-01-15

    Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism. PMID:26150544

  2. Neutralizing Antibodies against Plasmodium falciparum Associated with Successful Cure after Drug Therapy.

    PubMed

    Goh, Yun Shan; Peng, Kaitian; Chia, Wan Ni; Siau, Anthony; Chotivanich, Kesinee; Gruner, Anne-Charlotte; Preiser, Peter; Mayxay, Mayfong; Pukrittayakamee, Sasithon; Sriprawat, Kanlaya; Nosten, Francois; White, Nicholas J; Renia, Laurent

    2016-01-01

    An effective antibody response can assist drug treatment to contribute to better parasite clearance in malaria patients. To examine this, sera were obtained from two groups of adult patients with acute falciparum malaria, prior to drug treatment: patients who (1) have subsequent recrudescent infection, or (2) were cured by Day 28 following treatment. Using a Plasmodium falciparum antigen library, we examined the antibody specificities in these sera. While the antibody repertoire of both sera groups was extremely broad and varied, there was a differential antibody profile between the two groups of sera. The proportion of cured patients with antibodies against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 was higher than the proportion of patients with recrudescent infection. The presence of these antibodies was associated with higher odds of treatment cure. Sera containing all six antibodies impaired the invasion of P. falciparum clinical isolates into erythrocytes. These results suggest that antibodies specific against EXP1, MSP3, GLURP, RAMA, SEA and EBA181 in P. falciparum infections could assist anti-malarial drug treatment and contribute to the resolution of the malarial infection. PMID:27427762

  3. Relationship between Antibody Levels, IgG Binding to Plasmodium falciparum-Infected Erythrocytes, and Disease Outcome in Hospitalized Urban Malaria Patients from Dakar, Sénégal

    PubMed Central

    Mbengue, Babacar; Fall, Mouhamadou Mansour; Sylla Niang, Maguette; Niang, Birahim; Varela, Marie Louise; Diatta, Antoine Marie; Mbow, Moustapha; Ndiaye, Kantome; Ndiaye Diallo, Rokhaya; Dieye, Alioune; Perraut, Ronald

    2016-01-01

    Background. Management of clinical malaria requires the development of reliable diagnostic methods and efficient biomarkers for follow-up of patients. Protection is partly based on IgG responses to parasite antigens exposed at the surface of infected erythrocytes (iRBCs). These IgG responses appeared low during clinical infection, particularly in severe disease. Methods. We analyzed the IgG binding capacity to the surface of live erythrocytes infected by knob positive FCR3 strain. Sera from 69 cerebral malaria (CM) and 72 mild malaria (MM) cases were analyzed by ELISA for IgG responses to five antigens from iRBC and by flow cytometry for IgG binding as expressed in labeling index ratio (LIR). The relationship between IgG levels, LIR, parasitemia, age, and the clinical outcomes was evaluated. Results. We found a significant decrease of LIR in adult CM fatal cases compared to surviving patients (p = 0.019). In MM, LIRs were correlated to IgG anti-iRBC and anti-PfEMP3/5 levels. In CM, no correlation was found between LIR, IgG levels, and parasitemia. Conclusion. The IgG binding assay was able to discriminate outcome of cerebral malaria cases and it deserves further development as a potential functional-associated assay for symptomatic malaria analysis. PMID:27563669

  4. Relationship between Antibody Levels, IgG Binding to Plasmodium falciparum-Infected Erythrocytes, and Disease Outcome in Hospitalized Urban Malaria Patients from Dakar, Sénégal.

    PubMed

    Mbengue, Babacar; Fall, Mouhamadou Mansour; Sylla Niang, Maguette; Niang, Birahim; Varela, Marie Louise; Diatta, Antoine Marie; Mbow, Moustapha; Ndiaye, Kantome; Ndiaye Diallo, Rokhaya; Dieye, Alioune; Perraut, Ronald

    2016-01-01

    Background. Management of clinical malaria requires the development of reliable diagnostic methods and efficient biomarkers for follow-up of patients. Protection is partly based on IgG responses to parasite antigens exposed at the surface of infected erythrocytes (iRBCs). These IgG responses appeared low during clinical infection, particularly in severe disease. Methods. We analyzed the IgG binding capacity to the surface of live erythrocytes infected by knob positive FCR3 strain. Sera from 69 cerebral malaria (CM) and 72 mild malaria (MM) cases were analyzed by ELISA for IgG responses to five antigens from iRBC and by flow cytometry for IgG binding as expressed in labeling index ratio (LIR). The relationship between IgG levels, LIR, parasitemia, age, and the clinical outcomes was evaluated. Results. We found a significant decrease of LIR in adult CM fatal cases compared to surviving patients (p = 0.019). In MM, LIRs were correlated to IgG anti-iRBC and anti-PfEMP3/5 levels. In CM, no correlation was found between LIR, IgG levels, and parasitemia. Conclusion. The IgG binding assay was able to discriminate outcome of cerebral malaria cases and it deserves further development as a potential functional-associated assay for symptomatic malaria analysis. PMID:27563669

  5. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development

    PubMed Central

    McCarthy, James S.; Marquart, Louise; Sekuloski, Silvana; Trenholme, Katharine; Elliott, Suzanne; Griffin, Paul; Rockett, Rebecca; O'Rourke, Peter; Sloots, Theo; Angulo-Barturen, Iñigo; Ferrer, Santiago; Jiménez-Díaz, María Belén; Martínez, María-Santos; Duparc, Stephan; Leroy, Didier; Wells, Timothy N. C.; Baker, Mark

    2016-01-01

    Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ−/− (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 μg/ml and 1.8 μg/ml in the NSG and IBSM models, respectively, aligning with 1.8 μg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.) PMID:27044554

  6. Linking Murine and Human Plasmodium falciparum Challenge Models in a Translational Path for Antimalarial Drug Development.

