Science.gov

Sample records for reduction des emissions

  1. Power plant emissions reduction

    SciTech Connect

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  2. Low Emissions Aftertreatment and Diesel Emissions Reduction

    SciTech Connect

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature

  3. Towards a targetted emission reduction in Europe

    NASA Astrophysics Data System (ADS)

    Hordijk, Leen

    Currently 20 European countries have stated that they will reduce their SO 2-emissions by at least 30% in the years 1993-1995 based on 1980 emissions. Some countries will reduce more, e.g. France by 50 %. Although politically this is an important step, a more or less flat rate of emission reduction throughout Europe is not an efficient solution. The paper describes an alternate emission reduction targetted to those areas where depositions are high and taking into account the source-receptor relationships in Europe. The reductions are calculated by using the model RAINS which is being developed at IIASA. RAINS is a set of linked submodels dealing with energy scenarios, SO 2 emissions, abatement options, long-range transport, deposition, forest soil acidification and lake acidification. For the purpose of this paper an optimization algorithm developed by R. Shaw and J. Young (AES, Canada) has been connected with RAINS. The results show optimal reduction patterns in Europe for a number of different receptor areas and alternative energy scenarios.

  4. Etude des phenomenes dynamiques ultrarapides et des caracteristiques impulsionnelles d'emission terahertz du supraconducteur YBCO

    NASA Astrophysics Data System (ADS)

    Savard, Stephane

    Les premieres etudes d'antennes a base de supraconducteurs a haute temperature critique emettant une impulsion electromagnetique dont le contenu en frequence se situe dans le domaine terahertz remontent a 1996. Une antenne supraconductrice est formee d'un micro-pont d'une couche mince supraconductrice sur lequel un courant continu est applique. Un faisceau laser dans le visible est focalise sur le micro-pont et place le supraconducteur dans un etat hors-equilibre ou des paires sont brisees. Grace a la relaxation des quasiparticules en surplus et eventuellement de la reformation des paires supraconductrices, nous pouvons etudier la nature de la supraconductivite. L'analyse de la cinetique temporelle du champ electromagnetique emis par une telle antenne terahertz supraconductrice s'est averee utile pour decrire qualitativement les caracteristiques de celle-ci en fonction des parametres d'operation tels que le courant applique, la temperature et la puissance d'excitation. La comprehension de l'etat hors-equilibre est la cle pour comprendre le fonctionnement des antennes terahertz supraconductrices a haute temperature critique. Dans le but de comprendre ultimement cet etat hors-equilibre, nous avions besoin d'une methode et d'un modele pour extraire de facon plus systematique les proprietes intrinseques du materiau qui compose l'antenne terahertz a partir des caracteristiques d'emission de celle-ci. Nous avons developpe une procedure pour calibrer le spectrometre dans le domaine temporel en utilisant des antennes terahertz de GaAs bombarde aux protons H+ comme emetteur et detecteur. Une fois le montage calibre, nous y avons insere une antenne emettrice dipolaire de YBa 2Cu3O7-delta . Un modele avec des fonctions exponentielles de montee et de descente du signal est utilise pour lisser le spectre du champ electromagnetique de l'antenne de YBa 2Cu3O7-delta, ce qui nous permet d'extraire les proprietes intrinseques de ce dernier. Pour confirmer la validite du modele

  5. Summary of emissions reduction technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1977-01-01

    The NASA emissions reduction contract programs for EPA aircraft engine classes P2 (turboshaft engines), T1 (jet engines with thrust under 8000 lb), T4 (JT8D) engines), and T2 (jet engines with thrust over 8000 lb) are discussed. The most important aspects of these programs, the commonality of approaches used, the test results, and assessments regarding applications of the derived technology are summarized.

  6. Methods for reduction of charging emissions

    SciTech Connect

    Schuecker, F.J.; Schulte, H.

    1997-12-31

    One of the most critical subjects in coking plants are charging emissions. The paper reviews the systems that have been used over the years to reduce charging emissions. The advantages and disadvantages are summarized for the following systems: Double collecting main with aspiration on both oven sides; Single collecting main with/without aspiration via standpipe, and extraction and cleaning of charging gas on charging car; Single collecting main with aspiration via standpipe and pretreatment of charging gas on the charging car as well as additional stationary exhaust and cleaning of charging gas; Single collecting main with aspiration via single standpipe; and Single collecting main with simultaneous aspiration via two standpipes and a U-tube connecting the oven chamber with the neighboring oven. The paper then briefly discusses prerequisites for reduction of charging emissions.

  7. Emission reductions to meet deposition criteria

    NASA Astrophysics Data System (ADS)

    Smith, F. B.

    The paper assumes Governments are willing and able to reduce national emissions of pollution to protect the environment. Sulphur dioxide is examined as an important example. Although not necessarily true at the present time, it further assumes: (i) that the cost of reducing these emissions from different industries (and other source types) are known, and that these costs include the secondary consequences of emission control (for example, possible resulting unemployment); (ii) that maximum deposition criteria ( mdc) have been established on some appropriate grid (above which undesirable environmental damage will occur) and that in some gridsquares these mdc are currently being exceeded; and (iii) that priorities for reducing the deposition may be ascribed for each gridsquare. The highest priority may reflect concern over excessive levels of heavy metals in drinking water drawn from wells used by remote homesteads, for example. Gridsquares where more gradual, and hopefully reversible, damage is taking place would be given a rather lower priority. The paper seeks to establish maximum levels of emission in each gridsquare which will result in depositions nowhere exceeding the mdc (on the scale of a gridsquare). It also offers a means of selecting an optimum staged reduction strategy whereby emissions are reduced gradually towards the ultimate maximum levels, and at each stage of the reduction, gives the maximum benefit for the capital outlay consistent with the priorities and costs outlined above. The paper utilizes a very simple analytical model of the deposition field resulting from a single emission. The model is tuned to give the best comparison with the 1985 sulphur deposition field obtained using the much more complex EMEP MSC-W Lagrangian model used operationally for acid-rain analyses in Europe.

  8. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  9. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  10. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  11. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  12. 10 CFR 300.7 - Net emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Net emission reductions. 300.7 Section 300.7 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.7 Net emission reductions. (a) Entities that intend to register emission reductions achieved must...

  13. Reduction of chlorofluorocarbon emissions from refrigeration systems

    SciTech Connect

    Cordova, A.; Kennicott, M.A.

    1992-09-01

    Recently enacted State and Federal legislation, (The Clean Air Act and Colorado Senate Bill 77), and the implementation of regulations for each, forbid the intentional release of ozone depleting chlorofluorocarbons(CFCs) from refrigeration and air conditioning systems to the atmosphere. In addition, an international agreement (The Montreal Protocol), calls for CFC manufacturing reductions, which began in 1991, and eventual discontinuation. The declining supply and resultant escalating costs of CFCs are additional driving forces toward conservation and reuse of present refrigerant resources. Rocky Flats Plant (RFP) currently has an estimated 42,000 pounds of CFCs in refrigeration and air conditioning systems. The purpose of this paper is to discuss steps being taken at RFP toward the abatement of CFC releases. The main thrust of our efforts is the use of a refrigerant management system, used to recover and recycle our current CFC stock. Additional methods of further reducing CFC emissions will also be discussed. These include the installation of state-of-the-art oil filtration systems on major chiller units, installation of spring-loaded pressure relief valves and the retrofitting of major chiller units to accept less harmful, alternative refrigerants.

  14. Reduction of chlorofluorocarbon emissions from refrigeration systems

    SciTech Connect

    Cordova, A.; Kennicott, M.A.

    1992-01-01

    Recently enacted State and Federal legislation, (The Clean Air Act and Colorado Senate Bill 77), and the implementation of regulations for each, forbid the intentional release of ozone depleting chlorofluorocarbons(CFCs) from refrigeration and air conditioning systems to the atmosphere. In addition, an international agreement (The Montreal Protocol), calls for CFC manufacturing reductions, which began in 1991, and eventual discontinuation. The declining supply and resultant escalating costs of CFCs are additional driving forces toward conservation and reuse of present refrigerant resources. Rocky Flats Plant (RFP) currently has an estimated 42,000 pounds of CFCs in refrigeration and air conditioning systems. The purpose of this paper is to discuss steps being taken at RFP toward the abatement of CFC releases. The main thrust of our efforts is the use of a refrigerant management system, used to recover and recycle our current CFC stock. Additional methods of further reducing CFC emissions will also be discussed. These include the installation of state-of-the-art oil filtration systems on major chiller units, installation of spring-loaded pressure relief valves and the retrofitting of major chiller units to accept less harmful, alternative refrigerants.

  15. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ..., 2008, issue of the Federal Register (73 FR 3316). Background and Purpose The U.S. implemented the Clean... SECURITY Coast Guard Shipboard Air Emission Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION..., in conjunction with the Environmental Protection Agency, on Ship Emission Reduction Technology...

  16. Nox Emission Reduction in Commercial Jets Through Water Injection

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Ossello, Chris; Snyder, Chris

    2002-01-01

    This paper discusses a method of the nitrogen oxides (NOx) emission reduction through the injection of water in commercial turbofan engines during the takeoff and climbout cycles. In addition to emission reduction, this method can significantly reduce turbine temperature during the most demanding operational modes (takeoff and climbout) and increase engine reliability and life.

  17. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    SciTech Connect

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  18. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    SciTech Connect

    Hedley, W.H.; Adams, F.S. ); Wells, J.E. )

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  19. The economic impacts of emission reduction policies

    SciTech Connect

    Hanson, D.A.

    1992-01-01

    Environmental expenditures, or environmental tax revenues, e.g., carbon taxes are potentially significant components of the US macroeconomy. This paper presents a simple model of the role of environmental abatement expenditures and/or emission taxes from the viewpoint of economic efficiency, welfare and potential macroeconomic effects.

  20. The economic impacts of emission reduction policies

    SciTech Connect

    Hanson, D.A.

    1992-07-01

    Environmental expenditures, or environmental tax revenues, e.g., carbon taxes are potentially significant components of the US macroeconomy. This paper presents a simple model of the role of environmental abatement expenditures and/or emission taxes from the viewpoint of economic efficiency, welfare and potential macroeconomic effects.

  1. Reduction of hydrocarbon emissions can be costly

    SciTech Connect

    Menke, T.R.

    1997-12-31

    The purpose of this paper is to share the Lone Star Greencastle Indiana Plant`s, experiences with changing raw materials in the kiln feed to reduce hydrocarbons emissions. The original change of the plant`s kiln feed composition was made in July of 1995. The plant changed the kiln feed composition for the first time since the plant opened. Shale was replaced in the kiln feed composition with clay, mill scale, and foundry sand, solely to reduce hydrocarbon emissions. At the time it was something that had to be done to keep burning liquid waste, in order to comply with the BIF Tier II limit of 20 ppm of hydrocarbon emissions. The change of raw materials did accomplish what it was supposed to by reducing the hydrocarbon emissions under the allowable limit. Plant personnel did not want to change raw materials, but did not have much of a choice, and had no idea of the repercussions that would follow. I will discuss the positives and negatives of the different raw mix compositions. 3 figs., 13 tabs.

  2. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    2005-09-01

    This project focuses on a new technology that reduces NOx emissions while increasing furnace efficiency for both air- and oxygen-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace.

  3. Impact of Heavy Duty Vehicle Emissions Reductions on Global Climate

    SciTech Connect

    Calvin, Katherine V.; Thomson, Allison M.

    2010-08-01

    The impact of a specified set of emissions reductions from heavy duty vehicles on climate change is calculated using the MAGICC 5.3 climate model. The integrated impact of the following emissions changes are considered: CO2, CH4, N2O, VOC, NOx, and SO2. This brief summarizes the assumptions and methods used for this calculation.

  4. Diesel engine emissions reduction by multiple injections having increasing pressure

    DOEpatents

    Reitz, Rolf D.; Thiel, Matthew P.

    2003-01-01

    Multiple fuel charges are injected into a diesel engine combustion chamber during a combustion cycle, and each charge after the first has successively greater injection pressure (a higher injection rate) than the prior charge. This injection scheme results in reduced emissions, particularly particulate emissions, and can be implemented by modifying existing injection system hardware. Further enhancements in emissions reduction and engine performance can be obtained by using known measures in conjunction with the invention, such as Exhaust Gas Recirculation (EGR).

  5. Cermet Filters for Diesel Engine Emissions Reduction

    SciTech Connect

    Kong, Peter Chuen Sun

    2001-08-01

    Pollution from diesel engines is a significant part of our nation's air-quality problem. Even under the more stringent standards for heavy-duty engines set to take effect in 2004, these engines will continue to emit large amounts of nitrogen oxides and particulate matter, both of which affect public health. To address this problem, the Idaho National Engineering and Environmental Laboratory (INEEL) invented a self-cleaning, high temperature, cermet filter that reduces heavy-duty diesel engine emissions. The main advantage of the INEEL cermet filter, compared to current technology, is its ability to destroy carbon particles and NOx in diesel engine exhaust. As a result, this technology is expected to improve our nation's environmental quality by meeting the need for heavy-duty diesel engine emissions control. This paper describes the cermet filter technology and the initial research and development effort.

  6. Carbon reduction emissions in South Africa

    SciTech Connect

    Temchin, Jerome

    2002-02-28

    This project is a feasibility study for a control system for existing backup generators in South Africa. The strategy is to install a system to enable backup generators (BGs) to be dispatched only when a large generator fails. Using BGs to provide ''ten minute reserve'' will save energy and reduce emissions of greenhouse gases by an estimated nearly 500,000 tons of carbon dioxide per year.

  7. Grid Expansion Planning for Carbon Emissions Reduction

    SciTech Connect

    Bent, Russell W.; Toole, Gasper L.

    2012-07-18

    There is a need to upgrade and expand electric power transmission and generation to meet specified renewable energy targets and simultaneously minimize construction cost and carbon emissions. Some challenges are: (1) Renewable energy sources have variable production capacity; (2) Deficiency of transmission capacity at desirable renewable generation locations; (3) Need to incorporate models of operations into planning studies; and (4) Prevent undesirable operational outcomes such as negative dispatch prices or curtailment of carbon neutral generation.

  8. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  9. How Effective are Cooperative Emission Reduction Policies?

    NASA Astrophysics Data System (ADS)

    Moberg, C. C.

    2006-12-01

    Management of air resources in the United States is a highly contentious endeavor based in application of cutting-edge scientific research. New policies created to facilitate better science-based management of air resources are one example of ho integrating research practice with scientific goals can benefit society at large. Wisconsin's Environmental Cooperation Pilot Program (ECPP) and Green Tier Law (GT) are state initiatives that attempt to recast the relationship between government regulators and regulated firms by increasing the degree of emission flexibility allowed under Wisconsin's permitting process. While still in their infancy, these programs have attracted a large degree of national attention for the innovative mechanisms they incorporate to reach this goal. Specifically, their mandated use of Environmental Management Systems (EMSs) as a prerequisite for program eligibility has drawn both praise and ire from various observers both within the state and in the country at large. This study analyzes the effect of this program on each participating firm's emissions of criteria air pollutants from 1990 through 2004. Conclusions drawn through the statistical evaluation are supported by interviews with both regulators and participating firms. Results show that the programs have succeeded in certain specific cases by greatly improving a firm's air emissions, but that the mean trend for all participants is much less significant. Using the Wisconsin activities as case studies, we examine the potential for joint public-private cooperation as an conduit for incorporating scientific results into policy and private action. "Lessons learned" from ECPP and GT are identified, and used to suggest future directions in air quality policy.

  10. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  11. NOx Emission Reduction by Oscillating combustion

    SciTech Connect

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  12. NOx Emission Reduction by Oscillating Combustion

    SciTech Connect

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  13. Impact of historical air pollution emissions reductions on nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Loughner, C.; Tzortziou, M.; Duffy, M.; Duncan, B. N.; Hains, J.; Pickering, K. E.; Yoshida, Y.; Follette-Cook, M. B.

    2013-12-01

    There have been significant NOx emissions reductions since 2002 in the eastern and central US through a combination of the Environmental Protection Agency (EPA) NOx State Implementation Plan (SIP) call, which required 22 states and the District of Columbia to regulate NOx emissions to mitigate ozone transport, the NOx Budget Trading Program, subsequent EPA rules, court-orders, and state regulations. As reported by the EPA's National Emissions Inventory (NEI), NOx emissions nationwide have been reduced by 37% between 2002 and 2011. The benefit of these emissions reductions on decreasing nitrogen deposition onto terrestrial and aquatic ecosystems will be presented by comparing CMAQ air quality model simulations for July 2011 from a 12 km domain over the eastern US and a 4 km domain over the Mid-Atlantic with anthropogenic emissions appropriate for 2002 and 2011. Previously we showed that the historical emissions reductions from 2002 to 2011 prevented 9 to 13 ozone standard exceedance days throughout much of the Ohio River Valley and 3 to 9 ozone exceedance days throughout the Baltimore-Washington metropolitan area for the month of July 2011. Here, we focus on how the historical emissions reductions decreased nitrogen deposition, subsequently benefiting terrestrial and aquatic ecosystems. The base case simulation with emissions appropriate for 2011 everywhere was evaluated with ground-, ship-, aircraft-, and satellite-based observations, which include measurements made during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) and GeoCAPE-CBODAQ (Geostationary Coastal and Air Pollution Events-Chesapeake Bay Oceanographic Campaign with DISCOVER-AQ) field campaigns.

  14. Emissions reductions from expanding state-level renewable portfolio standards.

    PubMed

    Johnson, Jeremiah X; Novacheck, Joshua

    2015-05-01

    In the United States, state-level Renewable Portfolio Standards (RPS) have served as key drivers for the development of new renewable energy. This research presents a method to evaluate emissions reductions and costs attributable to new or expanded RPS programs by integrating a comprehensive economic dispatch model and a renewable project selection model. The latter model minimizes incremental RPS costs, accounting for renewable power purchase agreements (PPAs), displaced generation and capacity costs, and net changes to a state's imports and exports. We test this method on potential expansions to Michigan's RPS, evaluating target renewable penetrations of 10% (business as usual or BAU), 20%, 25%, and 40%, with varying times to completion. Relative to the BAU case, these expanded RPS policies reduce the CO2 intensity of generation by 13%, 18%, and 33% by 2035, respectively. SO2 emissions intensity decreased by 13%, 20%, and 34% for each of the three scenarios, while NOx reductions totaled 12%, 17%, and 31%, relative to the BAU case. For CO2 and NOx, absolute reductions in emissions intensity were not as large due to an increasing trend in emissions intensity in the BAU case driven by load growth. Over the study period (2015 to 2035), the absolute CO2 emissions intensity increased by 1% in the 20% RPS case and decreased by 6% and 22% for the 25% and 40% cases, respectively. Between 26% and 31% of the CO2, SO2, and NOx emissions reductions attributable to the expanded RPS occur in neighboring states, underscoring the challenges quantifying local emissions reductions from state-level energy policies with an interconnected grid. Without federal subsidies, the cost of CO2 mitigation using an RPS in Michigan is between $28 and $34/t CO2 when RPS targets are met. The optimal renewable build plan is sensitive to the capacity credit for solar but insensitive to the value for wind power. PMID:25884101

  15. EMISSIONS REDUCTION DATA FOR GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEMS

    EPA Science Inventory

    This study measured the pollutant emission reduction potential of 29 photovoltaic (PV) systems installed on residential and commercial building rooftops across the U.S. from 1993 through 1997. The U.S. Environmental Protection Agency (EPA) and 21 electric power companies sponsor...

  16. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  17. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  18. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  19. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  20. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  1. Reduction of aircraft gas turbine engine pollutant emissions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.

    1978-01-01

    To accomplish simultaneous reduction of unburned hydrocarbons, carbon monoxide, and oxides of nitrogen, required major modifications to the combustor. The modification most commonly used was a staged combustion technique. While these designs are more complicated than production combustors, no insurmountable operational difficulties were encountered in either high pressure rig or engine tests which could not be resolved with additional normal development. The emission reduction results indicate that reductions in unburned hydrocarbons were sufficient to satisfy both near and far-termed EPA requirements. Although substantial reductions were observed, the success in achieving the CO and NOx standards was mixed and depended heavily on the engine/engine cycle on which it was employed. Technology for near term CO reduction was satisfactory or marginally satisfactory. Considerable doubt exists if this technology will satisfy all far-term requirements.

  2. Nitrous oxide emission reduction in temperate biochar-amended soils

    NASA Astrophysics Data System (ADS)

    Felber, R.; Hüppi, R.; Leifeld, J.; Neftel, A.

    2012-01-01

    Biochar, a pyrolysis product of organic residues, is an amendment for agricultural soils to improve soil fertility, sequester CO2 and reduce greenhouse gas (GHG) emissions. In highly weathered tropical soils laboratory incubations of soil-biochar mixtures revealed substantial reductions for nitrous oxide (N2O) and carbon dioxide (CO2). In contrast, evidence is scarce for temperate soils. In a three-factorial laboratory incubation experiment two different temperate agricultural soils were amended with green waste and coffee grounds biochar. N2O and CO2 emissions were measured at the beginning and end of a three month incubation. The experiments were conducted under three different conditions (no additional nutrients, glucose addition, and nitrate and glucose addition) representing different field conditions. We found mean N2O emission reductions of 60 % compared to soils without addition of biochar. The reduction depended on biochar type and soil type as well as on the age of the samples. CO2 emissions were slightly reduced, too. NO3- but not NH4+ concentrations were significantly reduced shortly after biochar incorporation. Despite the highly significant suppression of N2O emissions biochar effects should not be transferred one-to-one to field conditions but need to be tested accordingly.

  3. Reduction of power supply EMI emission by switching frequency modulation

    SciTech Connect

    Lin, F.; Chen, D.Y. . Virginia Power Electronics Center)

    1994-01-01

    Electro-Magnetic Interference (EMI) emission is always of grave concern for power electronic circuit designers. Due to rapid switching of high current and high voltage, interference emission is a serious problem in switching power circuits. Many products fail to make it to the market because of their failure to comply with the government EMI regulations. Numerous companies have cited EMI problems as the culprit in the delay of their product introduction. EMI noise reduction is generally accomplished by three means: suppression of noise source, isolation of noise coupling path, and filter/shielding. In this paper, another means of EMI noise reduction is proposed. By modulating the PWM frequency of power supply, it is possible to modify noise emission spectrum so that it can pass government EMI regulations. In the paper, measurement of EMI noise is first reviewed. Noise sources of a power switching circuit are then described. The theoretical and the experimental results of the reduction of EMI noise emission by sinewave frequency modulation to distribute the power of the fundamental harmonics onto frequency sideband are discussed.

  4. Costs, emissions reductions, and vehicle repair: evidence from Arizona.

    PubMed

    Ando, A; McConnell, V; Harrington, W

    2000-04-01

    The Arizona inspection and maintenance (I/M) program provides one of the first opportunities to examine the costs and effectiveness of vehicle emission repair. This paper examines various aspects of emission reductions, fuel economy improvements, and repair costs, drawing data from over 80,000 vehicles that failed the I/M test in Arizona between 1995 and the first half of 1996. We summarize the wealth of data on repair from the Arizona program and highlight its limitations. Because missing or incomplete cost information has been a serious shortcoming for the evaluation of I/M programs, we develop a method for estimating repair costs when they are not reported. We find surprising evidence that almost one quarter of all vehicles that take the I/M test are never observed to pass the test. Using a statistical analysis, we provide some information about the differences between the vehicles that pass and those that do not. Older, more polluting vehicles are much more likely never to pass the I/M test, and their expected repair costs are much higher than those for newer cars. This paper summarizes the evidence on costs and emission reductions in the Arizona program, comparing costs and emissions reductions between cars and trucks. Finally, we examine the potential for more cost-effective repair, first through an analysis of tightening I/M cut points and then by calculating the cost savings of achieving different emission reduction goals when the most cost-effective repairs are made first. PMID:10786002

  5. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  6. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina."The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding," said Michael Zammit Cutajar, executive secretary of the convention. "In Buenos Aires, governments will try to establish the rules of the game for reaching these targets.""

  7. Diplomats try to establish greenhouse gas emissions-reduction rules

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Ministers and other senior officials will participate in the next follow-up to the Kyoto Protocol to the United Nations Framework Convention on Climate Change when they deliberate on how to reduce greenhouse gas emissions at a November 2-13 meeting in Buenos Aires, Argentina.“The Kyoto conference on the Climate Change Convention was a high-profile event because for the first time industrialized countries adopted emission-reduction targets that are legally binding,” said Michael Zammit Cutajar, executive secretary of the convention. “In Buenos Aires, governments will try to establish the rules of the game for reaching these targets."”

  8. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect

    2008-07-01

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  9. Atmospheric emissions from a passenger ferry with selective catalytic reduction.

    PubMed

    Nuszkowski, John; Clark, Nigel N; Spencer, Thomas K; Carder, Daniel K; Gautam, Mridul; Balon, Thomas H; Moynihan, Paul J

    2009-01-01

    The two main propulsion engines on Staten Island Ferry Alice Austen (Caterpillar 3516A, 1550 hp each) were fitted with selective catalytic reduction (SCR) aftertreatment technology to reduce emissions of oxides of nitrogen (NOx). After the installation of the SCR system, emissions from the ferry were characterized both pre- and post-aftertreatment. Prior research has shown that the ferry operates in four modes, namely idle, acceleration, cruise, and maneuvering modes. Emissions were measured for both engines (designated NY and SI) and for travel in both directions between Manhattan and Staten Island. The emissions characterization used an analyzer system, a data logger, and a filter-based particulate matter (PM) measurement system. The measurement of NOx, carbon monoxide (CO), and carbon dioxide (CO2) were based on federal reference methods. With the existing control strategy for the SCR urea injection, the SCR provided approximately 64% reduction of NOx for engine NY and 36% reduction for engine SI for a complete round trip with less than 6.5 parts per million by volume (ppmv) of ammonia slip during urea injection. Average reductions during the cruise mode were 75% for engine NY and 47% for engine SI, which was operating differently than engine NY. Reductions for the cruise mode during urea injection typically exceeded 94% from both engines, but urea was injected only when the catalyst temperature reached a 300 degrees C threshold pre- and postcatalyst. Data analysis showed a total NOx mass emission split with 80% produced during cruise, and the remaining 20% spread across idle, acceleration, and maneuvering. Examination of continuous NOx data showed that higher reductions of NOx could be achieved on both engines by initiating the urea injection at an earlier point (lower exhaust temperature) in the acceleration and cruise modes of operation. The oxidation catalyst reduced the CO production 94% for engine NY and 82% for engine SI, although the high CO levels

  10. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    SciTech Connect

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  11. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikainen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvarinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2015-05-01

    The global aerosol-climate model ECHAM-HAMMOZ was used to investigate changes in the aerosol burden and aerosol radiative effects in the coming decades. Four different emissions scenarios were applied for 2030 (two of them applied also for 2020) and the results were compared against the reference year 2005. Two of the scenarios are based on current legislation reductions: one shows the maximum potential of reductions that can be achieved by technical measures, and the other is targeted to short-lived climate forcers (SLCFs). We have analyzed the results in terms of global means and additionally focused on eight subregions. Based on our results, aerosol burdens show an overall decreasing trend as they basically follow the changes in primary and precursor emissions. However, in some locations, such as India, the burdens could increase significantly. The declining emissions have an impact on the clear-sky direct aerosol effect (DRE), i.e. the cooling effect. The DRE could decrease globally 0.06-0.4 W m-2 by 2030 with some regional increases, for example, over India (up to 0.84 W m-2). The global changes in the DRE depend on the scenario and are smallest in the targeted SLCF simulation. The aerosol indirect radiative effect could decline 0.25-0.82 W m-2 by 2030. This decrease takes place mostly over the oceans, whereas the DRE changes are greatest over the continents. Our results show that targeted emission reduction measures can be a much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  12. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  13. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  14. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  15. A Healthy Reduction in Oil Dependence and Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Higgins, M.

