Science.gov

Sample records for reductase mthfr mutation

  1. Association of Methylenetetrahydrofolate Reductase (MTHFR-677 and MTHFR-1298) Genetic Polymorphisms with Occlusive Artery Disease and Deep Venous Thrombosis in Macedonians

    PubMed Central

    Spiroski, Igor; Kedev, Sashko; Antov, Slobodan; Arsov, Todor; Krstevska, Marija; Dzhekova-Stojkova, Sloboda; Kostovska, Stojanka; Trajkov, Dejan; Petlichkovski, Aleksandar; Strezova, Ana; Efinska-Mladenovska, Olivija; Spiroski, Mirko

    2008-01-01

    Aim To analyze the association of methylenetetrahydrofolate reductase polymorphisms (MTHFR-677 and MTHFR-1298) with occlusive artery disease and deep venous thrombosis in Macedonians. Methods We examined 83 healthy respondents, 76 patients with occlusive artery disease, and 67 patients with deep venous thrombosis. Blood samples were collected and DNA was isolated from peripheral blood leukocytes. Identification of MTHFR mutations was done with CVD StripAssay (ViennaLab, Labordiagnostika GmbH, Vienna, Austria) and the population genetics analysis package, PyPop, was used for the analysis. Pearson P values, crude odds ratio, and Wald’s 95% confidence intervals were calculated. Results The frequency of C alleles of MTHFR-677 was 0.575 in patients with deep venous thrombosis, 0.612 in patients with occlusive artery disease, and 0.645 in healthy participants. The frequency of T allele of MTHFR-677 was lower in healthy participants (0.355) than in patients with occlusive artery disease (0.388) and deep venous thrombosis (0.425). The frequency of A allele for MTHFR-1298 was 0.729 in healthy participants, 0.770 in patients with occlusive artery disease, and 0.746 in patients with deep venous thrombosis. The frequency of C allele of MTHFR-1298 was 0.271 in healthy participants, 0.230 in patients with occlusive artery disease, and 0.425 in patients with deep venous thrombosis. No association of MTHFR-677 and MTHFR-1289 polymorphisms with occlusive artery disease and deep venous thrombosis was found, except for the protective effect of MTHFR/CA:CC diplotype for occlusive artery disease. Conclusion We could not confirm a significant association of MTHFR-677 and MTHFR-1289 polymorphisms with occlusive artery disease or deep venous thrombosis in Macedonians, except for the protective effect of MTHFR/CA:CC diplotype against occlusive artery disease. PMID:18293456

  2. Mutations of the MTHFR gene (428C>T and [458G>T+459C>T]) markedly decrease MTHFR enzyme activity.

    PubMed

    Yano, Hidetaka; Nakaso, Kazuhiro; Yasui, Kenichi; Wakutani, Yosuke; Nakayasu, Hiroyuki; Kowa, Hisanori; Adachi, Yoshiki; Nakashima, Kenji

    2004-06-01

    Methylenetetrahydrofolate reductase (MTHFR) is the only route for the synthesis of 5-methyltetrahydrofolate, which is utilized to convert homocysteine to methionine. In this study, we measured the enzyme activity of a mutant MTHFR that was detected in a patient with hyperhomocysteinemia. The 428C>T mutation in exon 2 of the MTHFR gene is a novel mutation, while the [458G>T+459C>T] mutation in exon 2 is a previously reported mutation. The activity of mutant enzymes containing the 428C>T, [458G>T+459C>T] and 677C>T mutations was 12.7+/-4.7%, 48.1+/-18.8%, and 43.6+/-14.4%, respectively, of that of the wild type enzyme. Our results suggest that these two variants each result in a severe MTHFR deficiency, which causes a developmental delay and cerebral vascular disease. PMID:15048559

  3. Genetic variants in 3?-UTRs of methylenetetrahydrofolate reductase (MTHFR) predict colorectal cancer susceptibility in Koreans

    PubMed Central

    Joo Jeon, Young; Woo Kim, Jong; Mi Park, Hye; Kim, Jung O; Geun Jang, Hyo; Oh, Jisu; Gyu Hwang, Seong; Won Kwon, Sung; Oh, Doyeun; Keun Kim, Nam

    2015-01-01

    Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) play important roles in tumor development, progression, and metastasis. Moreover, recent studies have reported that a number of 3?-UTR polymorphisms potentially bind to specific microRNAs in a variety of cancers. The aim of this study was to investigate the association of four MTHFR polymorphisms, 2572C>A [rs4846049], 4869C>G [rs1537514], 5488C>T [rs3737967], and 6685T>C [rs4846048] with colorectal cancer (CRC) in Koreans. A total of 850 participants (450 CRC patients and 400 controls) were enrolled in the study. The genotyping of MTHFR 3?-UTR polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism analysis or TaqMan allelic discrimination assay. We found that MTHFR 2572C>A, 4869C>G, and 5488C>T genotypes were substantially associated with CRC susceptibility. Of the potentially susceptible polymorphisms, MTHFR 2572C>A was associated with increased homocysteine and decreased folate levels in the plasma based on MTHFR 677CC. Our study provides the evidences for 3?-UTR variants in MTHFR gene as potential biomarkers for use in CRC prevention. PMID:26046315

  4. Plasma folate, methylenetetrahydrofolate reductase (MTHFR), and colorectal cancer risk in three large nested case-control studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few prospective studies have examined the associations between blood levels of folate, in conjunction with methylenetetrahydrofolate reductase (MTHFR) polymorphisms, and colorectal cancer. We evaluated the associations between plasma folate, MTHFR C677T, and A1298C, and colorectal cancer in three la...

  5. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia

    PubMed Central

    Markand, Shanu; Saul, Alan; Roon, Penny; Prasad, Puttur; Martin, Pamela; Rozen, Rima; Ganapathy, Vadivel; Smith, Sylvia B.

    2015-01-01

    Purpose. Methylenetetrahydrofolate reductase (Mthfr) is a key enzyme in homocysteine-methionine metabolism. We investigated Mthfr expression in retina and asked whether mild hyperhomocysteinemia, due to Mthfr deficiency, alters retinal neurovascular structure and function. Methods. Expression of Mthfr was investigated at the gene and protein level using quantitative (q) RT-PCR, in situ hybridization, immunoblotting, and immunohistochemistry (IHC). The Mthfr+/+ and Mthfr+/? mice were subjected to comprehensive evaluation using ERG, funduscopy, fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), HPLC, and morphometric and IHC analysis of glial fibrillary acidic protein (GFAP) at 8 to 24 weeks. Results. Gene and protein analyses disclosed widespread retinal expression of Mthfr. Electroretinography (ERG) revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/? mice at 24 weeks. Fundus examination in mice from both groups was normal; FA revealed areas of focal vascular leakage in 20% of Mthfr+/? mice at 12 to 16 weeks and 60% by 24 weeks. The SD-OCT revealed a significant decrease in nerve fiber layer (NFL) thickness at 24 weeks in Mthfr+/? compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 weeks in Mthfr+/? mice by HPLC and IHC. Morphometric analysis revealed an approximately 20% reduction in cells in the ganglion cell layer of Mthfr+/? mice at 24 weeks. The IHC indicated significantly increased GFAP labeling suggestive of Müller cell activation. Conclusions. Mildly hyperhomocysteinemic Mthfr+/? mice demonstrate reduced ganglion cell function, thinner NFL, and mild vasculopathy by 24 weeks. The retinal phenotype is similar to that of hyperhomocysteinemic mice with deficiency of cystathionine-?-synthase (Cbs) reported earlier. The data support the hypothesis that hyperhomocysteinemia may be causative in certain retinal neurovasculopathies. PMID:25766590

  6. Idiopathic Male Infertility Is Strongly Associated with Aberrant Promoter Methylation of Methylenetetrahydrofolate Reductase (MTHFR)

    PubMed Central

    Qin, Yufeng; Niu, Xiaobing; Lu, Chuncheng; Xia, Yankai; Song, Ling; Wang, Shoulin; Wang, Xinru

    2010-01-01

    Background Abnormal germline DNA methylation in males has been proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. Previous studies have been focused on imprinted genes with DNA methylation in poor quality human sperms. However, recent but limited data have revealed that sperm methylation abnormalities may involve large numbers of genes or shown that genes that are not imprinted are also affected. Methodology/Principal Findings Using the methylation-specific polymerase chain reaction and bisulfite sequencing method, we examined methylation patterns of the promoter of methylenetetrahydrofolate reductase (MTHFR) gene (NG_013351: 1538–1719) in sperm DNA obtained from 94 idiopathic infertile men and 54 normal fertile controls. Subjects with idiopathic infertility were further divided into groups of normozoospermia and oligozoospermia. Overall, 45% (41/94) of idiopathic infertile males had MTHFR hypermethylation (both hemimethylation and full methylation), compared with 15% of fertile controls (P<0.05). Subjects with higher methylation level of MTHFR were more likely to have idiopathic male infertility (P-value for trend ?=?0.0007). Comparing the two groups of idiopathic infertile subjects with different sperm concentrations, a higher methylation pattern was found in the group with oligozoospermia. Conclusions Hypermethylation of the promoter of MTHFR gene in sperms is associated with idiopathic male infertility. The functional relevance of hypermathylation of MTHFR to male fertility warrants further investigation. PMID:21085488

  7. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  8. Retrospective approach to methylenetetrahydrofolate reductase mutations in children.

    PubMed

    Özer, I??l; Özçetin, Mustafa; Karaer, Hatice; Kurt, Semiha G; ?ahin, ?emsettin

    2011-07-01

    Methylenetetrahydrofolate reductase reduces methyltetrahydrofolate, a cosubstrate in the remethylation of homocysteine, from methylenetetrahydrofolate. Congenital defects, hematologic tumors, and intrauterine growth retardation can occur during childhood. This study evaluated clinical and laboratory treatment approaches in children diagnosed with methylenetetrahydrofolate reductase mutations. Our group included 23 boys and 14 girls, aged 103.4 ± 70.8 months S.D. Clinical findings of patients and homocysteine, vitamin B12, folate, hemogram, electroencephalography, cranial magnetic resonance imaging, and echocardiography data were evaluated in terms of treatment approach. Our patients' findings included vitamin B12 at 400.4 ± 224.6 pg/mL S.D. (normal range, 300-700 pg/mL), folate at 10.1 ± 4.5 ng/mL S.D. (normal range, 1.8-9 ng/mL), and homocysteine at 8.4 ± 4.7 ?mol/L S.D. (normal range, 5.5-17 ?mol/L). Eighty-eight percent of patients demonstrated clinical findings. In comparisons involving categorical variables between groups, ?(2) tests were used. No relationship was evident between mutation type, laboratory data, and clinical severity. All mothers who had MTHFR mutations and had babies with sacral dimples had taken folate supplements during pregnancy. To avoid the risk of neural tube defects, pregnant women with a MTHFR mutation may require higher than normally recommended doses of folic acid supplementation for optimum health. PMID:21723457

  9. Neonatal and Fetal Methylenetetrahydrofolate Reductase Genetic Polymorphisms: An Examination of C677T and A1298C Mutations

    PubMed Central

    Isotalo, Phillip A.; Wells, George A.; Donnelly, James G.

    2000-01-01

    Methylenetetrahydrofolate reductase (MTHFR) mutations are commonly associated with hyperhomocysteinemia, and, through their defects in homocysteine metabolism, they have been implicated as risk factors for neural tube defects and unexplained, recurrent embryo losses in early pregnancy. Folate sufficiency is thought to play an integral role in the phenotypic expression of MTHFR mutations. Samples of neonatal cord blood (n=119) and fetal tissue (n=161) were analyzed for MTHFR C677T and A1298C mutations to determine whether certain MTHFR genotype combinations were associated with decreased in utero viability. Mutation analysis revealed that all possible MTHFR genotype combinations were represented in the fetal group, demonstrating that 677T and 1298C alleles could occur in both cis and trans configurations. Combined 677CT/1298CC and 677TT/1298CC genotypes, which contain three and four mutant alleles, respectively, were not observed in the neonatal group (P=.0402). This suggests decreased viability among fetuses carrying these mutations and a possible selection disadvantage among fetuses with increased numbers of mutant MTHFR alleles. This is the first report that describes the existence of human MTHFR 677CT/1298CC and 677TT/1298CC genotypes and demonstrates their potential role in compromised fetal viability. PMID:10958762

  10. Association between methylenetetrahydrofolate reductase (MTHFR) polymorphism and carotid intima medial thickness progression in post ischaemic stroke patient

    PubMed Central

    Faradz, Sultana M.H.; Sari, Stefani; Hadisaputro, Soeharyo

    2015-01-01

    Background Hyperhomocysteinemia is associated with an increased risk of atherosclerosis. The main cause of elevated levels of homocysteine is 677T allele, the gene encoded by methylenetetrahydrofolate reductase (MTHFR). Carotid atherosclerosis progression, which can be measured by examination of carotid intima-media thickness (C-IMT), is a predictor of recurrent ischemic stroke. The objective of this study was to determine a relationship between MTHFR polymorphism, homocysteine ??levels, and increased C-IMT in post- ischemic stroke patients. Methods This was an epidemiological prospective observational cohort study involving 71 patients with post-ischemic stroke subject of the first (onset 1 month) admitted in the Neurology Clinic of Kariadi Hospital during 2012 to 2013. C-IMT was examined using carotid duplex ultrasound at 1st, 6th, and 12th month after stroke onset. MTHFR gene polymorphism was examined using polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Homocysteine level was measured using Axis® Homocysteine EIA. Results We found 3 categories of MTHFR gene variation, i.e., 677T/T, 677T/C, and 677C/C. The most frequent allele was MTHFR 677C (88.9%), while the MTHFR 677T allele frequency was 11.1%. The majority allele of the subject population was 677C/C, however, there were 3 subjects (4.2%) who had 677T/T allele. The 677T/T allele group had normal homocysteine level and the lowest mean C-IMT among others. Conclusions This study supports that the MTHFR 677T allele polymorphism is not associated with hyperhomocysteinemia as well as an increase in C-IMT in post ischemic stroke patients.

  11. Combined choroidal neovascularization and hypopituitarism in a patient with homozygous mutation in methylenetetrahydrofolate reductase gene

    PubMed Central

    Aydogdu, Aydogan; Haymana, Cem; Baskoy, Kamil; Durukan, Ali H.; Ozgur, Gokhan; Azal, Omer

    2014-01-01

    We report a case of choroidal neovascularization (CNV) secondary to methylenetetrahydrofolate reductase (MTHFR) gene mutation in a 20-year-old male patient with hypopituitarism. Treatment with three consecutive injections of intravitreal ranibizumab (anti-vascular endothelial growth factor) resulted in significant improvement of the patient's vision and the appearance of the macula. A search of the literature produced no previously reported case of MTHFR gene mutation associated both CNV and possibly hypopituitarism. With hormone replacement therapy of hypopituitarism, acetyl salicylic acid 100 mg/day also was started. The patient was clinically stable both for CNV and other thromboembolic disorders over a 6-month follow-up and also 1-year follow-up period. PMID:24672570

  12. Clinical Implications of Methylenetetrahydrofolate Reductase Mutations and Plasma Homocysteine Levels in Patients with Thromboembolic Occlusion

    PubMed Central

    Park, Won-Cheol; Chang, Jeong-Hwan

    2014-01-01

    Purpose: Hyperhomocysteinemia has been identified as an independent risk factor in arterial and venous thrombosis. Mutations in genes encoding methylenetetrahydrofolate reductase (MTHFR), involved in the metabolism of homocysteine, may account for reduced enzyme activity and elevated plasma homocysteine levels. In this study, we investigated the interrelation of MTHFR C677T genotype and level of homocysteine in patients with arterial and venous thrombosis. Materials and Methods: We retrospectively reviewed the medical records of 146 patients who were diagnosed as having arterial and venous thrombosis. We excluded patients diagnosed with atrial fibrillation. We examined routinely the plasma concentration of total homocysteine level and MTHFR C677T polymorphism for evaluation of thrombotic tendency in all patients. Screening processes of MTHFR C677T polymorphism were performed by real-time polymerase chain reaction. Results: Investigated groups consisted of thrombotic arterial occlusion in 48 patients and venous occlusion in 63 patients. The distribution of the three genotypes was as follows: homozygous normal (CC) genotype in 29 (26.1%), heterozygous (CT) genotype in 57 (51.4%), and homozygous mutant (TT) genotype in 25 (22.5%) patients. There were no significant differences among individuals between each genotype group for baseline characteristics. Plasma concentration of homocysteine in patients with the TT genotype was significantly increased compared to the CC genotype (P<0.05). Conclusion: We observed a significant interaction between TT genotypes and homocysteine levels in our results. The results might reflect the complex interaction between candidate genes and external factors responsible for thrombosis. PMID:26217629

  13. The Methylenetetrahydrofolate Reductase Polymorphism (MTHFR c.677C > T) and Elevated Plasma Homocysteine Levels in a U.S. Pediatric Population with Incident Thromboembolism

    PubMed Central

    Joachim, Emily; Goldenberg, Neil A.; Bernard, Timothy J.; Armstrong-Wells, Jennifer; Stabler, Sally; Manco-Johnson, Marilyn J.

    2014-01-01

    Objective Elevated plasma homocysteine (tHcy) and the MTHFR c.677C > T variant have been postulated to increase the risk of venous thromboembolism (VTE), although mechanisms and implications to pediatrics remain incompletely understood. The objectives of this study were to determine the prevalences of elevated tHcy and MTHFR variant in a pediatric population with VTE or arterial ischemic stroke (AIS), and to determine associations with thrombus outcomes. Study Design Subjects were enrolled in an institution-based prospective cohort of children with VTE or AIS. Inclusion criteria consisted of objectively confirmed thrombus, ?21 years at diagnosis, tHcy measured and MTHFR c.677C > T mutation analysis. Clinical and laboratory data were collected. Frequencies for elevated tHcy and MTHFR variant were compared with NHANES values for healthy US children and also between study groups (VTE vs AIS, provoked vs idiopathic) and by age. Results The prevalences of hyperhomocysteinemia or MTHFR variant were not increased in comparison to NHANES. tHcy did not differ between those with wild-type MTHFR versus either c.677C > T heterozygotes or homozygotes. There was no association between tHcy or MTHFR variant and thrombus outcomes. Conclusion In this cohort of US children with VTE or AIS, neither the prevalence of hyperhomocysteinemia nor that of MTHFR variant was increased relative to reference values, and adverse thrombus outcomes were not definitively associated with either. While it is important to consider that milder forms of pyridoxine-responsive classical homocystinuria will be detected only by tHcy, we suggest that routine testing of MTHFR c.677C > T genotype as part of a thrombophilia evaluation in children with incident thromboembolismis not warranted until larger studies have been performed in order to establish or refute a link between MTHFR and adverse outcomes. PMID:23866722

  14. A retrospective comparative exploratory study on two Methylentetrahydrofolate Reductase (MTHFR) polymorphisms in esophagogastric cancer: the A1298C MTHFR polymorphism is an independent prognostic factor only in neoadjuvantly treated gastric cancer patients

    PubMed Central

    2014-01-01

    Background Methylentetrahydrofolate reductase (MTHFR) plays a major role in folate metabolism and consequently could be an important factor for the efficacy of a treatment with 5-fluorouracil. Our aim was to evaluate the prognostic and predictive value of two well characterized constitutional MTHFR gene polymorphisms for primarily resected and neoadjuvantly treated esophagogastric adenocarcinomas. Methods 569 patients from two centers were analyzed (gastric cancer: 218, carcinoma of the esophagogastric junction (AEG II, III): 208 and esophagus (AEG I): 143). 369 patients received neoadjuvant chemotherapy followed by surgery, 200 patients were resected without preoperative treatment. The MTHFR C677T and A1298C polymorphisms were determined in DNA from peripheral blood lymphozytes. Associations with prognosis, response and clinicopathological factors were analyzed retrospectively within a prospective database (chi-square, log-rank, cox regression). Results Only the MTHFR A1298C polymorphisms had prognostic relevance in neoadjuvantly treated patients but it was not a predictor for response to neoadjuvant chemotherapy. The AC genotype of the MTHFR A1298C polymorphisms was significantly associated with worse outcome (p?=?0.02, HR 1.47 (1.06-2.04). If neoadjuvantly treated patients were analyzed based on their tumor localization, the AC genotype of the MTHFR A1298C polymorphisms was a significant negative prognostic factor in patients with gastric cancer according to UICC 6th edition (gastric cancer including AEG type II, III: HR 2.0, 95% CI 1.3-2.0, p?=?0.001) and 7th edition (gastric cancer without AEG II, III: HR 2.8, 95% CI 1.5-5.7, p?=?0.003), not for AEG I. For both definitions of gastric cancer the AC genotype was confirmed as an independent negative prognostic factor in cox regression analysis. In primarily resected patients neither the MTHFR A1298C nor the MTHFR C677T polymorphisms had prognostic impact. Conclusions The MTHFR A1298C polymorphisms was an independent prognostic factor in patients with neoadjuvantly treated gastric adenocarcinomas (according to both UICC 6th or 7th definitions for gastric cancer) but not in AEG I nor in primarily resected patients, which confirms the impact of this enzyme on chemotherapy associated outcome. PMID:24490800

  15. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    PubMed Central

    Jakubowska, A; Rozkrut, D; Antoniou, A; Hamann, U; Scott, R J; McGuffog, L; Healy, S; Sinilnikova, O M; Rennert, G; Lejbkowicz, F; Flugelman, A; Andrulis, I L; Glendon, G; Ozcelik, H; Thomassen, M; Paligo, M; Aretini, P; Kantala, J; Aroer, B; von Wachenfeldt, A; Liljegren, A; Loman, N; Herbst, K; Kristoffersson, U; Rosenquist, R; Karlsson, P; Stenmark-Askmalm, M; Melin, B; Nathanson, K L; Domchek, S M; Byrski, T; Huzarski, T; Gronwald, J; Menkiszak, J; Cybulski, C; Serrano, P; Osorio, A; Cajal, T R; Tsitlaidou, M; Benítez, J; Gilbert, M; Rookus, M; Aalfs, C M; Kluijt, I; Boessenkool-Pape, J L; Meijers-Heijboer, H E J; Oosterwijk, J C; van Asperen, C J; Blok, M J; Nelen, M R; van den Ouweland, A M W; Seynaeve, C; van der Luijt, R B; Devilee, P; Easton, D F; Peock, S; Frost, D; Platte, R; Ellis, S D; Fineberg, E; Evans, D G; Lalloo, F; Eeles, R; Jacobs, C; Adlard, J; Davidson, R; Eccles, D; Cole, T; Cook, J; Godwin, A; Bove, B; Stoppa-Lyonnet, D; Caux-Moncoutier, V; Belotti, M; Tirapo, C; Mazoyer, S; Barjhoux, L; Boutry-Kryza, N; Pujol, P; Coupier, I; Peyrat, J-P; Vennin, P; Muller, D; Fricker, J-P; Venat-Bouvet, L; Johannsson, O Th; Isaacs, C; Schmutzler, R; Wappenschmidt, B; Meindl, A; Arnold, N; Varon-Mateeva, R; Niederacher, D; Sutter, C; Deissler, H; Preisler-Adams, S; Simard, J; Soucy, P; Durocher, F; Chenevix-Trench, G; Beesley, J; Chen, X; Rebbeck, T; Couch, F; Wang, X; Lindor, N; Fredericksen, Z; Pankratz, V S; Peterlongo, P; Bonanni, B; Fortuzzi, S; Peissel, B; Szabo, C; Mai, P L; Loud, J T; Lubinski, J

    2012-01-01

    Background: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity. Methods: To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively. Results: There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele. Conclusion: The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers. PMID:22669161

  16. A COMMON POLYMORPHISM IN THE METHYLENETETRAHYDROFOLATE REDUCTASE (MTHFR) GENE IS ASSOCIATED WITH QUANTITATIVE ULTRASOUND IN THOSE WITH LOW PLASMA FOLATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study of a polymorphism in the MTHFR gene, plasma folate, and bone phenotypes in 1632 individuals revealed that the genotype effect on BMD and quantitative ultrasound was dependent on the level of folate. Our findings support the hypothesis that the association between an MTHFR polymorphism and bo...

  17. Elevated total plasma homocysteine and 667C{r_arrow}T mutation of the 5,10-methylenetetrahydrofolate reductase gene in thrombotic vascular disease

    SciTech Connect

    De Franchis, R.; Sebastio, G.; Andria, G.

    1996-07-01

    Moderate elevation of total plasma homocysteine (tHcy) has been reported as an independent risk factor for thrombotic vascular disease, a well-known multifactorial disorder. Possible genetic causes of elevated tHcy include defects of the sulfur-containing amino acids metabolism due to deficiencies of cystathionine {Beta}-synthase, of 5,10-methylenetetrahydrofolate reductase (MTHFR), and of the enzymes of cobalamin metabolism. An impaired activity of MTHFR due to a thermolabile form of the enzyme has been observed in {le}28% of hyperhomocysteinemic patients with premature vascular disease. More recently, the molecular basis of such enzymatic thermolability has been related to a common mutation of the MTHFR gene, causing a C-to-T substitution at nt 677 (677C{r_arrow}T). This mutation was found in 38% of unselected chromosomes from 57 French Canadian individuals. The homozygous state for the mutation was present in 12% of these subjects and correlated with significantly elevated tHcy. Preliminary evidence indicates that the frequency of homozygotes for the 677C{r_arrow}T mutation may vary significantly in populations from different geographic areas. 5 refs., 2 tabs.

  18. Two mutations of dihydropteridine reductase deficiency.

    PubMed Central

    Ponzone, A; Guardamagna, O; Ferraris, S; Bracco, G; Niederwieser, A; Cotton, R G

    1988-01-01

    Two patients with dihydropteridine reductase (DHPR) deficiency, in one case due to the absence of any enzyme protein (DHPR- cross reactive material (CRM)-) and in the other case due to the production of a mutant type devoid of catalytic activity (DHPR- CRM+) were examined. This latter form of malignant phenylketonuria, whose relative frequency seems to be higher in the Italian population, possibly has a worse prognosis. The earlier onset and the greater severity of clinical symptoms are associated with a more pronounced hydroxylation defect, as shown by higher degree of neonatal hyperphenylalaninaemia, unresponsiveness to an oral tetrahydrobiopterin load, lower concentrations of neurotransmitter metabolites, and reduced tyrosine production after an oral phenylalanine load. PMID:2894818

  19. Ethnic variation of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate-reductase (MTHFR) gene in southwestern Mexico.

    PubMed

    Antonio-Véjar, V; Del Moral-Hernández, O; Alarcón-Romero, L C; Flores-Alfaro, E; Leyva-Vázquez, M A; Hernández-Sotelo, D; Illades-Aguiar, B

    2014-01-01

    In this study, we examined the distribution of genotype and allele frequencies of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate-reductase gene (MTHFR) in two ethnic groups in the State of Guerrero, Mexico, which were compared with those of the Mestizo population of the region. A comparative study was conducted on 455 women from two ethnic groups and a group of Mestizo women of the State of Guerrero, Mexico: 135 Nahuas, 124 Mixtecas, and 196 Mestizas. Genotyping of both polymorphisms were performed by using polymerase chain reaction-restriction fragment length polymorphism methods. We found that the 677TT genotype was more frequent in Nahua and Mixteca women compared to Mestiza women (P = 0.008), and the most prevalent genotype in both ethnic groups was the 1298AA genotype (P < 0.001). We also compared the 677T allele frequency obtained from the groups studied with the frequencies reported in other ethnic groups of Mexico (Huichol, Tarahumara, and Purepecha). There were significant differences between the three ethnic groups compared to Nahuas (Huicholes, P = 0.004; Tarahumaras, P < 0.001; Purepechas, P = 0.042). Our results indicated significant differences in the frequencies of the C677T and A1298C polymorphisms between the two ethnic groups and the Mestizo population of the State of Guerrero. In addition, we found strong differences with other ethnic groups in Mexico. These results could be useful for future studies investigating diseases related to folate metabolism, and could help the government to design specific nutrition programs for different ethnic groups. PMID:25299110

  20. Antifolates and MTHFR.

    PubMed

    Trachtman, Joseph N; Pagano, Vincent

    2015-12-01

    We describe a patient who developed symptoms of headache, fatigue, and dizziness after administration of terbinafine (Lamisil). Laboratory tests revealed that he is heterozygous for the C677T variation of the methylenetetrahydrofolate reductase genetic mutation. The prescription of Deplin (L-methylfolate) greatly reduced the symptoms. It was later noted that Lamisil's mechanism of action interferes with cells' methylation cycle, which we suspect compromises cellular function in people with the methylenetetrahydrofolate reductase genetic mutation. PMID:25929315

  1. Methylenetetrahydrofolate Reductase Gene Polymorphisms in Children with Attention Deficit Hyperactivity Disorder

    PubMed Central

    Gokcen, Cem; Kocak, Nadir; Pekgor, Ahmet

    2011-01-01

    Objective: The purpose of this study was to evaluate the relationship between 5,10- methylenetetrahydrofolate reductase (MTHFR) polymorphisms and Attention Deficit Hyperactivity Disorder (ADHD) in a sample of Turkish children. Study Design: MTHFR gene polymorphisms were assessed in 40 patients with ADHD and 30 healty controls. Two mutations in the MTHFR gene were investigated using polymerase chain reactions and restriction fragment length polymorphisms. Results: Although there were no statistically significant differences in genotype distributions of the C677T alleles between the ADHD and the control groups (p=0,678) but the genotypic pattern of the distributions of the A1298C alleles was different between the ADHD patients and the controls (p=0,033). Conclusions: Preliminary data imply a possible relationship between A1298C MTHFR polymorphisms and the ADHD. PMID:21897766

  2. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease

    PubMed Central

    Liu, Yan; Huang, Peng; Lin, Ning; Sun, Xiaoru; Yu, Rongbin; Zhang, Yuanyuan; Qin, Yuming; Wang, Lijuan

    2015-01-01

    Purpose Congenital heart diseases (CHD) are among the most common birth defects in China. Environmental causes and folate metabolism changes may alter susceptibility to CHD. The aim of this study is to evaluate the relevant risk-factors of children with CHD and their mothers. Methods 138 children with CHD and 207 normal children for controls were recruited. Their mothers were also enlisted in this study and interviewed following a questionnaire about their pregnant history and early pregnancy situation. Five single nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MS) and cystathionine ?-synthase (CBS) of mothers and children were genotyped. Results There were significant differences in the gender of children, occupation of mothers, family history with CHD, history of abortion, history of adverse pregnancy, early pregnancy health, fetus during pregnancy, pesticide exposure and drug exposure in CHD group and control group ( P < 0.05). Logistic regression analyses showed that after adjustment for above factors, MTHFR rs1801131 were significantly associated with their offspring CHD risk in mothers. Compared with the mothers whose MTHFR were rs1801131 AA and AC genotypes, the mothers who got a mutation of MTHFR rs1801131 CC genotypes had a 267% increase in risk of given birth of a CHD children (OR=3.67,95%CI=1.12-12.05). Meanwhile, MTHFR rs1801131 were significantly associated with CHD susceptibility in children (OR = 1.42, 95% CI = 1.00-2.44 in additive model). Conclusions Besides mothers’ social and fertility characteristics, our results suggested that the genetic variants in folate metabolism pathway might be one of the most related risk-factors of CHD. MTHFR rs1801131 were identified as loci in Chinese population that were involved in CHD. PMID:26035828

  3. Relationship of MTHFR gene polymorphisms with renal and cardiac disease

    PubMed Central

    Trovato, Francesca M; Catalano, Daniela; Ragusa, Angela; Martines, G Fabio; Pirri, Clara; Buccheri, Maria Antonietta; Di Nora, Concetta; Trovato, Guglielmo M

    2015-01-01

    AIM: To investigate the effects of different methylenetetrahydrofolate reductase (MTHFR) 677C>T gene polymorphism and hyperhomocysteinemia for the development of renal failure and cardiovascular events, which are controversial. METHODS: We challenged the relationship, if any, of MTHFR 677C>T and MTHFR 1298A>C polymorphisms with renal and heart function. The present article is a reappraisal of these concepts, investigating within a larger population, and including a subgroup of dialysis patients, if the two most common MTHFR polymorphisms, C677T and A1298C, as homozygous, heterozygous or with a compound heterozygous state, show different association with chronic renal failure requiring hemodialysis. MTHFR polymorphism could be a favorable evolutionary factor, i.e., a protective factor for many ominous conditions, like cancer and renal failure. A similar finding was reported in fatty liver disease in which it is suggested that MTHFR polymorphisms could have maintained and maintain their persistence by an heterozygosis advantage mechanism. We studied a total of 630 Italian Caucasian subject aged 54.60 ± 16.35 years, addressing to the increased hazard of hemodialysis, if any, according to the studied MTHFR genetic polymorphisms. RESULTS: A favorable association with normal renal function of MTHFR polymorphisms, and notably of MTHFR C677T is present independently of the negative effects of left ventricular hypertrophy, increased Intra-Renal arterial Resistance and hyperparathyroidism. CONCLUSION: MTHFR gene polymorphisms could have a protective role on renal function as suggested by their lower frequency among our dialysis patients in end-stage renal failure; differently, the association with left ventricular hypertrophy and reduced left ventricular relaxation suggest some type of indirect, or concurrent mechanism. PMID:25664255

  4. Mutational Analysis of Pneumocystis jirovecii Dihydropteroate Synthase and Dihydrofolate Reductase Genes in HIV-Infected Patients in China

    PubMed Central

    Deng, Xilong; Zhuo, Li; Lan, Yun; Dai, Zhaoxia; Chen, Wan-shan; Cai, Weiping; Kovacs, Joseph A.; Ma, Liang

    2014-01-01

    We investigated Pneumocystis jirovecii dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) genes for mutations in 25 Chinese HIV-infected patients with P. jirovecii pneumonia. We identified DHPS mutations in 3 (12%) patients and DHFR mutations in 1 (4%) patient. The prevalence of DHPS and DHFR mutations in China remains low, as it does in other developing countries. PMID:25122865

  5. Cutis laxa type II with mutation in the pyrroline-5-carboxylate reductase 1 gene.

    PubMed

    Nouri, Nayereh; Aryani, Omid; Nouri, Narges; Kamalidehghan, Behnam; Houshmand, Massoud

    2013-01-01

    A 14-year-old Iranian boy with congenital cutis laxa and several other typical autosomal recessive type II features was examined. Mutation analysis of the pyrroline-5-carboxylate reductase 1 gene revealed a single-base deletion (c.345delC) in exon 4 leading to frame shift and premature termination of translation. PMID:23406396

  6. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower NOR activity compared with the wild-type strain. PMID:9022686

  7. C677T methylenetetrahydrofolate reductase and plasma homocysteine levels among Thai vegans and omnivores.

    PubMed

    Kajanachumpol, Saowanee; Atamasirikul, Kalayanee; Tantibhedhyangkul, Phieuvit

    2013-01-01

    Hyperhomocysteinemia among vegetarians and vegans is caused mostly by vitamin B12 deficiency. A C-to-T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene results in a thermolabile MTHFR, which may affect homocysteine (Hcy) levels. The importance of this gene mutation among populations depends on the T allele frequency. Blood Hcy, vitamin B12, folate, vitamin B6, and MTHFR C677T mutation status were determined in 109 vegans and 86 omnivores aged 30 - 50 years. The vegans had significantly higher Hcy levels than the omnivores, geometric means (95 % CI) 19.2 (17.0 - 21.7) µmol/L vs. 8.53 (8.12 - 8.95) µmol/L, p < 0.001. A C-to-T mutation in the vegans increased plasma Hcy, albeit insignificantly; geometric means 18.2 µmol/L, 20.4 µmol/L, and 30.0 µmol/L respectively in CC, CT, and TT MTHFR genotypes. There was also a significant decrease in serum folate; geometric means 12.1 ng/mL, 9.33 ng/mL, and 7.20 ng/mL respectively, in the CC, CT, and TT mutants, p = 0.006, and particularly, in the TT mutant compared with the CC wild type, 7.20 ng/mL vs. 12.1 ng/mL, p = 0.023. These findings were not seen in the omnivores. It was concluded that hyperhomocysteinemia is prevalent among Thai vegans due to vitamin B12 deficiency. C-to-T MTHFR mutation contributes only modestly to the hyperhomocysteinemia. PMID:24491881

  8. Genetic and epigenetic variants in the MTHFR gene are not associated with non-Hodgkin lymphoma.

    PubMed

    Bradshaw, Gabrielle; Sutherland, Heidi G; Camilleri, Emily T; Lea, Rodney A; Haupt, Larisa M; Griffiths, Lyn R

    2015-12-01

    The methylenetetrahydrofolate reductase (MTHFR) gene codes for the MTHFR enzyme which plays a key role in the pathway of folate and methionine metabolism. Polymorphisms of genes in this pathway affect its regulation and have been linked to lymphoma. In this study we examined whether we could detect an association between two common non-synonymous MTHFR polymorphisms, 677C > T (rs1801133) and 1298A > C (rs1801131), and susceptibility to non-Hodgkin lymphoma (NHL) in an Australian case-control cohort. We found no significant differences between genotype or allele frequencies for either polymorphisms between lymphoma cases and controls. We also explored whether epigenetic modification of MTHFR, specifically DNA methylation of a CpG island in the MTHFR promoter region, is associated with NHL using blood samples from patients. No difference in methylation levels was detected between the case and control samples suggesting that although hypermethylation of MTHFR has been reported in tumour tissues, particularly in the diffuse large B-cell lymphoma subtype of NHL, methylation of this MTHFR promoter CpG island is not a suitable epigenetic biomarker for NHL diagnosis or prognosis in peripheral blood samples. Further studies into epigenetic variants could focus on genes that are robustly associated with NHL susceptibility. PMID:26629414

  9. Genetic and epigenetic variants in the MTHFR gene are not associated with non-Hodgkin lymphoma

    PubMed Central

    Bradshaw, Gabrielle; Sutherland, Heidi G.; Camilleri, Emily T.; Lea, Rodney A.; Haupt, Larisa M.; Griffiths, Lyn R.

    2015-01-01

    The methylenetetrahydrofolate reductase (MTHFR) gene codes for the MTHFR enzyme which plays a key role in the pathway of folate and methionine metabolism. Polymorphisms of genes in this pathway affect its regulation and have been linked to lymphoma. In this study we examined whether we could detect an association between two common non-synonymous MTHFR polymorphisms, 677C > T (rs1801133) and 1298A > C (rs1801131), and susceptibility to non-Hodgkin lymphoma (NHL) in an Australian case–control cohort. We found no significant differences between genotype or allele frequencies for either polymorphisms between lymphoma cases and controls. We also explored whether epigenetic modification of MTHFR, specifically DNA methylation of a CpG island in the MTHFR promoter region, is associated with NHL using blood samples from patients. No difference in methylation levels was detected between the case and control samples suggesting that although hypermethylation of MTHFR has been reported in tumour tissues, particularly in the diffuse large B-cell lymphoma subtype of NHL, methylation of this MTHFR promoter CpG island is not a suitable epigenetic biomarker for NHL diagnosis or prognosis in peripheral blood samples. Further studies into epigenetic variants could focus on genes that are robustly associated with NHL susceptibility. PMID:26629414

  10. [Resistance to acenocoumarol revealing a missense mutation of the vitamin K epoxyde reductase VKORC1: a case report].

    PubMed

    Mboup, M C; Dia, K; Ba, D M; Fall, P D

    2015-02-01

    A significant proportion of the interindividual variability of the response to vitamin K antagonist (VKA) treatment has been associated with genetic factors. Genetic variations affecting the vitamin K epoxide reductase complex subunit 1 (VKORC1) are associated with hypersensitivity or rarely with resistance to VKA. We report the case of a black women patient who presents a resistance to acenocoumarol. Despite the use of high doses of acenocoumarol (114 mg/week) for the treatment of recurrent pulmonary embolism, the International Normalized Ratio was below the therapeutic target. This resistance to acenocoumarol was confirmed by the identification of a missense mutation Val66Met of the vitamin K epoxide reductase. PMID:24095214

  11. Population- and Family-Based Studies Associate the "MTHFR" Gene with Idiopathic Autism in Simplex Families

    ERIC Educational Resources Information Center

    Liu, Xudong; Solehdin, Fatima; Cohen, Ira L.; Gonzalez, Maripaz G.; Jenkins, Edmund C.; Lewis, M. E. Suzanne; Holden, Jeanette J. A.

    2011-01-01

    Two methylenetetrahydrofolate reductase gene ("MTHFR") functional polymorphisms were studied in 205 North American simplex (SPX) and 307 multiplex (MPX) families having one or more children with an autism spectrum disorder. Case-control comparisons revealed a significantly higher frequency of the low-activity 677T allele, higher prevalence of the…

  12. Factor V Leiden, factor V Cambridge, factor II GA20210, and methylenetetrahydrofolate reductase in cerebral venous and sinus thrombosis: A case-control study

    PubMed Central

    Saadatnia, Mohammad; Salehi, Mansour; Movahedian, Ahmad; Shariat, Seyed Ziaeddin Samsam; Salari, Mehri; Tajmirriahi, Marzieh; Asadimobarakeh, Elham; Salehi, Rasoul; Amini, Gilda; Ebrahimi, Homa; Kheradmand, Ehsan

    2015-01-01

    Background: Factor V G1691A (FV Leiden), FII GA20210, and methylenetetrahydrofolate reductase (MTHFR) C677T mutations are the most common genetic risk factors for thromboembolism in the Western countries. However, there is rare data in Iran about cerebral venous and sinus thrombosis (CVST) patients. The aim of this study was to evaluate the frequency of common genetic thrombophilic factors in CVST patients. Materials and Methods: Forty consequently CVST patients from two University Hospital in Isfahan University of Medical Sciences aged more than 15 years from January 2009 to January 2011 were recruited. In parallel, 51 healthy subjects with the same age and race from similar population selected as controls. FV Leiden, FII GA20210, MTHFR C677T, and FV Cambridge gene mutations by polymerase chain reaction technique were evaluated in case and control groups. Results: FV Leiden, FII GA20210, and FV Cambridge gene mutations had very low prevalence in both case (5%, 2%, 0%) and control (2.5%, 0%, 0%) and were not found any significant difference between groups. MTHFR C677T mutations was in 22 (55%) of patients in case group and 18 (35.5%) of control group (P = 0.09). Conclusion: This study showed that the prevalence of FV Leiden, FII GA20210, and FV Cambridge were low. Laboratory investigations of these mutations as a routine test for all patients with CVST may not be cost benefit.

  13. Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility

    PubMed Central

    Eloualid, Abdelmajid; Abidi, Omar; Charif, Majida; El houate, Brahim; Benrahma, Houda; Louanjli, Noureddine; Chadli, Elbakkay; Ajjemami, Maria; Barakat, Abdelhamid; Bashamboo, Anu; McElreavey, Ken; Rhaissi, Houria; Rouba, Hassan

    2012-01-01

    The methylenetetrahydrofolate reductase (MTHFR) gene is one of the main regulatory enzymes involved in folate metabolism, DNA synthesis and remethylation reactions. The influence of MTHFR variants on male infertility is not completely understood. The objective of this study was to analyze the distribution of the MTHFR C677T and A1298C variants using PCR-Restriction Fragment Length Polymorphism (RFLP) in a case group consisting of 344 men with unexplained reduced sperm counts compared to 617 ancestry-matched fertile or normozoospermic controls. The Chi square test was used to analyze the genotype distributions of MTHFR polymorphisms. Our data indicated a lack of association of the C677T variant with infertility. However, the homozygous (C/C) A1298C polymorphism of the MTHFR gene was present at a statistically high significance in severe oligozoospermia group compared with controls (OR?=?3.372, 95% confidence interval CI?=?1.27–8.238; p?=?0.01431). The genotype distribution of the A1298C variants showed significant deviation from the expected Hardy-Weinberg equilibrium, suggesting that purifying selection may be acting on the 1298CC genotype. Further studies are necessary to determine the influence of the environment, especially the consumption of diet folate on sperm counts of men with different MTHFR variants. PMID:22457816

  14. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  15. Postnatal cerebellar defects in mice deficient in methylenetetrahydrofolate reductase.

    PubMed

    Chen, Zhoutao; Schwahn, Bernd C; Wu, Qing; He, Xinying; Rozen, Rima

    2005-08-01

    Patients with severe deficiency of methylenetetrahydrofolate reductase (MTHFR) suffer from a wide variety of neurological problems, which can begin in the neonatal period. MTHFR is a critical enzyme in folate metabolism; the product of the MTHFR reaction, 5-methyltetrahydrofolate, is required for homocysteine remethylation to methionine and synthesis of S-adenosylmethionine (SAM). To understand the mechanisms by which MTHFR deficiency leads to significant neuropathology, we examined early postnatal brain development in mice with a homozygous knockout of the Mthfr gene. These mice displayed a dramatically reduced size of the cerebellum and cerebral cortex, with enlarged lateral ventricles. Mthfr deficiency affected granule cell maturation, but not neurogenesis. Depletion of external granule cells and disorganization of Purkinje cells were mainly confined to the anterior lobules of mutant cerebella. Decreased cellular proliferation and increased cell death contributed to the granule cell loss. Reduced expression of Engrailed-2 (En2), Reelin (Reln) and inositol 1,4,5-triphosphate receptor type 1 (Itpr1) genes was observed in the cerebellum. Supplementation of Mthfr(+/-) dams with an alternate methyl donor, betaine, reduced cerebellar abnormalities in the Mthfr(-/-) pups. Our findings suggest that MTHFR plays a role in cerebellar patterning, possibly through effects on proliferation or apoptosis. PMID:15979267

  16. Congenital Recessive Methemoglobinemia Revealed in Adulthood: Description of a New Mutation in Cytochrome b5 Reductase Gene.

    PubMed

    Forestier, Alexandra; Pissard, Serge; Cretet, Justine; Mambie, Adeline; Pascal, Laurent; Cliquennois, Manuel; Cambier, Nathalie; Rose, Christian

    2015-12-01

    Methemoglobinemia can be acquired (oxidizing drugs or chemicals products) or inherited either by mutations affecting globin chains [M hemoglobins (M Hbs)] or by defects in the enzymatic system involved in the reduction of spontaneous Hb oxidation: nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase. It is encoded by the CYB5R3 gene: there are two phenotypes of autosomal recessive congenital methemoglobinemia, in type II CYB5R deficiency is generalized and affects all cells, leading to an early onset, whereas in type I, the enzyme deficiency is restricted to erythrocytes, usually discovered in infancy but not exclusively. We report a new case of methemoglobinemia discovered in a patient from Bahrain who exhibited an unknown dyspnea at the age of 37 years without trigger events or oxidizing products. We discovered a new mutation in the CYB5R3 gene: exon 9, codon 266 (delGAG) (GLU) (CYB5R3: c.726_729delGAG) in the homozygous state. Appearance of methemoglobinemia in an adult usually suggests an acquired cause but our case illustrated that it could also reveal a type I mutation of cytochrome b5 reductase. PMID:26291966

  17. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms.

    PubMed

    Jibran, Rubina; Sullivan, Kerry L; Crowhurst, Ross; Erridge, Zoe A; Chagné, David; McLachlan, Andrew R G; Brummell, David A; Dijkwel, Paul P; Hunter, Donald A

    2015-11-01

    Stresses such as energy deprivation, wounding and water-supply disruption often contribute to rapid deterioration of harvested tissues. To uncover the genetic regulation behind such stresses, a simple assessment system was used to detect senescence mutants in conjunction with two rapid mapping techniques to identify the causal mutations. To demonstrate the power of this approach, immature inflorescences of Arabidopsis plants that contained ethyl methanesulfonate-induced lesions were detached and screened for altered timing of dark-induced senescence. Numerous mutant lines displaying accelerated or delayed timing of senescence relative to wild type were discovered. The underlying mutations in three of these were identified using High Resolution Melting analysis to map to a chromosomal arm followed by a whole-genome sequencing-based mapping method, termed 'Needle in the K-Stack', to identify the causal lesions. All three mutations were single base pair changes and occurred in the same gene, NON-YELLOW COLORING1 (NYC1), a chlorophyll b reductase of the short-chain dehydrogenase/reductase (SDR) superfamily. This was consistent with the mutants preferentially retaining chlorophyll b, although substantial amounts of chlorophyll b were still lost. The single base pair mutations disrupted NYC1 function by three distinct mechanisms, one by producing a termination codon, the second by interfering with correct intron splicing and the third by replacing a highly conserved proline with a non-equivalent serine residue. This non-synonymous amino acid change, which occurred in the NADPH binding domain of NYC1, is the first example of such a mutation in an SDR protein inhibiting a physiological response in plants. PMID:26261268

  18. MTHFR C677T polymorphism and anatomopathological characteristics with prognostic significance in sporadic colorectal cancer.

    PubMed

    Delgado-Plasencia, Luciano; Álvarez-Argüelles, Hugo; Salido-Ruiz, Eduardo; Castro-Peraza, M Elisa; Bravo-Gutiérrez, Alberto; Fernández-Peralta, Antonia; González-Aguilera, Juan; Alarcó-Hernández, Antonio; Medina-Arana, Vicente

    2015-12-01

    Methylenetetrahydrofolate reductase (MTHFR) plays a key role in folate metabolism, and folate is implicated in carcinogenesis due to its role in DNA methylation, repair and synthesis. The MTHFR C677T polymorphism is associated with decreased risk of CRC and increased sensitivity to 5-FU treatment. The present study addressed the relationship between this polymorphism and histopathological and immunohistochemical characteristics of prognostic significance in 50 patients from the Canary Islands. No differences were found between the MTHFR C677T genotypes with respect to tumor budding, tumor necrosis, desmoplastic fibrosis and tumoral eosinophilia. No significant differences were found in Ki-67, bcl-2 (cytoplasmic and nuclear), CD31, CD3+ T lymphocytes (both stromal and intraepithelial) and peritumoral CD20+ B lymphocytes. In carriers of the MTHFR CC variant, tumor margins were infiltrative more frequently (68.7%) than in CT+TT carriers (33.3%, p=0.03). In addition, wild-type CC genotype showed stromal CD20+ B lymphocytes (68.8%) more often than CT+TT carriers (33.3%, p=0.03). Both parameters indicate a better tumor prognosis when the MTHFR 677T variant is present. PMID:26564107

  19. Variants in MTHFR gene and neural tube defects susceptibility in China.

    PubMed

    Wang, Yongxin; Liu, Yuan; Ji, Wenyu; Qin, Hu; Wu, Hao; Xu, Danshu; Turtuohut, Tukebai; Wang, Zengliang

    2015-08-01

    Neural tube defect (NTD) is a severe congenital birth abnormalities involving incomplete neural tube closure. 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene plays key role in folate cycle and methylation cycle, which could affect the DNA synthesis, repair and methylation. In this study, we aim to investigate the correlation between MTHFR polymorphisms and NTD-affected pregnancy. There were 444 participants involved in our study. Tag-SNPs were identified in HapMap Databases. Blood samples were collected from all subjects to further extract the genomic DNAs by TaqMan Blood DNA kits. We also carried out a meta-analysis based on previous published studies to further examine the association between MTHFR polymorphisms and NTD. In case-control study analysis, two SNPs were identified to be associated with NTD risk. The 677 C > T genetic variant was correlated with increased risk of NTD-affected pregnancy. However, the 1298 A > C polymorphism was shown to lower the risk of NTD-affected pregnancy. The protective role of 1298 A > C polymorphisms was further supported by the result of meta-analysis. Our study revealed that the SNPs of 677C > T and 1298A > C in MTHFR were associated with NTD-affected pregnancy, in which 677C > T was a risk factor and in contrast 1298A > C was protective factor against NTD. Our results of meta-analysis also revealed the 1298A > C MTHFR polymorphism play protective role in NTD. PMID:25855017

  20. Association of Polymorphisms in BDNF, MTHFR, and Genes Involved in the Dopaminergic Pathway with Memory in a Healthy Chinese Population

    ERIC Educational Resources Information Center

    Yeh, Ting-Kuang; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Pei-Jung; Wu, Chung-Hsin; Lee, Po-Lei; Chang, Chun-Yen

    2012-01-01

    The contribution of genetic factors to the memory is widely acknowledged. Research suggests that these factors include genes involved in the dopaminergic pathway, as well as the genes for brain-derived neurotrophic factor (BDNF) and methylenetetrahydrofolate reductase (MTHFR). The activity of the products of these genes is affected by single…

  1. Prevalence of MTHFR C677T Polymorphism in North Indian Mothers Having Babies with Trisomy 21 Down Syndrome

    ERIC Educational Resources Information Center

    Kohli, Utkarsh; Arora, Sadhna; Kabra, Madhulika; Ramakrishnan, Lakshmy; Gulati, Sheffali; Pandey, Ravindra

    2008-01-01

    Recent studies have evaluated possible links between polymorphisms in maternal folate metabolism genes and Down syndrome. Some of these studies show a significantly increased prevalence of the C677T polymorphism of the 5,10-methylene tetrahydrofolate reductase (NADPH) gene (MTHFR) among mothers who have had babies with Down syndrome. This study…

  2. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    PubMed Central

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/? mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/? mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/? livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/? mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot accommodate the lipid disturbances and altered membrane integrity arising from changes in phospholipid/lipid metabolism. These preliminary findings may have clinical implications for individuals consuming high-dose folic acid supplements, particularly those who are MTHFR deficient. PMID:25733650

  3. MTHFR genetic polymorphism increases the risk of preterm delivery

    PubMed Central

    Nan, Yanrong; Li, Hongmei

    2015-01-01

    Aims: This study aimed to investigate the association between the methylene tetrahydrofolate reductase (MTHFR) gene C677T and A1298C polymorphisms and premature delivery susceptibility. Methods: With matched age and gender, 108 premature delivery pregnant women as cases and 108 healthy pregnant women as controls were recruited in this case-control study. The cases and controls had same gestational weeks. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was adopted to analyze C677T and A1298C polymorphisms of the participants. Linkage disequilibrium (LD) and haplotype analysis were conducted by Haploview software. The differences for frequencies of gene type, allele and haplotypes in cases and controls were tested by chi-square test. The relevant risk of premature delivery was represented by odds ratios (ORs) with 95% confidence intervals (95% CIs). Results: TT gene type frequency of C677T polymorphsim was higher in cases than the controls (P=0.004, OR=3.077, 95% CI=1.469-6.447), so was allele T (P=0.002, OR=1.853, 95% CI=1.265-2.716). Whereas, CC gene type of A1298C polymorphism had a lower distribution in cases than the controls (P=0.008, OR=0.095, 95% CI=0.012-0.775), so was allele C (P=0.047, OR=0.610, 95% CI=0.384-0.970). Haplotype analysis and linkage disequilibrium test conducted on the alleles of two polymorphisms in MTHFR gene, we discovered that haplotype T-A had a higher distribution in cases, which indicated that susceptible haplotype T-A was the candidate factor for premature delivery. Conclusions: Gene type TT of MTHFR C677T polymorphism might make premature delivery risk rise while gene type CC of A1298C polymorphism might have protective influence on premature delivery. PMID:26261642

  4. Epistasis effects of COMT and MTHFR on inter-individual differences in mental health: under the inverted U-shaped prefrontal dopamine model.

    PubMed

    Htun, Nay Chi; Miyaki, Koichi; Zhao, Chenxi; Muramatsu, Masaaki; Sato, Noriko

    2014-09-01

    Higher cognitive performance, maintenance of mental health and psychological well-being require adequate prefrontal cortex (PFC) function. "Inverted U-shaped" dopamine model indicates optimal PFC dopamine level is important to attain its function while high or low levels have adverse effects. Catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) may be involved in this complex non-linear PFC dopamine regulation. We addressed whether genetic variation reflecting COMT and MTHFR activities can explain the inter-individual mental health differences in healthy Japanese men (n=188). The mental health was measured by Mental Health Inventory (MHI)-5 score. The rs4633-rs4818-rs4680 haplotypes were used to represent the multilevel COMT activities, while for MTHFR, the functional single polymorphism, rs1801133 (C677T), was used. We examined the effectiveness of haplotype-based association analysis of COMT on mental health together with studying its interaction with MTHFR-C677T. As a result, the relation between activity-ranked COMT genotype and MHI-5 score showed a tendency to fit into an "inverted U-shaped" quadratic curve (P=0.054). This curvilinear correlation was significant in the subjects with MTHFR-CC (P<0.001), but not with MTHFR T-allele carriers (P=0.793). Our pilot study implies a potential influence of COMT and MTHFR genotypic combination on normal variation of mental health. PMID:25124664

  5. The Association of the MTHFR c.1625A>C Genetic Variant with the Risk of Congenital Heart Diseases in the Chinese

    PubMed Central

    Wang, Yuting; Sun, Lei; Du, Weina; Song, Shuang; Wang, Shuo; Jiang, Weiju; Huang, Tianchu

    2015-01-01

    The purpose of this study is to investigate the association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms with the risk of congenital heart diseases (CHD). The genotypes of the MTHFR genetic variant were determined by the polymerase chain reaction–restriction fragment length polymorphism and DNA sequencing methods. Our data suggested that the allelic and genotypic frequencies of CHD patients were significantly different from non-CHD controls. The MTHFR c.1625A>C genetic variant was significantly associated with the increased risk of CHD (CC vs. AA: odds ratio [OR]=2.29, 95% confidence interval [CI] 1.15–4.53, p=0.016; C vs. A: OR=1.47, 95% CI 1.11–1.96, p=0.008). Results from this study indicate that the MTHFR c.1625A>C genetic variant influences the risk of CHD in the studied population. PMID:25494855

  6. Association of RFC1 A80G and MTHFR C677T polymorphisms with Alzheimer's disease.

    PubMed

    Bi, Xiu-Hua; Zhao, Hua-Lu; Zhang, Zhen-Xin; Zhang, Jun-Wu

    2009-10-01

    We examined polymorphisms in reduced folate carrier gene (RFC1) and methylenetetrahydrofolate reductase gene (MTHFR) for association with sporadic AD (SAD) in Chinese population. Significant associations of RFC1 A80G G allele and GG genotype with SAD (p=0.008, OR=1.312, 95%CI=1.072-1.605, and p=0.042, OR=1.383, 95%CI=1.012-1.890) were found. Further stratification of total samples by APOE epsilon4 carrier status, age/age at onset and gender revealed that RFC1 A80G G allele was an APOE epsilon4-independent risk factor for late-onset AD, and it might increase the risk of AD in females. No significant associations of MTHFR C677T allele and genotype with AD were observed in total samples, but significant associations of T allele and TT genotype with AD (p=0.031, OR=1.586, 95%CI=1.042-2.414, and p=0.028, OR=2.250, 95%CI=1.074-4.712) were identified in APOE epsilon4 carrier subgroup, suggesting that MTHFR 677 T allele and APOE epsilon4 allele may synergistically act to increase AD risk. No significant effect of RFC1 G80A and MTHFR C677T polymorphisms on plasma folate and homocysteine levels was detected. PMID:18258338

  7. Pneumocystis jirovecii infection and the associated dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) mutations in HIV-positive individuals from Pune, India.

    PubMed

    Mane, Arati; Gujar, Pankaj; Chandra, Jipsi; Lokhande, Rahul; Dhamgaye, Tilak; Ghorpade, Shivhari; Risbud, Arun

    2015-02-01

    The present study was undertaken to detect Pneumocystis jirovecii infection among HIV-positive patients presenting with symptoms of lower respiratory tract infection and analyze the associated dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) mutations. P. jirovecii infection was detected in 12.6% cases. We did not find DHPS gene mutations at the commonest positions of codon 55 and 57; however, mutation at codon 171 was detected in two cases. No mutations in DHFR gene were detected. The results indicate low prevalence of DHPS and DHFR mutations in Indian P. jirovecii isolates, suggesting that the selective pressure of sulfa drugs on the local strains has probably not reached the levels found in developed nations. PMID:25266324

  8. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. We screened 224 subjects (52% female, mean age 39 +/- 11 years) with SCID-diagnosed major...