    PubMed

    McCarthy, James S; Marquart, Louise; Sekuloski, Silvana; Trenholme, Katharine; Elliott, Suzanne; Griffin, Paul; Rockett, Rebecca; O'Rourke, Peter; Sloots, Theo; Angulo-Barturen, Iñigo; Ferrer, Santiago; Jiménez-Díaz, María Belén; Martínez, María-Santos; Hooft van Huijsduijnen, Rob; Duparc, Stephan; Leroy, Didier; Wells, Timothy N C; Baker, Mark; Möhrle, Jörg J

    2016-06-01

    Effective progression of candidate antimalarials is dependent on optimal dosing in clinical studies, which is determined by a sound understanding of pharmacokinetics and pharmacodynamics (PK/PD). Recently, two important translational models for antimalarials have been developed: the NOD/SCID/IL2Rγ(-/-) (NSG) model, whereby mice are engrafted with noninfected and Plasmodium falciparum-infected human erythrocytes, and the induced blood-stage malaria (IBSM) model in human volunteers. The antimalarial mefloquine was used to directly measure the PK/PD in both models, which were compared to previously published trial data for malaria patients. The clinical part was a single-center, controlled study using a blood-stage Plasmodium falciparum challenge inoculum in volunteers to characterize the effectiveness of mefloquine against early malaria. The study was conducted in three cohorts (n = 8 each) using different doses of mefloquine. The characteristic delay in onset of action of about 24 h was seen in both NSG and IBSM systems. In vivo 50% inhibitory concentrations (IC50s) were estimated at 2.0 μg/ml and 1.8 μg/ml in the NSG and IBSM models, respectively, aligning with 1.8 μg/ml reported previously for patients. In the IBSM model, the parasite reduction ratios were 157 and 195 for the 10- and 15-mg/kg doses, within the range of previously reported clinical data for patients but significantly lower than observed in the mouse model. Linking mouse and human challenge models to clinical trial data can accelerate the accrual of critical data on antimalarial drug activity. Such data can guide large clinical trials required for development of urgently needed novel antimalarial combinations. (This trial was registered at the Australian New Zealand Clinical Trials Registry [http://anzctr.org.au] under registration number ACTRN12612000323820.). PMID:27044554

  7. Selective Killing of the Human Malaria Parasite Plasmodium falciparum by a Benzylthiazolium dye

    PubMed Central

    Kelly, Jane X.; Winter, Rolf W.; Braun, Theodore P.; Osei-Agyemang, Myralyn; Hinrichs, David J.; Riscoe, Michael K.

    2007-01-01

    Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium. The most virulent form of the disease is caused by P. falciparum which infects hundreds of millions of people and is responsible for the deaths of 1 to 2 million individuals each year. An essential part of the parasitic process is the remodeling of the red blood cell membrane and its protein constituents to permit a higher flux of nutrients and waste products into or away from the intracellular parasite. Much of this increased permeability is due to a single type of broad specificity channel variously called the new permeation pathway (NPP), the nutrient channel, and the Plasmodial surface anion channel (PSAC). This channel is permeable to a range of low molecular weight solutes both charged and uncharged, with a strong preference for anions. Drugs such as furosemide that are known to block anion-selective channels inhibit PSAC. In this study we have investigated a dye known as benzothiocarboxypurine, BCP, which had been studied as a possible diagnostic aid given its selective uptake by P. falciparum infected red cells. We found that the dye enters parasitized red cells via the furosemide-inhibitable PSAC, forms a brightly fluorescent complex with parasite nucleic acids, and is selectively toxic to infected cells. Our study describes an antimalarial agent that exploits the altered permeability of Plasmodium-infected red cells as a means to killing the parasite and highlights a chemical reagent that may prove useful in high throughput screening of compounds for inhibitors of the channel. PMID:17266952

  8. The A581G Mutation in the Gene Encoding Plasmodium falciparum Dihydropteroate Synthetase Reduces the Effectiveness of Sulfadoxine-Pyrimethamine Preventive Therapy in Malawian Pregnant Women

    PubMed Central

    Gutman, Julie; Kalilani, Linda; Taylor, Steve; Zhou, Zhiyong; Wiegand, Ryan E.; Thwai, Kyaw L.; Mwandama, Dyson; Khairallah, Carole; Madanitsa, Mwayi; Chaluluka, Ebbie; Dzinjalamala, Fraction; Ali, Doreen; Mathanga, Don P.; Skarbinski, Jacek; Shi, Ya Ping; Meshnick, Steve; ter Kuile, Feiko O.