    2003-12-01

    Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

  16. Black carbon emissions reductions from combustion of alternative jet fuels

    NASA Astrophysics Data System (ADS)

    Speth, Raymond L.; Rojo, Carolina; Malina, Robert; Barrett, Steven R. H.

    2015-03-01

    Recent measurement campaigns for alternative aviation fuels indicate that black carbon emissions from gas turbines are reduced significantly with the use of alternative jet fuels that are low in aromatic content. This could have significant climate and air quality-related benefits that are currently not accounted for in environmental assessments of alternative jet fuels. There is currently no predictive way of estimating aircraft black carbon emissions given an alternative jet fuel. We examine the results from available measurement campaigns and propose a first analytical approximation (termed 'ASAF') of the black carbon emissions reduction associated with the use of paraffinic alternative jet fuels. We establish a relationship between the reduction in black carbon emissions relative to conventional jet fuel for a given aircraft, thrust setting relative to maximum rated thrust, and the aromatic volume fraction of the (blended) alternative fuel. The proposed relationship is constrained to produce physically meaningful results, makes use of only one free parameter and is found to explain a majority of the variability in measurements across the engines and fuels that have been tested.

  17. Impacts of emission reductions on aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Pietikäinen, J.-P.; Kupiainen, K.; Klimont, Z.; Makkonen, R.; Korhonen, H.; Karinkanta, R.; Hyvärinen, A.-P.; Karvosenoja, N.; Laaksonen, A.; Lihavainen, H.; Kerminen, V.-M.

    2014-12-01

    The global aerosol-climate model ECHAM-HAMMOZ is used to study the aerosol burden and forcing changes in the coming decades. Four different emissions scenarios are applied for 2030 (two of them applied also for 2020) and the results are compared against reference year 2005. Two of the scenarios are based on current legislation reductions, one shows the maximum potential of reductions that can be achieved by technical measures, and the last one is targeted to short-lived climate forcers (SLCFs). We have analysed the results in terms of global means and additionally focused on 8 sub-regions. Based on our results, aerosol burdens overall show decreasing trend, but in some locations, such as India, the burdens could increase significantly. This has impact on the direct aerosol effect (DRE), which could reduce globally 0.06-0.4 W m-2 by 2030, but can increase over India (up to 0.84 W m-2). The global values depend on the scenario and are lowest with the targeted SLCF simulation. The cloud radiative effect could decline 0.25-0.82 W m-2 by 2030 and occurs mostly over oceans, whereas the DRE effect is mostly over land. Our results show that targeted emission reduction measures can be a~much better choice for the climate than overall high reductions globally. Our simulations also suggest that more than half of the near-future forcing change is due to the radiative effects associated with aerosol-cloud interactions.

  18. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  19. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  20. "APEC Blue": Secondary Aerosol Reductions from Emission Controls in Beijing.

    PubMed

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as "APEC Blue". We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  1. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  2. Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios

    NASA Astrophysics Data System (ADS)

    Winijkul, Ekbordin; Bond, Tami C.

    2016-01-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels are used to provide energy. Because of their deleterious effects on the atmosphere and human health, multinational strategies to reduce emissions have been proposed. This study examines the effects of some possible policies, considering realistic factors that constrain mitigation: end-uses, spatial constraints involving proximity to forest or electricity, existing technology, and assumptions about user behavior. Reduction scenarios are applied to a year-2010, spatially distributed baseline of emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Scenarios explored are: (1) cleanest current stove, where we assume that existing technology in each land type is applied to burn existing fuels; (2) stove standards, where we assume that stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest fuels plausible in each land type. We assume that people living in forest access areas continue to use wood regardless of available fuels, so the clean-fuels scenario leads to a reduction in emissions of 18-25%, depending on the pollutant, across the study region. Cleaner stoves preferentially affect land types with forest access, where about half of the fuel is used; emission reductions range from 25 to 82%, depending on the pollutant. If stove performance standards can be met, particulate matter emissions are reduced by 62% for the loosest standards and 95% for the tightest standards, and carbon monoxide is reduced by 40% and 62% for the loosest and tightest standards. Reductions in specific regions and countries depend on the existing fuel mixture and the population division among land types, and are explored for Latin America, Africa, East Asia, South Asia, and Southeast Asia.

  3. Electricity generation: options for reduction in carbon emissions.

    PubMed

    Whittington, H W

    2002-08-15

    Historically, the bulk production of electricity has been achieved by burning fossil fuels, with unavoidable gaseous emissions, including large quantities of carbon dioxide: an average-sized modern coal-burning power station is responsible for more than 10 Mt of CO(2) each year. This paper details typical emissions from present-day power stations and discusses the options for their reduction. Acknowledging that the cuts achieved in the past decade in the UK CO(2) emissions have been achieved largely by fuel switching, the remaining possibilities offered by this method are discussed. Switching to less-polluting fossil fuels will achieve some measure of reduction, but the basic problem of CO(2) emissions continues. Of the alternatives to fossil fuels, only nuclear power represents a zero-carbon large-scale energy source. Unfortunately, public concerns over safety and radioactive waste have still to be assuaged. Other approaches include the application of improved combustion technology, the removal of harmful gases from power-station flues and the use of waste heat to improve overall power-station efficiency. These all have a part to play, but many consider our best hope for emissions reduction to be the use of renewable energy. The main renewable energy contenders are assessed in this paper and realistic estimates of the contribution that each could provide are indicated. It appears that, in the time-scale envisaged by planners for reduction in CO(2) emission, in many countries renewable energy will be unlikely to deliver. At the same time, it is worth commenting that, again in many countries, the level of penetration of renewable energy will fall short of the present somewhat optimistic targets. Of renewable options, wind energy could be used in the short to medium term to cover for thermal plant closures, but for wind energy to be successful, the network will have to be modified to cope with wind's intermittent nature. Globally, hydroelectricity is currently the

  4. EMISSIONS REDUCTIONS USING HYDROGEN FROM PLASMATRON FUEL CONVERTERS

    SciTech Connect

    Bromberg, L

    2000-08-20

    Substantial progress in engine emission control is needed in order to meet present and proposed regulations for both spark ignition and diesel engines. Tightening regulations throughout the world reflect the ongoing concern with vehicle emissions. Recently developed compact plasmatron fuel converters have features that are suitable for onboard production of hydrogen for both fuel pretreatment and for exhaust aftertreatment applications. Systems that make use of these devices in conjunction with aftertreatment catalysts have the potential to improve significantly prospects for reduction of diesel engine emissions. Plasmatron fuel converters can provide a rapid response compact means to transform efficiently a wide range of hydrocarbon fuels into hydrogen rich gas. They have been used to reform natural gas [Bromberg1], gasoline [Green], diesel [Bromberg2] and hard-to-reform biofuels [Cohn1] into hydrogen rich gas (H2 + CO). The development of these devices has been pursued for the purpose of reducing engine exhaust pollutants by providing hydrogen rich gas for combustion in spark ignition and possibly diesel engines, as shown in Figure 1 [Cohn2]. Recent developments in compact plasmatron reformer design at MIT have resulted in substantial decreases in electrical power requirements. These new developments also increase the lifetime of the electrodes.

  5. Waste Coal Fines Reburn for NOx and Mercury Emission Reduction

    SciTech Connect

    Stephen Johnson; Chetan Chothani; Bernard Breen

    2008-04-30

    Injection of coal-water slurries (CWS) made with both waste coal and bituminous coal was tested for enhanced reduction of NO{sub x} and Hg emissions at the AES Beaver Valley plant near Monaca, PA. Under this project, Breen Energy Solutions (BES) conducted field experiments on the these emission reduction technologies by mixing coal fines and/or pulverized coal, urea and water to form slurry, then injecting the slurry in the upper furnace region of a coal-fired boiler. The main focus of this project was use of waste coal fines as the carbon source; however, testing was also conducted using pulverized coal in conjunction with or instead of waste coal fines for conversion efficiency and economic comparisons. The host site for this research and development project was Unit No.2 at AES Beaver Valley cogeneration station. Unit No.2 is a 35 MW Babcock & Wilcox (B&W) front-wall fired boiler that burns eastern bituminous coal. It has low NO{sub x} burners, overfire air ports and a urea-based selective non-catalytic reduction (SNCR) system for NO{sub x} control. The back-end clean-up system includes a rotating mechanical ash particulate removal and electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber. Coal slurry injection was expected to help reduce NOx emissions in two ways: (1) Via fuel-lean reburning when the slurry is injected above the combustion zone. (2) Via enhanced SNCR reduction when urea is incorporated into the slurry. The mercury control process under research uses carbon/water slurry injection to produce reactive carbon in-situ in the upper furnace, promoting the oxidation of elemental mercury in flue gas from coal-fired power boilers. By controlling the water content of the slurry below the stoichiometric requirement for complete gasification, water activated carbon (WAC) can be generated in-situ in the upper furnace. As little as 1-2% coal/water slurry (heat input basis) can be injected and generate sufficient WAC for mercury

  6. Effects of ultrasound and temperature on copper electro reduction in Deep Eutectic Solvents (DES).

    PubMed

    Mandroyan, Audrey; Mourad-Mahmoud, Mahmoud; Doche, Marie-Laure; Hihn, Jean-Yves

    2014-11-01

    This paper concerns a preliminary study for a new copper recovery process from ionic solvent. The aim of this work is to study the reduction of copper in Deep Eutectic Solvent (choline chloride-ethylene glycol) and to compare the influence of temperature and the ultrasound effects on kinetic parameters. Solutions were prepared by dissolution of chloride copper salt CuCl2 (to obtain Copper in oxidation degree II) or CuCl (to obtain Copper in oxidation degree I) and by leaching metallic copper directly in DES. The spectrophotometry UV-visible analysis of the leached solution showed that the copper soluble form obtained is at oxidation degree I (Copper I). Both cyclic voltammetry and linear voltammetry were performed in the three solutions at three temperatures (25, 50 and 80°C) and under ultrasonic conditions (F=20kHz, PT=5.8W) to calculate the mass transfer diffusion coefficient kD and the standard rate coefficient k°. These parameters are used to determine that copper reduction is carried out via a mixed kinetic-diffusion control process. Temperature and ultrasound have the same effect on mass transfer for reduction of Cu(II)/Cu(I). On the other hand, temperature is more beneficial than ultrasound for mass transfer of Cu(I)/Cu. Standard rate constant improvement due to temperature increase is of the same order as that obtained with ultrasound. But, by combining higher temperature and ultrasound (F=20kHz, PT=5.6W at 50°C), reduction limiting current is increased by a factor of 10 compared to initial conditions (T=25°C, silent), because ultrasonic stirring is more efficient in lower viscosity fluid. These values can be considered as key-parameters in the design of copper recovery in global processes using ultrasound. PMID:24629581

  7. Deducing a Canopy Reduction Factor for Biogenic Emission Modeling

    NASA Astrophysics Data System (ADS)

    Karl, T.; Guenther, A.

    2005-12-01

    The IPCC 2001 report states that "there is a serious discrepancy between the isoprene emissions derived by [Guenther et al., 1995] based on a global scaling of emission" . and "highlights a key uncertainty in global modeling of highly reactive trace gases: namely, what fraction of primary emissions escapes immediate reaction/removal in the vegetation canopy or immediate boundary layer and participates in the chemistry on the scales represented by global models?". A recent modeling study [Makar et al., 1999] suggested that up to 40 % of isoprene can be lost due to in-canopy chemistry. However, up to date only limited experimental datasets have been used to constrain canopy reduction factors (CRF) . Based on our recent CELTIC (Chemistry, Emission, Loss and Transformation in Canopies) initiative we measured VOC emissions above tropical, deciduous and evergreen ecosystems. In this paper we infer a new parameterization for modeling a CRF due to chemically short-lived biogenic compounds of the form: CRF = h/(a x u* x tau +h) (h: canopy height [m], u*: friction velocity [m/s], tau: lifetime [s], a: dimensionless fitting parameter a=1.5 +/- 0.1). This parameterization is based on results obtained during recent field studies in combination with a random walk model. For isoprene we find that the CRF is on the order of 2-5 % for typical daytime conditions. Loss rates for isoprene are somewhat smaller but within the range of previously reported values [Strong et al., 2004], [Stroud et al., 2005]. Many reactive terpenoid compounds (such as beta-caryophellene) with lifetimes on the order of minutes can be substantially reduced (e.g. up to 60-80 %) before they escape the forest canopy. References: Guenther, A., C.N. Hewitt, D. Erickson, and R. Fall, A global model of natural volatile organic compound emissions, Journal of geophysical research, 100 (D/5), 8873-8892, 1995. Makar, P., J. Fuentes, D. Wang, R. Staebler, and H. Wiebe, Chemical processing of biogenic hydrocarbons within

  8. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    SciTech Connect

    Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  9. Catalytic reactor system for the tritium emissions reduction facility

    SciTech Connect

    Wieneke, R.E.

    1991-12-31

    Two platinum catalyst reactor subsystems have been built for the new Tritium Emissions Reduction Facility (TERF) at Mound. The two parallel subsystems each consist of three major components: a passive conservation heat exchanger, an electric preheater, and a catalytic reactor. All subsystem components and interconnecting piping are fabricated from Inconel 625 for high temperature strength and corrosion resistance. System connections are welded for longevity and reliability. Active elements are backed up by installed spares, and the reactor catalyst is replaceable. Since double containment of tritium processing systems is an important safety concept, the entire subsystem is enclosed in a stainless steel glovebox. Careful planning during the design phase created thermal isolation from the glovebox, and the ability to translate the entire subsystem from the glovebox for major maintenance. 4 refs.

  10. Catalytic reactor system for the tritium emissions reduction facility

    SciTech Connect

    Wieneke, R.E.

    1991-01-01

    Two platinum catalyst reactor subsystems have been built for the new Tritium Emissions Reduction Facility (TERF) at Mound. The two parallel subsystems each consist of three major components: a passive conservation heat exchanger, an electric preheater, and a catalytic reactor. All subsystem components and interconnecting piping are fabricated from Inconel 625 for high temperature strength and corrosion resistance. System connections are welded for longevity and reliability. Active elements are backed up by installed spares, and the reactor catalyst is replaceable. Since double containment of tritium processing systems is an important safety concept, the entire subsystem is enclosed in a stainless steel glovebox. Careful planning during the design phase created thermal isolation from the glovebox, and the ability to translate the entire subsystem from the glovebox for major maintenance. 4 refs.

  11. REDUCTION OF NOx EMISSION FROM COAL COMBUSTION THROUGH OXYGEN ENRICHMENT

    SciTech Connect

    Western Research Institute

    2006-07-01

    BOC Process Gas Solutions and Western Research Institute (WRI) conducted a pilot-scale test program to evaluate the impact of oxygen enrichment on the emissions characteristics of pulverized coal. The combustion test facility (CTF) at WRI was used to assess the viability of the technique and determine the quantities of oxygen required for NOx reduction from coal fired boiler. In addition to the experimental work, a series of Computational Fluid Dynamics (CFD) simulations were made of the CTF under comparable conditions. A series of oxygen enrichment test was performed using the CTF. In these tests, oxygen was injected into one of the following streams: (1) the primary air (PA), (2) the secondary air (SA), and (3) the combined primary and secondary air. Emission data were collected from all tests, and compared with the corresponding data from the baseline cases. A key test parameter was the burner stoichiometry ratio. A series of CFD simulation models were devised to mimic the initial experiments in which secondary air was enriched with oxygen. The results from these models were compared against the experimental data. Experimental evidence indicated that oxygen enrichment does appear to be able to reduce NOx levels from coal combustion, especially when operated at low over fire air (OFA) levels. The reductions observed however are significantly smaller than that reported by others (7-8% vs. 25-50%), questioning the economic viability of the technique. This technique may find favor with fuels that are difficult to burn or stabilize at high OFA and produce excessive LOI. While CFD simulation appears to predict NO amounts in the correct order of magnitude and the correct trend with staging, it is sensitive to thermal conditions and an accurate thermal prediction is essential. Furthermore, without development, Fluent's fuel-NO model cannot account for a solution sensitive fuel-N distribution between volatiles and char and thus cannot predict the trends seen in the

  12. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    SciTech Connect

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  13. Emissions of arsenic in Sweden and their reduction.

    PubMed Central

    Lindau, L

    1977-01-01

    The role of arsenic in Sweden is generally described, including raw materials, exports/imports, products, consumption, etc. An attempt was also made to estimate the transport of arsenic in Sweden. The quantities of arsenic in raw materials, the emissions of arsenic from such processes as copper smelters and chemical industries, and the amounts of products containing arsenic were calculated. The studies show that a copper smelter is the main user of arsenical materials, the very largest emitting source and also the plant which manufacturers most arsenic products. A summary of measurements of arsenic in air, water and soil in Sweden has also been made. The concentrations near a smelter, in the Baltic, in cities and in "clean-air areas" are given. The efforts made to date to reduce the emissions of arsenic and the measures planned for the next few years are described. A reduction has already been achieved and a further rather large decrease will come, especially in arsenic levels in water. The possibilities of minimizing the use of materials and products containing arsenic is also discussed. PMID:908306

  14. Modelling the impacts of ammonia emissions reductions on North American air quality

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Zheng, Q.; Cousineau, S.; Sassi, M.; Duhamel, A.; Besner, M.; Davignon, D.; Crevier, L.-P.; Bouchet, V. S.

    2009-03-01

    A unified regional air-quality modelling system (AURAMS) was used to investigate the effects of reductions in ammonia emissions on regional air quality, with a focus on particulate-matter formation. Three simulations of one-year duration were performed for a North American domain: (1) a base-case simulation using 2002 Canadian and US national emissions inventories augmented by a more detailed Canadian emissions inventory for agricultural ammonia; (2) a 30% North-American-wide reduction in agricultural ammonia emissions; and (3) a 50% reduction in Canadian beef-cattle ammonia emissions. The simulations show that a 30% continent-wide reduction in agricultural ammonia emissions lead to reductions in median hourly ±2.5 mass of <1 μg m-3 on an annual basis. The atmospheric response to these emission reductions displays marked seasonal variations, and on even shorter time scales the impacts of the emissions reductions are highly episodic: 95-percentile hourly ±2.5 mass decreases can be up to a factor of six larger than the median values. A key finding of the modelling work is the linkage between gas and aqueous chemistry and transport; reductions in ammonia emissions affect gaseous ammonia concentrations close to the emissions site, but substantial impacts on particulate matter and atmospheric deposition often occur at considerable distances downwind, with particle nitrate being the main vector of ammonia/um transport. Ammonia emissions reductions therefore have trans-boundary and possibly trans-oceanic consequences downwind. Calculations of critical-load exceedances for sensitive ecosystems in Canada suggest that ammonia emission reductions will have a minimal impact on current ecosystem acidification within Canada, but may have a substantial impact on future ecosystem acidification. The 50% Canadian beef-cattle ammonia emissions reduction scenario was used to examine model sensitivity to uncertainties in the new Canadian agricultural ammonia emissions inventory, and

  15. Immunomagnetic Reduction Assay on Des-Gamma-Carboxy Prothrombin for Screening of Hepatocellular Carcinoma.

    PubMed

    Chieh, Jen-Jie; Huang, K W; Chuang, C P; Wei, W C; Dong, J J; Lee, Y Y

    2016-08-01

    The accredited biomarker alpha-fetoprotein (AFP) offers limited sensitivity and specificity in the early detection of hepatocellular carcinoma (HCC). To improve the screening performance, des-gamma-carboxy prothrombin (DCP) has been identified as another promising biomarker of HCC, combined with AFP biomarkers. The results of the commercial optical enzyme-linked immunosorbent assay (ELISA) kit easily have the interference problem due to the optical methodology. The immunomagnetic reduction (IMR) assay based on the magnetic measurement was utilized to assay DCP biomarkers without the excellent antiinterference performances. A DCP magnetic reagent, composed of iron-oxide (Fe3O4 ) magnetic nanoparticles coated with anti-DCP antibodies solved in phosphoryl-buffer solution, was synthesized and characterized. In the test of standard DCP antigens, superior antiinterference and sensitivity than optical ELISA were proved. In the animal test, the results indicate good agreement between the IMR assay findings and the tumor sizes of HCC rats at all time points after the HCC implantation. The feasibility of the developed DCP magnetic reagent with the IMR for the detection of DCP is verified, and demonstrates the high potential for future clinical applications. PMID:26415145

  16. Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

    SciTech Connect

    1998-12-02

    In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled �Krakow Clean Fossil Fuels and Energy Efficiency Program.� The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI�s cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI�s combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.

  17. Mercury Emission From Plants Depends on Reduction by Ascorbate

    NASA Astrophysics Data System (ADS)

    Halbach, S.; Ernst, D.; Fleischmann, F.; Battke, F.

    2007-12-01

    The importance of vegetation for the ecological Hg cycle has been recognized recently. One step in this cycle is the poorly understood phytogenic reduction of dissolved Hg(II) to volatile Hg(0) which had initially been reported for common reed growing on Hg-contaminated sediments. The hitherto unknown mechanism of this reduction was the objective of our investigations. Young barley and European-beech plants were cultivated for 24 h and 2 days, respectively, on a sterile hydroponic medium containing 20-40 µM HgCl2. Within 10 min after seclusion in a closed exposure system, the Hg(0) emission from the encapsulated aerial part of the plants reached 10 times the control value in a plant-free system and was proportional to the Hg(II) concentration in the medium. At 20 µM Hg(II) in the medium, a flux of 12.8 µg Hg(0)/m2/h was estimated for beech leaves. The phytogenic Hg(II) reduction was further examined by addition of powderized homogenates from deep-frozen leaves (barley, beech, Arabidopsis thaliana) or from needles (Norway spruce) to solutions of 1-5 µM Hg(II). These samples consistently produced a strong transient Hg(0) release at neutral pH that was even reinforced in alkaline medium and vanished at acidic pH. The very same pH dependence was observed after addition of pure L(+)-ascorbate (AA) instead of plant material to the HgCl2 solutions, whereas the reductants NADPH and GSH produced only little or no Hg(0), respectively. At neutral and alkaline pH, the Hg(II)-reducing capacity of spruce needle homogenates was 2 - 4 times that of beech leaves, which paralleled a 6-fold difference in AA concentrations. Homogenates from whole wildtype-plants of Arabidopsis reduced 8-times more Hg(II) than those from the AA-deficient mutant vtc1-1 (AA concentration 30% of wild type). A comparison of literature data on AA concentrations revealed for wetland plants a range from 0.3 µmol/g DW (Phragmites communis) over 15.0 (Typha latifolia) to < 34.1 (Spartina altiflora), and

  18. NOx Emission Reduction and its Effects on Ozone during the 2008 Olympic Games

    SciTech Connect

    Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I.; Shao, Min

    2011-07-15

    We applied a daily-assimilated inversion method to estimate NOx (NO+NO2) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO2) and model simulations using the Regional chEmistry and trAnsport Model (REAM). Over urban Beijing, rural Beijing, and the Huabei Plain, OMI column NO2 reductions are approximately 45%, 33%, and 14%, respectively, while the corresponding anthropogenic NOx emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20 – Sep 20, 2008). The emission reduction began in early July and was in full force by July 20, corresponding to the scheduled implementation of emission controls over Beijing. The emissions did not appear to recover after the emission control period. Meteorological change from summer 2007 to 2008 is the main factor contributing to the column NO2 decreases not accounted for by the emission reduction. Model simulations suggest that the effect of emission reduction on ozone concentrations over Beijing is relatively minor using a standard VOC emission inventory in China. With an adjustment of the model emissions to reflect in situ observations of VOCs in Beijing, the model simulation suggests a larger effect of the emission reduction.

  19. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  20. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    EPA Science Inventory

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  1. IMPACT OF EMISSION REDUCTIONS ON EXPOSURES AND EXPOSURE DISTRIBUTIONS: APPLICATION OF A GEOGRAPHIC EXPOSURE MODEL

    EPA Science Inventory

    Anticipated results include the following. (1) We will estimate intake fraction (i.e., the fraction of emissions that are inhaled) for major source categories, over time, and by spatial location. Higher intake fraction indicates a greater exposure reduction per emission reduct...

  2. Modelling the impacts of ammonia emissions reductions on North American air quality

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Zheng, Q.; Cousineau, S.; Sassi, M.; Duhamel, A.; Besner, M.; Davignon, D.; Crevier, L.-P.; Bouchet, V. S.

    2009-09-01

    A unified regional air-quality modelling system (AURAMS) was used to investigate the effects of reductions in ammonia emissions on regional air quality, with a focus on particulate-matter formation. Three simulations of one-year duration were performed for a North American domain: (1) a base-case simulation using 2002 Canadian and US national emissions inventories augmented by a more detailed Canadian emissions inventory for agricultural ammonia; (2) a 30% North-American-wide reduction in agricultural ammonia emissions; and (3) a 50% reduction in Canadian beef-cattle ammonia emissions. The simulations show that a 30% continent-wide reduction in agricultural ammonia emissions lead to reductions in median hourly PM2.5 mass of <1 μg m-3 on an annual basis. The atmospheric response to these emission reductions displays marked seasonal variations, and on even shorter time scales, the impacts of the emissions reductions are highly episodic: 95th-percentile hourly PM2.5 mass decreases can be up to a factor of six larger than the median values. A key finding of the modelling work is the linkage between gas and aqueous chemistry and transport; reductions in ammonia emissions affect gaseous ammonia concentrations close to the emissions site, but substantial impacts on particulate matter and atmospheric deposition often occur at considerable distances downwind, with particle nitrate being the main vector of ammonia/um transport. Ammonia emissions reductions therefore have trans-boundary consequences downwind. Calculations of critical-load exceedances for sensitive ecosystems in Canada suggest that ammonia emission reductions will have a minimal impact on current ecosystem acidification within Canada, but may have a substantial impact on future ecosystem acidification. The 50% Canadian beef-cattle ammonia emissions reduction scenario was used to examine model sensitivity to uncertainties in the new Canadian agricultural ammonia emissions inventory, and the simulation results

  3. Reduction of nitric oxide emissions from a combustor

    NASA Technical Reports Server (NTRS)

    Craig, R. A.; Pritchard, H. O. (Inventor)

    1980-01-01

    A turbojet combustor and method for controlling nitric oxide emissions by employing successive combustion zones is described. After combustion of an initial portion of the fuel in a primary combustion zone, the combustion products of the primary zone are combined with the remaining portion of fuel and additional plenum air and burned in a secondary combustion zone under conditions that result in low nitric oxide emissions. Low nitric oxide emissions are achieved by a novel turbojet combustor arrangement which provides flame stability by allowing stable combustion to be accompanied by low nitric oxide emissions resulting from controlled fuel-lean combustion (ignited by the emission products from the primary zone) in a secondary combustion zone at a lower combustion temperature resulting in low emission of nitric oxide.