  9. Meta-analysis of associations between MTHFR and GST polymorphisms and susceptibility to multiple sclerosis.

    PubMed

    Lee, Young Ho; Seo, Young Ho; Kim, Jae-Hoon; Choi, Sung Jae; Ji, Jong Dae; Song, Gwan Gyu

    2015-11-01

    We examined whether methylenetetrahydrofolate reductase (MTHFR) and glutathione S-transferase (GST) polymorphisms are associated with susceptibility to multiple sclerosis (MS). We performed a meta-analysis on the association between MS and the following genotypes: MTHFR C677T, A1298C, and GSTP1 A313G polymorphisms, and GSTM1 and GSTT1 null alleles. Fifteen comparisons involving 2,486 patients and 2,861 controls were considered. Meta-analysis of all study subjects considered together showed no association between MS and the MTHFR 677 T allele (OR = 1.014, 95 % CI 0.803-1.280, p = 0.909). Stratification by ethnicity showed no similar association in Caucasian and Arab populations. Likewise, no link was found between MS and the MTHFR 1298 C allele in the total data (OR = 2.477, 95 % CI 0.507-12.10, p = 0.263), nor when it was stratified by ethnicity. No association with MS was observed in relation to the GSTM1 null genotype in Caucasian populations (OR = 1.229, 95 % CI 0.693-2.181, p = 0.481), nor with the GSTP1 A313G polymorphism (OR for G allele = 1.133, 95 % CI 0.903-1.421, p = 0.281). However, there was an association between MS and the GSTT1 null genotype in data obtained from Caucasian populations (OR = 1.945, 95 % CI 1.452-2.605, p = 8.6 × 10(-7)). GSTT1 null genotype is associated with MS in Caucasian populations; however, no association was found between MS and polymorphisms of MTHFR, GSTM1, and GSTP1. PMID:26150166

  10. Targeted Mutations of Bacillus anthracis Dihydrofolate Reductase Condense Complex Structure-Activity Relationships

    SciTech Connect

    J Beierlein; N Karri; A Anderson

    2011-12-31

    Several antifolates, including trimethoprim (TMP) and a series of propargyl-linked analogues, bind dihydrofolate reductase from Bacillus anthracis (BaDHFR) with lower affinity than is typical in other bacterial species. To guide lead optimization for BaDHFR, we explored a new approach to determine structure-activity relationships whereby the enzyme is altered and the analogues remain constant, essentially reversing the standard experimental design. Active site mutants of the enzyme, Ba(F96I)DHFR and Ba(Y102F)DHFR, were created and evaluated with enzyme inhibition assays and crystal structures. The affinities of the antifolates increase up to 60-fold with the Y102F mutant, suggesting that interactions with Tyr 102 are critical for affinity. Crystal structures of the enzymes bound to TMP and propargyl-linked inhibitors reveal the basis of TMP resistance and illuminate the influence of Tyr 102 on the lipophilic linker between the pyrimidine and aryl rings. Two new inhibitors test and validate these conclusions and show the value of the technique for providing new directions during lead optimization.

  11. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

    PubMed

    Weyda, István; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2014-04-01

    Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol. PMID:24570325

  12. Screening of polymorphisms for MTHFR and DHFR genes in spina bifida children and their mothers

    NASA Astrophysics Data System (ADS)

    Husna, M. Z.; Endom, I.; Ibrahim, S.; Selvi, N. Amaramalar; Fakhrurazi, H.; Htwe, R. Ohnmar; Kanehaswari, Y.; Halim, A. R. Abdul; Wong, S. W.; Subashini, K.; Syahira, O. Nur; Aishah, S.

    2013-11-01

    Mechanism underlying the beneficial effect of folic acid supplementation in reducing the risk of neural tube defect is still not well understood. Current evidences show the involvement of folic acid metabolic gene's polymorphism as contributing factors that regulate this pathway. Therefore, the objective of this research was to determine the presence of C677T polymorphism for methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR-19 bp deletion) genes between mother-children pairs of case and control. With the approval of UKMMC ethic committee, genomic DNA was extracted from one hundred and forty consented bloods. Polymerase chain reaction (PCR), PCR-RFLP (Restriction Fragment Length Polymorphism) and sequencing were employed to verify each nucleotide change. Our result shows that mutant MTHFR and DHFR alleles are present in all Malaysian sub-ethnic groups, case and control. Even though mutant MTHFR are found to be slightly higher in the case groups, 75% of the affected child is a non carrier for this allele and 62.5% of the mothers with an affected child are genotypically normal. For DHFR, almost all (87.5-100%) investigated samples are a carrier or having a double DHFR deletion be it a case or control pairs. However, strong maternal inheritance shown by the deleted allele might be due to a cascade effect of lacks of folate consumption or maternal uniparental disomy. In conclusion, the use of MTHFR and DHFR as markers in determining the risk of having spina bifida baby is uninformative and plays a small indirect role as the genetic causes of spina bifida. Therefore, spina bifida remains etiologically unknown polygenic and quantitative developmental trait whereby the searches for positive genetic marker need to be continued.

  13. Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination

    PubMed Central

    Nakayama, Tojo; Al-Maawali, Almundher; El-Quessny, Malak; Rajab, Anna; Khalil, Samir; Stoler, Joan M.; Tan, Wen-Hann; Nasir, Ramzi; Schmitz-Abe, Klaus; Hill, R. Sean; Partlow, Jennifer N.; Al-Saffar, Muna; Servattalab, Sarah; LaCoursiere, Christopher M.; Tambunan, Dimira E.; Coulter, Michael E.; Elhosary, Princess C.; Gorski, Grzegorz; Barkovich, A. James; Markianos, Kyriacos; Poduri, Annapurna; Mochida, Ganeshwaran H.

    2015-01-01

    Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2’s isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development. PMID:25865492

  14. Mutations in PYCR2, Encoding Pyrroline-5-Carboxylate Reductase 2, Cause Microcephaly and Hypomyelination.

    PubMed

    Nakayama, Tojo; Al-Maawali, Almundher; El-Quessny, Malak; Rajab, Anna; Khalil, Samir; Stoler, Joan M; Tan, Wen-Hann; Nasir, Ramzi; Schmitz-Abe, Klaus; Hill, R Sean; Partlow, Jennifer N; Al-Saffar, Muna; Servattalab, Sarah; LaCoursiere, Christopher M; Tambunan, Dimira E; Coulter, Michael E; Elhosary, Princess C; Gorski, Grzegorz; Barkovich, A James; Markianos, Kyriacos; Poduri, Annapurna; Mochida, Ganeshwaran H

    2015-05-01

    Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development. PMID:25865492

  15. Status of vitamin B-12 and B-6 but not of folate, homocysteine and the methylenetetrahydrofolate reductase C677T polymorphism are associated with impaired cognition and depression in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene differs in frequency in different ethnic groups which have differing prevalence of age-related cognitive impairments. We used a battery of neuropsychological tests to examine association of the MTHFR C677T polymorphism w...

  16. MTHFR 677C>T Polymorphism Increases the Male Infertility Risk: A Meta-Analysis Involving 26 Studies

    PubMed Central

    Gong, Mancheng; Dong, Wenjing; He, Tingyu; Shi, Zhirong; Huang, Guiying; Ren, Rui; Huang, Sichong; Qiu, Shaopeng; Yuan, Runqiang

    2015-01-01

    Background and Objectives Methylenetetrahydrofolate reductase (MTHFR) polymorphism may be a risk factor for male infertility. However, the epidemiologic studies showed inconsistent results regarding MTHFR polymorphism and the risk of male infertility. Therefore, we performed a meta-analysis of published case-control studies to re-examine the controversy. Methods Electronic searches of PubMed, EMBASE, Google Scholar and China National Knowledge Infrastructure (CNKI) were conducted to select eligible literatures for this meta-analysis (updated to June 19, 2014). According to our inclusion criteria and the Newcastle-Ottawa Scale (NOS), only high quality studies that observed the association between MTHFR polymorphism and male infertility risk were included. Crude odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of association between the MTHFR polymorphism and male infertility risk. Results Twenty-six studies involving 5,575 cases and 5,447 controls were recruited. Overall, MTHFR 677C>T polymorphism showed significant associations with male infertility risk in both fixed effects (CT+TT vs. CC: OR = 1.34, 95% CI: 1.23–1.46) and random effects models (CT+TT vs. CC: OR = 1.39, 95% CI: 1.19–1.62). Further, when stratified by ethnicity, sperm concentration and control sources, the similar results were observed in Asians, Caucasians, Azoo or OAT subgroup and both in population-based and hospital-based controls. Nevertheless, no significant association was only observed in oligo subgroup. Conclusions Our results indicated that the MTHFR polymorphism is associated with an increased risk of male infertility. Further well-designed analytical studies are necessary to confirm our conclusions and evaluate gene-environment interactions with male infertility risk. PMID:25793386

  17. Significance of the use of the ViennaLab “Cardiovascular Disease panel” (CVD) Assay as a reflex test for the “Factor V/II/MTHFR Assay”?

    PubMed Central

    Hoteit, Rouba; Abbas, Fatmeh; Antar, Ahmad; Abdel Khalek, Rabab; Shammaa, Dina; Mahfouz, Rami

    2013-01-01

    Introduction Trends toward identifying risk factors of thrombotic complications had become essential as an attempt to prevent and decrease the incidence of the complications. Thrombosis has been associated with predisposing factors like mutations in FV, PTH, MTHFR and other genes. Aim Evaluate whether the CVD StripAssay has an added value in the screening for more thrombophilia risk factors, which may predispose for the development of cardiovascular diseases and other thrombotic clinical conditions. Methods We compared the results for 94 patients who were previously tested for Factor V, Factor II and MTHFR gene mutations using the ViennaLab FV-PTH-MTHFR StripAssay, and for whom additional testing for the Cardiovascular Disease panel (CVD StripAssay, ViennaLab) was requested. Results Using the CVD StripAssay, 66% of patients who had no mutations when tested using the FV-PTH-MTHFR StripAssay or carried a mutation for MTHFR, were found to have additional genes' SNPs or mutations that are highly associated with a risk of thrombosis as per the available international literature. Conclusion This observation is of extreme importance in clinical practice for the introduction of the extended CVD panel into routine molecular diagnostic test menus and highlights the importance of genetic analysis of the implicated genes in the management of patients with a thrombotic episode presentation. PMID:25606377

  18. Associations of Polymorphisms in MTHFR Gene with the Risk of Age-Related Cataract in Chinese Han Population: A Genotype-Phenotype Analysis

    PubMed Central

    Wei, Li; Han, Ya-di; Cui, Ning-hua; Huang, Zhu-liang; Li, Zu-hua; Zheng, Fang; Yan, Ming

    2015-01-01

    Homocysteine (Hcy) is a potential risk factor for age-related cataract (ARC). Methylenetetrahydrofolate reductase (MTHFR) is the key enzyme for Hcy metabolism, and variants of MTHFR may affect MTHFR enzyme activity. This study mainly evaluated the associations between variants in MTHFR gene, plasma MTHFR enzyme activity, total Hcy (tHcy) levels and ARC risk in Chinese population. Four single nucleotide polymorphisms (SNPs) in MTHFR gene were genotyped using the high-resolution melting (HRM) method in 502 ARC patients (mean age, 70.2 [SD, 9.0], 46.0% male) and 890 healthy controls (mean age, 67.1 [SD, 11.1], 47.6% male). The plasma MTHFR activity, folic acid (FA), vitamins B12 and B6 levels were detected by enzyme-linked immunosorbent assays (ELISA). The plasma tHcy levels were measured by an automated enzymatic assay. After the Bonferroni correction, the minor allele T of SNP rs1801133 showed a significant association with an increased risk of overall ARC (OR = 1.26, P = 0.003). Consistent association was also found between SNP rs1801133 and cortical ARC risk (OR = 1.44, P = 0.003). Haplotype analyses revealed an adverse effect of the haplotype "C-A-T-C" (alleles in order of SNPs rs3737967, rs1801131, rs1801133 and rs9651118) on ARC risk (OR = 1.55, P = 0.003). Moreover, in a joint analysis of SNPs rs9651118 and rs1801133, subjects with two unfavorable genotypes had a 1.76-fold increased risk of ARC compared with the reference group, and a statistically significant dose-response trend (Ptrend = 0.001) was also observed. Further, in healthy controls and patients with cortical ARC, the allele T of SNP rs1801133 and the increasing number of unfavorable genotypes were significantly correlated with decreased MTHFR activity as well as increased tHcy levels. However, there was no significant association between FA, vitamins B12, B6 levels and MTHFR variants. Our data indicated that variants in MTHFR gene might individually and jointly influence susceptibility to ARC by affecting MTHFR enzyme activity and tHcy levels. PMID:26689687

  19. A nonsense mutation in S-antigen (p.Glu306*) causes Oguchi disease

    PubMed Central

    Waheed, Nadia K.; Qavi, Ahmed H.; Malik, Sarah N.; Maria, Maleeha; Riaz, Moeen; Cremers, Frans P. M.; Azam, Maleeha

    2012-01-01

    Purpose Genetic studies were performed to identify the causative mutation in a 15-year-old girl diagnosed with congenital stationary night blindness (CSNB) presenting Mizuo-Nakamura phenomenon, a typical Oguchi disease symptom. The patient also had dural sinus thrombosis (DST), thrombocytopenia, and systemic lupus erythematosus (SLE). Methods Mutation analysis was done by sequencing two candidate genes, S-antigen (SAG; arrestin 1), associated with Oguchi type 1, and rhodopsin kinase (GRK1), associated with Oguchi type 2. In addition, the C677T variation in the methylenetetrahydrofolate reductase (MTHFR) gene was also screened in the family, to determine its probable association with hyperhomocysteinemia in the patient. Results Sequencing of the SAG and GRK1 resulted in identifying a novel homozygous nonsense mutation (c.916G>T; p.Glu306*) in SAG, which in unaffected siblings either was present in a heterozygous state or absent. The C677T heterozygous allele in the MTHFR gene was found to be associated with hyperhomocysteinemia in the patient and other family members. Conclusions This is the first report of Oguchi type 1 in a Pakistani patient due to a nonsense mutation (c.916G>T; p.Glu306*) in SAG. The neurologic and hematological abnormalities likely are not associated with the SAG variant. PMID:22665972

  20. Analysis of MTHFR and MTRR Gene Polymorphisms in Iranian Ventricular Septal Defect Subjects

    PubMed Central

    Pishva, Seyyed Reza; Vasudevan, Ramachandran; Etemad, Ali; Heidari, Farzad; Komara, Makanko; Ismail, Patimah; Othman, Fauziah; Karimi, Abdollah; Sabri, Mohammad Reza

    2013-01-01

    Ventricular septal defect (VSD) is one of the most common types of congenital heart defects (CHD). There are vivid multifactorial causes for VSD in which both genetic and environmental risk factors are consequential in the development of CHD. Methionine synthase reductase (MTRR) and methylenetetrahydrofolate reductase (MTHFR) are two of the key regulatory enzymes involved in the metabolic pathway of homocysteine. Genes involved in homocysteine/folate metabolism may play an important role in CHDs. In this study; we determined the association of A66G and C524T polymorphisms of the MTRR gene and C677T polymorphism of the MTHFR gene in Iranian VSD subjects. A total of 123 children with VSDs and 125 healthy children were included in this study. Genomic DNA was extracted from the buccal cells of all the subjects. The restriction fragment length polymorphism polymerase chain reaction (PCR-RFLP) method was carried out to amplify the A66G and C524T polymorphism of MTRR and C677T polymorphism of MTHFR genes digested with Hinf1, Xho1 and Nde1 enzymes, respectively. The genotype frequencies of CC, CT and TT of MTRR gene among the studied cases were 43.1%, 40.7% and 16.3%, respectively, compared to 52.8%, 43.2% and 4.0%, respectively among the controls. For the MTRR A66G gene polymorphism, the genotypes frequencies of AA, AG and GG among the cases were 33.3%, 43.9% and 22.8%, respectively, while the frequencies were 49.6%, 42.4% and 8.0%, respectively, among control subjects. The frequencies for CC and CT genotypes of the MTHFR gene were 51.2% and 48.8%, respectively, in VSD patients compared to 56.8% and 43.2% respectively, in control subjects. Apart from MTHFR C677T polymorphism, significant differences were noticed (p < 0.05) in C524T and A66G polymorphisms of the MTRR gene between cases and control subjects. PMID:23358257

  1. MTHFR deficiency or reduced intake of folate or choline in pregnant mice results in impaired short-term memory and increased apoptosis in the hippocampus of wild-type offspring.

    PubMed

    Jadavji, N M; Deng, L; Malysheva, O; Caudill, M A; Rozen, R

    2015-08-01

    Genetic or nutritional disturbances in one-carbon metabolism, with associated hyperhomocysteinemia, can result in complex disorders including pregnancy complications and neuropsychiatric diseases. In earlier work, we showed that mice with a complete deficiency of methylenetetrahydrofolate reductase (MTHFR), a critical enzyme in folate and homocysteine metabolism, had cognitive impairment with disturbances in choline metabolism. Maternal demands for folate and choline are increased during pregnancy and deficiencies of these nutrients result in several negative outcomes including increased resorption and delayed development. The goal of this study was to investigate the behavioral and neurobiological impact of a maternal genetic deficiency in MTHFR or maternal nutritional deficiency of folate or choline during pregnancy on 3-week-old Mthfr(+/+) offspring. Mthfr(+/+) and Mthfr(+/-) females were placed on control diets (CD); and Mthfr(+/+) females were placed on folate-deficient diets (FD) or choline-deficient diets (ChDD) throughout pregnancy and lactation until their offspring were 3weeks of age. Short-term memory was assessed in offspring, and hippocampal tissue was evaluated for morphological changes, apoptosis, proliferation and choline metabolism. Maternal MTHFR deficiency resulted in short-term memory impairment in offspring. These dams had elevated levels of plasma homocysteine when compared with wild-type dams. There were no differences in plasma homocysteine in offspring. Increased apoptosis and proliferation was observed in the hippocampus of offspring from Mthfr(+/-) mothers. In the maternal FD and ChDD study, offspring also showed short-term memory impairment with increased apoptosis in the hippocampus; increased neurogenesis was observed in ChDD offspring. Choline acetyltransferase protein was increased in the offspring hippocampus of both dietary groups and betaine was decreased in the hippocampus of FD offspring. Our results reveal short-term memory deficits in the offspring of dams with MTHFR deficiency or dietary deficiencies of critical methyl donors. We suggest that deficiencies in maternal one-carbon metabolism during pregnancy can contribute to hippocampal dysfunction in offspring through apoptosis or altered choline metabolism. PMID:25956258

  2. Association of Tagging SNPs in the MTHFR Gene with Risk of Type 2 Diabetes Mellitus and Serum Homocysteine Levels in a Chinese Population

    PubMed Central

    Wang, Han; Wan, Bin

    2014-01-01

    Diabetes is a global public health crisis, and the prevalence is increasing rapidly. Folate supplementation is proved to be effective in reducing the risk of diabetes or improving its symptoms. Methylenetetrahydrofolate reductase is an important enzyme involved in folate metabolism. The aim of this study is to examine whether polymorphisms in the MTHFR gene are associated with risk of type 2 diabetes mellitus (T2DM) and fasting total serum homocysteine (tHcy) levels. We genotyped nine tagging SNPs in the MTHFR gene in a case-control study, including 595 T2DM cases and 681 healthy controls in China. We found that C allele of rs9651118 had significant decreased risk of T2DM (adjusted odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.55–0.87, P = 0.002) compared with T allele. Haplotype analysis also showed that MTHFR CTCCGA haplotype (rs12121543-rs13306553-rs9651118-rs1801133-rs2274976-rs1801131) had significant reduced risk of T2DM (adjusted OR = 0.71, 95% CI: 0.58–0.87, P = 0.001) compared with CTTTGA haplotype. Besides, the MTHFR rs1801133 was significantly associated with serum levels of tHcy in healthy controls (P = 0.0002). These associations were still significant after Bonferroni corrections (P < 0.0056). These findings suggest that variants in the MTHFR gene may influence the risk of T2DM and tHcy levels. PMID:25165408

  3. Association study of methylenetetrahydrofolate reductase C677T mutation with cerebral venous thrombosis in an Iranian population.

    PubMed

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad S

    2015-12-01

    There are limited data on the role of methylenetetrahydrofolate reductase C677T polymorphism and hyperhomocysteinemia as risk factors for cerebral venous thrombosis in Iranian population. We examined a possible association between fasting plasma homocysteine levels, methylenetetrahydrofolate reductase C677T polymorphism, and cerebral venous thrombosis in 50 patients with a diagnosis of cerebral venous thrombosis (20-63 years old) and 75 healthy controls (18-65 years old). Genotyping of the methylenetetrahydrofolate reductase C677T gene polymorphism was performed by PCR-restriction fragment length polymorphism analysis, and homocysteine levels were measured by enzyme immunoassay. Fasting plasma homocysteine levels were significantly higher in cerebral venous thrombosis patients than in controls (P?=?0.015). Moreover, plasma homocysteine levels were significantly higher in methylenetetrahydrofolate reductase 677TT genotype compared to 677CT and 677CC genotypes in both cerebral venous thrombosis patients (P?=?0.01) and controls (P?=?0.03). Neither 677CT heterozygote genotype [odds ratio (OR) 1.35, 95% confidence interval (CI) 0.64-2.84, P?=?0.556] nor 677TT homozygote genotype (OR 1.73, 95% CI 0.32-9.21, P?=?0.833) was significantly associated with cerebral venous thrombosis. Additionally, no significant differences in the frequency of 677T allele between cerebral venous thrombosis patients and controls were identified (OR 1.31, 95% CI 0.69-2.50, P?=?0.512). In conclusion, our study demonstrated that elevated plasma homocysteine levels are significant risk factors for cerebral venous thrombosis. Also, methylenetetrahydrofolate reductase 677TT genotype is not linked with cerebral venous thrombosis, but is a determinant of elevated plasma homocysteine levels. PMID:26083986

  4. MTHFR C677T polymorphism is associated with hyperlipidemia in women with polycystic ovary syndrome

    PubMed Central

    Jain, Madhu; Pandey, Priyanka; Tiwary, Narendra K; Jain, Shuchi

    2012-01-01

    CONTEXT: Women with polycystic ovary syndrome (PCOS) are prone for coronary artery disease (CAD), and hyperhomocysteinemia is an independent risk factor for CAD. MTHFR deficiency is the most common cause of hyperhomocysteinemia, thereby provoking a possible association between PCOS and MTHFR C677T polymorphism. AIMS: The aim of this study was to investigate an association of MTHFR C677T polymorphism with PCOS. SETTINGS AND DESIGN: 92 women with PCOS (Rotterdam criteria) and 95 age-matched controls were compared with respect to MTHFR C677T polymorphism. The 2 genotypes (CC and CT) obtained were compared with clinical and laboratory parameters in women with PCOS. MATERIALS AND METHODS: In a case-control study, clinical, biochemical, hormonal and genetic analysis (PCR-RFLP of peripheral leucocytes) was carried out on all women with PCOS as well as controls. STATISTICAL ANALYSIS: Student “t” test for quantitative and Chi-square test for nominal variables was used. For estimation of risk, odds ratio and 95% confidence interval were calculated. RESULTS: The odds ratio of bearing a heterozygous genotype (CT) was 1.32 in women with PCOS as compared to controls (P = 0.48). No homozygous mutation (TT) was found in the study population. Serum cholesterol was more in heterozygous (CT) genotype (215.48 ± 25.56 mg/dl) as compared to normal (CC) genotype (203.29 ± 16.35 mg/dl) in women with PCOS (P = 0.01). Similarly, serum triglyceride was more in heterozygous (CT) genotype (95.86 ± 37.34 mg/dl) as compared to normal (CC) genotype (82.36 ± 20.88 mg/dl) in women with PCOS (P = 0.04). CONCLUSIONS: Although not statistically significant, there is a slightly higher prevalence of heterozygous (CT) genotype in women with PCOS. MTHFR C677T polymorphism when present may confer an increased susceptibility to develop hyperlipidemia in women with PCOS. More prospective studies are needed to confirm whether this hyperlipidemia due to MTHFR C677T polymorphism clinically manifests into CAD in long term in women with PCOS. PMID:22870016

  5. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    SciTech Connect

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-12-15

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 muM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 muM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (>= 5 muM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  6. Glutamatergic synapse protein composition of wild-type mice is sensitive to in utero MTHFR genotype and the timing of neonatal vigabatrin exposure.

    PubMed

    Zuckerman, Chava; Blumkin, Elinor; Melamed, Osnat; Golan, Hava M

    2015-10-01

    The enzyme methylenetetrahydrofolate-reductase (MTHFR) is part of the homocysteine and folate metabolic pathways. In utero, Mthfr-deficient environment has been reported as a risk factor for neurodevelopmental disorders such as autism and neural tube defects. Neonatal disruption of the GABAergic system is also associated with behavioral outcomes. The interaction between Mthfr deficiency and neonatal exposure to the GABA-potentiating drug vigabatrin (GVG) in mice alters anxiety, memory, and social behavior in a gender-dependent manner. In addition, a gender-dependent enhancement of proteins implicated in excitatory synapse plasticity in the cerebral cortex was shown. Here we show that in utero MTHFR deficiency is sufficient to alter the levels of glutamate receptor subunits GluR1, GluR2, and NR2B in the cerebral cortex and hippocampus of adult offspring with a WT genotype. In addition, FMRP1, CAMKII ? and ?, and NLG1 levels in WT offspring were vulnerable to the in utero genotype. These effects depend on brain region and the cellular compartment tested. The effect of in utero MTHFR deficiency varies with the age of neonatal GVG exposure to modify GluR1, NR2A, reelin, CAMKII ?, and NLG1 levels. These changes in molecular composition of the glutamatergic synapse were associated with increased anxiety-like behavior. Complex, multifactorial disorders of the nervous system show significant association with several genetic and environmental factors. Our data exemplify the contribution of an in utero MTHFR-deficient environment and early exposure to an antiepileptic drug to the basal composition of the glutamatergic synapses. The robust effect is expected to alter synapse function and plasticity and the cortico-hippocampal circuitry. PMID:26235956

  7. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation.

    PubMed

    Hung, Chiu-Yueh; Fan, Longjiang; Kittur, Farooqahmed S; Sun, Kehan; Qiu, Jie; Tang, She; Holliday, Bronwyn M; Xiao, Bingguang; Burkey, Kent O; Bush, Lowell P; Conkling, Mark A; Roje, Sanja; Xie, Jiahua

    2013-02-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes the reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine, forming methionine, which is then used for the synthesis of S-adenosyl-methionine, a universal methyl donor for numerous methylation reactions, to produce primary and secondary metabolites. Here, we demonstrate that manipulating tobacco (Nicotiana tabacum) MTHFR gene (NtMTHFR1) expression dramatically alters the alkaloid profile in transgenic tobacco plants by negatively regulating the expression of a secondary metabolic pathway nicotine N-demethylase gene, CYP82E4. Quantitative real-time polymerase chain reaction and alkaloid analyses revealed that reducing NtMTHFR expression by RNA interference dramatically induced CYP82E4 expression, resulting in higher nicotine-to-nornicotine conversion rates. Conversely, overexpressing NtMTHFR1 suppressed CYP82E4 expression, leading to lower nicotine-to-nornicotine conversion rates. However, the reduced expression of NtMTHFR did not affect the methionine and S-adenosyl-methionine levels in the knockdown lines. Our finding reveals a new regulatory role of NtMTHFR1 in nicotine N-demethylation and suggests that the negative regulation of CYP82E4 expression may serve to recruit methyl groups from nicotine into the C1 pool under C1-deficient conditions. PMID:23221678

  8. A novel approach for isolation and mapping of intron mutations in a ribonucleotide reductase encoding gene (nrdB) of bacteriophage T4 using the white halo plaque phenotype.

    PubMed

    Lal, S K; Hall, D H

    1993-10-29

    The nrdB gene of bacteriophage T4 codes for the small subunit of ribonucleotide reductase and contains a 598 base pair self splicing intron which is closely related to other group I introns of T4 and eukaryotes. The screening, isolation and mapping of the nrbB intron mutations was conducted by the strategic usage of the white halo phenotype exhibited by T4 mutants defective in dhydrofolate reductase or thymidylate synthase. We have isolated 159 hydroxylamine-induced nrdB mutants, determined which mutations are in nrdB by marker rescue with clones of the nrdB gene and have mapped these mutations by marker rescue using subclones of the nrdB intron. Thirty out of the 159 nrdB mutations are in or near the intron. These mutations cluster towards the ends, mainly the 3' end. We have performed deletion mapping to further map mutations in the 3' end of the intron. The mutations map in regions of conserved structural elements, thus supporting secondary structure predictions similar to those of the well studied td intron in the T4 gene coding for thymidylate synthase. PMID:8240371

  9. Null mutation of 5?-reductase type I gene alters ethanol consumption patterns in a sex-dependent manner.

    PubMed

    Ford, Matthew M; Nickel, Jeffrey D; Kaufman, Moriah N; Finn, Deborah A

    2015-05-01

    The neuroactive steroid allopregnanolone (ALLO) is a positive modulator of GABAA receptors, and manipulation of neuroactive steroid levels via injection of ALLO or the 5?-reductase inhibitor finasteride alters ethanol self-administration patterns in male, but not female, mice. The Srd5a1 gene encodes the enzyme 5?-reductase-1, which is required for the synthesis of ALLO. The current studies investigated the influence of Srd5a1 deletion on voluntary ethanol consumption in male and female wildtype (WT) and knockout (KO) mice. Under a continuous access condition, 6 and 10 % ethanol intake was significantly greater in KO versus WT females, but significantly lower in KO versus WT males. In 2-h limited access sessions, Srd5a1 deletion retarded acquisition of 10 % ethanol intake in female mice, but facilitated it in males, versus respective WT mice. The present findings demonstrate that the Srd5a1 gene modulates ethanol consumption in a sex-dependent manner that is also contingent upon ethanol access condition and concentration. PMID:25416204

  10. The Association of Methylenetetrahydrofolate Reductase Genotypes with the Risk of Childhood Leukemia in Taiwan

    PubMed Central

    Chang, Wen-Shin; Ji, Hong-Xue; Hsiao, Chieh-Lun; Miao, Chia-En; Hsu, Yuan-Nian; Bau, Da-Tian

    2015-01-01

    Background Acute lymphoblastic leukemia (ALL) is the most prevalent type of pediatric cancer, the causes of which are likely to involve an interaction between genetic and environmental factors. To evaluate the effects of the genotypic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) on childhood ALL risk in Taiwan, two well-known polymorphic genotypes of MTHFR, C677T (rs1801133) and A1298C (rs1801131), were analyzed to examine the extent of their associations with childhood ALL susceptibility and to discuss the MTHFR genotypic contribution to childhood ALL risk among different populations. Methodology/Principal Findings In total, 266 patients with childhood ALL and an equal number of non-cancer controls recruited were genotyped utilizing PCR-RFLP methodology. The MTHFR C677T genotype, but not the A1298C, was differently distributed between childhood ALL and control groups. The CT and TT of MTHFR C677T genotypes were significantly more frequently found in controls than in childhood ALL patients (odds ratios=0.60 and 0.48, 95% confidence intervals=0.42–0.87 and 0.24–0.97, respectively). As for gender, the boys carrying the MTHFR C677T CT or TT genotype conferred a lower odds ratio of 0.51 (95% confidence interval=0.32–0.81, P=0.0113) for childhood ALL. As for age, those equal to or greater than 3.5 years of age at onset of disease carrying the MTHFR C677T CT or TT genotype were of lower risk (odds ratio= 0.43 and 95% confidence interval=0.26–0.71, P=0.0016). Conclusions Our results indicated that the MTHFR C677T T allele was a protective biomarker for childhood ALL in Taiwan, and the association was more significant in male patients and in patients 3.5 years of age or older at onset of disease. PMID:25793509

  11. Identification of three new mutations in the NADH-cytochrome b5 reductase gene responsible for recessive congenital methemoglobinemia type II

    SciTech Connect

    Mota-Vieira, L.; Kaplan, J.C.; Kahn, A.; Leroux, A.

    1994-09-01

    Recessive congenital methemoglobinemia (RCM; McKusick N{degrees}25800) due to NADH-cytochrome b5 reductase (cytb5r) deficiency leads to two different types of diseases: in type I form, cyanosis is the only symptom and the enzyme is only defective in red blood cells; in type II form, cyanosis is associated with severe mental retardation and neurological impairment and the enzyme defect is systemic. We have identified three new molecular defects in two unrelated patients with type II RCM. A homozygous C{r_arrow}T transition in codon 218 (Arg) was detected in the cDNA of one patient, resulting in a premature stop codon (TGA) in exon 8. Restriction enzyme analysis of genomic DNA confirmed the homozygosity of the propositus and heterozygosity for an identical defect in both parents. The second patient was found to be a compound heterozygote, carrying two different mutant alleles in the cyb5r gene. One allele presented a missense mutation (T{r_arrow}C) with substitution of Cys-203 (TGC) by Arg (CGC) in exon 7. The second allele showed a 3 bp deletion of nucleotides 815-817 of the cDNA. The CTG ATG sequence at position 814-819 in exon 9 coding for Leu-271 and Met-272 was replaced by the CTG triplet, with conservation of the Leu-271 and loss of the Met-272. To our knowledge, these are the first examples of a homozygous nonsense mutation and of a compound heterozygous mutation detected in the cytb5r gene. This finding supports the diversity of genetic defects in the cytb5r gene leading to the severe form of the disease.

  12. Significant association between the MTHFR A1298C polymorphism and hepatocellular carcinoma risk: a meta-analysis.

    PubMed

    Chang, W; Meng, Q; Liu, J H; Wu, L X; Chen, Y; Chen, S D

    2015-01-01

    The A1298C polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene has been reported to be associated with hepatocellular carcinoma (HCC), but there are conflicting results from previous studies. The present study aimed to investigate the association between this polymorphism and the risk of HCC using a meta-analysis of the published studies. Published literature from PubMed and Embase databases was systematically searched to identify relevant studies before October 2014. The Begg test was used to measure publication bias. Sensitivity analyses were performed to ensure the authenticity of the outcome. The meta-analysis results showed significant association between the MTHFR A1298C polymorphism and HCC risk (CC vs AA: OR = 0.52, 95%CI = 0.33-0.81; CC vs AC: OR = 0.50, 95%CI = 0.32-0.79; dominant model: OR = 1.94, 95%CI = 1.24-3.02; recessive model: OR = 1.00, 95%CI = 0.84-1.18). In the subgroup analysis, significant associations between the MTHFR A1298C polymorphism and HCC risk were found in Asians (CC vs AA: OR = 0.46, 95%CI = 0.27-0.78; CC vs AC: OR = 0.41, 95%CI = 0.24-0.71; dominant model: OR = 2.27, 95%CI = 1.33-3.86; recessive model: OR = 1.03, 95%CI = 0.86-1.24). Our results suggest that the MTHFR A1298C polymorphism might be related to increased risk of HCC in Asians. Further large and well-designed studies are needed to confirm these conclusions. PMID:26662389

  13. Prediction of Methotrexate Clinical Response in Portuguese Rheumatoid Arthritis Patients: Implication of MTHFR rs1801133 and ATIC rs4673993 Polymorphisms

    PubMed Central

    Lima, Aurea; Monteiro, Joaquim; Bernardes, Miguel; Sousa, Hugo; Azevedo, Rita; Seabra, Vitor; Medeiros, Rui

    2014-01-01

    Objective. Methotrexate (MTX), the most used drug in rheumatoid arthritis (RA) treatment, showing variability in clinical response, is often associated with genetic polymorphisms. This study aimed to elucidate the role of methylenetetrahydrofolate reductase (MTHFR) C677T and aminoimidazole carboxamide adenosine ribonucleotide transformylase (ATIC) T675C polymorphisms and clinicopathological variables in clinical response to MTX in Portuguese RA patients. Methods. Study included 233 RA patients treated with MTX for at least six months. MTHFR C677T and ATIC T675C polymorphisms were genotyped and clinicopathological variables were collected. Statistical analyses were performed and binary logistic regression method adjusted to possible confounding variables. Results. Multivariate analyses demonstrated that MTHFR 677TT (OR = 4.63; P = 0.013) and ATIC 675T carriers (OR = 5.16; P = 0.013) were associated with over 4-fold increased risk for nonresponse. For clinicopathological variables, noncurrent smokers (OR = 7.98; P = 0.001), patients positive to anti-cyclic citrullinated peptide (OR = 3.53; P = 0.004) and antinuclear antibodies (OR = 2.28; P = 0.045), with higher health assessment questionnaire score (OR = 2.42; P = 0.007), and nonsteroidal anti-inflammatory drug users (OR = 2.77; P = 0.018) were also associated with nonresponse. Contrarily, subcutaneous administration route (OR = 0.11; P < 0.001) was associated with response. Conclusion. Our study suggests that MTHFR C677T and ATIC T675C genotyping combined with clinicopathological data may help to identify patients whom will not benefit from MTX treatment and, therefore, assist clinicians in personalizing RA treatment. PMID:24967362

  14. Pulmonary Embolism in a Sarcoidosis Patient Double Heterozygous for Methylenetetrahydrofolate Reductase Gene Polymorphisms and Factor V Leiden and Homozygous for the D-Allele of Angiotensin Converting Enzyme Gene

    PubMed Central

    El-Majzoub, Nadim; Mahfouz, Rami; Kanj, Nadim

    2015-01-01

    Sarcoidosis is a multisystem granulomatous disease of unknown etiology and pathogenesis. It presents in patients younger than 40 years of age. The lungs are the most commonly affected organ. Till the present day, there is no single specific test that will accurately diagnose sarcoidosis; as a result, the diagnosis of sarcoidosis relies on a combination of clinical, radiologic, and histologic findings. Patients with sarcoidosis have been found to have an increased risk of pulmonary embolism compared to the normal population. MTHFR and factor V Leiden mutations have been reported to increase the risk of thrombosis in patients. We hereby present a case of a middle aged man with sarcoidosis who developed a right main pulmonary embolism and was found to be double heterozygous for methylenetetrahydrofolate reductase gene polymorphisms and factor V Leiden and homozygous for the D-allele of the angiotensin converting enzyme gene. PMID:26347783

  15. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  16. Mutation of the Light-Induced Yellow Leaf 1 Gene, Which Encodes a Geranylgeranyl Reductase, Affects Chlorophyll Biosynthesis and Light Sensitivity in Rice

    PubMed Central

    Yuan, Yuan; Zhu, Jinyan; Wang, Man; Yuan, Fuhai; Wu, Shujun; Wang, Zhiqin; Yi, Chuandeng; Xu, Tinghua; Ryom, MyongChol; Gu, Minghong; Liang, Guohua

    2013-01-01

    Chlorophylls (Chls) are crucial for capturing light energy for photosynthesis. Although several genes responsible for Chl biosynthesis were characterized in rice (Oryza sativa), the genetic properties of the hydrogenating enzyme involved in the final step of Chl synthesis remain unknown. In this study, we characterized a rice light-induced yellow leaf 1-1 (lyl1-1) mutant that is hypersensitive to high-light and defective in the Chl synthesis. Light-shading experiment suggested that the yellowing of lyl1-1 is light-induced. Map-based cloning of LYL1 revealed that it encodes a geranylgeranyl reductase. The mutation of LYL1 led to the majority of Chl molecules are conjugated with an unsaturated geranylgeraniol side chain. LYL1 is the firstly defined gene involved in the reduction step from Chl-geranylgeranylated (ChlGG) and geranylgeranyl pyrophosphate (GGPP) to Chl-phytol (ChlPhy) and phytyl pyrophosphate (PPP) in rice. LYL1 can be induced by light and suppressed by darkness which is consistent with its potential biological functions. Additionally, the lyl1-1 mutant suffered from severe photooxidative damage and displayed a drastic reduction in the levels of ?-tocopherol and photosynthetic proteins. We concluded that LYL1 also plays an important role in response to high-light in rice. PMID:24058671

  17. Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification1[W][OPEN

    PubMed Central

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-01-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601

  18. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases. PMID:12626517

  19. A common variant in MTHFR influences response to chemoradiotherapy and recurrence of rectal cancer

    PubMed Central

    Nikas, Jason B; Lee, Janet T; Maring, Elizabeth D; Washechek-Aletto, Jill; Felmlee-Devine, Donna; Johnson, Ruth A; Smyrk, Thomas C; Tawadros, Patrick S; Boardman, Lisa A; Steer, Clifford J

    2015-01-01

    An important determinant of the pathogenesis and prognosis of various diseases is inherited genetic variation. Single-nucleotide polymorphisms (SNPs), variations at a single base position, have been identified in both protein-coding and noncoding DNA sequences, but the vast majority of millions of those variants are far from being functionally understood. Here we show that a common variant in the gene MTHFR [rs1801133 (C>T)] not only influences response to neoadjuvant chemoradiotherapy in patients with rectal cancer, but it also influences recurrence of the disease itself. More specifically, patients with the homozygous ancestral (wild type) genotype (C/C) were 2.91 times more likely (291% increased benefit) to respond to neoadjuvant chemoradiotherapy {95% CI: [1.23, 6.89]; P=0.0150} and 3.25 times more likely (325% increased benefit) not to experience recurrence of the disease {95% CI: [1.37, 7.72]; P=0.0079} than patients with either the heterozygous (C/T) or the homozygous mutation (T/T) genotype. These results identify MTHFR as an important genetic marker and open up new, pharmacogenomic strategies in the treatment and management of rectal cancer. PMID:26693073

  20. Association of the MTHFR 1298A>C (rs1801131) polymorphism with speed and strength sports in Russian and Polish athletes.

    PubMed

    Zarebska, Aleksandra; Ahmetov, Ildus I; Sawczyn, Stanislaw; Weiner, Alexandra S; Kaczmarczyk, Mariusz; Ficek, Krzysztof; Maciejewska-Karlowska, Agnieszka; Sawczuk, Marek; Leonska-Duniec, Agata; Klocek, Tomasz; Voronina, Elena N; Boyarskikh, Uljana A; Filipenko, Maksim L; Cieszczyk, Pawel

    2014-01-01

    It has been suggested that DNA hypomethylation because of poorer effectiveness of the 5,10-methylenetetrahydrofolate reductase (MTHFR) enzyme induces muscular growth. We hypothesised that the common, functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. To test this hypothesis, we investigated the distribution of the 1298A>C variant in Polish (n = 302) and Russian (n = 842) athletes divided into four groups: endurance, strength-endurance, sprint-strength and strength-endurance, as well as in 1540 control participants. We found different genotypes (the AC heterozygote advantage) and allele distributions among sprint-strength athletes and strength athletes than the groups of sedentary controls for each nationality. In the combined study, the allelic frequencies for the 1298C variant were 35.6% in sprint-strength athletes (OR 1.18 [1.02-1.36], P = 0.024 vs. controls) and 38.6% in strength athletes (OR 1.34 [1.10-1.64], P = 0.003 vs. controls). The results of the initial and repetition studies as well as the combined analysis suggest that the functional 1298A>C polymorphism in the MTHFR gene is associated with athletic status. The presence of the C allele seems to be beneficial in sprint-strength and strength athletes. It needs to be established whether and to what extent this effect is mediated by alteration in DNA methylation status. PMID:24015812

  1. Association between the MTHFR C677T polymorphism and gastric cancer susceptibility: A meta-analysis of 5,757 cases and 8,501 controls

    PubMed Central

    CHEN, LONG; LU, NING; ZHANG, BAI-HONG; WENG, LI; LU, JUN

    2015-01-01

    Current data regarding the association between the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and the risk of developing gastric cancer are insufficient to draw definite conclusions. Therefore, the present meta-analysis was conducted to achieve a more precise estimation of the association. MEDLINE, EMBASE and Wanfang database searches resulted in the identification of 28 eligible studies describing 5,757 cases and 8,501 controls. The strength of the association between the MTHFR C677T polymorphism and gastric cancer risk were evaluated using crude odds ratios (ORs), with 95% confidence intervals (CIs). The pooled ORs were determined using homozygous (TT vs. CC), heterozygous (CT vs. CC), dominant (TT+CT vs. CC) and recessive (TT vs. CC+CT) models. When all studies were pooled into the meta-analysis, significant associations were identified between the MTHFR C677T polymorphism and the risk of gastric cancer (homozygous model: OR, 1.39; 95% CI, 1.20–1.62; heterozygous model: OR, 1.18; 95% CI, 1.05–1.32; dominant model: OR, 1.23; 95% CI, 1.10–1.38; recessive model: OR, 1.26; 95% CI, 1.12–1.42). Stratification of the data by ethnicity identified a statistically significantly elevated risk of gastric cancer in Asian MTHFR C677T polymorphism populations (homozygous model: OR, 1.64; 95% CI, 1.43–1.90; heterozygous model: OR, 1.30; 95% CI, 1.16–1.45; dominant model: OR, 1.39; 95% CI, 1.25–1.54; recessive model: OR, 1.41; 95% CI, 1.25–1.51), but not in Caucasian populations (homozygous model: OR, 1.15; 95% CI, 0.89–1.48; heterozygous model: OR, 1.03; 95% CI, 0.84–1.25; dominant model: OR, 1.05; 95% CI, 0.86–1.28; recessive model: OR, 1.09; 95% CI, 0.91–1.31). Following adjustment for heterogeneity, the current meta-analysis demonstrated that the MTHFR C677T polymorphism was not associated with the risk of gastric cancer in Caucasian individuals. Furthermore, no evidence of publication bias was observed. Thus, the current meta-analysis indicates that the MTHFR C677T allele may be a low-penetrant risk factor for the development of gastric cancer in Asian populations.

  2. Role of genetic mutations in folate-related enzyme genes on Male Infertility

    PubMed Central

    Liu, Kang; Zhao, Ruizhe; Shen, Min; Ye, Jiaxin; Li, Xiao; Huang, Yuan; Hua, Lixin; Wang, Zengjun; Li, Jie

    2015-01-01

    Several studies showed that the genetic mutations in the folate-related enzyme genes might be associated with male infertility; however, the results were still inconsistent. We performed a meta-analysis with trial sequential analysis to investigate the associations between the MTHFR C677T, MTHFR A1298C, MTR A2756G, MTRR A66G mutations and the MTHFR haplotype with the risk of male infertility. Overall, a total of 37 studies were selected. Our meta-analysis showed that the MTHFR C677T mutation was a risk factor for male infertility in both azoospermia and oligoasthenoteratozoospermia patients, especially in Asian population. Men carrying the MTHFR TC haplotype were most liable to suffer infertility while those with CC haplotype had lowest risk. On the other hand, the MTHFR A1298C mutation was not related to male infertility. MTR A2756G and MTRR A66G were potential candidates in the pathogenesis of male infertility, but more case-control studies were required to avoid false-positive outcomes. All of these results were confirmed by the trial sequential analysis. Finally, our meta-analysis with trial sequential analysis proved that the genetic mutations in the folate-related enzyme genes played a significant role in male infertility. PMID:26549413

  3. Association of Methylenetetrahydrofolate Reductase C677T Polymorphism with Hyperhomocysteinemia and Deep Vein Thrombosis in the Iranian Population

    PubMed Central

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2015-01-01

    Purpose: Deep venous thrombosis (DVT) is a common but elusive condition characterized by a high morbidity and mortality rate. The aim of the present study was to investigate the correlation between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism with plasma total homocysteine (tHcy) levels and DVT risk in an Iranian population. Materials and Methods: Our study population consisted of 67 patients with a diagnosis of DVT and 67 healthy subjects as controls. Genotyping of MTHFR C677T polymorphism was performed by the polymerase chain reaction technique combined with restriction enzyme fragment length polymorphism (PCR-RFLP) and measurement of tHcy levels was done by enzyme immunoassay method. Results: Plasma tHcy levels were significantly higher in DVT patients than controls (18.09±7.6 vs. 10.5±4.3, P=0.001). Also, plasma tHcy levels were significantly higher in MTHFR 677TT genotypes compared to 677CC genotypes in both DVT patients (P=0.016) and controls (P=0.03). Neither heterozygote nor homozygote genotypes of MTHFR C677T polymorphism was significantly correlated with DVT (P>0.05). The distribution of MTHFR C677T genotypes was similar between men and women in both DVT patients and controls (P>0.05). Moreover, the frequency of mutant 677T allele did not differ significantly between the two groups (28.3% vs. 21.6%, P=0.15). Conclusion: Based on this study, we propose that hyperhomocysteinemia but not homozygosity for MTHFR C677T polymorphism is a significant risk factor for DVT in the Iranian population. Also, MTHFR 677TT genotype is a determinant of elevated plasma tHcy levels. PMID:26719836

  4. Methylenetetrahydrofolate reductase C677T and A1298C polymorphisms and fluorouracil-based treatment in Taiwan colorectal cancer.

    PubMed

    Wu, Nai-Chun; Su, Shih-Ming; Lin, Tai-Jung; Chin, Jen; Hou, Chun-Fang; Yang, Jhong-Ying; Liu, Wen-Sheng; Chang, Li-Ching

    2015-09-01

    This study aimed to investigate the association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and the prognosis of colorectal cancer (CRC) patients undergoing 5-fluorouracil (5-FU)-based chemotherapy in Taiwan. We investigated 126 CRC cases. The most common polymorphisms C677T (rs1801133) and A1298C (rs1801131) in MTHFR were genotyped using PCR-restriction fragment length polymorphism. The frequencies of C677T and A1298C were further compared with those in the HapMap database for Whites and Asians. In this study, we found that TT-homozygosity at MTHFR C677T was significantly associated with survival in CRC patients [P<0.001; 95% confidence interval (CI)=0.068-0.212]. In CRC patients receiving 5-FU-based chemotherapy, the TT genotype at C677T was also significantly associated with survival (P=0.001; 95% CI=0.113-0.400) and recurrence after surgery (P<0.001; 95% CI=0.295-0.609). The A1298C genotypes had a significant impact on survival (?=7.103; P=0.029). The MTHFR A1298C CC genotype may increase the risk of death in Taiwanese CRC patients. The MTHFR C677T TT genotype was present at a lower frequency in our CRC patients than in the HapMap Asian population, but the frequency was similar to that in Whites in the HapMap database. The distribution of MTHFR A1298C genotypes was similar in our CRC and in the HapMap Asian population, but was different from that in the White population. This study suggested that MTHFR C677T and A1298C are associated with prognosis in CRC patients undergoing 5-FU-based chemotherapy. PMID:26111049

  5. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia1234

    PubMed Central

    Hanks, Joanna; Ayed, Iyeman; Kukreja, Neil; Rogers, Chris; Harris, Jessica; Gheorghiu, Alina; Liu, Chee Ling; Emery, Peter

    2013-01-01

    Background: Decreased genomic and increased gene-specific DNA methylation predispose to colorectal cancer. Dietary folate intake and the methylenetetrahydrofolate reductase polymorphism (MTHFR 677C>T) may influence risk by modifying DNA methylation. Objective: We investigated the associations between MTHFR 677C>T genotype, folate status, and DNA methylation in the colon. Design: We conducted a cross-sectional study of 336 men and women (age 19–92 y) in the United Kingdom without colorectal neoplasia. We obtained blood samples for measurement of serum and red blood cell folate, plasma homocysteine, and MTHFR 677C>T genotype and colonic tissue biopsies for measurement of colonic tissue folate and DNA methylation (genomic- and gene-specific, estrogen receptor 1, ESR1; myoblast determination protein 1, MYOD1; insulin-like growth factor II, IGF2; tumor suppressor candidate 33, N33; adenomatous polyposis coli, APC; mut-L homolog 1, MLH1; and O6-methylguanine-DNA methyltransferase, MGMT) by liquid chromatography/electrospray ionization mass spectrometry and pyrosequencing, respectively. Results: Of the 336 subjects recruited, 185 (55%) carried the CC, 119 (35%) the CT, and 32 (10%) the TT alleles. No significant differences in systemic markers of folate status and colonic tissue folate between genotypes were found. The MTHFR TT genotype was not associated with genomic or gene-specific DNA methylation. Biomarkers of folate status were not associated with genomic DNA methylation. Relations between biomarkers of folate status and gene-specific methylation were inconsistent. However, low serum folate was associated with high MGMT methylation (P = 0.001). Conclusion: MTHFR 677C>T genotype and folate status were generally not associated with DNA methylation in the colon of a folate-replete population without neoplasia. This trial was registered at clinicaltrials.gov as ISRCTN43577261. PMID:24108782

  6. MTHFR Gene C677T Polymorphism in Autism Spectrum Disorders.

    PubMed

    Sener, Elif Funda; Oztop, Didem Behice; Ozkul, Yusuf

    2014-01-01

    Aim. Autism is a subgroup of autism spectrum disorders, classified as a heterogeneous neurodevelopmental disorder and symptoms occur in the first three years of life. The etiology of autism is largely unknown, but it has been accepted that genetic and environmental factors may both be responsible for the disease. Recent studies have revealed that the genes involved in the folate/homocysteine pathway may be risk factors for autistic children. In particular, C677T polymorphism in the MTHFR gene as a possible risk factor for autism is still controversial. We aimed to investigate the possible effect of C677T polymorphism in a Turkish cohort. Methods. Autism patients were diagnosed by child psychiatrists according to DSM-IV and DSM-V criteria. A total of 98 children diagnosed as autistic and 70 age and sex-matched children who are nonautistic were tested for C677T polymorphism. This polymorphism was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods. Results. MTHFR 677T-allele frequency was found to be higher in autistic children compared with nonautistic children (29% versus 24%), but it was not found statistically significant. Conclusions. We conclude that other MTHFR polymorphisms such as A1298C or other folate/homocysteine pathway genes may be studied to show their possible role in autism. PMID:25431675

  7. Characterization and site-directed mutation of a novel aldo-keto reductase from Lodderomyces elongisporus NRRL YB-4239 with high production rate of ethyl (R)-4-chloro-3-hydroxybutanoate.

    PubMed

    Wang, Qiuyan; Ye, Tingting; Ma, Zhuanzhuan; Chen, Rong; Xie, Tian; Yin, Xiaopu

    2014-11-01

    A novel aldo-keto reductase (LEK) from Lodderomyces elongisporus NRRL YB-4239 (ATCC 11503) was discovered by genome database mining for carbonyl reduction. LEK was overexpressed in Escherichia coli BL21 (DE3), purified to homogeneity and the catalytic properties were studied. Among the substrates, ethyl 4-chloro-3-oxobutanoate was converted to ethyl (R)-4-chloro-3- hydroxybutanoate ((R)-CHBE), an important pharmaceutical intermediate, with an excellent enantiomeric excess (e.e.) (>99 %). The mutants W28A and S209G obtained by site-directed mutation were identified with much higher molar conversion yields and lower Km values. Further, the constructed coenzyme regeneration system with glucose as co-substrate resulted in a yield of 100 %, an enantioselectivity of >99 %, and the calculated production rate of 56.51 mmol/L/H. These results indicated the potential of LEK for the industrial production of (R)-CHBE and other valuable chiral alcohols. PMID:25189809

  8. Cerebral venous thrombosis associated with homozygous factor V Leiden mutation in a 15-year-old girl of Tunisian origin

    PubMed Central

    Salem-Berrabah, Olfa Ben; Fekih-Mrissa, Nejiba; Laayouni, Samy; Gritli, Nasreddine; Mrissa, Ridha

    2011-01-01

    Cerebral venous thrombosis (CVT) is a rare disease. It has numerous and complex etiologies. Inherited or acquired prothrombotic states play a key role in the development of this disease, such as factor V G1691A mutation (FV Leiden). A 15-year-old girl presented to the Department of Neurology with a complaint of severe headache with visual blurring. The diagnosis of CVT was not initially suspected because of the patient's condition on presentation. An MRI showed thrombosis in the superior sagittal sinus, confirming venous stroke. Anticardiolipin and antiphospholipid antibodies were assessed. In addition, inherited prothrombotic defects, such as protein C, protein S, and antithrombin deficiencies, and genetic mutations for FV Leiden, prothrombin gene G20210A (FII G20210A), and methyltetrahydrofolate reductase C677T (MTHFR C677T) were studied. All results were unremarkable except for the unique homozygous FV Leiden mutation, which likely contributed to this prothrombotic situation. This study highlights the fact that FV Leiden may play a significant role in the onset of CVT in young patients. PMID:22048515

  9. Sex Differences in Ethanol’s Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice With a Null Mutation of the 5?-Reductase Type 1 Gene

    PubMed Central

    Tanchuck-Nipper, Michelle A.; Ford, Matthew M.; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K.; Finn, Deborah A.

    2015-01-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5?-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5?-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol’s effect on total entries versus wildtype (WT) mice and significantly decreased ethanol’s anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids. PMID:25355320

  10. Conversion of Human Steroid 5[beta]-Reductase (AKR1D1) into 3[beta]-Hydroxysteroid Dehydrogenase by Single Point Mutation E120H: Example of Perfect Enzyme Engineering

    SciTech Connect

    Chen, Mo; Drury, Jason E.; Christianson, David W.; Penning, Trevor M.

    2012-10-10

    Human aldo-keto reductase 1D1 (AKR1D1) and AKR1C enzymes are essential for bile acid biosynthesis and steroid hormone metabolism. AKR1D1 catalyzes the 5{beta}-reduction of {Delta}{sup 4}-3-ketosteroids, whereas AKR1C enzymes are hydroxysteroid dehydrogenases (HSDs). These enzymes share high sequence identity and catalyze 4-pro-(R)-hydride transfer from NADPH to an electrophilic carbon but differ in that one residue in the conserved AKR catalytic tetrad, His120 (AKR1D1 numbering), is substituted by a glutamate in AKR1D1. We find that the AKR1D1 E120H mutant abolishes 5{beta}-reductase activity and introduces HSD activity. However, the E120H mutant unexpectedly favors dihydrosteroids with the 5{alpha}-configuration and, unlike most of the AKR1C enzymes, shows a dominant stereochemical preference to act as a 3{beta}-HSD as opposed to a 3{alpha}-HSD. The catalytic efficiency achieved for 3{beta}-HSD activity is higher than that observed for any AKR to date. High resolution crystal structures of the E120H mutant in complex with epiandrosterone, 5{beta}-dihydrotestosterone, and {Delta}{sup 4}-androstene-3,17-dione elucidated the structural basis for this functional change. The glutamate-histidine substitution prevents a 3-ketosteroid from penetrating the active site so that hydride transfer is directed toward the C3 carbonyl group rather than the {Delta}{sup 4}-double bond and confers 3{beta}-HSD activity on the 5{beta}-reductase. Structures indicate that stereospecificity of HSD activity is achieved because the steroid flips over to present its {alpha}-face to the A-face of NADPH. This is in contrast to the AKR1C enzymes, which can invert stereochemistry when the steroid swings across the binding pocket. These studies show how a single point mutation in AKR1D1 can introduce HSD activity with unexpected configurational and stereochemical preference.

  11. Heterotrimeric NADH-Oxidizing Methylenetetrahydrofolate Reductase from the Acetogenic Bacterium Acetobacterium woodii

    PubMed Central

    Bertsch, Johannes; Öppinger, Christian; Hess, Verena; Langer, Julian D.