    2015-01-01

    Background. The A581G mutation in the gene encoding Plasmodium falciparum dihydropteroate synthase (dhps), in combination with the quintuple mutant involving mutations in both dhps and the gene encoding dihydrofolate reductase (dhfr), the so-called sextuple mutant, has been associated with increased placental inflammation and decreased infant birth weight among women receiving intermittent preventive treatment with sulfadoxine-pyrimethamine (IPTp-SP) during pregnancy. Methods. Between 2009 and 2011, delivering women without human immunodeficiency virus infection were enrolled in an observational study of IPTp-SP effectiveness in Malawi. Parasites were detected by polymerase chain reaction (PCR); positive samples were sequenced to genotype the dhfr and dhps loci. The presence of K540E in dhps was used as a marker for the quintuple mutant. Results. Samples from 1809 women were analyzed by PCR; 220 (12%) were positive for P. falciparum. A total of 202 specimens were genotyped at codon 581 of dhps; 17 (8.4%) harbored the sextuple mutant. The sextuple mutant was associated with higher risks of patent infection in peripheral blood (adjusted prevalence ratio [aPR], 2.76; 95% confidence interval [CI], 1.82–4.18) and placental blood (aPR 3.28; 95% CI, 1.88–5.78) and higher parasite densities. Recent SP use was not associated with increased parasite densities or placental pathology overall and among women with parasites carrying dhps A581G. Conclusions. IPTp-SP failed to inhibit parasite growth but did not exacerbate pathology among women infected with sextuple-mutant parasites. New interventions to prevent malaria during pregnancy are needed urgently. PMID:25564249

  9. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    PubMed Central

    Tokumasu, Fuyuki; Crivat, Georgeta; Ackerman, Hans; Hwang, Jeeseong; Wellems, Thomas E.

    2014-01-01

    ABSTRACT Plasmodium falciparum (Pf) infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM), a parasitophorous vacuole membrane (PVM), a tubulovesicular network (TVN), and Maurer's clefts (MC). Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA) and hemoglobin S-containing (HbAS, HbAS) erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM) experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC) decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM). Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes. PMID:24876390

  10. Prevalence and patterns of antifolate and chloroquine drug resistance markers in Plasmodium vivax across Pakistan

    PubMed Central

    2013-01-01

    Background Plasmodium vivax is the most prevalent malaria species in Pakistan, with a distribution that coincides with Plasmodium falciparum in many parts of the country. Both species are likely exposed to drug pressure from a number of anti-malarials including chloroquine, sulphadoxine-pyrimethamine (SP), and artemisinin combination therapy, yet little is known regarding the effects of drug pressure on parasite genes associated with drug resistance. The aims of this study were to determine the prevalence of polymorphisms in the SP resistance-associated genes pvdhfr, pvdhps and chloroquine resistance-associated gene pvmdr1 in P. vivax isolates collected from across the country. Methods In 2011, 801 microscopically confirmed malaria-parasite positive filter paper blood samples were collected at 14 sites representing four provinces and the capital city of Islamabad. Species-specific polymerase chain reaction (PCR) was used to identify human Plasmodium species infection. PCR-positive P. vivax isolates were subjected to sequencing of pvdhfr, pvdhps and pvmdr1 and to real-time PCR analysis to assess pvmdr1 copy number variation. Results Of the 801 samples, 536 were determined to be P. vivax, 128 were P. falciparum, 43 were mixed vivax/falciparum infections and 94 were PCR-negative for Plasmodium infection. Of PCR-positive P. vivax samples, 372 were selected for sequence analysis. Seventy-six of the isolates (23%) were double mutant at positions S58R and S117N in pvdhfr. Additionally, two mutations at positions N50I and S93H were observed in 55 (15%) and 24 (7%) of samples, respectively. Three 18 base pair insertion-deletions (indels) were observed in pvdhfr, with two insertions at different nucleotide positions in 36 isolates and deletions in 10. Ninety-two percent of samples contained the pvdhps (S382/A383G/K512/A553/V585) SAKAV wild type haplotype. For pvmdr1, all isolates were wild type at position Y976F and 335 (98%) carried the mutation at codon F1076L. All

  11. A Reduced Risk of Infection with Plasmodium vivax and Clinical Protection against Malaria Are Associated with Antibodies against the N Terminus but Not the C Terminus of Merozoite Surface Protein 1†

    PubMed Central

    Nogueira, Paulo Afonso; Piovesan Alves, Fabiana; Fernandez-Becerra, Carmen; Pein, Oliver; Rodrigues Santos, Neida; Pereira da Silva, Luiz Hildebrando; Plessman Camargo, Erney; del Portillo, Hernando A.