  4. NOx emission reduction and its effects on ozone during the 2008 Olympic Games.

    PubMed

    Yang, Qing; Wang, Yuhang; Zhao, Chun; Liu, Zhen; Gustafson, William I; Shao, Min

    2011-08-01

    We applied a daily assimilated inversion method to estimate NO(x) (NO + NO(2)) emissions for June-September 2007 and 2008 on the basis of the Aura Ozone Monitoring Instrument (OMI) observations of nitrogen dioxide (NO(2)) and model simulations using the Regional chEmistry and trAnsport Model (REAM). This method allows for estimating emission changes with a finer temporal resolution than previous studies and shows that the progression of the emission reduction corresponds roughly to the scheduled implementation of emission controls over Beijing. OMI column NO(2) reductions are approximately 45%, 33%, and 14% over urban Beijing, rural Beijing, and the Huabei Plain, respectively, while the corresponding anthropogenic NO(x) emission reductions are only 28%, 24%, and 6%, during the full emission control period (July 20-Sep 20, 2008). Meteorological changes from summer 2007 to 2008 are the main factor contributing to the column NO(2) decreases not accounted for by the emission reduction. The surface ozone changes due to NO(x) emission reduction are negligible using a standard VOC emission inventory. When using enhanced VOC (particularly aromatics) emissions derived from in situ observations, urban Beijing shifted O(3) production from the VOC-limited regime toward the NO(x)-limited regime resulting in a more substantial ozone decrease (up to 10 ppbv). PMID:21688812

  5. Observations and Modeling of US Power Plant NOx Emission Reductions and Their Impact on Air Quality

    NASA Astrophysics Data System (ADS)

    Frost, G. J.; Kim, S.; McKeen, S.; Hsie, E.; Trainer, M.; Heckel, A.; Richter, A.; Burrows, J.

    2007-12-01

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O3). One of the largest US sources, electric power generation, represented about 25% of US anthropogenic NOx emissions prior to the recent implementation of pollution controls by utility companies. Continuous emission monitoring data demonstrate that overall US power plant NOx emissions decreased about 50% during the summer ozone season since the late 1990's. Space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to these emission reductions. Satellite-retrieved summertime nitrogen dioxide (NO2) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast US urban corridor. Model simulations predict lower O3 across much of the eastern US in response to these emission reductions.

  6. REDUCTION OF POLLUTANT EMISSIONS FROM INDUSTRIAL BOILERS BY COMBUSTION MODIFICATION

    EPA Science Inventory

    The paper describes results of a field test program to investigate the usefulness of combustion modification in reducing NOx emissions from industrial boilers (ranging in size from 11 to 528 GJ/hr). The gaseous and particulate emissions from coal, oil, and natural-gas fuels were ...

  7. REDUCTION OF EMISSIONS FROM IN VITRO SWINE MANURE USING MONENSIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage of swine manure is associated with the generation of malodorous compounds and emissions. These are produced as a result of anaerobic degradation of materials present in manure and include sulfides, methane, organic acids, ammonia, and other volatile compounds. Because odor emission from li...

  8. Reduction of thermal emission background in high temperature microheaters

    NASA Astrophysics Data System (ADS)

    Armstrong, Philip R.; Mah, Merlin L.; Olson, Kyle D.; Taylor, Lucas N.; Talghader, Joseph J.

    2016-05-01

    High temperature microheaters have been designed and constructed to reduce the background thermal emission radiation produced by the heater. Such heaters allow one to probe luminescence with very low numbers of photons where the background emission would overwhelm the desired signal. Two methods to reduce background emission are described: one with low emission materials and the other with interference coating design. The first uses platforms composed of material that is transparent to mid-infrared light and therefore of low emissivity. Heating elements are embedded in the periphery of the heater. The transparent platform is composed of aluminum oxide, which is largely transparent for wavelengths less than about 8 μm. In the luminescent microscopy used to test the heater, an optical aperture blocks emission from the heating coils while passing light from the heated objects on the transparent center of the microheater. The amount of infrared light transmitted through the aperture was reduced by 90% as the aperture was moved from the highly emissive heater coils at 450 °C to the largely transparent center at the same temperature. The second method uses microheaters with integrated multilayer interference structures designed to limit background emission in the spectral range of the low-light luminescence object being measured. These heaters were composed of aluminum oxide, titanium dioxide, and platinum and were operated over a large range of temperatures, from 50 °C to 600 °C. At 600 °C, they showed a background photon emission only 1/800 that of a comparison heater without the multilayer interference structure. In this structure, the radiation background was sufficiently reduced to easily monitor weak thermoluminescent emission from CaSO4:Ce,Tb microparticles.

  9. Reduction in soil aggregation in response to dust emission processes

    NASA Astrophysics Data System (ADS)

    Swet, Nitzan; Katra, Itzhak

    2016-09-01

    Dust emission by aeolian (wind) soil erosion depends on the topsoil properties of the source area, especially on the nature of the aggregates where most dust particles are held. Although the key role of soil aggregates in dust emission, the response of soil aggregation to aeolian processes and its implications for dust emission remain unknown. This study focuses on aggregate size distribution (ASD) analyses before and after in-situ aeolian experiments in semiarid loess soils that are associated with dust emission. Wind tunnel simulations show that particulate matter (PM) emission and saltation rates depend on the initial ASD and shear velocity. Under all initial ASD conditions, the content of saltator-sized aggregates (63-250 μm) increased by 10-34% due to erosion of macro-aggregates (> 500 μm), resulting in a higher size ratio (SR) between the saltators and macro-aggregates following the aeolian erosion. The results revealed that the saltator production increases significantly for soils that are subjected to short-term (anthropogenic) disturbance of the topsoil. The findings highlight a decrease in soil aggregation for all initial ASD's in response to aeolian erosion, and consequently its influence on the dust emission potential. Changes in ASD should be considered as a key parameter in dust emission models of complex surfaces.

  10. Terahertz Desorption Emission Spectroscopy (THz DES) – ‘ALMA in the Lab’

    NASA Astrophysics Data System (ADS)

    Emile Auriacombe, Olivier Bruno Jacques; Fraser, Helen; Ellison, Brian; Ioppolo, Sergio; Rea, Simon

    2016-06-01

    ALMA is revolutionising our scope to identify and locate molecules that have been desorbed from ices, particularly complex organic molecules (COMS), which provide a vital link between interstellar and prebiotic chemistry. Explaining the existence of these molecules in star-forming regions relies on an empirical understanding of the chemistry that underpins their formation:- do COMS form predominantly in the solid-phase and then desorb to the gas phase, or do only “smaller” species, radials or ions desorb and then undergo gas-phase chemical reactions to generate larger COMS?-are the rotational state populations in COMS only attributable to equilibrium chemistry, or could their formation mechanisms and desorption processes affect the rotational state occupancy of these molecules, thereby directly tying certain species to solid-state origins?We have developed a novel laboratory method - THz Desorption Emission Spectroscopy (THz-DES) that combines “traditional” laboratory astrophysics high-vacuum ice experiments with a sensitive high-spectral-resolution terahertz total-power heterodyne radiometer 1,2, partially mirroring the spectral range of ALMA band 7 (275– 373 GHz). Ices are grown in situ on a cold-plate, situated in a vacuum cell, then (thermally) desorbed. The sub-mm emission spectra of the resultant gas-phase molecules are detected as a function of time, temperature, or distance from the surface. Our first THz DES results will be shown for pure and binary ice systems including H2O, N2O and CH3OH. They show good correlation with established methods e.g. TPD, with the advantage of exploiting the molecular spectroscopy to unravel surface dynamics, state-occupancy, and unequivocal molecular identification, as well as concurrently measuring desorption barriers and molecular yields. We will extend our technique to a broader frequency range, enabling us to detect radical and ion desorption, to differentiate between A and E populations of CH3OH or ortho

  11. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved. PMID:24074024

  12. Potential CO2 Emission Reduction by Development of Non-Grain-Based Bioethanol in China

    NASA Astrophysics Data System (ADS)

    Li, Hongqiang; Wang, Limao; Shen, Lei

    2010-10-01

    Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China’s greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

  13. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  14. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  15. Power Plant Emission Reductions Using a Generation Performance Standard

    EIA Publications

    2001-01-01

    In an earlier analysis completed in response to a request received from Representative David McIntosh, Chairman of the Subcommittee on National Economic Growth, Natural Resources, and Regulatory Affairs, the Energy Information Administration analyzed the impacts of power sector caps on nitrogen oxides, sulfur dioxide, and carbon dioxide emissions, assuming a policy instrument patterned after the sulfur dioxide allowance program created in the Clean Air Act Amendments of 1990. This paper compares the results of that work with the results of an analysis that assumes the use of a dynamic generation performance standard as an instrument for reducing carbon dioxide emissions.

  16. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  17. Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China.

    PubMed

    Guo, Xiurui; Fu, Liwei; Ji, Muse; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan

    2016-09-01

    Motor vehicle emissions are increasingly becoming one of the important factors affecting the urban air quality in China. It is necessary and useful to policy makers to demonstrate the situation given the relevant pollutants reduction measures are taken. This paper predicted the reduction potentials of conventional pollutants (PM10, NOx, CO, HC) under different control strategies and policies in the Beijing-Tianjin-Hebei (BTH) region during 2011-2020. There are the baseline and 5 control scenarios designed, which presented the different current and future possible vehicular emissions control measures. Future population of different kinds of vehicles were predicted based on the Gompertz model, and vehicle kilometers travelled estimated as well. After that, the emissions reduction under the different scenarios during 2011-2020 could be estimated using emission factors and activity level data. The results showed that, the vehicle population in the BTH region would continue to grow up, especially in Tianjin and Hebei. Comparing the different scenarios, emission standards updating scenario would achieve a substantial reduction and keep rising up for all the pollutants, and the scenario of eliminating high-emission vehicles can reduce emissions more effectively in short-term than in long-term, especially in Beijing. Due to the constraints of existing economical and technical level, the reduction effect of promoting new energy vehicles would not be significant, especially given the consideration of their lifetime impact. The reduction effect of population regulation scenario in Beijing cannot be ignorable and would keep going up for PM10, CO and HC, excluding NOx. Under the integrated scenario considering all the control measures it would achieve the maximum reduction potential of emissions, which means to reduce emissions of PM10, NOx, CO, HC, by 56%, 59%, 48%, 52%, respectively, compared to BAU scenario for the whole BTH region in 2020. PMID:27325548

  18. Joint implementation as a financing instrument for global reductions in greenhouse gas emissions

    SciTech Connect

    Metz, B.

    1995-11-01

    Joint implementation is based on the idea of cost-effectiveness by providing parties with the opportunity to partially off-set their own emissions with cheaper reductions achieved elsewhere. Joint implementation can be defined as realization of reduction emissions by one investor on the territory of another. Joint implementation could contribute to the North-South cooperation that is embedded in the Climate Convention.

  19. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  20. NATIONAL ASSESSMENT OF EMISSIONS REDUCTION IMPACT FROM ROOFTOP PV

    EPA Science Inventory

    This effort will determine the emissions impacts to the U.S. PV generated electricity when PV systems are installed on building rooftops and employed as demand-side power supplies. The national assessment will be based on data provided by existing rooftop PV systems that have be...

  1. Reduction of Fumigant Emissions Using Chemical and Organic Amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water seal (water application to soil surface) has been shown as a cost effective method to reduce fumigant emissions in comparison with standard high density polyethylene (HDPE) tarp. Application of excess amount of water, however, inhibits fumigant diffusion within the soil profile and may affect ...

  2. Plastic Films for Soil Fumigation: Permeability and Emissions Reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigation is being increasingly regulated to protect human and environmental health. Current California regulations are based on field data and, in effect, assume that use of a standard polyethylene tarp does not reliably reduce emissions. Plastic tarps used to cover the soil surface during so...

  3. Reduction of ammonia emission by shallow slurry injection: injection efficiency and additional energy demand.

    PubMed

    Hansen, Martin N; Sommer, Sven G; Madsen, Niels P

    2003-01-01

    Ammonia (NH3) emission from livestock production causes undesirable environmental effects and a loss of plant-available nitrogen. Much atmospheric NH3 is lost from livestock manure applied in the field. The NH3 emission may be reduced by slurry injection, but slurry injection in general, and especially on grassland, increases the energy demand and places heavy demands on the slurry injection techniques used. The reduction in NH3 emission, injection efficiency, and energy demand of six different shallow slurry-injection techniques was examined. The NH3 emission from cattle slurry applied to grassland was reduced by all the injectors tested in the study, but there were major differences in the NH3 reduction potential of the different types of injectors. Compared with the trailing hose spreading technique, the NH3 loss was reduced by 75% when cattle slurry was injected using the most efficient slurry injection technique, and by 20% when incorporated by the least efficient injection technique. The reduction in NH3 emission was correlated with injection depth and the volume of the slot created. The additional energy demand for reducing ammonia emissions by slurry injection was approximately 13 000 kJ ha(-1) for a 20% reduction and 34 000 kJ ha(-1) for a 75% reduction. The additional energy demand corresponds to additional emissions of, respectively, 5.6 and 14.5 kg CO2 per ha injected. PMID:12809311

  4. Determination of greenhouse gas emission reductions from sewage sludge anaerobic digestion in China.

    PubMed

    Liu, H-T; Kong, X-J; Zheng, G-D; Chen, C-C

    2016-01-01

    Sewage sludge is a considerable source of greenhouse gas (GHG) emission in the field of organic solid waste treatment and disposal. In this case study, total GHG emissions from sludge anaerobic digestion, including direct and indirect emissions as well as replaceable emission reduction due to biogas being reused instead of natural gas, were quantified respectively. The results indicated that no GHG generation needed to be considered during the anaerobic digestion process. Indirect emissions were mainly from electricity and fossil fuel consumption on-site and sludge transportation. Overall, the total GHG emission owing to relative subtraction from anaerobic digestion rather than landfill, and replaceable GHG reduction caused by reuse of its product of biogas, were quantified to be 0.7214 (northern China) or 0.7384 (southern China) MgCO2 MgWS(-1) (wet sludge). PMID:26744944

  5. Institutionalizing a Greenhouse Gas Emission Reduction Target at Yale

    ERIC Educational Resources Information Center

    Rauch, Jason N.; Newman, Julie

    2009-01-01

    Purpose: The purpose of this paper is to analyze the development and implementation of how a greenhouse gas GHG reduction target at Yale University has resulted in broad and long-term institutional commitment. Design/methodology/approach: Interviews are conducted with key individuals representing those most directly involved in developing and…

  6. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various methods have been developed to reduce atmospheric emissions from the agricultural use of highly volatile pesticides and mitigate their adverse environmental effects. The effectiveness of various methods on emissions reduction and pest control was assessed using simulation model in this study...

  7. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06

    Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the refinement of the rate constants used in the kinetic mechanism for mercury oxidation. The possible reactions leading to mercury oxidation are reviewed. Rate constants for these reactions are discussed, using both literature sources and detailed estimates. The resulting mechanism represents the best present picture of the overall chlorine homogeneous oxidation chemistry. Application of this mechanism to the data will be explored in the subsequent reporting period. Work conducted under the present grant has been the subject of two meeting papers presented during the reporting period (Sliger et al., 1998a,b).

  8. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06

    Mercury emission compliance is one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggests that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of the mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2} , followed by its capture by certain components of the fly ash or char. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on the development and application of a kinetics model to the oxidation data developed in the present program and literature data under MSW conditions. The results indicate that the pathway Hg + Cl = HgCl followed by HgCl + HCl = HgCl{sub 2} + H predominates over Hg + Cl{sub 2} under high-temperature conditions. This primarily occurs because Cl{sub 2} concentrations are too low under the present conditions to contribute significantly.

  9. Predator-induced reduction of freshwater carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  10. Chloropicrin Emission Reduction by Soil Amendment with Biochar

    PubMed Central

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP’s bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g-1. There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  11. Chloropicrin Emission Reduction by Soil Amendment with Biochar.

    PubMed

    Wang, Qiuxia; Yan, Dongdong; Liu, Pengfei; Mao, Liangang; Wang, Dong; Fang, Wensheng; Li, Yuan; Ouyang, Canbin; Guo, Meixia; Cao, Aocheng

    2015-01-01

    Biochar has sorption capacity, and can be used to enhance the sequestration of volatile organic contaminants such as pesticides in soil. Chloropicrin (CP) is an important soil fumigant for the production of many fruit and vegetable crops, but its emissions must be minimized to reduce exposure risks and air pollution. The objective of this study was to determine the capacity of biochar to adsorb CP and the effect of biochar amendments to soil on CP emission, concentration in the soil gas phase, degradation in soil and CP bioactivity for controlling soil borne pests. CP emission and concentration in the soil air phase were measured from packed soil columns after fumigant injection at 20-cm depth and application of selected doses of biocharto the surface 5 cm soil. Laboratory incubation and fumigation experiments were conducted to determine the capacity of biochar to adsorb CP, the effects on CP degradation and, separately, CP's bioactivity on soil borne pests in soil amended with biochar. Biochar amendment at 2% to 5% (w/w) greatly reduced total CP emission losses by 85.7% - 97.7% compared to fumigation without biochar. CP concentrations in the soil gas-phase, especially in the top 5 cm of soil, were reduced within 48 h following application. The half-life of CP decreased from 13.6 h to 6.4 h as the biochar rate increased from 0% to 5%. CP and its metabolite (dichloronitromethane) both degraded more rapidly in pure biochar than in soil. The biochar used in the present study had a maximum adsorption capacity for CP of less than 5 mg g(-1). There were no negative effects on pathogen and nematode control when the biochar used in this study was less than 1% (on a weight basis) in soil. Biochar amendment to soil reduced the emissions of CP. CP concentrations in the top 5 cm of soil gas-phase were reduced. CP degradation was accelerated with the addition of biochar. The biochar used in the present study had a low adsorption capacity for CP. There were no negative effects

  12. REDUCTION OF INHERENT MERCURY EMISSIONS IN PC COMBUSTION

    SciTech Connect

    John C. Kramlich; Rebecca N. Sliger; David J. Going

    1999-08-06

    Mercury emission compliance presents one of the major potential challenges raised by the 1990 Clean Air Act Amendments. Simple ways of controlling emissions have not been identified. The variability in the field data suggest that inherent mercury emissions may be reduced if the source of this inherent capture can be identified and controlled. The key mechanisms appear to involve the oxidation of mercury to Hg{sup 2}, generally producing the more reactive HgCl{sub 2}, followed by its capture by certain components of the fly ash or char, or in the air pollution control equipment. This research focuses on identifying the rate-limiting steps associated with the oxidation step. Work in this reporting period focused on testing of the kinetic mechanism reported in the previous semiannual report, and the interpretation of data (both ours and literature). This model yields good qualitative agreement with the data and indicates that mercury oxidation occurs during the thermal quench of the combustion gases. The model also suggests that atomic chlorine is the key oxidizing species. The oxidation is limited to a temperature window between 700-400 C that is defined by the overlap of (1) a region of significant superequilibrium Cl concentration, and (2) a region where oxidized mercury is favored by equilibrium. Above 700 C reverse reactions effectively limit oxidized mercury concentrations. Below 400 C, atomic chlorine concentrations are too low to support further oxidation. The implication of these results are that homogeneous oxidation is governed primarily by (1) HCl concentration, (2) quench rate, and (3) background gas composition. Work conducted under the present grant has been the subject of one journal paper that was accepted for publication during the reporting period (Sliger et al., 1999).

  13. Cost analysis for compliance with EPA's regional NOx emissions reductions for fossil-fired power generation

    SciTech Connect

    Smith, D.; Mann, A.; Ward, J.; Ramezan, M.

    1999-07-01

    To achieve a more stringent ambient-air ozone standard promulgated in 1997, the U.S. EPA has established summer NOx emissions limits for fossil-fired electric power generating units in the Ozone Transport Rulemaking region, consisting of 22 eastern and midwestern states and the District of Columbia. These jurisdictions are required to submit State Implementation Plans by September 1999 in response to EPA's rule, with compliance required by 2007. There are 1757 affected units in this region. In the present study, projected state-by-state growth rates for power production are used to estimate power production and NOx emissions by unit in the year 2007. NOx emissions reductions expected by January 1, 2000 due to Title IV compliance are estimated, leaving a substantial balance of emissions reductions to be achieved by post-combustion NOx control. Cost estimates are developed for achieving these remaining reductions.

  14. Screening analysis and selection of emission reduction concepts for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Meyers, J. E.; Tucker, J. R.; Stuckas, S. J.

    1976-01-01

    An analysis was conducted to screen, evaluate, and select three engine exhaust emission reduction concepts from a group of 14 candidate alternatives. A comprehensive literature search was conducted to survey the emission reduction technology state-of-the-art and establish contact with firms working on intermittent combustion engine development and pollution reduction problems. Concept development, advantages, disadvantages, and expected emission reduction responses are stated. A set of cost effectiveness criteria was developed, appraised for relative importance, and traded off against each concept so that its merit could be determined. A decision model was used to aid the evaluators in managing the criteria, making consistent judgements, calculating merit scores, and ranking the concepts. An Improved Fuel Injection System, Improved Cooling Combustion Chamber, and a Variable Timing Ignition System were recommended to NASA for approval and further concept development. An alternate concept, Air Injection, was also recommended.

  15. Estimated Impacts of Emissions Reductions on Wheat and Maize Crops

    NASA Astrophysics Data System (ADS)

    Tebaldi, C.; Lobell, D. B.

    2015-12-01

    An ability to quantify the impacts associated with different emissions scenarios acrossa broad range of economic and environmental outcomes would be helpful for guidingpolicy on energy and greenhouse gas emissions. One outcome of particular interest,especially for food insecure populations, are effects on agricultural productivity. Inthis study we use empirical models of the relation between climate and CO2concentration on the one hand, and changes in crop yields on the other, tocharacterize the differential impacts on the future productivity of two major crops oftwo level of forcings: those associated with RCP4.5 and those associated withRCP8.5. This study is part of a larger project on the Benefits of ReducingAnthropogenic Climate changE (BRACE). We consider differential effects on maize andwheat yields at the global scale from expected changes in mean temperature andprecipitation under the two scenarios. We also characterize differential levels ofexposure to damaging heat extremes. Several time horizons are considered,characterizing expected impacts over the short, middle and long terms over the 21stcentury.

  16. Energy use, emissions and air pollution reduction strategies in Asia

    SciTech Connect

    Foell, W.; Green, C.; Sarkar, A.; Legler, J.

    1995-12-31

    The pace of economic progress and development experienced in many Asian countries has not occurred without costs to the natural environment. In particular, energy policies and technologies are a primary driving force behind air pollution problems arising from air pollution emissions in Asia. Economic growth, energy use, and reliance on fossil fuels are experiencing extremely high growth throughout most of the continent. Electric power expansion plans in many countries of Asia, particularly China and India, call for substantial increases in coal combustion. In the 1990`s, two-thirds of all power related investments in developing countries will be in Asia. In contrast to the situation in Europe and North America, emissions of air pollution species in Asia are increasing rapidly, resulting in both local air pollution problems and higher acidic deposition in many regions. In general, most Asian countries do not have a strong scientific nor public constituency for addressing potentially serious air pollution problems impacting important economic and cultural activities such as forestry, agriculture, and tourism. The complex political ramifications of trans-boundary air pollution in Asia have not yet begun to be addressed.

  17. Emission reduction by multipurpose buffer strips on arable fields.

    PubMed

    Sloots, K; van der Vlies, A W

    2007-01-01

    In the area managed by Hollandse Delta, agriculture is under great pressure and the social awareness of the agricultural sector is increasing steadily. In recent years, a stand-still has been observed in water quality, in terms of agrochemicals, and concentrations even exceed the standard. To improve the waterquality a multi-purpose Field Margin Regulation was drafted for the Hoeksche Waard island in 2005. The regulation prescribes a crop-free strip, 3.5 m wide, alongside wet drainage ditches. The strip must be sown with mixtures of grasses, flowers or herbs. No crop protection chemicals or fertilizer may be used on the strips. A total length of approximately 200 km of buffer strip has now been laid. Besides reducing emissions, the buffer strips also stimulate natural pest control methods and encourage local tourism. Finally, the strips should lead to an improvement in the farmers' image. The regulation has proved to be successful. The buffer strips boosted both local tourism and the image of the agricultural sector. Above all, the strips provided a natural shield for emission to surface water, which will lead to an improvement of the water quality and raise the farmers' awareness of water quality and the environment. PMID:17711002

  18. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  19. Emission reductions and urban ozone responses under more stringent US standards

    NASA Astrophysics Data System (ADS)

    Downey, Nicole; Emery, Chris; Jung, Jaegun; Sakulyanontvittaya, Tanarit; Hebert, Laura; Blewitt, Doug; Yarwood, Greg

    2015-01-01

    We use a photochemical grid model instrumented with the high-order Decoupled Direct Method (HDDM) to evaluate the response of ozone (O3) to reductions in US-wide anthropogenic emissions, and to estimate emission reductions necessary to meet more stringent National Ambient Air Quality Standards (NAAQS) for O3. We simulate hourly O3 response to nationwide reductions in nitrogen oxides (NOx) and volatile organic compound (VOC) emissions throughout 2006 and compare O3 responses in 4 US cities: Los Angeles, Sacramento, St. Louis, and Philadelphia. We compare O3 responses between NOx-rich, O3-inhibited urban core sites and NOx-sensitive, higher O3 suburban sites and analyze projected O3 frequency distributions, which can be used to drive health effect models. We find that 2006 anthropogenic NOx and VOC emissions must be reduced by 60-70% to reach annual 4th highest (H4) maximum daily 8-h (MDA8) O3 of 75 ppb (the current US standard) in Sacramento, St. Louis, and Philadelphia, and by 80-85% to reach an H4 MDA8 of 60 ppb. Los Angeles requires larger emissions reductions and achieves an H4 MDA8 of 75 ppb with 92% reductions and 60 ppb with 97% reductions. As emissions are reduced, hourly and MDA8 frequency distributions tend toward mid-level background distributions. Mid-level O3 exposure is an important driver of O3 health impacts calculated by epidemiological models. A significant fraction (at least 48%) of summertime integrated MDA8 O3 at all sites remains after complete elimination of US anthropogenic NOx and VOC emissions, implying that mid-level O3 exposure due to background will become more important as domestic precursor emissions are controlled.

  20. Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing.

    PubMed

    Wang, Shuxiao; Zhao, Meng; Xing, Jia; Wu, Ye; Zhou, Yu; Lei, Yu; He, Kebin; Fu, Lixin; Hao, Jiming

    2010-04-01

    Air quality was a vital concern for the Beijing Olympic Games in 2008. To strictly control air pollutant emissions and ensure good air quality for the Games, Beijing municipal government announced an "Air Quality Guarantee Plan for the 29th Olympics in Beijing". In order to evaluate the effectiveness of the guarantee plan, this study analyzed the air pollutant emission reductions during the 29th Olympiad in Beijing. In June 2008, daily emissions of SO(2), NO(X), PM(10), and NMVOC in Beijing were 103.9 t, 428.5 t, 362.7 t, and 890.0 t, respectively. During the Olympic Games, the daily emissions of SO(2), NO(X), PM(10), and NMVOC in Beijing were reduced to 61.6 t, 229.1 t, 164.3 t, and 381.8 t -41%, 47%, 55%, and 57% lower than June 2008 emission levels. Closing facilities producing construction materials reduced the sector's SO(2) emissions by 85%. Emission control measures for mobile sources, including high-emitting vehicle restrictions, government vehicle use controls, and alternate day driving rules for Beijing's 3.3 million private cars, reduced mobile source NO(X) and NMVOC by 46% and 57%, respectively. Prohibitions on building construction reduced the sector's PM(10) emissions by approximately 90% or total PM(10) by 35%. NMVOC reductions came mainly from mobile source and fugitive emission reductions. Based on the emission inventories developed in this study, the CMAQ model was used to simulate Beijing's ambient air quality during the Olympic Games. The model results accurately reflect the environmental monitoring data providing evidence that the emission inventories in this study are reasonably accurate and quantitatively reflect the emission changes attributable to air pollution control measures taken during the 29th Olympic Games in 2008. PMID:20222727

  1. In-home demonstration of the reduction of woodstove emissions from the use of densified logs

    SciTech Connect

    Barnett, S.G.; Bighouse, R.D.