    2015-01-01

    ABSTRACT The methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na+ translocation by the Rnf complex. The enzyme was purified from Acetobacterium woodii and shown to have an unprecedented subunit composition containing the three subunits RnfC2, MetF, and MetV. The stable complex contained 2 flavin mononucleotides (FMN), 23.5 ± 1.2 Fe and 24.5 ± 1.5 S, which fits well to the predicted six [4Fe4S] clusters in MetV and RnfC2. The enzyme catalyzed NADH:methylviologen and NADH:ferricyanide oxidoreductase activity but also methylene-tetrahydrofolate (THF) reduction with NADH as the reductant. The NADH:methylene-THF reductase activity was high (248 U/mg) and not stimulated by ferredoxin. Furthermore, reduction of ferredoxin, alone or in the presence of methylene-THF and NADH, was never observed. MetF or MetVF was not able to catalyze the methylene-THF-dependent oxidation of NADH, but MetVF could reduce methylene-THF using methyl viologen as the electron donor. The purified MTHFR complex did not catalyze the reverse reaction, the endergonic oxidation of methyl-THF with NAD+ as the acceptor, and this reaction could not be driven by reduced ferredoxin. However, addition of protein fractions made the oxidation of methyl-THF to methylene-THF coupled to NAD+ reduction possible. Our data demonstrate that the MTHFR of A. woodii catalyzes methylene-THF reduction according to the following reaction: NADH + methylene-THF ? methyl-THF + NAD+. The differences in the subunit compositions of MTHFRs of bacteria are discussed in the light of their different functions. IMPORTANCE Energy conservation in the acetogenic bacterium Acetobacterium woodii involves ferredoxin reduction followed by a chemiosmotic mechanism involving Na+-translocating ferredoxin oxidation and a Na+-dependent F1Fo ATP synthase. All redox enzymes of the pathway have been characterized except the methylenetetrahydrofolate reductase (MTHFR). Here we report the purification of the MTHFR of A. woodii, which has an unprecedented heterotrimeric structure. The enzyme reduces methylene-THF with NADH. Ferredoxin did not stimulate the reaction; neither was it oxidized or reduced with NADH. Since the last enzyme with a potential role in energy metabolism of A. woodii has now been characterized, we can propose a quantitative bioenergetic scheme for acetogenesis from H2 plus CO2 in the model acetogen A. woodii. PMID:25733614

  12. Methylenetetrahydrofolate reductase gene A1298C polymorphism and susceptibility to recurrent pregnancy loss: a meta-analysis.

    PubMed

    Rai, V

    2014-01-01

    Environmental and genetic factors are thought to be involved in the pathogenesis of recurrent pregnancy loss (RPL)/spontaneous abortions (SA), which include endocrine, anatomical abnormalities within the genital organs, autoimmune diseases and some gene variants. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the folate/methionine metabolic pathway and it is well established fact that folate deficiency causes pregnancy complications like recurrent pregnancy loss, preeclempsia and birth defects affected pregnancies. MTHFR A1298C polymorphism reduces the enzymatic activity and mimics as folate deficiency. To date, many studies have investigated the association between MTHFR A1298C polymorphism and RPL risk; however, the result is still controversial and inconclusive. The aim of the present study was to address the association of MTHFR A1298C polymorphism with RPL risk by meta—analysis. By searching electronic databases, total seventeen studies were identified for present meta—analysis. Crude odds ratios (OR) with 95 % confidence intervals (CIs) was used to assess the strength of association between A1298C polymorphism and RPL. The results indicate that the A1298C polymorphism is not associated with RPL (ORCvs A = 1.13 ,95 % CI= 0.87—1.46, P = 0.36 ; ORACvs AA = 1.22 ,95 % CI= 0.94— 1.6, P = 0.13; ORCCvsAA =1.35, 95 % CI= 76—2.36, P = 0.30; ORCC+AC vs AA = 1.15, 95 % CI= 88 —1.49, P = 0.29; ORCCvs AC+AA = 1.29, 95 % CI= 76 —2.12, P = 0.34). Further prospective studies were needed to confirm the precise relationship between the MTHFR A1298C polymorphism and RPL. PMID:24970119

  13. A deep vein thrombosis caused by 20209C>T mutation in homozygosis of the prothrombin gene in a Caucasian patient

    PubMed Central

    Álvarez, Silvia Izquierdo; Ollero, Eva Barrio; Llinares Sanjuan, Francisco Miguel; Martínez, Fabiola Lorente; Calvo Martín, María Teresa

    2014-01-01

    Introduction: Additional nucleotide substitutions in the 3?-untranslated region of prothrombin gene could explain some thrombotic events and also adverse pregnancy outcomes. We describe the first case of a homozygous 20209C>T mutation as the cause of deep vein thrombosis in a Spanish patient. Case and methods: The 56-year-old male patient with a partial tear of the Achilles tendon developed calf (tibial) deep vein thrombosis after immobilization and was treated with an anticoagulant. To determine if the deep vein thrombosis was of genetic origin, a peripheral blood DNA sample was analysed for the presence of the three most frequent mutations associated with thrombotic events: factor V Leiden (1691G>A), prothrombin (20210G>A) and methylene tetrahydrofolate reductase (677C>T). The presence or absence of the normal allele of prothrombin could not be determined using the PTH-FV-MTHFR StripAssay (Vienna Lab). Results: Comprehensive analysis showed that the patient had a variant interfering with the polymerase chain reaction product, we sequenced the entire prothrombin gene and found that the patient had a homozygous C>T mutation at position 20209; this interfered with the polymerase chain reaction product, which needs a C at this position to be able to bind to the wild-type probe present in the test strip. Conclusion: The homozygous 20209C>T mutation and the presence of the mutation 677C>T in heterozygosity explained the patient’s deep vein thrombosis because the combination of mutations would increase the risk of thrombosis. Suitable genetic counselling should be provided to the patient and first-degree relatives as it important to detect prothrombin gene variants that could increase risk for thrombotic events. PMID:24627725

  14. Methylenetetrahydrofolate reductase C677T polymorphism is associated with increased risk of coronary artery disease in young South African Indians.

    PubMed

    Ramkaran, Prithiksha; Phulukdaree, Alisa; Khan, Sajidah; Moodley, Devapregasan; Chuturgoon, Anil A

    2015-10-15

    Methylenetetrahydrofolate reductase (MTHFR) reduces 5',10'-methylenetetrahydrofolate to 5'-methyltetrahydrofolate, and is involved in remethylation of homocysteine to methionine, two important reactions involved in folate metabolism and methylation pathways. The common MTHFR C677T single nucleotide polymorphism (SNP) (rs1801133) has been associated with raised levels of homocysteine, a well known risk factor for coronary artery disease (CAD). CAD is a major cause of mortality worldwide. The age of onset of this chronic disorder is on the decline, particularly in the Indian population. Indians in South Africa (SA) have a higher prevalence of premature CAD compared to Black South Africans. The MTHFR C677T SNP has not been investigated in the SA Indian population. The present study therefore investigated the MTHFR C677T SNP in young SA Indian males with CAD compared to young Indian and Black male controls. A total of 290 subjects were recruited into this study which included 106 CAD patients (diagnosed on angiography, mean age 37.5, range 24-45 years), 100 Indian male controls (mean age 37.5, range 28-45 years), and 84 Black male controls (mean age 36.4, range 25-45). Polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (RFLP) was used to genotype CAD patients and healthy controls. Data for clinical markers were obtained from pathology reports. There was a significant association between the 677 MTHFR variant (T) allele and CAD patients compared to the healthy Indian controls (p=0.0353, OR=2.105 95% CI 1.077-4.114). Indian controls presented with a higher frequency of the variant allele compared to Black controls (7% vs. 2% respectively, p=0.0515 OR=3.086 95% CI 0.9958-9.564). The MTHFR C677T SNP did not influence levels of total cholesterol, LDL, HDL, triglycerides, fasting glucose, fasting insulin, HbA1c or hsCRP. The higher frequency of the MTHFR 677 variant allele in South African Indians may be a contributing factor to the higher risk profile for the development of premature CAD in Indians. PMID:26095803

  15. The relationship between methylenetetrahydrofolate reductase c.677TT genotype and oligozoospermia in infertile male patients living in the Trakya region of Turkey.

    PubMed

    Gurkan, H; Tozk?r, H; Göncü, E; Ulusal, S; Yazar, M

    2015-11-01

    Methylenetetrahydrofolate reductase (MTHFR), the key enzyme of the folate metabolic pathway, has been reported to be five times more active in the testicles compared to other organs in adult mice. The aim of this study was to investigate the relationship between MTHFR c.677C>T and c.1298A>C polymorphisms and infertility in nonobstructive azoospermic and oligozoospermic male patients living in the Trakya region of Turkey. The study population included 75 nonobstructive azoospermic and 62 oligozoospermic, nonconsanguineous patients who were referred to the Department of Medical Genetics of Trakya University between 01.03.2012 and 01.06.2013 due to infertility and who had been diagnosed based on clinical examinations and spermiograms. All of the patients had a normal karyotype without a Y chromosome microdeletion. Melting curve analysis with labelled probes and primers that were designed by the manufacturers and the real-time polymerase chain reaction method were used. The MTHFR c.677TT genotype frequency in the oligozoospermic infertile male patient group was greater than that of the fertile control group [odds ratio (OR) = 2.675 (95% CI: 0.979-7.305), (P < 0.048)]. The MTHFR c.677TT genotype may be a genetic risk factor for oligozoospermic infertile male patients who live in the Trakya region of Turkey. PMID:25428700

  16. Analysis of Polymorphisms in Genes (AGT, MTHFR, GPIIIa, and GSTP1) Associated with Hypertension, Thrombophilia and Oxidative Stress in Mestizo and Amerindian Populations of México

    PubMed Central

    Juárez-Velázquez, Rocio; Canto, Patricia; Canto-Cetina, Thelma; Rangel-Villalobos, Hector; Rosas-Vargas, Haydee; Rodríguez, Maricela; Canizales-Quinteros, Samuel; Velázquez Wong, Ana Claudia; Ordoñez-Razo, Rosa María; Vilchis-Dorantes, Guadalupe; Coral-Vázquez, Ramón Mauricio

    2010-01-01

    Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT), A222V 5,10 methylenete-trahydrofolate reductase (MTHFR), L33P glycoprotein IIIa (GPIIIa), and I105V glutathione S-transferase P1 (GSTP1) polymorphisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic discrimination. Allele and genotype frequencies were compared using ?2 tests. All populations followed the Hardy Weinberg equilibrium for assay markers with the exception of the Triki, whose were in Hardy Weinberg dysequilibrium for the glutathione S-transferase P1 polymorphism. Interestingly, according to all the analyzed single nucleotide polymorphisms (SNPs), the Triki population was the most differentiated and homogeneous group of the six populations analyzed. A comparison of our data with those previously published for some Caucasian, Asian and Black populations showed quite significant differences. These differences were remarkable with all the Mexican populations having a lower frequency of the 105V allele of the glutathione S-transferase P1 and reduced occurrence of the 222A allele of the 5,10 methylenetetrahydrofolate reductase. Our results show the genetic diversity among different Mexican populations and with other racial groups. PMID:20592457

  17. High-dose folic acid supplementation alters the human sperm methylome and is influenced by the MTHFR C677T polymorphism.

    PubMed

    Aarabi, Mahmoud; San Gabriel, Maria C; Chan, Donovan; Behan, Nathalie A; Caron, Maxime; Pastinen, Tomi; Bourque, Guillaume; MacFarlane, Amanda J; Zini, Armand; Trasler, Jacquetta

    2015-11-15

    Dietary folate is a major source of methyl groups required for DNA methylation, an epigenetic modification that is actively maintained and remodeled during spermatogenesis. While high-dose folic acid supplementation (up to 10 times the daily recommended dose) has been shown to improve sperm parameters in infertile men, the effects of supplementation on the sperm epigenome are unknown. To assess the impact of 6 months of high-dose folic acid supplementation on the sperm epigenome, we studied 30 men with idiopathic infertility. Blood folate concentrations increased significantly after supplementation with no significant improvements in sperm parameters. Methylation levels of the differentially methylated regions of several imprinted loci (H19, DLK1/GTL2, MEST, SNRPN, PLAGL1, KCNQ1OT1) were normal both before and after supplementation. Reduced representation bisulfite sequencing (RRBS) revealed a significant global loss of methylation across different regions of the sperm genome. The most marked loss of DNA methylation was found in sperm from patients homozygous for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism, a common polymorphism in a key enzyme required for folate metabolism. RRBS analysis also showed that most of the differentially methylated tiles were located in DNA repeats, low CpG-density and intergenic regions. Ingenuity Pathway Analysis revealed that methylation of promoter regions was altered in several genes involved in cancer and neurobehavioral disorders including CBFA2T3, PTPN6, COL18A1, ALDH2, UBE4B, ERBB2, GABRB3, CNTNAP4 and NIPA1. Our data reveal alterations of the human sperm epigenome associated with high-dose folic acid supplementation, effects that were exacerbated by a common polymorphism in MTHFR. PMID:26307085

  18. Structural alteration of cofactor specificity in Corynebacterium 2,5-diketo-D-gluconic acid reductase

    E-print Network

    Blaber, Michael

    (2-KLG). 2-KLG is an immediate precursor to L- ascorbic acid (vitamin C), and 2,5-DKGR is, therefore keto reductase; vitamin C; enzyme engineering; 2,5-diketo-D-gluconic acid reductase; ascorbic acid mutation in the gene for L-gulonolactone oxidase--the last enzyme in the biosynthetic pathway for L-ascorbate

  19. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  20. Association between dietary intake of folate, vitamin B6, B12 & MTHFR, MTR Genotype and breast cancer risk

    PubMed Central

    Weiwei, Zheng; Liping, Chen; Dequan, Li

    2014-01-01

    Objective: we conducted a case-control study to investigate the association between dietary folate, vitamin B6 and vitamin B12 intake, MTHFR and MTR genotype, and breast cancer risk. Methods: Genotyping for MTHFR C677T and A1298C and MTR A2756G polymorphisms were performed using polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) method. The intake of folate, vitamin B6 and vitamin B12 were calculated by each food item from questionnaire. Results: Subjects with breast cancer tended to have more first-degree relatives (?2=30.77, P<0.001) and have high intake of folate (t=2.42, P=0.008) and Vitamin B6 (t=2.94, P=0.002). Compared to the reference group, women with MTHFR 677 TT genotype and T allele had a significantly increased risk of breast cancer, with ORs (95%CI) of 1.8(1.08-2.27) and 1.39(1.02-1.92), respectively. For those who had folate intake?450 ug/day, MTHFR 667TT genotype was associated with a higher risk of breast cancer (OR=2.45, 95% CI=1.09-5.82, P=0.02). Similarly, subjects with Vitamin B6 intake?0.84 mg/day and MTHFR 667T allele genotype was correlated with a marginally increased risk of breast cancer. A significant interaction was observed between MTHFR C667T polymorphism and folate intake on the risk of breast cancer (P for interaction was 0.025). Conclusion: This case-control study found a significant association between MTHFR C667T polymorphism, folate intake and vitamin B6 and breast cancer risk, and a significant interaction was observed between MTHFR C667T polymorphism and folate intake on the risk of breast cancer. PMID:24639841

  1. No association between MTHFR C677T polymorphism and completed suicide.

    PubMed

    Chojnicka, Izabela; Sobczyk-Kopcio?, Agnieszka; Fudalej, Marcin; Fudalej, Sylwia; Wojnar, Marcin; Wa?kiewicz, Anna; Broda, Gra?yna; Strawa, Katarzyna; Pawlak, Aleksandra; Krajewski, Pawe?; P?oski, Rafa?

    2012-12-10

    MTHFR C677T polymorphism (rs1801133) was associated with numerous psychiatric conditions but no prior study investigated whether it predisposes to completed suicide. We typed rs1801133 in 692 suicide victims and 3257 controls representative of a Polish adult population (the WOBASZ cohort). Although we had a power of 0.8 to detect (at alpha 0.05) an allelic OR=1.19, we did not find significant difference among suicides vs. controls in the prevalence of the MTHFR 677T allele (OR=1.02, p=0.759) or the TT genotype (OR=1.01, p=0.926). Since among controls we found an association between TT and depression defined by Beck Depression Inventory (BDI, OR=1.61, p=0.049) we also compared suicides with controls without signs of depression (BDI ? 11) but found no association (OR=1.0, p=0.976). Analyses within suicides showed trends (not significant after Bonferroni correction) for correlations between the dose of the T allele and age at death among males and blood ethanol concentration among females, who committed suicide under the influence of alcohol. We conclude that MTHFR C677T polymorphism is not a risk factor for completed suicide. The sex-specific trends for correlations between rs1801133 and age at death, and blood ethanol concentration should be studied further. PMID:22982411

  2. Human carbonyl reductases.

    PubMed

    Malátková, Petra; Maser, Edmund; Wsól, Vladimír

    2010-10-01

    Enzymatic carbonyl reduction means the formation of a hydroxy function out of a ketone or aldehyde moiety and applies for the metabolism of physiological (endogenous) or xenobiotic (exogenous) molecules. As for endogenous substrates, carbonyl reduction is often part of a reversible oxidoreductase process and involves the activation or inactivation of important signal molecules like steroids, prostaglandins, retinoids and biogenic amines. These reactions are carried out by NAD(P)(H)-dependent dehydrogenases belonging to two protein superfamilies, the aldo-keto reductases (AKR) and the short-chain dehydrogenases/reductases (SDR). With regard to exogenous substrates, carbonyl reduction of xenobiotics is generally a "one-way" detoxification reaction, since the resulting alcohol is easier to conjugate and to eliminate. Interestingly, the participating enzymes do also belong to the AKR and SDR superfamilies. Moreover, some enzymes from the two protein superfamilies exhibit pluripotency in that they are able to catalyze the oxidoreduction of endobiotics but do also function in the reductive metabolism of carbonyl group bearing xenobiotics. A special case are carbonyl reductases per se which belong to the SDR superfamily and whose substrates or physiological roles are not quite clear. Usually, carbonyl reductases have a broad and diverse substrate spectrum for xenobiotics, however, for some of them a specific physiological function has been speculated. In the human genome, three SDR genes have been identified to code for the carbonyl reductases CBR1 (SDR21C1), CBR3 (SDR21C2) and CBR4 (SDR45C1). The present review summarizes the current knowledge on these enzymes with special emphasis on their role as a defence system against toxicants, as well as their possible physiological function and medical application. In detail, we have screened the recent literature on these three enzymes with regard to endogenous and exogenous substrates, their three-dimensional structure, tissues specific expression, polymorphisms, transcriptional regulation, occurrence in pathological states, and their possible association with cancer. Combined, this review contributes to understanding the complex nature and biological roles(s) of the human carbonyl reductases CBR1, CBR3 and CBR4. PMID:20942781

  3. Flavodiiron Oxygen Reductase from Entamoeba histolytica

    PubMed Central

    Gonçalves, Vera L.; Vicente, João B.; Pinto, Liliana; Romão, Célia V.; Frazão, Carlos; Sarti, Paolo; Giuffrè, Alessandro; Teixeira, Miguel

    2014-01-01

    Flavodiiron proteins (FDPs) are a family of enzymes endowed with bona fide oxygen- and/or nitric-oxide reductase activity, although their substrate specificity determinants remain elusive. After a comprehensive comparison of available three-dimensional structures, particularly of FDPs with a clear preference toward either O2 or NO, two main differences were identified near the diiron active site, which led to the construction of site-directed mutants of Tyr271 and Lys53 in the oxygen reducing Entamoeba histolytica EhFdp1. The biochemical and biophysical properties of these mutants were studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies coupled to potentiometry. Their reactivity with O2 and NO was analyzed by stopped-flow absorption spectroscopy and amperometric methods. These mutations, whereas keeping the overall properties of the redox cofactors, resulted in increased NO reductase activity and faster inactivation of the enzyme in the reaction with O2, pointing to a role of the mutated residues in substrate selectivity. PMID:25151360

  4. Analysis of alpha-1 antichymotrypsin, presenilin-1, angiotensin-converting enzyme, and methylenetetrahydrofolate reductase loci as candidates for dementia.

    PubMed

    Tysoe, C; Galinsky, D; Robinson, D; Brayne, C E; Easton, D F; Huppert, F A; Dening, T; Paykel, E S; Rubinsztein, D C

    1997-04-18

    The genetic factors which predispose individuals to dementia in old age have not been fully defined. Although the apolipoprotein E4 allele accounts for a proportion of the genetic risk for late-onset Alzheimer disease (AD), it is neither necessary nor sufficient to cause this disease. Recent suggestions that other loci are involved in dementia risk have been supported by findings of associations of genotypes at the alpha-1 antichymotrypsin (ACT) and presenilin-1 (PS-1) loci with AD. We investigated these loci in two community-based aged Cambridgeshire populations: the rural Ely population (cohort 1) comprised 60 pairs of demented and nondemented elderly individuals, with a mean age of 84.2 years; and the Cambridge city population (cohort 2) comprised 81 pairs all over age 84, with a mean age of 87.3 years. Since vascular risk factors are likely to impact on dementia risk, we also examined the angiotensin-converting enzyme (ACE) and methylenetetrahydrofolate reductase (MTHFR) genes as candidates. ACE, ACT, PS-1, and MTHFR genotype and allele frequencies were not significantly different in cases and matched controls. These data support the doubts which have been raised about the involvement of the PS-1 and ACT polymorphisms in late-onset dementia. PMID:9129727

  5. Prevalence of MTHFR C677T and MS A2756G polymorphisms in major depressive disorder, and their impact on response to fluoxetine treatment

    PubMed Central

    Mischoulon, David; Lamon-Fava, Stefania; Selhub, Jacob; Katz, Judith; Papakostas, George I.; Iosifescu, Dan V.; Yeung, Albert S.; Dording, Christina M.; Farabaugh, Amy H.; Clain, Alisabet J.; Baer, Lee; Alpert, Jonathan E.; Nierenberg, Andrew A.; Fava, Maurizio

    2014-01-01

    Objective To examine the prevalence of the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and the A2756G polymorphism of methionine synthase (MS), and their impact on antidepressant response. Methods We screened 224 subjects (52% female, mean age 39 ± 11 years) with SCID-diagnosed major depressive disorder (MDD), and obtained 194 genetic samples. 49 subjects (49% female, mean age 36 ± 11 years) participated in a 12-week open clinical trial of fluoxetine 20–60 mg/day. Association between clinical response and C677T and A2756G polymorphisms, folate, B12, and homocysteine was examined. Results Prevalence of the C677T and A2756G polymorphisms was consistent with previous reports (C/C=41%, C/T=47%, T/T=11%, A/A=66%, A/G=29%, G/G=4%). In the fluoxetine-treated subsample (n=49), intent-to-treat (ITT) response rates were 47% for C/C subjects and 46% for pooled C/T and T/T subjects (nonsignificant). ITT response rates were 38% for A/A subjects and 60% for A/G subjects (nonsignificant), with no subjects exhibiting the G/G homozygote. Mean baseline plasma B12 was significantly lower in A/G subjects compared to A/A, but folate and homocysteine levels were not affected by genetic status. Plasma folate was negatively associated with treatment response. Conclusion The C677T and A2756G polymorphisms did not significantly affect antidepressant response. These preliminary findings require replication in larger samples. PMID:22789065

  6. Association of methylenetetrahydrofolate reductase C677T polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    PubMed Central

    2010-01-01

    Background The association of methylenetetrahydrofolate reductase (MTHFR) gene polymorphism and serum lipid profiles is still controversial in diverse ethnics. Bai Ku Yao is an isolated subgroup of the Yao minority in China. The aim of the present study was to eveluate the association of MTHFR C677T polymorphism and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 780 subjects of Bai Ku Yao and 686 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Genotyping of the MTHFR C677T was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.05-0.001). The frequency of C and T alleles was 77.4% and 22.6% in Bai Ku Yao, and 60.9% and 39.1% in Han (P < 0.001); respectively. The frequency of CC, CT and TT genotypes was 58.7%, 37.3% and 4.0% in Bai Ku Yao, and 32.6%, 56.4% and 11.0% in Han (P < 0.001); respectively. The levels of TC and LDL-C in both ethnic groups were significant differences among the three genotypes (P < 0.05-0.01). The T allele carriers had higher serum TC and LDL-C levels than the T allele noncarriers. The levels of ApoB in Han were significant differences among the three genotypes (P < 0.05). The T allele carriers had higher serum ApoB levels as compared with the T allele noncarriers. The levels of TC, TG and LDL-C in Bai Ku Yao were correlated with genotypes (P < 0.05-0.001), whereas the levels of LDL-C in Han were associated with genotypes (P < 0.001). Serum lipid parameters were also correlated with sex, age, body mass index, alcohol consumption, cigarette smoking, and blood pressure in the both ethnic groups. Conclusions The differences in serum TC, TG, LDL-C and ApoB levels between the two ethnic groups might partly result from different genotypic and allelic frequencies of the MTHFR C677T or different MTHFR gene-enviromental interactions. PMID:20977771

  7. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  8. Ribonucleotide Reductase Association with Mammalian Liver Mitochondria*

    PubMed Central

    Chimploy, Korakod; Song, Shiwei; Wheeler, Linda J.; Mathews, Christopher K.

    2013-01-01

    Deoxyribonucleoside triphosphate pools in mammalian mitochondria are highly asymmetric, and this asymmetry probably contributes to the elevated mutation rate for the mitochondrial genome as compared with the nuclear genome. To understand this asymmetry, we must identify pathways for synthesis and accumulation of dNTPs within mitochondria. We have identified ribonucleotide reductase activity specifically associated with mammalian tissue mitochondria. Examination of immunoprecipitated proteins by mass spectrometry revealed R1, the large ribonucleotide reductase subunit, in purified mitochondria. Significant enzymatic and immunological activity was seen in rat liver mitochondrial nucleoids, isolated as described by Wang and Bogenhagen (Wang, Y., and Bogenhagen, D. F. (2006) J. Biol. Chem. 281, 25791–25802). Moreover, incubation of respiring rat liver mitochondria with [14C]cytidine diphosphate leads to accumulation of radiolabeled deoxycytidine and thymidine nucleotides within the mitochondria. Comparable results were seen with [14C]guanosine diphosphate. Ribonucleotide reduction within the mitochondrion, as well as outside the organelle, needs to be considered as a possibly significant contributor to mitochondrial dNTP pools. PMID:23504325

  9. MTHFR C677T polymorphism and differential methylation status in gastric cancer: an association with Helicobacter pylori infection.

    PubMed

    Neves Filho, Eduardo Henrique Cunha; Alves, Markenia Kelia Santos; Lima, Valeska Portela; Rabenhorst, Silvia Helena Barem

    2010-12-01

    MTHFR C677T and Helicobacter pylori infection are believed to play critical roles in the DNA methylation process, an epigenetic feature frequently found in gastric cancer. The aim of this study was to verify the associations between the MTHFR C677T polymorphism and the methylation status of three gastric cancer-related genes. The influence of H. pylori strains was also assessed. DNA extracted from 71 gastric tumor samples was available for MTHFR C677T genotyping by PCR-RFLP, promoter methylation identification by MS-PCR and H. pylori detection and posterior subtyping (cagA and vacA genes) by PCR. In the distal tumors, a positive correlation was found between the methylation of CDKN2A and the allele T carriers (r=0.357; p=0.009). Considering the eldest patients (age ?60 years old), this correlation was even higher (r=0,417; p=0.014). H. pylori infection by highly pathogenic strains (cagA+/vacAs1m1) was also found correlated to promoter methylation of CDKN2A and the allele T carriers in distal tumors (r=0.484; p=0.026). No significant correlation was verified between MTHFR C677T genotype and promoter methylation status when we analyzed the general sample. DNA methylation in CDKN2A associated to the MTHFR 677T carrier is suggested to be a distal tumor characteristic, especially in those 60 years old or older, and it seems to depend on the infection by H. pylori cagA/vacAs1m1 strains. PMID:20957490

  10. Methylenetetrahydrofolate Reductase Gene Polymorphism and Risk of Type 2 Diabetes Mellitus

    PubMed Central

    Yang, Na-Na; Li, Le-Qun

    2013-01-01

    Objective This review aimed to comprehensively assess the literature examining a possible link between the rs1801133 polymorphism (677C?T) in the gene encoding the methylenetetrahydrofolate reductase (MTHFR) gene and risk of type 2 diabetes mellitus (DM). Research Design and Methods Several research databases were systematically searched for studies examining the genotype at the rs1801133 polymorphism in healthy control individuals and individuals with type 2 DM. Genotype frequency data were examined across all studies and across subsets of studies according to ethnicity and presence of serious DM-related complications. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Results A total of 4855 individuals with type 2 DM and 5242 healthy controls from 15 countries comprising Asian, Caucasian and African ethnicities were found to satisfy the inclusion criteria and included in the review. Genotype at the rs1801133 polymorphism was not consistently associated with either increased or reduced risk of type 2 DM; the OR across all studies was 0.91 (95%CI 0.82 to 1.00) for the C- vs. T-allele, 0.88 (0.75 to 1.03) for CC vs. CT+TT, 0.82 (0.71 to 0.95) for CC vs. TT, and 1.15 (1.03 to 1.29) for TT vs. CC+CT. Similar results were found when the meta-analysis was repeated separately for each ethnic subgroup, and for subgroups with or without serious DM-related complications. Conclusions There does not appear to be compelling evidence of an association between the genotype at the rs1801133 polymorphism of the MTHFR gene and risk of type 2 DM. PMID:24023947

  11. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: Evidence for genetic susceptibility

    PubMed Central

    Kumar, Pradeep; Yadav, Upendra; Rai, Vandana

    2015-01-01

    There are several evidences supporting the role of 5–10 methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms in breast cancer (BC). Case control association studies on breast cancer have been repeatedly performed over the last two decades, but results are inconsistent. We performed a meta-analysis to confirm the association between MTHFR C677T polymorphism and BC risk. The articles were retrieved by searching the PubMed, Google Scholar, and Springer Link databases. Crude odds ratios (OR) with 95% confidence intervals (CIs) was used to assess the strength of association between C677T polymorphism and BC. Publication bias was assessed by Egger's and Begg-Mazumdar tests. Meta-analysis was performed with Open Meta Analyst. Total 75 studies with 31,315 cases and 35, 608 controls were found suitable for the inclusion in the present meta-analysis. The results of meta-analysis suggested that there were moderate significant association between C677T polymorphism and BC risk using overall comparisons in five genetic models (T vs. C: OR = 1.08, 95% CI = 1.03–1.13, p = < 0.001; TT + CT vs. CC: OR = 1.06, 95% CI = 1.02–1.09, p = < 0.001; TT vs. CC: OR = 1.17, 95% CI = 1.06–1.28, p = 0.001; CT vs. CC OR = 1.05, 95% CI = 1.01–1.08, p = 0.005; TT vs. CT + CC: OR = 1.12, 95% CI = 1.03–1.22, p = 0.005). In conclusion, results of present meta-analysis showed modest association between MTHFR C677T polymorphism with breast cancer in total studies. However, sub-group analysis results based on ethnicity showed strong significant association between TT genotype and breast cancer (TT vs. CC; OR°=°1.26; 95% CI: 1.06–1.51; p = 0.009) in Asian population but in Caucasian population such association was not observed (TT vs. CC; OR°=°1.08; 95% CI: 0.99–1.14; p = 0.05). PMID:26629412

  12. Methylenetetrahydrofolate reductase gene C677T polymorphism and breast cancer risk: Evidence for genetic susceptibility.

    PubMed

    Kumar, Pradeep; Yadav, Upendra; Rai, Vandana

    2015-12-01

    There are several evidences supporting the role of 5-10 methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms in breast cancer (BC). Case control association studies on breast cancer have been repeatedly performed over the last two decades, but results are inconsistent. We performed a meta-analysis to confirm the association between MTHFR C677T polymorphism and BC risk. The articles were retrieved by searching the PubMed, Google Scholar, and Springer Link databases. Crude odds ratios (OR) with 95% confidence intervals (CIs) was used to assess the strength of association between C677T polymorphism and BC. Publication bias was assessed by Egger's and Begg-Mazumdar tests. Meta-analysis was performed with Open Meta Analyst. Total 75 studies with 31,315 cases and 35, 608 controls were found suitable for the inclusion in the present meta-analysis. The results of meta-analysis suggested that there were moderate significant association between C677T polymorphism and BC risk using overall comparisons in five genetic models (T vs. C: OR = 1.08, 95% CI = 1.03-1.13, p = < 0.001; TT + CT vs. CC: OR = 1.06, 95% CI = 1.02-1.09, p = < 0.001; TT vs. CC: OR = 1.17, 95% CI = 1.06-1.28, p = 0.001; CT vs. CC OR = 1.05, 95% CI = 1.01-1.08, p = 0.005; TT vs. CT + CC: OR = 1.12, 95% CI = 1.03-1.22, p = 0.005). In conclusion, results of present meta-analysis showed modest association between MTHFR C677T polymorphism with breast cancer in total studies. However, sub-group analysis results based on ethnicity showed strong significant association between TT genotype and breast cancer (TT vs. CC; OR°=°1.26; 95% CI: 1.06-1.51; p = 0.009) in Asian population but in Caucasian population such association was not observed (TT vs. CC; OR°=°1.08; 95% CI: 0.99-1.14; p = 0.05). PMID:26629412

  13. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  14. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  15. Functional variants in CYP1B1, KRAS and MTHFR genes are associated with shorter telomere length in postmenopausal women.

    PubMed

    Cerne, Jasmina Z; Pohar-Perme, Maja; Cerkovnik, Petra; Gersak, Ksenija; Novakovic, Srdjan

    2015-07-01

    Estrogens and antioxidants indirectly alleviate telomere attrition. However, available clinical data on the association between hormone exposure and telomere length are inconclusive. In the present study, we examined the effects of exogenous estrogen use and of some genetic factors implicated in estrogen metabolism and oxidative stress response on mean leukocyte telomere length. We studied 259 postmenopausal women. Genotyping was conducted for CYP1B1 (rs1056836), COMT (rs4680), GSTP1 (rs1695), MnSOD (rs4880), KRAS (rs61764370), and MTHFR (rs1801133 and rs1801131) polymorphisms. Mean leukocyte telomere length was measured using a quantitative real-time PCR assay. In multivariate analysis we found no association between oral contraceptives or hormone replacement therapy (HRT) and mean leukocyte telomere length. The presence of variant alleles in CYP1B1, KRAS and MTHFR genes was statistically significantly associated with shorter mean leukocyte telomere length. Further, the data provided evidence for the effect modification of the association between HRT and mean leukocyte telomere length by the CYP1B1, KRAS and MTHFR genotypes. Our findings suggest that functionally relevant genetic variants within estrogen and folate metabolic pathways may influence telomere length. We propose these genetic factors should be taken into consideration when interpreting associations between hormone exposure and telomere length. PMID:25987236

  16. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase.

    PubMed

    Thompson, J E; Fahnestock, S; Farrall, L; Liao, D I; Valent, B; Jordan, D B

    2000-11-10

    Mutants of Magnaporthe grisea harboring a defective gene for 1,3, 8-trihydroxynaphthalene reductase retain the capability to produce scytalone, thus suggesting the existence of a second naphthol reductase that can catalyze the reduction of 1,3,6, 8-tetrahydroxynaphthalene to scytalone within the fungal melanin biosynthetic pathway. The second naphthol reductase gene was cloned from M. grisea by identification of cDNA fragments with weak homology to the cDNA of trihydroxynaphthalene reductase. The amino acid sequence for the second naphthol reductase is 46% identical to that of trihydroxynaphthalene reductase. The second naphthol reductase was produced in Esherichia coli and purified to homogeneity. Substrate competition experiments indicate that the second reductase prefers tetrahydroxynaphthalene over trihydroxynaphthalene by a factor of 310; trihydroxynaphthalene reductase prefers trihydroxynaphthalene over tetrahydroxynaphthalene by a factor of 4.2. On the basis of the 1300-fold difference in substrate specificities between the two reductases, the second reductase is designated tetrahydroxynaphthalene reductase. Tetrahydroxynaphthalene reductase has a 200-fold larger K(i) for the fungicide tricyclazole than that of trihydroxynaphthalene reductase, and this accounts for the latter enzyme being the primary physiological target of the fungicide. M. grisea mutants lacking activities for both trihydroxynaphthalene and tetrahydroxynaphthalene reductases do not produce scytalone, indicating that there are no other metabolic routes to scytalone. PMID:10956664

  17. Inheritance of nitrite reductase and regulation of nitrate reductase, nitrite reductase, and glutamine synthetase isozymes.

    PubMed

    Heath-Pagliuso, S; Huffaker, R C; Allard, R W

    1984-10-01

    Banding patterns of nitrate reductase (NR), nitrite reductase (NiR), and glutamine synthetase (GS) from leaves of diploid barley (Hordeum vulgare), tetraploid wheat (Triticum durum), hexaploid wheat (Triticum aestivum), and tetraploid wild oats (Avena barbata) were compared following starch gel electrophoresis. Two NR isozymes, which appeared to be under different regulatory control, were observed in each of the three species. The activity of the more slowly migrating nitrate reductase isozyme (NR1) was induced by NO3- in green seedlings and cycloheximide inhibited induction. However, the activity of the faster NR isozyme (NR2) was unaffected by addition of KNO3, and it was not affected by treatments of cycloheximide or chloramphenicol. Only a single isozyme of nitrite reductase was detected in surveys of three tetraploid and 18 hexaploid wheat, and 48 barley accessions; however, three isozymes associated with different ecotypes were detected in the wild oats. Inheritance patterns showed that two of the wild oat isozymes were governed by a single Mendelian locus with two codominant alleles; however, no variation was detected for the third isozyme. Treatment of excised barely and wild oat seedlings with cycloheximide and chloramphenicol showed that induction of NiR activity was greatly inhibited by cycloheximide, but only slightly by chloramphenicol. Only a single GS isozyme was detected in extracts of green leaves of wheat, barley, and wild oat seedlings. No electrophoretic variation was observed within or among any of these three species. Thus, this enzyme appears to be the most structurally conserved of the three enzymes. PMID:11541965

  18. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  19. Association between the MTHFR C677T polymorphism and risk of cancer: evidence from 446 case-control studies.

    PubMed

    Xie, Shu-Zhe; Liu, Zhi-Zhong; Yu, Jun-Hua; Liu, Li; Wang, Wei; Xie, Dao-Lin; Qin, Jiang-Bo

    2015-11-01

    Many molecular epidemiological studies have been performed to explore the association between MTHFR C677T polymorphism and cancer risk in diverse populations. However, the results were inconsistent. Hence, we performed a meta-analysis to investigate the association between cancer risk and MTHFR C677T (150,086 cases and 200,699 controls from 446 studies) polymorphism. Overall, significantly increased cancer risk was found when all eligible studies were pooled into the meta-analysis. In the further stratified and sensitivity analyses, significantly increased breast cancer risk was found in Asians and Indians, significantly decreased colon cancer risk was found, significantly decreased colorectal cancer risk was found in male population, significantly increased gastric cancer risk was found in Caucasians and Asians, significantly increased hepatocellular cancer risk was found in Asians, significantly decreased adult acute lymphoblastic leukemia (AALL) risk was found in Caucasians, significantly decreased childhood acute lymphoblastic leukemia (CALL) risk was found in Asians, and significantly increased multiple myeloma and NHL risk was found in Caucasians. In summary, this meta-analysis suggests that MTHFR C677T polymorphism is associated with increased breast cancer, gastric cancer, and hepatocellular cancer risk in Asians, is associated with increased gastric cancer, multiple myeloma, and NHL risk in Caucasians, is associated with decreased AALL risk in Caucasians, is associated with decreased CALL risk in Asians, is associated with increased breast cancer risk in Asians, is associated with decreased colon cancer risk, and is associated with decreased colorectal cancer risk in male population. Moreover, this meta-analysis also points out the importance of new studies, such as Asians of HNC, Asians of lung cancer, and Indians of breast cancer, because they had high heterogeneity in this meta-analysis (I (2)?>?75 %). PMID:26081619

  20. Nitrite reductase genes in halobenzoate degrading denitrifying bacteria

    E-print Network

    Ward, Bess

    Nitrite reductase genes in halobenzoate degrading denitrifying bacteria Bongkeun Song à , Bess B November 2002 Abstract Diversity of the functional genes encoding dissimilatory nitrite reductase degrading denitrifying consortia. Nitrite reductase genes were PCR-amplified with degenerate primers

  1. Nitrogen fixation in transposon mutants from Bradyrhizobium japonicum USDA 110 impaired in nitrate reductase.

    PubMed

    Camacho, María; Burgos, Araceli; Chamber-Pérez, Manuel A

    2003-04-01

    Tn5 transposon mutagenesis was carried out in Bradyrhizobium japonicum strain USDA 110 to produce defective mutants. From over one thousand clones expressing low levels of nitrate reductase activity as free-living bacteria, approximately five percent had significantly different ratios of nodulation, N2 fixation or nitrate reductase activity compared to the wild strain when determined in bacteroids from soybean nodules. Tn5 insertions were checked previously and mutants were arranged into four different groups. Only one of these groups, designated AN, was less effective at N2 fixation than the wild strain, suggesting a mutation in a domain shared by nitrogenase and NR. The remaining groups of insertions successfully nodulated and were as effective at N2 fixation as the wild strain, but showed diminished ability to reduce nitrate both in nodules and in the isolated bacteroids when assayed in vitro with NADH or methyl viologen as electron donors. PCR amplification demonstrated that Tn5 insertions took place in different genes on each mutant group and the type of mutant (CC) expressing almost no nitrate reductase activity under all treatments seemed to possess transposable elements in two genes. Induction of nitrate reductase activity by nitrate was observed only in those clones expressing a low constitutive activity (AN and AE). Nitrate reductase activity in bacteroids along nodule growth decreased in all groups including the ineffective AN group, whose nodulation was highly inhibited by nitrate at 5 mmol/L N. Host-cultivar interaction seemed to influence the regulation of nitrate reductase activity in bacteroids. Total or partial repression of nitrate reductase activity in bacteroids unaffected by N2 fixation (CC, AJ and AE groups) improved nodule resistance to nitrate and N yields of shoots over those of the wild strain. These observations may suggest that some of the energy supplied to bacteroids was wasted by its constitutive NRA. PMID:12756917

  2. Effect of Mutation on Enzyme Motion in Dihydrofolate James B. Watney, Pratul K. Agarwal, and Sharon Hammes-Schiffer*

    E-print Network

    Hammes-Schiffer, Sharon

    Effect of Mutation on Enzyme Motion in Dihydrofolate Reductase James B. Watney, Pratul K. Agarwal- folate reductase enzyme are presented. Although residue 121 is on the exterior of the enzyme for the mutant than for the wild-type enzyme by an amount that is consistent with the experimentally observed

  3. Identification of key residues in Debaryomyces hansenii carbonyl reductase for highly productive preparation of (S)-aryl halohydrins.

    PubMed

    Xu, Guo-Chao; Shang, Yue-Peng; Yu, Hui-Lei; Xu, Jian-He

    2015-11-01

    Key residues of Debaryomyces hansenii carbonyl reductase in the determination of the reducing activity towards aryl haloketones were identified through combinatorial mutation of conserved residues. This study provides a green and efficient biocatalyst for the synthesis of (S)-aryl halohydrins. PMID:26364768

  4. Phenotypic classification of male pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency

    SciTech Connect

    Sinnecker, G.H.G; Hiort, O.; Kruse, K.; Dibbelt, L.

    1996-05-03

    Conversion of testosterone (T) to dihydrotestosterone (DHT) in genital tissue is catalysed by the enzyme 5{alpha}-reductase 2, which is encoded by the SRD5A2 gene. The potent androgen DHT is required for full masculinization of the external genitalia. Mutations of the SRD5A2 gene inhibit enzyme activity, diminish DHT formation, and hence cause masculinization defects of varying degree. The classical syndrome, formerly described as pseudovaginal perineoscrotal hypospadias, is characterized by a predominantly female phenotype at birth and significant virilization without gynecomastia at puberty. We investigated nine patients with steroid 5{alpha}-reductase 2 deficiency (SRD). T/DHT-ratios were highly increased in the classical syndrome, but variable in the less severe affected patients. Mutations in the SRD5A2 gene had been characterized using PCR-SSCP analysis and direct DNA sequencing. A small deletion was encountered in two patients, while all other patients had single base mutations which result in amino acid substitutions. We conclude that phenotypes may vary widely in patients with SRD5A2 gene mutations spanning the whole range from completely female to normal male without distinctive clinical signs of the disease. Hence, steroid 5{alpha}-reductase deficiency should be considered not only in sex reversed patients with female or ambiguous phenotypes, but also in those with mild symptoms of undermasculinization as encountered in patients with hypospadias and/or micropenis. A classification based on the severity of the masculinization defect may be used for correlation of phenotypes with enzyme activities and genotypes, and for comparisons of phenotypes between different patients as the basis for clinical decisions to be made in patients with pseudohermaphroditism due to steroid 5{alpha}-reductase 2 deficiency. 22 refs., 2 figs., 2 tabs.

  5. PAI-1 4G-4G and MTHFR 677TT in non-hepatitis C virus/hepatitis B virus-related liver cirrhosis

    PubMed Central

    Pasta, Linda; Pasta, Francesca

    2015-01-01

    AIM: To evaluate the different roles of thrombophilia in patients with and without viral etiology. The thrombophilic genetic factors (THRGFs), PAI-1 4G-4G, MTHFR 677TT, V Leiden 506Q and prothrombin 20210A, were studied as risk factors in 1079 patients with liver cirrhosis (LC), enrolled from January 2000 to January 2014. METHODS: All Caucasian LC patients consecutively observed in a fourteen-year period were included; the presence of portal vein thrombosis (PVT) and Budd Chiari syndrome (BCS) was registered. The differences between the proportions of each THRGF with regard to the presence or absence of viral etiology and the frequencies of the THRGF genotypes with those predicted in a population by the Hardy-Weinberg equilibrium were registered. RESULTS: Four hundred and seventeen/one thousand and seventy-six patients (38.6%) showed thrombophilia: 217 PAI-1 4G-4G, 176 MTHFR C677TT, 71 V Leiden factor and 41 prothrombin G20210 A, 84 with more than 1 THRGF; 350 presented with no viral liver cirrhosis (NVLC) and 729 with, called viral liver cirrhosis (VLC), of whom 56 patients were hepatitis C virus + hepatitis B virus. PAI-1 4G-4G, MTHFR C677TT, the presence of at least one TRHGF and the presence of > 1 THRGF, were statistically more frequent in patients with NVLC vs patients with VLC: All ?2 > 3.85 and P < 0.05. Patients with PVT and/or BCS with at least one TRHGF were 189/352 (53.7%). The Hardy-Weinberg of PAI-1 and MTHFR 677 genotypes deviated from that expected from a population in equilibrium in patients with NVLC (respectively ?2 = 39.3; P < 0.000 and ?2 = 27.94; P < 0.05), whereas the equilibrium was respected in VLC. CONCLUSION: MTHFR 677TT was nearly twofold and PAI-1 4G-4G more than threefold more frequently found in NVLC vs patients with VLC; the Hardy-Weinberg equilibrium of these two polymorphisms confirms this data in NVLC. We suggest that PAI-1 4G-4G and MTHFR 677TT could be considered as factors of fibrosis and thrombosis mechanisms, increasing the inflammation response, and causing the hepatic fibrosis and augmented intrahepatic vascular resistance typical of LC. PAI-1 4G-4G and MTHFR 677TT screening of LC patients could be useful, mainly in those with NVLC, to identify patients in which new drug therapies based on the attenuation of the hepatic stellate cells activation or other mechanisms could be more easily evaluated. PMID:26689658

  6. Tetrathionate reductase of Salmonella thyphimurium: a molybdenum containing enzyme

    SciTech Connect

    Hinojosa-Leon, M.; Dubourdieu, M.; Sanchez-Crispin, J.A.; Chippaux, M.

    1986-04-29

    Use of radioactive molybdenum demonstrates that the tetrathionate reductase of Salmonella typhimurium is a molydenum containing enzyme. It is proposed that this enzyme shares with other molybdo-proteins, such as nitrate reductase, a common molybdenum containing cofactor the defect of which leads to the loss of the tetrathionate reductase and nitrate reductase activities.

  7. Evolution Alters the Enzymatic Reaction Coordinate of Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    How evolution has affected enzyme function is a topic of great interest in the field of biophysical chemistry. Evolutionary changes from Escherichia coli dihydrofolate reductase (ecDHFR) to human dihydrofolate reductase (hsDHFR) have resulted in increased catalytic efficiency and an altered dynamic landscape in the human enzyme. Here, we show that a subpicosecond protein motion is dynamically coupled to hydride transfer catalyzed by hsDHFR but not ecDHFR. This motion propagates through residues that correspond to mutational events along the evolutionary path from ecDHFR to hsDHFR. We observe an increase in the variability of the transition states, reactive conformations, and times of barrier crossing in the human system. In the hsDHFR active site, we detect structural changes that have enabled the coupling of fast protein dynamics to the reaction coordinate. These results indicate a shift in the DHFR family to a form of catalysis that incorporates rapid protein dynamics and a concomitant shift to a more flexible path through reactive phase space. PMID:25369552

  8. Rnr4p, a novel ribonucleotide reductase small-subunit protein.

    PubMed Central

    Wang, P J; Chabes, A; Casagrande, R; Tian, X C; Thelander, L; Huffaker, T C

    1997-01-01

    Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex. PMID:9315671

  9. Maternal and offspring MTHFR gene C677T polymorphism as predictors of congenital atrial septal defect and patent ductus arteriosus.

    PubMed

    Zhu, Wenli L; Li, Yong; Yan, Liying; Dao, Jingjing; Li, Shuqin

    2006-01-01

    To observe the association of MTHFR gene C677T locus polymorphism with occurrence of congenital heart defects (CHDs), 21 patients with atrial septal defect (ASD), 35 patients with patent ductus arteriosus (PDA), one patient with both conditions combined, and their biological parents were collected as the case group. Another 104 normal individuals and their biological parents without a family history of birth defects were selected as the control group. MTHFR C677T genotypes of each sample were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed for the occurrence of ASD, the odds ratio (OR) of TT genotype was 4.08 [95% confidence interval (95% CI) = 1.28-13.24] compared with CT genotype. For the occurrence of PDA, the ORs of TT were 3.44 (95% CI = 0.89-16.13) and 2.38 (95% CI = 0.92-6.14) compared with CC and CT genotypes, respectively. Author as meant? Compared with CC + CT genotype combination, the ORs of TT were 3.95 (95% CI = 1.38-11.44) and 2.60 (95% CI = 1.02-6.36) for ASD and PSD respectively. The results also had sex differences and the statistical significance was only observed in male ASD and female PDA. The ORs of T allele carriers were 2.29 (95% CI = 1.08-4.92) and 1.88 (95% CI = 1.02-3.47) compared with C allele for the occurrences of ASD and PDA respectively. The analysis of parents genotype showed that the OR of TT mothers was 2.31 (95% CI = 0.96-5.59, P < 0.05) compared with (CC + CT) for the occurrence of PDA in offspring. So this study could give a clue that MTHFR C677T locus variation was related with occurrence of ASD and PDA, and the carriers of TT genotype and T allele had higher risk of diseases. The mother carrying TT genotype was associated with occurrence of PDA in offspring. PMID:16373366

  10. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  11. An electrogenic nitric oxide reductase.

    PubMed

    Al-Attar, Sinan; de Vries, Simon

    2015-07-22

    Nitric oxide reductases (Nors) are members of the heme-copper oxidase superfamily that reduce nitric oxide (NO) to nitrous oxide (N?O). In contrast to the proton-pumping cytochrome oxidases, Nors studied so far have neither been implicated in proton pumping nor have they been experimentally established as electrogenic. The copper-A-dependent Nor from Bacillus azotoformans uses cytochrome c??? as electron donor but lacks menaquinol activity, in contrast to our earlier report (Suharti et al., 2001). Employing reduced phenazine ethosulfate (PESH) as electron donor, the main NO reduction pathway catalyzed by Cu(A)Nor reconstituted in liposomes involves transmembrane cycling of the PES radical. We show that Cu(A)Nor reconstituted in liposomes generates a proton electrochemical gradient across the membrane similar in magnitude to cytochrome aa?, highlighting that bacilli using Cu(A)Nor can exploit NO reduction for increased cellular ATP production compared to organisms using cNor. PMID:26149211

  12. One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders

    PubMed Central

    Pa?ca, Sergiu P; Dronca, Eleonora; Kaucsár, Tamás; Cr?ciun, Elena C; Endreffy, Emõke; Ferencz, Beatrix K; Iftene, Felicia; Benga, Ileana; Cornean, Rodica; Banerjee, Ruma; Dronca, Maria

    2009-01-01

    Autism spectrum disorders (ASDs), which include the prototypic autistic disorder (AD), Asperger’s syndrome (AS) and pervasive developmental disorders not otherwise specified (PDD-NOS), are complex neurodevelopmental conditions of unknown aetiology. The current study investigated the metabolites in the methionine cycle, the transsulphuration pathway, folate, vitamin B12 and the C677T polymorphism of the MTHFR gene in three groups of children diagnosed with AD (n= 15), AS (n= 5) and PDD-NOS (n= 19) and their age- and sex-matched controls (n= 25). No metabolic disturbances were seen in the AS patients, while in the AD and PDD-NOS groups, lower plasma levels of methionine (P= 0.01 and P= 0.03, respectively) and ?-aminobutyrate were observed (P= 0.01 and P= 0.001, respectively). Only in the AD group, plasma cysteine (P= 0.02) and total blood glutathione (P= 0.02) were found to be reduced. Although there was a trend towards lower levels of serine, glycine, N, N-dimethylglycine in AD patients, the plasma levels of these metabolites as well as the levels of homocysteine and cystathionine were not statistically different in any of the ASDs groups. The serum levels of vitamin B12 and folate were in the normal range. The results of the MTHFR gene analysis showed a normal distribution of the C677T polymorphism in children with ASDs, but the frequency of the 677T allele was slightly more prevalent in AD patients. Our study indicates a possible role for the alterations in one carbon metabolism in the pathophysiology of ASDs and provides, for the first time, preliminary evidence for metabolic and genetic differences between clinical subtypes of ASDs. PMID:19267885

  13. CATALYTIC ADVANTAGES PROVIDED BY SELENOCYSTEINE IN METHIONINE-S-SULFOXIDE REDUCTASES

    PubMed Central

    Kim, Hwa-Young; Fomenko, Dmitri E.; Yoon, Yeo-Eun; Gladyshev, Vadim N.

    2008-01-01

    Methionine sulfoxide reductases are key enzymes that repair oxidatively damaged proteins. Two distinct stereospecific enzyme families are responsible for this function: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In the present study, we identified multiple selenoprotein MsrA sequences in organisms from bacteria to animals. We characterized the selenocysteine (Sec)-containing Chlamydomonas MsrA and found that this protein exhibited 10–50-fold higher activity than either its cysteine (Cys) mutant form or the natural mouse Cys-containing MsrA, making this selenoenzyme the most efficient MsrA known. We also generated a selenoprotein form of mouse MsrA and found that the presence of Sec increased the activity of this enzyme when a resolving Cys was mutated in the protein. These data suggest that the presence of Sec improves the reduction of methionine sulfoxide by MsrAs. However, the oxidized selenoprotein could not always be efficiently reduced to regenerate the active enzyme. Overall, this study demonstrates that sporadically evolved Sec-containing forms of methionine sulfoxide reductases reflect catalytic advantages provided by Sec in these and likely other thiol-dependent oxidoreductases. PMID:17105189

  14. Characterization and reconstitute of a [Fe4S4] adenosine 5'-phosphosulfate reductase from Acidithiobacillus ferrooxidans.

    PubMed

    Zheng, Chunli; Zhang, Yanfei; Liu, Yuandong; Wu, Anna; Xia, Lexian; Zeng, Jia; Liu, Jianshe; Qiu, Guanzhou

    2009-06-01

    Adenosine 5'-phosphosulfate (APS) reductase is a key enzyme involved in the pathways of sulfate reduction and sulfide oxidation in the biological sulfur cycle. In this study, the gene of APS reductase from Acidithiobacillus ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. The molecular mass of the recombinant APS reductase was determined to be 28 kDa using SDS-PAGE. According to optical and EPR spectra results of the recombinant protein confirmed that the iron-sulfur cluster inserted into the active site of the protein. Site-directed mutation for the enzyme revealed that Cys110, Cys111, Cys193, and Cys196 were in ligation with the iron-sulfur cluster. The [Fe4S4] cluster could be assembled in vitro, and exhibited electron transport and redox catalysis properties. As we know so far, this is the first report of expression in E. coli of APS reductase from A. ferrooxidans. PMID:19225840

  15. Atomic Structure of Salutaridine Reductase from the Opium Poppy (Papaver somniferum)

    SciTech Connect

    Higashi, Yasuhiro; Kutchan, Toni M.; Smith, Thomas J.

    2011-11-18

    The opium poppy (Papaver somniferum L.) is one of the oldest known medicinal plants. In the biosynthetic pathway for morphine and codeine, salutaridine is reduced to salutaridinol by salutaridine reductase (SalR; EC 1.1.1.248) using NADPH as coenzyme. Here, we report the atomic structure of SalR to a resolution of {approx}1.9 {angstrom} in the presence of NADPH. The core structure is highly homologous to other members of the short chain dehydrogenase/reductase family. The major difference is that the nicotinamide moiety and the substrate-binding pocket are covered by a loop (residues 265-279), on top of which lies a large 'flap'-like domain (residues 105-140). This configuration appears to be a combination of the two common structural themes found in other members of the short chain dehydrogenase/reductase family. Previous modeling studies suggested that substrate inhibition is due to mutually exclusive productive and nonproductive modes of substrate binding in the active site. This model was tested via site-directed mutagenesis, and a number of these mutations abrogated substrate inhibition. However, the atomic structure of SalR shows that these mutated residues are instead distributed over a wide area of the enzyme, and many are not in the active site. To explain how residues distal to the active site might affect catalysis, a model is presented whereby SalR may undergo significant conformational changes during catalytic turnover.

  16. Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex.

    PubMed

    Zumft, W G; Braun, C; Cuypers, H

    1994-01-15

    Nitric oxide (NO) reductase is an integral membrane component of the anaerobic respiratory chain of Pseudomonas stutzeri that transforms nitrate to dinitrogen (denitrification). The enzyme catalyzes the reduction of NO to nitrous oxide. The structural genes for the NO reductase complex, norC and norB, were sequenced and their organization established by primer extension and Northern blot analysis. The norCB genes encoding the cytochrome c and cytochrome b subunits of the enzyme are contiguous and transcribed as a single 2.0-kb transcript. The promoter region has a canonical recognition motif for the transcriptional activator protein Fnr, centered at -40.5 nucleotides from the initiation site of transcription. No similarity of the derived gene products to known cytochromes of b- or c-type was found in a data bank search. Post-translational processing of the two subunits was limited to the removal of the terminal methionine to leave an N-terminal serine in either subunit. The mature cytochrome c subunit (16508Da, 145 residues) is predicted to be a bitopic protein with a single membrane anchor. The mature cytochrome b subunit (53006Da, 473 residues) is a putatively polytopic, strongly hydrophobic membrane-bound protein with 12 potential transmembrane segments. Several histidine and proline residues were identified with potentially structural and/or functional importance. Mutational inactivation of NO reductase by deletion of norB or the norCB genes affected strongly the in vivo activity of respiratory nitrite reductase (cytochrome cd1), but to a much lesser extent the expression level of this enzyme. In turn, mutational inactivation of the structural gene for cytochrome cd1, nirS, or loss of in vivo nitrite reduction by mutation of the nirT gene, encoding a presumed tetraheme cytochrome, lowered the expression level of NO reductase to 5-20%, but hardly its catalytic activity. The cellular concentration of NO reductase increased again on restoration of nitrite reduction in the nirS::Tn5 mutant MK202 by complementation with nirS or with the heterologous nirK gene, encoding the Cu-containing nitrite reductase from Pseudomonas aureofaciens. Thus, NO may be required as an inducer for its own reductase. Our results show that the nitrite-reducing system and the NO-reducing system are not operating independently from each other but are interlaced by activity modulation and regulation of enzyme synthesis. PMID:7508388

  17. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  18. MTHFR 677T is a strong determinant of the degree of hearing loss among Polish males with postlingual sensorineural hearing impairment.