    2006-01-01

    Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rondônia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite. PMID:16622209

  12. Plasmodium vivax: who cares?

    PubMed Central

    Galinski, Mary R; Barnwell, John W

    2008-01-01

    More attention is being focused on malaria today than any time since the world's last efforts to achieve eradication over 40 years ago. The global community is now discussing strategies aimed at dramatically reducing malarial disease burden and the eventual eradication of all types of malaria, everywhere. As a consequence, Plasmodium vivax, which has long been neglected and mistakenly considered inconsequential, is now entering into the strategic debates taking place on malaria epidemiology and control, drug resistance, pathogenesis and vaccines. Thus, contrary to the past, the malaria research community is becoming more aware and concerned about the widespread spectrum of illness and death caused by up to a couple of hundred million cases of vivax malaria each year. This review brings these issues to light and provides an overview of P. vivax vaccine development, then and now. Progress had been slow, given inherent research challenges and minimal support in the past, but prospects are looking better for making headway in the next few years. P. vivax, known to invade the youngest red blood cells, the reticulocytes, presents a strong challenge towards developing a reliable long-term culture system to facilitate needed research. The P. vivax genome was published recently, and vivax researchers now need to coordinate efforts to discover new vaccine candidates, establish new vaccine approaches, capitalize on non-human primate models for testing, and investigate the unique biological features of P. vivax, including the elusive P. vivax hypnozoites. Comparative studies on both P. falciparum and P. vivax in many areas of research will be essential to eradicate malaria. And to this end, the education and training of future generations of dedicated "malariologists" to advance our knowledge, understanding and the development of new interventions against each of the malaria species infecting humans also will be essential. PMID:19091043

  13. High Rates of Asymptomatic, Sub-microscopic Plasmodium vivax Infection and Disappearing Plasmodium falciparum Malaria in an Area of Low Transmission in Solomon Islands

    PubMed Central

    Waltmann, Andreea; Darcy, Andrew W.; Harris, Ivor; Koepfli, Cristian; Lodo, John; Vahi, Ventis; Piziki, David; Shanks, G. Dennis; Barry, Alyssa E.; Whittaker, Maxine; Kazura, James W.; Mueller, Ivo

    2015-01-01

    Introduction Solomon Islands is intensifying national efforts to achieve malaria elimination. A long history of indoor spraying with residual insecticides, combined recently with distribution of long lasting insecticidal nets and artemether-lumefantrine therapy, has been implemented in Solomon Islands. The impact of these interventions on local endemicity of Plasmodium spp. is unknown. Methods In 2012, a cross-sectional survey of 3501 residents of all ages was conducted in Ngella, Central Islands Province, Solomon Islands. Prevalence of Plasmodium falciparum, P. vivax, P. ovale and P. malariae was assessed by quantitative PCR (qPCR) and light microscopy (LM). Presence of gametocytes was determined by reverse transcription quantitative PCR (RT-qPCR). Results By qPCR, 468 Plasmodium spp. infections were detected (prevalence = 13.4%; 463 P. vivax, five mixed P. falciparum/P. vivax, no P. ovale or P. malariae) versus 130 by LM (prevalence = 3.7%; 126 P. vivax, three P. falciparum and one P. falciparum/P. vivax). The prevalence of P. vivax infection varied significantly among villages (range 3.0–38.5%, p<0.001) and across age groups (5.3–25.9%, p<0.001). Of 468 P. vivax infections, 72.9% were sub-microscopic, 84.5% afebrile and 60.0% were both sub-microscopic and afebrile. Local residency, low education level of the household head and living in a household with at least one other P. vivax infected individual increased the risk of P. vivax infection. Overall, 23.5% of P. vivax infections had concurrent gametocytaemia. Of all P. vivax positive samples, 29.2% were polyclonal by MS16 and msp1F3 genotyping. All five P. falciparum infections were detected in residents of the same village, carried the same msp2 allele and four were positive for P. falciparum gametocytes. Conclusion P. vivax infection remains endemic in Ngella, with the majority of cases afebrile and below the detection limit of LM. P. falciparum has nearly disappeared, but the risk of re-introductions and

  14. Induction of Adhesion-Inhibitory Antibodies against Placental Plasmodium falciparum Parasites by Using Single Domains of VAR2CSA▿

    PubMed Central

    Nielsen, Morten A.; Pinto, Vera V.; Resende, Mafalda; Dahlbäck, Madeleine; Ditlev, Sisse B.; Theander, Thor G.; Salanti, Ali

    2009-01-01

    In areas of endemicity pregnancy-associated malaria is an important cause of maternal anemia, stillbirth, and delivery of low-birth-weight children. The syndrome is precipitated by the accumulation of Plasmodium falciparum-infected erythrocytes in the placenta, mediated through an interaction between a parasite protein expressed on erythrocytes named variant surface antigen 2-chondroitin sulfate A (VAR2CSA) and CSA on syncytiotrophoblasts. VAR2CSA is a large polymorphic protein consisting of six Duffy binding-like (DBL), domains and with current constraints on recombinant protein production it is not possible to produce entire VAR2CSA recombinant proteins. Furthermore, the presence of polymorphisms has raised the question of whether it is feasible to define VAR2CSA antigens eliciting broadly protective antibodies. Thus, the challenge for vaccine development is to define smaller parts of the molecule which induce antibodies that inhibit CSA binding of different parasite strains. In this study, we produced a large panel of VAR2CSA proteins and raised antibodies against these antigens. We show that antibodies against the DBL4 domain effectively inhibit parasite binding. As the inhibition was not limited to homologous parasite strains, it seems feasible to base a protective malaria vaccine on a single VAR2CSA DBL domain. PMID:19307213

  15. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes.