    1992-07-07

    There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

  2. In-Home Demonstration of the Reduction of Woodstove Emissions from the Use of Densified Logs.

    SciTech Connect

    Barnett, Stockton G.; Bidhouse, Roger D.

    1992-07-07

    There is a need to reduce emissions from conventional wood stoves in the short-term while stove replacement takes place over the longer term. One possible is to use fuels that would burn cleaner than cordwood. Densified fuels have been commercially available for years and offer such a possibility. The objective of this project was to evaluate the emissions and efficiency performance of two commercially available densified log types in homes and compare their performance with cordwood. Researchers measured particulate matter (PM), carbon monoxide (CO), and volatile organic matter (VOC) emissions. Both total VOC and methane values are presented. Each home used an Automated Woodstove Emissions Sampler system, developed for the EPA and Bonneville Power Administration, in a series of four week-long tests for each stove. The sequence of tests in each stove was cordwood, Pres-to-Logs, Eco-Logs, and a second, confirming test using Pres-to-Logs. Results show an average reduction of 52% in PM grams per hour emissions overall for the nine stoves using Pres-to-Logs. All nine stoves displayed a reduction in PM emissions. CO emissions were more modestly reduced by 27%, and VOCs were reduced 39%. The emissions reduction percentage was similar for both types of stoves.

  3. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect

    Trexler, E.C. Jr.; Shannon, J.D.

    1995-06-01

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  4. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  5. The sensitivities of emissions reductions for the mitigation of UK PM2.5

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Williams, M. L.; Carnell, E. J.; Nemitz, E.; Stedman, J. R.; Reis, S.

    2016-01-01

    The reduction of ambient concentrations of fine particulate matter (PM2.5) is a key objective for air pollution control policies in the UK and elsewhere. Long-term exposure to PM2.5 has been identified as a major contributor to adverse human health effects in epidemiological studies and underpins ambient PM2.5 legislation. As a range of emission sources and atmospheric chemistry transport processes contribute to PM2.5 concentrations, atmospheric chemistry transport models are an essential tool to assess emissions control effectiveness. The EMEP4UK atmospheric chemistry transport model was used to investigate the impact of reductions in UK anthropogenic emissions of primary PM2.5, NH3, NOx, SOx or non-methane VOC on surface concentrations of PM2.5 in the UK for a recent year (2010) and for a future current legislation emission (CLE) scenario (2030). In general, the sensitivity to UK mitigation is rather small. A 30 % reduction in UK emissions of any one of the above components yields (for the 2010 simulation) a maximum reduction in PM2.5 in any given location of ˜ 0.6 µg m-3 (equivalent to ˜ 6 % of the modelled PM2.5). On average across the UK, the sensitivity of PM2.5 concentrations to a 30 % reduction in UK emissions of individual contributing components, for both the 2010 and 2030 CLE baselines, increases in the order NMVOC, NOx, SOx, NH3 and primary PM2.5; however there are strong spatial differences in the PM2.5 sensitivities across the UK. Consequently, the sensitivity of PM2.5 to individual component emissions reductions varies between area and population weighting. Reductions in NH3 have the greatest effect on area-weighted PM2.5. A full UK population weighting places greater emphasis on reductions of primary PM2.5 emissions, which is simulated to be the most effective single-component control on PM2.5 for the 2030 scenario. An important conclusion is that weighting corresponding to the average exposure indicator metric (using data from the 45

  6. 40 CFR 1042.820 - Emission standards and required emission reductions for remanufactured engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under this subpart only if they have NOX emissions equivalent to or less than baseline NOX levels and PM... certified for locomotive engines under 40 CFR part 1033 may be deemed to also meet the requirements of this... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Emission standards and...

  7. 40 CFR 1042.820 - Emission standards and required emission reductions for remanufactured engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... under this subpart only if they have NOX emissions equivalent to or less than baseline NOX levels and PM... certified for locomotive engines under 40 CFR part 1033 may be deemed to also meet the requirements of this... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission standards and...

  8. 40 CFR 1042.820 - Emission standards and required emission reductions for remanufactured engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... under this subpart only if they have NOX emissions equivalent to or less than baseline NOX levels and PM... certified for locomotive engines under 40 CFR part 1033 may be deemed to also meet the requirements of this... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission standards and...

  9. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors.

    PubMed

    Wo, Jingjing; Zhang, Meng; Cheng, Xiaoya; Zhong, Xiaohang; Xu, Jiang; Xu, Xinhua

    2009-12-30

    In this study, considering that Hg(2+) in wet flue gas desulfurization (FGD) systems can easily be reduced and then released into atmosphere, causing secondary pollution, the researches about Hg(2+) reduction and Hg(0) re-emission mechanism were carried out. The effects of several experimental parameters on the reduction were studied, including initial pH, temperature, and concentrations of Cl(-) and S(IV). Our experimental results indicated that Cl(-) had a restraining effect on the Hg(2+) reduction and Hg(0) re-emission, after 24h reaction, only 20.5% of Hg(2+) was reduced with 100mM Cl(-) in simulated desulfurization solution. Cl(-) can slow Hg(2+) reduction and Hg(0) re-emissions dramatically through changing reaction mechanism, with formation of new intermediate: ClHgSO(3)(-), which can decompose to Hg(0), but much more slowly than Hg(SO(3))(2)(2-) or HgSO(3). Simulating the conditions of the practical application (initial pH 5, T=50 degrees C, S(IV)=5 mM, Cl(-)=100 mM), we also found that Ca(2+), NO(3)(-), F(-), etc. all had obvious effects on reduction rates. Based on the material balance and characteristic of the reactants, the reduction emission mechanism of Hg(2+) has been established, providing theoretical basis for industrial application of mercury control in wet FGD systems. PMID:19699584

  10. Strategies for emission reduction from thermal power plants.

    PubMed

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances. PMID:16338058

  11. 9th Diesel Engine Emissions Reduction (DEER) Workshop 2003

    SciTech Connect

    Kukla, P; Wright, J; Harris, G; Ball, A; Gu, F

    2003-08-24

    The PowerTrap{trademark} is a non-exhaust temperature dependent system that cannot become blocked and features a controlled regeneration process independent of the vehicle's drive cycle. The system has a low direct-current power source requirement available in both 12-volt and 24-volt configurations. The system is fully programmable, fully automated and includes Euro IV requirements of operation verification. The system has gained European component-type approval and has been tested with both on- road and off-road diesel fuel up to 2000 parts per million. The device is fail-safe: in the event of a device malfunction, it cannot affect the engine's performance. Accumulated mileage testing is in excess of 640,000 miles to date. Vehicles include London-type taxicabs (Euro 1 and 2), emergency service fire engines (Euro 1, 2, and 3), inner city buses, and light-duty locomotives. Independent test results by Shell Global Solutions have consistently demonstrated 85-99 percent reduction of ultrafines across the 7-35 nanometer size range using a scanning mobility particle sizer with both ultra-low sulfur diesel and off-road high-sulfur fuel.

  12. Potential of Reduction in CO2 Emission by Biomass Power Generation with Thinning Residues

    NASA Astrophysics Data System (ADS)

    Makino, Yosuke; Kato, Takeyoshi; Suzuoki, Yasuo

    In Japan, forest thinning residues as woody biomass have potential to increase domestic primary energy supply, because there still remain many conifer plantations where thinning is not carried out. However, taking the reduction in carbon stock in forests into account, the additional thinning for energy supply may not contribute to the reduction in CO2 emission. Considering the change in the carbon stock in forests, this paper discusses the potential of reduction in CO2 emission by biomass power generation with thinning residues. As power generation systems with thinning residues, co-firing with coal in a utility's power station and a molten carbonate fuel cell (MCFC) with gasification system are taken into account. The results suggest that the co-firing of woody biomass supplied by the additional thinning at utilities' coal-fired power stations has a potential for reducing overall CO2 emission.

  13. Sharing global CO2 emission reductions among one billion high emitters

    PubMed Central

    Chakravarty, Shoibal; Chikkatur, Ananth; de Coninck, Heleen; Pacala, Stephen; Socolow, Robert; Tavoni, Massimo

    2009-01-01

    We present a framework for allocating a global carbon reduction target among nations, in which the concept of “common but differentiated responsibilities” refers to the emissions of individuals instead of nations. We use the income distribution of a country to estimate how its fossil fuel CO2 emissions are distributed among its citizens, from which we build up a global CO2 distribution. We then propose a simple rule to derive a universal cap on global individual emissions and find corresponding limits on national aggregate emissions from this cap. All of the world's high CO2-emitting individuals are treated the same, regardless of where they live. Any future global emission goal (target and time frame) can be converted into national reduction targets, which are determined by “Business as Usual” projections of national carbon emissions and in-country income distributions. For example, reducing projected global emissions in 2030 by 13 GtCO2 would require the engagement of 1.13 billion high emitters, roughly equally distributed in 4 regions: the U.S., the OECD minus the U.S., China, and the non-OECD minus China. We also modify our methodology to place a floor on emissions of the world's lowest CO2 emitters and demonstrate that climate mitigation and alleviation of extreme poverty are largely decoupled. PMID:19581586

  14. Regional Attribution of Ozone Production and Associated Radiative Forcing: a Step to Crediting NOx Emission Reductions

    NASA Astrophysics Data System (ADS)

    Naik, V.; Mauzerall, D. L.; Horowitz, L.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2004-12-01

    The global distribution of tropospheric ozone (O3) depends on the location of emissions of its precursors in addition to chemical and dynamical factors. The global picture of O3 forcing is, therefore, a sum of regional forcings arising from emissions of precursors from different sources. The Kyoto Protocol does not include ozone as a greenhouse gas, and emission reductions of ozone precursors made under Kyoto or any similar agreement would presently receive no credit. In this study, we quantitatively estimate the contribution of emissions of nitrogen oxides (NOx), the primary limiting O3 precursor in the non-urban atmosphere, from specific countries and regions of the world to global O3 concentration distributions. We then estimate radiative forcing resulting from the regional perturbations of NOx emissions. This analysis is intended as an early step towards incorporating O3 into the Kyoto Protocol or any successor agreement. Under such a system countries could obtain credit for improvements in local air quality that result in reductions of O3 concentrations because of the associated reductions in radiative forcing. We use the global chemistry transport model, MOZART-2, to simulate the global O3 distribution for base year 1990 and perturbations to this distribution caused by a 10% percent reduction in the base emissions of NOx from the United States, Europe, East Asia, India, South America, and Africa. We calculate the radiative forcing for the simulated base and perturbed O3 distributions using the GFDL radiative transfer model. The difference between the radiative forcing from O3 for the base and perturbed distributions provides an estimate of the marginal radiative forcing from a region's emissions of NOx. We will present a quantitative analysis of the magnitude, spatial, and temporal distribution of radiative forcing resulting from marginal changes in the NOx emissions from each region.

  15. Results and status of the NASA aircraft engine emission reduction technology programs

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Diehl, L. A.; Petrash, D. A.; Grobman, J.

    1978-01-01

    The results of an aircraft engine emission reduction study are reviewed in detail. The capability of combustor concepts to produce significantly lower levels of exhaust emissions than present production combustors was evaluated. The development status of each combustor concept is discussed relative to its potential for implementation in aircraft engines. Also, the ability of these combustor concepts to achieve proposed NME and NCE EPA standards is discussed.

  16. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Several combustor concepts were designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the hot wall combustor employs a thermal barrier coating and impingement cooled liners; the recuperative cooling combustor preheats the air before entering the combustion chamber; and the catalytic converter combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultralow levels of unburned hydrocarbons and carbon monoxide emissions can be achieved.

  17. Future development programs. [for emission reduction and production of aircraft engines

    NASA Technical Reports Server (NTRS)

    Waters, L.

    1976-01-01

    A company program was planned which has a main drive to develop those emission reduction concepts that have the promise of earliest success. These programs were proposed in an attempt to enhance existing engine systems, exploiting their potential for emission reduction as far as is compatible with retaining the well established features in them that are well understood and in current production. The intended programs identified in the area of new concepts were: (1) upgrading the TCM fuel system, (2) evaluation of accelerator pump, (3) reduced cooling requirement, and (4) variable spark timing.

  18. Combustor concepts for aircraft gas turbine low-power emissions reduction

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Gleason, C. C.; Dodds, W. J.

    1978-01-01

    Three combustor concepts have been designed and tested to demonstrate significant reductions in aircraft engine idle pollutant emissions. Each concept used a different approach for pollutant reductions: the Hot Wall Combustor employs a thermal barrier coating and impingement cooled liners, the Recuperative Cooling Combustor preheats the air before entering the combustion chamber, and the Catalytic Converter Combustor is composed of a conventional primary zone followed by a catalytic bed for pollutant cleanup. The designs are discussed in detail and test results are presented for a range of aircraft engine idle conditions. The results indicate that ultra-low levels of unburned hydrocarbons and carbon monoxide emissions can be achieved with this technology.

  19. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2013-06-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions of 84% averaged over all powers) and blended fuels (64%) relative to the JP-8 baseline with the largest reductions at idle conditions. The alternative fuels also produced smaller soot (e.g. at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock. As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84

  20. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    NASA Astrophysics Data System (ADS)

    Drlica-Wagner, A.; Albert, A.; Bechtol, K.; Wood, M.; Strigari, L.; Sánchez-Conde, M.; Baldini, L.; Essig, R.; Cohen-Tanugi, J.; Anderson, B.; Bellazzini, R.; Bloom, E. D.; Caputo, R.; Cecchi, C.; Charles, E.; Chiang, J.; de Angelis, A.; Funk, S.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Guiriec, S.; Gustafsson, M.; Kuss, M.; Loparco, F.; Lubrano, P.; Mirabal, N.; Mizuno, T.; Morselli, A.; Ohsugi, T.; Orlando, E.; Persic, M.; Rainò, S.; Sehgal, N.; Spada, F.; Suson, D. J.; Zaharijas, G.; Zimmer, S.; Fermi-LAT Collaboration; Abbott, T.; Allam, S.; Balbinot, E.; Bauer, A. H.; Benoit-Lévy, A.; Bernstein, R. A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Castander, F. J.; Covarrubias, R.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Cunha, C. E.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D.; Jeltema, T.; Kent, S.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Luque, E.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J.; Martini, P.; Merritt, K. W.; Miller, C.; Miquel, R.; Mohr, J.; Neilsen, E.; Nord, B.; Ogando, R.; Peoples, J.; Petravick, D.; Pieres, A.; Plazas, A. A.; Queiroz, A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Williams, P.; Yanny, B.; Zuntz, J.; DES Collaboration

    2015-08-01

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses ≲ 20 {GeV} annihilating via the b\\bar{b} or τ+τ- channels.

  1. Search for Gamma-Ray Emission from DES Dwarf Spheroidal Galaxy Candidates with Fermi-LAT Data

    SciTech Connect

    Drlica-Wagner, A.; et al.

    2015-08-04

    Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses $\\lesssim 20\\,\\mathrm{GeV}$ annihilating via the $b\\bar{b}$ or τ(+)τ(-) channels.

  2. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  3. Reduction in nitrogen oxides emission on TGME-464 boiler of IRU power plant (Estonia)

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Ionkin, I. L.

    2015-01-01

    The possibility for realization of measures on a reduction in nitrogen oxides emission on a TGME-464 (plant no. 2) boiler of the IRU power plant (Tallinn, Estonia) is investigated. Low-cost techno-logical measures, namely, nonstoichiometric burning and burning with the moderate controlled chemical underburning, are proposed and experimentally tested. Recommendations on the implementation of low-emission modes of burning natural gas into mode diagrams of the boiler are given. Nitrogen oxides emissions are reduced to the required level as a result of the implementation of the proposed measures.

  4. Air quality modelling : effects of emission reductions on concentrations of particulate matter

    NASA Astrophysics Data System (ADS)

    Girault, L.; Roustan, Y.; Seigneur, C.

    2012-04-01

    Atmospheric particulate matter (PM) has adverse effects on human health. PM acts primarily on respiratory and cardiovascular (due to their small size they can penetrate deep into the lungs), but they are also known effects on the skin. In France, the "Particulate Plan" - developed as part of the second National Environmental Health Plan - aims to reduce by 30% fine PM (noted PM2.5because these particles have an aerodynamic diameter of 2.5 micrometers or less) by 2015. A recent study by Airparif (the organization in charge of monitoring air quality in the Paris region, the Île-de-France) and LSCE (Laboratory of climate and the environmental science, France) has allowed, through a large measurement campaign conducted between 2009 and 2011, to quantify the proportion of PM produced in Île-de-France and those transported from the surrounding areas. The study by numerical modelling of air pollution presented here complements these results by investigating future emission scenarios. The CEREA develops and uses an air quality model which simulates the concentrations of pollutants from an emission inventory, meteorological data and boundary conditions of the area studied. After an evaluation of simulation results for the year 2005, the model is used to assess the effects of various scenarios of reductions in NOx and NH3 emissions on the concentrations of PM2.5in Île-de-France. The effects of the controls on the local pollution and the long-range pollution are considered separately. For each emitted species, three scenarios of emission reductions are identified: an emission reduction at the local level (Île-de-France), a reduction at the regional scale (France) and a reduction at the continental scale (across Europe). In each case, a 15% reduction is applied. The comparison of the results allows us to assess the respective contributions of local emissions and long-range transport to PM2.5 concentrations. For instance, the reduction of NOx emissions in Europe leads to a

  5. [Effects of Eliminating Backward Production Capacities on Reduction of Dioxin Emissions in Key Industries].

    PubMed

    Geng, Jing; Lu, Yong-long; Ren, Bing-nan; Wang, Tie-yu

    2016-03-15

    Phase-out of backward production facilities can significantly reduce the emissions of unintentional persistent organic pollutants from the industrial thermal process. An estimation of reduced dioxin emissions due to closure of backward production capacities is valuable to objectively evaluate China's efforts in and contribution to performing the Stockholm Convention on Persistent Organic Pollutants. Our group previously evaluated environmental effects of the phase-out of backward production facilities on dioxin emissions from 2006 to 2009. Based on the above study, due to the phase-out of backward production capacities from 2010 to 2013, the reductions in dioxin emissions to air from power generation sector, coke sector, and iron & steel (including ferroalloy) sector were estimated to be 86.13, 133.94 and 78.78 g · a⁻¹, respectively. Because the emission factors used in this paper are a little bit conservative, the actual reduced emissions may be greater than the estimated values. Besides the industrial sectors mentioned above, reduced dioxin emissions can also be estimated in more industrial sectors such as cement, calcium carbide, metal smelting and papermaking sectors. The paper also provided methods for the future comprehensive evaluation of dioxin reduction. PMID:27337915

  6. Traffic accident and emission reduction through intermittent release measures for heavy fog weather

    NASA Astrophysics Data System (ADS)

    Shi, Jing; Tan, Jin-Hua

    2015-09-01

    Heavy fog weather can increase traffic accidents and lead to freeway closures which result in delays. This paper aims at exploring traffic accident and emission characteristics in heavy fog, as well as freeway intermittent release measures for heavy fog weather. A driving simulator experiment is conducted for obtaining driving behaviors in heavy fog. By proposing a multi-cell cellular automaton (CA) model based on the experimental data, the role of intermittent release measures on the reduction of traffic accidents and CO emissions is studied. The results show that, affected by heavy fog, when cellular occupancy ρ < 0.8, the probability of traffic accidents is much higher; and CO emissions increase significantly when ρ < 0.2. After an intermittent release measure is applied, the probability of traffic accidents and level of CO emissions become reasonable. Obviously, the measure can enhance traffic safety and reduce emissions.

  7. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  8. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  9. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect

    Ashton, W.B.; Barns, D.W. ); Bradley, R.A. . Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  10. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.

    PubMed

    Khan, M Yusuf; Agrawal, Harshit; Ranganathan, Sindhuja; Welch, William A; Miller, J Wayne; Cocker, David R

    2012-11-20

    Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots. PMID:22974075

  11. A decision support system for emission reduction assessment: the OPERA LIFE+ project

    NASA Astrophysics Data System (ADS)

    Carnevale, Claudio; Bianchessi, Nicola; Finzi, Giovanna; Pederzoli, Anna; Pisoni, Enrico; Volta, Marialuisa; Deserti, Marco; De Munari, Eriberto; Stortini, Michele; Veronesi, Paolo; Gianfreda, Roberta; Maffeis, Giuseppe; Blond, Nadege; Mark-Hummel, Lioba; Clappier, Alain; Perron, Gilles

    2013-04-01

    In last decades, air pollution modelling assumed a key role for the definition and evaluation of suitable emission control strategies, supporting Regional Decision Makers in the design of long-term plans for air quality improvement. This is a complex task, due to the non-linear chemical reactions and physical processes that bring to secondary pollution formation and accumulation, involving precursor emissions, namely VOC, NOx, NH3, primary PM and SO2. The problem is even more complex when constraining policy to a fixed budget. This paper presents the first results of the OPERA (Operational Procedure for Emission Reduction Assessment) LIFE+ project (2010-2013, www.operatool.eu) aiming to design and to implement an enhanced approach to identify efficient regional policies (1) complying with National and EU air quality standards, (2) with local emission and meteorological features, financial, technological and social constraints and (3) considering potential synergies with actions to reduce GHG emissions. The proposed methodology is based on a multi-objective (air quality, internal and external costs) optimization problem. The decision variables are the technical and non-technical emission abatement measures. Artificial neural networks, identified processing long-term 3D deterministic multi-phase modelling system simulation outputs, describe the nonlinear relations between the control variables (precursor emissions reduction) and the air quality indexes (AQIs), defining the air quality objective. The internal costs are due to emission reduction measures implementation, while the external costs assess the damage due to population pollution exposure. The methodology has been implemented in a software tool (RIAT+) and tested on two regional applications, Emilia Romagna (IT) and Alsace (FR).

  12. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  13. EMISSION REDUCTION: PARTNERSHIP WITH CORNING AND SYRACUSE CHINA TO REDUCE LEAD RELEASE

    EPA Science Inventory

    This study will utilize the voluntary initiative for source reduction (VISR) approach. The targeted companies= processes will be reviewed in order to ascertain the steps associated with the greatest air pathway emission. These two facilities were identified by the EPA OPPTS mo...

  14. REDUCTION OF CO2 EMISSIONS FROM MOBILE SOURCES BY ALTERNATIVE FUELS DERIVED FROM BIOMASS

    EPA Science Inventory

    The paper discusses process options for utilizing biomass to obtain greatest reduction of carbon dioxide (CO2) emissions from motor vehicles at least cost. (NOTE: The Energy Policy Act of 1992 seeks to displace 30% of the U.S. petroleum requirement by the year 2010 with an altern...

  15. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  16. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity...

  17. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity...

  18. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity...

  19. Economic Potential of Greenhouse Gas Emission Reductions: Comparative Role for Soil Sequestration in Agriculture and Forestry

    SciTech Connect

    Mccarl, Bruce A.; Schneider, Uwe; Murray, Brian; Williams, Jimmy; Sands, Ronald D.

    2001-05-14

    This paper examines the relative contribution of agricultural and forestry activities in an emission reduction program, focusing in part on the relative desirability of sequestration in forests and agricultural soils. The analysis considers the effects of competition for land and other resources between agricultural activities, forestry activities and traditional production. In addition, the paper examines the influence of saturation and volatility.

  20. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  2. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    SciTech Connect

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  3. Climate and health impacts of US emissions reductions consistent with 2 °C

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Lee, Yunha; Faluvegi, Greg

    2016-05-01

    An emissions trajectory for the US consistent with 2 °C warming would require marked societal changes, making it crucial to understand the associated benefits. Previous studies have examined technological potentials and implementation costs and public health benefits have been quantified for less-aggressive potential emissions-reduction policies (for example, refs ,), but researchers have not yet fully explored the multiple benefits of reductions consistent with 2 °C. We examine the impacts of such highly ambitious scenarios for clean energy and vehicles. US transportation emissions reductions avoid ~0.03 °C global warming in 2030 (0.15 °C in 2100), whereas energy emissions reductions avoid ~0.05-0.07 °C 2030 warming (~0.25 °C in 2100). Nationally, however, clean energy policies produce climate disbenefits including warmer summers (although these would be eliminated by the remote effects of similar policies if they were undertaken elsewhere). The policies also greatly reduce damaging ambient particulate matter and ozone. By 2030, clean energy policies could prevent ~175,000 premature deaths, with ~22,000 (11,000-96,000 95% confidence) fewer annually thereafter, whereas clean transportation could prevent ~120,000 premature deaths and ~14,000 (9,000-52,000) annually thereafter. Near-term national benefits are valued at ~US$250 billion (140 billion to 1,050 billion) per year, which is likely to exceed implementation costs. Including longer-term, worldwide climate impacts, benefits roughly quintuple, becoming ~5-10 times larger than estimated implementation costs. Achieving the benefits, however, would require both larger and broader emissions reductions than those in current legislation or regulations.

  4. [Energy Conservation and Emissions Reduction Benefits Analysis for Battery Electric Buses Based on Travel Services].

    PubMed

    Lin, Xiao-dan; Tian, Liang; Lü, Bin; Yang, Jian-xin

    2015-09-01

    Battery Electric Bus (BEB) has become one of prior options of urban buses for its "zero emission" during the driving stage. However, the environmental performance of electric buses is affected by multi-factors from the point of whole life cycle. In practice, carrying capacity of BEB and power generation structures can both implement evident effects on the energy consumption and pollutants emission of BEB. Therefore, take the above factors into consideration, in this article, Life Cycle Assessment is employed to evaluate the energy conservation and emissions reduction benefits of BEB. Results indicate that, travel service is more reasonable as the functional unit, rather than mileage, since the carrying capacity of BEB is 15% lower than the diesel buses. Moreover, compared with diesel buses, the energy conservation and emissions reduction benefits of battery electric buses are all different due to different regional power structures. Specifically, the energy benefits are 7. 84%, 11. 91%, 26. 90%, 11. 15%, 19. 55% and 20. 31% respectively in Huabei, Huadong, Huazhong, Dongbei, Xibei and Nanfang power structure. From the point of comprehensive emissions reduction benefits, there is no benefit in Huabei power structure, as it depends heavily on coal. But in other areas, the comprehensive emissions reduction benefits of BEB are separately 3. 46%, 26. 81%, 1. 17%, 13. 74% and 17. 48% in Huadong, Huazhong, Dongbei, Xibei and Nanfang. Therefore, it suggests that, enlargement of carrying capacity should be taken as the most prior technology innovation direction for BEB, and the grids power structure should be taken into consideration when the development of BEB is in planning. PMID:26717718

  5. Comparison of European national legislation efficiency on the reduction of air pollutant emissions.

    PubMed

    Coutinho, Miguel; Rodrigues, Ricardo; Ferreira, Joana; Lopes, Myriam; Borrego, Carlos

    2006-03-01

    Since 1995, the Institute for Environment and Development in Portugal has obtained >300 stack samples from various point sources of Portuguese industries. A coherent database was made with the collected results. The limit values fixed by several European legal documents consulted, Portuguese, Spanish, French, Italian, and Dutch emission legislation, were applied to the Institute for Environment and Development stack sampling inventory (from 1995 to 2000) to evaluate the efficiency of these standards in promoting the control and reduction of atmospheric pollutants emissions, especially regarding nitrogen oxides, sulfur dioxide, and particulate matter. The conclusion was that the original Portuguese legislation was not restrictive enough and not very efficient regarding emissions reduction. In contrast, the Dutch and Italian legislations are quite restrictive but very efficient concerning emission control for the three pollutants analyzed. One of the outcomes of this study was the publication of a new law in Portugal regulating the emissions of atmospheric pollutants. The strategy of this emissions control law follows the conclusions found in this study including the concept of a mass flow threshold and different approaches depending on source dimension. PMID:16573194

  6. Assessment of atmospheric mercury emission reduction measures relevant for application in Poland

    SciTech Connect

    Hlawiczka, S.; Fudala, J.