    PubMed

    Pollak, Agnieszka; Mueller-Malesinska, Malgorzata; Lechowicz, Urszula; Skorka, Agata; Korniszewski, Lech; Sobczyk-Kopciol, Agnieszka; Waskiewicz, Anna; Broda, Grazyna; Iwanicka-Pronicka, Katarzyna; Oldak, Monika; Skarzynski, Henryk; P?oski, Rafa?

    2012-07-01

    Hearing impairment (HI) is the most common sensory handicap. Congenital HI often has a genetic basis, whereas the etiology of nonsyndromic postlingual HI (npHI) usually remains unidentified. Our purpose was to test whether the MTHFR C677T (rs1801133) polymorphism affecting folate metabolism is associated with the occurrence or severity of npHI. We studied rs1801133 genotypes in 647 npHI patients (age <40, sudden sensorineural loss excluded, HI characterized as mean of better ear hearing thresholds for 0.5-8 kHz) and 3273 adult controls from the background population. Genotype distribution among patients and controls was similar, but among male cases (n = 302) we found a dose-dependent correlation of MTHFR 677T with the degree of HI (mean thresholds in dB: 38.8, 44.9, and 53.3, for CC, CT, and TT genotypes, respectively; p = 0.0013, p(cor.) = 0.017). Among male patients rs1801133 TT significantly increased the risk of severe/profound HI (odds ratio = 4.88, p = 0.001). Among controls the known effect of MTHFR 677T on plasma total homocysteine was more pronounced in men than in women (p<0.00004 for genotype-sex interaction) suggesting that in Poland folate deficiency is more prevalent in males. In conclusion, we report a novel strong effect of MTHFR 677T among males with npHI. The functional significance of rs1801133 suggests that these patients may benefit from folate supplementation-an intervention which is simple, cheap, and devoid of side effects. PMID:22424391

  19. MTHFR 677T Is a Strong Determinant of the Degree of Hearing Loss Among Polish Males with Postlingual Sensorineural Hearing Impairment

    PubMed Central

    Pollak, Agnieszka; Mueller-Malesinska, Malgorzata; Lechowicz, Urszula; Skorka, Agata; Korniszewski, Lech; Sobczyk-Kopciol, Agnieszka; Waskiewicz, Anna; Broda, Grazyna; Iwanicka-Pronicka, Katarzyna; Oldak, Monika; Skarzynski, Henryk

    2012-01-01

    Hearing impairment (HI) is the most common sensory handicap. Congenital HI often has a genetic basis, whereas the etiology of nonsyndromic postlingual HI (npHI) usually remains unidentified. Our purpose was to test whether the MTHFR C677T (rs1801133) polymorphism affecting folate metabolism is associated with the occurrence or severity of npHI. We studied rs1801133 genotypes in 647 npHI patients (age <40, sudden sensorineural loss excluded, HI characterized as mean of better ear hearing thresholds for 0.5–8 kHz) and 3273 adult controls from the background population. Genotype distribution among patients and controls was similar, but among male cases (n=302) we found a dose-dependent correlation of MTHFR 677T with the degree of HI (mean thresholds in dB: 38.8, 44.9, and 53.3, for CC, CT, and TT genotypes, respectively; p=0.0013, pcor.=0.017). Among male patients rs1801133 TT significantly increased the risk of severe/profound HI (odds ratio=4.88, p=0.001). Among controls the known effect of MTHFR 677T on plasma total homocysteine was more pronounced in men than in women (p<0.00004 for genotype-sex interaction) suggesting that in Poland folate deficiency is more prevalent in males. In conclusion, we report a novel strong effect of MTHFR 677T among males with npHI. The functional significance of rs1801133 suggests that these patients may benefit from folate supplementation—an intervention which is simple, cheap, and devoid of side effects. PMID:22424391

  20. Association between MTHFR C677T polymorphism and diabetic nephropathy in the Chinese population: An updated meta-analysis and review.

    PubMed

    Xiong, Xuan; Lin, Xiao-Kun; Xiao, Xiao; Qin, Dan-Ping; Zhou, Dao-Yuan; Hu, Jian-Guang; Liu, Yan; Zhong, Xiao-Shi

    2016-01-01

    To clarify the effects of MTHFR C677T polymorphism on the risk of diabetic nephropathy (DN) in the Chinese population, an updated meta-analysis was performed. Related studies were identified from PubMed, Springer Link, Ovid and Chinese Databases up to 24 February 2015. A total of 15 studies including 1227 DN cases, 586 healthy controls and 1277 diabetes mellitus (DM) controls were involved in this meta-analysis. Overall, a significantly elevated risk of DN was associated with all variants of MTHFR C677T when compared with the healthy group (T vs C, odds ratio (OR)?=?2.22, 95% confidence interval (CI)?=?1.88-2.61; TT?vs?CC, OR?=?4.22, 95% CI?=?3.02-5.90; TT?+?CT?vs?CC, OR?=?2.62, 95% CI?=?2.07-3.31; TT?vs?CC?+?CT, OR?=?2.81, 95% CI?=?2.08-3.81) or DM (T?vs?C, OR?=?1.78, 95% CI?=?1.59-2.00; TT?vs?CC, OR?=?2.95, 95% CI?=?2.33-3.73; TT?+?CT?vs?CC, OR?=?1.93, 95% CI?=?1.63-2.29; TT?vs?CC?+?CT, OR?=?2.31, 95% CI?=?1.87-2.84). In subgroup analyses stratified by ethnicity and geographic areas, it revealed the significant results in Chinese Han, in North and South China. The risk conferred by MTHFR C677T polymorphism is higher in North China than in South China. This meta-analysis showed that the MTHFR C677T variants may influence DN risk in Chinese, and further studies with gene-gene and gene-environment interactions are required for definite conclusions. PMID:26072975

  1. Role of the Tat ransport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri.

    PubMed

    Heikkilä, M P; Honisch, U; Wunsch, P; Zumft, W G

    2001-03-01

    By transforming N2O to N2, the multicopper enzyme nitrous oxide reductase provides a periplasmic electron sink for a respiratory chain that is part of denitrification. The signal sequence of the enzyme carries the heptameric twin-arginine consensus motif characteristic of the Tat pathway. We have identified tat genes of Pseudomonas stutzeri and functionally analyzed the unlinked tatC and tatE loci. A tatC mutant retained N2O reductase in the cytoplasm in the unprocessed form and lacking the metal cofactors. This is contrary to viewing the Tat system as specific only for fully assembled proteins. A C618V exchange in the electron transfer center CuA rendered the enzyme largely incompetent for transport. The location of the mutation in the C-terminal domain of N(2)O reductase implies that the Tat system acts on a completely synthesized protein and is sensitive to a late structural variation in folding. By generating a tatE mutant and a reductase-overproducing strain, we show a function for TatE in N2O reductase translocation. Further, we have found that the Tat and Sec pathways have to cooperate to produce a functional nitrite reductase system. The cytochrome cd1 nitrite reductase was found in the periplasm of the tatC mutant, suggesting export by the Sec pathway; however, the enzyme lacked the heme D1 macrocycle. The NirD protein as part of a complex required for heme D1 synthesis or processing carries a putative Tat signal peptide. Since NO reduction was also inhibited in the tatC mutant, the Tat protein translocation system is necessary in multiple ways for establishing anaerobic nitrite denitrification. PMID:11160097

  2. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  3. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...used to determine the activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease, glutathione reductase...

  4. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...used to determine the activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease, glutathione reductase...

  5. Purification and Characterization of the Selenate Reductase from Thauera selenatis*

    E-print Network

    Schroeder, Imke

    Purification and Characterization of the Selenate Reductase from Thauera selenatis* (Received energy by respiring anaerobically with selenate as the terminal electron acceptor. The reduction of selenate to selenite is catalyzed by a sele- nate reductase, previously shown to be located

  6. IN VITRO INHIBITION OF GLUTATHIONE REDUCTASE BY ARSENOTRI-GLUTATHIONE

    EPA Science Inventory

    Arsenotriglutathione, a product of the reduction of arsenate and the complexation of arsenite by glutathione, is a mixed type inhibitor of the reduction of glutathione disulfide by purified yeast glutathione reductase or the glutathione reductase activity in rabbit erythrocyte ly...

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...determine the activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease, glutathione reductase deficiency, or...

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...determine the activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease, glutathione reductase deficiency, or...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...determine the activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease, glutathione reductase deficiency, or...

  10. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  11. Predicting Resistance Mutations Using Protein Design Algorithms

    SciTech Connect

    Frey, K.; Georgiev, I; Donald, B; Anderson, A

    2010-01-01

    Drug resistance resulting from mutations to the target is an unfortunate common phenomenon that limits the lifetime of many of the most successful drugs. In contrast to the investigation of mutations after clinical exposure, it would be powerful to be able to incorporate strategies early in the development process to predict and overcome the effects of possible resistance mutations. Here we present a unique prospective application of an ensemble-based protein design algorithm, K*, to predict potential resistance mutations in dihydrofolate reductase from Staphylococcus aureus using positive design to maintain catalytic function and negative design to interfere with binding of a lead inhibitor. Enzyme inhibition assays show that three of the four highly-ranked predicted mutants are active yet display lower affinity (18-, 9-, and 13-fold) for the inhibitor. A crystal structure of the top-ranked mutant enzyme validates the predicted conformations of the mutated residues and the structural basis of the loss of potency. The use of protein design algorithms to predict resistance mutations could be incorporated in a lead design strategy against any target that is susceptible to mutational resistance.

  12. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  13. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  14. Respiratory arsenate reductase as a bidirectional enzyme

    SciTech Connect

    Richey, Christine; Chovanec, Peter; Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 ; Hoeft, Shelley E.; Oremland, Ronald S.; Basu, Partha; Stolz, John F.

    2009-05-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe-S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  15. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864... reductase assay. (a) Identification. A glutathione reductase assay is a device used to determine the... fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease,...

  16. Cloning and sequence analysis of D-erythrulose reductase from chicken: its close structural relation to tetrameric carbonyl reductases.

    PubMed

    Maeda, Miki; Kaku, Hanae; Shimada, Mikio; Nishioka, Takaaki

    2002-07-01

    Sequence analysis of a cDNA for D-erythrulose reductase from chicken liver showed that the deduced open reading frame encodes the protein with a molecular mass of 26 kDa consisting of 246 amino acids. Although the reductase shares more than 60% identity in the amino acid sequence with the mouse tetrameric carbonyl reductase, these two enzymes have many biochemical differences; their substrate specificity, subcellular localization, organ distribution, etc. A three-dimensional structure of D-erythrulose reductase was predicted by comparative modeling based on the structure of the tetrameric carbonyl reductase (PDB entry = 1CYD). Most of the residues at the active site (within 4 A from the ligand) of the carbonyl reductase were also conserved in the D-erythrulose reductase. Nevertheless, Val190 and Leu146 in the active site of the tetrameric carbonyl reductase were substituted in the D-erythrulose reductase by Asn192 and His148, respectively. The substitutions in the active sites may be related to the difference in substrate specificity of the two enzymes. The phylogenic analysis of D-erythrulose reductase and the other related proteins suggests that the protein described as a carbonyl reductase D-erythrulose reductase. PMID:12200544

  17. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  18. The Effectiveness of Pemetrexed Monotherapy Depending on Polymorphisms in TS and MTHFR Genes as Well as Clinical Factors in Advanced NSCLC Patients.

    PubMed

    Kucharczyk, Tomasz; Krawczyk, Pawe?; Powrózek, Tomasz; Kowalski, Dariusz M; Ramlau, Rodryg; Kalinka-Warzocha, Ewa; Knetki-Wróblewska, Magdalena; Winiarczyk, Kinga; Krzakowski, Maciej; Milanowski, Janusz

    2016-01-01

    In NSCLC, second-line chemotherapy using pemetrexed or docetaxel has limited efficacy and should be dedicated to selected groups of patients. Pemetrexed is an antifolate compound with the ability to inhibit enzymes (TS, DHFR and GARFT) involved in pyrimidine and purine synthesis. The objective of this study was to evaluate the association between polymorphisms of TS and MHFR genes and clinical outcomes in NSCLC patients treated with pemetrexed monotherapy. DNA was isolated from peripheral blood of 72 non-squamous NSCLC patients treated with pemetrexed. Using PCR and RFLP methods, the variable number of tandem repeats (VNTR), the G > C SNP in these repeats and insertion/deletion polymorphism of TS gene as well as 677C > T SNP in MTHFR gene were analyzed and correlated with disease control rate, progression-free survival and overall survival (OS) of NSCLC patients. Carriers of 2R/3R(G), 3R(C)/3R(G), 3R(G)/3R(G) genotypes showed significantly more frequent early progression than carriers of 2R/2R, 2R/3R(C), 3R(C)/3R(C) genotypes of TS gene (p < 0.05). Among carriers of triple 28 bp tandem repeats (3R) in TS gene and C/C genotype of MTHFR gene a significantly shorter OS was observed (HR = 3.07; p = 0.003). In multivariate analysis, significantly higher risk of death was observed in carriers of both 3R/3R genotype in TS and C/C genotype in 677C > T SNP in MTHFR (HR = 3.85; p < 0.005) as well as in patients with short duration of response to first-line chemotherapy (HR = 2.09; p < 0.005). Results of our study suggested that genetic factors may have a high predictive and prognostic value (even greater than clinical factors) for patients treated with pemetrexed monotherapy. PMID:26277606

  19. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    PubMed Central

    Jose, Manna; Banerjee, Moinak; Mathew, Anila; Bharadwaj, Tashi; Vijayan, Neetha; Thomas, Sanjeev V.

    2014-01-01

    Aim: Pregnancy in women with epilepsy (WWE) who are on anti-epileptic drugs (AEDs) has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR) might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M) and 123 WWE who had normal offsprings (WWE-N). Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032) whereas the poor metabolizer allele *2 and *2 *2 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively). All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations). Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE. PMID:25221392

  20. Engineering of phenylacetaldehyde reductase for efficient substrate conversion in concentrated 2-propanol.

    PubMed

    Makino, Yoshihide; Inoue, Kousuke; Dairi, Tohru; Itoh, Nobuya

    2005-08-01

    Phenylacetaldehyde reductase (PAR) is suitable for the conversion of various aryl ketones and 2-alkanones to corresponding chiral alcohols. 2-Propanol acts as a substrate solvent and hydrogen donor of coupled cofactor regeneration during the conversion of substrates catalyzed by PAR. To improve the conversion efficiency in high concentrations of substrate and 2-propanol, selection of a PAR mutant library and the subsequent rearrangement of mutations were attempted. With only a single selection round and following the manual combination of advantageous mutations, PAR was successfully adapted for the conversion of high concentrations of substrate with concentrated 2-propanol. This method will be widely applicable for the engineering of enzymes potentially valuable for industry. PMID:16085867

  1. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control

    PubMed Central

    Athanasiou, Dimitra; Bevilacqua, Dalila; Aguila, Monica; McCulley, Caroline; Kanuga, Naheed; Iwawaki, Takao; Paul Chapple, J.; Cheetham, Michael E.

    2014-01-01

    Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease. PMID:25055872

  2. A Peroxisomal Disorder of Severe Intellectual Disability, Epilepsy, and Cataracts Due to Fatty Acyl-CoA Reductase 1 Deficiency

    PubMed Central

    Buchert, Rebecca; Tawamie, Hasan; Smith, Christopher; Uebe, Steffen; Innes, A. Micheil; Al Hallak, Bassam; Ekici, Arif B.; Sticht, Heinrich; Schwarze, Bernd; Lamont, Ryan E.; Parboosingh, Jillian S.; Bernier, Francois P.; Abou Jamra, Rami

    2014-01-01

    Rhizomelic chondrodysplasia punctata (RCDP) is a group of disorders with overlapping clinical features including rhizomelia, chondrodysplasia punctata, coronal clefts, cervical dysplasia, congenital cataracts, profound postnatal growth retardation, severe intellectual disability, and seizures. Mutations in PEX7, GNPAT, and AGPS, all involved in the plasmalogen-biosynthesis pathway, have been described in individuals with RCDP. Here, we report the identification of mutations in another gene in plasmalogen biosynthesis, fatty acyl-CoA reductase 1 (FAR1), in two families affected by severe intellectual disability, early-onset epilepsy, microcephaly, congenital cataracts, growth retardation, and spasticity. Exome analyses revealed a homozygous in-frame indel mutation (c.495_507delinsT [p.Glu165_Pro169delinsAsp]) in two siblings from a consanguineous family and compound-heterozygous mutations (c.[787C>T];[1094A>G], p.[Arg263?];[Asp365Gly]) in a third unrelated individual. FAR1 reduces fatty acids to their respective fatty alcohols for the plasmalogen-biosynthesis pathway. To assess the pathogenicity of the identified mutations, we transfected human embryonic kidney 293 cells with plasmids encoding FAR1 with either wild-type or mutated constructs and extracted the lipids from the cells. We screened the lipids with gas chromatography and mass spectrometry and found that all three mutations abolished the reductase activity of FAR1, given that no fatty alcohols could be detected. We also observed reduced plasmalogens in red blood cells in one individual to a range similar to that seen in individuals with RCDP, further supporting abolished FAR1 activity. We thus expand the spectrum of clinical features associated with defects in plasmalogen biosynthesis to include FAR1 deficiency as a cause of syndromic severe intellectual disability with cataracts, epilepsy, and growth retardation but without rhizomelia. PMID:25439727

  3. A peroxisomal disorder of severe intellectual disability, epilepsy, and cataracts due to fatty acyl-CoA reductase 1 deficiency.

    PubMed

    Buchert, Rebecca; Tawamie, Hasan; Smith, Christopher; Uebe, Steffen; Innes, A Micheil; Al Hallak, Bassam; Ekici, Arif B; Sticht, Heinrich; Schwarze, Bernd; Lamont, Ryan E; Parboosingh, Jillian S; Bernier, Francois P; Abou Jamra, Rami

    2014-11-01

    Rhizomelic chondrodysplasia punctata (RCDP) is a group of disorders with overlapping clinical features including rhizomelia, chondrodysplasia punctata, coronal clefts, cervical dysplasia, congenital cataracts, profound postnatal growth retardation, severe intellectual disability, and seizures. Mutations in PEX7, GNPAT, and AGPS, all involved in the plasmalogen-biosynthesis pathway, have been described in individuals with RCDP. Here, we report the identification of mutations in another gene in plasmalogen biosynthesis, fatty acyl-CoA reductase 1 (FAR1), in two families affected by severe intellectual disability, early-onset epilepsy, microcephaly, congenital cataracts, growth retardation, and spasticity. Exome analyses revealed a homozygous in-frame indel mutation (c.495_507delinsT [p.Glu165_Pro169delinsAsp]) in two siblings from a consanguineous family and compound-heterozygous mutations (c.[787C>T];[1094A>G], p.[Arg263(?)];[Asp365Gly]) in a third unrelated individual. FAR1 reduces fatty acids to their respective fatty alcohols for the plasmalogen-biosynthesis pathway. To assess the pathogenicity of the identified mutations, we transfected human embryonic kidney 293 cells with plasmids encoding FAR1 with either wild-type or mutated constructs and extracted the lipids from the cells. We screened the lipids with gas chromatography and mass spectrometry and found that all three mutations abolished the reductase activity of FAR1, given that no fatty alcohols could be detected. We also observed reduced plasmalogens in red blood cells in one individual to a range similar to that seen in individuals with RCDP, further supporting abolished FAR1 activity. We thus expand the spectrum of clinical features associated with defects in plasmalogen biosynthesis to include FAR1 deficiency as a cause of syndromic severe intellectual disability with cataracts, epilepsy, and growth retardation but without rhizomelia. PMID:25439727

  4. A New Type of YumC-Like Ferredoxin (Flavodoxin) Reductase Is Involved in Ribonucleotide Reduction

    PubMed Central

    Shen, Jing; Jensen, Peter Ruhdal

    2015-01-01

    ABSTRACT The trxB2 gene, which is annotated as a thioredoxin reductase, was found to be essential for growth of Lactococcus lactis in the presence of oxygen. The corresponding protein (TrxB2) showed a high similarity with Bacillus subtilis YumC (E value = 4.0E?88), and YumC was able to fully complement the ?trxB2 mutant phenotype. YumC represents a novel type of ferredoxin (flavodoxin) reductase (FdR) with hitherto-unknown biological function. We adaptively evolved the ?trxB2 mutant under aerobic conditions to find suppressor mutations that could help elucidate the involvement of TrxB2 in aerobic growth. Genome sequencing of two independent isolates, which were able to grow as well as the wild-type strain under aerated conditions, revealed the importance of mutations in nrdI, encoding a flavodoxin involved in aerobic ribonucleotide reduction. We suggest a role for TrxB2 in nucleotide metabolism, where the flavodoxin (NrdI) serves as its redox partner, and we support this hypothesis by showing the beneficial effect of deoxynucleosides on aerobic growth of the ?trxB2 mutant. Finally, we demonstrate, by heterologous expression, that the TrxB2 protein functionally can substitute for YumC in B. subtilis but that the addition of deoxynucleosides cannot compensate for the lethal phenotype displayed by the B. subtilis yumC knockout mutant. PMID:26507228

  5. Characterization of the nitric oxide reductase-encoding region in Rhodobacter sphaeroides 2.4.3.

    PubMed

    Bartnikas, T B; Tosques, I E; Laratta, W P; Shi, J; Shapleigh, J P

    1997-06-01

    A gene cluster which includes genes required for the expression of nitric oxide reductase in Rhodobacter sphaeroides 2.4.3 has been isolated and characterized. Sequence analysis indicates that the two proximal genes in the cluster are the Nor structural genes. These two genes and four distal genes apparently constitute an operon. Mutational analysis indicates that the two structural genes, norC and norB, and the genes immediately downstream, norQ and norD, are required for expression of an active Nor complex. The remaining two genes, nnrT and nnrU, are required for expression of both Nir and Nor. The products of norCBQD have significant identity with products from other denitrifiers, whereas the predicted nnrT and nnrU gene products have no similarity with products corresponding to other sequences in the database. Mutational analysis and functional complementation studies indicate that the nnrT and nnrU genes can be expressed from an internal promoter. Deletion analysis of the regulatory region upstream of norC indicated that a sequence motif which has identity to a motif in the gene encoding nitrite reductase in strain 2.4.3 is critical for nor operon expression. Regulatory studies demonstrated that the first four genes, norCBQD, are expressed only when the oxygen concentration is low and nitrate is present but that the two distal genes, nnrTU, are expressed constitutively. PMID:9171397

  6. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  7. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase.

    PubMed

    Wei, Yifeng; Li, Bin; Prakash, Divya; Ferry, James G; Elliott, Sean J; Stubbe, JoAnne

    2015-12-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  8. Diversity of Assimilatory Nitrate Reductase Genes From Plankton and Epiphytes Associated with a Seagrass Bed

    E-print Network

    Ward, Bess

    Microbial Ecology Diversity of Assimilatory Nitrate Reductase Genes From Plankton and Epiphytes 2006 / Online publication: 13 September 2007 Abstract Assimilatory nitrate reductase gene fragments, Florida, USA. Nitrate reductase genes from diatoms (NR) and heterotrophic bacteria (nasA) were amplified

  9. Distribution and immunological characterization of microbial aldehyde reductases.

    PubMed

    Kataoka, M; Shimizu, S; Yamada, H

    1992-01-01

    The distribution of microbial aldo-keto reductases was examined and their immunochemical characterization was performed. p-Nitrobenzaldehyde, pyridine-3-aldehyde and ethyl 4-chloro-3-oxobutanoate reductase activities were found to be widely distributed in a variety of microorganisms. In immunodiffusion studies, most yeasts belonging to the genera Sporobolomyces, Sporidiobolus and Rhodotorula formed precipitin bands with anti-Sporobolomyces salmonicolor aldehyde reductase serum. Furthermore, the results of immunotitration experiments suggested that Sporobolomyces salmonicolor AKU 4429 contains other enzyme(s) which can reduce p-nitrobenzaldehyde, pyridine-3-aldehyde and/or ethyl 4-chloro-3-oxobutanoate, and which are inactivated by anti-Sporobolomyces salmonicolor aldehyde reductase serum. PMID:1510561

  10. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase

    E-print Network

    Ando, Nozomi

    Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is ...

  11. Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer

    PubMed Central

    Thomas, F; Motsinger-Reif, A A; Hoskins, J M; Dvorak, A; Roy, S; Alyasiri, A; Myerson, R J; Fleshman, J W; Tan, B R; McLeod, H L

    2011-01-01

    Background: There is a large degree of variation in tumour response and host toxicities associated with neoadjuvant chemoradiation for rectal cancer patients. We performed a complimentary pharmacogenetic study to investigate germline polymorphisms of genes involved in 5-fluorouracil (5-FU) and irinotecan pathways and their potential association with clinical outcomes and toxicities from neoadjuvant chemoradiation in patients with rectal cancer treated in a prospective genotype-directed study. Methods: The germline DNA of 131 patients was genotyped for 10 variants in TYMS, MTHFR, DPYD, UGT1A1, ABCC1 and SLCO1B1 genes. Ninety-six patients were treated with 5-FU/radiotherapy (RT) and 35 received 5-FU/RT/irinotecan. Relationships between genetic variants and adverse events, tumour response, overall and disease-free survivals were assessed. Results: MTHFR 1298A>C and MTHFR diplotypes (for 677C>T and 1298A>C) were associated with chemoradiation-related toxicity when 5-FU was used alone. MTHFR haplotypes (677C–1298C) and diplotypes (CA–TA and TA–TA) showed, respectively, a protective and a negative effect on the incidence of severe diarrhoea or mucositis. No association was observed between genetic markers and drug response. Conclusion: MTHFR polymorphisms can potentially predict toxicity in patients treated with 5-FU as a single chemotherapeutic drug. PMID:22045187

  12. A single amino acid determines the catalytic efficiency of two alkenal double bond reductases produced by the liverwort Plagiochasma appendiculatum.

    PubMed

    Wu, Yifeng; Cai, Yuanheng; Sun, Yi; Xu, Ruixue; Yu, Haina; Han, Xiaojuan; Lou, Hongxiang; Cheng, Aixia

    2013-09-17

    Alkenal double bond reductases (DBRs) catalyze the NADPH-dependent reduction of the ?,?-unsaturated double bond of many secondary metabolites. Two alkenal double bond reductase genes PaDBR1 and PaDBR2 were isolated from the liverwort species Plagiochasma appendiculatum. Recombinant PaDBR2 protein had a higher catalytic activity than PaDBR1 with respect to the reduction of the double bond present in hydroxycinnamyl aldehydes. The residue at position 56 appeared to be responsible for this difference in enzyme activity. The functionality of a C56 to Y56 mutation in PaDBR1 was similar to that of PaDBR2. Further site-directed mutagenesis and structural modeling suggested that the phenol ring stacking between this residue and the substrate was an important determinant of catalytic efficiency. PMID:23954295

  13. Molecular study of the 5 {alpha}-reductase type 2 gene in three European families with 5 {alpha}-reductase deficiency

    SciTech Connect

    Boudon, C.; Lumbroso, S.; Lobaccaro, J.M.

    1995-07-01

    The molecular basis of 5{alpha}-reductase (5{alpha}R) deficiency was investigated in four patients from three European families. In the French family, the first patient was raised as a female, and gonadectomy was performed before puberty. The second sibling, also raised as female, differed in that gonadal removal was performed after the onset of pubertal masculinization. The other two patients, both from Polish families, developed masculinization of external genitalia during puberty. All patients developed a female sexual identity. In all cases, no known consanguinity or family history of 5{alpha}R deficiency was reported. The genomic DNAs of the patients were sequenced after polymerase chain reaction amplification of the five exons of the 5{alpha}R type 2 gene. We found two homozygous mutations responsible for gutamine to arginine and histidine to arginine substitution in families 1 and 3, respectively. In family 2, we found a heterozygous mutation responsible for an asparagine to serine substitution at position 193. The glutamine/arginine 126 mutation in the French family was previously reported in a Creole ethnic group, and the Polish histidine/arginine 231 mutation was previously reported in a patient from Chicago, Moreover, all of the mutations created new restriction sites, which were used to determine the kindred carrier status in the three families. Because 5{alpha}R deficiency is known to be heterogenous disease in terms of clinical and biochemical expression, our data suggest that molecular biology analysis of the type 2 gene could be an essential step in diagnosing 5{alpha}R deficiency. 22 refs., 3 figs., 1 tab.

  14. Detection of human genome mutations associated with pregnancy complications using 3-D microarray based on macroporous polymer monoliths.

    PubMed

    Glotov, A S; Sinitsyna, E S; Danilova, M M; Vashukova, E S; Walter, J G; Stahl, F; Baranov, V S; Vlakh, E G; Tennikova, T B

    2016-01-15

    Analysis of variations in DNA structure using a low-density microarray technology for routine diagnostic in evidence-based medicine is still relevant. In this work the applicability of 3-D macroporous monolithic methacrylate-based platforms for detection of different pathogenic genomic substitutions was studied. The detection of nucleotide replacements in F5 (Leiden G/A, rs6025), MTHFR (C/T, rs1801133) and ITGB3 (T/C, rs5918), involved in coagulation, and COMT (C/G, rs4818), TPH2 (T/A, rs11178997), PON1 (T/A rs854560), AGTR2 (C/A, rs11091046) and SERPINE1 (5G/4G, rs1799889), associated with pregnancy complications, was performed. The effect of such parameters as amount and type of oligonucleotide probe, amount of PCR product on signal-to-noise ratio, as well as mismatch discrimination was analyzed. Sensitivity and specificity of mutation detections were coincided and equal to 98.6%. The analysis of SERPINE1 and MTHFR genotypes by both NGS and developed microarray was performed and compared. PMID:26592644

  15. Reduced Impact of Pyrimethamine Drug Pressure on Plasmodium malariae Dihydrofolate Reductase Gene

    PubMed Central

    Khim, Nimol; Kim, Saorin; Bouchier, Christiane; Tichit, Magali; Ariey, Frédéric; Fandeur, Thierry; Chim, Pheaktra; Ke, Sopheakvatey; Sum, Sarorn; Man, Somnang; Ratsimbasoa, Arsène; Durand, Rémy

    2012-01-01

    Molecular investigations performed following the emergence of sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum have allowed the identification of the dihydrofolate reductase (DHFR) enzyme as the target of pyrimethamine. Although clinical cases of Plasmodium malariae are not usually treated with antifolate therapy, incorrect diagnosis and the high frequency of undetected mixed infections has probably exposed non-P. falciparum parasites to antifolate therapy in many areas. In this context, we aimed to assess the worldwide genetic diversity of the P. malariae dhfr gene in 123 samples collected in Africa and Asia, areas with different histories of SP use. Among the 10 polymorphic sites found, we have observed 7 new mutations (K55E, S58R, S59A, F168S, N194S, D207G, and T221A), which led us to describe 6 new DHFR proteins. All isolates from African countries were classified as wild type, while new mutations and haplotypes were recognized as exclusive to Madagascar (except for the double mutations at nucleotides 341 and 342 [S114N] found in one Cambodian isolate). Among these nonsynonymous mutations, two were likely related to pyrimethamine resistance: S58R (corresponding to C59R in P. falciparum and S58R in Plasmodium vivax; observed in one Malagasy sample) and S114N (corresponding to S108N in P. falciparum and S117N in P. vivax; observed in three Cambodian samples). PMID:22123682

  16. Human carbonyl reductase 4 is a mitochondrial NADPH-dependent quinone reductase.

    PubMed

    Endo, Satoshi; Matsunaga, Toshiyuki; Kitade, Yukio; Ohno, Satoshi; Tajima, Kazuo; El-Kabbani, Ossama; Hara, Akira

    2008-12-26

    A protein encoded in the gene Cbr4 on human chromosome 4q32.3 belongs to the short-chain dehydrogenase/reductase family. Contrary to the functional annotation as carbonyl reductase 4 (CBR4), we show that the recombinant tetrameric protein, composed of 25-kDa subunits, exhibits NADPH-dependent reductase activity for o- and p-quinones, but not for other aldehydes and ketones. The enzyme was insensitive to dicumarol and quercetin, potent inhibitors of cytosolic quinone reductases. The 25-kDa CBR4 was detected in human liver, kidney and cell lines on Western blotting using anti-CBR4 antibodies. The overexpression of CBR4 in bovine endothelial cells reveals that the enzyme has a non-cleavable mitochondrial targeting signal. We further demonstrate that the in vitro quinone reduction by CBR4 generates superoxide through the redox cycling, and suggest that the enzyme may be involved in the induction of apoptosis by cytotoxic 9,10-phenanthrenequinone. PMID:19000905

  17. Thermal stabilization of dihydrofolate reductase using monte carlo unfolding simulations and its functional consequences.

    PubMed

    Tian, Jian; Woodard, Jaie C; Whitney, Anna; Shakhnovich, Eugene I

    2015-04-01

    Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r=0.65-0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910

  18. Thermal Stabilization of Dihydrofolate Reductase Using Monte Carlo Unfolding Simulations and Its Functional Consequences

    PubMed Central

    Whitney, Anna; Shakhnovich, Eugene I.

    2015-01-01

    Design of proteins with desired thermal properties is important for scientific and biotechnological applications. Here we developed a theoretical approach to predict the effect of mutations on protein stability from non-equilibrium unfolding simulations. We establish a relative measure based on apparent simulated melting temperatures that is independent of simulation length and, under certain assumptions, proportional to equilibrium stability, and we justify this theoretical development with extensive simulations and experimental data. Using our new method based on all-atom Monte-Carlo unfolding simulations, we carried out a saturating mutagenesis of Dihydrofolate Reductase (DHFR), a key target of antibiotics and chemotherapeutic drugs. The method predicted more than 500 stabilizing mutations, several of which were selected for detailed computational and experimental analysis. We find a highly significant correlation of r = 0.65–0.68 between predicted and experimentally determined melting temperatures and unfolding denaturant concentrations for WT DHFR and 42 mutants. The correlation between energy of the native state and experimental denaturation temperature was much weaker, indicating the important role of entropy in protein stability. The most stabilizing point mutation was D27F, which is located in the active site of the protein, rendering it inactive. However for the rest of mutations outside of the active site we observed a weak yet statistically significant positive correlation between thermal stability and catalytic activity indicating the lack of a stability-activity tradeoff for DHFR. By combining stabilizing mutations predicted by our method, we created a highly stable catalytically active E. coli DHFR mutant with measured denaturation temperature 7.2°C higher than WT. Prediction results for DHFR and several other proteins indicate that computational approaches based on unfolding simulations are useful as a general technique to discover stabilizing mutations. PMID:25905910

  19. Original Articles Cytometric Quantification of Nitrate Reductase by

    E-print Network

    Jochem, Frank J.

    Original Articles Cytometric Quantification of Nitrate Reductase by Immunolabeling in the Marine November 1999; Accepted 24 November 1999 Background: The uptake of nitrate by phytoplankton is a central of biogenic carbon. Nitrate reductase catalyzes the first step of nitrate assimilation, the reduction of NO3

  20. Cloning and nitrate induction of nitrate reductase mRNA

    PubMed Central

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase protein and translatable mRNA. A partial cDNA clone for barley nitrate reductase has been isolated and identified by hybrid-selected translation. RNA blot-hybridization analysis shows that nitrate induction also causes a marked increase in the steady-state level of nitrate reductase mRNA. Images PMID:16593758

  1. Biochemical characterization of thioredoxin reductase from Babesia bovis.

    PubMed

    Regner, Erika L; Thompson, Carolina S; Iglesias, Alberto A; Guerrero, Sergio A; Arias, Diego G

    2014-04-01

    This paper addresses the identification, cloning, expression, purification and functional characterization of thioredoxin reductase from Babesia bovis, the etiological agent of babesiosis. The work deals with in vitro steady state kinetic studies and other complementary analyses of the thioredoxin reductase found in the pathogenic protist. Thioredoxin reductase from B. bovis was characterized as a homodimeric flavoprotein that catalyzes the NADPH-dependent reduction of Trx with a high catalytic efficiency. Moreover, the enzyme exhibited a disulfide reductase activity using DTNB as substrate, being this activity highly sensitive to inhibition by Eosin B. The thioredoxin reductase/thioredoxin system can reduce oxidized glutathione and S-nitrosoglutathione. Our in vitro data suggest that antioxidant defense in B. bovis could be supported by this enzyme. We have performed an enzymatic characterization, searching for targets for rational design of inhibitors. This work contributes to the better understanding of the redox biochemistry occurring in the parasite. PMID:24239559

  2. Biliverdin reductase: a target for cancer therapy?

    PubMed Central

    Gibbs, Peter E. M.; Miralem, Tihomir; Maines, Mahin D.

    2015-01-01

    Biliverdin reductase (BVR) is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s) of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-?B, Elk1, HO-1, and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKC?, and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation. PMID:26089799

  3. Key Residues Regulating the Reductase Activity of the Human Mitochondrial Apoptosis Inducing Factor.

    PubMed

    Villanueva, Raquel; Ferreira, Patricia; Marcuello, Carlos; Usón, Alejandro; Miramar, M Dolores; Peleato, M Luisa; Lostao, Anabel; Susin, Santos A; Medina, Milagros

    2015-08-25

    The human Apoptosis Inducing Factor (hAIF) is a bifunctional NAD(P)H-dependent flavoreductase involved in both mitochondrial energy metabolism and caspase-independent cell death. Even though several studies indicate that both functions are redox controlled by NADH binding, the exact role of hAIF as a reductase in healthy mitochondria remains unknown. Upon reduction by NADH, hAIF dimerizes and produces very stable flavin/nicotinamide charge transfer complexes (CTC), by stacking of the oxidized nicotinamide moiety of the NAD(+) coenzyme against the re-face of the reduced flavin ring of its FAD cofactor. Such complexes are critical to restrict the hAIF efficiency as a reductase. The molecular basis of the hAIF reductase activity is here investigated by analyzing the role played by residues contributing to the interaction of the FAD isoalloxazine ring and of the nicotinamide moiety of NADH at the active site. Mutations at K177 and E314 produced drastic effects on the hAIF ability to retain the FAD cofactor, indicating that these residues are important to set up the holo-enzyme active site conformation. Characterization of P173G hAIF indicates that the stacking of P173 against the isoalloxazine ring is relevant to determine the flavin environment and to modulate the enzyme affinity for NADH. Finally, the properties of the F310G and H454S hAIF mutants indicate that these two positions contribute to form a compact active site essential for NADH binding, CTC stabilization, and NAD(+) affinity for the reduced state of hAIF. These features are key determinants of the particular behavior of hAIF as a NADH-dependent oxidoreductase. PMID:26237213

  4. A role for a menthone reductase in resistance against microbial pathogens in plants.

    PubMed

    Choi, Hyong Woo; Lee, Byung Gil; Kim, Nak Hyun; Park, Yong; Lim, Chae Woo; Song, Hyun Kyu; Hwang, Byung Kook

    2008-09-01

    Plants elaborate a vast array of enzymes that synthesize defensive secondary metabolites in response to pathogen attack. Here, we isolated the pathogen-responsive CaMNR1 [menthone: (+)-(3S)-neomenthol reductase] gene, a member of the short-chain dehydrogenase/reductase (SDR) superfamily, from pepper (Capsicum annuum) plants. Gas chromatography-mass spectrometry analysis revealed that purified CaMNR1 and its ortholog AtSDR1 from Arabidopsis (Arabidopsis thaliana) catalyze a menthone reduction with reduced nicotinamide adenine dinucleotide phosphate as a cofactor to produce neomenthol with antimicrobial activity. CaMNR1 and AtSDR1 also possess a significant catalytic activity for neomenthol oxidation. We examined the cellular function of the CaMNR1 gene by virus-induced gene silencing and ectopic overexpression in pepper and Arabidopsis plants, respectively. CaMNR1-silenced pepper plants were significantly more susceptible to Xanthomonas campestris pv vesicatoria and Colletotrichum coccodes infection and expressed lower levels of salicylic acid-responsive CaBPR1 and CaPR10 and jasmonic acid-responsive CaDEF1. CaMNR1-overexpressing Arabidopsis plants exhibited enhanced resistance to the hemibiotrophic pathogen Pseudomonas syringae pv tomato DC3000 and the biotrophic pathogen Hyaloperonospora parasitica isolate Noco2, accompanied by the induction of AtPR1 and AtPDF1.2. In contrast, mutation in the CaMNR1 ortholog AtSDR1 significantly enhanced susceptibility to both pathogens. Together, these results indicate that the novel menthone reductase gene CaMNR1 and its ortholog AtSDR1 positively regulate plant defenses against a broad spectrum of pathogens. PMID:18599651

  5. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials

    PubMed Central

    Holmes, Michael V; Newcombe, Paul; Hubacek, Jaroslav A; Sofat, Reecha; Ricketts, Sally L; Cooper, Jackie; Breteler, Monique MB; Bautista, Leonelo E; Sharma, Pankaj; Whittaker, John C; Smeeth, Liam; Fowkes, F Gerald R; Algra, Ale; Shmeleva, Veronika; Szolnoki, Zoltan; Roest, Mark; Linnebank, Michael; Zacho, Jeppe; Nalls, Michael A; Singleton, Andrew B; Ferrucci, Luigi; Hardy, John; Worrall, Bradford B; Rich, Stephen S; Matarin, Mar; Norman, Paul E; Flicker, Leon; Almeida, Osvaldo P; van Bockxmeer, Frank M; Shimokata, Hiroshi; Khaw, Kay-Tee; Wareham, Nicholas J; Bobak, Martin; Sterne, Jonathan AC; Smith, George Davey; Talmud, Philippa J; van Duijn, Cornelia; Humphries, Steve E; Price, Jackie F; Ebrahim, Shah; Lawlor, Debbie A; Hankey, Graeme J; Meschia, James F; Sandhu, Manjinder S; Hingorani, Aroon D; Casas, Juan P

    2011-01-01

    Summary Background The MTHFR 677C?T polymorphism has been associated with raised homocysteine concentration and increased risk of stroke. A previous overview showed that the effects were greatest in regions with low dietary folate consumption, but differentiation between the effect of folate and small-study bias was difficult. A meta-analysis of randomised trials of homocysteine-lowering interventions showed no reduction in coronary heart disease events or stroke, but the trials were generally set in populations with high folate consumption. We aimed to reduce the effect of small-study bias and investigate whether folate status modifies the association between MTHFR 677C?T and stroke in a genetic analysis and meta-analysis of randomised controlled trials. Methods We established a collaboration of genetic studies consisting of 237 datasets including 59?995 individuals with data for homocysteine and 20?885 stroke events. We compared the genetic findings with a meta-analysis of 13 randomised trials of homocysteine-lowering treatments and stroke risk (45?549 individuals, 2314 stroke events, 269 transient ischaemic attacks). Findings The effect of the MTHFR 677C?T variant on homocysteine concentration was larger in low folate regions (Asia; difference between individuals with TT versus CC genotype, 3·12 ?mol/L, 95% CI 2·23 to 4·01) than in areas with folate fortification (America, Australia, and New Zealand, high; 0·13 ?mol/L, ?0·85 to 1·11). The odds ratio (OR) for stroke was also higher in Asia (1·68, 95% CI 1·44 to 1·97) than in America, Australia, and New Zealand, high (1·03, 0·84 to 1·25). Most randomised trials took place in regions with high or increasing population folate concentrations. The summary relative risk (RR) of stroke in trials of homocysteine-lowering interventions (0·94, 95% CI 0·85 to 1·04) was similar to that predicted for the same extent of homocysteine reduction in large genetic studies in populations with similar folate status (predicted RR 1·00, 95% CI 0·90 to 1·11). Although the predicted effect of homocysteine reduction from large genetic studies in low folate regions (Asia) was larger (RR 0·78, 95% CI 0·68 to 0·90), no trial has evaluated the effect of lowering of homocysteine on stroke risk exclusively in a low folate region. Interpretation In regions with increasing levels or established policies of population folate supplementation, evidence from genetic studies and randomised trials is concordant in suggesting an absence of benefit from lowering of homocysteine for prevention of stroke. Further large-scale genetic studies of the association between MTHFR 677C?T and stroke in low folate settings are needed to distinguish effect modification by folate from small-study bias. If future randomised trials of homocysteine-lowering interventions for stroke prevention are undertaken, they should take place in regions with low folate consumption. Funding Full funding sources listed at end of paper (see Acknowledgments). PMID:21803414

  6. A Lower Degree of PBMC L1 Methylation in Women with Lower Folate Status May Explain the MTHFR C677T Polymorphism Associated Higher Risk of CIN in the US Post Folic Acid Fortification Era

    PubMed Central

    Badiga, Suguna; Johanning, Gary L.; Macaluso, Maurizio; Azuero, Andres; Chambers, Michelle M.; Siddiqui, Nuzhat R.; Piyathilake, Chandrika J.

    2014-01-01

    Background Studies in populations unexposed to folic acid (FA) fortification have demonstrated that MTHFR C677T polymorphism is associated with increased risk of higher grades of cervical intraepithelial neoplasia (CIN 2+). However, it is unknown whether exposure to higher folate as a result of the FA fortification program has altered the association between MTHFR C677T and risk of CIN, or the mechanisms involved with such alterations. The current study investigated the following in a FA fortified population: 1) The association between MTHFR C677T polymorphism and risk of CIN 2+; 2) The modifying effects of plasma folate concentrations on this association; and 3) The modifying effects of plasma folate on the association between the polymorphism and degree of methylation of long interspersed nucleotide elements (L1s), in peripheral blood mononuclear cell (PBMC) DNA, a documented biomarker of CIN risk. Methods The study included 457 US women diagnosed with either CIN 2+ (cases) or ? CIN 1 (non-cases). Unconditional logistic regression models were used to test the associations after adjusting for relevant risk factors for CIN. Results The 677CT/TT MTHFR genotypes were not associated with the risk of CIN 2+. Women with CT/TT genotype with lower folate, however, were more likely to be diagnosed with CIN 2+ compared to women with CT/TT genotype with higher folate (OR?=?2.41, P?=?0.030). Women with CT/TT genotype with lower folate were less likely to have a higher degree of PBMC L1 methylation compared to women with CT/TT genotype with higher folate (OR?=?0.28, P?=?0.017). Conclusions This study provides the first evidence that the MTHFR 677CT/TT genotype-associated lower degree of PBMC L1 methylation increases the risk of CIN 2+ in women in the US post-FA fortification era. Thus, even in the post-FA fortification era, not all women have adequate folate status to overcome MTHFR 677CT/TT genotype-associated lower degree of L1 methylation. PMID:25302494

  7. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  8. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  9. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase.

    PubMed

    Persch, Elke; Bryson, Steve; Todoroff, Nickolay K; Eberle, Christian; Thelemann, Jonas; Dirdjaja, Natalie; Kaiser, Marcel; Weber, Maria; Derbani, Hassan; Brun, Reto; Schneider, Gisbert; Pai, Emil F; Krauth-Siegel, R Luise; Diederich, François

    2014-08-01

    The causative agents of the parasitic disease human African trypanosomiasis belong to the family of trypanosomatids. These parasitic protozoa exhibit a unique thiol redox metabolism that is based on the flavoenzyme trypanothione reductase (TR). TR was identified as a potential drug target and features a large active site that allows a multitude of possible ligand orientations, which renders rational structure-based inhibitor design highly challenging. Herein we describe the synthesis, binding properties, and kinetic analysis of a new series of small-molecule inhibitors of TR. The conjunction of biological activities, mutation studies, and virtual ligand docking simulations led to the prediction of a binding mode that was confirmed by crystal structure analysis. The crystal structures revealed that the ligands bind to the hydrophobic wall of the so-called "mepacrine binding site". The binding conformation and potency of the inhibitors varied for TR from Trypanosoma brucei and T.?cruzi. PMID:24788386

  10. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    PubMed

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-01

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. PMID:26339024

  11. Hexaheme nitrite reductase from Desulfovibrio desulfuricans

    SciTech Connect

    Costa, C.; Moura, J.J.G.; Moura, I. Univ. Nova de Lisboa, Oeiras ); Liu, M.Y.; Peck, H.D. Jr.; LeGall, J. ); Wang, Yaning; Huynh, B.H. )

    1990-08-25

    Moessbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. Moessbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the Moessbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.

  12. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase

    PubMed Central

    Erb, Tobias J.; Brecht, Volker; Fuchs, Georg; Müller, Michael; Alber, Birgit E.

    2009-01-01

    Chemo- and stereoselective reductions are important reactions in chemistry and biology, and reductases from biological sources are increasingly applied in organic synthesis. In contrast, carboxylases are used only sporadically. We recently described crotonyl-CoA carboxylase/reductase, which catalyzes the reduction of (E)-crotonyl-CoA to butyryl-CoA but also the reductive carboxylation of (E)-crotonyl-CoA to ethylmalonyl-CoA. In this study, the complete stereochemical course of both reactions was investigated in detail. The pro-(4R) hydrogen of NADPH is transferred in both reactions to the re face of the C3 position of crotonyl-CoA. In the course of the carboxylation reaction, carbon dioxide is incorporated in anti fashion at the C2 atom of crotonyl-CoA. For the reduction reaction that yields butyryl-CoA, a solvent proton is added in anti fashion instead of the CO2. Amino acid sequence analysis showed that crotonyl-CoA carboxylase/reductase is a member of the medium-chain dehydrogenase/reductase superfamily and shares the same phylogenetic origin. The stereospecificity of the hydride transfer from NAD(P)H within this superfamily is highly conserved, although the substrates and reduction reactions catalyzed by its individual representatives differ quite considerably. Our findings led to a reassessment of the stereospecificity of enoyl(-thioester) reductases and related enzymes with respect to their amino acid sequence, revealing a general pattern of stereospecificity that allows the prediction of the stereochemistry of the hydride transfer for enoyl reductases of unknown specificity. Further considerations on the reaction mechanism indicated that crotonyl-CoA carboxylase/reductase may have evolved from enoyl-CoA reductases. This may be useful for protein engineering of enoyl reductases and their application in biocatalysis. PMID:19458256

  13. Towards the Understanding of Resistance Mechanisms in Clinically Isolated Trimethoprim-resistant, Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase

    SciTech Connect

    Frey, K.; Lombardo, M; Wright, D; Anderson, A

    2010-01-01

    Resistance to therapeutics such as trimethoprim-sulfamethoxazole has become an increasing problem in strains of methicillin-resistant Staphylococcus aureus (MRSA). Clinically isolated trimethoprim-resistant strains reveal a double mutation, H30N/F98Y, in dihydrofolate reductase (DHFR). In order to develop novel and effective therapeutics against these resistant strains, we evaluated a series of propargyl-linked antifolate lead compounds for inhibition of the mutant enzyme. For the propargyl-linked antifolates, the F98Y mutation generates minimal (between 1.2- and 6-fold) losses of affinity and the H30N mutation generates greater losses (between 2.4- and 48-fold). Conversely, trimethoprim affinity is largely diminished by the F98Y mutation (36-fold) and is not affected by the H30N mutation. In order to elucidate a mechanism of resistance, we determined a crystal structure of a complex of this double mutant with a lead propargyl-linked antifolate. This structure suggests a resistance mechanism consistent both for the propargyl-linked class of antifolates and for trimethoprim that is based on the loss of a conserved water-mediated hydrogen bond.

  14. D-erythrulose reductase can also reduce diacetyl: further purification and characterization of D-erythrulose reductase from chicken liver.

    PubMed

    Maeda, M; Hosomi, S; Mizoguchi, T; Nishihara, T

    1998-04-01

    We have discovered new characteristics of D-erythrulose reductase, namely, that it can catalyze reduction of not only D-erythrulose but also such diketones as diacetyl. These substrates have a common structure with two neighboring carbonyls possibly in s-cis plane structure, showing that the enzyme may rigorously distinguish between substrates and other compounds. D-Erythrulose reductase was predominantly located in the kidney and the liver of the chicken. The obtained results suggest that D-erythrulose reductase plays an important role in metabolizing alpha-dicarbonyls in animal organs, because these diketones widely occur in natural foods. PMID:9538249

  15. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  16. Structural and mechanistic mapping of a unique fumarate reductase 

    E-print Network

    Taylor, Paul; Pealing, Sara L; Reid, Graeme A; Chapman, Stephen K; Walkinshaw, Malcolm

    The 1.8 Å resolution crystal structure of the tetraheme flavocytochrome c3, Fcc3, provides the first mechanistic insight into respiratory fumarate reductases or succinate dehydrogenases. The multi-redox center, three-domain ...

  17. Metabolic effects of 5?-reductase inhibition in humans 

    E-print Network

    Upreti, Rita

    2013-07-06

    5?-reductases (5?Rs) catalyse reduction of 4-pregnene steroids, most notably the androgen testosterone to its more potent metabolite dihydrotestosterone (DHT). Well-characterised isozymes of 5?R are designated 5?R1 and ...

  18. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.

    PubMed

    Wang, Pingrong; Gao, Jiaxu; Wan, Chunmei; Zhang, Fantao; Xu, Zhengjun; Huang, Xiaoqun; Sun, Xiaoqiu; Deng, Xiaojian

    2010-07-01

    3,8-Divinyl (proto)chlorophyll(ide) a 8-vinyl reductase (DVR) catalyzes the reduction of 8-vinyl group on the tetrapyrrole to an ethyl group, which is indispensable for monovinyl chlorophyll (Chl) synthesis. So far, three 8-vinyl reductase genes (DVR, bciA, and slr1923) have been characterized from Arabidopsis (Arabidopsis thaliana), Chlorobium tepidum, and Synechocystis sp. PCC6803. However, no 8-vinyl reductase gene has yet been identified in monocotyledonous plants. In this study, we isolated a spontaneous mutant, 824ys, in rice (Oryza sativa). The mutant exhibited a yellow-green leaf phenotype, reduced Chl level, arrested chloroplast development, and retarded growth rate. The phenotype of the 824ys mutant was caused by a recessive mutation in a nuclear gene on the short arm of rice chromosome 3. Map-based cloning of this mutant resulted in the identification of a gene (Os03g22780) showing sequence similarity with the Arabidopsis DVR gene (AT5G18660). In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame, resulting in a deletion of three amino acid residues in the encoded product. High-performance liquid chromatography analysis of Chls indicated the mutant accumulates only divinyl Chl a and b. A recombinant protein encoded by Os03g22780 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyll(ide) a to monovinyl chlorophyll(ide) a. Therefore, it has been confirmed that Os03g22780, renamed as OsDVR, encodes a functional DVR in rice. Based upon these results, we succeeded to identify an 8-vinyl reductase gene in monocotyledonous plants and, more importantly, confirmed the DVR activity to convert divinyl Chl a to monovinyl Chl a. PMID:20484022

  19. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    SciTech Connect

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the ?7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the ?7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  20. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short-chain dehydrogenase/reductase superfamily. PMID:9307009

  1. A theoretical multiscale treatment of protein-protein electron transfer: The ferredoxin/ferredoxin-NADP(+) reductase and flavodoxin/ferredoxin-NADP(+) reductase systems.

    PubMed

    Saen-Oon, Suwipa; Cabeza de Vaca, Israel; Masone, Diego; Medina, Milagros; Guallar, Victor

    2015-12-01

    In the photosynthetic electron transfer (ET) chain, two electrons transfer from photosystem I to the flavin-dependent ferredoxin-NADP(+) reductase (FNR) via two sequential independent ferredoxin (Fd) electron carriers. In some algae and cyanobacteria (as Anabaena), under low iron conditions, flavodoxin (Fld) replaces Fd as single electron carrier. Extensive mutational studies have characterized the protein-protein interaction in FNR/Fd and FNR/Fld complexes. Interestingly, even though Fd and Fld share the interaction site on FNR, individual residues on FNR do not participate to the same extent in the interaction with each of the protein partners, pointing to different electron transfer mechanisms. Despite of extensive mutational studies, only FNR/Fd X-ray structures from Anabaena and maize have been solved; structural data for FNR/Fld remains elusive. Here, we present a multiscale modelling approach including coarse-grained and all-atom protein-protein docking, the QM/MM e-Pathway analysis and electronic coupling calculations, allowing for a molecular and electronic comprehensive analysis of the ET process in both complexes. Our results, consistent with experimental mutational data, reveal the ET in FNR/Fd proceeding through a bridge-mediated mechanism in a dominant protein-protein complex, where transfer of the electron is facilitated by Fd loop-residues 40-49. In FNR/Fld, however, we observe a direct transfer between redox cofactors and less complex specificity than in Fd; more than one orientation in the encounter complex can be efficient in ET. PMID:26385068

  2. 7-Dehydrocholesterol–dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome

    PubMed Central

    Fitzky, Barbara U.; Moebius, Fabian F.; Asaoka, Hitoshi; Waage-Baudet, Heather; Xu, Liwen; Xu, Guorong; Maeda, Nobuyo; Kluckman, Kimberly; Hiller, Sylvia; Yu, Hongwei; Batta, Ashok K.; Shefer, Sarah; Chen, Thomas; Salen, Gerald; Sulik, Kathleen; Simoni, Robert D.; Ness, Gene C.; Glossmann, Hartmut; Patel, Shailendra B.; Tint, G.S.

    2001-01-01

    Smith-Lemli-Opitz/RSH syndrome (SLOS), a relatively common birth-defect mental-retardation syndrome, is caused by mutations in DHCR7, whose product catalyzes an obligate step in cholesterol biosynthesis, the conversion of 7-dehydrocholesterol to cholesterol. A null mutation in the murine Dhcr7 causes an identical biochemical defect to that seen in SLOS, including markedly reduced tissue cholesterol and total sterol levels, and 30- to 40-fold elevated concentrations of 7-dehydrocholesterol. Prenatal lethality was not noted, but newborn homozygotes breathed with difficulty, did not suckle, and died soon after birth with immature lungs, enlarged bladders, and, frequently, cleft palates. Despite reduced sterol concentrations in Dhcr7–/– mice, mRNA levels for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme for sterol biosynthesis, the LDL receptor, and SREBP-2 appeared neither elevated nor repressed. In contrast to mRNA, protein levels and activities of HMG-CoA reductase were markedly reduced. Consistent with this finding, 7-dehydrocholesterol accelerates proteolysis of HMG-CoA reductase while sparing other key proteins. These results demonstrate that in mice without Dhcr7 activity, accumulated 7-dehydrocholesterol suppresses sterol biosynthesis posttranslationally. This effect might exacerbate abnormal development in SLOS by increasing the fetal cholesterol deficiency. PMID:11560960

  3. Repair of Single-Point Mutations by Polypurine Reverse Hoogsteen Hairpins

    PubMed Central

    Solé, Anna; Villalobos, Xenia; Noé, Véronique

    2014-01-01

    Abstract Polypurine reverse Hoogsteen hairpins (PPRHs) are formed by two intramolecularly bound antiparallel homopurine domains linked by a five-thymidine loop. One of the homopurine strands binds with antiparallel orientation by Watson–Crick bonds to the polypyrimidine target sequence, forming a triplex. We had previously reported the ability of PPRHs to effectively bind dsDNA displacing the fourth strand away from the newly formed triplex. The main goal of this work was to explore the possibility of repairing a point mutation in mammalian cells using PPRHs as tools. These repair-PPRHs contain different combinations of extended sequences of DNA with the corrected nucleotide to repair the point mutation. As a model we used the dihydrofolate reductase gene. On the one hand, we demonstrate in vitro that PPRHs bind specifically to their polypyrimidine target sequence, opening the two strands of the dsDNA, and allowing the binding of a given repair oligonucleotide to the displaced strand of the DNA. Subsequently, we show at a cellular level (Chinese ovary hamster cells) that repair-PPRHs are able to correct a single-point mutation in a dihydrofolate reductase minigene bearing a nonsense mutation, both in an extrachromosomal location and when the mutated plasmid was stably transfected into the cells. Finally, this methodology was successfully applied to repair a single-point mutation at the endogenous locus, using the DA5 cell line with a deleted nucleotide in exon six of the dhfr gene. PMID:25222154

  4. Streptococcus sanguinis Class Ib Ribonucleotide Reductase

    PubMed Central

    Makhlynets, Olga; Boal, Amie K.; Rhodes, DeLacy V.; Kitten, Todd; Rosenzweig, Amy C.; Stubbe, JoAnne

    2014-01-01

    Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, ? and ? subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with FeII and O2 can self-assemble a diferric-tyrosyl radical (FeIII2-Y•) cofactor (1.2 Y•/?2) and with the help of NrdI can assemble a MnIII2-Y• cofactor (0.9 Y•/?2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and MnII2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 ?m) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR. PMID:24381172

  5. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase.