    PubMed

    Weiss, Greta E; Gilson, Paul R; Taechalertpaisarn, Tana; Tham, Wai-Hong; de Jong, Nienke W M; Harvey, Katherine L; Fowkes, Freya J I; Barlow, Paul N; Rayner, Julian C; Wright, Gavin J; Cowman, Alan F; Crabb, Brendan S

    2015-02-01

    During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. PMID:25723550

  16. Haemoglobin-E in the presence of oxidative substances from fava bean may be protective against Plasmodium falciparum malaria.

    PubMed

    Kitayaporn, D; Nelson, K E; Charoenlarp, P; Pholpothi, T

    1992-01-01

    A case-control study was carried out at a community hospital in eastern Thailand in order to study the association between haemoglobin E and Plasmodium falciparum malaria; 271 P. falciparum cases and 271 controls were enrolled. After adjusting for age, sex, time since last malaria attack, history of mosquito net use, and history of fava bean consumption in the previous month, neither heterozygous nor homozygous haemoglobin E provided significant protection against P. falciparum infection, with odds ratios (OR) = 0.91 (95% confidence limits = 0.61, 1.36) and 0.78 (0.34, 1.82) respectively when compared to persons with haemoglobin A who were not consumers of fava beans. However, haemoglobin E carriers who ate fava beans were significantly protected against P. falciparum malaria with OR = 0.26 (0.09, 0.76) and OR = 0.001 (0.00, 1120.59) for subjects with heterozygous and homozygous haemoglobin E, respectively. The study suggests a possible synergistic protective effect of haemoglobin E on the risk of P. falciparum malaria in subjects who have consumed fava beans. PMID:1412643

  17. Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom.

    PubMed

    El Chamy Maluf, S; Dal Mas, C; Oliveira, E B; Melo, P M; Carmona, A K; Gazarini, M L; Hayashi, M A F

    2016-04-01

    We show here that crotamine, a polypeptide from the South American rattlesnake venom with cell penetrating and selective anti-fungal and anti-tumoral properties, presents a potent anti-plasmodial activity in culture. Crotamine inhibits the development of the Plasmodium falciparum parasites in a dose-dependent manner [IC50 value of 1.87 μM], and confocal microscopy analysis showed a selective internalization of fluorescent-labeled crotamine into P. falciparum infected erythrocytes, with no detectable fluorescence in uninfected healthy erythrocytes. In addition, similarly to the crotamine cytotoxic effects, the mechanism underlying the anti-plasmodial activity may involve the disruption of parasite acidic compartments H(+) homeostasis. In fact, crotamine promoted a reduction of parasites organelle fluorescence loaded with the lysosomotropic fluorochrome acridine orange, in the same way as previously observed mammalian tumoral cells. Taken together, we show for the first time crotamine not only compromised the metabolism of the P. falciparum, but this toxin also inhibited the parasite growth. Therefore, we suggest this snake polypeptide as a promising lead molecule for the development of potential new molecules, namely peptidomimetics, with selectivity for infected erythrocytes and ability to inhibit the malaria infection by its natural affinity for acid vesicles. PMID:26806200

  18. Histopathologies, Immunolocalization, and a Glycan Binding Screen Provide Insights into Plasmodium falciparum Interactions with the Human Placenta1

    PubMed Central

    Hromatka, Bethann S.; Ngeleza, Sadiki; Adibi, Jennifer J.; Niles, Richard K.; Tshefu, Antoinette K.; Fisher, Susan J.

    2013-01-01

    ABSTRACT During pregnancy, Plasmodium falciparum-infected erythrocytes cytoadhere to the placenta. Infection is likely initiated at two sites where placental trophoblasts contact maternal blood: 1) via syncytiotrophoblast (STB), a multicellular transporting and biosynthetic layer that forms the surface of chorionic villi and lines the intervillous space, and 2) through invasive cytotrophoblasts, which line uterine vessels that divert blood to the placenta. Here, we investigated mechanisms of infected erythrocyte sequestration in relationship to the microanatomy of the maternal-fetal interface. Histological analyses revealed STB denudation in placental malaria, which brought the stromal cores of villi in direct contact with maternal blood. STB denudation was associated with hemozoin deposition (P = 0.01) and leukocyte infiltration (P = 0.001) and appeared to be a feature of chronic placental malaria. Immunolocalization of infected red blood cell receptors (CD36, ICAM1/CD54, and chondroitin sulfate A) in placentas from uncomplicated pregnancies showed that STB did not stain, while the underlying villous stroma was immunopositive. Invasive cytotrophoblasts expressed ICAM1. In malaria, STB denudation exposed CD36 and chondroitin sulfate A in the villous cores to maternal blood, and STB expressed ICAM1. Finally, we investigated infected erythrocyte adherence to novel receptors by screening an array of 377 glycans. Infected erythrocytes bound Lewis antigens that immunolocalized to STB. Our results suggest that P. falciparum interactions with STB-associated Lewis antigens could initiate placental malaria. Subsequent pathologies, which expose CD36, ICAM1, and chondroitin sulfate A, might propagate the infection. PMID:23575149

  19. Vaccine Potentials of an Intrinsically Unstructured Fragment Derived from the Blood Stage-Associated Plasmodium falciparum Protein PFF0165c▿

    PubMed Central

    Olugbile, S.; Kulangara, C.; Bang, G.; Bertholet, S.; Suzarte, E.; Villard, V.; Frank, G.; Audran, R.; Razaname, A.; Nebie, I.; Awobusuyi, O.; Spertini, F.; Kajava, A. V.; Felger, I.; Druilhe, P.; Corradin, G.