    2008-03-15

    Fuel combustion for heat and power generation, together with cement production, were the most significant sources of anthropogenic atmospheric mercury emission in Poland in 2003, with 57 and 27% of Hg emission, respectively. It was found that in Poland, Hg emission reduction measures need to be focused on the energy generation sector. Sorbent injection upstream of an electrostatic precipitator or fabric filter, mercury oxidation upstream of a wet or dry flue gas desulphurisation installation, together with Hg capture on sorbents, should be considered as priority in Polish conditions. This refers mainly to fuel combustion processes but also to the production of cement. For economic reasons it seems advisable that, apart from activated carbons as sorbents, application of zeolites obtained from power plant fly ash should also be considered. Application of primary methods seems to be very promising in Polish conditions, although they should be considered rather as an additional option apart from sorbent injection as the best option. Switching from coal to liquid and gaseous fuels shows the highest potential for reducing Hg emission. For chlorine production using the mercury cell electrolysis method, strict monitoring of Hg emissions and good housekeeping of Hg releasing processes seems a promising approach, but the main activity should focus on changing mercury-based technologies into membrane cell methods. Emission abatement potential for the atmospheric mercury in Poland has been roughly assessed, showing that in perspective of 2015, the emission could be reduced to about 25% of the anthropogenic atmospheric Hg emission in 2003.

  7. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    NASA Astrophysics Data System (ADS)

    Ishii, Ayumi; Hasegawa, Miki

    2015-06-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures.

  8. An Interfacial Europium Complex on SiO2 Nanoparticles: Reduction-Induced Blue Emission System

    PubMed Central

    Ishii, Ayumi; Hasegawa, Miki

    2015-01-01

    In this study, Eu-coated SiO2 nanoparticles have been prepared, consisting of an interfacial complex of Eu and 1,10-phenanthroline (phen) at the solid surfaces of the SiO2/Eu nanostructures. The as-prepared SiO2/Eu/phen nanoparticles exhibits sharp red emission via energy transfer from the phen to the EuIII. After sintering at 200 °C in air, the emission is tuned from red to blue. The blue emission is originated from EuII. This reduction-induced emissive phenomenon resulted from the electron-donating environment created by the surrounding phen and SiO2, which is the first reported fabrication of a stable EuII-based emissive material using mild conditions (reaction in air and at low temperature) and an organic-inorganic hybrid nanostructure. The existence of two different stable oxidation states with characteristic emissions, blue emissive EuII and red emissive EuIII, suggests significant potential applications as novel luminescent materials with inorganic-organic hybrid structures. PMID:26122318

  9. Assessment of methods for methyl iodide emission reduction and pest control using a simulation model

    NASA Astrophysics Data System (ADS)

    Luo, Lifang; Ashworth, Daniel J.; Šimunek, Jirka; Xuan, Richeng; Yates, Scott R.

    2013-02-01

    The increasing registration of the fumigant methyl iodide within the USA has led to more concerns about its toxicity to workers and bystanders. Emission mitigation strategies are needed to protect the public and environmental health while providing effective pest control. The effectiveness of various methods on emissions reduction and pest control was assessed using a process-based mathematical model in this study. Firstly, comparisons between the simulated and laboratory measured emission fluxes and cumulative emissions were made for methyl iodide (MeI) under four emission reduction treatments: 1) control, 2) using soil with high organic matter content (HOM), 3) being covered by virtually impermeable film (VIF), and 4) irrigating soil surface following fumigation (Irrigation). Then the model was extended to simulate a broader range of emission reduction strategies for MeI, including 5) being covered by high density polyethylene (HDPE), 6) increasing injection depth from 30 cm to 46 cm (Deep), 7) HDPE + Deep, 8) adding a reagent at soil surface (Reagent), 9) Reagent + Irrigation, and 10) Reagent + HDPE. Furthermore, the survivability of three types of soil-borne pests (citrus nematodes [Tylenchulus semipenetrans], barnyard seeds [Echinochloa crus-galli], fungi [Fusarium oxysporum]) was also estimated for each scenario. Overall, the trend of the measured emission fluxes as well as total emission were reasonably reproduced by the model for treatments 1 through 4. Based on the numerical simulation, the ranking of effectiveness in total emission reduction was VIF (82.4%) > Reagent + HDPE (73.2%) > Reagent + Irrigation (43.0%) > Reagent (23.5%) > Deep + HDPE (19.3%) > HOM (17.6%) > Deep (13.0%) > Irrigation (11.9%) > HDPE (5.8%). The order for pest control efficacy suggests, VIF had the highest pest control efficacy, followed by Deep + HDPE, Irrigation, Reagent + Irrigation, HDPE, Deep, Reagent + HDPE, Reagent, and HOM. Therefore, VIF is the optimal method disregarding

  10. Climate and mortality changes due to reductions in household cooking emissions

    NASA Astrophysics Data System (ADS)

    Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri

    2016-04-01

    Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.

  11. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    PubMed

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-01

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. PMID:26844402

  12. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  13. GREENHOUSE GAS EMISSION REDUCTION AND ENVIRONMENTAL QUALITY IMPROVEMENT FROM IMPLEMENTATION OF AEROBIC WASTE TREATMENT SYSTEMS IN SWINE FARMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to determine greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA sw...

  14. Thiosulfate and manure amendment with water application and tarp on 1,3-dichloropropene emission reductions.

    PubMed

    McDonald, Jason A; Gao, Suduan; Qin, Ruijun; Trout, Thomas J; Hanson, Bradley D

    2008-01-15

    Reducing fumigant emissions is required for minimizing bystander risk and environmental impact. Effective and economic field management methods including commonly used surface sealing technique and soil amendments are needed for achieving emission reductions. This research determined the effectiveness of ammonium thiosulfate (ATS) and composted manure amendments to surface soil in combination with water application or high density polyethylene (HDPE) tarp on reducing emissions of 1,3-D from soil columns. Surface treatments included an untreated control, water seal (single water application at time of fumigant injection), ATS amendments at 1:1 and 2:1 molar ratio of ATS:fumigant, composted steer manure at 3.5 kg m(-2), and HDPE tarp over 1:1 ATS or the manure amendment. Cumulative 1,3-D emission loss over two weeks was greatest for the control (52% of applied). The HDPE tarp over ATS and manure treatments had the lowest 1,3-D emissions at 24 and 16%, respectively. Treatments with ATS or manure alone reduced 1,3-D emissions (29-39%) more effectively than water seal (43%) and further benefit was gained with the addition of HDPE tarp. Amendment of surface soil with organic materials shows greater potential in minimizing fumigant emissions than with chemicals with the need for a better understanding of the organic-fumigant reaction mechanism. PMID:18284137

  15. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark Scotto

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NO{sub x} emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of high-flammable content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NO{sub x} emissions. The actual NO{sub x} reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammable content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NO{sub x} reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NO{sub x} emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NO{sub x} emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  16. Evaluation of Reformer Produced Synthesis Gas for Emissions Reductions in Natural Gas Reciprocating Engines

    SciTech Connect

    Mark V. Scotto; Mark A. Perna

    2010-05-30

    Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) has developed a system that produces synthesis gas from air and natural gas. A near-term application being considered for this technology is synthesis gas injection into reciprocating engines for reducing NOx emissions. A proof of concept study using bottled synthesis gas and a two-stroke reciprocating engine showed that injecting small amounts of highflammables content synthesis gas significantly improved combustion stability and enabled leaner engine operation resulting in over 44% reduction in NOx emissions. The actual NOx reduction that could be achieved in the field is expected to be engine specific, and in many cases may be even greater. RRFCS demonstrated that its synthesis gas generator could produce synthesis gas with the flammables content that was successfully used in the engine testing. An economic analysis of the synthesis gas approach estimates that its initial capital cost and yearly operating cost are less than half that of a competing NOx reduction technology, Selective Catalytic Reduction. The next step in developing the technology is an integrated test of the synthesis gas generator with an engine to obtain reliability data for system components and to confirm operating cost. RRFCS is actively pursuing opportunities to perform the integrated test. A successful integrated test would demonstrate the technology as a low-cost option to reduce NOx emissions from approximately 6,000 existing two-stroke, natural gas-fired reciprocating engines used on natural gas pipelines in North America. NOx emissions reduction made possible at a reasonable price by this synthesis gas technology, if implemented on 25% of these engines, would be on the order of 25,000 tons/year.

  17. Reduction potentials of total energy consumption and GHG emissions in Xiamen

    NASA Astrophysics Data System (ADS)

    Bin, C.; Cui, S.

    2009-12-01

    Urban areas contain 40% of the population and contribute 75% of the Chinese national economy. The 35 largest cities in China, which contain 18% of the population, contribute 40% of China’s energy uses and CO2 emissions. Therefore, an insight into energy consumption and quantification of emissions from urban areas are extremely important for identifying effects of energy-saving policies and finding solution to GHG emissions in urban centers. This paper applies the Long-range Energy Alternatives Planning (LEAP) system for modeling the total energy consumption and associated emissions from Xiamen city. Energy consumption under different sets of policy and technology options are analyzed for a time span of 2007-2020 and GHG emissions are estimated. Two scenarios have been designed to describe the future strategies relating to the development of Xiamen city. The ‘Business as Usual’ scenario is used as a baseline reference scenario, in which the government is assumed to do nothing to influence the long-term trends of urban energy demand. The ‘Integrated’ scenario is considered to be the most optimized case where a series of available reduction measures such as clean energy substitution, industrial energy conservation, combined heat and power generation, energy conservation in building, motor vehicle control and new and renewable energy development and utilization are assumed to be implemented. Energy demand and GHG emissions in Xiamen up to 2020 are estimated in these two scenarios. The total reduction potentials in the ‘Integrated’ scenario and the relative contribution rate of reduction potentials of each measure have been estimated.

  18. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  19. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  20. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  1. Interactive simulation and analysis of emission reduction systems in commercial boilers

    SciTech Connect

    Diachin, D.; Freitag, L.; Heath, D.; Herzog, J.; Plassmann, P.; Michels, W.

    1996-12-31

    In this paper the authors describe an interactive virtual environment developed to model an emission reduction system for commercial boilers. The interactive environment is used to optimize the performance of the reduction system through the spatial adjustment and spray reconfiguration of reagent injectors. They describe the three principal components of the system: a computational model for the particle dynamics, a three-dimensional display device and graphics environment, and the communication layer that allows the interaction of the user in the visualization environment with the computational model. Timing results for each component are given for three hardware configurations that demonstrate the real-time performance of this tool.

  2. Impact of pollutant emission reductions on summertime aerosol feedbacks: A case study over the PO valley

    NASA Astrophysics Data System (ADS)

    Carnevale, C.; Finzi, G.; Pederzoli, A.; Turrini, E.; Volta, M.; Ferrari, F.; Gianfreda, R.; Maffeis, G.

    2015-12-01

    This study presents an evaluation of the impact by future pollutant anthropogenic emission reductions on summertime aerosol feedbacks over the Po valley. The fully coupled on line model Wrf/Chem has been used to examine the air quality and meteorology response over the region to 2020 emission reductions with respect to a simulation base case (2013). Future changes in net short wave radiation flux (SW) are also analyzed. The model domain is a 6 × 6 km2 resolution grid over Northern Italy; the simulation period covers two summer months (July-August). The work is divided into two parts. In the first, model results for the Base Case simulation (BC) are evaluated by comparing Wrf/Chem output to surface observations provided by two monitoring networks. Approximately 25 sites belonging to the regional ARPA Lombardia Network are used for both chemistry (NO2, O3 and PM10 concentrations) and meteorology (wind speed and 2-meters temperature) evaluation; 4 stations part of the global AEROsol Robotic Network (AERONET) are used for the evaluation of Aerosol Optical Depth (AOD). In the second part, a Maximum Feasible Reduction (MFR) scenario at 2020 have been simulated for the same months; monthly direct, indirect and overall aerosols feedbacks for both BC and MFR have been computed and analyzed. The emission reductions in the MFR 2020 lead to a sensible change in the aerosol overall feedbacks for all variables; a drop of SW over the valley (cooling effect) is visible in both BC and MFR, but it is less significant in the MFR (-5 W m-2) compared to the BC (-45 W m-2). This difference is mainly due to the abatement of SO2 primary emissions, which leads to lower sulfates concentrations scattering radiation, thus mitigates the cooling effect and favors the warming. As SW is higher in the MFR, T2 also increases over land with respect to the BC (the cooling of -0.5 °C estimated in the Base Case almost disappears). The overall effects lead to an enhancement of PM10 concentration in

  3. 40 CFR Table 2 to Subpart Oooo of... - Required Minimum SO2 Emission Reduction Efficiency (Zc)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) , rounded to one decimal place. R = The sulfur emission reduction efficiency achieved in percent, carried to... sweetening unit, expressed as mole percent H2S (dry basis) rounded to one decimal place. Z = The minimum...) H2S content of acid gas (Y), % Sulfur feed rate (X), LT/D 2.0 ≤ X ≤ 5.0 5.0 300.0 Y ≥ 50 74.0...

  4. Dimension Reduction of Multivariable Optical Emission Spectrometer Datasets for Industrial Plasma Processes

    PubMed Central

    Yang, Jie; McArdle, Conor; Daniels, Stephen

    2014-01-01

    A new data dimension-reduction method, called Internal Information Redundancy Reduction (IIRR), is proposed for application to Optical Emission Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a semiconductor manufacturing environment, real-time spectral emission data is potentially very useful for inferring information about critical process parameters such as wafer etch rates, however, the relationship between the spectral sensor data gathered over the duration of an etching process step and the target process output parameters is complex. OES sensor data has high dimensionality (fine wavelength resolution is required in spectral emission measurements in order to capture data on all chemical species involved in plasma reactions) and full spectrum samples are taken at frequent time points, so that dynamic process changes can be captured. To maximise the utility of the gathered dataset, it is essential that information redundancy is minimised, but with the important requirement that the resulting reduced dataset remains in a form that is amenable to direct interpretation of the physical process. To meet this requirement and to achieve a high reduction in dimension with little information loss, the IIRR method proposed in this paper operates directly in the original variable space, identifying peak wavelength emissions and the correlative relationships between them. A new statistic, Mean Determination Ratio (MDR), is proposed to quantify the information loss after dimension reduction and the effectiveness of IIRR is demonstrated using an actual semiconductor manufacturing dataset. As an example of the application of IIRR in process monitoring/control, we also show how etch rates can be accurately predicted from IIRR dimension-reduced spectral data. PMID:24451453

  5. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  6. Reductions in aircraft particulate emissions due to the use of Fischer-Tropsch fuels

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Timko, M. T.; Ziemba, L. D.; Bulzan, D.; Corporan, E.; Herndon, S. C.; Howard, R.; Miake-Lye, R.; Thornhill, K. L.; Winstead, E.; Wey, C.; Yu, Z.; Anderson, B. E.

    2014-01-01

    The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January-February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer-Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel. Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg-1 for JP-8 to 1.2 mg kg-1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg-1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the

  7. Using oily wastewater emulsified fuel in boiler: energy saving and reduction of air pollutant emissions.

    PubMed

    Chen, Chun-Chi; Lee, Wen-Jhy

    2008-01-01

    The limited data for using emulsified oil have demonstrated its effectiveness in reducing flue gas pollutant emissions. The presence of a high concentration of toxic organic compounds in industrial wastewaters always presents significant problems. Therefore, this study was undertaken by using wastewater with COD of 9600 mg/L and total petroleum hydrocarbons-gasoline 440 mg/L for making an emulsified oil (wastewater content 20% with 0.1% surfactant) to evaluate the extent of reductions in both criteria pollutants and polycyclic aromatic hydrocarbons. For comparison, two other systems (heavy oil fuel and water-emulsified oil) were also conducted. The wastewater-emulsified oil fuel results in significant reductions in particulate matter (PM), NO(x), SO2, and CO as compared to heavy oil fuel and similar to those from water/oil emulsified fuel; for PM, it is better in wastewater-emulsified oil. The reductions of total PAH flue gas emissions are 38 and 30% for wastewater- and water-emulsified fuel, respectively; they are 63 and 44% for total BaP(eq), respectively. In addition to reducing flue gas pollutant emissions, the results also demonstrate that the use of wastewater-emulsified fuel in boiler operation provides several advantages: (1) safe disposal of industrial wastewater; and (2) energy savings of about 13%. Thus, wastewater/oil-emulsified fuel is highly suitable for use in boilers. PMID:18350907

  8. On the possibilities of reduction in emission caused by home tile stoves in Cracow

    SciTech Connect

    Szewczyk, W.

    1995-12-31

    The coal-fired tile stoves are still very popular in Poland. The estimated total number of such home stoves operated in Cracow reaches ca. 100 000. Operation of these stoves during the heating season belongs to the most significant sources of air pollution. Type and scale of emission of the most important pollutants, caused by coal combustion in home stoves in Cracow has been determined basing upon the investigations carried out at the laboratory of the Department of Power Engineering Machines and Devices, Academy of Mining and Metallurgy, Cracow, Poland within the American-Polish Program of Elimination of Low Emission Sources in Cracow. Further experiments included in this Program allowed to estimate the attainable efficiency of home tile stoves and possible reduction in pollutant emission resulting from their operation. A short discussion of these data and capacities is presented in this lecture.

  9. DEMONSTRATION OF AN ADVANCED INTEGRATED CONTROL SYSTEM FOR SIMULTANEOUS EMISSIONS REDUCTION

    SciTech Connect

    Suzanne Shea; Randhir Sehgal; Ilga Celmins; Andrew Maxson

    2002-02-01

    The primary objective of the project titled ''Demonstration of an Advanced Integrated Control System for Simultaneous Emissions Reduction'' was to demonstrate at proof-of-concept scale the use of an online software package, the ''Plant Environmental and Cost Optimization System'' (PECOS), to optimize the operation of coal-fired power plants by economically controlling all emissions simultaneously. It combines physical models, neural networks, and fuzzy logic control to provide both optimal least-cost boiler setpoints to the boiler operators in the control room, as well as optimal coal blending recommendations designed to reduce fuel costs and fuel-related derates. The goal of the project was to demonstrate that use of PECOS would enable coal-fired power plants to make more economic use of U.S. coals while reducing emissions.

  10. Black carbon and fine particle emissions in Finnish residential wood combustion: Emission projections, reduction measures and the impact of combustion practices

    NASA Astrophysics Data System (ADS)

    Savolahti, Mikko; Karvosenoja, Niko; Tissari, Jarkko; Kupiainen, Kaarle; Sippula, Olli; Jokiniemi, Jorma

    2016-09-01

    Residential wood combustion (RWC) is a major source of black carbon (BC) and PM2.5 emissions in Finland. Making a robust assessment of emissions on a national level is a challenge due to the varying heater technologies and the effect of users' combustion practices. In this paper we present an update of the emission calculation scheme for Finnish RWC, including technology-specific emission factors based on national measurements. Furthermore, we introduce a transparent method to assess the impact of poor combustion practices on emissions. Using a Finnish emission model, we assessed the emissions in 2000, 2010 and 2030, as well as the cost-efficiency of potential emission reduction measures. The results show that RWC is the biggest source of both PM2.5 and BC emissions in Finland, accounting for 37% and 55% of the total respective emissions. It will also remain the biggest source in the future, and it's role may become even more pronounced if wood consumption continues to increase. Sauna stoves cause the most emissions and also show the biggest potential for emission reductions. Informational campaigns targeted to improve heater users' combustion practices appear as a highly cost-efficient measure, although their impact on country-level emissions was estimated to be relatively limited.

  11. Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Wang, Siwen; Zhang, Qiang; Martin, Randall V.; Philip, Sajeev; Liu, Fei; Li, Meng; Jiang, Xujia; He, Kebin

    2015-11-01

    To evaluate the real reductions in sulfur dioxide (SO2) emissions from coal-fired power plants in China, Ozone Monitoring Instrument (OMI) remote sensing SO2 columns were used to inversely model the SO2 emission burdens surrounding 26 isolated power plants before and after the effective operation of their flue gas desulfurization (FGD) facilities. An improved two-dimensional Gaussian fitting method was developed to estimate SO2 burdens under complex background conditions, by using the accurate local background columns and the customized fitting domains for each target source. The OMI-derived SO2 burdens before effective FGD operation were correlated well with the bottom-up emission estimates (R = 0.92), showing the reliability of the OMI-derived SO2 burdens as a linear indicator of the associated source strength. OMI observations indicated that the average lag time period between installation and effective operation of FGD facilities at these 26 power plants was around 2 years, and no FGD facilities have actually operated before the year 2008. The OMI estimated average SO2 removal equivalence (56.0%) was substantially lower than the official report (74.6%) for these 26 power plants. Therefore, it has been concluded that the real reductions of SO2 emissions in China associated with the FGD facilities at coal-fired power plants were considerably diminished in the context of the current weak supervision measures.

  12. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

    SciTech Connect

    Kelly, Jarod C.; Sullivan, John L.; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle impacts associated with substituting lightweight materials for those currently found in light-duty passenger vehicles. We determine part-based energy use and greenhouse gas (GHG) emission ratios by collecting material substitution data from both the literature and automotive experts and evaluating that alongside known mass-based energy use and GHG emission ratios associated with material pair substitutions. Several vehicle parts, along with full vehicle systems, are examined for lightweighting via material substitution to observe the associated impact on GHG emissions. Results are contextualized by additionally examining fuel-cycle GHG reductions associated with mass reductions relative to the baseline vehicle during the use phase and also determining material pair breakeven driving distances for GHG emissions. The findings show that, while material substitution is useful in reducing vehicle weight, it often increases vehicle-cycle GHGs depending upon the material substitution pair. However, for a vehicle’s total life cycle, fuel economy benefits are greater than the increased burdens associated with the vehicle manufacturing cycle, resulting in a net total life-cycle GHG benefit. The vehicle cycle will become increasingly important in total vehicle life-cycle GHGs, since fuel-cycle GHGs will be gradually reduced as automakers ramp up vehicle efficiency to meet fuel economy standards.

  13. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions

    NASA Astrophysics Data System (ADS)

    Powell, Jon T.; Townsend, Timothy G.; Zimmerman, Julie B.

    2016-02-01

    Landfill disposal of municipal solid waste represents one of the largest anthropogenic global methane emission sources, and recent policy approaches have targeted significant reductions of these emissions to combat climate change in the US (ref. ). The efficacy of active gas collection systems in the US was examined by analysing performance data, including fire occurrence, from more than 850 landfills. A generalized linear model showed that the operating status of a landfill--open and actively receiving waste or closed--was the most significant predictor of collection system performance. Gas collection systems at closed landfills were statistically significantly more efficient (p < 0.001) and on average 17 percentage points more efficient than those at open landfills, but open landfills were found to represent 91% of all landfill methane emissions. These results demonstrate the clear need to target open landfills to achieve significant near-term methane emission reductions. This observation is underscored by landfill disposal rates in the US significantly exceeding previously reported national estimates, with this study reporting 262 million tonnes in the year 2012 compared with 122 million tonnes in 2012 as estimated by the US Environmental Protection Agency.

  14. [Research on contribution decomposition by industry to China's carbon intensity reduction and carbon emission growth].

    PubMed

    Jiang, Jing-Jing; Ye, Bin; Ji, Jun-Ping; Ma, Xiao-Ming

    2014-11-01

    The binding carbon intensity index and the pilot "cap-and-trade" emission trading scheme are two important approaches currently applied by China to mitigate its greenhouse gases emissions. It is of great significance to research the influence mechanism of related factors by industry on the dynamics of national carbon intensity and emission, not only for setting industry-specified intensity reduction target but also for setting industry coverage of the ETS. Two LMDI models were applied in this paper to decompose industry contributions to the changes of China's carbon intensity and carbon emission during the period of 1996-2010. Empirical results showed that: The decline of national carbon intensity was jointly determined by the changes of carbon intensities and the added value proportions of all industries, and the impact of industry carbon intensities was larger. The increase of national carbon emission was jointly determined by the changes of carbon intensities and the added value of all industries. The former had inhibitory effect whist the latter had decisive promoting effect. The five industries making the largest contribution to the changes of national carbon emission and carbon intensity included industries of electricity, nonmetal mineral, ferrous metal, transportation service, chemical materials, which were followed by the industries of agriculture, coal mining and processing, petroleum and natural gas extraction. Petroleum refining and coking industry and construction industry made small contribution to the decline of national carbon intensity, but made large contribution to the growth of national carbon emission. The contributions of service industries to national carbon emission growth showed a rising trend, especially those of transportation service industry, wholesaling, retailing and catering service industry. PMID:25639120

  15. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with

  16. Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.

    PubMed

    Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L

    2011-09-01

    This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. PMID:21719072

  17. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system.