    PubMed

    Hashemy, Seyed Isaac; Ungerstedt, Johanna S; Zahedi Avval, Farnaz; Holmgren, Arne

    2006-04-21

    Motexafin gadolinium (MGd) is a chemotherapeutic drug that selectively targets tumor cells and mediates redox reactions generating reactive oxygen species. Thioredoxin (Trx), NADPH, and thioredoxin reductase (TrxR) of the cytosol/nucleus or mitochondria are major thiol-dependent reductases with many functions in cell growth, defense against oxidative stress, and apoptosis. Mammalian TrxRs are selenocysteine-containing flavoenzymes; MGd was an NADPH-oxidizing substrate for human or rat TrxR1 with a Km value of 8.65 microM (kcat/Km of 4.86 x 10(4) M(-1) s(-1)). The reaction involved redox cycling of MGd by oxygen producing superoxide and hydrogen peroxide. MGd acted as a non-competitive inhibitor (IC50 of 6 microM) for rat TrxR. In contrast, direct reaction between MGd and reduced human Trx was negligible. The corresponding reaction with reduced Escherichia coli Trx was also negligible, but MGd was a better substrate (kcat/Km of 2.23 x 10(5) M(-1) s(-1)) for TrxR from E. coli and a strong inhibitor of Trx-dependent protein disulfide reduction. Ribonucleotide reductase (RNR), a 1:1 complex of the non-identical R1- and R2-subunits, catalyzes the essential de novo synthesis of deoxyribonucleotides for DNA synthesis using electrons from Trx and TrxR. MGd inhibited recombinant mouse RNR activity with either 3 microM reduced human Trx (IC50 2 microM) or 4 mM dithiothreitol (IC50 6 microM) as electron donors. Our results demonstrate MGd-induced enzymatic generation of reactive oxygen species by TrxR plus a powerful inhibition of RNR. This may explain the effects of the drug on cancer cells, which often overproduce TrxR and have induced RNR for replication and repair. PMID:16481328

  6. Significance of four methionine sulfoxide reductases in Staphylococcus aureus.

    PubMed

    Singh, Vineet K; Vaish, Manisha; Johansson, Trintje R; Baum, Kyle R; Ring, Robert P; Singh, Saumya; Shukla, Sanjay K; Moskovitz, Jackob

    2015-01-01

    Staphylococcus aureus is a major human pathogen and emergence of antibiotic resistance in clinical staphylococcal isolates raises concerns about our ability to control these infections. Cell wall-active antibiotics cause elevated synthesis of methionine sulfoxide reductases (Msrs: MsrA1 and MsrB) in S. aureus. MsrA and MsrB enzymes reduce S-epimers and R-epimers of methionine sulfoxide, respectively, that are generated under oxidative stress. In the S. aureus chromosome, there are three msrA genes (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a triple msrA (msrA1, msrA2 and msrA3) and a quadruple msrAB (msrA1, msrA2, msrA3, msrB) mutant. These mutants were used to determine the roles of Msr proteins in staphylococcal growth, antibiotic resistance, adherence to human lung epithelial cells, pigment production, and survival in mice relative to the wild-type strains. MsrA1-deficient strains were sensitive to oxidative stress conditions, less pigmented and less adherent to human lung epithelial cells, and showed reduced survival in mouse tissues. In contrast, MsrB-deficient strains were resistant to oxidants and were highly pigmented. Lack of MsrA2 and MsrA3 caused no apparent growth defect in S. aureus. In complementation experiments with the triple and quadruple mutants, it was MsrA1 and not MsrB that was determined to be critical for adherence and phagocytic resistance of S. aureus. Overall, the data suggests that MsrA1 may be an important virulence factor and MsrB probably plays a balancing act to counter the effect of MsrA1 in S. aureus. PMID:25680075

  7. Immunoquantitation of aldose reductase in human tissues

    SciTech Connect

    Grimshaw, C.E.; Mathur, E.J.

    1989-01-01

    Rabbit antibodies raised against bovine kidney aldose reductase (ALR2) were shown to be monospecific for human ALR2 by Western blot analysis of human muscle homogenates. The human enzyme was detected, by reaction with the antiserum (alpha-BKALR2), in homogenates of adrenal gland, muscle, lens, brain, testes, kidney, and placenta, but not in erythrocytes or leukocytes. The amount of enzyme in each tissue was determined by densitometric analysis of autoradiographs of Western blots probed with alpha-BKALR2 and (/sup 125/I)protein A. Standard curves of radiographic intensity versus amount of purified human muscle ALR2 were linear in the 20 to 200-ng range; a similar sensitivity was seen in tissue homogenates containing up to 675 micrograms total protein. The results presented here for the ALR2 level in human tissues (adrenal greater than muscle greater than lens approximately brain approximately testes greater than kidney approximately placenta) are in agreement with literature values for those tissues from which the enzyme has previously been purified. A notable exception was the absence of detectable ALR2 in human erythrocytes. A quantitative comparison of immunoradiographic response showed that bovine kidney ALR2 was about sevenfold more reactive with a alpha-BKALR2 compared to the human muscle enzyme.

  8. HMG-CoA reductase inhibitors and myotoxicity.

    PubMed

    Ucar, M; Mjörndal, T; Dahlqvist, R

    2000-06-01

    The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors specifically inhibit HMG-CoA reductase in the liver, thereby inhibiting the biosynthesis of cholesterol. These drugs significantly reduce plasma cholesterol level and long term treatment reduces morbidity and mortality associated with coronary heart disease. The tolerability of these drugs during long term administration is an important issue. Adverse reactions involving skeletal muscle are not uncommon, and sometimes serious adverse reactions involving skeletal muscle such as myopathy and rhabdomyolysis may occur, requiring discontinuation of the drug. Occasionally, arthralgia, alone or in association with myalgia, has been reported. In this article we review scientific data provided via Medline, adverse drug reaction case reports from the Swedish Drug Information System (SWEDIS) and the World Health Organization's International Drug Information System (INTDIS) database, focusing on HMG-CoA reductase inhibitor-related musculoskeletal system events. Cytochrome P450 (CYP) 3A4 is the main isoenzyme involved in the metabolic transformation of HMG-CoA reductase inhibitors. Individuals with both low hepatic and low gastrointestinal tract levels of CYP3A4 expression may be at in increased risk of myotoxicity due to potentially higher HMG-CoA reductase inhibitor plasma concentrations. The reported incidence of myotoxic reactions in patients treated with this drug class varies from 1 to 7% and varies between different agents. The risk of these serious adverse reactions is dose-dependent and may increase when HMG-CoA reductase inhibitors are prescribed concomitantly with drugs that inhibit their metabolism, such as itraconazole, cyclosporin, erythromycin and nefazodone. Electrolyte disturbances, infections, major trauma, hypoxia as well as drugs of abuse may increase the risk of myotoxicity. It is important that the potentially serious adverse reactions are recognised and correctly diagnosed so that the HMG-CoA reductase inhibitor may at once be withdrawn to prevent further muscular damage. PMID:10877038

  9. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (?)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  10. Engineering the phenylacetaldehyde reductase mutant for improved substrate conversion in the presence of concentrated 2-propanol.

    PubMed

    Makino, Yoshihide; Dairi, Tohru; Itoh, Nobuya

    2007-12-01

    Phenylacetaldehyde reductase (PAR) from Rhodococcus sp. ST-10 is useful for chiral alcohol production because of its broad substrate specificity and high stereoselectivity. The conversion of ketones into alcohols by PAR requires the coenzyme NADH. PAR can regenerate NADH by oxidizing additional alcohols, especially 2-propanol. However, substrate conversion by wild-type PAR is suppressed in concentrated 2-propanol. Previously, we developed the Sar268 mutant of PAR, which can convert several substrates in the presence of concentrated 2-propanol. In this paper, further mutational engineering of Sar268 was performed to achieve higher process yield. Each of nine amino acid positions that had been examined for generating Sar268 was subjected to saturation mutagenesis. Two novel substitutions at the 42nd amino acid position increased m-chlorophenacyl chloride (m-CPC) conversion. Moreover, several nucleotide substitutions identified from libraries of random mutations around the start codon also improved the PAR activity. E. coli cells harboring plasmid pHAR1, which has the integrated sequence of the top clones from the above selections, provided greater conversion of m-CPC and ethyl 4-chloro-3-oxobutanoate than the Sar268 mutant, with very high optical purity of products. This mutant is a promising novel biocatalyst for efficient chiral alcohol production. PMID:17912510

  11. Characterization of novel nitrate reductase-deficient mutants for transgenic Dunaliella salina systems.

    PubMed

    Gao, L J; Jia, Y L; Li, S K; Qiu, L L

    2015-01-01

    The aim of the present study was to isolate and characterize novel nitrate reductase (NR)-deficient mutants, which may be useful for the transgenic manipulation of Dunaliella salina. Three NR-deficient mutants of D. salina, J-1, J-2, and J-3, were successfully isolated by screening for chlorate resistance after chemical mutagenesis with ethylnitrosourea. NR activity was not detected in the mutants and the expression of NR mRNA was significantly decreased. Growth analysis of D. salina strains grown in media containing different nitrogen sources revealed that these mutants were capable of utilizing nitrite and urea, but not nitrate as a nitrogen source, indicating that these mutants are indeed NR-deficient. Mutation analysis of NR cDNA sequences revealed that there were 11 point mutations shared by the J-1, J-2, and J-3 mutants. Furthermore, the results of the functional complementation experiment showed that NR activity of transformant T-1 derived from J-1 was recovered to 48.1 % of that of the wild-type D. salina. The findings of the present study indicate that nitrate may be used as a selective agent rather than antibiotics or herbicides for the isolated NR-deficient mutants in future transgenic D. salina systems. PMID:26535642

  12. Free energy simulations of active-site mutants of dihydrofolate reductase.

    PubMed

    Doron, Dvir; Stojkovi?, Vanja; Gakhar, Lokesh; Vardi-Kilshtain, Alexandra; Kohen, Amnon; Major, Dan Thomas

    2015-01-22

    This study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain. The QM/MM simulations show that when the original isoleucine residue is substituted in silico by valine, alanine, or glycine (I14V, I14A, and I14G DHFR, respectively), the free energy barrier height of the hydride transfer reaction increases relative to the wild-type enzyme. These trends are in line with the single-turnover rate measurements reported for these systems. In addition, extended dynamics simulations of the reactive Michaelis complex reveal enhanced flexibility in the mutants, and in particular for the I14G mutant, including considerable fluctuations of the donor-acceptor distance (DAD) and the active-site hydrogen bonding network compared with those detected in the native enzyme. These observations suggest that the perturbations induced by the mutations partly impair the active-site environment in the reactant state. On the other hand, the average DADs at the transition state of all DHFR variants are similar. Crystal structures of I14 mutants (V, A, and G) confirmed the trend of increased flexibility of the M20 and other loops. PMID:25382260

  13. Residues Controlling Facial Selectivity in an Alkene Reductase and Semirational Alterations to Create Stereocomplementary Variants

    PubMed Central

    2015-01-01

    A systematic saturation mutagenesis campaign was carried out on an alkene reductase from Pichia stipitis (OYE 2.6) to develop variants with reversed stereoselectivities. Wild-type OYE 2.6 reduces three representative Baylis–Hillman adducts to the corresponding S products with almost complete stereoselectivities and good catalytic efficiencies. We created and screened 13 first-generation, site-saturation mutagenesis libraries, targeting residues found near the bound substrate. One variant (Tyr78Trp) showed high R selectivity toward one of the three substrates, but no change (cyclohexenone derivative) and no catalytic activity (acrylate derivative) for the other two. Subsequent rounds of mutagenesis retained the Tyr78Trp mutation and explored other residues that impacted stereoselectivity when altered in a wild-type background. These efforts yielded double and triple mutants that possessed inverted stereoselectivities for two of the three substrates (conversions >99% and at least 91% ee (R)). To understand the reasons underlying the stereochemical changes, we solved crystal structures of two key mutants: Tyr78Trp and Tyr78Trp/Ile113Cys, the latter with substrate partially occupying the active site. By combining these experimental data with modeling studies, we have proposed a rationale that explains the impacts of the most useful mutations. PMID:25068071

  14. Comparative tolerability of the HMG-CoA reductase inhibitors.

    PubMed

    Farmer, J A; Torre-Amione, G

    2000-09-01

    The availability of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors has revolutionised the treatment of lipid abnormalities in patients at risk for the development of coronary atherosclerosis. The relatively widespread experience with HMG-CoA therapy has allowed a clear picture to emerge concerning the relative tolerability of these agents. While HMG-CoA reductase inhibitors have been shown to decrease complications from atherosclerosis and to improve total mortality, concern has been raised as to the long term safety of these agents. They came under close scrutiny in early trials because ocular complications had been seen with older inhibitors of cholesterol synthesis. However, extensive evaluation demonstrated no significant adverse alteration of ophthalmological function by the HMG-CoA reductase inhibitors. Extensive experience with the potential adverse effect of the HMG-CoA reductase inhibitors on hepatic function has accumulated. The effect on hepatic function for the various HMG-CoA reductase inhibitors is roughly dose-related and 1 to 3% of patients experience an increase in hepatic enzyme levels. The majority of liver abnormalities occur within the first 3 months of therapy and require monitoring. Rhabdomyolysis is an uncommon syndrome and occurs in approximately 0.1% of patients who receive HMG-CoA reductase inhibitor monotherapy. However, the incidence is increased when HMG-CoA reductase inhibitors are used in combination with agents that share a common metabolic path. The role of the cytochrome P450 (CYP) enzyme system in drug-drug interactions involving HMG-CoA reductase inhibitors has been extensively studied. Atorvastatin, cerivastatin, lovastatin and simvastatin are predominantly metabolised by the CYP3A4 isozyme. Fluvastatin has several metabolic pathways which involve the CYP enzyme system. Pravastatin is not significantly metabolised by this enzyme and thus has theoretical advantage in combination therapy. The major interactions with HMG-CoA reductase inhibitors in combination therapy involving rhabdomyolysis include fibric acid derivatives, erythromycin, cyclosporin and fluconazole. Additional concern has been raised relative to overzealous lowering of cholesterol which could occur due to the potency of therapy with these agents. Currently, there is no evidence from clinical trials of an increase in cardiovascular or total mortality associated with potent low density lipoprotein reduction. However, a threshold effect had been inferred by retrospective analysis of the Cholesterol and Recurrent Events study utilising pravastatin and the role of aggressive lipid therapy is currently being addressed in several large scale trials. PMID:11005703

  15. Some Characteristics of Nitrate Reductase From Higher Plants 1

    PubMed Central

    Schrader, L. E.; Ritenour, G. L.; Eilrich, G. L.; Hageman, R. H.

    1968-01-01

    With respect to cofactor requirements, NADH, and FMNH2 were equally effective as electron donors for nitrate reductase obtained from leaves of maize, marrow, and spinach, when the cofactors were supplied in optimal concentrations. The concentration of FMNH2 required to obtain half-maximal activity was from 40- to 100-fold higher than for NADH. For maximal activity with the corn enzyme, 0.8 millimolar FMNH2 was required. In contrast, NADPH was functional only when supplied with NADP:reductase and exogenous FMN (enzymatic generation of FMNH2). All attempts to separate the NADH2- and FMNH2-dependent nitrate reductase activities were unsuccessful and regardless of cofactor used equal activities were obtained, if cofactor concentration was optimal. Unity of NADH to FMNH2 activities were obtained during: A) purification procedures (4 step, 30-fold); B) induction of nitrate reductase in corn seedlings with nitrate; and C) inactivation of nitrate reductase in intact or excised corn seedlings. The NADH- and FMNH2-dependent activities were not additive. A half-life for nitrate reductase of approximately 4 hours was estimated from the inactivation studies with excised corn seedlings. Similar half-life values were obtained when seedlings were incubated at 35° in a medium containing nitrate and cycloheximide (to inhibit protein synthesis), or when both nitrate and cycloheximide were omitted. In those instances where NADH activity but not FMNH2 activity was lost due to treatment (temperature, removal of sulfhydryl agents, addition of p-chloromercuribenzoate), the loss could be explained by inactivation of the sulfhydryl group (s) required for NADH activity. This was verified by reactivation with exogenous cysteine. Based on these current findings, and previous work, it is concluded that nitrate reductase is a single moiety with the ability to utilize either NADH or FMNH2 as cofactor. However the high concentration of FMNH2 required for optimal activity suggests that in vivo NADH is the electron donor and that nitrate reductase in higher plants should be designated NADH:nitrate reductase (E.C. 1.6.6.1). PMID:16656864

  16. Importance of the Two Dissimilatory (Nar) Nitrate Reductases in the Growth and Nitrate Reduction of the Methylotrophic Marine Bacterium Methylophaga nitratireducenticrescens JAM1

    PubMed Central

    Mauffrey, Florian; Martineau, Christine; Villemur, Richard

    2015-01-01

    Methylophaga nitratireducenticrescens JAM1 is the only reported Methylophaga species capable of growing under anaerobic conditions with nitrate as electron acceptor. Its genome encodes a truncated denitrification pathway, which includes two nitrate reductases, Nar1 and Nar2; two nitric oxide reductases, Nor1 and Nor2; and one nitrous oxide reductase, Nos; but no nitrite reductase (NirK or NirS). The transcriptome of strain JAM1 cultivated with nitrate and methanol under anaerobic conditions showed the genes for these enzymes were all expressed. We investigated the importance of Nar1 and Nar2 by knocking out narG1, narG2 or both genes. Measurement of the specific growth rate and the specific nitrate reduction rate of the knockout mutants JAM1?narG1 (Nar1) and JAM1?narG2 (Nar2) clearly demonstrated that both Nar systems contributed to the growth of strain JAM1 under anaerobic conditions, but at different levels. The JAM1?narG1 mutant exhibited an important decrease in the nitrate reduction rate that consequently impaired its growth under anaerobic conditions. In JAM1?narG2, the mutation induced a 20-h lag period before nitrate reduction occurred at specific rate similar to that of strain JAM1. The disruption of narG1 did not affect the expression of narG2. However, the expression of the Nar1 system was highly downregulated in the presence of oxygen with the JAM1?narG2 mutant. These results indicated that Nar1 is the major nitrate reductase in strain JAM1 but Nar2 appears to regulate the expression of Nar1.

  17. Partial vinylphenol reductase purification and characterization from Brettanomyces bruxellensis.

    PubMed

    Tchobanov, Iavor; Gal, Laurent; Guilloux-Benatier, Michèle; Remize, Fabienne; Nardi, Tiziana; Guzzo, Jean; Serpaggi, Virginie; Alexandre, Hervé

    2008-07-01

    Brettanomyces is the major microbial cause for wine spoilage worldwide and causes significant economic losses. The reasons are the production of ethylphenols that lead to an unpleasant taint described as 'phenolic odour'. Despite its economic importance, Brettanomyces has remained poorly studied at the metabolic level. The origin of the ethylphenol results from the conversion of vinylphenols in ethylphenol by Brettanomyces hydroxycinnamate decarboxylase. However, no information is available on the vinylphenol reductase responsible for the conversion of vinylphenols in ethylphenols. In this study, a vinylphenol reductase was partially purified from Brettanomyces bruxellensis that was active towards 4-vinylguaiacol and 4-vinylphenol only among the substrates tested. First, a vinylphenol reductase activity assay was designed that allowed us to show that the enzyme was NADH dependent. The vinylphenol reductase was purified 152-fold with a recovery yield of 1.77%. The apparent K(m) and V(max) values for the hydrolysis of 4-vinylguaiacol were, respectively, 0.14 mM and 1900 U mg(-1). The optimal pH and temperature for vinylphenol reductase were pH 5-6 and 30 degrees C, respectively. The molecular weight of the enzyme was 26 kDa. Trypsic digest of the protein was performed and the peptides were sequenced, which allowed us to identify in Brettanomyces genome an ORF coding for a 210 amino acid protein. PMID:18576949

  18. CF Mutation Panel

    MedlinePLUS

    ... Home Visit Global Sites Search Help? CF Mutation Panel Share this page: Was this page helpful? Also ... Fibrosis Genotyping; CF DNA Analysis; CF Gene Mutation Panel; CF Molecular Genetic Testing Formal name: Cystic Fibrosis ...

  19. Phenylketonuria mutations in Germany.

    PubMed

    Zschocke, J; Hoffmann, G F

    1999-05-01

    We report the spectrum of mutations and associated modified haplotypes in patients with phenylketonuria living in Germany. A total of 546 independent alleles was investigated, including 411 of German and 65 of Turkish descent. Mutations were identified for 535 PKU alleles (98%) and there were 91 different mutations. The most common mutation was R408W on 22% of alleles. Two mutations, IVS12+1G-->A and IVS10-11G-->A accounted for just under 10% of alleles, whereas the remaining mutations were found at relative frequencies of 6% or less; 43 mutations were observed once only. IVS10-11G-->A was the most common mutation (38% of alleles) in the subgroup of patients of Turkish descent. Modified haplotypes were determined from the analysis of four silent mutations, three diallelic restriction fragment length polymorphisms, a variable number of tandem repeats minisatellite and a short tandem repeat microsatellite in the phenylalanine hydroxylase gene, showing that a considerable proportion of mutations must have recurred in independent founders; other mutations may have changed chromosomal haplotype backgrounds by gene conversion. The spectrum of PKU mutations in Germany reflects the history of a heterogenous Central European population living at the crossroads of migration throughout the centuries. PMID:10394930

  20. Mutation Clustering Shamaila Hussain

    E-print Network

    Harman, Mark

    Mutation Clustering Shamaila Hussain shamaila.2.hussain@kcl.ac.uk Student Number: 0425528/2008 Department of Computer Science September 5, 2008 #12;Abstract Mutation testing, a type of white box testing quality. This form of testing deals with mutating parts of the program intentionally and then detecting

  1. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM. PMID:25636870

  2. Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria

    E-print Network

    Ward, Bess

    Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia

  3. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-01

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32? and rad27? (replication), msh2? (mismatch repair), tsa1? (oxidative stress), mre11? (recombination), mec1? tel1? (DNA damage/S-phase checkpoints), pif1? (maintenance of mitochondrial genome and telomere length), cac1? cac3? (nucleosome deposition), and clb5? (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5?/CCNB1, mec1?/ATR, tel1?/ATM, and rad27?/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells. PMID:24449905

  4. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase

    PubMed Central

    2013-01-01

    Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601

  5. Acetaminophen reactive intermediates target hepatic thioredoxin reductase.

    PubMed

    Jan, Yi-Hua; Heck, Diane E; Dragomir, Ana-Cristina; Gardner, Carol R; Laskin, Debra L; Laskin, Jeffrey D

    2014-05-19

    Acetaminophen (APAP) is metabolized in the liver to N-acetyl-p-benzoquinone imine (NAPQI), an electrophilic metabolite known to bind liver proteins resulting in hepatotoxicity. Mammalian thioredoxin reductase (TrxR) is a cellular antioxidant containing selenocysteine (Sec) in its C-terminal redox center, a highly accessible target for electrophilic modification. In the present study, we determined if NAPQI targets TrxR. Hepatotoxicity induced by APAP treatment of mice (300 mg/kg, i.p.) was associated with a marked inhibition of both cytosolic TrxR1 and mitochondrial TrxR2 activity. Maximal inhibition was detected at 1 and 6 h post-APAP for TrxR1 and TrxR2, respectively. In purified rat liver TrxR1, enzyme inactivation was correlated with the metabolic activation of APAP by cytochrome P450, indicating that enzyme inhibition was due to APAP-reactive metabolites. NAPQI was also found to inhibit TrxR1. NADPH-reduced TrxR1 was significantly more sensitive to NAPQI (IC50 = 0.023 ?M) than the oxidized enzyme (IC50 = 1.0 ?M) or a human TrxR1 Sec498Cys mutant enzyme (IC50 = 17 ?M), indicating that cysteine and selenocysteine residues in the redox motifs of TrxR are critical for enzyme inactivation. This is supported by our findings that alkylation of reduced TrxR with biotin-conjugated iodoacetamide, which selectively reacts with selenol or thiol groups on proteins, was inhibited by NAPQI. LC-MS/MS analysis confirmed that NAPQI modified cysteine 59, cysteine 497, and selenocysteine 498 residues in the redox centers of TrxR, resulting in enzyme inhibition. In addition to disulfide reduction, TrxR is also known to mediate chemical redox cycling. We found that menadione redox cycling by TrxR was markedly less sensitive to NAPQI than disulfide reduction, suggesting that TrxR mediates these reactions via distinct mechanisms. These data demonstrate that APAP-reactive metabolites target TrxR, suggesting an additional mechanism by which APAP induces oxidative stress and hepatotoxicity. PMID:24661219

  6. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34?DsrAB) to be 15.3 ± 2‰, 2?. The accompanying minor isotope effect in 33S, described as 33?DsrAB, is calculated to be 0.5150 ± 0.0012, 2?. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34?DsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34?DsrAB is similar to the median value of experimental observations compiled from all known published work, where 34?r?p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34?SO4?H2S =  17.3 ± 1.5‰, 2?) and in modern marine sediments (34?SO4?H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern and ancient environments.

  7. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  10. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  11. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  12. Studies on Marek's Disease Virus Encoded Ribonucleotide Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribonucleotide reductase (RR) is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleotides in prokaryotic and eukaryotic cells. The enzyme consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme. Herpesviruses express a functional R...

  13. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  14. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  15. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  16. IDENTIFICATION OF DISULPHIDE REDUCTASES IN CAMPYLOBACTERALES: A BIOINFORMATICS INVESTIGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disulphide reductases of host-colonising bacteria are involved in the expression of virulence factors, resistance to drugs, and elimination of compounds toxic to the microorganisms. The four species Campylobacter jejuni, Helicobacter pylori, Wolinella succinogenes and Arcobacter butzleri of the orde...

  17. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  18. Characterization of recombinant glutathione reductase from the psychrophilic Antarctic bacterium Colwellia psychrerythraea.

    PubMed

    Ji, Mikyoung; Barnwell, Callie V; Grunden, Amy M

    2015-07-01

    Glutathione reductases catalyze the reduction of oxidized glutathione (glutathione disulfide, GSSG) using NADPH as the substrate to produce reduced glutathione (GSH), which is an important antioxidant molecule that helps maintain the proper reducing environment of the cell. A recombinant form of glutathione reductase from Colwellia psychrerythraea, a marine psychrophilic bacterium, has been biochemically characterized to determine its molecular and enzymatic properties. C. psychrerythraea glutathione reductase was shown to be a homodimer with a molecular weight of 48.7 kDa using SDS-PAGE, MALDI-TOF mass spectrometry and gel filtration. The C. psychrerythraea glutathione reductase sequence shows significant homology to that of Escherichia coli glutathione reductase (66 % identity), and it possesses the FAD and NADPH binding motifs, as well as absorption spectrum features which are characteristic of flavoenzymes such as glutathione reductase. The psychrophilic C. psychrerythraea glutathione reductase exhibits higher k cat and k cat/K m at lower temperatures (4 °C) compared to mesophilic Baker's yeast glutathione reductase. However, C. psychrerythraea glutathione reductase was able to complement an E. coli glutathione reductase deletion strain in oxidative stress growth assays, demonstrating the functionality of C. psychrerythraea glutathione reductase over a broad temperature range, which suggests its potential utility as an antioxidant enzyme in heterologous systems. PMID:26101017

  19. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G. (Pullman, WA); Davin, Laurence B. (Pullman, WA); Dinkova-Kostova, Albena T. (Baltimore, MD); Fujita, Masayuki (Kita-gun, JP), Gang; David R. (Ann Arbor, MI), Sarkanen; Simo (Minneapolis, MN), Ford; Joshua D. (Pullman, WA)

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  20. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G. (Pullman, WA); Davin, Laurence B. (Pullman, WA); Dinkova-Kostova, Albena T. (Baltimore, MD); Fujita, Masayuki (Kagawa, JP); Gang, David R. (Ann Arbor, MI); Sarkanen, Simo (S. Minneapolis, MN); Ford, Joshua D. (Pullman, WA)

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  1. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases. PMID:24100135

  2. Association between Thrombophilia and Repeated Assisted Reproductive Technology Failures

    PubMed Central

    Hamdi, Kobra; Vaezi, Maryam; Dagigazar, Behrooz; Mehrzad Sadagiani, Mahzad; Farzadi, Laya; Pashaei-Asl, Maryam

    2012-01-01

    Purpose: This study was performed to investigate the incidence of thrombophilic gene mutations in repeated assisted reproductive technology (ART) failures. Methods: The prevalence of mutated genes in the patients with a history of three or more previous ART failures was compared with the patients with a history of successful pregnancy following ARTs. The study group included 70 patients, 34 with three or more previously failed ARTs (A) and control group consisted of 36 patients with successful pregnancy following ARTs (B). All patients were tested for the presence of mutated thrombophilic genes including factor V Leiden (FVL), Methylenetetrahydrofolate reductase (MTHFR) and Prothrombin (G20210A) using real-time polymerase chain reaction (RT- PCR). Results: Mutation of FVL gene was detected in 5.9% women of group A (2 of 34) compared with 2.8% women (1 of 36) of control group (P = 0.6). Mutation of MTHFR gene was found in 35.3% (12 cases) as compared with 50% (18 cases) of control (35.3% versus 50%; P = 0.23). Regarding Prothrombin, only control group had 5.6% mutation (P = 0.49). No significant differences were detected in the incidences of FVL, Prothrombin and MTHFR in the study group A compared with the control group B. Conclusion: The obtained results suggest that thrombophilia does not have a significant effect in ART failures. PMID:24312798

  3. Sequence variation in the dihydrofolate reductase-thymidylate synthase (DHFR-TS) and trypanothione reductase (TR) genes of

    E-print Network

    Machado, Carlos A.

    reductase (TR) genes of Trypanosoma cruzi Carlos A. Machado *, Francisco J. Ayala Department of Ecology coding for those enzymes in a large sample of strains from Trypanosoma cruzi, the agent of Chagas rights reserved. Keywords: DHFR-TS; TR; Trypanosoma cruzi; Polymorphism; Evolution 1. Introduction

  4. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  5. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation.

    PubMed

    Begara-Morales, Juan C; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N; López-Jaramillo, Javier; Luque, Francisco; Corpas, Francisco J; Barroso, Juan B

    2015-09-01

    The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants. PMID:26116026

  6. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    PubMed Central

    Begara-Morales, Juan C.; Sánchez-Calvo, Beatriz; Chaki, Mounira; Mata-Pérez, Capilla; Valderrama, Raquel; Padilla, María N.; Luque, Francisco; Corpas, Francisco J.; Barroso, Juan B.

    2015-01-01

    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants. PMID:26116026

  7. 5,6-Dihydro-5-aza-2’-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors

    PubMed Central

    Rawson, Jonathan M.; Heineman, Richard H.; Beach, Lauren B.; Martin, Jessica L.; Schnettler, Erica K.; Dapp, Michael J.; Patterson, Steven E.; Mansky, Louis M.

    2014-01-01

    The nucleoside analog 5,6-dihydro-5-aza-2’-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C mutations predominated with the KP-1212-resveratrol combination. These observations represent the first demonstration of a mild anti-HIV-1 mutagen potentiating the antiretroviral activity of RNRIs and encourage the clinical translation of enhanced viral mutagenesis in treating HIV-1 infection. PMID:24120088

  8. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  9. Spontaneous Mutation Accumulation Studies in

    E-print Network

    Keightley, Peter

    Spontaneous Mutation Accumulation Studies in Evolutionary Genetics Daniel L. Halligan and Peter D of mutation effects, dominance, epistasis, genotype-environment interaction, mutation rate Abstract Mutation accumulation (MA) experiments, in which mutations are allowed to drift to fixation in inbred lines, have been

  10. Potential Inherited Causes of Recurrent Prosthetic Mitral Valve Thrombosis in a Pregnant Patient Suffering from Recurrent Miscarriage

    PubMed Central

    Gursoy, M. Ozan; Karakoyun, Suleyman; Yesin, Mahmut; Astarcioglu, Mehmet Ali; Ozkan, Mehmet

    2014-01-01

    An effective anticoagulation is critical in pregnant patients with prosthetic heart valves. Inherited disorders may interfere with the coagulation cascade and may be associated with obstetrical complications as well as with prosthetic valve-derived complications. The patient in the present case had a history of recurrent prosthetic heart valve thrombosis (PHVT) despite an effective anticoagulation. She underwent a thrombolysis with low-dose prolonged infusion of tissue-type plasminogen activator for the management of her recurrrent prosthetic valve thrombosis. The genetic testing showed homozygous mutations of methylenetetrahydrofolate reductase (MTHFR) A 1298 C and heterozygous mutations of ?-fibrinogen 455 G-A. Inherited disorders such as MTHFR A 1298 C and fibrinogen 455G/A polymorphisms may be involved in the pathogenesis of recurrent PHVT and/or pregnancy loss. PMID:25089140

  11. Divinyl Chlorophyll(ide) a Can Be Converted to Monovinyl Chlorophyll(ide) a by a Divinyl Reductase in Rice1[W

    PubMed Central

    Wang, Pingrong; Gao, Jiaxu; Wan, Chunmei; Zhang, Fantao; Xu, Zhengjun; Huang, Xiaoqun; Sun, Xiaoqiu; Deng, Xiaojian

    2010-01-01

    3,8-Divinyl (proto)chlorophyll(ide) a 8-vinyl reductase (DVR) catalyzes the reduction of 8-vinyl group on the tetrapyrrole to an ethyl group, which is indispensable for monovinyl chlorophyll (Chl) synthesis. So far, three 8-vinyl reductase genes (DVR, bciA, and slr1923) have been characterized from Arabidopsis (Arabidopsis thaliana), Chlorobium tepidum, and Synechocystis sp. PCC6803. However, no 8-vinyl reductase gene has yet been identified in monocotyledonous plants. In this study, we isolated a spontaneous mutant, 824ys, in rice (Oryza sativa). The mutant exhibited a yellow-green leaf phenotype, reduced Chl level, arrested chloroplast development, and retarded growth rate. The phenotype of the 824ys mutant was caused by a recessive mutation in a nuclear gene on the short arm of rice chromosome 3. Map-based cloning of this mutant resulted in the identification of a gene (Os03g22780) showing sequence similarity with the Arabidopsis DVR gene (AT5G18660). In the 824ys mutant, nine nucleotides were deleted at residues 952 to 960 in the open reading frame, resulting in a deletion of three amino acid residues in the encoded product. High-performance liquid chromatography analysis of Chls indicated the mutant accumulates only divinyl Chl a and b. A recombinant protein encoded by Os03g22780 was expressed in Escherichia coli and found to catalyze the conversion of divinyl chlorophyll(ide) a to monovinyl chlorophyll(ide) a. Therefore, it has been confirmed that Os03g22780, renamed as OsDVR, encodes a functional DVR in rice. Based upon these results, we succeeded to identify an 8-vinyl reductase gene in monocotyledonous plants and, more importantly, confirmed the DVR activity to convert divinyl Chl a to monovinyl Chl a. PMID:20484022

  12. Crystal Structure of Human Liver delta {4}-3-Ketosteroid 5 beta-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo,L.; Drury, J.; Penning, T.; Christianson, D.

    2008-01-01

    AKR1D1 (steroid 5{beta}-reductase) reduces all 4-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an a,{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a 4-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90 bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human 4-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP+ at 1.79- and 1.35- Angstroms resolution (HEPES bound in the active site), NADP+ and cortisone at 1.90- Angstroms resolution, NADP+ and progesterone at 2.03- Angstroms resolution, and NADP+ and testosterone at 1.62- Angstroms resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP+. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr58 and Glu120. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  13. Mutations in Lettuce Improvement.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations can make profound impact on the evolution and improvement of a self-pollinated crop such as lettuce. Since it is nontransgenic, mutation breeding is more acceptable to consumers. Combined with genomic advances in new technologies like TILLING, mutagenesis is becoming an even more powerfu...

  14. IBMFS - gene mutations

    Cancer.gov

    A "mutation" is a change in a gene that prevents it from working properly. A "germline" mutation is a change that occurs in the egg or the sperm, or both, and is passed from one parent or both parents to the child.

  15. Rhodospirillum rubrum Possesses a Variant of the bchP Gene, Encoding Geranylgeranyl-Bacteriopheophytin Reductase

    PubMed Central

    Addlesee, Hugh A.; Hunter, C. Neil

    2002-01-01

    The bchP gene product of Rhodobacter sphaeroides is responsible for the reduction of the isoprenoid moiety of bacteriochlorophyll (Bchl) from geranylgeraniol (GG) to phytol; here, we show that this enzyme also catalyzes the reduction of the isoprenoid moiety of bacteriopheophytin (Bphe). In contrast, we demonstrate that a newly identified homolog of this gene in Rhodospirillum rubrum encodes an enzyme, GG-Bphe reductase, capable of reducing the isoprenoid moiety of Bphe only. We propose that Rhodospirillum rubrum is a naturally occurring bchP mutant and that an insertion mutation may have been the initial cause of a partial loss of function. Normal BchP function can be restored to Rhodospirillum rubrum, creating a new transconjugant strain possessing Bchl esterified with phytol. We speculate on the requirement of Rhodospirillum rubrum for phytylated Bphe and on a potential link between the absence of LH2 and of phytylated Bchl from the wild-type bacterium. The identification of a second role for the fully functional BchP in catalyzing the synthesis of phytylated Bphe strongly suggests that homologs of this enzyme may be similarly responsible for the synthesis of phytylated pheophytin in organisms possessing photosystem 2. In addition to bchP, other members of a photosynthesis gene cluster were identified in Rhodospirillum rubrum, including a bchG gene, demonstrated to encode a functional Bchl synthetase by complementation of a Rhodobacter sphaeroides mutant. PMID:11872709

  16. Connecting protein conformational dynamics with catalytic function as illustrated in dihydrofolate reductase.

    PubMed

    Fan, Yao; Cembran, Alessandro; Ma, Shuhua; Gao, Jiali

    2013-03-26

    Combined quantum mechanics/molecular mechanics molecular dynamics simulations reveal that the M20 loop conformational dynamics of dihydrofolate reductase (DHFR) is severely restricted at the transition state of the hydride transfer as a result of the M42W/G121V double mutation. Consequently, the double-mutant enzyme has a reduced entropy of activation, i.e., increased entropic barrier, and altered temperature dependence of kinetic isotope effects in comparison with those of wild-type DHFR. Interestingly, in both wild-type DHFR and the double mutant, the average donor-acceptor distances are essentially the same in the Michaelis complex state (~3.5 Å) and the transition state (2.7 Å). It was found that an additional hydrogen bond is formed to stabilize the M20 loop in the closed conformation in the M42W/G121V double mutant. The computational results reflect a similar aim designed to knock out precisely the dynamic flexibility of the M20 loop in a different double mutant, N23PP/S148A. PMID:23297871

  17. Role of Conserved Glycine in Zinc-dependent Medium Chain Dehydrogenase/Reductase Superfamily*

    PubMed Central

    Tiwari, Manish Kumar; Singh, Raushan Kumar; Singh, Ranjitha; Jeya, Marimuthu; Zhao, Huimin; Lee, Jung-Kul

    2012-01-01

    The medium-chain dehydrogenase/reductase (MDR) superfamily consists of a large group of enzymes with a broad range of activities. Members of this superfamily are currently the subject of intensive investigation, but many aspects, including the zinc dependence of MDR superfamily proteins, have not yet have been adequately investigated. Using a density functional theory-based screening strategy, we have identified a strictly conserved glycine residue (Gly) in the zinc-dependent MDR superfamily. To elucidate the role of this conserved Gly in MDR, we carried out a comprehensive structural, functional, and computational analysis of four MDR enzymes through a series of studies including site-directed mutagenesis, isothermal titration calorimetry, electron paramagnetic resonance (EPR), quantum mechanics, and molecular mechanics analysis. Gly substitution by other amino acids posed a significant threat to the metal binding affinity and activity of MDR superfamily enzymes. Mutagenesis at the conserved Gly resulted in alterations in the coordination of the catalytic zinc ion, with concomitant changes in metal-ligand bond length, bond angle, and the affinity (Kd) toward the zinc ion. The Gly mutants also showed different spectroscopic properties in EPR compared with those of the wild type, indicating that the binding geometries of the zinc to the zinc binding ligands were changed by the mutation. The present results demonstrate that the conserved Gly in the GHE motif plays a role in maintaining the metal binding affinity and the electronic state of the catalytic zinc ion during catalysis of the MDR superfamily enzymes. PMID:22500022

  18. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (?E??T??HVP?), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  19. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGESBeta

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore »substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (?E??T??HVP?), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  20. Controlling the formation of a monolayer of cytochrome P450 reductase onto Au surfaces

    NASA Astrophysics Data System (ADS)

    Convery, J. H.; Smith, C. I.; Khara, B.; Scrutton, N. S.; Harrison, P.; Farrell, T.; Martin, D. S.; Weightman, P.

    2012-07-01

    The conditions necessary for the formation of a monolayer and a bilayer of a mutated form (P499C) of human cytochrome P450 reductase on a Au(110)/electrolyte interface have been determined using a quartz crystal microbalance with dissipation, atomic force microscopy, and reflection anisotropy spectroscopy (RAS). The molecules adsorb through a Au-S linkage and, for the monolayer, adopt an ordered structure on the Au(110) substrate in which the optical axes of the dipoles contributing to the RAS signal are aligned roughly along the optical axes of the Au(110) substrate. Differences between the absorption spectrum of the molecules in a solution and the RAS profile of the adsorbed monolayer are attributed to surface order in the orientation of dipoles that contribute in the low energy region of the spectrum, a roughly vertical orientation on the surface of the long axes of the isoalloxazine rings and the lack of any preferred orientation in the molecular structure of the dipoles in the aromatic amino acids. Our studies establish an important proof of principle for immobilizing large biological macromolecules to gold surfaces. This opens up detailed studies of the dynamics of biological macromolecules by RAS, which have general applications in studies of biological redox chemistry that are coupled to protein dynamics.

  1. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  2. The nitrate reductase activity of milk xanthine oxidase.

    PubMed

    Sergeev, N S; Ananiadi, L I; L'vov, N P; Kretovich, W L

    1985-04-01

    Milk xanthine oxidase oxidizes xanthine at pH 9.6 and reduces nitrates at pH 5.2. It is shown that the nitrate reductase activity requires molybdenum and sulfur-containing sites in the enzyme, whereas oxidation of xanthine also requires iron-containing sites and FAD. As the pH changes from 5.2 to 9.6, the conformation of the enzyme molecule is modified as demonstrated by changes in the absorption, fluorescence, and circular dichroism spectra. When the enzyme is treated with dithioerythritol, it may pass from the oxidase to the dehydrogenase form with a marked increase in the nitrate reductase activity. PMID:3840469

  3. Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum.

    PubMed Central

    Meissner, P S; Falkinham, J O

    1984-01-01

    A Chesapeake Bay water isolate of Mycobacterium scrofulaceum containing a 115-megadalton plasmid (pVT1) grew in the presence of 100 microM HgCl2 and converted soluble 203Hg2+ to volatile mercury at a rate of 50 pmol/10(8) cells per min. Cell extracts contained a soluble mercuric reductase whose activity was not dependent on exogenously supplied thiol compounds. The enzyme displayed nearly identical activity when either NADH or NADPH served as the electron donor. A spontaneously cured derivative lacking pVT1 failed to grow in the presence of 100 microM HgCl2 and possessed no detectable mercuric reductase activity. Images PMID:6693354

  4. The mechanism of high Mr thioredoxin reductase from Drosophila melanogaster.

    PubMed

    Bauer, Holger; Massey, Vincent; Arscott, L David; Schirmer, R Heiner; Ballou, David P; Williams, Charles H

    2003-08-29

    Drosophila melanogaster thioredoxin reductase-1 (DmTrxR-1) is a key flavoenzyme in dipteran insects, where it substitutes for glutathione reductase. DmTrxR-1 belongs to the family of dimeric, high Mr thioredoxin reductases, which catalyze reduction of thioredoxin by NADPH. Thioredoxin reductase has an N-terminal redox-active disulfide (Cys57-Cys62) adjacent to the flavin and a redox-active C-terminal cysteine pair (Cys489'-Cys490' in the other subunit) that transfer electrons from Cys57-Cys62 to the substrate thioredoxin. Cys489'-Cys490' functions similarly to Cys495-Sec496 (Sec = selenocysteine) and Cys535-XXXX-Cys540 in human and parasite Plasmodium falciparum enzymes, but a catalytic redox center formed by adjacent Cys residues, as observed in DmTrxR-1, is unprecedented. Our data show, for the first time in a high Mr TrxR, that DmTrxR-1 oscillates between the 2-electron reduced state, EH2, and the 4-electron state, EH4, in catalysis, after the initial priming reduction of the oxidized enzyme (Eox) to EH2. The reductive half-reaction consumes 2 eq of NADPH in two observable steps to produce EH4. The first equivalent yields a FADH--NADP+ charge-transfer complex that reduces the adjacent disulfide to form a thiolate-flavin charge-transfer complex. EH4 reacts with thioredoxin rapidly to produce EH2. In contrast, Eox formation is slow and incomplete; thus, EH2 of wild-type cannot reduce thioredoxin at catalytically competent rates. Mutants lacking the C-terminal redox center, C489S, C490S, and C489S/C490S, are incapable of reducing thioredoxin and can only be reduced to EH2 forms. Additional data suggest that Cys57 attacks Cys490' in the interchange reaction between the N-terminal dithiol and the C-terminal disulfide. PMID:12816954

  5. Regulation of TNF-alpha-activated PKC-zeta signaling by the human biliverdin reductase: identification of activating and inhibitory domains of the reductase.

    PubMed

    Lerner-Marmarosh, Nicole; Miralem, Tihomir; Gibbs, Peter E M; Maines, Mahin D

    2007-12-01

    Human biliverdin reductase (hBVR) is a dual function enzyme: a catalyst for bilirubin formation and a S/T/Y kinase that shares activators with protein kinase C (PKC) -zeta, including cytokines, insulin, and reactive oxygen species (ROS). Presently, we show that hBVR increases PKC-zeta autophosphorylation, stimulation by TNF-alpha, as well as cytokine stimulation of NF-kappaB DNA binding and promoter activity. S149 in hBVR S/T kinase domain and S230 in YLS230F in hBVR's docking site for the SH2 domain of signaling proteins are phosphorylation targets of PKC-zeta. Two hBVR-based peptides, KRNRYLS230F (#1) and KKRILHC281 (#2), but not their S-->A or C-->A derivatives, respectively, blocked PKC-zeta stimulation by TNF-alpha and its membrane translocation. The C-terminal-based peptide KYCCSRK296 (#3), enhanced PKC-zeta stimulation by TNF-alpha; for this, Lys296 was essential. In metabolically 32P-labeled HEK293 cells transfected with hBVR or PKC-zeta, TNF-alpha increased hBVR phosphorylation. TNF-alpha did not stimulate PKC-zeta in cells infected with small interfering RNA for hBVR or transfected with hBVR with a point mutation in the nucleotide-binding loop (G17), S149, or S230; this was similar to the response of "kinase-dead" PKC-zeta(K281R). We suggest peptide #1 blocks PKC-zeta-docking site interaction, peptide #2 disrupts function of the PKC-zeta C1 domain, and peptide #3 alters ATP presentation to the kinase. The findings are of potential significance for development of modulators of PKC-zeta activity and cellular response to cytokines. PMID:17639074

  6. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    NASA Astrophysics Data System (ADS)

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.

  7. The occurrence of nitrate reductase in leaves of prunus species.

    PubMed

    Leece, D R; Dilley, D R; Kenworthy, A L

    1972-05-01

    Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole. PMID:16658037

  8. Using chemical approaches to study selenoproteins - focus on thioredoxin reductases

    PubMed Central

    Hondal, Robert J.

    2009-01-01

    The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine. PMID:19406205

  9. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5?. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  10. Rubredoxin reductase from Alcanivorax borkumensis: expression and characterization.

    PubMed

    Teimoori, Afsaneh; Ahmadian, Shahin; Madadkar-Sobhani, Armin; Bambai, Bijan

    2011-01-01

    Oil pollution is an environmental problem of increasing importance. Alcanivorax borkumensis, with a high potential for biotechnological applications, is a key marine hydrocarbonoclastic bacterium and plays a critical role in the bioremediation of oil-polluted marine systems. In oil degrading bacteria, the first step of alkane degradation is catalyzed by a monooxygenase. The reducing electrons are tunneled from NAD(P)H via rubredoxin, one of the most primitive metalloproteins, to the hydroxylase. Rubredoxin reductase is a flavoprotein catalyzing the reduction of rubredoxin. There are two rubredoxin genes, alkG and rubA, in A. borkumensis genome. In this work, the genes encoding rubredoxin reductase (ABO_0162, rubB) and AlkG(ABO_2708, alkG) were cloned and functionally overexpressed in E. coli. Our results demonstrate that RubB could reduce AlkG, therefore compensating for the absence of AlkT, also a rubredoxin reductase, missing in A. borkumensis SK2 genome. These results will increase our knowledge concerning biological alkane degradation and will lead us to design more efficient biotransformation and bioremediation systems. PMID:21714118

  11. Restoration of mRNA splicing by a second-site intragenic suppressor in the T4 ribonucleotide reductase (small subunit) self-splicing intron.

    PubMed

    Khan, A U; Ahmad, M; Lal, S K

    2000-02-16

    The nrdB gene of bacteriophage T4 codes for the small subunit of ribonucleotide reductase and contains a 598-base self-splicing intron which is closely related to other group I introns of T4 and eukaryotes. Thirty-one mutants causing splicing defects in the nrdB intron were isolated. Twenty-three EMS-induced revertants for these 31 primary mutants were isolated by the strategic usage of the white halo plaque phenotype. We mapped these revertants by marker rescue using subclones of the nrdB gene. Some of these second-site mutations mapped to regions currently predicted by the secondary structure model of the nrdB intron. One of these suppressor mutants (nrdB753R) was found to be intragenic by marker rescue with the whole nrdB gene. However, this mutation failed to map within the nrdB intron. Splicing assays showed that this pseudorevertant restored splicing proficiency of the nrdB primary mutation to almost wild-type conditions. This is the first example of a mutation within the exons of a gene containing a self-splicing intron that is capable of restoring a self-splicing defect caused by a primary mutation within the intron. In addition, two other suppressor mutations are of interest (nrdB429R and nrdB399R). These suppressors were able to restore their primary 5' defect but in turn create a 3' splicing defect. Both of these revertants mapped in different regions of the intron with respect to their primary mutations. PMID:10679208

  12. Photoinitiated proton-coupled electron transfer and radical transport kinetics in class la ribonucleotide reductase

    E-print Network

    Pizano, Arturo A. (Arturo Alejandro)

    2013-01-01

    Proton-coupled electron transfer (PCET) is a critical mechanism in biology, underpinning key processes such as radical transport, energy transduction, and enzymatic substrate activation. Ribonucleotide reductases (RNRs) ...

  13. Photo-ribonucleotide reductase ?2 by selective cysteine labeling with a radical phototrigger

    E-print Network

    Holder, Patrick

    Photochemical radical initiation is a powerful tool for studying radical initiation and transport in biology. Ribonucleotide reductases (RNRs), which catalyze the conversion of nucleotides to deoxynucleotides in all ...

  14. Selenate reductase activity in Escherichia coli requires Isc iron-sulfur cluster biosynthesis genes.

    PubMed

    Yee, Nathan; Choi, Jessica; Porter, Abigail W; Carey, Sean; Rauschenbach, Ines; Harel, Arye

    2014-12-01

    The selenate reductase in Escherichia coli is a multi-subunit enzyme predicted to bind Fe-S clusters. In this study, we examined the iron-sulfur cluster biosynthesis genes that are required for selenate reductase activity. Mutants devoid of either the iscU or hscB gene in the Isc iron-sulfur cluster biosynthesis pathway lost the ability to reduce selenate. Genetic complementation by the wild-type sequences restored selenate reductase activity. The results indicate the Isc biosynthetic system plays a key role in selenate reductase Fe-S cofactor assembly and is essential for enzyme activity. PMID:25307727

  15. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    PubMed Central

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  16. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis.

    PubMed

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-09-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  17. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones. PMID:14598214

  18. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years

    E-print Network

    Brignole, Edward J.

    RNRs (ribonucleotide reductases) are key players in nucleic acid metabolism, converting ribonucleotides into deoxyribonucleotides. As such, they maintain the intracellular balance of deoxyribonucleotides to ensure the ...

  19. Genetic Characterization and Role in Virulence of the Ribonucleotide Reductases of Streptococcus sanguinis * ?

    PubMed Central

    Rhodes, DeLacy V.; Crump, Katie E.; Makhlynets, Olga; Snyder, Melanie; Ge, Xiuchun; Xu, Ping; Stubbe, JoAnne; Kitten, Todd

    2014-01-01

    Streptococcus sanguinis is a cause of infective endocarditis and has been shown to require a manganese transporter called SsaB for virulence and O2 tolerance. Like certain other pathogens, S. sanguinis possesses aerobic class Ib (NrdEF) and anaerobic class III (NrdDG) ribonucleotide reductases (RNRs) that perform the essential function of reducing ribonucleotides to deoxyribonucleotides. The accompanying paper (Makhlynets, O., Boal, A. K., Rhodes, D. V., Kitten, T., Rosenzweig, A. C., and Stubbe, J. (2014) J. Biol. Chem. 289, 6259–6272) indicates that in the presence of O2, the S. sanguinis class Ib RNR self-assembles an essential diferric-tyrosyl radical (FeIII2-Y•) in vitro, whereas assembly of a dimanganese-tyrosyl radical (MnIII2-Y•) cofactor requires NrdI, and MnIII2-Y• is more active than FeIII2-Y• with the endogenous reducing system of NrdH and thioredoxin reductase (TrxR1). In this study, we have shown that deletion of either nrdHEKF or nrdI completely abolishes virulence in an animal model of endocarditis, whereas nrdD mutation has no effect. The nrdHEKF, nrdI, and trxR1 mutants fail to grow aerobically, whereas anaerobic growth requires nrdD. The nrdJ gene encoding an O2-independent adenosylcobalamin-cofactored RNR was introduced into the nrdHEKF, nrdI, and trxR1 mutants. Growth of the nrdHEKF and nrdI mutants in the presence of O2 was partially restored. The combined results suggest that MnIII2-Y•-cofactored NrdF is required for growth under aerobic conditions and in animals. This could explain in part why manganese is necessary for virulence and O2 tolerance in many bacterial pathogens possessing a class Ib RNR and suggests NrdF and NrdI may serve as promising new antimicrobial targets. PMID:24381171

  20. Mutator dynamics in fluctuating environments.

    PubMed Central

    Travis, J M J; Travis, E R

    2002-01-01

    Populations with high mutation rates (mutator clones) are being found in increasing numbers of species, and a clear link is being established between the presence of mutator clones and drug resistance. Mutator clones exist despite the fact that in a constant environment most mutations are deleterious, with the spontaneous mutation rate generally held at a low value. This implies that mutator clones have an important role in the adaptation of organisms to changing environments. Our study examines how mutator dynamics vary according to the frequency of environmental fluctuations. Although recent studies have considered a single environmental switch, here we investigate mutator dynamics in a regularly varying environment, seeking to mimic conditions present, for example, under certain drug or pesticide regimes. Our model provides four significant new insights. First, the results demonstrate that mutators are most prevalent under intermediate rates of environmental change. When the environment oscillates more rapidly, mutators are unable to provide sufficient adaptability to keep pace with the frequent changes in selection pressure and, instead, a population of 'environmental generalists' dominates. Second, our findings reveal that mutator dynamics may be complex, exhibiting limit cycles and chaos. Third, we demonstrate that when each beneficial mutation provides a greater gain in fitness, mutators achieve higher densities in more rapidly fluctuating environments. Fourth, we find that mutators of intermediate strength reach higher densities than very weak or strong mutators. PMID:11916475

  1. [The significance of folate metabolism in complications of pregnant women].

    PubMed

    Seremak-Mrozikiewicz, Agnieszka

    2013-05-01

    Proper metabolism of folates has a crucial role for body homeostasis. Folate metabolism regulates changing of amino acids (homocysteine and methionine), purine and pyrimidine synthesis and DNA methylation. These whole biochemical processes have significant influence on hematopoietic, cardiovascular and nervous system functions. The disturbances of folate cycle could result in chronic hypertension, coronary artery disease, higher risk of heart infarction, could promote cancers development, and psychic and neurodegenerative diseases. No less important is the connection with complications appearing in pregnant woman (recurrent miscarriages, preeclampsia, fetus hypotrophy intrauterine death, preterm placenta ablation, preterm delivery) and fetus defects (Down syndrome, spina bifida, encephalomeningocele, myelomeningocele). The complex process of folate metabolism requires adequate activity of many enzymes and presence of co-enzymes. A key enzyme in folate metabolism is methylenetetrahydrofolate reductase (MTHFR - methylenetetrahydrofolate reductase), and 677C>T polymorphism of MTHFR gene is connected with lower enzymatic activity In several researches it was indicated that 677C>T MTHFR polymorphism is an independent factor influencing homocysteine concentration in serum, and also folate concentration in serum and red blood cells. Nevertheless, it was also observed the correlation of 677C>T MTHFR polymorphism with Down syndrome, and neural tube defects appearance in fetus. In European populations frequency of mutated 677TT genotype ranges from a few to several percent. Women carriers of 677TT or 677CT MTHFR genotypes are exposed on folate metabolism disturbances and on the consequences of incorrect folate process during pregnancy Nowadays in this group of women folic acid supplementation is widely recommended. In the light of modern knowledge the attention was also focused on the importance of metafolin administration that omitted pathways of folic acid transformation after administration, and in pregnant women certainly is valuable complement of supplementation in this respect. PMID:23819405

  2. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis

    PubMed Central

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S. M.; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J.; Bressan, Ray A.; Pardo, Jose M.; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  3. A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis.

    PubMed

    Cha, Joon-Yung; Kim, Woe-Yeon; Kang, Sun Bin; Kim, Jeong Im; Baek, Dongwon; Jung, In Jung; Kim, Mi Ri; Li, Ning; Kim, Hyun-Jin; Nakajima, Masatoshi; Asami, Tadao; Sabir, Jamal S M; Park, Hyeong Cheol; Lee, Sang Yeol; Bohnert, Hans J; Bressan, Ray A; Pardo, Jose M; Yun, Dae-Jin

    2015-01-01

    YUCCA (YUC) proteins constitute a family of flavin monooxygenases (FMOs), with an important role in auxin (IAA) biosynthesis. Here we report that Arabidopsis plants overexpressing YUC6 display enhanced IAA-related phenotypes and exhibit improved drought stress tolerance, low rate of water loss and controlled ROS accumulation under drought and oxidative stresses. Co-overexpression of an IAA-conjugating enzyme reduces IAA levels but drought stress tolerance is unaffected, indicating that the stress-related phenotype is not based on IAA overproduction. YUC6 contains a previously unrecognized FAD- and NADPH-dependent thiol-reductase activity (TR) that overlaps with the FMO domain involved in IAA biosynthesis. Mutation of a conserved cysteine residue (Cys-85) preserves FMO but suppresses TR activity and stress tolerance, whereas mutating the FAD- and NADPH-binding sites, that are common to TR and FMO domains, abolishes all outputs. We provide a paradigm for a single protein playing a dual role, regulating plant development and conveying stress defence responses. PMID:26314500

  4. The Bacillus subtilis ydjL (bdhA) Gene Encodes Acetoin Reductase/2,3-Butanediol Dehydrogenase ?

    PubMed Central

    Nicholson, Wayne L.