    2009-01-01

    We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate. PMID:19786562

  20. Genetic Diversity of the Malaria Vaccine Candidate Plasmodium falciparum Merozoite Surface Protein-3 in a Hypoendemic Transmission Environment

    PubMed Central

    Jordan, Stephen J.; Branch, OraLee H.; Castro, Jean Carlos; Oster, Robert A.; Rayner, Julian C.

    2009-01-01

    The N-terminal domain of Plasmodium falciparum merozoite surface protein-3 (PfMSP3) has been excluded from malaria vaccine development largely because of genetic diversity concerns. However, no study to date has followed N-terminal diversity over time. This study describes PfMSP3 variation in a hypoendemic longitudinal cohort in the Peruvian Amazon over the 2003-2006 transmission seasons. Polymerase chain reaction was used to amplify the N-terminal domain in 630 distinct P. falciparum infections, which were allele-typed by size and also screened for sequence variation using a new high-throughput technique, denaturing high performance liquid chromatography. PfMSP3 allele frequencies fluctuated significantly over the 4-year period, but sequence variation was very limited, with only 10 mutations being identified of 630 infections screened. The sequence of the PfMSP3 N-terminal domain is relatively stable over time in this setting, and further studies of its status as a vaccine candidate are therefore warranted. PMID:19270302

  1. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A

    PubMed Central

    Viebig, Nicola K; Gamain, Benoit; Scheidig, Christine; Lépolard, Catherine; Przyborski, Jude; Lanzer, Michael; Gysin, Jürg; Scherf, Artur

    2005-01-01

    In high-transmission regions, protective clinical immunity to Plasmodium falciparum develops during the early years of life, limiting serious complications of malaria in young children. Pregnant women are an exception and are especially susceptible to severe P. falciparum infections resulting from the massive adhesion of parasitized erythrocytes to chondroitin sulphate A (CSA) present on placental syncytiotrophoblasts. Epidemiological studies strongly support the feasibility of an intervention strategy to protect pregnant women from disease. However, different parasite molecules have been associated with adhesion to CSA. In this work, we show that disruption of the var2csa gene of P. falciparum results in the inability of parasites to recover the CSA-binding phenotype. This gene is a member of the var multigene family and was previously shown to be composed of domains that mediate binding to CSA. Our results show the central role of var2CSA in CSA adhesion and support var2CSA as a leading vaccine candidate aimed at protecting pregnant women and their fetuses. PMID:16025132

  2. Vaccine potentials of an intrinsically unstructured fragment derived from the blood stage-associated Plasmodium falciparum protein PFF0165c.

    PubMed

    Olugbile, S; Kulangara, C; Bang, G; Bertholet, S; Suzarte, E; Villard, V; Frank, G; Audran, R; Razaname, A; Nebie, I; Awobusuyi, O; Spertini, F; Kajava, A V; Felger, I; Druilhe, P; Corradin, G

    2009-12-01

    We have identified new malaria vaccine candidates through the combination of bioinformatics prediction of stable protein domains in the Plasmodium falciparum genome, chemical synthesis of polypeptides, in vitro biological functional assays, and association of an antigen-specific antibody response with protection against clinical malaria. Within the predicted open reading frame of P. falciparum hypothetical protein PFF0165c, several segments with low hydrophobic amino acid content, which are likely to be intrinsically unstructured, were identified. The synthetic peptide corresponding to one such segment (P27A) was well recognized by sera and peripheral blood mononuclear cells of adults living in different regions where malaria is endemic. High antibody titers were induced in different strains of mice and in rabbits immunized with the polypeptide formulated with different adjuvants. These antibodies recognized native epitopes in P. falciparum-infected erythrocytes, formed distinct bands in Western blots, and were inhibitory in an in vitro antibody-dependent cellular inhibition parasite-growth assay. The immunological properties of P27A, together with its low polymorphism and association with clinical protection from malaria in humans, warrant its further development as a malaria vaccine candidate. PMID:19786562

  3. Revealing the Sequence and Resulting Cellular Morphology of Receptor-Ligand Interactions during Plasmodium falciparum Invasion of Erythrocytes

    PubMed Central

    Weiss, Greta E.; Gilson, Paul R.; Taechalertpaisarn, Tana; Tham, Wai-Hong; de Jong, Nienke W. M.; Harvey, Katherine L.; Fowkes, Freya J. I.; Barlow, Paul N.; Rayner, Julian C.; Wright, Gavin J.; Cowman, Alan F.; Crabb, Brendan S.

    2015-01-01

    During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite’s life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite’s actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1–RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine. PMID:25723550

  4. An Analysis of the Binding Characteristics of a Panel of Recently Selected ICAM-1 Binding Plasmodium falciparum Patient Isolates

    PubMed Central

    Madkhali, Aymen M.; Alkurbi, Mohammed O.; Szestak, Tadge; Bengtsson, Anja; Patil, Pradeep R.; Wu, Yang; Alharthi, Saeed; Jensen, Anja T. R.; Pleass, Richard; Craig, Alister G.