    PubMed

    Haibin Han; Jisheng Long; Shude Li; Guangren Qian

    2010-04-01

    Electricity generation and greenhouse gas (GHG) reductions were researched by making comparisons between municipal solid waste (MSW) landfill and incineration systems with three different electricity generation efficiencies - 10%, 21%, and 24.7%. For MSW landfill systems, it is shown that the total electricity generation is 198,747 MWh, and the total GHG emission reduction is 1,386,081 tonne CO( 2) during a 21-year operation period. For incineration systems, the total electricity generation is 611,801 MWh, and the total GHG emission reduction is 1,339,158 tonne CO(2) during a 10-year operation period even if the electricity generation efficiency is only 10%. It is also shown that electricity generation increases quicker than the GHG emission reductions with the increase of electricity generation efficiency. However, incineration systems show great superiority in LFG utilisation and GHG emission reductions. PMID:20124321

  18. Black carbon emissions in gasoline exhaust and a reduction alternative with a gasoline particulate filter.

    PubMed

    Chan, Tak W; Meloche, Eric; Kubsh, Joseph; Brezny, Rasto

    2014-05-20

    Black carbon (BC) mass and solid particle number emissions were obtained from two pairs of gasoline direct injection (GDI) vehicles and port fuel injection (PFI) vehicles over the U.S. Federal Test Procedure 75 (FTP-75) and US06 Supplemental Federal Test Procedure (US06) drive cycles on gasoline and 10% by volume blended ethanol (E10). BC solid particles were emitted mostly during cold-start from all GDI and PFI vehicles. The reduction in ambient temperature had significant impacts on BC mass and solid particle number emissions, but larger impacts were observed on the PFI vehicles than the GDI vehicles. Over the FTP-75 phase 1 (cold-start) drive cycle, the BC mass emissions from the two GDI vehicles at 0 °F (-18 °C) varied from 57 to 143 mg/mi, which was higher than the emissions at 72 °F (22 °C; 12-29 mg/mi) by a factor of 5. For the two PFI vehicles, the BC mass emissions over the FTP-75 phase 1 drive cycle at 0 °F varied from 111 to 162 mg/mi, higher by a factor of 44-72 when compared to the BC emissions of 2-4 mg/mi at 72 °F. The use of a gasoline particulate filter (GPF) reduced BC emissions from the selected GDI vehicle by 73-88% at various ambient temperatures over the FTP-75 phase 1 drive cycle. The ambient temperature had less of an impact on particle emissions for a warmed-up engine. Over the US06 drive cycle, the GPF reduced BC mass emissions from the GDI vehicle by 59-80% at various temperatures. E10 had limited impact on BC emissions from the selected GDI and PFI vehicles during hot-starts. E10 was found to reduce BC emissions from the GDI vehicle by 15% at standard temperature and by 75% at 19 °F (-7 °C). PMID:24758145

  19. Modelling road dust emission abatement measures using the NORTRIP model: Vehicle speed and studded tyre reduction

    NASA Astrophysics Data System (ADS)

    Norman, M.; Sundvor, I.; Denby, B. R.; Johansson, C.; Gustafsson, M.; Blomqvist, G.; Janhäll, S.

    2016-06-01

    Road dust emissions in Nordic countries still remain a significant contributor to PM10 concentrations mainly due to the use of studded tyres. A number of measures have been introduced in these countries in order to reduce road dust emissions. These include speed reductions, reductions in studded tyre use, dust binding and road cleaning. Implementation of such measures can be costly and some confidence in the impact of the measures is required to weigh the costs against the benefits. Modelling tools are thus required that can predict the impact of these measures. In this paper the NORTRIP road dust emission model is used to simulate real world abatement measures that have been carried out in Oslo and Stockholm. In Oslo both vehicle speed and studded tyre share reductions occurred over a period from 2004 to 2006 on a major arterial road, RV4. In Stockholm a studded tyre ban on Hornsgatan in 2010 saw a significant reduction in studded tyre share together with a reduction in traffic volume. The model is found to correctly simulate the impact of these measures on the PM10 concentrations when compared to available kerbside measurement data. Importantly meteorology can have a significant impact on the concentrations through both surface and dispersion conditions. The first year after the implementation of the speed reduction on RV4 was much drier than the previous year, resulting in higher mean concentrations than expected. The following year was much wetter with significant rain and snow fall leading to wet or frozen road surfaces for 83% of the four month study period. This significantly reduced the net PM10 concentrations, by 58%, compared to the expected values if meteorological conditions had been similar to the previous years. In the years following the studded tyre ban on Hornsgatan road wear production through studded tyres decreased by 72%, due to a combination of reduced traffic volume and reduced studded tyre share. However, after accounting for exhaust

  20. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  1. Reconciling NOx emissions reductions and ozone trends in the U.S., 2002-2006

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Cohan, Daniel S.; Napelenok, Sergey L.

    2013-05-01

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in meteorological simulations, errors in emission magnitudes and changes, or inaccurate responses of simulated pollutant concentrations to emission changes. In this study, the Community Multiscale Air Quality (CMAQ) model is applied to simulate the ozone (O3) change after the NOx SIP Call and mobile emission controls substantially reduced nitrogen oxides (NOx) emissions in the eastern U.S. from 2002 to 2006. For both modeled and observed O3, changes in episode average daily maximal 8-h O3 were highly correlated (R2 = 0.89) with changes in the 95th percentile, although the magnitudes of reductions increased nonlinearly at high percentile O3 concentrations. Observed downward changes in mean NOx (-11.6 to -2.5 ppb) and 8-h O3 (-10.4 to -4.7 ppb) concentrations in metropolitan areas in the NOx SIP Call region were under-predicted by 31%-64% and 26%-66%, respectively. The under-predicted O3 improvements in the NOx SIP Call region could not be explained by adjusting for temperature biases in the meteorological input, or by considering uncertainties in the chemical reaction rate constants. However, the under-prediction in O3 improvements could be alleviated by 5%-31% by constraining NOx emissions in each year based on observed NOx concentrations. This demonstrates the crucial need to accurately characterize changes in precursor emissions when dynamically evaluating a model's ability to simulate O3 responses to those changes.

  2. Reductions in emissions from deforestation from Indonesia's moratorium on new oil palm, timber, and logging concessions.

    PubMed

    Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V; Margono, Belinda; Hansen, Matthew C; Baccini, Alessandro

    2015-02-01

    To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.1-11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia's moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241-615 MtCO2e (2.8-7.2%) lower without leakage, or 213-545 MtCO2e (2.5-6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30-7.50/tCO2e (mandatory) or $12.95-19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880

  3. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    PubMed

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern. PMID:25780953

  4. EAF Gas Waste Heat Utilization and Discussion of the Energy Conservation and CO2 Emissions Reduction

    NASA Astrophysics Data System (ADS)

    Yang, Ling-zhi; Zhu, Rong; Ma, Guo-hong

    2016-02-01

    As a large number of energy was taken away by the high temperature furnace gas during the EAF smelting process, a huge economic and environmental benefits would obtained to recycle and utilize. In this paper, the energy of the EAF was analyzed theoretically with the hot metal ratio of 50%. Combined with the utilization of the gas waste heat during the scrap preheating, electricity generation, production of steam and production of coal gas processes, the effect of the energy saving and emission was calculated with comprehensive utilization of the high temperature furnace gas. An optimal scheme for utilization of the waste heat was proposed based on the calculation. The results show that the best way for energy saving and carbon reduction is the production of coal gas, while the optimal scheme for waste heat utilization is combined the production of coal gas with the scrap preheating, which will save 170 kWh/t of energy and decrease 57.88 kg/t of carbon emission. As hot metal ratio in EAF steelmaking is often more than 50%, which will produce more EAF gas waste heat, optimizing EAF gas waste heat utilization will have more obvious effect on energy saving and emission reduction.

  5. Verifiable emission reductions in European urban areas with air-quality models.

    PubMed

    Skouloudis, A N; Rickerby, D G

    2016-07-18

    The first and second AutoOil programmes were conducted since 1992 as a partnership between the European Commission and the automobile and oil industries. These have introduced emission reductions in Europe based on numerical modelling for a target year. They aimed to identify the most cost-effective way to meet desired future air quality over the whole European Union. In their time, these regulatory efforts were considered an important step towards a new approach for establishing European emission limits. With this work, we review the effectiveness of forecasts carried out with numerical modelling and compare these with the actual measurements at the target year, which was the year 2010. Based on these comparisons and new technological innovations these methodologies can incorporate new sectorial assessments for improving the accuracy of the modelling forecasts and for examining the representativeness of emissions reductions, as well as for the simultaneous assessment of population exposure to cocktails of toxic substances under realistic climatological conditions. We also examined at the ten AutoOil domains the geographical generalisation of the forecasts for CO and NO2 at 1065 European urban areas on the basis of their population and the local population density. PMID:27117117

  6. Changes in inorganic fine particulate matter sensitivities to precursors due to large-scale US emissions reductions.

    PubMed

    Holt, Jareth; Selin, Noelle E; Solomon, Susan

    2015-04-21

    We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed. PMID:25816113

  7. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality.

    PubMed

    Lack, Daniel A; Cappa, Christopher D; Langridge, Justin; Bahreini, Roya; Buffaloe, Gina; Brock, Charles; Cerully, Kate; Coffman, Derek; Hayden, Katherine; Holloway, John; Lerner, Brian; Massoli, Paola; Li, Shao-Meng; McLaren, Robert; Middlebrook, Ann M; Moore, Richard; Nenes, Athanasios; Nuaaman, Ibraheem; Onasch, Timothy B; Peischl, Jeff; Perring, Anne; Quinn, Patricia K; Ryerson, Tom; Schwartz, Joshua P; Spackman, Ryan; Wofsy, Steven C; Worsnop, Doug; Xiang, Bin; Williams, Eric

    2011-10-15

    Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions. PMID:21910443

  8. Energy conservation and CO2 emission reductions due to recycling in Brazil.

    PubMed

    Pimenteira, C A P; Pereira, A S; Oliveira, L B; Rosa, L P; Reis, M M; Henriques, R M

    2004-01-01

    The present paper aims to make the energy saving potential provided by waste recycling in Brazil evident by pointing out more specifically the benefits regarding climate change mitigation. In this case, based on the energy saved due to the recycling process of an exogenous amount of waste, we have built two scenarios in order to show the potential for indirectly avoiding CO2 emissions in the country as a result of the recycling process. According to the scenario, 1 Mt and 3.5 Mt of CO2, respectively, would be avoided per year due to solid waste recycling. The international context for greenhouse gas emissions reduction, such as the United Nations Framework Convention on Climate Change and its Kyoto Protocol has been taken into account. PMID:15504666

  9. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  10. Scenario analysis for nutrient emission reduction in the European inland waters

    NASA Astrophysics Data System (ADS)

    Bouraoui, F.; Thieu, V.; Grizzetti, B.; Britz, W.; Bidoglio, G.

    2014-12-01

    Despite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective approach for reducing phosphorus emissions from human based activities. Concerning nitrogen, the highest reductions are obtained with the optimized use of organic manure.

  11. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China

    PubMed Central

    DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.

    2013-01-01

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471

  12. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China.

    PubMed

    Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V

    2011-03-15

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed. PMID:21348471

  13. Effect of additives on the reduction of PM2.5 emissions during pulverized coal combustion

    SciTech Connect

    Yoshihiko Ninomiya; Qunying Wang; Shuyin Xu; Katsuharu Mizuno; Isao Awaya

    2009-07-15

    Two bituminous coals used in coal-fired power plants were mixed with either Ca- or Mg-based chemical additives. Coals and the mixtures were burnt in a laboratory-scale drop tube furnace, respectively. The impact of the additives on the transformations of coal minerals, as well as on the emissions of particulate matter with an aerodynamic diameter smaller than 2.5 {mu}m (PM2.5), was investigated. The generated ash particles were collected using a cyclone combined with a low-pressure impactor. The physical and chemical properties of these ash particles were analyzed. The results indicate that the addition of chemical additives can affect the mineral transformation process, and thus, control the emissions of PM2.5 and PM1 during combustion. In particular, additives have a considerable impact on the particle size distribution and chemical composition of PM, wherein it improves the degree of coalescence of submicron and fine mineral particles, which reduces PM2.5 emissions. The effects of additive on the reduction of PM2.5 emissions depend on the type of coals being used. 17 refs., 8 figs., 3 tabs.

  14. Impacts of future climate change and emissions reductions on nitrogen and sulfur deposition over the United States

    NASA Astrophysics Data System (ADS)

    Tagaris, Efthimios; Liao, Kuo-Jen; Manomaiphiboon, Kasemsan; Woo, Jung-Hun; He, Shan; Amar, Praveen; Russell, Armistead G.

    2008-04-01

    Potential impacts of global climate change and emissions on the total nitrogen and sulfur deposition over the US are investigated. Three future years' annual average deposition rates (i.e., 2049-2051) are compared with historic ones (i.e., 2000-2002) accounting for existing US and individual State's emission regulations and strategies. Impacts of global climate change alone on regional nitrogen and sulfur deposition are small compared to impacts from emission control-related reductions for the projections used in this study. The combined effect of climate change and emission reductions is a decrease in the annual average nitrogen and sulfur deposition over the US. Reduced nitrogen species dominate oxidized nitrogen deposition in the future. Spatial distribution plots for both components show lower deposition rates in the future mainly in the middle and eastern States where reductions in NOx and SO2 emissions are more pronounced.

  15. [The response of forest ecosystems to reduction in industrial atmospheric emission in the Kola Subarctic].

    PubMed

    Koptsik, G N; Koptsik, S V; Smirnova, I E; Kudryavtseva, A D; Turbabina, K A

    2016-01-01

    In spite of reduction in atmospheric emission, current state of forest ecosystems within the impact zone of Severonickel enterprise still reflects the entire spectrum of anthropogenic digression stages. As the distance to the enterprise grows shorter, structural-functional changes in forest communities are manifested in dropping out of mosses and lichens, replacement of undershrub by Poaceae, worsening of timber stand and undergrowth conditions and their progressive dying-off, and, as a result, in forming of anthropogenic wastelands. Alterations of elemental composition of fir bark and needles due to exposure to pollutants consist in accumulation of nickel, copper, cobalt, arsenic, and sulfur along with depletion of calcium, magnesium, manganese, and zinc. According to the data obtained by correlation and multiparameter analyses, the accumulation of heavy metals in fir organs is closely related to the increasing of their concentration in root-inhabited soil layers as the distance to the pollution source is getting shorter. By comparison with the background fir grove, concentration of available compounds of nickel and copper in the ground litter of open fir-birch woodland near the enterprise increases by the factor of 30-60, reaching up 280 and 130 mg/kg respectively. With the increasing of anthropogenic stress, the ground litter becomes depleted of available calcium, magnesium, potassium, manganese, and zinc. For the first time, the coupled dynamics of vegetation and soil state in fir forests as a response to reduction in atmospheric emission is tracked back. The most distinguishable response to the reduction appears to be the development of small-leaved plants' young growth within the impact zone. For the last decade, concentration of nickel in fir needles and in ground litter has reduced by the factor of 1.2-2. As for copper, its concentration in needles has reduced by the factor of 2-4, though in ground litter remains the same. By comparison with the period of

  16. Assessment of PM10 pollution level and required source emission reduction in Belgrade area.

    PubMed

    Todorović, Marija N; Perišić, Mirjana D; Kuzmanoski, Maja M; Stojić, Andreja M; Sostarić, Andrej I; Mijić, Zoran R; Rajšić, Slavica F

    2015-01-01

    The aim of this study was to assess PM10 pollution level and estimate required source emission reduction in Belgrade area, the second largest urban center in the Balkans. Daily mass concentrations and trace metal content (As, Cd, Cr, Mn, Ni, Pb) of PM10 were evaluated for three air quality monitoring sites of different types: urban-traffic (Slavija), suburban (Lazarevac) and rural (Grabovac) under the industrial influence, during the period of 2012-13. Noncompliance with current Air Quality Standards (AQS) was noticeable: annual means were higher than AQS at Slavija and Lazarevac, and daily frequency threshold was exceeded at all three locations. Annual means of As at Lazarevac were about four times higher than the target concentration, which could be attributed to the proximity of coal-fired power plants, and dust resuspension from coal basin and nearby ash landfills. Additionally, levels of Ni and Cr were significantly higher than in other European cities. Carcinogenic health risk of inhabitants' exposure to trace metals was assessed as well. Cumulative cancer risk exceeded the upper limit of acceptable US EPA range at two sites, with Cr and As as the major contributors. To estimate source emission reduction, required to meet AQS, lognormal, Weibull and Pearson 5 probability distribution, functions (PDF) were used to fit daily PM10 concentrations. Based on the rollback equation and best fitting PDF, estimated reduction was within the range of 28-98%. Finally, the required reduction obtained using two-parameter exponential distribution suggested that risks associated to accidental releases of pollutants should be of greater concern. PMID:26252876

  17. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior.

    PubMed

    Kim, Ki-Wook; Lee, Byoung-Ho; Kim, Sumin; Kim, Hyun-Joong; Yun, Ju-Ho; Yoo, Seung-Eul; Sohn, Jong Ryeul

    2011-03-15

    Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20 L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26 mg/m(2)h to 4.11 mg/m(2)h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30 mg/m(2)h to 3.72 mg/m(2)h and from 0.19 mg/m(2)h to 8.74 mg/m(2)h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30 wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50 °C to 90 °C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70 °C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE). PMID:20739121

  18. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    In recognizing that energy markets and greenhouse gas emissions are significantly influences by local factors, this research examines opportunities for achieving realistic energy greenhouse gas emissions from U.S. cities through provisions of more sustainable infrastructure. Greenhouse gas reduction opportunities are examined through the lens of a public program administrator charged with reducing emissions given realistic financial constraints and authority over emissions reductions and energy use. Opportunities are evaluated with respect to traditional public policy metrics, such as benefit-cost analysis, net benefit analysis, and cost-effectiveness. Section 2 summarizes current practices used to estimate greenhouse gas emissions from communities. I identify improved and alternative emissions inventory techniques such as disaggregating the sectors reported, reporting inventory uncertainty, and aligning inventories with local organizations that could facilitate emissions mitigation. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. Finally, I highlight the need to integrate growth (population and economic) and business as usual implications (such as changes to electricity supply grids) into climate action planning. I demonstrate how these techniques could improve decision making when planning reductions, help communities set meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring. Section 3 evaluates the costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach explicitly evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings

  19. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Process vent requirements for processes using extended cookout as an epoxide emission reduction technique. 63.1427 Section 63.1427 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...

  20. ALTERNATIVES TO METHYL BROMIDE STUDIES IN GAINESVILLE 2001-2008: SUMMARY OF EMISSIONS REDUCTION STUDIES OF PRE-PLANT SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing emissions of pre-plant soil fumigants is important because EPA is proposing untreated buffer zones around fields for injection applications of current fumigants. Credits will be given to proven emissions reductions practices that would decrease the downwind off-site concentrations of fumiga...

  1. Alternatives to Methyl bromide studies in Gainesville 2001-2008: Summary of emissions reduction studies of pre-plant soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing emissions of pre-plant soil fumigants is important because EPA is proposing untreated buffer zones around fields for injection applications of current fumigants. Credits will be given to proven emissions reductions practices that would decrease the downwind off-site concentrations of fumiga...

  2. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Process vent requirements for processes using extended cookout as an epoxide emission reduction technique. 63.1427 Section 63.1427 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...

  3. Atmospheric impacts of black carbon emission reductions through the strategic use of biodiesel in California.

    PubMed

    Zhang, Hongliang; Magara-Gomez, Kento T; Olson, Michael R; Okuda, Tomoaki; Walz, Kenneth A; Schauer, James J; Kleeman, Michael J

    2015-12-15

    The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than ±5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC

  4. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    PubMed

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV. PMID:26393414

  5. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    PubMed Central

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  6. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-02-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.

  7. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-01-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  8. Photochemical modeling in California with two chemical mechanisms: model intercomparison and response to emission reductions.

    PubMed

    Cai, Chenxia; Kelly, James T; Avise, Jeremy C; Kaduwela, Ajith P; Stockwell, William R

    2011-05-01

    An updated version of the Statewide Air Pollution Research Center (SAPRC) chemical mechanism (SAPRC07C) was implemented into the Community Multiscale Air Quality (CMAQ) version 4.6. CMAQ simulations using SAPRC07C and the previously released version, SAPRC99, were performed and compared for an episode during July-August, 2000. Ozone (O3) predictions of the SAPRC07C simulation are generally lower than those of the SAPRC99 simulation in the key areas of central and southern California, especially in areas where modeled concentrations are greater than the federal 8-hr O3 standard of 75 parts per billion (ppb) and/or when the volatile organic compound (VOC)/nitrogen oxides (NOx) ratio is less than 13. The relative changes of ozone production efficiency (OPE) against the VOC/NOx ratio at 46 sites indicate that the OPE is reduced in SAPRC07C compared with SAPRC99 at most sites by as much as approximately 22%. The SAPRC99 and SAPRC07C mechanisms respond similarly to 20% reductions in anthropogenic VOC emissions. The response of the mechanisms to 20% NOx emissions reductions can be grouped into three cases. In case 1, in which both mechanisms show a decrease in daily maximum 8-hr O3 concentration with decreasing NOx emissions, the O3 decrease in SAPRC07C is smaller. In case 2, in which both mechanisms show an increase in O3 with decreasing NOx emissions, the O3 increase is larger in SAPRC07C. In case 3, SAPRC07C simulates an increase in O3 in response to reduced NOx emissions whereas SAPRC99 simulates a decrease in O3 for the same region. As a result, the areas where NOx controls would be disbeneficial are spatially expanded in SAPRC07C. Although the results presented here are valuable for understanding differences in predictions and model response for SAPRC99 and SAPRC07C, the study did not evaluate the impact of mechanism differences in the context of the U.S. Environmental Protection Agency's guidance for using numerical models in demonstrating air quality attainment

  9. Real-world energy use and emission rates for idling long-haul trucks and selected idle reduction technologies.

    PubMed

    Frey, H Christopher; Kuo, Po-Yao

    2009-07-01

    Long-haul freight trucks typically idle for 2000 or more hours per year, motivating interest in reducing idle fuel use and emissions using auxiliary power units (APUs) and shore-power (SP). Fuel-use rates are estimated based on electronic control unit (ECU) data for truck engines and measurements for APU engines. Engine emission factors were measured using a portable emission measurement system. Indirect emissions from SP were based on average utility grid emission factors. Base engine fuel use and APU and SP electrical load were analyzed for 20 trucks monitored for more than 1 yr during 2.76 million mi of activity within 42 U.S. states. The average base engine fuel use varied from 0.46 to 0.65 gal/hr. The average APU fuel use varied from 0.24 to 0.41 gal/hr. Fuel-use rates are typically lowest in mild weather, highest in hot or cold weather, and depend on engine speed (revolutions per minute [RPM]). Compared with the base engine, APU fuel use and emissions of carbon dioxide (CO2) and sulfur dioxide (SO2) are lower by 36-47%. Oxides of nitrogen (NO(x)) emissions are lower by 80-90%. Reductions in particulate matter (PM), carbon monoxide (CO), and hydrocarbon emissions vary from approximately 10 to over 50%. SP leads to more substantial reductions, except for SO2. The actual achievable reductions will be lower because only a fraction of base engine usage will be replaced by APUs, SP, or both. Recommendations are made for reducing base engine fuel use and emissions, accounting for variability in fuel use and emissions reductions, and further work to quantify real-world avoided fuel use and emissions. PMID:19645270

  10. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    NASA Astrophysics Data System (ADS)

    Kitikun, Medhawin

    This dissertation provides a new method of measuring efforts by manufacturing industries to reduce their emissions by curtailing electricity consumption. Employing comprehensive firm-level data from the National Manufacture Annual Surveys of South Korea and Thailand, I construct the measure from estimates of revenue functions by industry. The data consists of firms from more than 20 industries in each year from 1982 to 2005 for Korea and from 2001 to 2008 for Thailand. With a total of more than two million observations, I estimate revenue functions for each industry and year. Here, I use three inputs: number of employees(L), fixed asset stock(K), and electricity consumption(E) and two types of functional forms to represent each industry's revenue function. Second, under market competitive condition, I find that profit maximizing firms deviated their level of electricity usage in production from the profit-maximizing level during the time period for both countries, and I develop a theoretical framework to explain this behavior. Then, I tested the theory using my empirical models. Results support the notion of a hidden environmental value expressed by firms in the form of voluntary deviations from profit-maximizing levels of input demand. The measure used is the gap between the marginal revenue product of electricity and its price. This gap should increase with income, consistent with the Environmental Kuznets Curve literature. My current model provides considerable support for this proposition. Estimates indicate, in most industries, a negative relationship between per-capita income and emissions. In the final section of the dissertation, I consider the equitable distribution of emissions reduction burden under an international agreement such as the reduction effort, Kyoto Protocol. Both developed and developing countries have to cut their emissions to a specific reduction percentage target. Domestically, I present two extreme scenarios. In the first scenario

  11. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves. PMID:26574082

  12. Effect of power plant emission reductions on a nearby wilderness area: a case study in northwestern Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Ely, Daniel

    2013-01-01

    This study evaluates the effect of emission reductions at two coal-fired power plants in northwestern Colorado on a nearby wilderness area. Control equipment was installed at both plants during 1999–2004 to reduce SO2 and NOx emissions. One challenge was separating the effects of local from regional emissions, which also declined during the study period. The long-term datasets examined confirm that emission reductions had a beneficial effect on air and water quality in the wilderness. Despite a 75 % reduction in SO2 emissions, sulfate aerosols measured in the wilderness decreased by only 20 %. Because the site is relatively close to the power plants (2 to sulfate, particularly under conditions of low relative humidity, might account for this less than one-to-one response. On the clearest days, emissions controls appeared to improve visibility by about 1 deciview, which is a small but perceptible improvement. On the haziest days, however, there was little improvement perhaps reflecting the dominance of regional haze and other components of visibility degradation particularly organic carbon and dust. Sulfate and acidity in atmospheric deposition decreased by 50 % near the southern end of the wilderness of which 60 % was attributed to power plant controls and the remainder to reductions in regional sources. Lake water sulfate responded rapidly to trends in deposition declining at 28 lakes monitored in and near the wilderness. Although no change in the acid–base status was observed, few of the lakes appear to be at risk from chronic or episodic acidification.

  13. Feasibility of implementing new mobile and stationary source region-wide incentive-based emission reduction programs

    SciTech Connect

    Erbes, R.E.; Halvey, R.; Kuzmyak, R.; Latimer, D.; Margolis, J.; Rohr, M.; DeSantis, S.; Weiss, M.; Williams, R.

    1998-12-31

    It is recognized that, as facilities install increasingly stringent emission controls, further air quality gains at the individual facility level become incrementally smaller. Therefore, further reductions can be accomplished only through regional and multi-source sector emission reductions. It is also generally recognized that properly constructed and implemented incentive-based air quality management systems that rely on market forces rather than command and control forces, can achieve greater, cheaper, and faster emission reductions. This paper reports a study that examined the conceptual feasibility of instituting a multi-source sector, regional, incentive-based emission reduction system for the western United States. Both mobile source and stationary source reduction strategies, as well as inter-sector emission reduction trading, were examined. The study was based on lessons learned from implementation of similar systems in both local (e.g., the South Coast Air Quality Management District RECLAIM program) and regional settings (e.g., the Title IV Acid Rain Program). These lessons were then applied to the uniqueness of the West (e.g., widely dispersed stationary sources and widely dispersed concentrations of mobile sources, over 280 individual Native American lands and governments, multiple state and local agencies, numerous Class 1 areas, etc.) to examine the feasibility of a multi-source sector regional incentive-based air quality management program. The study concluded: Implementation of a region-wide incentive-based emissions reduction program in the West that incorporates both mobile and stationary sources appears to be feasible, although there are considerable regulatory, administrative, political, and stakeholder hurdles that must be overcome to implement such a program; and, There do not appear to be major legal or institutional barriers that would prevent the use of such programs in the West.