    2008-01-01

    Bacillus subtilis is capable of producing 2,3-butanediol from acetoin by fermentation, but to date, the gene encoding the enzyme responsible, acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), has remained unknown. A search of the B. subtilis genome database with the amino acid sequences of functional AR/BDHs from Saccharomyces cerevisiae and Bacillus cereus resulted in the identification of a highly similar protein encoded by the B. subtilis ydjL gene. A knockout strain carrying a ydjL::cat insertion mutation was constructed, which (i) abolished 2,3-butanediol production in early stationary phase, (ii) produced no detectable AR or BDH activity in vitro, and (iii) accumulated the precursor acetoin in early stationary phase. The ydjL::cat mutation also affected the kinetics of lactate but not acetate production during stationary-phase cultivation with glucose under oxygen limitation. A very small amount of 2,3-butanediol was detected in very-late-stationary-phase (96-hour) cultures of the ydjL::cat mutant, suggesting the existence of a second gene encoding a minor AR activity. From the data, it is proposed that the major AR/BDH-encoding gene ydjL be renamed bdhA. PMID:18820069

  5. Simulations of Remote Mutants of Dihydrofolate Reductase Reveal the Nature of a Network of Residues Coupled to Hydride Transfer

    PubMed Central

    Roston, Daniel; Kohen, Amnon; Doron, Dvir; Major, Dan T.

    2014-01-01

    Recent experimental and theoretical studies have proposed that enzymes involve networks of coupled residues throughout the protein that participate in motions accompanying chemical barrier crossing. Here we have examined portions of a proposed network in dihydrofolate reductase (DHFR) using quantum mechanics/molecular mechanics simulations. The simulations employ a hybrid quantum mechanics-molecular mechanics approach with a recently developed semi-empirical AM1-SRP Hamiltonian that provides accurate results for this reaction. The simulations reproduce experimentally determined catalytic rates for the wild type and distant mutants of E. coli DHFR, underscoring the accuracy of the simulation protocol. Additionally the simulations provide detailed insight into how residues remote from the active site affect the catalyzed chemistry, through changes in the thermally averaged properties along the reaction coordinate. The mutations do not greatly affect the structure of the transition state near the bond activation, but we observe differences somewhat removed from the point of C-H cleavage that affect the rate. The mutations have global effects on the thermally averaged structure that propagate throughout the enzyme and the current simulations highlight several interactions that appear to be particularly important. PMID:24798860

  6. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase

    NASA Astrophysics Data System (ADS)

    Wang, Xianwei; Zhang, John Z. H.; He, Xiao

    2015-11-01

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C?N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties.

  7. Quantum mechanical calculation of electric fields and vibrational Stark shifts at active site of human aldose reductase.

    PubMed

    Wang, Xianwei; Zhang, John Z H; He, Xiao

    2015-11-14

    Recent advance in biophysics has made it possible to directly measure site-specific electric field at internal sites of proteins using molecular probes with C = O or C?N groups in the context of vibrational Stark effect. These measurements directly probe changes of electric field at specific protein sites due to, e.g., mutation and are very useful in protein design. Computational simulation of the Stark effect based on force fields such as AMBER and OPLS, while providing good insight, shows large errors in comparison to experimental measurement due to inherent difficulties associated with point charge based representation of force fields. In this study, quantum mechanical calculation of protein's internal electrostatic properties and vibrational Stark shifts was carried out by using electrostatically embedded generalized molecular fractionation with conjugate caps method. Quantum calculated change of mutation-induced electric field and vibrational Stark shift is reported at the internal probing site of enzyme human aldose reductase. The quantum result is in much better agreement with experimental data than those predicted by force fields, underscoring the deficiency of traditional point charge models describing intra-protein electrostatic properties. PMID:26567650

  8. Comparative Study on Sequence-Structure-Function Relationship of the Human Short-chain Dehydrogenases/Reductases Protein Family.

    PubMed

    Tang, Nu Thi Ngoc; Le, Ly

    2014-01-01

    Human short-chain dehydrogenases/reductases (SDRs) protein family has been the subject of recent studies for its critical role in human metabolism. Studies also found that single nucleotide polymorphisms of the SDR protein family were responsible for a variety of genetic diseases, including type II diabetes. This study reports the effect of sequence variation on the structural and functional integrities of human SDR protein family using phylogenetics and correlated mutation analysis tools. Our results indicated that (i) tyrosine, serine, and lysine are signature protein residues that have direct contribution to the structural and functional stabilities of the SDR protein family, (ii) subgroups of SDR protein family have their own signature protein combination that represent their unique functionality, and (iii) mutations of the human SDR protein family showed high correlation in terms of evolutionary history. In combination, the results inferred that over evolutionary history, the SDR protein family was able to diverge itself in order to adapt with the changes in human nutritional demands. Our study reveals understanding of structural and functional scaffolds of specific SDR subgroups that may facilitate the design of specific inhibitor. PMID:25374450

  9. Phenylketonuria mutations in Europe.

    PubMed

    Zschocke, Johannes

    2003-04-01

    Phenylketonuria (PKU) is heterogeneous. More than 400 different mutations in the phenylalanine hydroxylase (PAH) gene have been identified. In a systematic review of the molecular genetics of PKU in Europe we identified 29 mutations that may be regarded as prevalent in European populations. Comprehensive regional data for these mutations were collated from all available studies. The spectrum of mutations found in individual regions results from a combination of factors including founder effect, range expansion and migration, genetic drift, and probably heterozygote advantage. Common mutations include R408W on a haplotype 2 background in Eastern Europe, IVS10-11G>A in the Mediterranean, IVS12+1G>A in Denmark and England, Y414C in Scandinavia, I65T in Western Europe, and R408W on haplotype 1 in the British Isles. Molecular data from mild hyperphenylalaninemia (MHP) patients are available from a number of countries, but it is currently not possible to calculate relative allele frequencies. The available data on PAH mutations are useful for the understanding of both the clinical features and the population genetics of PAH deficiency in Europe. PMID:12655544

  10. Viral Mutation Rates ?

    PubMed Central

    Sanjuán, Rafael; Nebot, Miguel R.; Chirico, Nicola; Mansky, Louis M.; Belshaw, Robert

    2010-01-01

    Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10?8 to10?6 s/n/c for DNA viruses and from 10?6 to 10?4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut. PMID:20660197

  11. Comparing Mutational Variabilities

    PubMed Central

    Houle, D.; Morikawa, B.; Lynch, M.

    1996-01-01

    We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model. PMID:8807316

  12. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  13. Efficicent (R)-Phenylethanol Production with Enantioselectivity-Alerted (S)-Carbonyl Reductase II and NADPH Regeneration

    PubMed Central

    Zhang, Rongzhen; Zhang, Botao; Xu, Yan; Li, Yaohui; Li, Ming; Liang, Hongbo; Xiao, Rong

    2013-01-01

    The NADPH-dependent (S)-carbonyl reductaseII from Candida parapsilosis catalyzes acetophenone to chiral phenylethanol in a very low yield of 3.2%. Site-directed mutagenesis was used to design two mutants Ala220Asp and Glu228Ser, inside or adjacent to the substrate-binding pocket. Both mutations caused a significant enantioselectivity shift toward (R)-phenylethanol in the reduction of acetophenone. The variant E228S produced (R)-phenylethanol with an optical purity above 99%, in 80.2% yield. The E228S mutation resulted in a 4.6-fold decrease in the KM value, but nearly 5-fold and 21-fold increases in the kcat and kcat/KM values with respect to the wild type. For NADPH regeneration, Bacillus sp. YX-1 glucose dehydrogenase was introduced into the (R)-phenylethanol pathway. A coexpression system containing E228S and glucose dehydrogenase was constructed. The system was optimized by altering the coding gene order on the plasmid and using the Shine–Dalgarno sequence and the aligned spacing sequence as a linker between them. The presence of glucose dehydrogenase increased the NADPH concentration slightly and decreased NADP+ pool 2- to 4-fold; the NADPH/NADP+ ratio was improved 2- to 5-fold. The recombinant Escherichia coli/pET-MS-SD-AS-G, with E228S located upstream and glucose dehydrogenase downstream, showed excellent performance, giving (R)-phenylethanol of an optical purity of 99.5 % in 92.2% yield in 12 h in the absence of an external cofactor. When 0.06 mM NADP+ was added at the beginning of the reaction, the reaction duration was reduced to 1 h. Optimization of the coexpression system stimulated an over 30-fold increase in the yield of (R)-phenylethanol, and simultaneously reduced the reaction time 48-fold compared with the wild-type enzyme. This report describes possible mechanisms for alteration of the enantiopreferences of carbonyl reductases by site mutation, and cofactor rebalancing pathways for efficient chiral alcohols production. PMID:24358299

  14. Differential Light Induction of Nitrate Reductases in Greening and Photobleached Soybean Seedlings 1

    PubMed Central

    Kakefuda, Genichi; Duke, Stanley H.; Duke, Stephen O.

    1983-01-01

    Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3?, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3? and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3? and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3?. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3?, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3? requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3? requirement for induction were quite different. Km values for NO3? were identical for both nitrate reductases. PMID:16663185

  15. Why Is Mammalian Thioredoxin Reductase 1 So Dependent upon the Use of Selenium?

    PubMed Central

    2015-01-01

    Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (Mr) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less dependent upon the use of Sec for the reduction of small molecules. The Sec-dependent substrate utilization behavior of TR1 may be the exception and not the rule as we show that a variety of high-Mr TRs from other organisms, including Drosophila melanogaster, Caenorhabditis elegans, and Plasmodium falciparum, do not require Sec to reduce small molecule substrates, including 5,5?-dithiobis(2-nitrobenzoic acid), lipoic acid, selenite, and selenocystine. The data show that high-Mr TRs can be divided into two groups based upon substrate utilization patterns: a TR1 group and a TR3-like group. We have constructed mutants of TR3-like enzymes from mouse, D. melanogaster, C. elegans, and P. falciparum, and the kinetic data from these mutants show that these enzymes are less dependent upon the use of Sec for the reduction of substrates. We posit that the mechanistic differences between TR1 and the TR3-like enzymes in this study are due to the presence of a “guiding bar”, amino acids 407–422, found in TR1, but not TR3-like enzymes. The guiding bar, proposed by Becker and co-workers [Fritz-Wolf, K., Urig, S., and Becker, K. (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J. Mol. Biol. 370, 116–127], restricts the motion of the C-terminal tail containing the C-terminal Gly-Cys-Sec-Gly, redox active tetrapeptide so that only this C-terminal redox center can be reduced by the N-terminal redox center, with the exclusion of most other substrates. This makes TR1 highly dependent upon the use of Sec because the selenium atom is responsible for both accepting electrons from the N-terminal redox center and donating them to the substrate in this model. Loss of both Se-electrophilicity and Se-nucleophilicity in the Sec ? Cys mutant of TR1 greatly reduces catalytic activity. TR3-like enzymes, in contrast, are less dependent upon the use of Sec because the absence of the guiding bar in these enzymes allows for greater access of the substrate to the N-terminal redox center and because they can make use of alternative mechanistic pathways that are not available to TR1. PMID:24393022

  16. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?

    PubMed

    Lothrop, Adam P; Snider, Gregg W; Ruggles, Erik L; Hondal, Robert J

    2014-01-28

    Cytosolic thioredoxin reductase 1 (TR1) is the best characterized of the class of high-molecular weight (Mr) thioredoxin reductases (TRs). TR1 is highly dependent upon the rare amino acid selenocysteine (Sec) for the reduction of thioredoxin (Trx) and a host of small molecule substrates, as mutation of Sec to cysteine (Cys) results in a large decrease in catalytic activity for all substrate types. Previous work in our lab and others has shown that the mitochondrial TR (TR3) is much less dependent upon the use of Sec for the reduction of small molecules. The Sec-dependent substrate utilization behavior of TR1 may be the exception and not the rule as we show that a variety of high-Mr TRs from other organisms, including Drosophila melanogaster, Caenorhabditis elegans, and Plasmodium falciparum, do not require Sec to reduce small molecule substrates, including 5,5'-dithiobis(2-nitrobenzoic acid), lipoic acid, selenite, and selenocystine. The data show that high-Mr TRs can be divided into two groups based upon substrate utilization patterns: a TR1 group and a TR3-like group. We have constructed mutants of TR3-like enzymes from mouse, D. melanogaster, C. elegans, and P. falciparum, and the kinetic data from these mutants show that these enzymes are less dependent upon the use of Sec for the reduction of substrates. We posit that the mechanistic differences between TR1 and the TR3-like enzymes in this study are due to the presence of a "guiding bar", amino acids 407-422, found in TR1, but not TR3-like enzymes. The guiding bar, proposed by Becker and co-workers [Fritz-Wolf, K., Urig, S., and Becker, K. (2007) The structure of human thioredoxin reductase 1 provides insights into C-terminal rearrangements during catalysis. J. Mol. Biol. 370, 116-127], restricts the motion of the C-terminal tail containing the C-terminal Gly-Cys-Sec-Gly, redox active tetrapeptide so that only this C-terminal redox center can be reduced by the N-terminal redox center, with the exclusion of most other substrates. This makes TR1 highly dependent upon the use of Sec because the selenium atom is responsible for both accepting electrons from the N-terminal redox center and donating them to the substrate in this model. Loss of both Se-electrophilicity and Se-nucleophilicity in the Sec ? Cys mutant of TR1 greatly reduces catalytic activity. TR3-like enzymes, in contrast, are less dependent upon the use of Sec because the absence of the guiding bar in these enzymes allows for greater access of the substrate to the N-terminal redox center and because they can make use of alternative mechanistic pathways that are not available to TR1. PMID:24393022

  17. Characterization of a Substrate-Derived Radical Detected during the Inactivation of Ribonucleotide Reductase from Escherichia coli by

    E-print Network

    Griffin, Robert G.

    Reductase from Escherichia coli by 2-Fluoromethylene-2-deoxycytidine 5-Diphosphate Gary J. Gerfen ReceiVed June 30, 1997 Abstract: Ribonucleotide reductase (RDPR) from E. coli catalyzes the conversion

  18. Re(bpy)(CO)[subscript 3]CN as a Probe of Conformational Flexibility in a Photochemical Ribonucleotide Reductase

    E-print Network

    Reece, Steven Y.

    Photochemical ribonucleotide reductases (photoRNRs) have been developed to study the proton-coupled electron transfer (PCET) mechanism of radical transport in Escherichia coli class I ribonucleotide reductase (RNR). The ...

  19. Spd1 accumulation causes genome instability independently of ribonucleotide reductase activity but functions to protect the genome when deoxynucleotide pools are elevated

    PubMed Central

    Fleck, Oliver; Vejrup-Hansen, Rasmus; Watson, Adam; Carr, Antony M.; Nielsen, Olaf; Holmberg, Christian

    2013-01-01

    Summary Cullin4, Ddb1 and Cdt2 are core subunits of the ubiquitin ligase complex CRL4Cdt2, which controls genome stability by targeting Spd1 for degradation during DNA replication and repair in fission yeast. Spd1 has an inhibitory effect on ribonucleotide reductase (RNR), the activity of which is required for deoxynucleotide (dNTP) synthesis. The failure to degrade Spd1 in mutants where CRL4Cdt2 is defective leads to DNA integrity checkpoint activation and dependency. This correlates with a lower dNTP pool. Pools are restored in a spd1-deleted background and this also suppresses checkpoint activation and dependency. We hypothesized that fission yeast with RNR hyperactivity would display a mutator phenotype on their own, but also possibly repress aspects of the phenotype associated with the inability to target Spd1 for degradation. Here, we report that a mutation in the R1 subunit of ribonucleotide reductase cdc22 (cdc22-D57N), which alleviated allosteric feedback inhibition, caused a highly elevated dNTP pool that was further increased by deleting spd1. The ?spd1 cdc22-D57N double mutant had elevated mutation rates and was sensitive to damaging agents that cause DNA strand breaks, demonstrating that Spd1 can protect the genome when dNTP pools are high. In ddb1-deleted cells, cdc22-D57N also potently elevated RNR activity, but failed to allow cell growth independently of the intact checkpoint. Our results provide evidence that excess Spd1 interferes with other functions in addition to its inhibitory effect on ribonucleotide reduction to generate replication stress and genome instability. PMID:23986475

  20. Isolation and characterization of EMS induced splicing defective point mutations within the intron of the nrdB gene of bacteriophage T4.

    PubMed

    Khan, A U; Lal, S K; Ahmad, M

    1998-01-01

    The nrdB gene of bacteriophage T4 codes for the small subunit of ribonucleotide reductase and contains a 598-base-pair self-splicing intron which is closely related to other group I introns of T4 and eukaryotes. The screening, isolation, and mapping of 31 nrdB intron mutations were conducted by the strategic usage of the white halo phenotype exhibited by T4 mutants defective in dyhydrofolate reductase or thymidylate synthase. These intron mutations cluster towards the ends, mainly the 3' end, and show a defect in self-splicing. These mutations map in regions of conserved structural elements, thus supporting secondary structure predictions. A distinct pattern of clustering is observed with the highest number of mutations mapping within three of the smaller regions (A, C, and D) of the nrdB intron and no mutations mapping in the largest (B) region. The highest density of mutations mapped in the smallest region (C) of the intron, containing only 96 bases, thus showing a distinct pattern of clustering within the catalytic core. PMID:9439601

  1. Declining trend of Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant alleles after the withdrawal of Sulfadoxine-Pyrimethamine in North Western Ethiopia

    PubMed Central

    Tessema, Sofonias K.; Kassa, Moges; Kebede, Amha; Mohammed, Hussein; Leta, Gemechu Tadesse; Woyessa, Adugna; Guma, Geremew Tasew; Petros, Beyene

    2015-01-01

    Antimalarial drug resistance is one of the major challenges in global efforts of malaria control and elimination. In 1998, chloroquine was abandoned and replaced with sulfadoxine/pyrimethamine, which in turn was replaced with artemether/lumefantrine for the treatment of uncomplicated falciparum malaria in 2004. Sulfadoxine/pyrimethamine resistance is associated with mutations in dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. The prevalence of mutation in Pfdhfr and Pfdhps genes were evaluated and compared for a total of 159 isolates collected in two different time points, 2005 and 2007/08, from Pawe hospital, in North Western Ethiopia. The frequency of triple Pfdhfr mutation decreased significantly from 50.8% (32/63) to 15.9% (10/63) (P<0.001), while Pfdhps double mutation remained high and changed only marginally from 69.2% (45/65) to 55.4% (40/65) (P = 0.08). The combined Pfdhfr/Pfdhps quintuple mutation, which is strongly associated with sulfadoxine/pyrimethamine resistance, was significantly decreased from 40.7% (24/59) to 13.6% (8/59) (P<0.0001). On the whole, significant decline in mutant alleles and re-emergence of wild type alleles were observed. The change in the frequency is explained by the reduction of residual drug-resistant parasites caused by the strong drug pressure imposed when sulfadoxine/pyrimethamine was the first-line drug, followed by lower fitness of these resistant parasites in the absence of drug pressure. Despite the decrease in the frequency of mutant alleles, higher percentages of mutation remain prevalent in the study area in 2007/08 in both Pfdhfr and Pfdhps genes. Therefore, further multi-centered studies in different parts of the country will be required to assess the re-emergence of sulfadoxine/pyrimethamine sensitive parasites and to monitor and prevent the establishment of multi drug resistant parasites in this region. PMID:26431464

  2. Wentz Research Scholar Program Proposal Proposed Project: Effects of lipid oxidation products on metmyoglobin reductase activity.

    E-print Network

    , the effects of temperature and pH on the enzyme in myoglobin. As well as, the effects of three secondary will be determined on metmyoglobin reductase activity. Reductase is an enzyme that is critical for conversion the enzymes activity for the different conditions. Resources: I will be working in the Muscle Biology

  3. A Field Study of Nitrogen Storage and Nitrate Reductase Activity in the Estuarine Macroalgae Enteromorpha lingulata

    E-print Network

    Sherman, Tim

    A Field Study of Nitrogen Storage and Nitrate Reductase Activity in the Estuarine Macroalgae, and total N) and nitrate reductase (NR) activity in the macroalgae Enteromorpha lingulata and Gelidium, macroalgae are common, if not abundant, in estuaries worldwide (Owens and Stewart 1983; Lee and Olsen 1985

  4. Evaluation of 5?-reductase inhibitory activity of certain herbs useful as antiandrogens.

    PubMed

    Nahata, A; Dixit, V K

    2014-08-01

    This study demonstrates 5?-reductase inhibitory activity of certain herbs useful in the management of androgenic disorders. Ganoderma lucidum (Curtis) P. Karst (GL), Urtica dioica Linn. (UD), Caesalpinia bonducella Fleming. (CB), Tribulus terrestris Linn. (TT), Pedalium murex Linn. (PM), Sphaeranthus indicus Linn. (SI), Cuscuta reflexa Roxb. (CR), Citrullus colocynthis Schrad. (CC), Benincasa hispida Cogn. (BH), Phyllanthus niruri Linn. (PN) and Echinops echinatus Linn. (EE) were included in the study. Petroleum ether, ethanol and aqueous extracts of these herbs were tested for their 5?-reductase inhibitory activity against the standard 5?-reductase inhibitor, finasteride. A biochemical method to determine the activity of 5?-reductase was used to evaluate the inhibition of different extracts to the enzyme. The optical density (OD) value of each sample was measured continuously with ultraviolet spectrophotometer for the reason that the substrate NADPH has a specific absorbance at 340 nm. As the enzyme 5?-reductase uses NADPH as a substrate, so in the presence of 5?-reductase inhibitor, the NADPH concentration will increase with the function of time. This method thus implicates the activity of 5?-reductase. The method proved to be extremely useful to screen the herbs for their 5?-reductase inhibitory potential. GL, UD, BH, SI and CR came out to be promising candidates for further exploring their antiandrogenic properties. PMID:23710567

  5. Succinate dehydrogenase and fumarate reductase from Escherichia coli Gary Cecchini aYbY

    E-print Network

    Schroeder, Imke

    ) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobicReview Succinate dehydrogenase and fumarate reductase from Escherichia coli Gary Cecchini a 2002 Elsevier Science B.V. All rights reserved. Keywords: Succinate dehydrogenase; Fumarate reductase

  6. A Novel Copper A Containing Menaquinol NO Reductase from Bacillus azotoformans

    E-print Network

    Schroeder, Imke

    A Novel Copper A Containing Menaquinol NO Reductase from Bacillus azotoformans Suharti, Marc J. F of one non-heme iron, two copper atoms and of two b-type hemes per enzyme complex. Heme c was absent features of this enzyme that distinguish it from other NO reductases. First, the enzyme contains copper

  7. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  8. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated

    E-print Network

    Berges, John A.

    Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations ERICA B. YOUNG1,2 , MATTHEW J. DRING2 , GRAHAM SAVIDGE2 digitata in a temperate Irish sea lough. Internal NO3 - storage, total N content and nitrate reductase

  9. 778 Moon et al. Yeast arsenate reductase homologue Acta Cryst. (2000). D56, 778780 crystallization papers

    E-print Network

    Suh, Se Won

    2000-01-01

    reductase Jinho Moon,a ² Young Sil Kim,a ² Jae Young Lee,a ² Seung-Je Cho,a Hyun Kyu Song,a Jong Hyun Cho778 Moon et al. Yeast arsenate reductase homologue Acta Cryst. (2000). D56, 778,a B. Moon Kim,a Kyeong Kyu Kimb and Se Won Suha * a Department of Chemistry, College of Natural

  10. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  11. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  12. Investigations of the inhibition mechanisms of human ribonucleotide reductase by gemcitabine-5'-diphosphate and saccharomyces cerevisiae ribonucleotide reductase by Sml1

    E-print Network

    Wang, Jun, Ph. D. Massachusetts Institute of Technology

    2009-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides supplying the dNTPs required for DNA replication and DNA repair. Class I RNRs require two subunits ([alpha] and [beta]) for activity. ...

  13. Characterization of Glycerol Trinitrate Reductase (NerA) and the Catalytic Role of Active-Site Residues

    PubMed Central

    Marshall, Samantha J.; Krause, Doreen; Blencowe, Dayle K.; White, Graham F.

    2004-01-01

    Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10?7 M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same kcat as that of wild-type enzyme but with altered Km values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of KmGTN to KmNAD(P)H, with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity. PMID:14996811

  14. Myxococcus xanthus low-molecular-weight protein tyrosine phosphatase homolog, ArsA, possesses arsenate reductase activity.

    PubMed

    Mori, Yumi; Kimura, Yoshio

    2014-07-01

    Myxococcus xanthus MXAN_0575, ArsA, exhibited sequence homology to low-molecular-weight protein tyrosine phosphatases (LMWPTPs) and arsenate reductases. ArsA exhibited weak phosphatase activity toward p-nitrophenyl phosphate, and high arsenate reductase activity, suggesting that ArsA may play a role in arsenate reductase, but not LMWPTP. PMID:24503422

  15. Use of Protein in Extraction and Stabilization of Nitrate Reductase 1

    PubMed Central

    Schrader, L. E.; Cataldo, D. A.; Peterson, D. M.

    1974-01-01

    The in vitro instability of nitrate reductase (EC 1.6.6.1) activity from leaves of several species of higher plants was investigated. Decay of activity was exponential with time, suggesting that an enzyme-catalyzed reaction was involved. The rate of decay of nitrate reductase activity increased as leaf age increased in all species studied. Activity was relatively stable in certain genotypes of Zea mays L., but extremely unstable in others. In all genotypes of Avena sativa L. and Nicotiana tabacum L. studied, nitrate reductase was unstable. Addition of 3% (w/v) bovine serum albumin or casein to extraction media prevented or retarded the decay of nitrate reductase activity for several hours. In addition, the presence of bovine serum albumin or casein in the enzyme homogenate markedly increased nitrate reductase activity (up to 15-fold), especially in older leaf tissue. PMID:16658769

  16. Irreversible inactivation of trypanothione reductase by unsaturated Mannich bases: a divinyl ketone as key intermediate.

    PubMed

    Lee, Brittany; Bauer, Holger; Melchers, Johannes; Ruppert, Thomas; Rattray, Lauren; Yardley, Vanessa; Davioud-Charvet, Elisabeth; Krauth-Siegel, R Luise

    2005-11-17

    Trypanothione reductase is a flavoenzyme unique to trypanosomatid parasites. Here we show that unsaturated Mannich bases irreversibly inactivate trypanothione reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The inhibitory potency of the compounds strongly increased upon storage of the DMSO stock solutions. HPLC, NMR, and mass spectrometry data of potential intermediates revealed a divinyl ketone as the active compound inactivating the enzyme. ESI- and MALDI-TOF mass spectrometry of trypanothione reductase modified by the Mannich base or the divinyl ketone showed specific alkylation of the active site Cys52 by a 5-(2'chlorophenyl)-3-oxo-4-pentenyl substituent. The reaction mechanism and the site of alkylation differ from those in Plasmodium falciparum thioredoxin reductase where the C-terminal redox active dithiol is modified. After deamination, unsaturated Mannich bases are highly reactive in polycondensation with trypanothione. Interaction of these compounds with both trypanothione and trypanothione reductase could account for their potent trypanocidal effect against Trypanosoma brucei. PMID:16279799

  17. Aminoadipate reductase gene: a new fungal-specific gene for comparative evolutionary analyses

    PubMed Central

    An, Kwang-Deuk; Nishida, Hiromi; Miura, Yoshiharu; Yokota, Akira

    2002-01-01

    Background In fungi, aminoadipate reductase converts 2-aminoadipate to 2-aminoadipate 6-semialdehyde. However, other organisms have no homologue to the aminoadipate reductase gene and this pathway appears to be restricted to fungi. In this study, we designed degenerate primers for polymerase chain reaction (PCR) amplification of a large fragment of the aminoadipate reductase gene for divergent fungi. Results Using these primers, we amplified DNA fragments from the archiascomycetous yeast Saitoella complicata and the black-koji mold Aspergillus awamori. Based on an alignment of the deduced amino acid sequences, we constructed phylogenetic trees. These trees are consistent with current ascomycete systematics and demonstrate the potential utility of the aminoadipete reductase gene for phylogenetic analyses of fungi. Conclusions We believe that the comparison of aminoadipate reductase among species will be useful for molecular ecological and evolutionary studies of fungi, because this enzyme-encoding gene is a fungal-specific gene and generally appears to be single copy. PMID:11931673

  18. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  19. MTHFR POLYMORPHISMS AND COLORECTAL NEOPLASIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Folate is essential for the synthesis, repair and methylation of DNA. Aberrations in folate metabolism can modify our risk for cancer. Folate depletion alters DNA methylation patterns and increases DNA uracil-content and the frequency of DNA breaks. These DNA aberrations are involved in the etiology...

  20. ALS2 mutations

    PubMed Central

    Schneider, Susanne A.; Carr, Lucinda; Deuschl, Guenther; Hopfner, Franziska; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.

    2014-01-01

    Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype. PMID:24562058

  1. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  2. Bcl2 induces DNA replication stress by inhibiting ribonucleotide reductase

    PubMed Central

    Xie, Maohua; Yen, Yun; Owonikoko, Taofeek K.; Ramalingam, Suresh S.; Khuri, Fadlo R.; Curran, Walter J.; Doetsch, Paul W.; Deng, Xingming

    2013-01-01

    DNA replication stress is an inefficient DNA synthesis process that leads replication forks to progress slowly or stall. Two main factors that cause replication stress are alterations in pools of deoxyribonucleotide (dNTP) precursors required for DNA synthesis and changes in the activity of proteins required for synthesis of dNTPs. Ribonucleotide reductase (RNR), containing regulatory hRRM1 and catalytic hRRM2 subunits, is the enzyme that catalyzes the conversion of ribonucleoside diphosphates (NDPs) to deoxyribonucleoside diphosphates (dNDPs) and thereby provides dNTP precursors needed for the synthesis of DNA. Here, we demonstrate that either endogenous or exogenous expression of Bcl2 results in decreases in RNR activity and intracellular dNTP, retardation of DNA replication fork progression and increased rate of fork asymmetry leading to DNA replication stress. Bcl2 co-localizes with hRRM1 and hRRM2 in the cytoplasm and directly interacts via its BH4 domain with hRRM2 but not hRRM1. Removal of the BH4 domain of Bcl2 abrogates its inhibitory effects on RNR activity, dNTP pool level and DNA replication. Intriguingly, Bcl2 directly inhibits RNR activity by disrupting the functional hRRM1/hRRM2 complex via its BH4 domain. Our findings argue that Bcl2 reduces intracellular dNTPs by inhibiting ribonucleotide reductase activity, thereby providing insight into how Bcl2 triggers DNA replication stress. PMID:24197132

  3. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    PubMed

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  4. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  5. Synthesis and metabolism of inhibitors of ribonucleotide reductase

    SciTech Connect

    Smith, F.T.

    1985-01-01

    In an effort to prepare more effective inhibitors of ribo-nucleotide reductase a series of 2-substituted-4,6-dihydroxypyrimidines was prepared via the appropriately substituted benzamidine. None of the compounds exhibited in vivo activity against L1210 leukemia. No further testing was performed. In order to investigate the metabolism of 3,4-dihydroxybenzohydroxamic acid, a known inhibitor of ribonucleotide reductase, radiolabeled 3,4-dihydroxybenzohydroxamic acid was synthesized by a modification of the procedure of Pichat and Tostain. /sup 14/C-3,4-Dihydroxybenzoic acid was converted to the methyl ester and subsequently reacted with hydroxylamine to give the hydroxamic acid. /sup 14/C-3,4-Dihydroxybenzohydroxamic acid was given i.p. to Sprague-Dawley rats. Excretion occurred mainly (72%) via the urine. HPLC coupled with GC/MS analyses showed that the compound was excreted mainly unchanged. The compound was metabolized to 3,4-dihydroxybenzamide, 4-methoxy-3-hydroxybenzohydroxamic acid, and 4-hydroxy-3-methoxybenzohydroxamic acid. HPLC analysis also showed the lack of formation of any glucuronide or sulfate conjugates through either the hydroxamic acid or catechol functionalities.

  6. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  7. Dopamine-Responsive Growth-Hormone Deficiency and Central Hypothyroidism in Sepiapterin Reductase Deficiency.

    PubMed

    Zielonka, Matthias; Makhseed, Nawal; Blau, Nenad; Bettendorf, Markus; Hoffmann, Georg Friedrich; Opladen, Thomas

    2015-01-01

    Sepiapterin reductase (SR) deficiency is a rare autosomal recessively inherited error of tetrahydrobiopterin (BH4) biosynthesis, resulting in disturbed dopaminergic and serotonergic neurotransmission. The clinical phenotype is characterized by dopa-responsive movement disorders including muscular hypotonia, dystonia, and parkinsonism. Due to the rarity of the disease, the phenotype of SR deficiency is far from being completely understood. Here, we report a 7-year-old boy, who was referred for diagnostic evaluation of combined psychomotor retardation, spastic tetraplegia, extrapyramidal symptoms, and short stature. Due to discrepancy between motor status and mental condition, analyses of biogenic amines and pterins in CSF were performed, leading to the diagnosis of SR deficiency. The diagnosis was confirmed by a novel homozygous mutation c.530G>C; p.(Arg177Pro) in exon 2 of the SPR gene. Because of persistent short stature, systematic endocrinological investigations were initiated. Insufficient growth-hormone release in a severe hypoglycemic episode after overnight fasting confirmed growth-hormone deficiency as a cause of short stature. In addition, central hypothyroidism was present. A general hypothalamic affection could be excluded. Since dopamine is known to regulate growth-hormone excretion, IGF-1, IGF-BP3, and peripheral thyroid hormone levels were monitored under L-dopa/carbidopa supplementation. Both growth-hormone-dependent factors and thyroid function normalized under treatment. This is the first report describing growth-hormone deficiency and central hypothyroidism in SR deficiency. It extends the phenotypic spectrum of the disease and identifies dopamine depletion as cause for the endocrinological disturbances. PMID:26006722

  8. Extension and Limits of the Network of Coupled Motions Correlated to Hydride Transfer in Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Enzyme catalysis has been studied extensively, but the role of enzyme dynamics in the catalyzed chemical conversion is still an enigma. The enzyme dihydrofolate reductase (DHFR) is often used as a model system to assess a network of coupled motions across the protein that may affect the catalyzed chemical transformation. Molecular dynamics simulations, quantum mechanical/molecular mechanical studies, and bioinformatics studies have suggested the presence of a “global dynamic network” of residues in DHFR. Earlier studies of two DHFR distal mutants, G121V and M42W, indicated that these residues affect the chemical step synergistically. While this finding was in accordance with the concept of a network of functional motions across the protein, two residues do not constitute a network. To better define the extent and limits of the proposed network, the current work studied two remote residues predicted to be part of the same network: W133 and F125. The effect of mutations in these residues on the nature of the chemical step was examined via measurements of the temperature-dependence of the intrinsic kinetic isotope effects (KIEs) and other kinetic parameters, and double mutants were used to tie the findings to G121 and M42. The findings indicate that residue F125, which was implicated by both calculations and bioinformatic methods, is a part of the same global dynamic network as G121 and M42, while W133, implicated only by bioinformatics, is not. These findings extend our understanding of the proposed network and the relations between functional and genomic couplings. Delineating that network illuminates the need to consider remote residues and protein structural dynamics in the rational design of drugs and of biomimetic catalysts. PMID:24450297

  9. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons

    PubMed Central

    2015-01-01

    Aldo-keto reductases (AKRs) are promiscuous NAD(P)(H) dependent oxidoreductases implicated in the metabolic activation of polycyclic aromatic hydrocarbons (PAH). These enzymes catalyze the oxidation of non-K-region trans-dihydrodiols to the corresponding o-quinones with the concomitant production of reactive oxygen species (ROS). The PAH o-quinones are Michael acceptors and can form adducts but are also redox-active and enter into futile redox cycles to amplify ROS formation. Evidence exists to support this metabolic pathway in humans. The human recombinant AKR1A1 and AKR1C1–AKR1C4 enzymes all catalyze the oxidation of PAH trans-dihydrodiols to PAH o-quinones. Many human AKRs also catalyze the NADPH-dependent reduction of the o-quinone products to air-sensitive catechols, exacerbating ROS formation. Moreover, this pathway of PAH activation occurs in a panel of human lung cell lines, resulting in the production of ROS and oxidative DNA damage in the form of 8-oxo-2?-deoxyguanosine. Using stable-isotope dilution liquid chromatography tandem mass spectrometry, this pathway of benzo[a]pyrene (B[a]P) metabolism was found to contribute equally with the diol-epoxide pathway to the activation of this human carcinogen in human lung cells. Evaluation of the mutagenicity of anti-B[a]P-diol epoxide with B[a]P-7,8-dione on p53 showed that the o-quinone produced by AKRs was the more potent mutagen, provided that it was permitted to redox cycle, and that the mutations observed were G to T transversions, reminiscent of those observed in human lung cancer. It is concluded that there is sufficient evidence to support the role of human AKRs in the metabolic activation of PAH in human lung cell lines and that they may contribute to the causation of human lung cancer. PMID:25279998

  10. A conserved lysine residue controls iron-sulfur cluster redox chemistry in Escherichia coli fumarate reductase.

    PubMed

    Cheng, Victor W T; Tran, Quang M; Boroumand, Nasim; Rothery, Richard A; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H

    2013-10-01

    The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh. PMID:23711795

  11. A Conserved Lysine Residue Controls Iron-Sulfur Cluster Redox Chemistry in Escherichia coli Fumarate Reductase

    PubMed Central

    Cheng, Victor W. T.; Tran, Quang M.; Boroumand, Nasim; Rothery, Richard A.; Maklashina, Elena; Cecchini, Gary; Weiner, Joel H.

    2015-01-01

    The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh. PMID:23711795

  12. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-01

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 ?M curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin. PMID:25541467

  13. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  14. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis.

    PubMed

    Vadassery, Jyothilakshmi; Tripathi, Swati; Prasad, Ram; Varma, Ajit; Oelmüller, Ralf

    2009-08-15

    Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state. PMID:19386380

  15. Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies.

    PubMed

    Iribarne, F; Paulino, M; Aguilera, S; Tapia, O

    2009-11-01

    A theoretical docking study, conducted on a sample of previously reported phenothiazine derivatives, at the binding sites of Trypanosoma cruzi trypanothione reductase (TR) and human erythrocyte glutathione reductase (GR), examines interaction energies (affinities) towards the parasite enzyme to check for selectivity with respect to the human counterpart. Phenothiazine compounds were previously shown to be TR inhibitors. The analysis of data collected from the docking procedure was undertaken both from the numeric and graphical standpoints, including the comparison of force field, energies, molecular contacts and spatial location of the different orientations that ligands acquired at the binding sites. Molecular Dynamics simulations were also carried out for derivatives with known quantitative inhibition kinetics (K(i)). The results indicate that (positively) charged phenothiazines attain larger interaction energies at TR active site, in line with previous experimental information. Suitable molecular size and shape is also needed to complement the electrostatic effect, as clearly evidenced by graphical analysis of output docked conformations. Docking energies values are reasonably well correlated with those obtained by Molecular Dynamics as well as with the experimental K(i) values, confirming once again the validity of this type of scoring methods to rapidly assess ligand-receptor affinities. Alongside newly discovered classes of TR inhibitors, the promazine (N-alkylaminopropylphenothiazine) nucleus should still be considered when good candidates are sought as leaders for selective TR inhibition. PMID:19801198

  16. Steroid 5?-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    PubMed

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5?-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5?-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5?-products such as 5?-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5?-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5?-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine. PMID:26537436

  17. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.

    PubMed

    Robles, Victor Muñoz; Dürrenberger, Marc; Heinisch, Tillmann; Lledós, Agustí; Schirmer, Tilman; Ward, Thomas R; Maréchal, Jean-Didier

    2014-11-01

    An artificial imine reductase results upon incorporation of a biotinylated Cp*Ir moiety (Cp* = C5Me5(-)) within homotetrameric streptavidin (Sav) (referred to as Cp*Ir(Biot-p-L)Cl] ? Sav). Mutation of S112 reveals a marked effect of the Ir/streptavidin ratio on both the saturation kinetics as well as the enantioselectivity for the production of salsolidine. For [Cp*Ir(Biot-p-L)Cl] ? S112A Sav, both the reaction rate and the selectivity (up to 96% ee (R)-salsolidine, kcat 14-4 min(-1) vs [Ir], KM 65-370 mM) decrease upon fully saturating all biotin binding sites (the ee varying between 96% ee and 45% ee R). In contrast, for [Cp*Ir(Biot-p-L)Cl] ? S112K Sav, both the rate and the selectivity remain nearly constant upon varying the Ir/streptavidin ratio [up to 78% ee (S)-salsolidine, kcat 2.6 min(-1), KM 95 mM]. X-ray analysis complemented with docking studies highlight a marked preference of the S112A and S112K Sav mutants for the SIr and RIr enantiomeric forms of the cofactor, respectively. Combining both docking and saturation kinetic studies led to the formulation of an enantioselection mechanism relying on an "induced lock-and-key" hypothesis: the host protein dictates the configuration of the biotinylated Ir-cofactor which, in turn, by and large determines the enantioselectivity of the imine reductase. PMID:25317660

  18. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance.

    PubMed Central

    Foote, S J; Galatis, D; Cowman, A F

    1990-01-01

    Cycloguanil, the active metabolite of the antimalarial drug proguanil, is an inhibitor of dihydrofolate reductase as is another antimalarial, pyrimethamine. Its use has been limited by the rapid development of resistance by parasites around the world. We have determined the cycloguanil- and pyrimethamine-sensitivity status of 10 isolates of Plasmodium falciparum and have sequenced in all these isolates the dihydrofolate reductase (DHFR; 5,6,7,8-tetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.3) portion of the DHFR-thymidylate synthase (TS; 5,10-methylenetetrahydrofolate: dUMP C-methyltransferase, EC 2.1.1.45) gene. Instead of the known serine-to-asparagine change at position 108 that is important in pyrimethamine resistance, a serine-to-threonine change at the same position is found in cycloguanil-resistant isolates along with an alanine-to-valine change at position 16. We conclude that pyrimethamine and cycloguanil resistance most commonly involve alternative mutations at the same site. However, we also have identified a parasite with a unique set of changes that results in resistance to both drugs. Images PMID:2183221

  19. Effect of nucleotides on the activity of dinitrogenase reductase ADP-ribosyltransferase from Rhodospirillum rubrum.

    PubMed

    Lowery, R G; Ludden, P W

    1989-06-13

    The mechanism by which MgADP stimulates the activity of dinitrogenase reductase ADP-ribosyltransferase (DRAT) has been examined by using dinitrogenase reductases from Rhodospirillum rubrum, Klebsiella pneumoniae, and Azotobacter vinelandii as acceptor substrates. In the presence of 0.2 mM NAD, maximal rates of ADP-ribosylation of all three acceptors were observed at an ADP concentration of 150 microM; in the absence of added ADP, DRAT activity with the dinitrogenase reductases from R. rubrum and K. pneumoniae was less than 5% of the maximal rate, but the A. vinelandii protein was ADP-ribosylated at 40% of the maximal rate. Of eight dinucleotides tested, only ADP, 2'-deoxy-ADP, and ADP-beta S served as activators of the DRAT reaction; ADP, 2'-deoxy-ADP, and ADP-beta S were also the only dinucleotides found which inhibited acetylene reduction activity by dinitrogenase reductase. The dinucleotide specificities for both DRAT activation and acetylene reduction inhibition were the same for all three dinitrogenase reductases. In the DRAT reaction with the dinitrogenase reductases from K. pneumoniae and A. vinelandii, the Km for NAD was 30-fold higher in the absence of ADP than in its presence; the Km for NAD with the R. rubrum acceptor was not measurable. In the presence of saturating ADP, ADP-ribosylation of dinitrogenase reductase from R. rubrum was inhibited 63% by 1.5 mM ATP. It is concluded that MgADP stimulates DRAT activity by lowering the Km for NAD and that MgADP exerts its effect by binding to dinitrogenase reductase. MgATP inhibits DRAT activity by competing with MgADP for binding to dinitrogenase reductase. PMID:2504283

  20. [Functional groups involved in the nitrate reductase activity of milk xanthine oxidase].

    PubMed

    Ananiadi, L I; Sergeev, N S; Kil'dibekov, N A; L'vov, N P; Kretovich, V L

    1983-06-01

    Milk xanthine oxidase possesses the nitrate reductase activity at pH 5.2; the pH optimum of the xanthine oxidase activity for the enzyme lies at 9.6. After removal of FAD and binding of Mo and Fe with a simultaneous measurement at the pH optima of the above activities it was found that only the Mo-containing site is necessary for the nitrate reductase activity. The switch-over of the enzyme from the xanthine oxidase to the nitrate reductase activity is associated with considerable conformational changes of the enzyme molecule. PMID:6688366

  1. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 ?M. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer. PMID:22361454

  2. MUTATION IN BRIEF HUMAN MUTATION Mutation in Brief #259 (1999) Online

    E-print Network

    Monnat, Ray

    1999-01-01

    enzyme HPRT1 from human cells. We report here two in vivo somatic HPRT1 mutations in human kidney tubular-Liss, Inc. KEY WORDS: HPRT1, mutation, somatic, kidney, mRNA splicing, intron inclusion INTRODUCTION HPRT1 gene (MIM# 308000) mutations in human kidney tubular epithelial cells that disrupt HPRT1 intron 1

  3. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  4. A calibration curve for immobilized dihydrofolate reductase activity assay

    PubMed Central

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V.; Kohen, Amnon

    2015-01-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (kcat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured. PMID:26217755

  5. A calibration curve for immobilized dihydrofolate reductase activity assay.

    PubMed

    Singh, Priyanka; Morris, Holly; Tivanski, Alexei V; Kohen, Amnon

    2015-09-01

    An assay was developed for measuring the active-site concentration, activity, and thereby the catalytic turnover rate (k cat) of an immobilized dihydrofolate reductase model system (Singh et al., (2015), Anal. Biochem). This data article contains a calibration plot for the developed assay. In the calibration plot rate is plotted as a function of DHFR concentration and shows linear relationship. The concentration of immobilized enzyme was varied by using 5 different size mica chips. The dsDNA concentration was the same for all chips, assuming that the surface area of the mica chip dictates the resulting amount of bound enzyme (i.e. larger sized chip would have more bound DHFR). The activity and concentration of each chip was measured. PMID:26217755

  6. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators.

    PubMed

    Ahmad, Md Faiz; Huff, Sarah E; Pink, John; Alam, Intekhab; Zhang, Andrew; Perry, Kay; Harris, Michael E; Misko, Tessianna; Porwal, Suheel K; Oleinick, Nancy L; Miyagi, Masaru; Viswanathan, Rajesh; Dealwis, Chris Godfrey

    2015-12-24

    Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme. PMID:26488902

  7. Thermal denaturation of glutathione reductase from cyanobacterium Spirulina maxima.

    PubMed

    Rojo-Domínguez, A; Hernández-Arana, A; Mendoza-Hernández, G; Rendón, J L

    1997-07-01

    The thermal unfolding of glutathione reductase (NAD[P]H:GSSG oxidoreductase EC 1.6.4.2.) from cyanobacterium Spirulina maxima was monitored by differential scanning calorimetry and circular dichroism at neutral pH. Covalent cross-linking of enzyme at different temperatures revealed dimer as the species undergoing the thermal transition. A single endotherm was observed, but its thermodynamic parameters showed dependence on the scan rate. In the transition zone, aggregation of the dimeric species was observed. Analysis of the enzyme heated at 80 degrees C revealed that the resultant species retained a high content of secondary structure. The addition of low concentrations of guanidinium hydrochloride resulted in a full cooperative thermal transition. A model in which the dimeric protein undergoes a partial unfolding in a kinetically controlled fashion is proposed, such that the experimental value of delta H(cal) results from the simultaneous occurrence of endothermic and exothermic events. PMID:9247721

  8. Synthesis and ribonucleotide reductase inhibitory activity of thiosemicarbazones.

    PubMed

    Krishnan, Kesavan; Prathiba, Kumari; Jayaprakash, Venkatesan; Basu, Arijit; Mishra, Nibha; Zhou, Bingsen; Hu, Shuya; Yen, Yun

    2008-12-01

    Ribonucleotide reductase (RR) is an important therapeutic target for anticancer drugs. The structure of human RR features a 1:1 complex of two homodimeric subunits, hRRM1 and hRRM2. Prokaryotically expressed and highly purified recombinant human RR subunits, hRRM1 and hRRM2, were used for holoenzyme-based [(3)H]CDP reduction in vitro assay. Ten new thiosemicarbazones (7-16) were synthesized and screened for their RR inhibitory activity. Two thiosemicarbazones derived from p-hydroxy benzaldehyde (9 and 10) were found to be active but less potent than the standard, Hydroxyurea (HU). Guided by the activity of compounds 9 and 10, 11 new thiosemicarbazones (17-27) derived from p-hydroxy benzaldehyde were prepared and screened for their RR inhibitory activity. All the 11 compounds were more potent than HU. PMID:18976907

  9. Genetic Evidence for a Molybdopterin-Containing Tellurate Reductase

    PubMed Central

    Theisen, Joanne; Zylstra, Gerben J.

    2013-01-01

    The genetic identity and cofactor composition of the bacterial tellurate reductase are currently unknown. In this study, we examined the requirement of molybdopterin biosynthesis and molybdate transporter genes for tellurate reduction in Escherichia coli K-12. The results show that mutants deleted of the moaA, moaB, moaE, or mog gene in the molybdopterin biosynthesis pathway lost the ability to reduce tellurate. Deletion of the modB or modC gene in the molybdate transport pathway also resulted in complete loss of tellurate reduction activity. Genetic complementation by the wild-type sequences restored tellurate reduction activity in the mutant strains. These findings provide genetic evidence that tellurate reduction in E. coli involves a molybdoenzyme. PMID:23475618

  10. Insights into unknown foreign ligand in copper nitrite reductase.

    PubMed

    Fukuda, Yohta; Tse, Ka Man; Kado, Yuji; Mizohata, Eiichi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi

    2015-08-21

    Bifunctional copper nitrite reductase (CuNIR) catalyzes nitrite reduction to nitric oxide and dioxygen reduction to hydrogen peroxide. In contrast to the well-researched nitrite reduction mechanism, the oxygen reduction mechanism in CuNIR has been totally unknown, because mononuclear copper-oxygen complexes decompose so readily that their visualization has been challenging. Here, we provide spectroscopic evidence that a foreign ligand binds to the catalytic copper (T2Cu) site of CuNIR, and determine CuNIR structures displaying a diatomic molecule on T2Cu. This unknown ligand can be interpreted as dioxygen and may provide insights into the oxygen reduction mechanism of CuNIR. PMID:26164233

  11. Spectrum of mutations in fucosidosis.

    PubMed

    Willems, P J; Seo, H C; Coucke, P; Tonlorenzi, R; O'Brien, J S

    1999-01-01

    Fucosidosis is a lysosomal storage disorder characterised by progressive psychomotor deterioration, angiokeratoma and growth retardation. It is due to deficient alpha-l-fucosidase activity leading to accumulation of fucose-containing glycolipids and glycoproteins in various tissues. Fucosidosis is extremely rare with less than 100 patients reported worldwide, although the disease occurs at a higher rate in Italy, in the Hispanic-American population of New Mexico and Colorado, and in Cuba. We present here a review study of the mutational spectrum of fucosidosis. Exon by exon mutation analysis of FUCA1, the structural gene of alpha-l-fucosidase, has identified the mutation(s) in nearly all fucosidosis patients investigated. The spectrum of the 22 mutations detected to date includes four missense mutations, 17 nonsense mutations consisting of seven stop codon mutations, six small deletions, two large deletions, one duplication, one small insertion and one splice site mutation. All these mutations lead to nearly absent enzymatic activity and severely reduced cross-reacting immunomaterial. The observed clinical variability is, therefore, not due to the nature of the fucosidosis mutation, but to secondary unknown factors. PMID:10094192

  12. Characterization of the nitric oxide reductase from Thermus thermophilus

    PubMed Central

    Schurig-Briccio, Lici A.; Venkatakrishnan, Padmaja; Hemp, James; Bricio, Carlos; Berenguer, José; Gennis, Robert B.

    2013-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas implicated in climate change. The dominant source of atmospheric N2O is incomplete biological dentrification, and the enzymes responsible for the release of N2O are NO reductases. It was recently reported that ambient emissions of N2O from the Great Boiling Spring in the United States Great Basin are high, and attributed to incomplete denitrification by Thermus thermophilus and related bacterial species [Hedlund BP, et al. (2011) Geobiology 9(6)471–480]. In the present work, we have isolated and characterized the NO reductase (NOR) from T. thermophilus. The enzyme is a member of the cNOR family of enzymes and belongs to a phylogenetic clade that is distinct from previously examined cNORs. Like other characterized cNORs, the T. thermophilus cNOR consists of two subunits, NorB and NorC, and contains a one heme c, one Ca2+, a low-spin heme b, and an active site consisting of a high-spin heme b and FeB. The roles of conserved residues within the cNOR family were investigated by site-directed mutagenesis. The most important and unexpected result is that the glutamic acid ligand to FeB is not essential for function. The E211A mutant retains 68% of wild-type activity. Mutagenesis data and the pattern of conserved residues suggest that there is probably not a single pathway for proton delivery from the periplasm to the active site that is shared by all cNORs, and that there may be multiple pathways within the T. thermophilus cNOR. PMID:23858452

  13. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  14. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases.

    PubMed Central

    Ellis, E M; Judah, D J; Neal, G E; Hayes, J D

    1993-01-01

    Protection of liver against the toxic and carcinogenic effects of aflatoxin B1 (AFB1) can be achieved through the induction of detoxification enzymes by chemoprotectors such as the phenolic antioxidant ethoxyquin. We have cloned and sequenced a cDNA encoding an aldehyde reductase (AFB1-AR), which is expressed in rat liver in response to dietary ethoxyquin. Expression of the cDNA in Escherichia coli and purification of the recombinant enzyme reveals that the protein exhibits aldehyde reductase activity and is capable of converting the protein-binding dialdehyde form of AFB1-dihydrodiol to the nonbinding dialcohol metabolite. We show that the mRNA encoding this enzyme is markedly elevated in the liver of rats fed an ethoxyquin-containing diet, correlating with acquisition of resistance to AFB1. AFB1-AR represents the only carcinogen-metabolizing aldehyde reductase identified to date that is induced by a chemoprotector. Alignment of the amino acid sequence of AFB1-AR with other known and putative aldehyde reductases shows that it defines a subfamily within the aldo-keto reductase superfamily. Images Fig. 2 Fig. 3 Fig. 4 PMID:8234296

  15. Structure of Human B12 Trafficking Protein CblD Reveals Molecular Mimicry and Identifies a New Subfamily of Nitro-FMN Reductases.

    PubMed

    Yamada, Kazuhiro; Gherasim, Carmen; Banerjee, Ruma; Koutmos, Markos

    2015-12-01

    In mammals, B12 (or cobalamin) is an essential cofactor required by methionine synthase and methylmalonyl-CoA mutase. A complex intracellular pathway supports the assimilation of cobalamin into its active cofactor forms and delivery to its target enzymes. MMADHC (the methylmalonic aciduria and homocystinuria type D protein), commonly referred to as CblD, is a key chaperone involved in intracellular cobalamin trafficking, and mutations in CblD cause methylmalonic aciduria and/or homocystinuria. Herein, we report the first crystal structure of the globular C-terminal domain of human CblD, which is sufficient for its interaction with MMADHC (the methylmalonic aciduria and homocystinuria type C protein), or CblC, and for supporting the cytoplasmic cobalamin trafficking pathway. CblD contains an ?+? fold that is structurally reminiscent of the nitro-FMN reductase superfamily. Two of the closest structural relatives of CblD are CblC, a multifunctional enzyme important for cobalamin trafficking, and the activation domain of methionine synthase. CblD, CblC, and the activation domain of methionine synthase share several distinguishing features and, together with two recently described corrinoid-dependent reductive dehalogenases, constitute a new subclass within the nitro-FMN reductase superfamily. We demonstrate that CblD enhances oxidation of cob(II)alamin bound to CblC and that disease-causing mutations in CblD impair the kinetics of this reaction. The striking structural similarity of CblD to CblC, believed to be contiguous in the cobalamin trafficking pathway, suggests the co-option of molecular mimicry as a strategy for achieving its function. PMID:26364851

  16. OXPHOS mutations and neurodegeneration

    PubMed Central

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan AM; Willems, Peter HGM

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI–CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce ‘primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  17. Crystal Structure of Human Liver [delta][superscript 4]-3-Ketosteroid 5[beta]-Reductase (AKR1D1) and Implications for Substrate Binding and Catalysis

    SciTech Connect

    Di Costanzo, Luigi; Drury, Jason E.; Penning, Trevor M.; Christianson, David W.

    2008-07-15

    AKR1D1 (steroid 5{beta}-reductase) reduces all {Delta}{sup 4}-3-ketosteroids to form 5{beta}-dihydrosteroids, a first step in the clearance of steroid hormones and an essential step in the synthesis of all bile acids. The reduction of the carbon-carbon double bond in an {alpha}{beta}-unsaturated ketone by 5{beta}-reductase is a unique reaction in steroid enzymology because hydride transfer from NADPH to the {beta}-face of a {Delta}{sup 4}-3-ketosteroid yields a cis-A/B-ring configuration with an {approx}90{sup o} bend in steroid structure. Here, we report the first x-ray crystal structure of a mammalian steroid hormone carbon-carbon double bond reductase, human {Delta}{sup 4}-3-ketosteroid 5{beta}-reductase (AKR1D1), and its complexes with intact substrates. We have determined the structures of AKR1D1 complexes with NADP{sup +} at 1.79- and 1.35-{angstrom} resolution (HEPES bound in the active site), NADP{sup +} and cortisone at 1.90-{angstrom} resolution, NADP{sup +} and progesterone at 2.03-{angstrom} resolution, and NADP{sup +} and testosterone at 1.62-{angstrom} resolution. Complexes with cortisone and progesterone reveal productive substrate binding orientations based on the proximity of each steroid carbon-carbon double bond to the re-face of the nicotinamide ring of NADP{sup +}. This orientation would permit 4-pro-(R)-hydride transfer from NADPH. Each steroid carbonyl accepts hydrogen bonds from catalytic residues Tyr{sup 58} and Glu{sup 120}. The Y58F and E120A mutants are devoid of activity, supporting a role for this dyad in the catalytic mechanism. Intriguingly, testosterone binds nonproductively, thereby rationalizing the substrate inhibition observed with this particular steroid. The locations of disease-linked mutations thought to be responsible for bile acid deficiency are also revealed.

  18. A Chemically Competent Thiosulfuranyl Radical on the Escherichia coli Class III Ribonucleotide Reductase

    E-print Network

    Wei, Yifeng

    The class III ribonucleotide reductases (RNRs) are glycyl radical (G•) enzymes that provide the balanced pool of deoxynucleotides required for DNA synthesis and repair in many facultative and obligate anaerobic bacteria ...

  19. Novel octaheme cytochrome c tetrathionate reductase (OTR) from Shewanella oneidensis MR-1 

    E-print Network

    Wu, Fei

    2010-01-01

    Octa-heme cytochrome c tetrathionate reductase (OTR) from Shewanella oneidensis MR-1 is a periplasmic protein and shows several extraordinary structural features around its active-site heme. OTR has been found able to ...