    2014-01-01

    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants. PMID:25360558

  5. Contrasting Patterns of Serologic and Functional Antibody Dynamics to Plasmodium falciparum Antigens in a Kenyan Birth Cohort

    PubMed Central

    Malhotra, Indu; Wang, Xuelie; Babineau, Denise; Yeo, Kee Thai; Anderson, Timothy; Kimmel, Rhonda J.; Angov, Evelina; Lanar, David E.; Narum, David; Dutta, Sheetij; Richards, Jack; Beeson, James G.; Crabb, Brendan S.; Cowman, Alan F.; Horii, Toshihiro; Muchiri, Eric; Mungai, Peter L.; King, Christopher L.; Kazura, James W.

    2015-01-01

    IgG antibodies to Plasmodium falciparum are transferred from the maternal to fetal circulation during pregnancy, wane after birth, and are subsequently acquired in response to natural infection. We examined the dynamics of malaria antibody responses of 84 Kenyan infants from birth to 36 months of age by (i) serology, (ii) variant surface antigen (VSA) assay, (iii) growth inhibitory activity (GIA), and (iv) invasion inhibition assays (IIA) specific for merozoite surface protein 1 (MSP1) and sialic acid-dependent invasion pathway. Maternal antibodies in each of these four categories were detected in cord blood and decreased to their lowest level by approximately 6 months of age. Serologic antibodies to 3 preerythrocytic and 10 blood-stage antigens subsequently increased, reaching peak prevalence by 36 months. In contrast, antibodies measured by VSA, GIA, and IIA remained low even up to 36 months. Infants sensitized to P. falciparum in utero, defined by cord blood lymphocyte recall responses to malaria antigens, acquired antimalarial antibodies at the same rate as those who were not sensitized in utero, indicating that fetal exposure to malaria antigens did not affect subsequent infant antimalarial responses. Infants with detectable serologic antibodies at 12 months of age had an increased risk of P. falciparum infection during the subsequent 24 months. We conclude that serologic measures of antimalarial antibodies in children 36 months of age or younger represent biomarkers of malaria exposure rather than protection and that functional antibodies develop after 36 months of age in this population. PMID:26656119

  6. An analysis of the binding characteristics of a panel of recently selected ICAM-1 binding Plasmodium falciparum patient isolates.

    PubMed

    Madkhali, Aymen M; Alkurbi, Mohammed O; Szestak, Tadge; Bengtsson, Anja; Patil, Pradeep R; Wu, Yang; Al-Harthi, Saeed A; Alharthi, Saeed; Jensen, Anja T R; Pleass, Richard; Craig, Alister G

    2014-01-01

    The basis of severe malaria pathogenesis in part includes sequestration of Plasmodium falciparum-infected erythrocytes (IE) from the peripheral circulation. This phenomenon is mediated by the interaction between several endothelial receptors and one of the main parasite-derived variant antigens (PfEMP1) expressed on the surface of the infected erythrocyte membrane. One of the commonly used host receptors is ICAM-1, and it has been suggested that ICAM-1 has a role in cerebral malaria pathology, although the evidence to support this is not conclusive. The current study examined the cytoadherence patterns of lab-adapted patient isolates after selecting on ICAM-1. We investigated the binding phenotypes using variant ICAM-1 proteins including ICAM-1Ref, ICAM-1Kilifi, ICAM-1S22/A, ICAM-1L42/A and ICAM-1L44/A using static assays. The study also examined ICAM-1 blocking by four anti-ICAM-1 monoclonal antibodies (mAb) under static conditions. We also characterised the binding phenotypes using Human Dermal Microvascular Endothelial Cells (HDMEC) under flow conditions. The results show that different isolates have variant-specific binding phenotypes under both static and flow conditions, extending our previous observations that this variation might be due to variable contact residues on ICAM-1 being used by different parasite PfEMP1 variants. PMID:25360558

  7. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia

    PubMed Central

    Wang, Qinghui; Zhao, Zhenjun; Zhang, Xuexing; Li, Xuelian; Zhu, Min; Li, Peipei; Yang, Zhaoqing; Wang, Ying; Yan, Guiyun; Shang, Hong; Cao, Yaming; Fan, Qi; Cui, Liwang

    2016-01-01

    Understanding naturally acquired immunity to infections caused by Plasmodia in different malaria endemicity settings is needed for better vaccine designs and for exploring antibody responses as a proxy marker of malaria transmission intensity. This study investigated the sero-epidemiology of malaria along the international border between China and Myanmar, where malaria elimination action plans are in place. This study recruited 233 P. vivax and 156 P. falciparum infected subjects with acute malaria at the malaria clinics and hospitals. In addition, 93 and 67 healthy individuals from the same endemic region or from non-endemic region, respectively, were used as controls. Acute malaria infections were identified by microscopy. Anti-recombinant PfMSP119 and PvMSP119 antibody levels were measured by ELISA. Antibody responses to respective MSP119 were detected in 50.9% and 78.2% patients with acute P. vivax and P. falciparum infections, respectively. There were cross-reacting antibodies in Plasmodium patients against these two recombinant proteins, though we could not exclude the possibility of submicroscopic mixed-species infections. IgG1, IgG3 and IgG4 were the major subclasses. Interestingly, 43.2% of the healthy endemic population also had antibodies against PfMSP119, whereas only 3.9% of this population had antibodies against PvMSP119. Higher antibody levels were correlated with age and parasite density, but not with season, gender or malaria history. Both total IgG and individual IgG subclasses underwent substantial declines during the convalescent period in three months. This study demonstrated that individuals in a hypoendemic area with coexistence of P. vivax and P. falciparum can mount rapid antibody responses against both PfMSP119 and PvMSP119. The significantly higher proportion of responders to PfMSP119 in the healthy endemic population indicates higher prevalence of P. falciparum in the recent past. Specific antibodies against PvMSP119 could serve as a