  14. Reduction of fine particle emissions from wood combustion with optimized condensing heat exchangers.

    PubMed

    Gröhn, Arto; Suonmaa, Valtteri; Auvinen, Ari; Lehtinen, Kari E J; Jokiniemi, Jorma

    2009-08-15

    In this study, we designed and built a condensing heat exchanger capable of simultaneous fine particle emission reduction and waste heat recovery. The deposition mechanisms inside the heat exchanger prototype were maximized using a computer model which was later compared to actual measurements. The main deposition mechanisms were diffusio- and thermophoresis which have previously been examined in similar conditions only separately. The obtained removal efficiency in the experiments was measured in the total number concentration and ranged between 26 and 40% for the given pellet stove and the heat exchanger. Size distributions and number concentrations were measured with a TSI Fast mobility particle sizer (FMPS). The computer model predicts that there exists a specific upper limit for thermo- and diffusiophoretic deposition for each temperature and water vapor concentration in the flue gas. PMID:19746724

  15. Diagnosing the uncertainty and detectability of emission reductions for REDD + under current capabilities: an example for Panama

    NASA Astrophysics Data System (ADS)

    Pelletier, Johanne; Ramankutty, Navin; Potvin, Catherine

    2011-04-01

    In preparation for the deployment of a new mechanism that could address as much as one fifth of global greenhouse gas emissions by reducing emissions from deforestation and forest degradation (REDD +), important work on methodological issues is still needed to secure the capacity to produce measurable, reportable, and verifiable emissions reductions from REDD + in developing countries. To contribute to this effort, we have diagnosed the main sources of uncertainty in the quantification of emission from deforestation for Panama, one of the first countries to be supported by the Forest Carbon Partnership Facility of the World Bank and by UN-REDD. Performing sensitivity analyses using a land-cover change emissions model, we identified forest carbon stocks and the quality of land-cover maps as the key parameters influencing model uncertainty. The time interval between two land-cover assessments, carbon density in fallow and secondary forest, and the accuracy of land-cover classifications also affect our ability to produce accurate estimates. Further, we used the model to compare emission reductions from five different deforestation reduction scenarios drawn from governmental input. Only the scenario simulating a reduction in deforestation by half succeeds in crossing outside the confidence bounds surrounding the baseline emission obtained from the uncertainty analysis. These results suggest that with current data, real emission reductions in developing countries could be obscured by their associated uncertainties. Ways of addressing the key sources of error are proposed, for developing countries involved in REDD + , for improving the accuracy of their estimates in the future. These new considerations confirm the importance of current efforts to establish forest monitoring systems and enhance capabilities for REDD + in developing countries.

  16. The Application Of Biofilter System For Reduction Of Methane Emissions From Modern Sanitary Landfills

    NASA Astrophysics Data System (ADS)

    Sung, K.; Park, S.

    2007-12-01

    Increased atmospheric concentrations of greenhouse gases (GHG) caused by anthropogenic activities has been related to global climate change. Methane, the second most important GHG after CO2, is 21 times more effective at trapping heat than CO2. Therefore, methane emission control is of utmost importance for global warming reduction. To minimize leachate production and protect groundwater resources, modern sanitary landfills are equipped with composite covers and gas collection systems. Methane from modern sanitary landfills is vented directly to the atmosphere, except for some of the largest landfills where it is recovered as energy and burned at the site. However, the efficiency of energy recovery systems in larger landfills is reduced as the amount of CH4 generated from landfill begins to decrease. In this study, the performance of a lab-scale model biofilter system was investigated to treat CH4 gas emitted from modern sanitary landfills by conducting batch and column experiments using landfill cover soil amended with earthworm cast as the filter bed medium. From the batch experiments to measure the influence of moisture content and temperature of the filter medium on CH4 removal capacity of a biofilter system, the optimum moisture content and temperature were found to be 10-15% by weight and 25-35°C, respectively. The column experiment was conducted to measure the influence of inlet CH4 concentration and CH4 loading rate on CH4 removal capacity of a biofilter system. As the inlet CH4 concentration decreased, the percentage of CH4 oxidized increased. Up to a CH4 loading rate of 2785 g CH4 m3 h- 1 (EBRT = 7.7 min), the CH4 removal efficiency of the biofilter was able to reach 100%. Based on the results of the study, the installation of a properly managed biofilter system should be capable of achieving a reduction in atmospheric CH4 emissions from modern sanitary landfills at low CH4 generation stage.

  17. Modeling carbon dioxide emissions reductions for three commercial reference buildings in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Lucich, Stephen M.

    In the United States, the buildings sector is responsible for approximately 40% of the national carbon dioxide (CO2) emissions. CO2 is created during the generation of heat and electricity, and has been linked to climate change, acid rain, a variety of health threats, surface water depletion, and the destruction of natural habitats. Building energy modeling is a powerful educational tool that building owners, architects, engineers, city planners, and policy makers can use to make informed decisions. The aim of this thesis is to simulate the reduction in CO2 emissions that may be achieved for three commercial buildings located in Salt Lake City, UT. The following two questions were used to guide this process: 1. How much can a building's annual CO2 emissions be reduced through a specific energy efficiency upgrade or policy? 2. How much can a building's annual CO2 emissions be reduced through the addition of a photovoltaic (PV) array? How large should the array be? Building energy simulations were performed with the Department of Energy's EnergyPlus software, commercial reference building models, and TMY3 weather data. The chosen models were a medium office building, a primary school, and a supermarket. Baseline energy consumption data were simulated for each model in order to identify changes that would have a meaningful impact. Modifications to the buildings construction and operation were considered before a PV array was incorporated. These modifications include (1) an improved building envelope, (2) reduced lighting intensity, and (3) modified HVAC temperature set points. The PV array sizing was optimized using a demand matching approach based on the method of least squares. The arrays tilt angle was optimized using the golden section search algorithm. Combined, energy efficiency upgrades and the PV array reduced building CO2 emissions by 58.6, 54.0, and 52.2% for the medium office, primary school, and supermarket, respectively. However, for these models, it was

  18. Reduction of PM emissions from specific sources reflected on key components concentrations of ambient PM10

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Monfort, E.; Alastuey, A.; Escrig, A.; Celades, I.; Miro, J. V.

    2009-04-01

    The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits (middle product for the manufacture of ceramic glaze) are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000 to 2007 taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems (mainly bag filters) were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/CE, leading to a marked decrease in PM10 emissions. On the other hand, ambient PM10 sampling was carried out from April 2002 to July 2008 at three urban sites and one suburban site of the area and a complete chemical analysis was made for about 35 % of the collected samples, by means of different techniques (ICP-AES, ICP-MS, Ion Chromatography, selective electrode and elemental analyser). The series of chemical composition of PM10 allowed us to apply a source contribution model (Principal Component Analysis), followed by a multilinear regression analysis, so that PM10 sources were identified and their contribution to bulk ambient PM10 was quantified on a daily basis, as well as the contribution to bulk ambient concentrations of the identified key components (Zn, As, Pb, Cs, Tl). The contribution of the sources identified as the manufacture and use of ceramic glaze components, including the manufacture of ceramic frits, accounted for more than 65, 75, 58, 53, and 53% of ambient Zn, As, Pb, Cs and Tl levels, respectively (with the exception of Tl contribution at one of the sites). The important emission reductions of these sources during the study period had an impact on ambient key components levels, such that there was a high

  19. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Suder, Kenneth

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are: a low NOx, fuel flexible combustor in partnership with Pratt Whitney; an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney and FAA; and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  20. Experimental study of the reduction of field emission by gas injection in vacuum for accelerator applications

    NASA Astrophysics Data System (ADS)

    Almaksour, K.; Kirkpatrick, M. J.; Dessante, Ph.; Odic, E.; Simonin, A.; de Esch, H. P. L.; Lepetit, B.; Alamarguy, D.; Bayle, F.; Teste, Ph.

    2014-10-01

    Field emission current from surfaces under vacuum and at high field strengths can be reduced by the injection of gas into the evacuated volume. In this paper, the effects of H2, He, N2, and Ar on this "dark" current emitted from a tungsten carbide point cathode for 2 cm gap distance is studied. Exposure to any of these gases at pressures on the order of 10-3-10-2 Pa was found to reduce the emission current by up to 90% with a time constant on the order of ˜1 minute as compared to the current at 10-6 Pa. The effect was strongly dependent on the gas nature, with Ar and N2 having larger effects at lower pressures than He and H2. The reduction was reversible, with the current increasing to near its original value with a time constant on the order of ˜1-10 minutes after pumping down. The effect of the gas remained in the absence of electric field, whatever the gas pressure. Mechanisms for these and related phenomena are discussed.

  1. Mamizu climate policy: an evaluation of Japanese carbon emissions reduction targets

    NASA Astrophysics Data System (ADS)

    Pielke, Roger A., Jr.

    2009-12-01

    This letter evaluates Japan's so-called 'Mamizu' climate policies proposed in mid-2009 in terms of the implied rates of decarbonization of the Japanese economy for short-term and long-term targets. The letter uses the Kaya identity to structure the evaluation, employing both a bottom up approach (based on projections of future Japanese population, economic growth, and technology) and a top down approach (deriving implied rates of decarbonization consistent with the targets and various rates of economic growth). Both approaches indicate that the Japanese economy would have to achieve rates of decarbonization of 2.6% to meet a 2020 target of reducing emissions by 15% below 2005 levels, and 5.0% to meet a 2050 target of an 80% reduction below 2005 levels. A target of 25% below 1990 emissions proposed by the opposition party (which subsequently formed a government following elections in August 2009) implies a rate of decarbonization of 4.6% annually to 2020. The letter argues that international criticism of Japanese Mamizu climate policy proposals as being too weak was unfounded, and if anything, the proposals may have been too ambitious. In either case, climate policy would be strengthened through the support of a diversity of approaches to decarbonization.

  2. Willingness to engage in energy conservation and CO2 emissions reduction: An empirical investigation

    NASA Astrophysics Data System (ADS)

    Eluwa, S. E.; Siong, H. C.

    2014-02-01

    Africa's response to climate change has largely been focused on adaptation rather than mitigation. The reason for this is based on the fact that the continent contributes very little to global CO2 emission. Again, mitigation policies like carbon tax as being practised in developed countries may be costly and difficult to implement in a continent where most economies are fragile. Using behavioural change as an adaptation approach, we examined the opinion of Ibadan city residents towards energy conservation and CO2 emissions reduction. A total of 822 respondents were sampled across the three residential neighbourhoods of the city. Results from the study showed that female and male respondents differed in their opinion towards energy conservation. However, the female respondents tended to record higher mean scores on majority of the items used to capture energy conservation behaviour than their male counterparts. Also, those with higher level of education seemed to be more conscious of the environmental consequences arising from energy use at home than those with lower educational background. However, very slight variations were recorded in the mean value score across the different age groups, those respondents above 50 years scored a bit higher than other age groups.

  3. Simultaneous reduction of particulate matter and NO(x) emissions using 4-way catalyzed filtration systems.

    PubMed

    Swanson, Jacob J; Watts, Winthrop F; Newman, Robert A; Ziebarth, Robin R; Kittelson, David B

    2013-05-01

    The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. PMID:23550802

  4. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  5. Environmentally Responsible Aviation: Propulsion Research to Enable Fuel Burn, Noise and Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Suder, Kenneth L.

    2015-01-01

    The NASA Environmentally Responsible Aviation (ERA) program is maturing technologies to enable simultaneous reduction of fuel burn, noise and emissions from an aircraft engine system. Three engine related Integrated Technology Demonstrations (ITDs) have been completed at Glenn Research Center in collaboration with Pratt Whitney, General Electric and the Federal Aviation Administration. The engine technologies being matured are a low NOx, fuel flexible combustor in partnership with Pratt Whitney, an ultra-high bypass, ducted propulsor system in partnership with Pratt Whitney FAA and high pressure ratio, front-stage core compressor technology in partnership with General Electric. The technical rationale, test configurations and overall results from the test series in each ITD are described. ERA is using system analysis to project the benefits of the ITD technologies on potential aircraft systems in the 2025 timeframe. Data from the ITD experiments were used to guide the system analysis assumptions. Results from the current assessments for fuel burn, noise and oxides of nitrogen emissions are presented.

  6. Emissions reduction and pyrolysis gas destruction in an acoustically driven dump combustor

    SciTech Connect

    Pont, G.; Cadou, C.P.; Karagozian, A.R.; Smith, O.I.

    1998-04-01

    The research described here focuses on the enhancement of hazardous waste and pyrolysis gas surrogate destruction and the reduction in nitric oxide and unburned hydrocarbon emissions in an acoustically resonant dump combustor. While several prior studies have focused on flowfield interrogation and hazardous waste surrogate destruction under conditions of natural acoustic excitation, the present study focuses on the device`s behavior under externally forced acoustic excitation. The effect of external forcing on hazardous waste surrogate destruction in the device was recently found to be significant, yielding destruction rates for the surrogate SF{sub 6} that increased by as much as four orders of magnitude with acoustic forcing at specific resonant modes. The present study also indicates a significant improvement in performance with external forcing at the same acoustic modes as those explored earlier. Emissions of NO are seen to decrease by nearly 60%, unburned hydrocarbons are seen to drop by over two orders of magnitude, and waste and pyrolysis gas surrogate destruction is seen to increase by nearly three orders of magnitude, all with external forcing at a specific acoustic mode of the device. The present observations further support the idea that acoustically resonant conditions can render the dump combustor device extremely efficient as well as highly controllable as a small-scale thermal treatment system.

  7. A Preliminary Investigation into the Mitigation of Plug-in Hybrid Electric Vehicle Tailpipe Emissions Through Supervisory Control Methods Part 2: Experimental Evaluation of Emissions Reduction Methodologies

    SciTech Connect

    Smith, David E; Lohse-Busch, Henning; Irick, David Kim

    2010-04-01

    Plug-in hybrid electric vehicle (PHEV) technologies have the potential for considerable petroleum consumption reductions, possibly at the expense of increased tailpipe emissions due to multiple 'cold' start events and improper use of the engine for PHEV specific operation. PHEVs operate predominantly as electric vehicles (EVs) with intermittent assist from the engine during high power demands. As a consequence, the engine can be subjected to multiple cold start events. These cold start events may have a significant impact on the tailpipe emissions due to degraded catalyst performance and starting the engine under less than ideal conditions. On current hybrid electric vehicles (HEVs), the first cold start of the engine dictates whether or not the vehicle will pass federal emissions tests. PHEV operation compounds this problem due to infrequent, multiple engine cold starts. A continuation of previous analytical work, this research, experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain architecture. Energy management strategies are evaluated and implemented in a virtual environment for preliminary assessment of petroleum displacement benefits and rudimentary drivability issues. This baseline vehicle supervisory control strategy, developed as a result of this assessment, is implemented and tested on actual hardware in a controlled laboratory environment over a baseline test cycle. Engine cold start events are aggressively addressed in the development of this control system, which leads to enhanced pre-warming and energy-based engine warming algorithms that provide substantial reductions in tailpipe emissions over the baseline supervisory control strategy. The flexibility of the PHEV powertrain allows for decreased emissions during any engine starting event through powertrain 'torque shaping' algorithms. The results of the research show that PHEVs do have the potential for substantial reductions in fuel consumption

  8. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  9. Novel approach to the reduction of pollution from low emission sources

    SciTech Connect

    Jozewicz, W.; Natschke, D.F.; Steer, J.; Smolka, A.

    1994-12-31

    The novel approach is described for the reduction of pollution from coal-fired low emission sources (LES) in Krakow, Poland. Coal-based clean burning briquettes will be manufactured and sold in Poland by a new US/Polish joint venture company formed as a result of a program sponsored by the US Department of Energy (DOE) and the US Agency for International Development (AID). Briquettes will be primarily distributed to the residential market; however, their potential for use in boiler houses and district heating systems will also be investigated. The key advantage of this project is that the level of pollutants (particulate matter, sulfur dioxide, and hydrocarbons) currently generated from the stove burning of coal in private houses and in small hand-fed boiler houses will be reduced by approximately 70 percent. This significant air pollution reduction will take place without disrupting traffic or requiring heavy investment like other air pollution methods considered. An additional benefit to the consumer is that there is absolutely no cost or investment by home or apartment owners.

  10. Reduction of methyl isothiocyanate atmospheric emissions after application of metam sodium by shank injection.

    PubMed

    Ajwa, Husein A; Sullivan, David A; Holdsworth, Mark T; Sullivan, Ryan D; Nelson, Shad D

    2013-11-01

    Regulatory initiatives in the United States have created the impetus to reassess application methods for metam sodium (sodium -methyldithiocarbamate), a methyl isothiocyanate (MITC) generator, to reduce flux to the atmosphere. This paper compares flux rates in the years 1990 through 2002 with flux rates based on four studies conducted during the period 2008 through 2010 in California, Michigan, Wisconsin, and Washington using current shank-injection/compaction methods. Up to a 100-fold reduction in peak flux rates and total loss of MITC have been observed. A combination of the following factors led to these reductions in flux: soil moisture goals set at 70% of the field water holding capacity; improved design of shank-injection systems to break up the voids after injection; effective shank compaction to further reduce volatilization; and the use of water sealing, where applicable. These refinements in the application methods for metam sodium provide a means to merge environmental and agricultural goals in the United States and in other countries that use metam sodium. This paper documents the reduced atmospheric emissions of MITC under commercial production conditions when applied using good agricultural practices. This research also shows that MITC flux can be effectively managed without the use of high barrier tarp material. PMID:25602406

  11. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms.

    PubMed

    Vanotti, M B; Szogi, A A; Vives, C A

    2008-01-01

    Trading of greenhouse gas (GHG) emission reductions is an attractive approach to help producers implement cleaner treatment technologies to replace current anaerobic lagoons. Our objectives were to estimate greenhouse gas (GHG) emission reductions from implementation of aerobic technology in USA swine farms. Emission reductions were calculated using the approved United Nations framework convention on climate change (UNFCCC) methodology in conjunction with monitoring information collected during full-scale demonstration of the new treatment system in a 4360-head swine operation in North Carolina (USA). Emission sources for the project and baseline manure management system were methane (CH4) emissions from the decomposition of manure under anaerobic conditions and nitrous oxide (N2O) emissions during storage and handling of manure in the manure management system. Emission reductions resulted from the difference between total project and baseline emissions. The project activity included an on-farm wastewater treatment system consisting of liquid-solid separation, treatment of the separated liquid using aerobic biological N removal, chemical disinfection and soluble P removal using lime. The project activity was completed with a centralized facility that used aerobic composting to process the separated solids. Replacement of the lagoon technology with the cleaner aerobic technology reduced GHG emissions 96.9%, from 4972 tonnes of carbon dioxide equivalents (CO2-eq) to 153 tonnes CO2-eq/year. Total net emission reductions by the project activity in the 4360-head finishing operation were 4776.6 tonnes CO2-eq per year or 1.10 tonnes CO2-eq/head per year. The dollar value from implementation of this project in this swine farm was US$19,106/year using current Chicago Climate Exchange trading values of US$4/t CO2. This translates into a direct economic benefit to the producer of US$1.75 per finished pig. Thus, GHG emission reductions and credits can help compensate for the

  12. Effects of a zeolite-selective catalytic reduction system on comprehensive emissions from a heavy-duty diesel engine.

    PubMed

    Liu, Z Gerald; Berg, Devin R; Schauer, James J

    2008-10-01

    The effects of a zeolite urea-selective catalytic reduction (SCR) aftertreatment system on a comprehensive spectrum of chemical species from diesel engine emissions were investigated in this study. Representative samples were collected with a newly developed source dilution sampling system after an aging process designed to simulate atmospheric dilution and cooling conditions. Samples were analyzed with established procedures and compared between the measurements taken from a baseline heavy-duty diesel engine and also from the same engine equipped with the exhaust aftertreatment system. The results have shown significant reductions for nitrogen oxides (NOx), carbon monoxide, total hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and organic carbon (OC) emissions. Additionally, less significant yet notable reductions were observed for particulate matter mass and metals emissions. Furthermore, the production of new species was not observed with the addition of the zeolite urea-SCR system joined with a downstream oxidation catalyst. PMID:18939772

  13. The effect of sulfur and nitrogen emission reductions on PM concentration in various smog regimes

    NASA Astrophysics Data System (ADS)

    van Dingenen, R.; Putaud, J.-P.; dell'Acqua, A.; Martins-Dos Santos, S.; Pozzoli, L.; Perrone, M. G.; Raes, F.

    2003-04-01

    Exceedance of limit values of fine particulate matter (PM10) is still commonly occurring in large parts of Europe. The same particles that cause adverse health effects, often lead to acidification and may play a role in global climate change. Chemical mass closure experiments have shown that most of the PM10 mass is made of secondary aerosol components (sulfate, nitrate, ammonium, carbonaceous matter). Efficient and cost-effective abatement strategies thus require an understanding of how much secondary aerosol is formed from emitted precursors. Nitrate, ammonium and probably many organic species occur in fact as semi-volatile compounds showing a complex gas-aerosol phase partitioning, depending on temperature, humidity and relative concentrations. Therefor, reduction measures will not necessarily lead to a linear response in PM loadings. Here we explore the link between emissions and ambient concentrations of the major ionic components of sub-micrometer particles for 3 real-world cases. We conducted 3 fields campaigns where both aerosol and gas phase of sulfate and semi-volatile nitrogen compounds (nitrate, ammonia) were measured simultaneously, with a high time resolution, and in an artifact-free set-up. The measurements were made in the following conditions: (urban background, winter, high nitrate/sulfate), (regional polluted, summer, high nitrate/sulfate) and (rural, summer, low nitrate/sulfate). The measured partitioning between aerosol and gas phase is reproduced by the aerosol thermodynamics equilibrium model ISORROPIA. The same model is then used to simulate the effect of reductions in total sulfate, nitrate and ammonia on PM. We find that the different smog regimes show very different responses to a given reduction scenario.

  14. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  15. Assessing 'Dangerous Climate Change': Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    NASA Technical Reports Server (NTRS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Demotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrum, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Conrad; VanSusteren, Lise; VonShuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of approx.500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of approx.1000 GtC, sometimes associated with 2 C global warming, would spur "slow" feedbacks and eventual warming of 3-4 C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels.

  16. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature

    PubMed Central

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J.; Hearty, Paul J.; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J.; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C.

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth’s measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today’s young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur “slow” feedbacks and eventual warming of 3–4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth’s energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  17. Assessing "dangerous climate change": required reduction of carbon emissions to protect young people, future generations and nature.

    PubMed

    Hansen, James; Kharecha, Pushker; Sato, Makiko; Masson-Delmotte, Valerie; Ackerman, Frank; Beerling, David J; Hearty, Paul J; Hoegh-Guldberg, Ove; Hsu, Shi-Ling; Parmesan, Camille; Rockstrom, Johan; Rohling, Eelco J; Sachs, Jeffrey; Smith, Pete; Steffen, Konrad; Van Susteren, Lise; von Schuckmann, Karina; Zachos, James C

    2013-01-01

    We assess climate impacts of global warming using ongoing observations and paleoclimate data. We use Earth's measured energy imbalance, paleoclimate data, and simple representations of the global carbon cycle and temperature to define emission reductions needed to stabilize climate and avoid potentially disastrous impacts on today's young people, future generations, and nature. A cumulative industrial-era limit of ∼500 GtC fossil fuel emissions and 100 GtC storage in the biosphere and soil would keep climate close to the Holocene range to which humanity and other species are adapted. Cumulative emissions of ∼1000 GtC, sometimes associated with 2°C global warming, would spur "slow" feedbacks and eventual warming of 3-4°C with disastrous consequences. Rapid emissions reduction is required to restore Earth's energy balance and avoid ocean heat uptake that would practically guarantee irreversible effects. Continuation of high fossil fuel emissions, given current knowledge of the consequences, would be an act of extraordinary witting intergenerational injustice. Responsible policymaking requires a rising price on carbon emissions that would preclude emissions from most remaining coal and unconventional fossil fuels and phase down emissions from conventional fossil fuels. PMID:24312568

  18. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    SciTech Connect

    King, Megan F.; Gutberlet, Jutta

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  19. Reduction of CO2 diffuse emissions from the traditional ceramic industry by the addition of Si-Al raw material.

    PubMed

    González, I; Barba-Brioso, C; Campos, P; Romero, A; Galán, E

    2016-09-15

    The fabrication of ceramics can produce the emission of several gases, denominated exhaust gases, and also vapours resulting from firing processes, which usually contain metals and toxic substances affecting the environment and the health of workers. Especially harmful are the diffuse emissions of CO2, fluorine, chlorine and sulphur from the ceramics industry, which, in highly industrialized areas, can suppose an important emission focus of dangerous effects. Concerning CO2, factories that use carbonate-rich raw materials (>30% carbonates) can emit high concentrations of CO2 to the atmosphere. Thus, carbonate reduction or substitution with other raw materials would reduce the emissions. In this contribution, we propose the addition of Al-shales to the carbonated ceramic materials (marls) for CO2 emission reduction, also improving the quality of the products. The employed shales are inexpensive materials of large reserves in SW-Spain. The ceramic bodies prepared with the addition of selected Al-shale to marls in variable proportions resulted in a 40%-65% CO2 emission reduction. In addition, this research underlines at the same time that the use of a low-price raw material can also contribute to obtaining products with higher added value. PMID:27233044

  20. Voluntary Agreements for Energy Efficiency or GHG EmissionsReduction in Industry: An Assessment of Programs Around the World

    SciTech Connect

    Price, Lynn

    2005-06-01

    Voluntary agreements for energy efficiency improvement and reduction of energy-related greenhouse gas (GHG) emissions have been a popular policy instrument for the industrial sector in industrialized countries since the 1990s. A number of these national-level voluntary agreement programs are now being modified and strengthened, while additional countries--including some recently industrialized and developing countries--are adopting these type of agreements in an effort to increase the energy efficiency of their industrial sectors.Voluntary agreement programs can be roughly divided into three broad categories: (1) programs that are completely voluntary, (2) programs that use the threat of future regulations or energy/GHG emissions taxes as a motivation for participation, and (3) programs that are implemented in conjunction with an existing energy/GHG emissions tax policy or with strict regulations. A variety of government-provided incentives as well as penalties are associated with these programs. This paper reviews 23 energy efficiency or GHG emissions reduction voluntary agreement programs in 18 countries, including countries in Europe, the U.S., Canada, Australia, New Zealand, Japan, South Korea, and Chinese Taipei (Taiwan) and discusses preliminary lessons learned regarding program design and effectiveness. The paper notes that such agreement programs, in which companies inventory and manage their energy use and GHG emissions to meet specific reduction targets, are an essential first step towards GHG emissions trading programs.

  1. Recent decreases in observed atmospheric concentrations of SO 2 in the Netherlands in line with emission reductions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Snijder, André; Hoogerbrugge, Ronald

    2011-10-01

    Concentrations of sulphur dioxide (SO 2) have been decreasing in the Netherlands since the beginning of the 1980s, as a result of national and international emission control measures. Since 2007, concentrations observed at the Rotterdam port and industrial areas have shown a large decrease that is in line with recent emission control measures. The average annual SO 2 concentration in 2010 was about 50% below 2000-2006 levels. This drop in concentration level corresponds with recent decreases in emissions of SO 2 from Dutch refineries and international sea shipping, on top of the gradual decreases in emissions from sources outside the Netherlands. The reduction in the emissions from refineries was initiated by a ceiling on the total amount of emissions from this sector, effective since 2010. Emission reductions from sea shipping result from two types of regulations to reduce the sulphur content in marine fuel, by 2010; regulation by the International Maritime Organization for sea ships on the North Sea, and by the EU directive for ships at berth in ports.

  2. Satellite-observed US power plant NOx emission reductions and their impact on air quality - article no. L22812

    SciTech Connect

    Kim, S.W.; Heckel, A.; McKeen, S.A.; Frost, G.J.; Hsie, E.Y.; Trainer, M.K.; Richter, A.; Burrows, J.P.; Peckham, S.E.; Grell, G.A.