  20. Synthesis and Evaluation of 9,9-Dimethylxanthene Tricyclics Against Trypanothione Reductase, Trypanosoma brucei,

    E-print Network

    Schnaufer, Achim

    of trypanosomiasis and leishmaniasis.1À4 Inhibition of the parasite enzyme trypanothione reductase (TR) is one of human African trypanosomiasis (T. brucei sspp), Chagas disease (T. cruzi), and leishmaniasis (Leishmania

  1. Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs

    E-print Network

    Schnaufer, Achim

    of trypanothione reductase are potential drug leads against trypanosomiasis and leishmaniasis. In the present study determined for a number of them. Introduction Trypanosomiasis and leishmaniasis are major third- world

  2. Nucleotide sequence of the R.meliloti nitrogenase reductase (nifH) gene.

    PubMed Central

    Török, I; Kondorosi, A

    1981-01-01

    The nucleotide sequence of the structural gene (nifH) of nitrogenase reductase (Fe protein) from R.meliloti 41 with its flanking ends is reported. The amino acid sequence of nitrogenase reductase was deduced from the DNA sequence. The predicted R.meliloti nitrogenase reductase protein consists of 297 amino acid residues, has a molecular weight of 32,740 daltons and contains 5 cysteine residues. The codon usage in the nifH gene is presented. In the 5' flanking region, sequences resembling to consensus sequences of bacterial control regions were found. Comparison of the R.meliloti nifH nucleotide and amino acid sequences with those from different nitrogen-fixing organisms showed that the amino acid sequences are more conserved than the nucleotide sequences. This structural conservation of nitrogenase reductase may be related to its function and may explain the conservation of the nifH gene during evolution. PMID:6273806

  3. Mechanistic studies of the Class I ribonucleotide reductase from Escherichia coli

    E-print Network

    Artin, Erin Jelena

    2006-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides, providing the monomeric precursors required for DNA replication and repair. The class I RNRs are found in many bacteria, DNA ...

  4. Mechanism of biosynthesis of the dimanganese-tyrosyl radical cofactor of class lb Ribonucleotide reductase

    E-print Network

    Cotruvo, Joseph Alfred, Jr

    2012-01-01

    Ribonucleotide reductases (RNRs) catalyze the reduction of nucleotides to deoxynucleotides in all organisms. The class Ia and lb RNRs comprise two subunits: a2 contains the site of nucleotide reduction, and p2 contains an ...

  5. An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase

    E-print Network

    Cotruvo, Joseph A.

    Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5?-diphosphates to deoxynucleoside 5?-diphosphates and is expressed under iron-limited and oxidative stress conditions. This RNR is composed of ...

  6. Structural studies of allosteric regulation in the class Ia Ribonucleotide reductase from Escherichia coli

    E-print Network

    Zimanyi, Christina Marie

    2013-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication and repair. The E. coli class Ia enzyme requires two subunits to catalyze the radical-based reduction ...

  7. Escherichia coli class Ib ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical cofactor in vivo

    E-print Network

    Cotruvo, Joseph A.

    Escherichia coli class Ib ribonucleotide reductase (RNR) converts nucleoside 5?-diphosphates to deoxynucleoside 5?-diphosphates in iron-limited and oxidative stress conditions. We have recently demonstrated in vitro that ...

  8. Cytochrome cd1 Structure: Unusual Haem Environments in a Nitrite Reductase and Analysis of

    E-print Network

    Fülöp, Vilmos

    QU, UK The central tunnel of the eight-bladed b-propeller domain of cytochrome cd1 (nitrite reductase of an eight-bladed b-sheet propeller structure in which the central channel provides a binding pocket

  9. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  10. Defining the active form of ribonucleotide reductase from Saccharomyces cerevisiae in vitro and in vivo

    E-print Network

    Perlstein, Deborah Leigh

    2005-01-01

    Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides. Saccharomyces cerevisiae RNR is a class I RNR composed of a dimeric large subunit (RI), containing the active site and ...

  11. Bacillus Subtilis Class Ib Ribonucleotide Reductase: High Activity and Dynamic Subunit Interactions

    E-print Network

    Zhu, Xuling

    The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (?) and NrdF (?) subunits and determined to have a dimanganic-tyrosyl radical (Mn[superscript ...

  12. Bacillus subtilis Class Ib Ribonucleotide Reductase Is a Dimanganese(III)-Tyrosyl Radical Enzyme

    E-print Network

    Zhang, Yan

    Bacillus subtilis class Ib ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides, providing the building blocks for DNA replication and repair. It is composed of two proteins: ? (NrdE) ...

  13. The class III ribonucleotide reductase from Neisseria bacilliformis can utilize thioredoxin as a reductant

    E-print Network

    Wei, Yifeng

    The class III anaerobic ribonucleotide reductases (RNRs) studied to date couple the reduction of ribonucleotides to deoxynucleotides with the oxidation of formate to CO[subscript 2]. Here we report the cloning and heterologous ...

  14. Tangled Up in Knots: Structures of Inactivated Forms of E. coli Class Ia Ribonucleotide Reductase

    E-print Network

    Zimanyi, Christina Marie

    Ribonucleotide reductases (RNRs) provide the precursors for DNA biosynthesis and repair and are successful targets for anticancer drugs such as clofarabine and gemcitabine. Recently, we reported that dATP inhibits E. coli ...

  15. Structural and mutagenesis studies of soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath)

    E-print Network

    Chatwood, Lisa L., 1979-

    2004-01-01

    The solution structure for the 27 kDa flavin binding domain of soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath) was solved by NMR spectroscopy. The structure consists of a two domains, an FAD ...

  16. Importance of the Maintenance Pathway in the Regulation of the Activity of Escherichia coli Ribonucleotide Reductase

    E-print Network

    Hristova, Daniela

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The Escherichia coli class Ia RNR is composed of ? and ? subunits that form an ?[subscript 2]?[subscript 2] ...

  17. Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing

    E-print Network

    Liang, Ling

    Background: The NAD(P)H-dependent Pichia stipitis xylose reductase (PsXR) is one of the key enzymes for xylose fermentation, and has been cloned into the commonly used ethanol-producing yeast Saccharomyces cerevisiae. In ...

  18. The Dimanganese(II) Site of Bacillus subtilis Class Ib Ribonucleotide Reductase

    E-print Network

    Boal, Amie K.

    Class Ib ribonucleotide reductases (RNRs) use a dimanganese-tyrosyl radical cofactor, Mn[III over 2]-Y[superscript •], in their homodimeric NrdF (?2) subunit to initiate reduction of ribonucleotides to deoxyribonucleotides. ...

  19. Inactivation of Lactobacillus leichmannii ribonucleotide reductase by F2CTP: covalent modification

    E-print Network

    Lohman, Gregory J. S.

    Ribonucleotide reductase (RNR) from Lactobacillus leichmannii, a 76 kDa monomer using adenosylcobalamin (AdoCbl) as a cofactor, catalyzes the conversion of nucleoside triphosphates to deoxynucleotides and is rapidly (<30 ...

  20. Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme.

    PubMed

    McEwan, A G; Ferguson, S J; Jackson, J B

    1991-02-15

    Dimethyl sulphoxide reductase was purified from the photosynthetic bacterium Rhodobacter capsulatus. The enzyme is composed of a single polypeptide of Mr 82,000 and contains a pterin-type molybdenum cofactor as the only detectable prosthetic group. The oxidized molybdenum cofactor of dimethyl sulphoxide reductase is a weak chromophore and exhibits broad absorption bands in the u.v.-visible-absorption spectral region. A distinct spectrum was generated upon addition of dithionite. PMID:2001248

  1. l-Sorbose Reductase and Its Transcriptional Regulator Involved in l-Sorbose Utilization of Gluconobacter frateurii?

    PubMed Central

    Soemphol, Wichai; Toyama, Hirohide; Moonmangmee, Duangtip; Adachi, Osao; Matsushita, Kazunobu

    2007-01-01

    Upstream of the gene for flavin adenine dinucleotide (FAD)-dependent d-sorbitol dehydrogenase (SLDH), sldSLC, a putative transcriptional regulator was found in Gluconobacter frateurii THD32 (NBRC 101656). In this study, the whole sboR gene and the adjacent gene, sboA, were cloned and analyzed. sboR mutation did not affect FAD-SLDH activity in the membrane fractions. The SboA enzyme expressed and purified from an Escherichia coli transformant showed NADPH-dependent l-sorbose reductase (NADPH-SR) activity, and the enzyme was different from the NADPH-SR previously reported for Gluconobacter suboxydans IFO 3291 in molecular size and amino acid sequence. A mutant defective in sboA showed significantly reduced growth on l-sorbose, indicating that the SboA enzyme is required for efficient growth on l-sorbose. The sboR mutant grew on l-sorbose even better than the wild-type strain did, and higher NADPH-SR activity was detected in cytoplasm fractions. Reverse transcription-PCR experiments indicated that sboRA comprises an operon. These data suggest that sboR is involved in the repression of sboA, but not in the induction of sldSLC, on d-sorbitol and that another activator is required for the induction of these genes by d-sorbitol or l-sorbose. PMID:17468249

  2. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette.

    PubMed

    Pagba, Cynthia V; McCaslin, Tyler G; Veglia, Gianluigi; Porcelli, Fernando; Yohannan, Jiby; Guo, Zhanjun; McDaniel, Miranda; Barry, Bridgette A

    2015-01-01

    In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the ?2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the ?2 subunit. The conserved W48 ?2 is ?10?Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine-tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for ?2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the ?2 Y-W dyad in electron transfer. PMID:26627888

  3. A tyrosine–tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette

    PubMed Central

    Pagba, Cynthia V.; McCaslin, Tyler G.; Veglia, Gianluigi; Porcelli, Fernando; Yohannan, Jiby; Guo, Zhanjun; McDaniel, Miranda; Barry, Bridgette A.

    2015-01-01

    In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the ?2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the ?2 subunit. The conserved W48 ?2 is ?10?Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine–tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for ?2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the ?2 Y-W dyad in electron transfer. PMID:26627888

  4. Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification.

    PubMed

    Bowman, Michael J; Jordan, Douglas B; Vermillion, Karl E; Braker, Jay D; Moon, Jaewoong; Liu, Z Lewis

    2010-08-01

    Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate-subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by yeast, particularly when the carbon source is acid-treated lignocellulose, which contains furfural at a relatively high concentration. NADPH is Ari1p's best known hydride donor. Here we report the stereochemistry of the hydride transfer step, determined by using (4R)-[4-(2)H]NADPD and (4S)-[4-(2)H]NADPD and unlabeled furfural in Ari1p-catalyzed reactions and following the deuterium atom into products 2-furanmethanol or NADP(+). Analysis of the products demonstrates unambiguously that Ari1p directs hydride transfer from the si face of NADPH to the re face of furfural. The singular orientation of substrates enables construction of a model of the Michaelis complex in the Ari1p active site. The model reveals hydrophobic residues near the furfural binding site that, upon mutation, may increase specificity for furfural and enhance enzyme performance. Using (4S)-[4-(2)H]NADPD and NADPH as substrates, primary deuterium kinetic isotope effects of 2.2 and 2.5 were determined for the steady-state parameters k(cat)(NADPH) and k(cat)/K(m)(NADPH), respectively, indicating that hydride transfer is partially rate limiting to catalysis. PMID:20525870

  5. Stereochemistry of Furfural Reduction by a Saccharomyces cerevisiae Aldehyde Reductase That Contributes to In Situ Furfural Detoxification?

    PubMed Central

    Bowman, Michael J.; Jordan, Douglas B.; Vermillion, Karl E.; Braker, Jay D.; Moon, Jaewoong; Liu, Z. Lewis

    2010-01-01

    Ari1p from Saccharomyces cerevisiae, recently identified as an intermediate-subclass short-chain dehydrogenase/reductase, contributes in situ to the detoxification of furfural. Furfural inhibits efficient ethanol production by yeast, particularly when the carbon source is acid-treated lignocellulose, which contains furfural at a relatively high concentration. NADPH is Ari1p's best known hydride donor. Here we report the stereochemistry of the hydride transfer step, determined by using (4R)-[4-2H]NADPD and (4S)-[4-2H]NADPD and unlabeled furfural in Ari1p-catalyzed reactions and following the deuterium atom into products 2-furanmethanol or NADP+. Analysis of the products demonstrates unambiguously that Ari1p directs hydride transfer from the si face of NADPH to the re face of furfural. The singular orientation of substrates enables construction of a model of the Michaelis complex in the Ari1p active site. The model reveals hydrophobic residues near the furfural binding site that, upon mutation, may increase specificity for furfural and enhance enzyme performance. Using (4S)-[4-2H]NADPD and NADPH as substrates, primary deuterium kinetic isotope effects of 2.2 and 2.5 were determined for the steady-state parameters kcatNADPH and kcat/KmNADPH, respectively, indicating that hydride transfer is partially rate limiting to catalysis. PMID:20525870

  6. Substrate Recognition, Protein Dynamics, and Iron-Sulfur Cluster in Pseudomonas aeruginosa Adenosine 5?-Phosphosulfate Reductase

    PubMed Central

    Chartron, Justin; Carroll, Kate S.; Shiau, Carrie; Gao, Hong; Leary, Julie A.; Bertozzi, Carolyn R.; Stout, C. David

    2006-01-01

    APS reductase catalyzes the first committed step of reductive sulfate assimilation in pathogenic bacteria, including Mycobacterium tuberculosis, and is a promising target for drug development. We report the 2.7 ? resolution crystal structure of Pseudomonas aeruginosa APS reductase in the thiosulfonate intermediate form of the catalytic cycle and with substrate bound. The structure, high-resolution FT-ICR mass spectrometry, and quantitative kinetic analysis, establish that the two chemically discrete steps of the overall reaction take place at distinct sites on the enzyme, mediated via conformational flexibility of the C-terminal 18 residues. The results address the mechanism by which sulfonucleotide reductases protect the covalent but labile enzyme-intermediate prior to release of sulfite by the protein cofactor thioredoxin. Pseudomonas aeruginosa APS reductase contains an [4Fe-4S] cluster that is essential for catalysis. The structure reveals an unusual mode of cluster coordination by tandem cysteines and suggests how this arrangement might facilitate conformational change and cluster interaction with substrate. Assimilatory PAPS reductases are evolutionarily related, homologous enzymes that catalyze the same overall reaction, but do so in the absence of an [Fe-S] cluster. The APS reductase structure reveals adaptive use of a phosphate-binding loop for recognition of the APS O3? hydroxyl, or alternatively, the PAPS 3?-phosphate. PMID:17010373

  7. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  8. Crystal Structures of Wild-type and Mutant Methicillin-resistant Staphylococcus aureus Dihydrofolate Reductase Reveal an Alternative Conformation of NADPH that may be Linked to Trimethoprim Resistance

    SciTech Connect

    Frey, K.; Liu, J; Lombardo, M; Bolstad, D; Wright, D; Anderson, A

    2009-01-01

    Both hospital- and community-acquired Staphylococcus aureus infections have become major health concerns in terms of morbidity, suffering and cost. Trimethoprim-sulfamethoxazole (TMP-SMZ) is an alternative treatment for methicillin-resistant S. aureus (MRSA) infections. However, TMP-resistant strains have arisen with point mutations in dihydrofolate reductase (DHFR), the target for TMP. A single point mutation, F98Y, has been shown biochemically to confer the majority of this resistance to TMP. Using a structure-based approach, we have designed a series of novel propargyl-linked DHFR inhibitors that are active against several trimethoprim-resistant enzymes. We screened this series against wild-type and mutant (F98Y) S. aureus DHFR and found that several are active against both enzymes and specifically that the meta-biphenyl class of these inhibitors is the most potent. In order to understand the structural basis of this potency, we determined eight high-resolution crystal structures: four each of the wild-type and mutant DHFR enzymes bound to various propargyl-linked DHFR inhibitors. In addition to explaining the structure-activity relationships, several of the structures reveal a novel conformation for the cofactor, NADPH. In this new conformation that is predominantly associated with the mutant enzyme, the nicotinamide ring is displaced from its conserved location and three water molecules complete a network of hydrogen bonds between the nicotinamide ring and the protein. In this new position, NADPH has reduced interactions with the inhibitor. An equilibrium between the two conformations of NADPH, implied by their occupancies in the eight crystal structures, is influenced both by the ligand and the F98Y mutation. The mutation induced equilibrium between two NADPH-binding conformations may contribute to decrease TMP binding and thus may be responsible for TMP resistance.

  9. Aldose Reductase Inhibition Suppresses Oxidative Stress-Induced Inflammatory Disorders

    PubMed Central

    Srivastava, Satish K; Yadav, Umesh C S; Reddy, Aramati BM; Saxena, Ashish; Tammali, Ravinder; Mohammad, Shoeb; Ansari, Naseem H; Bhatnagar, Aruni; Petrash, Mark J; Srivastava, Sanjay; Ramana, Kota V

    2011-01-01

    Oxidative stress-induced inflammation is a major contributor to several disease conditions including sepsis, carcinogenesis and metastasis, diabetic complications, allergic asthma, uveitis and after cataract surgery posterior capsular opacification. Since reactive oxygen species (ROS)-mediated activation of redox-sensitive transcription factors and subsequent expression of inflammatory cytokines, chemokines and growth factors are characteristics of inflammatory disorders, we envisioned that by blocking the molecular signals of ROS that activate redox-sensitive transcription factors, various inflammatory diseases could be ameliorated. We have indeed demonstrated that ROS –induced lipid peroxidation-derived lipid aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and their glutathione-conjugates (e.g. GS-HNE) are efficiently reduced by aldose reductase to corresponding alcohols which mediate the inflammatory signals. Our results showed that inhibition of aldose reductase (AKR1B1) significantly prevented the inflammatory signals induced by cytokines, growth factors, endotoxins, high glucose, allergens and auto-immune reactions in cellular as well as animal models. We have demonstrated that AKR1B1 inhibitor, fidarestat, significantly prevents tumor necrosis factor-alpha (TNF-?)-, growth factors-, lipopolysachharide (LPS)-, and environmental allergens-induced inflammatory signals that cause various inflammatory diseases. In animal models of inflammatory diseases such as diabetes, cardiovascular, uveitis, asthma, and cancer (colon, breast, prostate and lung) and metastasis, inhibition of AKR1B1 significantly ameliorated the disease. Our results from various cellular and animal models representing a number of inflammatory conditions suggest that ROS-induced inflammatory response could be reduced by inhibition of AKR1B1, thereby decreasing the progression of the disease and if the therapy is initiated early, the disease could be eliminated. Since fidarestat has already undergone phase III clinical trial for diabetic neuropathy and found to be safe, though clinically not very effective, our results indicate that it can be developed for the therapy of a number of inflammation- related diseases. Our results thus offer a novel therapeutic approach to treat a wide array of inflammatory diseases. PMID:21354119

  10. BRAF Mutations in Canine Cancers

    PubMed Central

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G.; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers. PMID:26053201

  11. "Coarse" Notes Population Genetics INTRODUCTION TO MUTATION

    E-print Network

    Gomulkiewicz, Richard

    "Coarse" Notes Population Genetics III-1 MUTATION INTRODUCTION TO MUTATION READING: Hedrick pp. 247­260 and 265­272 ­ Mutation plays two key roles in evolution: (1) It is an evolutionary force that changes gene must explain processes that create mutations. ­ Most mutations are rare. · Alleles are rarely

  12. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis

    PubMed Central

    Cha, Mee-Kyung; Bae, Yoo-Jeen; Kim, Kyu-Jeong; Park, Byung-Joon; Kim, Il-Han

    2015-01-01

    AIM: To identify alkyl hydroperoxide reductase subunit C (AhpC) homologs in Bacillus subtilis (B. subtilis) and to characterize their structural and biochemical properties. AhpC is responsible for the detoxification of reactive oxygen species in bacteria. METHODS: Two AhpC homologs (AhpC_H1 and AhpC_H2) were identified by searching the B. subtilis database; these were then cloned and expressed in Escherichia coli. AhpC mutants carrying substitutions of catalytically important Cys residues (C37S, C47S, C166S, C37/47S, C37/166S, C47/166S, and C37/47/166S for AhpC_H1; C52S, C169S, and C52/169S for AhpC_H2) were obtained by site-directed mutagenesis and purified, and their structure-function relationship was analyzed. The B. subtilis ahpC genes were disrupted by the short flanking homology method, and the phenotypes of the resulting AhpC-deficient bacteria were examined. RESULTS: Comparative characterization of AhpC homologs indicates that AhpC_H1 contains an extra C37, which forms a disulfide bond with the peroxidatic C47, and behaves like an atypical 2-Cys AhpC, while AhpC_H2 functions like a typical 2-Cys AhpC. Tryptic digestion analysis demonstrated the presence of intramolecular Cys37-Cys47 linkage, which could be reduced by thioredoxin, resulting in the association of the dimer into higher-molecular-mass complexes. Peroxidase activity analysis of Cys?Ser mutants indicated that three Cys residues were involved in the catalysis. AhpC_H1 was resistant to inactivation by peroxide substrates, but had lower activity at physiological H2O2 concentrations compared to AhpC_H2, suggesting that in B. subtilis, the enzymes may be physiologically functional at different substrate concentrations. The exposure to organic peroxides induced AhpC_H1 expression, while AhpC_H1-deficient mutants exhibited growth retardation in the stationary phase, suggesting the role of AhpC_H1 as an antioxidant scavenger of lipid hydroperoxides and a stress-response factor in B. subtilis. CONCLUSION: AhpC_H1, a novel atypical 2-Cys AhpC, is functionally distinct from AhpC_H2, a typical 2-Cys AhpC. PMID:26322180

  13. Cell-cycle-dependent transcriptional and translational DNA-damage response of 2 ribonucleotide reductase genes in S. cerevisiae

    E-print Network

    Mazumder, Aprotim

    The ribonucleotide reductase (RNR) enzyme catalyzes an essential step in the production of deoxyribonucleotide triphosphates (dNTPs) in cells. Bulk biochemical measurements in synchronized Saccharomyces cerevisiae cells ...

  14. Glutathione reductase in wheat grain. 1. Isolation and characterization.

    PubMed

    de Lamotte, F; Vianey-Liaud, N; Duviau, M P; Kobrehel, K

    2000-10-01

    Durum wheat (Triticum durum, Desf.) endosperm of mature kernels contained a single form of glutathione reductase (GR); it appeared about the 18th day after anthesis while another isoform, present at the early stages of grain development, disappeared between the 20th and 30th days after flowering. The form that was present at grain maturity was isolated and characterized. It was composed of two monomers, each one having an apparent molecular mass of about 60 kDa. The K(m) values for NADPH and for GSSG were 3.7 and 9.1 microM, respectively, and the V(m) values for NADPH and for GSSG were 594 and 575 microkat.mg(-)(1) protein, respectively. The pH(i) of the enzyme was situated between pH 4.4 and 4.5. At a constant temperature of 25 degrees C, the optimum GR activity was found to be between pH 7.5 and 8.0. It was relatively resistant to high temperatures and was very resistant to very low temperatures. PMID:11052765

  15. Enzymatic mechanism of copper-containing nitrite reductase.

    PubMed

    Li, Yan; Hodak, Miroslav; Bernholc, J

    2015-02-10

    Copper-containing nitrite reductases (CuNiRs) catalyze the reduction of nitrite to nitric oxide, a key step in the denitrification process that maintains balance between organic and inorganic nitrogen. Despite their importance, their functioning is not well understood. In this work, we carry out first-principles calculations and show that the available structural data are consistent only with a single mechanism. For this mechanism, we determine the activation energies, transition states, and minimum energy pathways of CuNiR. The calculations lead to an updated enzymatic mechanism and resolve several controversial issues. In particular, our work identifies the origins of the two protons necessary for the enzymatic function and shows that the transformation from the initial O-coordination of substrate to the final N-coordination of product is achieved by electron transfer from T1 copper to T2 copper, rather than by the previously reported side-on coordination of a NO intermediate, which only takes place in the reduced enzyme. We also examine the role of structural change in the critical residue Asp(98), reported in one experimental study, and find that while the structural change affects the energetics of substrate attachment and product release at the T2 copper reaction center, it does not significantly affect the activation energy and reaction pathways of the nitrite reduction process. PMID:25594136

  16. Functions and Evolution of Selenoprotein Methionine Sulfoxide Reductases

    PubMed Central

    Lee, Byung Cheon; Dikiy, Alexander; Kim, Hwa-Young; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are thiol-dependent enzymes which catalyze conversion of methionine sulfoxide to methionine. Three Msr families, MsrA, MsrB, and fRMsr, are known. MsrA and MsrBs are responsible for the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide residues in proteins, respectively, whereas fRMsr reduces free methionine-R-sulfoxide. Besides acting on proteins, MsrA can additionally reduce free methionine-S-sulfoxide. Some MsrAs and MsrBs evolved to utilize catalytic selenocysteine. This includes MsrB1, which is a major MsrB in cytosol and nucleus in mammalian cells. Specialized machinery is used for insertion of selenocysteine into MsrB1 and other selenoproteins at in-frame UGA codons. Selenocysteine offers catalytic advantage to the protein repair function of Msrs, but also makes these proteins dependent on the supply of selenium and requires adjustments in their strategies for regeneration of active enzymes. Msrs have roles in protecting cellular proteins from oxidative stress and through this function they may regulate lifespan in several model organisms. PMID:19406207

  17. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  18. Current status of 5?-reductase inhibitors in prostate disease management.

    PubMed

    Kang, Dong Il; Chung, Jae Il

    2013-04-01

    The key enzyme in the androgen synthesis and androgen receptor pathways is 5?-reductase (5-AR), which occurs as three isoenzymes. Types I and II 5-ARs the most important clinically, and two different 5-AR inhibitors (5-ARIs), finasteride and dutasteride, have been developed. Several urology associations have recommended and upgraded the use of 5-ARIs for an enlarged prostate with lower urinary tract symptoms. In the Prostate Cancer Prevention Trial and the Reduction by Dutasteride of Prostate Cancer Events Trial, 5-ARIs reduced the incidence of low-grade prostate cancer. However, despite the documented reductions in the overall incidence of prostate cancer, 5-ARIs are at the center of a dispute. The American Society of Clinical Oncology (ASCO) and the American Urology Association (AUA) presented clinical guidelines for the use of 5-ARIs for chemoprevention of prostate cancer in 2008. However, ASCO/AUA has eliminated these from the main "Clinical Guidelines" in 2012, because the U.S. Food and Drug Administration denied a supplemental New Drug Application for the use of dutasteride for prostate cancer chemoprevention. The 5-ARIs can also be used to manage hemospermia and prostatic hematuria, and to prevent intraoperative bleeding, although there is insufficient evidence for a standard strategy. This review summarizes the current use of 5-ARIs for prostate disease, including benign prostate hyperplasia, prostate cancer, prostate-related bleeding, and hemospermia. PMID:23614056

  19. Current Status of 5?-Reductase Inhibitors in Prostate Disease Management

    PubMed Central

    Kang, Dong Il

    2013-01-01

    The key enzyme in the androgen synthesis and androgen receptor pathways is 5?-reductase (5-AR), which occurs as three isoenzymes. Types I and II 5-ARs the most important clinically, and two different 5-AR inhibitors (5-ARIs), finasteride and dutasteride, have been developed. Several urology associations have recommended and upgraded the use of 5-ARIs for an enlarged prostate with lower urinary tract symptoms. In the Prostate Cancer Prevention Trial and the Reduction by Dutasteride of Prostate Cancer Events Trial, 5-ARIs reduced the incidence of low-grade prostate cancer. However, despite the documented reductions in the overall incidence of prostate cancer, 5-ARIs are at the center of a dispute. The American Society of Clinical Oncology (ASCO) and the American Urology Association (AUA) presented clinical guidelines for the use of 5-ARIs for chemoprevention of prostate cancer in 2008. However, ASCO/AUA has eliminated these from the main "Clinical Guidelines" in 2012, because the U.S. Food and Drug Administration denied a supplemental New Drug Application for the use of dutasteride for prostate cancer chemoprevention. The 5-ARIs can also be used to manage hemospermia and prostatic hematuria, and to prevent intraoperative bleeding, although there is insufficient evidence for a standard strategy. This review summarizes the current use of 5-ARIs for prostate disease, including benign prostate hyperplasia, prostate cancer, prostate-related bleeding, and hemospermia. PMID:23614056

  20. Cheminformatics Models for Inhibitors of Schistosoma mansoni Thioredoxin Glutathione Reductase

    PubMed Central

    Gaba, Sonam; Jamal, Salma; Open Source Drug Discovery Consortium

    2014-01-01

    Schistosomiasis is a neglected tropical disease caused by a parasite Schistosoma mansoni and affects over 200 million annually. There is an urgent need to discover novel therapeutic options to control the disease with the recent emergence of drug resistance. The multifunctional protein, thioredoxin glutathione reductase (TGR), an essential enzyme for the survival of the pathogen in the redox environment has been actively explored as a potential drug target. The recent availability of small-molecule screening datasets against this target provides a unique opportunity to learn molecular properties and apply computational models for discovery of activities in large molecular libraries. Such a prioritisation approach could have the potential to reduce the cost of failures in lead discovery. A supervised learning approach was employed to develop a cost sensitive classification model to evaluate the biological activity of the molecules. Random forest was identified to be the best classifier among all the classifiers with an accuracy of around 80 percent. Independent analysis using a maximally occurring substructure analysis revealed 10 highly enriched scaffolds in the actives dataset and their docking against was also performed. We show that a combined approach of machine learning and other cheminformatics approaches such as substructure comparison and molecular docking is efficient to prioritise molecules from large molecular datasets. PMID:25629082

  1. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase.

    PubMed

    Ando, Nozomi; Brignole, Edward J; Zimanyi, Christina M; Funk, Michael A; Yokoyama, Kenichi; Asturias, Francisco J; Stubbe, Joanne; Drennan, Catherine L

    2011-12-27

    Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the catalytic subunit (?(2)) and the radical-generation subunit (?(2)) interact. Here we present the first structure of a complex between ?(2) and ?(2) subunits for the prototypic RNR from Escherichia coli. Using four techniques (small-angle X-ray scattering, X-ray crystallography, electron microscopy, and analytical ultracentrifugation), we describe an unprecedented ?(4)?(4) ring-like structure in the presence of the negative activity effector dATP and provide structural support for an active ?(2)?(2) configuration. We demonstrate that, under physiological conditions, E. coli RNR exists as a mixture of transient ?(2)?(2) and ?(4)?(4) species whose distributions are modulated by allosteric effectors. We further show that this interconversion between ?(2)?(2) and ?(4)?(4) entails dramatic subunit rearrangements, providing a stunning molecular explanation for the allosteric regulation of RNR activity in E. coli. PMID:22160671

  2. Structural interconversions modulate activity of Escherichia coli ribonucleotide reductase

    PubMed Central

    Ando, Nozomi; Brignole, Edward J.; Zimanyi, Christina M.; Funk, Michael A.; Yokoyama, Kenichi; Asturias, Francisco J.; Stubbe, JoAnne; Drennan, Catherine L.

    2011-01-01

    Essential for DNA biosynthesis and repair, ribonucleotide reductases (RNRs) convert ribonucleotides to deoxyribonucleotides via radical-based chemistry. Although long known that allosteric regulation of RNR activity is vital for cell health, the molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the catalytic subunit (?2) and the radical-generation subunit (?2) interact. Here we present the first structure of a complex between ?2 and ?2 subunits for the prototypic RNR from Escherichia coli. Using four techniques (small-angle X-ray scattering, X-ray crystallography, electron microscopy, and analytical ultracentrifugation), we describe an unprecedented ?4?4 ring-like structure in the presence of the negative activity effector dATP and provide structural support for an active ?2?2 configuration. We demonstrate that, under physiological conditions, E. coli RNR exists as a mixture of transient ?2?2 and ?4?4 species whose distributions are modulated by allosteric effectors. We further show that this interconversion between ?2?2 and ?4?4 entails dramatic subunit rearrangements, providing a stunning molecular explanation for the allosteric regulation of RNR activity in E. coli. PMID:22160671

  3. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  4. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth. PMID:22954684

  5. Reductive activation of E. coli respiratory nitrate reductase.

    PubMed

    Ceccaldi, Pierre; Rendon, Julia; Léger, Christophe; Toci, René; Guigliarelli, Bruno; Magalon, Axel; Grimaldi, Stéphane; Fourmond, Vincent

    2015-10-01

    Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium. PMID:26073890

  6. High thioredoxin reductase 1 expression in meningiomas undergoing malignant progression.

    PubMed

    Esen, Hasan; Feyzioglu, Bahad?r; Erdi, Fatih; Keskin, Fatih; Kaya, Bulent; Demir, Lutfi Saltuk

    2015-07-01

    Thioredoxin (Trx) is a redox active protein that regulates several physiological and biochemical functions, such as growth, apoptosis and cellular defense. The function of Trx itself is regulated by thioredoxin reductase (TrxR). This study was designed to determine the expression of TrxR1 in meningioma tissues of different World Health Organization grades (grade I-III). Meningioma tissues were extracted from the histopathological specimens of 29 patients. These samples included seven histologically normal meningeal tissues that served as a control group and 12 grade I, 12 grade II and 5 grade III meningioma samples. TrxR1 expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunostaining. The proliferative and apoptotic indices of the specimens were investigated by Ki-67 immunostaining and TUNEL assay, respectively. TrxR1 expression, as assessed by qRT-PCR, increased significantly with meningioma grade (p < 0.001). The immunostaining intensity of TrxR1 increased significantly with meningioma grade (p < 0.001). Ki-67 index values increased significantly in accordance with grade progression (p < 0.001). The apoptotic index values were not significantly different in any group (p > 0.05). Trx system seems to be involved in the malignant progression of meningiomas. Further, large studies are required to elucidate the exact role of this system. PMID:25592259

  7. Expression, purification, crystallization and preliminary X-ray analysis of perakine reductase, a new member of the aldo-keto reductase enzyme superfamily from higher plants

    SciTech Connect

    Rosenthal, Cindy; Mueller, Uwe; Panjikar, Santosh; Sun, Lianli; Ruppert, Martin; Zhao, Yu; Stöckigt, Joachim

    2006-12-01

    Perakine reductase, a novel member of the aldo-keto reductase enzyme superfamily of higher plants, is involved in the biosynthesis of monoterpenoid indole alkaloids in the Indian medicinal plant Rauvolfia serpentina. The enzyme has been crystallized in C-centered orthorhombic space group and diffracts to 2.0 Å resolution. Perakine reductase (PR) is a novel member of the aldo-keto reductase enzyme superfamily from higher plants. PR from the plant Rauvolfia serpentina is involved in the biosynthesis of monoterpenoid indole alkaloids by performing NADPH-dependent reduction of perakine, yielding raucaffrinoline. However, PR can also reduce cinnamic aldehyde and some of its derivatives. After heterologous expression of a triple mutant of PR in Escherichia coli, crystals of the purified and methylated enzyme were obtained by the hanging-drop vapour-diffusion technique at 293 K with 100 mM sodium citrate pH 5.6 and 27% PEG 4000 as precipitant. Crystals belong to space group C222{sub 1} and diffract to 2.0 Å, with unit-cell parameters a = 58.9, b = 93.0, c = 143.4 Å.

  8. Significance of Four Methionine Sulfoxide Reductases in Staphylococcus aureus

    E-print Network

    Singh, Vineet K.; Vaish, Manisha; Johansson, Trintje R.; Baum, Kyle R.; Ring, Robert P.; Singh, Saumya; Shukla, Sanjay K.; Moskovitz, Jackob

    2015-02-13

    (msrA1, msrA2 and msrA3) and one msrB gene. To understand the precise physiological roles of Msr proteins in S. aureus, mutations in msrA1, msrA2 and msrA3 and msrB genes were created by site-directed mutagenesis. These mutants were combined to create a...

  9. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis

    PubMed Central

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K.; Nidetzky, Bernd

    2005-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo–keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/Km) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 Å (1 Å=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8–9 kJ/mol. PMID:16336198

  10. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids

    PubMed Central

    Gallego, Oriol; Belyaeva, Olga V.; Porté, Sergio; Ruiz, F. Xavier; Stetsenko, Anton V.; Shabrova, Elena V.; Kostereva, Natalia V.; Farrés, Jaume; Parés, Xavier; Kedishvili, Natalia Y.

    2006-01-01

    Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low Km values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low Km values for retinoids (0.12–1.1 ?M), whilst they strongly differ in their kcat values, which range from 0.35 min?1 for AKR1B1 to 302 min?1 for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo. PMID:16787387

  11. Enhancement of Ganoderic Acid Accumulation by Overexpression of an N-Terminally Truncated 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Gene in the Basidiomycete Ganoderma lucidum

    PubMed Central

    Xu, Jun-Wei; Xu, Yi-Ning

    2012-01-01

    Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway. PMID:22941092

  12. The origins of mutational robustness.

    PubMed

    Fares, Mario A

    2015-07-01

    Biological systems are resistant to genetic changes; a property known as mutational robustness, the origin of which remains an open question. In recent years, researchers have explored emergent properties of biological systems and mechanisms of genetic redundancy to reveal how mutational robustness emerges and persists. Several mechanisms have been proposed to explain the origin of mutational robustness, including molecular chaperones and gene duplication. The latter has received much attention, but its role in robustness remains controversial. Here, I examine recent findings linking genetic redundancy through gene duplication and mutational robustness. Experimental evolution and genome resequencing have made it possible to test the role of gene duplication in tolerating mutations at both the coding and regulatory levels. This evidence as well as previous findings on regulatory reprogramming of duplicates support the role of gene duplication in the origin of robustness. PMID:26013677

  13. The Characteristics and Regulatory Mechanisms of Superoxide Generation from eNOS Reductase Domain

    PubMed Central

    Peng, Hu; Zhuang, Yugang; Chen, Yuanzhuo; Rizzo, Alicia N.; Chen, Weiguo

    2015-01-01

    In addition to superoxide (O2.-) generation from nitric oxide synthase (NOS) oxygenase domain, a new O2.- generation site has been identified in the reductase domain of inducible NOS (iNOS) and neuronal NOS (nNOS). Cysteine S-glutathionylation in eNOS reductase domain also induces O2.- generation from eNOS reductase domain. However, the characteristics and regulatory mechanism of the O2.- generation from NOS reductase domain remain unclear. We cloned and purified the wild type bovine eNOS (WT eNOS), a mutant of Serine 1179 replaced with aspartic acid eNOS (S1179D eNOS), which mimics the negative charge caused by phosphorylationand truncated eNOS reductase domain (eNOS RD). Both WT eNOS and S1179D eNOS generated significant amount of O2.- in the absence of BH4 and L-arginine. The capacity of O2.- generation from S1179D eNOS was significantly higher than that of WT eNOS (1.74:1). O2.- generation from both WT eNOS and S1179D eNOS were not completely inhibited by 100nM tetrahydrobiopterin(BH4). This BH4 un-inhibited O2.- generation from eNOS was blocked by 10mM flavoprotein inhibitor, diphenyleneiodonium (DPI). Purified eNOS reductase domain protein confirmed that this BH4 un-inhibited O2.- generation originates at the FMN or FAD/NADPH binding site of eNOS reductase domain. DEPMPO-OOH adduct EPR signals and NADPH consumptions analyses showed that O2.- generation from eNOS reductase domain was regulated by Serine 1179 phosphorylation and DPI, but not by L-arginine, BH4 or calmodulin (CaM). In addition to the heme center of eNOS oxygenase domain, we confirmed another O2.- generation site in the eNOS reductase domain and characterized its regulatory properties. PMID:26465144

  14. Computer aided screening of inhibitors to 5-? reductase type 2 for prostate cancer.

    PubMed

    Bhattacharjee, Biplab; Talambedu, Usha; Sadegh, Saremy; Goyal, Arvind Kumar; Pande, Veena; Nagaveni, Madhugiri Bhujangarao; Patil, Vijayakumari Mali; Jayadev, Joshi; Middha, Sushil Kumar

    2011-01-01

    Traditionally, drugs are discovered by testing compounds synthesized in time consuming multi-step processes against a battery of invivo biological screens. Promising compounds are then further studied in development, where their pharmacokinetic properties, metabolism and potential toxicity were investigated. Here, we present a study on herbal lead compounds and their potential binding affinity to the effectors molecules of major disease like Prostate Cancer. Clinical studies demonstrate a positive correlation between the extent of 5-? reductase type 2 (isoform 2) and malignant progression of precancerous lesions in prostate. Therefore, identification of effective, well-tolerated 5-? reductase inhibitors represents a rational chemo preventive strategy. This study has investigated the effects of naturally occurring nonprotein compounds berberine and monocaffeyltartaric acid that inhibits 5-? reductase type 2. Our results reveal that these compounds use less energy to bind to 5-? reductase and inhibit its activity. Their high ligand binding affinity to 5-? reductase introduces the prospect for their use in chemopreventive applications. In addition, they are freely available natural compounds that can be safely used to prevent prostate cancer. PMID:21738326

  15. Crystallographic insights into the structure-activity relationships of diazaborine enoyl-ACP reductase inhibitors.

    PubMed

    Jordan, Cheryl A; Sandoval, Braddock A; Serobyan, Mkrtich V; Gilling, Damian H; Groziak, Michael P; Xu, H Howard; Vey, Jessica L

    2015-12-01

    Enoyl-ACP reductase, the last enzyme of the fatty-acid biosynthetic pathway, is the molecular target for several successful antibiotics such as the tuberculosis therapeutic isoniazid. It is currently under investigation as a narrow-spectrum antibiotic target for the treatment of several types of bacterial infections. The diazaborine family is a group of boron heterocycle-based synthetic antibacterial inhibitors known to target enoyl-ACP reductase. Development of this class of molecules has thus far focused solely on the sulfonyl-containing versions. Here, the requirement for the sulfonyl group in the diazaborine scaffold was investigated by examining several recently characterized enoyl-ACP reductase inhibitors that lack the sulfonyl group and exhibit additional variability in substitutions, size and flexibility. Biochemical studies are reported showing the inhibition of Escherichia coli enoyl-ACP reductase by four diazaborines, and the crystal structures of two of the inhibitors bound to E. coli enoyl-ACP reductase solved to 2.07 and 2.11?Å resolution are reported. The results show that the sulfonyl group can be replaced with an amide or thioamide without disruption of the mode of inhibition of the molecule. PMID:26625295

  16. The Distribution and Characteristics of Nitrate Reductase and Glutamate Dehydrogenase in the Maize Seedling 1

    PubMed Central

    Wallace, W.

    1973-01-01

    In a study on 3-day maize (Zea mays) seedlings, grown on nitrate, requirements were established for the maximum extraction and optimum stabilization of nitrate reductase in vitro. With the primary root, 5 mm cysteine were required in the extraction medium, but for the scutellum, which has a high level of endogenous thiol, the use of additional thiol resulted in a reduced yield of a more labile enzyme. Activity of the root and scutella nitrate reductase was obtained with either NADH or NADPH, but that of the root enzyme with NADPH was only demonstrated in the absence of phosphate. Before leaf expansion, the nitrate reductase in the maize seedling was mainly in the scutellum. The enzyme present in the primary root was predominantly in the apical region (0-2 mm). In contrast, glutamate dehydrogenase was concentrated in the mature basal region of the root (30-60 mm). A high level of nitrate (approximately 100 mm) was required to saturate the induction of nitrate reductase in the root tip, mature root, and scutellum. The concentration of nitrate required to give half the maximum level of enzyme induced was the same for each region (29 mm). After leaf expansion, more than 90% of the nitrate reductase was in the shoot, mainly in the leaf blade, and a marked decrease occurred in the level of the enzyme in the scutellum. A large proportion of the glutamate dehydrogenase was still found in the root. PMID:16658530

  17. Reduced nicotinamide–adenine dinucleotide–nitrite reductase from Azotobacter chroococcum

    PubMed Central

    Vega, J. M.; Guerrero, M. G.; Leadbetter, E.; Losada, M.

    1973-01-01

    1. The assimilatory nitrite reductase of the N2-fixing bacterium Azotobacter chroococcum was prepared in a soluble form from cells grown aerobically with nitrate as the nitrogen source, and some of its properties have been studied. 2. The enzyme is a FAD-dependent metalloprotein (mol.wt. about 67000), which stoicheiometrically catalyses the direct reduction of nitrite to NH3 with NADH as the electron donor. 3. NADH–nitrite reductase can exist in two either active or inactive interconvertible forms. Inactivation in vitro can be achieved by preincubation with NADH. Nitrite can specifically protect the enzyme against this inactivation and reverse the process once it has occurred. 4. A. chroococcum nitrite reductase is an adaptive enzyme whose formation depends on the presence of either nitrate or nitrite in the nutrient solution. 5. Tungstate inhibits growth of the microorganism very efficiently, by competition with molybdate, when nitrate is the nitrogen source, but does not interfere when nitrite or NH3 is substituted for nitrate. The addition of tungstate to the culture media results in the loss of nitrate reductase activity but does not affect nitrite reductase. PMID:4147887

  18. Testosterone selectively affects aromatase and 5alpha-reductase activities in the green anole lizard brain.

    PubMed

    Cohen, Rachel E; Wade, Juli

    2010-03-01

    Testosterone (T) and its metabolites are important in the regulation of reproductive behavior in males of a variety of vertebrate species. Aromatase converts T to estradiol and 5alpha-reductase converts T to 5alpha-dihydrotestosterone (DHT). Male green anole reproduction depends on androgens, yet 5alpha-reductase in the brain is not sexually dimorphic and does not vary with season. In contrast, aromatase activity in the male brain is increased during the breeding compared to non-breeding season, and males have higher levels than females during the breeding season. Aromatase is important for female, but not male, sexual behaviors. The present experiment was conducted to determine whether 5alpha-reductase and aromatase are regulated by T. Enzyme activity was quantified in whole brain homogenates in both the breeding and non-breeding seasons in males and females that had been treated with either a T or blank implant. In males only, T increased 5alpha-reductase activity regardless of season and up-regulated aromatase during the breeding season specifically. Thus, regulation of both enzymes occurs in males, whereas females do not show parallel sensitivity to T. When considered with previous results, the data suggest that aromatase might influence a male function associated with the breeding season other than sexual behavior. 5alpha-Reductase can be mediated by T availability, but this regulation may not serve a sex- or season-specific purpose. PMID:19917285

  19. S-nitrosoglutathione reductase–dependent PPAR? denitrosylation participates in MSC-derived adipogenesis and osteogenesis

    PubMed Central

    Cao, Yenong; Gomes, Samirah A.; Rangel, Erika B.; Paulino, Ellena C.; Fonseca, Tatiana L.; Li, Jinliang; Teixeira, Marilia B.; Gouveia, Cecilia H.; Bianco, Antonio C.; Kapiloff, Michael S.; Balkan, Wayne; Hare, Joshua M.

    2015-01-01

    Bone marrow–derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPAR? regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase–deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase–deficient MSCs exhibited equivalent PPAR? expression; however, S-nitrosylation of PPAR? was elevated in S-nitrosoglutathione reductase–deficient MSCs, diminishing binding to its downstream target fatty acid–binding protein 4 (FABP4). We further identified Cys 139 of PPAR? as an S-nitrosylation site and demonstrated that S-nitrosylation of PPAR? inhibits its transcriptional activity, suggesting a feedback regulation of PPAR? transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase–dependent modification of PPAR? alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis. PMID:25798618

  20. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases.

    PubMed

    Maia, Luisa B; Moura, José J G

    2015-03-01

    Nitric oxide (NO) is a signalling molecule involved in several physiological processes, in both prokaryotes and eukaryotes, and nitrite is being recognised as an NO source particularly relevant to cell signalling and survival under challenging conditions. The "non-respiratory" nitrite reduction to NO is carried out by "non-dedicated" nitrite reductases, making use of metalloproteins present in cells to carry out other functions, such as several molybdoenzymes (a new class of nitric oxide-forming nitrite reductases). This minireview will highlight the physiological relevance of molybdenum-dependent nitrite-derived NO formation in mammalian, plant and bacterial signalling (and other) pathways. The mammalian xanthine oxidase/xanthine dehydrogenase, aldehyde oxidase, mitochondrial amidoxime-reducing component, plant nitrate reductase and bacterial aldehyde oxidoreductase and nitrate reductases will be considered. The nitrite reductase activity of each molybdoenzyme will be described and the review will be oriented to discuss the feasibility of the reactions from a (bio)chemical point of view. In addition, the molecular mechanism proposed for the molybdenum-dependent nitrite reduction will be discussed in detail. PMID:25589250

  1. Nitrate reductases in hexaploid and tetraploid wheats and Aegilops.

    PubMed

    Ouhmidou, B; Cauderon, Y; Cherel, I; Champigny, M L

    1990-01-01

    Nitrate reductase activity (NR activity), protein content (NR protein) and polypeptides were compared in shoots of Triticum aestivum ssp. vulgare (L.) cv Fidel (bread wheat, AABBDD genome), Triticum dicoccum cv Vernal (AABB genome), Aegilops squarrosa var. strangulata (DD genome) and the amphiploid 365 (AABBDD genome), produced by crossing T. dicoccum cv Vernal and Ae. squarrosa var. strangulata. Constitutive NR protein and activity were found in shoots of all seedlings grown without nitrate, with the highest activity in the bread wheat. The inducible NR protein and activity developed upon the addition of nitrate. A 116-K polypeptide was identified as the main component of the NR from the bread wheat, while a faint, sometimes discernable 94-K band appeared on Western blots. Only one NR polypeptide could be identified in Ae. squarrosa -the 94 K. An intermediary situation was observed with the tetraploid T. dicoccum and the amphiploid: The 94-K polypeptide was the only one separated from NR of seedlings grown in the absence of nitrate. The 116-K polypeptide appeared after the addition of nitrate. The intensity of its band on the gel increased with the duration of the nitrate treatment. When comparing Ae. squarrosa and T. dicoccum, the constitutive isozyme (94-K polypeptide) was found in the D as well as in the AB genomes, while the inducible NR (116-K polypeptide) was absent from the D genome. Addition of the D genome into the AB genome slightly reinforced the expression of the inducible form (AB genome expression) in the amphiploid wheat. We postulate that the inducible form of NR in the bread wheat resulted from an evolutionary selection pressure favoured by cultivation. PMID:24226112

  2. Differing views of the role of selenium in thioredoxin reductase

    PubMed Central

    Ruggles, Erik L.

    2010-01-01

    This review covers three different chemical explanations that could account for the requirement of selenium in the form of selenocysteine in the active site of mammalian thioredoxin reductase. These views are the following: (1) the traditional view of selenocysteine as a superior nucleophile relative to cysteine, (2) the superior leaving group ability of a selenol relative to a thiol due to its significantly lower pKa and, (3) the superior ability of selenium to accept electrons (electrophilicity) relative to sulfur. We term these chemical explanations as the “chemico-enzymatic” function of selenium in an enzyme. We formally define the chemico-enzymatic function of selenium as its specific chemical property that allows a selenoenzyme to catalyze its individual reaction. However we, and others, question whether selenocysteine is chemically necessary to catalyze an enzymatic reaction since cysteine-homologs of selenocysteine-containing enzymes catalyze their specific enzymatic reactions with high catalytic efficiency. There must be a unique chemical reason for the presence of selenocysteine in enzymes that explains the biological pressure on the genome to maintain the complex selenocysteine-insertion machinery. We term this biological pressure the “chemico-biological” function of selenocysteine. We discuss evidence that this chemico-biological function is the ability of selenoenzymes to resist inactivation by irreversible oxidation. The way in which selenocysteine confers resistance to oxidation could be due to the superior ability of the oxidized form of selenocysteine (Sec-SeO2?, seleninic acid) to be recycled back to its parent form (Sec-SeH, selenocysteine) in comparison to the same cycling of cysteine-sulfinic acid to cysteine (Cys-SO2? to Cys-SH). PMID:20397034

  3. Redox-linked Structural Changes in Ribonucleotide Reductase

    PubMed Central

    Offenbacher, A. R.; Vassiliev, I. R.; Seyedsayamdost, M. R.; Stubbe, J.; Barry, B. A.

    2010-01-01

    Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides. Class I RNRs are composed of two homodimeric proteins, ?2 and ?2. The class Ia E. coli ?2 contains dinuclear, antiferromagnetically coupled iron centers and one tyrosyl free radical, Y122•/?2. Y122• acts as a radical initiator in catalysis. Redox-linked conformational changes may accompany Y122 oxidation and provide local control of proton-coupled electron transfer reactions. To test for such redox-linked structural changes, FT-IR spectroscopy was employed in this work. Reaction-induced difference spectra, associated with the reduction of Y122• by hydroxyurea, were acquired from natural abundance, 2H4 tyrosine, and 15N tyrosine labeled ?2 samples. Isotopic labeling led to the assignment of a 1514 cm?1 band to the ?19a ring stretching vibration of Y122 and of a 1498 cm?1 band to the ?7a CO stretching vibration of Y122•. The reaction-induced spectra also exhibited amide I bands, at 1661 and 1652 cm?1. A similar set of amide I bands, with frequencies of 1675 and 1651 cm?1, was observed when Y• was generated by photolysis in a pentapeptide, which matched the primary sequence surrounding Y122. This result suggests that reduction of Y122• is linked with structural changes at nearby amide bonds and that this perturbation is mediated by the primary sequence. To explain these data, we propose that a structural perturbation of the amide bond is driven by redox-linked electrostatic changes in the tyrosyl radical aromatic ring. PMID:19489635

  4. Minisequencing mitochondrial DNA pathogenic mutations

    PubMed Central

    Álvarez-Iglesias, Vanesa; Barros, Francisco; Carracedo, Ángel; Salas, Antonio

    2008-01-01

    Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA) diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain) patients carrying haplogroup J lineages (Fisher's Exact test, P-value < 0.01). The assay performs well in mixture experiments of wild:mutant DNAs that emulate heteroplasmic conditions in mtDNA diseases. Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories. PMID:18402672

  5. Evaluation of the modifying effects of unfavourable genotypes on classical clinical risk factors for ischaemic stroke

    PubMed Central

    Szolnoki, Z; Somogyvari, F; Kondacs, A; Szabo, M; Fodor, L; Bene, J; Melegh, B

    2003-01-01

    Objectives: Ischaemic stroke is a frequent heterogeneous multifactorial disease that is affected by a number of genetic mutations and environmental factors. We hypothesised the clinical importance of the interactions between common, unfavourable genetic mutations and clinical risk factors in the development of ischaemic stroke. Methods: The Factor V Leiden G1691A (Leiden V), the prothrombin G20210A, the methylenetetrahydrofolate reductase C677T (MTHFR C677T) mutations, the angiotensin converting enzyme I/D (ACE I/D), and apolipoprotein allele e4 (APO e4) genotypes were examined by the polymerase chain reaction (PCR) technique in 867 ischaemic stroke patients and 743 healthy controls. Logistic regression models were used to estimate the roles of the co-occurrences of the clinical risk factors and common genetic mutations in ischaemic stroke. Results: The Leiden V mutation in combination with hypertension or diabetes mellitus increased the risk of ischaemic stroke. We found synergistic effects between the ACE D/D and MTHFR 677TT genotypes and drinking or smoking. The presence of the APO e4 greatly facilitated the unfavourable effects of hypertension, diabetes mellitus, smoking, or drinking on the incidence of ischaemic stroke. Conclusion: In certain combinations, pairing of common unfavourable genetic factors, which alone confer only minor or non-significant risk, with clinical risk factors can greatly increase the susceptibility to ischaemic stroke. PMID:14638877

  6. Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Lang, F.

    1991-01-01

    A membrane-bound nitrate reductase (nitrite:(acceptor) oxidoreductase, EC 1.7.99.4) from the extremely halophilic bacterium Haloferax denitrificans was solubilized by incubating membranes in buffer lacking NaCl and purified by DEAE, hydroxylapatite, and Sepharose 6B gel filtration chromatography. The purified nitrate reductase reduced chlorate and was inhibited by azide and cyanide. Preincubating the enzyme with cyanide increased the extent of inhibition which in turn was intensified when dithionite was present. Although cyanide was a noncompetitive inhibitor with respect to nitrate, nitrate protected against inhibition. The enzyme, as isolated, was composed of two subunits (Mr 116,000 and 60,000) and behaved as a dimer during gel filtration (Mr 380,000). Unlike other halobacterial enzymes, this nitrate reductase was most active, as well as stable, in the absence of salt.

  7. Synthesis of tricyclic compounds as steroid 5alpha-reductase inhibitors.

    PubMed

    Takami, H; Nonaka, H; Kishibayashi, N; Ishii, A; Kase, H; Kumazawa, T

    2000-04-01

    A series of 4-phenoxybutyric acid derivatives attached to a tricyclic skeleton were prepared and evaluated as 5alpha-reductase inhibitors. Structure activity relationships for these compounds in terms of rat epididymis (type 2) 5alpha-reductase inhibitory activities reveal that 1) the substitution pattern at the 11-position of dibenz[b,e]oxepin influenced potency, 2) higher lipophilicity of the tricyclic skeleton improved potency, whereas the existence of a basic nitrogen atom in this skeleton was detrimental to potency, and 3) isobutyl substitution at the 8 positon of the azepine skeleton was tolerated. Among the tricyclic compounds studied, 4-[3-[5-benzyl-8-(2-methyl)propyl-10,11-dihydrodibenz[b,f]azepine- 2-carboxamido]phenoxy]butyric acid (26) was the most potent inhibitor of rat type 2 5alpha-reductase at 0.1 microM. PMID:10783077

  8. Overproduction of dihydrofolate reductase and gene amplification in methotrexate-resistant Chinese hamster ovary cells

    SciTech Connect

    Flintoff, W.F.; Weber, M.K.; Nagainis, C.R.; Essani, A.K.; Robertson, D.; Salser, W.

    1982-03-01

    Stable isolates of Chinese hamster ovary cells that are highly resistant to methotrexate have been selected in a multistep selection process. Quantitative immunoprecipitations have indicated that these isolates synthesize dihydrofolate reductase at an elevated rate over its synthesis in sensitive cells. Restriction enzyme and Southern blot analyses with a murine reductase cDNA probe indicate that the highly resistant isolates contain amplifications of the dihydrofolate reductase gene number. Depending upon the parental line used to select these resistant cells, they overproduce either a wild-type enzyme or a structurally altered enzyme. Karyotype analysis shows that some of these isolates contain chromosomes with homogeneously staining regions whereas others do not contain such chromosomes.

  9. Partial Purification and Characterization of d-Ribose-5-phosphate Reductase from Adonis vernalis L. Leaves

    PubMed Central

    Negm, Fayek B.; Marlow, Gary C.

    1985-01-01

    This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+ ? d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis. PMID:16664320

  10. Synthetic and Crystallographic Studies of a New Inhibitor Series Targeting Bacillus anthracis Dihydrofolate Reductase

    SciTech Connect

    Beierlein, J.; Frey, K; Bolstad, D; Pelphrey, P; Joska, T; Smith, A; Priestley, N; Wright, D; Anderson, A

    2008-01-01

    Bacillus anthracis, the causative agent of anthrax, poses a significant biodefense danger. Serious limitations in approved therapeutics and the generation of resistance have produced a compelling need for new therapeutic agents against this organism. Bacillus anthracis is known to be insensitive to the clinically used antifolate, trimethoprim, because of a lack of potency against the dihydrofolate reductase enzyme. Herein, we describe a novel lead series of B. anthracis dihydrofolate reductase inhibitors characterized by an extended trimethoprim-like scaffold. The best lead compound adds only 22 Da to the molecular weight and is 82-fold more potent than trimethoprim. An X-ray crystal structure of this lead compound bound to B. anthracis dihydrofolate reductase in the presence of NADPH was determined to 2.25 A resolution. The structure reveals several features that can be exploited for further development of this lead series.