  8. Therapeutic efficacy of Artemether/Lumefantrine (Coartem®) against Plasmodium falciparum in Kersa, South West Ethiopia

    PubMed Central

    2010-01-01

    Background Artemether/Lumefantrine (Coartem®) has been used as a first-line treatment for uncomplicated Plasmodium falciparum infection since 2004 in Ethiopia. In the present study the therapeutic efficacy of artemether/lumefantrine for the treatment of uncomplicated P. falciparum infection at Kersa, Jima zone, South-west Ethiopia, has been assessed. Methods A 28 day therapeutic efficacy study was conducted between November 2007 and January 2008, in accordance with the 2003 WHO guidelines. Outcomes were classified as early treatment failure (ETF), late clinical failure (LCF), late parasitological failure (LPF) and adequate clinical and parasitological response (ACPR). Results 90 patients were enrolled and completed the 28 day follow-up period after treatment with artemether/lumefantrine. Cure rate was very high, 96.3%, with 95% CI of 0.897-0.992 (PCR uncorrected). Age-stratified data showed adequate clinical and parasitological response (ACPR) to be 100% for children under 5 and 97.4% and 87.3% for children aged 5-14, and adults, respectively. There was no early treatment failure (ETF) in all age groups. Fever was significantly cleared on day 3 (P < 0.05) and 98% of parasites where cleared on day 1 and almost all parasites were cleared on day 3. 72.5% of gametocytes were cleared on day 1, the remaining 27.5% of gametocytes were maintained up to day 3 and total clearance was observed on day 7. Hemoglobin concentration showed a slight increase with parasitic clearance (P > 0.05). No major side effect was observed in the study except the occurrence of mouth ulcers in 7% of the patients. Conclusions The current study proved the excellent therapeutic efficacy of artemether/lumefantrine in the study area and the value of using it. However, the proper dispensing and absorption of the drug need to be emphasized in order to utilize the drug for a longer period of time. This study recommends further study on the toxicity of the drug with particular emphasis on the

  9. Soluble recombinant merozoite surface antigen-142kDa of Plasmodium vivax: An improved diagnostic antigen for vivax malaria.

    PubMed

    Mirahmadi, Hadi; Fallahi, Shirzad; Seyyed Tabaei, Seyyed Javad

    2016-04-01

    Enzyme Linked Immunosorbent Assay (ELISA), as a serological test, can be a beneficial tool for epidemiological studies by screening blood donors and diagnosis of specific antibodies from Plasmodium vivax (P. vivax) infected cases. Since P. vivax cannot easily be acquired in vitro, ELISA assays using total or semi-purified antigens are seldom used. On the basis of this restriction, we examined whether recombinant protein 42 kDa related to C-terminal region of the merozoite surface antigen-1 of P. vivax (MSA-1(42)) could be suitable for serological detection of vivax malaria infection. Purified recombinant protein produced in Escherichia coli (E. coli) (GST-MSA-1(42)) was examined for its ability to bind to IgG antibodies of individuals with patent P. vivax infection. The method was tested with 262 serum samples collected from individuals living in the south and southeastern regions of Iran where malaria is endemic. Samples exposed to Plasmodium falciparum (P. falciparum) infection and patients with other infectious disease (toxoplasmosis, Leishmania infantum infection, echinococcosis and FUO (fever with unknown origin)) except for P. falciparum were residing in non- malaria endemic areas in Iran. Generally, the sensitivity of ELISA evaluated with sera from naturally infected individuals was 86.9%. The specificity value of the ELISA determined with sera from healthy individuals and from individuals with other infectious diseases was 94.05%. The positive predictive value (PPV), negative predictive value (NPV) provided, and the diagnostic efficiency of anti-rPvMSA-1(42) antibody using indirect ELISA were determined 93.58, 87.77 and 91.06% respectively. Our study demonstrated that, because MSA-1(42) kDa contains both the 33 and 19 kDa fragments in its structure, it can serve as the basis for the development of a sensitive serological test which can be used for epidemiological studies, screening blood donors and diagnosis of P. vivax malaria. PMID:26851675

  10. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface

    PubMed Central

    Oberli, Alexander; Slater, Leanne M.; Cutts, Erin; Brand, Françoise; Mundwiler-Pachlatko, Esther; Rusch, Sebastian; Masik, Martin F. G.; Erat, Michèle C.; Beck, Hans-Peter; Vakonakis, Ioannis

    2014-01-01

    Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.—Oberli, A., Slater, L. M., Cutts, E., Brand, F., Mundwiler-Pachlatko, E., Rusch, S., Masik, M. F. G., Erat, M. C., Beck, H.-P., Vakonakis, I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. PMID:24983468