  11. Crystallization and preliminary X-ray diffraction analysis of maize aldose reductase

    SciTech Connect

    Kiyota, Eduardo; Sousa, Sylvia Morais de; Santos, Marcelo Leite dos; Costa Lima, Aline da; Menossi, Marcelo; Yunes, José Andrés; Aparicio, Ricardo

    2007-11-01

    Preliminary X-ray diffraction studies of apo maize aldose reductase at 2.0 Å resolution are reported. Maize aldose reductase (AR) is a member of the aldo-keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X-ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular-replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.

  12. Microsomal Electron Transfer in Higher Plants: Cloning and Heterologous Expression of NADH-Cytochrome b5 Reductase from Arabidopsis

    PubMed Central

    Fukuchi-Mizutani, Masako; Mizutani, Masaharu; Tanaka, Yoshikazu; Kusumi, Takaaki; Ohta, Daisaku

    1999-01-01

    AtCBR, a cDNA encoding NADH-cytochrome (Cyt) b5 reductase, and AtB5-A and AtB5-B, two cDNAs encoding Cyt b5, were isolated from Arabidopsis. The primary structure deduced from the AtCBR cDNA was 40% identical to those of the NADH-Cyt b5 reductases of yeast and mammals. A recombinant AtCBR protein prepared using a baculovirus system exhibited typical spectral properties of NADH-Cyt b5 reductase and was used to study its electron-transfer activity. The recombinant NADH-Cyt b5 reductase was functionally active and displayed strict specificity to NADH for the reduction of a recombinant Cyt b5 (AtB5-A), whereas no Cyt b5 reduction was observed when NADPH was used as the electron donor. Conversely, a recombinant NADPH-Cyt P450 reductase of Arabidopsis was able to reduce Cyt b5 with NADPH but not with NADH. To our knowledge, this is the first evidence in higher plants that both NADH-Cyt b5 reductase and NADPH-Cyt P450 reductase can reduce Cyt b5 and have clear specificities in terms of the electron donor, NADH or NADPH, respectively. This substrate specificity of the two reductases is discussed in relation to the NADH- and NADPH-dependent activities of microsomal fatty acid desaturases. PMID:9880378

  13. Multiple Types of 8-Vinyl Reductases for (Bacterio)Chlorophyll Biosynthesis Occur in Many Green Sulfur Bacteria ?

    PubMed Central

    Liu, Zhenfeng; Bryant, Donald A.

    2011-01-01

    Two 8-vinyl reductases, BciA and BciB, have been identified in chlorophototrophs. The bciA gene of Chlorobaculum tepidum was replaced with genes similar to bciB from other green sulfur bacteria. Pigment analyses of the complemented strains showed that the bciB homologs encode 8-vinyl reductases similar to those of cyanobacteria. PMID:21764919

  14. Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal -Oxidation of Unsaturated Fatty

    E-print Network

    Zhijie, Liu

    Studies of Human 2,4-Dienoyl CoA Reductase Shed New Light on Peroxisomal -Oxidation of Unsaturated with the mitochondrial 2,4-dienoyl CoA reductase (mDCR) to shed light on the differences between the enzymes from the two

  15. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  16. Effect of Carbon Dioxide on Nitrate Accumulation and Nitrate Reductase Induction in Corn Seedlings 1

    PubMed Central

    Purvis, A. C.; Peters, D. B.; Hageman, R. H.

    1974-01-01

    Exposure of the leaf canopy of corn seedlings (Zea mays L.) to atmospheric CO2 levels ranging from 100 to 800 ?l/l decreased nitrate accumulation and nitrate reductase activity. Plants pretreated with CO2 in the dark and maintained in an atmosphere containing 100 ?l/l CO2 accumulated 7-fold more nitrate and had 2-fold more nitrate reductase activity than plants exposed to 600 ?l/l CO2, after 5 hours of illumination. Induction of nitrate reductase activity in leaves of intact corn seedlings was related to nitrate content. Changes in soluble protein were related to in vitro nitrate reductase activity suggesting that in vitro nitrate reductase activity was a measure of in situ nitrate reduction. In longer experiments, levels of nitrate reductase and accumulation of reduced N supported the concept that less nitrate was being absorbed, translocated, and assimilated when CO2 was high. Plants exposed to increasing CO2 levels for 3 to 4 hours in the light had increased concentrations of malate and decreased concentrations of nitrate in the leaf tissue. Malate and nitrate concentrations in the leaf tissue of seven of eight corn genotypes grown under comparable and normal (300 ?l/l CO2) environments, were negatively correlated. Exposure of roots to increasing concentrations of potassium carbonate with or without potassium sulfate caused a progressive increase in malate concentrations in the roots. When these roots were subsequently transferred to a nitrate medium, the accumulation of nitrate was inversely related to the initial malate concentrations. These data suggest that the concentration of malate in the tissue seem to be related to the accumulation of nitrate. PMID:16658819

  17. A Tale of Two Reductases: Extending the Bacteriochlorophyll Biosynthetic Pathway in E. coli

    PubMed Central

    Tikh, Ilya B.; Quin, Maureen B.; Schmidt-Dannert, Claudia

    2014-01-01

    The creation of a synthetic microbe that can harvest energy from sunlight to drive its metabolic processes is an attractive approach to the economically viable biosynthetic production of target compounds. Our aim is to design and engineer a genetically tractable non-photosynthetic microbe to produce light-harvesting molecules. Previously we created a modular, multienzyme system for the heterologous production of intermediates of the bacteriochlorophyll (BChl) pathway in E. coli. In this report we extend this pathway to include a substrate promiscuous 8-vinyl reductase that can accept multiple intermediates of BChl biosynthesis. We present an informative comparative analysis of homologues of 8-vinyl reductase from the model photosynthetic organisms Rhodobacter sphaeroides and Chlorobaculum tepidum. The first purification of the enzymes leads to their detailed biochemical and biophysical characterization. The data obtained reveal that the two 8-vinyl reductases are substrate promiscuous, capable of reducing the C8-vinyl group of Mg protoporphyrin IX, Mg protoporphyrin IX methylester, and divinyl protochlorophyllide. However, activity is dependent upon the presence of chelated Mg2+ in the porphyrin ring, with no activity against non-Mg2+ chelated intermediates observed. Additionally, CD analyses reveal that the two 8-vinyl reductases appear to bind the same substrate in a different fashion. Furthermore, we discover that the different rates of reaction of the two 8-vinyl reductases both in vitro, and in vivo as part of our engineered system, results in the suitability of only one of the homologues for our BChl pathway in E. coli. Our results offer the first insights into the different functionalities of homologous 8-vinyl reductases. This study also takes us one step closer to the creation of a nonphotosynthetic microbe that is capable of harvesting energy from sunlight for the biosynthesis of molecules of choice. PMID:24586995

  18. A tale of two reductases: extending the bacteriochlorophyll biosynthetic pathway in E. coli.

    PubMed

    Tikh, Ilya B; Quin, Maureen B; Schmidt-Dannert, Claudia

    2014-01-01

    The creation of a synthetic microbe that can harvest energy from sunlight to drive its metabolic processes is an attractive approach to the economically viable biosynthetic production of target compounds. Our aim is to design and engineer a genetically tractable non-photosynthetic microbe to produce light-harvesting molecules. Previously we created a modular, multienzyme system for the heterologous production of intermediates of the bacteriochlorophyll (BChl) pathway in E. coli. In this report we extend this pathway to include a substrate promiscuous 8-vinyl reductase that can accept multiple intermediates of BChl biosynthesis. We present an informative comparative analysis of homologues of 8-vinyl reductase from the model photosynthetic organisms Rhodobacter sphaeroides and Chlorobaculum tepidum. The first purification of the enzymes leads to their detailed biochemical and biophysical characterization. The data obtained reveal that the two 8-vinyl reductases are substrate promiscuous, capable of reducing the C8-vinyl group of Mg protoporphyrin IX, Mg protoporphyrin IX methylester, and divinyl protochlorophyllide. However, activity is dependent upon the presence of chelated Mg(2+) in the porphyrin ring, with no activity against non-Mg(2+) chelated intermediates observed. Additionally, CD analyses reveal that the two 8-vinyl reductases appear to bind the same substrate in a different fashion. Furthermore, we discover that the different rates of reaction of the two 8-vinyl reductases both in vitro, and in vivo as part of our engineered system, results in the suitability of only one of the homologues for our BChl pathway in E. coli. Our results offer the first insights into the different functionalities of homologous 8-vinyl reductases. This study also takes us one step closer to the creation of a nonphotosynthetic microbe that is capable of harvesting energy from sunlight for the biosynthesis of molecules of choice. PMID:24586995

  19. Characterisation of a Desmosterol Reductase Involved in Phytosterol Dealkylation in the Silkworm, Bombyx mori

    PubMed Central

    Ciufo, Leonora F.; Murray, Patricia A.; Thompson, Anu; Rigden, Daniel J.; Rees, Huw H.

    2011-01-01

    Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C29 and C28) yielding cholesterol (C27). The final step of this dealkylation pathway involves desmosterol reductase (DHCR24)-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735). Following PCR-based cloning of the cDNA (1.6 kb) and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD- dependent reaction. Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation. PMID:21738635

  20. Correct Assembly of Iron-Sulfur Cluster FS0 into Escherichia coli Dimethyl Sulfoxide Reductase (DmsABC) Is a Prerequisite for Molybdenum Cofactor Insertion*

    PubMed Central

    Tang, Huipo; Rothery, Richard A.; Voss, James E.; Weiner, Joel H.

    2011-01-01

    The FS0 [4Fe-4S] cluster of the catalytic subunit (DmsA) of Escherichia coli dimethyl sulfoxide reductase (DmsABC) plays a key role in the electron transfer relay. We have now established an additional role for the cluster in directing molybdenum cofactor assembly during enzyme maturation. EPR spectroscopy indicates that FS0 has a high spin ground state (S = 32) in its reduced form, resulting in an EPR spectrum with a peak at g ? 5.0. The cluster is predicted to be in close proximity to the molybdo-bis(pyranopterin guanine dinucleotide) (Mo-bisPGD) cofactor, which provides the site of dimethyl sulfoxide reduction. Comparison with nitrate reductase A (NarGHI) indicates that a sequence of residues (18CTVNC22) plays a role in both FS0 and Mo-bisPGD coordination. A DmsA?N21 mutant prevented Mo-bisPGD binding and resulted in a degenerate [3Fe-4S] cluster form of FS0 being assembled. DmsA belongs to the Type II subclass of Mo-bisPGD-containing catalytic subunits that is distinguished from the Type I subclass by having three rather than two residues between the first two Cys residues coordinating FS0 and a conserved Arg residue rather than a Lys residue following the fourth cluster coordinating Cys. We introduced a Type I Cys group into DmsA in two stages. We changed its sequence from 18CATVNCBGSRCCP27 to 18CATYCBGVGCCG26 (similar to that of formate dehydrogenase (FdnG)) and demonstrated that this eliminated both Mo-bisPGD binding and EPR-detectable FS0. We then combined this change with a DmsAR61K mutation and demonstrated that this additional change partially rescued Mo-bisPGD insertion. PMID:21357619

  1. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata

    SciTech Connect

    McEwan, A.G.; Greenfield, A.J.; Wetzstein, H.G.; Jackson, J.B.; Ferguson, S.J.

    1985-11-01

    After growth in the absence of nitrogenous oxides under anaerobic phototrophic conditions, several strains of Rhodopseudomonas capsulata were shown to possess a nitrous oxide reductase activity. The enzyme responsible for this activity had a periplasmic location and resembled a nitrous oxide reductase purified from Pseudomonas perfectomarinus. Electron flow to nitrous oxide reductase was coupled to generation of a membrane potential and inhibited by rotenone but not antimycin. It is suggested that electron flow to nitrous oxide reductase branches at the level of ubiquinone from the previously characterized electron transfer components of R. capsulata. R. capsulata grew under dark anaerobic conditions in the presence of malate as carbon source and nitrous oxide as electron acceptor. This confirms that nitrous oxide respiration is linked to ATP synthesis. Phototrophically and anaerobically grown cultures of nondenitrifying strains of Rhodopseudomonas sphaeroides, Rhodopseudomonas palustris, and Rhodospirillum rubrum also possessed nitrous oxide reductase activity.

  2. Purification and kinetic analysis of cytosolic and mitochondrial thioredoxin glutathione reductase extracted from Taenia solium cysticerci.

    PubMed

    Plancarte, Agustin; Nava, Gabriela

    2015-02-01

    Thioredoxin glutathione reductases (TGRs) (EC 1.8.1.9) were purified to homogeneity from the cytosolic (cTsTGR) and mitochondrial (mTsTGR) fractions of Taenia solium, the agent responsible for neurocysticercosis, one of the major central nervous system parasitic diseases in humans. TsTGRs had a relative molecular weight of 132,000, while the corresponding value per subunit obtained under denaturing conditions, was of 62,000. Specific activities for thioredoxin reductase and glutathione reductase substrates for both TGRs explored were in the range or lower than values obtained for other platyhelminths and mammalian TGRs. cTsTGR and mTsTGR also showed hydroperoxide reductase activity using hydroperoxide as substrate. Km(DTNB) and Kcat(DTNB) values for cTsTGR and mTsTGR (88?µM and 1.9?s(-1); 45?µM and 12.6?s(-1), respectively) and Km(GSSG) and Kcat(GSSG) values for cTsTGR and mTsTGR (6.3?µM and 0.96?s(-1); 4?µM and 1.62?s(-1), respectively) were similar to or lower than those reported for mammalian TGRs. Mass spectrometry analysis showed that 12 peptides from cTsTGR and seven from mTsTGR were a match for gi|29825896 thioredoxin glutathione reductase [Echinococcus granulosus], confirming that both enzymes are TGRs. Both T. solium TGRs were inhibited by the gold compound auranofin, a selective inhibitor of thiol-dependent flavoreductases (I???=?3.25, 2.29?nM for DTNB and GSSG substrates, respectively for cTsTGR; I???=?5.6, 25.4?nM for mTsTGR toward the same substrates in the described order). Glutathione reductase activity of cTsTGR and mTsTGR exhibited hysteretic behavior with moderate to high concentrations of GSSG; this result was not observed either with thioredoxin, DTNB or NADPH. However, the observed hysteretic kinetics was suppressed with increasing amounts of both parasitic TGRs. These data suggest the existence of an effective substitute which may account for the lack of the detoxification enzymes glutathione reductase and thioredoxin reductase in T. solium, as has been described for very few other platyhelminths. PMID:25541385

  3. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  4. [Rhabdomyolysis following cerivastatin monotherapy--implications for therapy with HMG-CoA reductase inhibitors].

    PubMed

    Sparing, R; Sellhaus, B; Noth, J; Block, F

    2003-02-01

    Cerivastatine was administered as a reversible HMG-CoA reductase inhibitor (statine) to treat hypercholesterolemia until its withdrawal from the market following 52 reports of death due to drug-related rhabdomyolysis and acute renal failure. In most cases, cerivastatine was applied in combination with drugs which influenced the liver metabolism of cerivastatine via cytochromeoxidase P 450 isoenzymes. We report a well-documented case of acute rhabdomyolysis following cerivastatine monotherapy. The diagnosis was confirmed additionally by muscle biopsy.Finally,we give an overview of the current knowledge concerning therapy with HMG-CoA reductase inhibitors,1 year after the withdrawal of cerivastatine from the market. PMID:12596018

  5. Crystallization and preliminary X-ray diffraction studies of ferredoxin reductase from Leptospira interrogans

    SciTech Connect

    Nascimento, Alessandro S.; Ferrarezi, Thiago; Catalano-Dupuy, Daniela L.; Ceccarelli, Eduardo A.; Polikarpov, Igor

    2006-07-01

    Crystals adequate for X-ray diffraction analysis have been prepared from L. interrogans ferredoxin-NADP{sup +} reductase. Ferredoxin-NADP{sup +} reductase (FNR) is an FAD-containing enzyme that catalyzes electron transfer between NADP(H) and ferredoxin. Here, results are reported of the recombinant expression, purification and crystallization of FNR from Leptospira interrogans, a parasitic bacterium of animals and humans. The L. interrogans FNR crystals belong to a primitive monoclinic space group and diffract to 2.4 Å resolution at a synchrotron source.

  6. Dynamical Mutation of Dark Energy

    E-print Network

    L. R. Abramo; R. C. Batista; L. Liberato; R. Rosenfeld

    2008-01-03

    We discuss the intriguing possibility that dark energy may change its equation of state in situations where large dark energy fluctuations are present. We show indications of this dynamical mutation in some generic models of dark energy.

  7. Mutation specific therapy in CF.

    PubMed

    Kerem, Eitan

    2006-01-01

    CFTR mutations cause defects of CFTR protein production and function by different molecular mechanisms. The mutations can be classified according to the mechanisms by which mutations disrupt CFTR function. This understanding of the different molecular mechanism of CFTR dysfunction provides the scientific basis for development of targeted drugs for mutation specific therapy of CF. Class I mutations are nonsense mutations that result in the presence of premature stop codon that leads to the production of unstable mRNA or the release from the ribosome of a short truncated protein that is not functional. The aminoglycoside antibiotics can suppress premature termination codons by disrupting translational fidelity and allowing the incorporation of an amino acid, thus permitting translation to continue to the normal termination of the transcript. Class II mutations cause impairment of CFTR processing and folding in the Golgi. As a result the mutant CFTR is retained in the ER and eventually targeted for degradation by the quality control mechanisms. Chemical and molecular chaperons such as Sodium-4-phenylbutyrate can stabilize protein structure, and allow it to escape from degradation in the ER and be transported to the cell membrane. Class III mutations disrupt the function of the regulatory domain. CFTR is resistant to phosphorylation or ATP binding. CFTR activators such as alkylxanthines (CPX) and the flavonoid genistein can overcome the affected ATP binding through direct binding to a nucleotide binding fold. In patients carrying class IV mutations, phosphorylation of CFTR results in reduced chloride transport. Increases in the overall cell surface content of these mutants might overcome the relative reduction in conductance. Alternatively restoring native chloride pore characteristics pharmacologically might be effective. Activators of CFTR at the plasma membrane may function by promoting CFTR phosphorylation, by blocking CFTR dephosphorylation, by interacting directly with CFTR, and/or by modulation of CFTR protein-protein interactions. Class V mutations affect the spicing machinery and generate both aberrantly and correctly spliced transcripts, the level of which vary among different patients and among different organs of the same patient. Splicing factors that promote exon inclusion or factors that promote exon skipping can promote increase of correctly spliced transcripts, depending on the molecular defect. Inconsistent results were reported regarding the required level of corrected or mutated CFTR that has to be reached in order to achieve normal function. PMID:16798551

  8. Mutation Operators for Specifications Paul E. Black

    E-print Network

    Black, Paul E.

    Mutation Operators for Specifications Paul E. Black National Institute of Standards and Technology generate complete test suites via mutation analysis. We define an extensive set of mutation operators of mutation operators which yield good test coverage at a reduced cost compared to using all proposed

  9. Habilitationsschrift Model-Based Mutation Testing

    E-print Network

    Habilitationsschrift Model-Based Mutation Testing: Theory and Application Bernhard K. Aichernig-based mutation testing. Mutation testing is a way of assessing and improving a test suite by checking if its test changing the source code of a program. In our work we generalise mutation testing from program testing

  10. Psychogenic aphonia masking mutational falsetto.

    PubMed

    Hartman, D E; Aronson, A E

    1983-06-01

    Aphonia, originally due to laryngeal inflammation, became psychogenic and superimposed on the unstable pitch of adolescent voice change. We presumed that the aphonia was adopted as a means of dealing with peer pressure to maintain a high preadolescent pitch as well. Voice therapy was effective in alleviating both the aphonia and mutational falsetto. Clinicians should be alert to underlying mutational falsetto when confronted with an aphonic or dysphonic adolescent patient with no organic laryngeal pathologic condition. PMID:6847504

  11. Rare mutations in evolutionary dynamics

    NASA Astrophysics Data System (ADS)

    Amadori, Anna Lisa; Calzolari, Antonella; Natalini, Roberto; Torti, Barbara

    2015-12-01

    In this paper we study the effect of rare mutations, driven by a marked point process, on the evolutionary behavior of a population. We derive a Kolmogorov equation describing the expected values of the different frequencies and prove some rigorous analytical results about their behavior. Finally, in a simple case of two different quasispecies, we are able to prove that the rarity of mutations increases the survival opportunity of the low fitness species.

  12. Plasmodium vivax dhfr mutations among isolates from malarious areas of Iran.

    PubMed

    Zaman, Jalal; Shahbazi, Abbas; Asgharzadeh, Mohammad

    2011-06-01

    The use of sulfadoxine and pyrimethamine (SP) for treatment of vivax malaria is uncommon in most malarious areas, but Plasmodium vivax isolates are exposed to SP because of mixed infections with other Plasmodium species. As P. vivax is the most prevalent species of human malaria parasites in Iran, monitoring of resistance of the parasite against the drug is necessary. In the present study, 50 blood samples of symptomatic patients were collected from 4 separated geographical regions of south-east Iran. Point mutations at residues 57, 58, 61, and 117 were detected by the PCR-RFLP method. Polymorphism at positions 58R, 117N, and 117T of P. vivax dihydrofolate reductase (Pvdhfr) gene has been found in 12%, 34%, and 2% of isolates, respectively. Mutation at residues F57 and T61 was not detected. Five distinct haplotypes of the Pvdhfr gene were demonstrated. The 2 most prevalent haplotypes were F57S58T61S117 (62%) and F57S58T61N117 (24%). Haplotypes with 3 and 4 point mutations were not found. The present study suggested that P. vivax in Iran is under the pressure of SP and the sensitivity level of the parasite to SP is diminishing and this fact must be considered in development of malaria control programs. PMID:21738267

  13. Recessive Mutations in RTN4IP1 Cause Isolated and Syndromic Optic Neuropathies.

    PubMed

    Angebault, Claire; Guichet, Pierre-Olivier; Talmat-Amar, Yasmina; Charif, Majida; Gerber, Sylvie; Fares-Taie, Lucas; Gueguen, Naig; Halloy, François; Moore, David; Amati-Bonneau, Patrizia; Manes, Gael; Hebrard, Maxime; Bocquet, Béatrice; Quiles, Mélanie; Piro-Mégy, Camille; Teigell, Marisa; Delettre, Cécile; Rossel, Mireille; Meunier, Isabelle; Preising, Markus; Lorenz, Birgit; Carelli, Valerio; Chinnery, Patrick F; Yu-Wai-Man, Patrick; Kaplan, Josseline; Roubertie, Agathe; Barakat, Abdelhamid; Bonneau, Dominique; Reynier, Pascal; Rozet, Jean-Michel; Bomont, Pascale; Hamel, Christian P; Lenaers, Guy

    2015-11-01

    Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation. PMID:26593267

  14. Aldose reductase expression as a risk factor for cataract.

    PubMed

    Snow, Anson; Shieh, Biehuoy; Chang, Kun-Che; Pal, Arttatrana; Lenhart, Patricia; Ammar, David; Ruzycki, Philip; Palla, Suryanarayana; Reddy, G Bhanuprakesh; Petrash, J Mark

    2015-06-01

    Aldose reductase (AR) is thought to play a role in the pathogenesis of diabetic eye diseases, including cataract and retinopathy. However, not all diabetics develop ocular complications. Paradoxically, some diabetics with poor metabolic control appear to be protected against retinopathy, while others with a history of excellent metabolic control develop severe complications. These observations indicate that one or more risk factors may influence the likelihood that an individual with diabetes will develop cataracts and/or retinopathy. We hypothesize that an elevated level of AR gene expression could confer higher risk for development of diabetic eye disease. To investigate this hypothesis, we examined the onset and severity of diabetes-induced cataract in transgenic mice, designated AR-TG, that were either heterozygous or homozygous for the human AR (AKR1B1) transgene construct. AR-TG mice homozygous for the transgene demonstrated a conditional cataract phenotype, whereby they developed lens vacuoles and cataract-associated structural changes only after induction of experimental diabetes; no such changes were observed in AR-TG heterozygotes or nontransgenic mice with or without experimental diabetes induction. We observed that nondiabetic AR-TG mice did not show lens structural changes even though they had lenticular sorbitol levels almost as high as the diabetic AR-TG lenses that showed early signs of cataract. Over-expression of AR led to increases in the ratio of activated to total levels of extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal (JNK1/2), which are known to be involved in cell growth and apoptosis, respectively. After diabetes induction, AR-TG but not WT controls had decreased levels of phosphorylated as well as total ERK1/2 and JNK1/2 compared to their nondiabetic counterparts. These results indicate that high AR expression in the context of hyperglycemia and insulin deficiency may constitute a risk factor that could predispose the lens to disturbances in signaling through the ERK and JNK pathways and thereby alter the balance of cell growth and apoptosis that is critical to lens transparency and homeostasis. PMID:25541468

  15. Expression and purification of spinach nitrite reductase in E. coli

    SciTech Connect

    Bellissimo, D.; Privalle, L. )

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth were also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.

  16. The Active Form of the Saccharomyces cerevisiae Ribonucleotide Reductase Small Subunit Is a Heterodimer in Vitro and in Vivo†

    PubMed Central

    Perlstein, Deborah L.; Ge, Jie; Ortigosa, Allison D.; Robblee, John H.; Zhang, Zhen; Huang, Mingxia; Stubbe, JoAnne

    2015-01-01

    The class I ribonucleotide reductases (RNRs) are composed of two homodimeric subunits: R1 and R2. R2 houses a diferric-tyrosyl radical (Y•) cofactor. Saccharomyces cerevisiae has two R2s: Y2 (?2) and Y4 (??2). Y4 is an unusual R2 because three residues required for iron binding have been mutated. While the heterodimer (???) is thought to be the active form, several rnr4? strains are viable. To resolve this paradox, N-terminally epitope-tagged ? and ?? were expressed in E. coli or integrated into the yeast genome. In vitro exchange studies reveal that when apo-(His6)-?2 (His?2) is mixed with ??2, apo-His??? forms quantitatively within 2 min. In contrast, holo-??? fails to exchange with apo-His?2 to form holo-His?? and ??2. Isolation of genomically encoded tagged ? or ?? from yeast extracts gave a 1:1 complex of ? and ??, suggesting that ??? is the active form. The catalytic activity, protein concentrations, and Y• content of the rnr4? and wild type (wt) strains were compared to clarify the role of ?? in vivo. The Y• content of rnr4? is 15-fold less than that of wt, consistent with the observed low activity of rnr4? extracts (<0.01 nmol min?1 mg?1) versus wt (0.06 ± 0.01 nmol min?1 mg?1). FLAG?2 isolated from the rnr4? strain has a specific activity of 2 nmol min?1 mg?1, similar to that of reconstituted apo-His?2 (10 nmol min?1 mg?1), but significantly less than holo-His??? (~2000 nmol min?1 mg?1). These studies together demonstrate that ?? plays a crucial role in cluster assembly in vitro and in vivo and that the active form of the yeast R2 is ???. PMID:16285741

  17. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    SciTech Connect

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  18. KRAS mutations in lung cancer.

    PubMed

    Karachaliou, Niki; Mayo, Clara; Costa, Carlota; Magrí, Ignacio; Gimenez-Capitan, Ana; Molina-Vila, Miguel Angel; Rosell, Rafael

    2013-05-01

    Epidermal growth factor receptor (EGFR) gene mutations and increased EGFR copy numbers have been associated with a favorable response to EGFR tyrosine kinase inhibitors (TKI) in patients with non-small-cell lung cancer (NSCLC), and several markers have been identified that predict response to treatment. Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS), and mutations in EGFR and KRAS appear to be mutually exclusive. Even though KRAS mutations were identified in NSCLC tumors more than 20 years ago, we have only just begun to appreciate the clinical value of determining KRAS tumor status. Recent studies indicate that patients with mutant KRAS tumors fail to benefit from adjuvant chemotherapy and do not respond to EGFR inhibitors. There is a clear need for therapies specifically developed for patients with KRAS-mutant NSCLC. In this review, we summarize the clinical and pathologic characteristics of patients with NSCLC and with KRAS mutations, describe work that explores the predictive and prognostic influence of KRAS mutations, and provide an overview of the "synthetic lethal" interactions and current approaches to targeting KRAS-mutant NSCLC. PMID:23122493

  19. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival: a reductase-based peptide counters ?-adrenergic receptor ligand-mediated cardiac dysfunction

    PubMed Central

    Ding, Bo; Gibbs, Peter E. M.; Brookes, Paul S.; Maines, Mahin D.

    2011-01-01

    HO-2 oxidizes heme to CO and biliverdin; the latter is reduced to bilirubin by biliverdin reductase (BVR). In addition, HO-2 is a redox-sensitive K/Ca2-associated protein, and BVR is an S/T/Y kinase. The two enzymes are components of cellular defense mechanisms. This is the first reporting of regulation of HO-2 by BVR and that their coordinated increase in isolated myocytes and intact heart protects against cardiotoxicity of ?-adrenergic receptor activation by isoproterenol (ISO). The induction of BVR mRNA, protein, and activity and HO-2 protein was maintained for ?96 h; increase in HO-1 was modest and transient. In isolated cardiomyocytes, experiments with cycloheximide, proteasome inhibitor MG-132, and siBVR suggested BVR-mediated stabilization of HO-2. In both models, activation of BVR offered protection against the ligand's stimulation of apoptosis. Two human BVR-based peptides known to inhibit and activate the reductase, KKRILHC281 and KYCCSRK296, respectively, were tested in the intact heart. Perfusion of the heart with the inhibitory peptide blocked ISO-mediated BVR activation and augmented apoptosis; conversely, perfusion with the activating peptide inhibited apoptosis. At the functional level, peptide-mediated inhibition of BVR was accompanied by dysfunction of the left ventricle and decrease in HO-2 protein levels. Perfusion of the organ with the activating peptide preserved the left ventricular contractile function and was accompanied by increased levels of HO-2 protein. Finding that BVR and HO-2 levels, myocyte apoptosis, and contractile function of the heart can be modulated by small human BVR-based peptides offers a promising therapeutic approach for treatment of cardiac dysfunctions.—Ding, B., Gibbs, P. E. M., Brookes, P. S., Maines, M. D. The coordinated increased expression of biliverdin reductase and heme oxygenase-2 promotes cardiomyocyte survival; a reductase-based peptide counters ?-adrenergic receptor ligand-mediated cardiac dysfunction. PMID:20876213

  20. 17beta-hydroxysteroid dehydrogenase type 8 and carbonyl reductase type 4 assemble as a ketoacyl reductase of human mitochondrial FAS.

    PubMed

    Chen, Zhijun; Kastaniotis, Alexander J; Miinalainen, Ilkka J; Rajaram, Venkatesan; Wierenga, Rik K; Hiltunen, J Kalervo

    2009-11-01

    Mitochondrial fatty acid synthesis (FAS) generates the octanoyl-group that is required for the synthesis of lipoic acid and is linked to mitochondrial RNA metabolism. All of the human enzymes involved in mitochondrial FAS have been characterized except for beta-ketoacyl thioester reductase (HsKAR), which catalyzes the second step in the pathway. We report here the unexpected finding that a heterotetramer composed of human 17beta-hydroxysteroid dehydrogenase type 8 (Hs17beta-HSD8) and human carbonyl reductase type 4 (HsCBR4) forms the long-sought HsKAR. Both proteins share sequence similarities to the yeast 3-oxoacyl-(acyl carrier protein) reductase (Oar1p) and the bacterial FabG, although HsKAR is NADH dependent, whereas FabG and Oar1p are NADPH dependent. Hs17beta-HSD8 and HsCBR4 show a strong genetic interaction in vivo in yeast, where, only if they are expressed together, they rescue the respiratory deficiency and restore the lipoic acid content of oar1Delta cells. Moreover, these two proteins display a stable physical interaction and form an active heterotetramer. Both Hs17beta-HSD8 and HsCBR4 are targeted to mitochondria in vivo in cultured HeLa cells. Notably, 17beta-HSD8 was previously classified as a steroid-metabolizing enzyme, but our data suggest that 17beta-HSD8 is primarily involved in mitochondrial FAS. PMID:19571038

  1. Role of Arginine 293 and Glutamine 288 in Communication between Catalytic and Allosteric Sites in Yeast Ribonucleotide Reductase

    SciTech Connect

    Ahmad, Md. Faiz; Kaushal, Prem Singh; Wan, Qun; Wijerathna, Sanath R.; An, Xiuxiang; Huang, Mingxia; Dealwis, Chris Godfrey

    2012-11-01

    Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 ({alpha}) that contains the catalytic site and RR2 ({beta}) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-({beta},{gamma}-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.

  2. Atomic resolution structures and solution behavior of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. Multiple conformational states and implications for the mechanism of nitroaromatic explosive degradation.

    PubMed

    Khan, Huma; Barna, Terez; Harris, Richard J; Bruce, Neil C; Barsukov, Igor; Munro, Andrew W; Moody, Peter C E; Scrutton, Nigel S

    2004-07-16

    The structure of pentaerythritol tetranitrate (PETN) reductase in complex with the nitroaromatic substrate picric acid determined previously at 1.55 A resolution indicated additional electron density between the indole ring of residue Trp-102 and the nitro group at C-6 of picrate. The data suggested the presence of an unusual bond between substrate and the tryptophan side chain. Herein, we have extended the resolution of the PETN reductase-picric acid complex to 0.9 A. This high-resolution analysis indicates that the active site is partially occupied with picric acid and that the anomalous density seen in the original study is attributed to the population of multiple conformational states of Trp-102 and not a formal covalent bond between the indole ring of Trp-102 and picric acid. The significance of any interaction between Trp-102 and nitroaromatic substrates was probed further in solution and crystal complexes with wild-type and mutant (W102Y and W102F) enzymes. Unlike with wild-type enzyme, in the crystalline form picric acid was bound at full occupancy in the mutant enzymes, and there was no evidence for multiple conformations of active site residues. Solution studies indicate tighter binding of picric acid in the active sites of the W102Y and W102F enzymes. Mutation of Trp-102 does not impair significantly enzyme reduction by NADPH, but the kinetics of decay of the hydride-Meisenheimer complex are accelerated in the mutant enzymes. The data reveal that decay of the hydride-Meisenheimer complex is enzyme catalyzed and that the final distribution of reaction products for the mutant enzymes is substantially different from wild-type enzyme. Implications for the mechanism of high explosive degradation by PETN reductase are discussed. PMID:15128738

  3. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  4. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    SciTech Connect

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ?), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  5. Molecular Characterization of a Novel Short-chain Dehydrogenase/ Reductase That Reduces All-trans-retinal*

    E-print Network

    Palczewski, Krzysztof

    Molecular Characterization of a Novel Short-chain Dehydrogenase/ Reductase That Reduces All-trans, Columbia, South Carolina 29208 The reduction of all-trans-retinal in photoreceptor outer segments of the photoreceptor all-trans-retinol dehydrogenase. Homology modeling of retSDR1 using the carbonyl re- ductase

  6. Extraction methods determine the antioxidant capacity and induction of quinone reductase by soy products in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gastrointestinal mimic (GI) and organic solvent extracts of whole soybean powder (WSP), soy protein concentrate (SPC), and soy protein isolate (SPI) as well as soy isoflavone concentrate (SIC) were analyzed for total phenols; quinone reductase (QR) induction in hepa1c1c7 cells; antioxidant scavengi...

  7. Identification of S-nitroso-CoA reductases that regulate protein S-nitrosylation

    PubMed Central

    Anand, Puneet; Hausladen, Alfred; Wang, Ya-Juan; Zhang, Guo-Fang; Stomberski, Colin; Brunengraber, Henri; Hess, Douglas T.; Stamler, Jonathan S.

    2014-01-01

    Coenzyme A (CoA) mediates thiol-based acyl-group transfer (acetylation and palmitoylation). However, a role for CoA in the thiol-based transfer of NO groups (S-nitrosylation) has not been considered. Here we describe protein S-nitrosylation in yeast (heretofore unknown) that is mediated by S-nitroso-CoA (SNO-CoA). We identify a specific SNO-CoA reductase encoded by the alcohol dehydrogenase 6 (ADH6) gene and show that deletion of ADH6 increases cellular S-nitrosylation and alters CoA metabolism. Further, we report that Adh6, acting as a selective SNO-CoA reductase, protects acetoacetyl–CoA thiolase from inhibitory S-nitrosylation and thereby affects sterol biosynthesis. Thus, Adh6-regulated, SNO-CoA–mediated protein S-nitrosylation provides a regulatory mechanism paralleling protein acetylation. We also find that SNO-CoA reductases are present from bacteria to mammals, and we identify aldo-keto reductase 1A1 as the mammalian functional analog of Adh6. Our studies reveal a novel functional class of enzymes that regulate protein S-nitrosylation from yeast to mammals and suggest that SNO-CoA–mediated S-nitrosylation may subserve metabolic regulation. PMID:25512491

  8. Cotton Benzoquinone Reductase: Up-regulation During Early Cotton Fiber Developement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Benzoquinone reductase (BR; EC 1.6.5.7) is an enzyme that catalyzes the bivalent redox reactions of quinones without the production of free radical intermediates. Using 2-D PAGE comparisons, two proteins were found to be up-regulated in wild-type cotton ovules during the fiber initiation stage but ...

  9. Closing the Gap: Identification of Human 3-Ketosteroid Reductase, the Last Unknown Enzyme

    E-print Network

    Breitling, Rainer

    Closing the Gap: Identification of Human 3- Ketosteroid Reductase, the Last Unknown Enzyme phosphate as cofactor. Expression of human and murine HSD17B7 in an Erg27p-deficient yeast strain cholesterol biosynthesis, thus completing the molecular cloning of all genes of this central metabolic pathway

  10. Two Interacting Binding Sites for Quinacrine Derivatives in the Active Site of Trypanothione Reductase

    E-print Network

    Schnaufer, Achim

    inactivates Trypanosoma cruzi trypanothione reduc- tase, but not human glutathione reductase, in a time cruzi), sleeping sickness (by Trypanosoma brucei spp.), and the leishmaniases, caused by parasites agents of several serious tropical diseases. These com- prise Chagas' disease (caused by Trypanosoma

  11. Amino Acids (2002) 22: 297308 Peptoid inhibition of trypanothione reductase as a potential

    E-print Network

    Schnaufer, Achim

    2002-01-01

    reductase from Trypanosoma cruzi with a Ki value of 179µM and with only weak inhibition of human erythrocyte against parasites of the Trypanosoma and Leishmania species and for novel drug targets against the diseases caused by other organisms. One characteristic of trypanosomal biochemistry, shared by Leishmania

  12. EFFECT OF LINDANE ON INTESTINAL NITROREDUCTASE, AZO REDUCTASE, B-GLUCURONIDASE, DECHLORINASE AND DEHYDROCHLORINASE ACTIVITY

    EPA Science Inventory

    The effect of daily p.o. injections of 20 mg/kg lindane on nitroreductase, azo reductase, B-glucuronidase, dechlorinase and dehydrochlorinase enzyme activity in the rat intestinal tract vas investigated after 2 weeks and 5 weeks of treatment. Antibiotics were administered to half...

  13. Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases*S

    E-print Network

    partner protein and is buried 7 Å beneath the protein surface (10), and the other copper is a type 2 electron donor for the blue NiRs are the small copper protein azurin (14 kDa) (7) and cyto- chrome c551 (7Demonstration of Proton-coupled Electron Transfer in the Copper-containing Nitrite Reductases

  14. AUTOMATED ANALYSIS OF GLUTATHIONE PEROXIDASE, S-TRANSFERASE, AND REDUCTASE ACTIVITY IN ANIMAL TISSUE

    EPA Science Inventory

    A centrifugal analyzer and a spectrophotometer were compared for routine analysis of xenobiotic metabolizing enzymes glutathione (GSH) peroxidase, GSH-S-transferase, and GSH reductase. Lung, liver, and kidney from 60-day-old male rats were used as the source of enzymes. Linear re...

  15. Ferric reductase activity and PsFRO1 sequence variation in pisum sps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological studies in pea (Pisum sativum) suggest that the reduction of iron (Fe) is the rate-limiting physiological process in Fe acquisition by dicotyledonous plants. Previous molecular work suggests that ferric reductase activity is regulated at both the transcriptional and post-translational ...

  16. MOLECULAR AND PHENOTYPIC CHARACTERIZATION OF TRANSGENIC SOYBEAN EXPRESSING THE ARABIDOPSIS FERRIC CHELATE REDUCTASE GENE, FRO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the U.S. Soybean like other dicotyledonous plants responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and a Fe transporter....

  17. ORIGINAL ARTICLE Expression of Aromatase and Two Isozymes of 5a-Reductase in the

    E-print Network

    Wade, Juli

    of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymesORIGINAL ARTICLE Expression of Aromatase and Two Isozymes of 5a-Reductase in the Developing Green Anole Forebrain R. E. Cohen*1 and J. Wade* à *Department of Zoology, Michigan State University, East

  18. REGULATION OF APPLE LEAF ALDOSE-6-PHOSPHATE REDUCTASE ACTIVITY BY INORGANIC PHOSPHATE AND DIVALENT CATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aldose-6-phosphate reductase (A6PR) has been purified to apparent homogeneity from apple (Malus domestica Borhk. cv. Gala) source leaves. A6PR activity was increased by 0.5 to 5 mM Ca2+, Mg2+, or Mn2+ but these same metal ions inhibited enzyme activity at higher concentrations. Increased enzyme ac...

  19. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines

    SciTech Connect

    Kaufman, R.J.; Brown, P.C.; Schimke, R.T.

    1981-12-01

    The authors studied the loss and stabilization of dihydrofolate reductase genes in clones of a methotrexate-resistant murine S-180 cell line. These cells contained multiple copies of the dihydrofolate reductase gene which were associated with double minute chromosomes. The growth rate of these cells in the absence of methotrexate was inversely related to the degree of gene amplification (number of double minute chromosomes). Cells could both gain and lose genes as a result of an unequal distribution of double minute chromosomes into daughter cells at mitosis. The loss of amplified dihydrofolate reductase genes during growth in the absence of methotrexate resulted from the continual generation of cells containing lower numbers of double minute chromosomes. Because of the growth advantage of these cells, they became dominant in the population. They also studied an unstably resistant S-180 cell line (clone) that, after 3 years of continuous growth in methotrexate, generated cells containing stably amplified dihydrofolate reductase genes. These genes were present on one or more chromosomes, and they were retained in a stable state.

  20. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties.

    PubMed

    Pugin, Benoit; Cornejo, Fabián A; Muñoz-Díaz, Pablo; Muñoz-Villagrán, Claudia M; Vargas-Pérez, Joaquín I; Arenas, Felipe A; Vásquez, Claudio C

    2014-11-01

    Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells. PMID:25193000

  1. Comparative Molecular Modeling Study of Arabidopsis NADPH-Dependent Thioredoxin Reductase and Its

    E-print Network

    Lee, Keun Woo

    Center Program (2009-0081539) and Management of Climate Change Program (2010-0029084) through the NRFComparative Molecular Modeling Study of Arabidopsis NADPH-Dependent Thioredoxin Reductase and Its) simulations on AtNTRC and AtNTRA-(Trx-D) proteins with same cofactors such as NADPH and flavin adenine

  2. Structural and docking studies of Leucaena leucocephala Cinnamoyl CoA reductase.

    PubMed

    Prasad, Nirmal K; Vindal, Vaibhav; Kumar, Vikash; Kabra, Ashish; Phogat, Navneet; Kumar, Manoj

    2011-03-01

    Lignin, a major constituent of plant call wall, is a phenolic heteropolymer. It plays a major role in the development of plants and their defense mechanism against pathogens. Therefore Lignin biosynthesis is one of the critical metabolic pathways. In lignin biosynthesis, the Cinnamoyl CoA reductase is a key enzyme which catalyzes the first step in the pathway. Cinnamoyl CoA reductase provides the substrates which represent the main transitional molecules of lignin biosynthesis pathway, exhibits a high in vitro kinetic preference for feruloyl CoA. In present study, the three-dimensional model of cinnamoyl CoA reductase was constructed based on the crystal structure of Grape Dihydroflavonol 4-Reductase. Furthermore, the docking studies were performed to understand the substrate interactions to the active site of CCR. It showed that residues ARG51, ASN52, ASP54 and ASN58 were involved in substrate binding. We also suggest that residue ARG51 in CCR is the determinant residue in competitive inhibition of other substrates. This structural and docking information have prospective implications to understand the mechanism of CCR enzymatic reaction with feruloyl CoA, however the approach will be applicable in prediction of substrates and engineering 3D structures of other enzymes as well. PMID:20512516

  3. Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study investigated the effects of glyphosate drift rate on plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition in non-glyphosate-resistant (non-GR) corn (Zea mays L.) and the effects of glyphosate at label rates on nitrate reducta...

  4. Crystal Structure of a Biliverdin IXa Reductase EnzymeCofactor Complex

    E-print Network

    Hill, Chris

    . Phillips2 *, Christopher P. Hill1 * William McCoubrey3 and Mahin D. Maines3 1 Department of BiochemistryCrystal Structure of a Biliverdin IXa Reductase Enzyme­Cofactor Complex Frank G. Whitby1 , John D. All rights reserved F.G.W. and J.D.P. have contributed equally to this work. E-mail addresses

  5. Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli.

    PubMed

    Mulliez, E; Ollagnier, S; Fontecave, M; Eliasson, R; Reichard, P

    1995-09-12

    During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA. PMID:7568012

  6. CONTROL OF NITRATE REDUCTASE BY CIRCADIAN AND DURRAL RHYTHM IN TOMATO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) (E.C. 1.6.6.1) is a key, regulatory step in the assimilation of nitrate into amino acids in plant leaves. NR activity is intricately controlled by multifarious regulatory mechanisms acting at different levels ranging from transcription to protein degradation. It is one of a ...

  7. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    PubMed Central

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  8. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis.

    PubMed

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-07-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  9. Use of a Simple, Colorimetric Assay to Demonstrate Conditions for Induction of Nitrate Reductase in Plants.

    ERIC Educational Resources Information Center

    Harley, Suzanne M.

    1993-01-01

    Nitrate assimilation by plants provides an excellent system for demonstrating control of gene expression in a eukaryotic organism. Describes an assay method that allows students to complete experiments designed around the measurement of nitrate reductase within a three-hour laboratory experiment. (PR)

  10. Identification and in vitro characterization of a Marek’s disease virus encoded ribonucleotide reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) encodes a ribonucleotide reductase (RR), a key regulatory enzyme in the DNA synthesis pathway. The gene coding for the RR of MDV is located in the unique long (UL) region of the genome. The large subunit is encoded by UL39 (RR1) and is predicted to comprise 860 amino acid...

  11. Immunolocalisation of two tropinone reductases in potato (Solanum tuberosum L.) root, stolon, and tuber sprouts.

    PubMed

    Kaiser, Heike; Richter, Ute; Keiner, Ronald; Brabant, Anja; Hause, Bettina; Dräger, Birgit

    2006-12-01

    Tropinone reductases (TRs) are essential enzymes in the tropane alkaloid biosynthesis, providing either tropine for hyoscyamine and scopolamine formation or providing pseudotropine for calystegines. Two cDNAs coding for TRs were isolated from potato (Solanum tuberosum L.) tuber sprouts and expressed in E. coli. One reductase formed pseudotropine, the other formed tropine and showed kinetic properties typical for tropine-forming tropinone reductases (TRI) involved in hyoscyamine formation. Hyoscyamine and tropine are not found in S. tuberosum plants. Potatoes contain calystegines as the only products of the tropane alkaloid pathway. Polyclonal antibodies raised against both enzymes were purified to exclude cross reactions and were used for Western-blot analysis and immunolocalisation. The TRI (EC 1.1.1.206) was detected in protein extracts of tuber tissues, but mostly in levels too low to be localised in individual cells. The function of this enzyme in potato that does not form hyoscyamine is not clear. The pseudotropine-forming tropinone reductase (EC 1.1.1.236) was detected in potato roots, stolons, and tuber sprouts. Cortex cells of root and stolon contained the protein; additional strong immuno-labelling was located in phloem parenchyma. In tuber spouts, however, the protein was detected in companion cells. PMID:16845528

  12. Cloning and functional characterization of MtFRO1, a root iron reductase from Medicago truncatula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is an essential micronutrient, and although it is abundant in the soil, it can be poorly available under certain soil conditions. The activity of the Fe(III) reductase enzyme, an integral plasma membrane protein belonging to the super-family of the flavocytochromes (1), is the rate-limiting phy...

  13. Crystal Structure of ChrR--A Quinone Reductase with the Capacity to Reduce Chromate

    E-print Network

    Matin, A.C.

    Crystal Structure of ChrR--A Quinone Reductase with the Capacity to Reduce Chromate Subramaniam, such as in chromate bioremediation. Its crystal structure, solved at 2.2 A° resolution, shows that it belongsR crystallized as a tetramer, and size exclusion chromatography showed that this is the oligomeric form

  14. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.

    PubMed

    Kratzer, Regina; Kavanagh, Kathryn L; Wilson, David K; Nidetzky, Bernd

    2004-05-01

    Xylose reductase from the yeast Candida tenuis (CtXR) is a family 2 member of the aldo-keto reductase (AKR) superfamily of proteins and enzymes. Active site His-113 is conserved among AKRs, but a unified mechanism of how it affects catalytic activity is outstanding. We have replaced His-113 by alanine using site-directed mutagenesis, determined a 2.2 A structure of H113A mutant bound to NADP(+), and compared catalytic reaction profiles of NADH-dependent reduction of different aldehydes catalyzed by the wild type and the mutant. Deuterium kinetic isotope effects (KIEs) on k(cat) and k(cat)/K(m xylose) show that, relative to the wild type, the hydride transfer rate constant (k(7) approximately 0.16 s(-1)) has decreased about 1000-fold in H113A whereas xylose binding was not strongly affected. No solvent isotope effect was seen on k(cat) and k(cat)/K(m xylose) for H113A, suggesting that proton transfer has not become rate-limiting as a result of the mutation. The pH profiles of log(k(cat)/K(m xylose)) for the wild type and H113A decreased above apparent pK(a) values of 8.85 and 7.63, respectively. The DeltapK(a) of -1.2 pH units likely reflects a proximally disruptive character of the mutation, affecting the position of Asp-50. A steady-state kinetic analysis for H113A-catalyzed reduction of a homologous series of meta-substituted benzaldehyde derivatives was carried out, and quantitative structure-reactivity correlations were used to factor the observed kinetic substituent effect on k(cat) and k(cat)/K(m aldehyde) into an electronic effect and bonding effects (which are lacking in the wild type). Using the Hammett sigma scale, electronic parameter coefficients (rho) of +0.64 (k(cat)) and +0.78 (k(cat)/K(m aldehyde)) were calculated and clearly differ from rho(k(cat)/K(aldehyde)) and rho(k(cat)) values of +1.67 and approximately 0.0, respectively, for the wild-type enzyme. Hydride transfer rate constants of H113A, calculated from kinetic parameters and KIE data, display a substituent dependence not seen in the corresponding wild-type enzyme rate constants. An enzymic mechanism is proposed in which His-113, through a hydrogen bond from Nepsilon2 to aldehyde O1, assists in catalysis by optimizing the C=O bond charge separation and orbital alignment in the ternary complex. PMID:15109252

  15. [Primary hiperoxaluria: a new mutation in gen AGXT (R197Q) cause of neonatal convulsions].

    PubMed

    Guevara-Campos, José; Riverol, Débora; González-Guevara, Lucía; Tinedo, Rubin

    2008-12-01

    Primary hyperoxaluria is a congenital innate error of the metabolism of the amino acids, that is transmitted like an autosomal recessive character. Two types of hyperoxaluria exist: the primary type I, that corresponds to the peroxisomal enzymatic deficit of the alanine glyoxylate aminotransferase in the liver (AGT) and type II, due to the deficit of the glyoxylate reductase/hydroxypyruvate reductase deficiency (GRHPR). The primary type I (AGT) is the most frequenty. We report the case of a female infant of one month of age, that on her first day post birth, presented myoclonic convulsions and tonic spasms, both during wakefullness and sleep periods, that became more frequent and did not respond to the use of anticonvulsants. The ictal Electroencephalogram presented an intermittent activity of spikes and spike-waves of high voltage in the right hemisphere. Eight minutes after the intravenous administration of 150 mg of pyridoxine, it was observed a diminution of the epileptic activity, as well as the clinical manifestations. The determination of organic acids in urine revealed an increase in the concentration levels of oxalic acid (3064 mmol/mol of creatinine). The molecular genetic study of the AGXT gene, showed the existence of a R197Q mutation in exón 5 of the patient and her father. She received treatment with pyridoxine at a dose of 50 mg/day. When she reached the age of three months both a normal electroencephalogram and biochemistry were obtained. Although it is a rare cause of neonatal convulsions, hyperoxaluria, due to new mutations is an underdiagnosed disease by neonatologists and paediatricias. PMID:19245173

  16. Structure analysis of the flavoredoxin from Desulfovibrio vulgaris Miyazaki F reveals key residues that discriminate the functions and properties of the flavin reductase family.

    PubMed

    Shibata, Naoki; Ueda, Yasufumi; Takeuchi, Daisuke; Haruyama, Yoshihiro; Kojima, Shuichi; Sato, Junichi; Niimura, Youichi; Kitamura, Masaya; Higuchi, Yoshiki

    2009-09-01

    The crystal structure of flavoredoxin from Desulfovibrio vulgaris Miyazaki F was determined at 1.05 A resolution and its ferric reductase activity was examined. The aim was to elucidate whether flavoredoxin has structural similarity to ferric reductase and ferric reductase activity, based on the sequence similarity to ferric reductase from Archaeoglobus fulgidus. As expected, flavoredoxin shared a common overall structure with A. fulgidus ferric reductase and displayed weak ferric reductase and flavin reductase activities; however, flavoredoxin contains two FMN molecules per dimer, unlike A. fulgidus ferric reductase, which has only one FMN molecule per dimer. Compared with A. fulgidus ferric reductase, flavoredoxin forms three additional hydrogen bonds and has a significantly smaller solvent-accessible surface area. These observations explain the higher affinity of flavoredoxin for FMN. Unexpectedly, an electron-density map indicated the presence of a Mes molecule on the re-side of the isoalloxazine ring of FMN, and that two zinc ions are bound to the two cysteine residues, Cys39 and Cys40, adjacent to FMN. These two cysteine residues are close to one of the putative ferric ion binding sites of ferric reductase. Based on their structural similarities, we conclude that the corresponding site of ferric reductase is the most plausible site for ferric ion binding. Comparing the structures with related flavin proteins revealed key structural features regarding the discrimination of function (ferric ion or flavin reduction) and a unique electron transport system. PMID:19708087

  17. Characterization of NADPH-dependent methemoglobin reductase as a heme-binding protein present in erythrocytes and liver.

    PubMed Central

    Xu, F; Quandt, K S; Hultquist, D E

    1992-01-01

    An NADPH-dependent reductase, first shown in the 1930s to catalyze the methylene blue-dependent reduction of methemoglobin in erythrocytes, has now been characterized as a high-affinity heme-binding protein and has been detected in liver. Highly purified bovine erythrocyte reductase binds protohemin to form a 1:1 complex with a Kd of 7 nM. Binding of protohemin completely inhibits reductase activity. Other tetrapyrroles and fatty acids also bind to the reductase and inhibit its activity. Protoporphyrin, hematoporphyrin, and coproporphyrin form 1:1 complexes with Kd values ranging from 1 to 5 microM. The inhibition constants for a number of saturated and unsaturated fatty acids range from 6 to 52 microM. A protein that is immunologically cross-reactive to the reductase has been detected in the cytosolic fractions of bovine and rat liver and of bovine, rat, rabbit, and human erythrocytes. By immunoblot analysis, the bovine liver and erythrocyte proteins appear identical in size, as do the rat liver and erythrocyte proteins. The concentration of the protein in bovine erythrocytes has been estimated by quantitative immunoblotting to be 10 microM. The detection of this protein in liver cells, the demonstration of its binding properties, and its weak reductase activity bring into question the long-held belief that this is uniquely an erythrocyte protein and that it functions as a reductase. Images PMID:1549573

  18. Characterization of NADPH-dependent methemoglobin reductase as a heme-binding protein present in erythrocytes and liver.

    PubMed

    Xu, F; Quandt, K S; Hultquist, D E

    1992-03-15

    An NADPH-dependent reductase, first shown in the 1930s to catalyze the methylene blue-dependent reduction of methemoglobin in erythrocytes, has now been characterized as a high-affinity heme-binding protein and has been detected in liver. Highly purified bovine erythrocyte reductase binds protohemin to form a 1:1 complex with a Kd of 7 nM. Binding of protohemin completely inhibits reductase activity. Other tetrapyrroles and fatty acids also bind to the reductase and inhibit its activity. Protoporphyrin, hematoporphyrin, and coproporphyrin form 1:1 complexes with Kd values ranging from 1 to 5 microM. The inhibition constants for a number of saturated and unsaturated fatty acids range from 6 to 52 microM. A protein that is immunologically cross-reactive to the reductase has been detected in the cytosolic fractions of bovine and rat liver and of bovine, rat, rabbit, and human erythrocytes. By immunoblot analysis, the bovine liver and erythrocyte proteins appear identical in size, as do the rat liver and erythrocyte proteins. The concentration of the protein in bovine erythrocytes has been estimated by quantitative immunoblotting to be 10 microM. The detection of this protein in liver cells, the demonstration of its binding properties, and its weak reductase activity bring into question the long-held belief that this is uniquely an erythrocyte protein and that it functions as a reductase. PMID:1549573

  19. Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33

    PubMed Central

    Pal, Subrata

    2014-01-01

    Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well. PMID:25180173

  20. Prevalence of the dhfr and dhps Mutations among Pregnant Women in Rural Burkina Faso Five Years after the Introduction of Intermittent Preventive Treatment with Sulfadoxine-Pyrimethamine

    PubMed Central

    Tahita, Marc C.; Tinto, Halidou; Erhart, Annette; Kazienga, Adama; Fitzhenry, Robert; VanOvermeir, Chantal; Rosanas-Urgell, Anna; Ouedraogo, Jean-Bosco; Guiguemde, Robert T.; Van geertruyden, Jean-Pierre; D’Alessandro, Umberto

    2015-01-01

    Background The emergence and spread of drug resistance represents one of the biggest challenges for malaria control in endemic regions. Sulfadoxine-pyrimethamine (SP) is currently deployed as intermittent preventive treatment in pregnancy (IPTp) to prevent the adverse effects of malaria on the mother and her offspring. Nevertheless, its efficacy is threatened by SP resistance which can be estimated by the prevalence of dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) mutations. This was measured among pregnant women in the health district of Nanoro, Burkina Faso. Methods From June to December 2010, two hundred and fifty six pregnant women in the second and third trimester, attending antenatal care with microscopically confirmed malaria infection were invited to participate, regardless of malaria symptoms. A blood sample was collected on filter paper and analyzed by PCR-RFLP for the alleles 51, 59, 108, 164 in the pfdhfr gene and 437, 540 in the pfdhps gene. Results The genes were successfully genotyped in all but one sample (99.6%; 255/256) for dhfr and in 90.2% (231/256) for dhps. The dhfr C59R and S108N mutations were the most common, with a prevalence of 61.2% (156/255) and 55.7% (142/255), respectively; 12.2% (31/255) samples had also the dhfr N51I mutation while the I164L mutation was absent. The dhps A437G mutation was found in 34.2% (79/231) isolates, but none of them carried the codon K540E. The prevalence of the dhfr double mutations NRNI and the triple mutations IRNI was 35.7% (91/255) and 11.4% (29/255), respectively. Conclusion Though the mutations in the pfdhfr and pfdhps genes were relatively common, the prevalence of the triple pfdhfr mutation was very low, indicating that SP as IPTp is still efficacious in Burkina Faso. PMID:26368675