    2006-11-29

    Nitrogen oxide (NOx) emissions resulting from fossil fuel combustion lead to unhealthy levels of near-surface ozone (O{sub 3}). One of the largest U.S. sources, electric power generation, represented about 25% of the U.S. anthropogenic NOx emissions in 1999. Here we show that space-based instruments observed declining regional NOx levels between 1999 and 2005 in response to the recent implementation of pollution controls by utility companies in the eastern U.S. Satellite-retrieved summertime nitrogen dioxide (NO{sub 2}) columns and bottom-up emission estimates show larger decreases in the Ohio River Valley, where power plants dominate NOx emissions, than in the northeast U.S. urban corridor. Model simulations predict lower O{sub 3} across much of the eastern U.S. in response to these emission reductions.

  3. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  4. CO{sub 2} emissions reduction using energy conservation measures: EPA Region IV`s experience

    SciTech Connect

    Berish, C.; Day, R.; Sibold, K.; Tiller, J.

    1994-12-31

    EPA Region 4 concluded in a recent comparative environmental risk evaluation that global climate change could substantially impact the Southeast. To address this risk, Region 4 developed an action plan to promote cost-effective pollution prevention and reduce greenhouse gas emissions, The regional plan contains programs that aye specific to Region 4 as well as geographic components of the national Climate Change Action Plan. Sources of carbon dioxide emissions were targeted for pollution prevention based on an energy model that allows the user to create energy efficiency scenarios in four sectors: residential, commercial, industrial, and transportation. Activities were selected using the modeled information on sector reduction potentials and resource and cost-effectiveness criteria. Given the high level of uncertainty associated with climate change projections, the programs developed are all cost effective, prevent pollution and/or result in sound adaptation policies. Currently, policy makers at national, regional, and local levels are deciding on what types of energy efficiency programs to implement. The region`s action plan is composed of several programs and approaches. The authors have developed implemented, and/or participated in the following: energy scenario model. EARTHWALK (residential energy conservation); energy conservation in affordable homes (new residences); Cool Communities Program (strategic tree planting and light colored surfaces); EPA`s Green Lights Program; WAVE (water conservation), the Plant Protection Center; QUEST TO SAVE THE EARTH (outreach tools); energy and water use planning for the 1996 Olympic Games, and planning for sea-level rise. Reviewing the practices of the above programs will be the focus of this paper.

  5. Energy use and emissions of idling-reduction options for heavy-duty diesel truacks a comparison.

    SciTech Connect

    Gaines, L. L.; Hartman, C. J. B.; Solomon, M. J.; Energy Systems; James Madison Univ.; Northeast States for Coordinated Air Use Management

    2009-01-01

    Pollution and energy analyses of different idling-reduction (IR) technologies have been limited to localized vehicle emissions and have neglected upstream energy use and regional emissions. In light of increasing regulation and government incentives for IR, this research analyzed the full fuel cycle effects of contemporary approaches. It compared emissions, energy use, and proximity to urban populations for nine alternatives, including idling, electrified parking spaces, auxiliary power units, and several combinations of these. It also compared effects for the United States and seven states: California, Florida, Illinois, New York, Texas, Virginia, and West Virginia. U.S. average emissions impacts from all onboard IR options were found to be lower than those from a 2007-compliant idling truck. Total particulate emissions from electrified parking spaces were found to be greater than those from a 2007 truck, but such emissions generally occurred in areas with low population density. The lowest energy use, carbon dioxide emissions, and nitrogen oxide emissions are seen with a direct-fired heater combined with electrified parking spaces for cooling, and the lowest particulate-matter emissions were found with a direct-fired heater combined with an onboard device for cooling. As expected, state-to-state variations in the climate and grid fuel mix influence the impacts of the full fuel cycle from IR technologies, and the most effective choice for one location may be less effective elsewhere.

  6. Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry

    SciTech Connect

    Martin, Nathan; Worrell, Ernst; Price, Lynn

    1999-08-01

    This paper reports on an in-depth analysis of the U.S. cement industry, identifying cost-effective energy efficiency measures and potentials. The authors assess this industry at the aggregate level (Standard Industrial Classification 324), which includes establishments engaged in manufacturing hydraulic cements, including Portland, natural, masonry, and pozzolana when reviewing industry trends and when making international comparisons. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Between 1970 and 1997, primary physical energy intensity for cement production (SIC 324) dropped 30%,from 7.9 GJ/t to 5.6 GJ/t, while carbon dioxide intensity due to fuel consumption (carbon dioxide emissions expressed in tons of carbon per ton cement) dropped 25%, from 0.16 tC/ton to 0.12 tC/ton. Carbon dioxide intensity due to fuel consumption and clinker calcination dropped 17%, from 0.29 tC/ton to 0.24 tC/ton. They examined 30 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. They constructed an energy conservation supply curve for U.S. cement industry which found a total cost-effective reduction of 0.6 GJ/ton of cement consisting of measures having a simple payback period of 3 years or less. This is equivalent to potential energy savings of 11% of 1994 energy use for cement making and a savings of 5% of total 1994 carbon dioxide emissions by the U.S. cement industry. Assuming the increased production of blended cement in the U.S., as is common in many parts of the world, the technical potential for energy efficiency improvement would not change considerably. However, the cost-effective potential, would increase to 1.1 GJ/ton cement or 18% of total energy use, and carbon dioxide emissions would be reduced by 16%.

  7. FUGITIVE EMISSION REDUCTIONS DUE TO THE USE OF ENCLOSED DOCTOR BLADE SYSTEMS IN THE FLEXOGRAPHIC AND ROTOGRAVURE PRINTING INDUSTRIES

    EPA Science Inventory

    The report gives results of a quantification of the level of fugitive emission reductions resulting from the use of enclosed doctor blade (EDB) systems in place of traditional ink feed systems at flexographic and rotogravure printing operations. An EDB system is an innovative ink...

  8. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a....

  9. 40 CFR Table 2 of Subpart Bbbbbbb... - Initial Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 2 Table 2 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate initial... (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less. a. Perform a...

  10. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a....

  11. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a....

  12. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a....

  13. 40 CFR Table 2 of Subpart Bbbbbbb... - Initial Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 2 Table 2 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate initial... (98 percent for new sources) or an outlet concentration of 0.03 gr/dscf or less. a. Perform a...

  14. 40 CFR Table 4 of Subpart Bbbbbbb... - Continuous Compliance Demonstration Methods With the Emission Reduction and PM Concentration...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methods With the Emission Reduction and PM Concentration Requirements 4 Table 4 of Subpart BBBBBBB of Part... Concentration Requirements If you are demonstrating compliance with the * * * You must demonstrate continuous...) or an outlet concentration of 0.03 gr/dscf or less Using one of the following monitoring methods:a....

  15. EMISSION REDUCTIONS AIMED AT IMPROVING AIR QUALITY: UNINTENDED CLIMATIC CONSEQUENCES AND THE EFFECT OF CLIMATE CHANGE ON THEIR SUCCESS

    EPA Science Inventory

    This work will provide improved understanding of the role of climate change, both in the recent past and future, on the success of pollutant control strategies, allowing for better planning and accountability of emission reductions. This work will also provide a quantitative a...

  16. Early stages of recovery of the damaged ecosystems near Sudbury following emission reductions

    SciTech Connect

    Gunn, J.M.

    1997-12-31

    Nearly a 90% reduction of SO{sub 2} and metal particulate emissions from Sudbury smelters has been achieved through industrial control programs during the past 25 years. Reappearance of epiphytic lichens provided some of the earliest evidence of biological recovery of severely damaged ecosystems in this area. Acid- and metal-contamination of soil, severe microclimate conditions, and the damaging effects of insect pests appear to delay recovery of vascular plants, which have been relatively slow to recover. Metal-tolerant grasses were the first species to invade the barren area. Between 1970 and 1989 conifers recolonized approximately 22% of the semi-barren area, an area that until recently consisted of a near-monoculture of stunted white birch. Significant improvements in water quality have occurred in many of the estimated 7,000 acid-damaged lakes, however, most affected lakes still have a pH below 6.0, and the lakes closest to the smelters have high concentrations of Cu and Ni. Many species of acid-sensitive phytoplankton, zooplankton and insects have invaded lakes where improvements have occurred. Recovery rates of aquatic ecosystems are also affected by various physical, chemical and biotic interactions.

  17. Can a breathing biocover system enhance methane emission reduction from landfill?

    PubMed

    Lu, Wen-Jing; Chi, Zi-Fang; Mou, Zi-Shen; Long, Yu-Yang; Wang, Hong-Tao; Zhu, Yong

    2011-07-15

    Based on the aerothermodynamic principles, a kind of breathing biocover system was designed to enhance O(2) supply efficiency and methane (CH(4)) oxidation capacity. The research showed that O(2) concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped with passive air venting system (MPAVS). When the simulated landfill gas SLFG flow was 771 g m(-3) d(-1) and 1028 g m(-3) d(-1), the O(2) concentration in MPAVS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH(4) oxidation rate was 100% when the SLFG flow rate was no more than 1285 g m(-3) d(-1), which also was confirmed by the mass balance calculations. The breathing biocover system with in situ self-oxygen supply can address the problem of O(2) insufficient in conventional landfill covers and/or biocovers. The proposed system presents high potential for improving CH(4) emission reduction in landfills. PMID:21592654

  18. Source reduction of VOC and hazardous organic emissions from wood furniture coatings

    SciTech Connect

    Huang, E.W.; McCrillis, R.C.

    1996-12-31

    Under US EPA sponsorship, AeroVironment, Inc. and Adhesives Coating Co. are teaming up to develop and demonstrate a wood furniture coating system containing no volatile organic compounds (VOCs) and no hazardous air pollutants (HAPs), making it less hazardous to use, and emitting no detectable VOCs and HAPs during curing, therefore contributing significantly to emission reduction. Earlier work on a new topcoat showed excellent performance characteristics in terms of adhesion, gloss value, dry time, hardness, organic solvents content, and chemical/stain resistance. The VOC contents of both the clear topcoat and the white pigmented topcoat were less than 10 g/L, the detection list of the test method (EPA Method 24). This coating`s performance and properties compared favorably with those of other low-VOC waterborne coatings. Currently, low-/no-VOC stain and sealer wood coatings are being developed so that a complete low-/no-VOC wood coating system will be available for public use. The compatibility of coating components (a stain and sealer) to go with the topcoat is currently being evaluated. The complete system will be demonstrated at several furniture plants. A marketing plan of the developed products is part of this demonstration project.

  19. Reduction of soot emissions by iron pentacarbonyl in isooctane diffusion flames

    SciTech Connect

    Kim, K.B.; Masiello, K.A.; Hahn, D.W.

    2008-07-15

    Light-scattering measurements, in situ laser-induced fluorescence, and thermophoretic sampling with transmission electron microscopy (TEM) analysis, were performed in laboratory isooctane diffusion flames seeded with 4000 ppm iron pentacarbonyl. These measurements allowed the determination of the evolution of the size, number density, and volume fraction of soot particles through the flame. Comparison to unseeded flame data provided a detailed assessment of the effects of iron addition on soot particle inception, growth, and oxidation processes. Iron was found to produce a minor soot-enhancing effect at early residence times, while subsequent soot particle growth was largely unaffected. It is concluded that primarily elemental iron is incorporated within the soot particles during particle inception and growth. However, iron addition was found to enhance the rate of soot oxidation during the soot burnout regime, yielding a two-thirds reduction in overall soot emissions. In situ spectroscopic measurements probed the transient nature of elemental iron throughout the flame, revealing significant loss of elemental iron, presumably to iron oxides, with increasing flame residence, suggesting catalysis of soot oxidation via iron oxide species. (author)

  20. Lifetime Reduction and Enhanced Emission of Single Photon Color Centers in Nanodiamond via Surrounding Refractive Index Modification

    PubMed Central

    Khalid, Asma; Chung, Kelvin; Rajasekharan, Ranjith; Lau, Desmond W.M.; Karle, Timothy J.; Gibson, Brant C.; Tomljenovic-Hanic, Snjezana

    2015-01-01

    The negatively-charged nitrogen vacancy (NV−) center in diamond is of great interest for quantum information processing and quantum key distribution applications due to its highly desirable long coherence times at room temperature. One of the challenges for their use in these applications involves the requirement to further optimize the lifetime and emission properties of the centers. Our results demonstrate the reduction of the lifetime of NV− centers, and hence an increase in the emission rate, achieved by modifying the refractive index of the environment surrounding the nanodiamond (ND). By coating the NDs in a polymer film, experimental results and numerical calculations show an average of 63% reduction in the lifetime and an average enhancement in the emission rate by a factor of 1.6. This strategy is also applicable for emitters other than diamond color centers where the particle refractive index is greater than the refractive index of the surrounding media. PMID:26109500

  1. Lifetime Reduction and Enhanced Emission of Single Photon Color Centers in Nanodiamond via Surrounding Refractive Index Modification

    NASA Astrophysics Data System (ADS)

    Khalid, Asma; Chung, Kelvin; Rajasekharan, Ranjith; Lau, Desmond W. M.; Karle, Timothy J.; Gibson, Brant C.; Tomljenovic-Hanic, Snjezana

    2015-06-01

    The negatively-charged nitrogen vacancy (NV-) center in diamond is of great interest for quantum information processing and quantum key distribution applications due to its highly desirable long coherence times at room temperature. One of the challenges for their use in these applications involves the requirement to further optimize the lifetime and emission properties of the centers. Our results demonstrate the reduction of the lifetime of NV- centers, and hence an increase in the emission rate, achieved by modifying the refractive index of the environment surrounding the nanodiamond (ND). By coating the NDs in a polymer film, experimental results and numerical calculations show an average of 63% reduction in the lifetime and an average enhancement in the emission rate by a factor of 1.6. This strategy is also applicable for emitters other than diamond color centers where the particle refractive index is greater than the refractive index of the surrounding media.

  2. Effects of emission reductions on organic aerosol in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.; Hidy, G. M.; Shaw, S.; Baumann, K.; Edgerton, E. S.

    2016-01-01

    Long-term (1999 to 2013) data from the Southeastern Aerosol Research and Characterization (SEARCH) network are used to show that anthropogenic emission reductions led to important decreases in fine-particle organic aerosol (OA) concentrations in the southeastern US On average, 45 % (range 25 to 63 %) of the 1999 to 2013 mean organic carbon (OC) concentrations are attributed to combustion processes, including fossil fuel use and biomass burning, through associations of measured OC with combustion products such as elemental carbon (EC), carbon monoxide (CO), and nitrogen oxides (NOx). The 2013 mean combustion-derived OC concentrations were 0.5 to 1.4 µg m-3 at the five sites operating in that year. Mean annual combustion-derived OC concentrations declined from 3.8 ± 0.2 µg m-3 (68 % of total OC) to 1.4 ± 0.1 µg m-3 (60 % of total OC) between 1999 and 2013 at the urban Atlanta, Georgia, site (JST) and from 2.9 ± 0.4 µg m-3 (39 % of total OC) to 0.7 ± 0.1 µg m-3 (30 % of total OC) between 2001 and 2013 at the urban Birmingham, Alabama (BHM), site. The urban OC declines coincide with reductions of motor vehicle emissions between 2006 and 2010, which may have decreased mean OC concentrations at the urban SEARCH sites by > 2 µg m-3. BHM additionally exhibits a decline in OC associated with SO2 from 0.4 ± 0.04 µg m-3 in 2001 to 0.2 ± 0.03 µg m-3 in 2013, interpreted as the result of reduced emissions from industrial sources within the city. Analyses using non-soil potassium as a biomass burning tracer indicate that biomass burning OC occurs throughout the year at all sites. All eight SEARCH sites show an association of OC with sulfate (SO4) ranging from 0.3 to 1.0 µg m-3 on average, representing ˜ 25 % of the 1999 to 2013 mean OC concentrations. Because the mass of OC identified with SO4 averages 20 to 30 % of the SO4 concentrations, the mean SO4-associated OC declined by ˜ 0.5 to 1 µg m-3 as SO4 concentrations decreased throughout the SEARCH region. The

  3. Estimating the climate and air quality benefits of aviation fuel and emissions reductions

    NASA Astrophysics Data System (ADS)

    Dorbian, Christopher S.; Wolfe, Philip J.; Waitz, Ian A.

    2011-05-01

    In this study we consider the implications of our current understanding of aviation climate impacts as it relates to the ratio of non-CO 2 to CO 2 effects from aviation. We take as inputs recent estimates from the literature of the magnitude of the component aviation impacts and associated uncertainties. We then employ a simplified probabilistic impulse response function model for the climate and a range of damage functions to estimate the ratio of non-CO 2 to CO 2 impacts of aviation for a range of different metrics, scientific assumptions, future background emissions scenarios, economic growth scenarios, and discount rates. We take cost-benefit analysis as our primary context and thus focus on integral metrics that can be related to damages: the global warming potential, the time-integrated change in surface temperature, and the net present value of damages. We also present results based on an endpoint metric, the global temperature change potential. These latter results would be more appropriate for use in a cost-effectiveness framework (e.g., with a well-defined policy target for the anthropogenic change in surface temperature at a specified time in the future). We find that the parameter that most influences the ratio of non-CO 2 to CO 2 impacts of aviation is the discount rate, or analogously the time window used for physical metrics; both are expressions of the relative importance of long-lived versus short-lived impacts. Second to this is the influence of the radiative forcing values that are assumed for aviation-induced cloudiness effects. Given the large uncertainties in short-lived effects from aviation, and the dominating influence of discounting or time-windowing, we find that the choice of metric is relatively less influential. We express the ratios of non-CO 2 to CO 2 impacts on a per unit fuel burn basis so that they can be multiplied by a social cost of carbon to estimate the additional benefits of fuel burn reductions from aviation beyond those

  4. Effect of power plant emission reductions on a nearby wilderness area: a case study in northwestern Colorado.

    PubMed

    Mast, M Alisa; Ely, Daniel

    2013-09-01

    This study evaluates the effect of emission reductions at two coal-fired power plants in northwestern Colorado on a nearby wilderness area. Control equipment was installed at both plants during 1999-2004 to reduce SO2 and NOx emissions. One challenge was separating the effects of local from regional emissions, which also declined during the study period. The long-term datasets examined confirm that emission reductions had a beneficial effect on air and water quality in the wilderness. Despite a 75 % reduction in SO2 emissions, sulfate aerosols measured in the wilderness decreased by only 20 %. Because the site is relatively close to the power plants (<75 km), the slow rate of conversion of SO2 to sulfate, particularly under conditions of low relative humidity, might account for this less than one-to-one response. On the clearest days, emissions controls appeared to improve visibility by about 1 deciview, which is a small but perceptible improvement. On the haziest days, however, there was little improvement perhaps reflecting the dominance of regional haze and other components of visibility degradation particularly organic carbon and dust. Sulfate and acidity in atmospheric deposition decreased by 50 % near the southern end of the wilderness of which 60 % was attributed to power plant controls and the remainder to reductions in regional sources. Lake water sulfate responded rapidly to trends in deposition declining at 28 lakes monitored in and near the wilderness. Although no change in the acid-base status was observed, few of the lakes appear to be at risk from chronic or episodic acidification. PMID:23355020

  5. The effectiveness of policy on consumer choices for private road passenger transport emissions reductions in six major economies

    NASA Astrophysics Data System (ADS)

    Mercure, J.-F.; Lam, A.

    2015-06-01

    The effectiveness of fiscal policy to influence vehicle purchases for emissions reductions in private passenger road transport depends on its ability to incentivise consumers to make choices oriented towards lower emissions vehicles. However, car purchase choices are known to be strongly socially determined, and this sector is highly diverse due to significant socio-economic differences between consumer groups. Here, we present a comprehensive dataset and analysis of the structure of the 2012 private passenger vehicle fleet-years in six major economies across the World (UK, USA, China, India, Japan and Brazil) in terms of price, engine size and emissions distributions. We argue that choices and aggregate elasticities of substitution can be predicted using this data, enabling us to evaluate the effectiveness of potential fiscal and technological change policies on fleet-year emissions reductions. We provide tools to do so based on the distributive structure of prices and emissions in segments of a diverse market, both for conventional as well as unconventional engine technologies. We find that markets differ significantly between nations, and that correlations between engine sizes, emissions and prices exist strongly in some markets and not strongly in others. We furthermore find that markets for unconventional engine technologies have patchy coverages of varying levels. These findings are interpreted in terms of policy strategy.

  6. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  7. Effects of idle reduction technologies on real world fuel use and exhaust emissions of idling long-haul trucks.

    PubMed

    Frey, H Christopher; Kuo, Po-Yao; Villa, Charles

    2009-09-01

    Idling long-haul freight tucks may consume nearly one billion gallons of diesel fuel per year in the U.S. There is a need for real-world data by which to quantify avoided fuel use and emissions attributable to idle reduction techniques of auxiliary power units (APUs) and shore-power (SP). Field data were obtained from 20 APU-equipped and SP-compatible trucks observed during 2.8 million miles of travel in 42 states. Base engine fuel use and emission rates varied depending on ambient temperature. APU and SP energy use and emission rates varied depending on electrical load. APUs reduced idling fuel use and CO2 emissions for single and team drivers by 22 and 5% annually, respectively. SP offers greater reductions in energy use of 48% for single drivers, as well as in emissions, except for SO2. APUs were cost-effective for single drivers with a large number of APU usage hours per year, but not for team drivers or for single drivers with low APU utilization rates. The findings support more accurate assessments of avoided fuel use and emissions, and recommendations to encourage greater APU utilization by single drivers and to further develop infrastructure for SP. PMID:19764263

  8. The impacts of electricity dispatch protocols on the emission reductions due to wind power and carbon tax.

    PubMed

    Yu, Yang; Rajagopal, Ram

    2015-02-17

    Two dispatch protocols have been adopted by electricity markets to deal with the uncertainty of wind power but the effects of the selection between the dispatch protocols have not been comprehensively analyzed. We establish a framework to compare the impacts of adopting different dispatch protocols on the efficacy of using wind power and implementing a carbon tax to reduce emissions. We suggest that a market has high potential to achieve greater emission reduction by adopting the stochastic dispatch protocol instead of the static protocol when the wind energy in the market is highly uncertain or the market has enough adjustable generators, such as gas-fired combustion generators. Furthermore, the carbon-tax policy is more cost-efficient for reducing CO2 emission when the market operates according to the stochastic protocol rather than the static protocol. An empirical study, which is calibrated according to the data from the Electric Reliability Council of Texas market, confirms that using wind energy in the Texas market results in a 12% CO2 emission reduction when the market uses the stochastic dispatch protocol instead of the 8% emission reduction associated with the static protocol. In addition, if a 6$/ton carbon tax is implemented in the Texas market operated according to the stochastic protocol, the CO2 emission is similar to the emission level from the same market with a 16$/ton carbon tax operated according to the static protocol. Correspondingly, the 16$/ton carbon tax associated with the static protocol costs 42.6% more than the 6$/ton carbon tax associated with the stochastic protocol. PMID:25607824

  9. [Discussion on reduction potential of CH4 emission intensity for early off-take practice of grazing yak].

    PubMed

    Wang, Shi-Ping; Wilkes, Andreas; Wang, Ya-Yun; Bai, Ling

    2014-08-01

    The case study preliminarily compared the CH4 reduction potential and CH4 emission intensity of 7 year-old and 4 year-old grazing yak after early off-take practice based on the 2006 IPCC GHG inventory guidelines and under the premise of equal herbage consumption. Our results showed that the total CH4 emission was greater by about 86.3 kg for 2.1 4-year yaks compared with 7 years old yak during their life assuming that their total herbage consumption was the same, because total herbage consumption for a 7-year yak was equal to that of 2.1 4-year yaks. However, CH4 emission per unit body weight (1.374 kg x kg(-1)) for a 7-year yak (i. e. emission intensity) was higher than that of 2.1 4-year yaks (0.973 kg x kg(-1)) because total body weight of 2.1 4-year yaks was higher by 192 kg than that of a 7-year yak. According to CH4 emission intensity, change of the early off-take practice from 7-year to 4-year yak could reduce 77 kg CH4 if producing 192 kg body weight through 2.1 4-year yaks compared with a 7-year yak, i. e. reduction potential was about 1 600 kg CO2 equivalent under the same consuming forage. Therefore, for grassland-based animal husbandry, early off-take practice for grazing animals had a great reduction potential in the intensity of greenhouse gases (GHGs) emissions per unit output rather than total emissions of GHGs. PMID:25338403

  10. Reduction of CO2 and orbital debris: can CO2 emission trading principles be applied to debris reduction?

    NASA Astrophysics Data System (ADS)

    Orlando, Giovanni; Kinnersley, Mark; Starke, Juergen; Hugel, Sebastian; Hartner, Gloria; Singh, Sanjay; Loubiere, Vincent; Staebler, Dominik-Markus; O'Brien-Organ, Christopher; Schwindt, Stefan; Serreau, Francois; Sharma, Mohit

    In the past years global pollution and the specific situation of global warming changes have been strongly influencing public opinion and thus obliged politicians to initiate/ negotiate in-ternational agreements to control, avoid or at least reduce the impact of CO2 emissions e.g. The Kyoto Protocol (1997) and the International Copenhagen conference on Climate Change (2009). In the orbital debris area the collision between the Iridium33 and Cosmos 2251 satel-lites in 2009 has again pushed to the forefront the discussion of the space pollution by space debris and the increasing risk of critical and catastrophic events during the nominal life time of space objects. It is shown by simulations that for Low Earth Orbits the critical debris situation is already achieved and the existing space objects will probably produce sufficient space debris elements -big enough -to support the cascade effect (Kessler Syndrome). In anal-ogy with CO2 emissions, potential recommendations / regulations to reduce the production of Space Debris or its permanence in orbit, are likely to open new markets involving Miti-gation and Removal of Space Debris. The principle approach for the CO2 emission trading model will be investigated and the applicability for the global space debris handling will be analysed. The major differences of the two markets will be derived and the consequences in-dicated. Potential alternative solutions will be proposed and discussed. For the example of the CO2 emission trading principles within EU and worldwide legal conditions for space debris (national / international laws and recommendations) will be considered as well as the commer-cial approach from the controlled situation of dedicated orders to a free / competitive market in steps. It is of interest to consider forms of potential industrial organisations and interna-tional co-operations to react on a similar architecture for the debris removal trading including incentives and penalties for the different

  11. Reduction of ruminant methane emissions - a win-win-win opportunity for business, development, and the environment

    SciTech Connect

    Livingston, R.

    1997-12-31

    This paper describes research efforts of The Global Livestock Producers Program (GLPP) in establishing self-sustaining enterprises for cost-effective technologies (i.e., animal nutrition and genetic improvement) and global methane emissions reductions in developing world nations. The US Environmental Protection Agency has funded several studies to examine the possibilities of reducing ruminant methane emissions in India, Tanzania, Bangladesh, and Brazil. The results of the studies showed that: (1) many developing countries` production systems are inefficient, and (2) great potential exists for decreasing global methane emissions through increasing animal productivity. From this effort, the GLPP established livestock development projects in India, Zimbabwe, and Tanzania, and is developing projects for Bangladesh, Nepal, and Brazil. The GLPP has developed a proven methodology for assessing ruminant methane and incorporating methane emissions monitoring into viable projects.

  12. A Consideration on Service Business Model for Saving Energy and Reduction of CO2 Emissions Using Inverters

    NASA Astrophysics Data System (ADS)

    Kosaka, Michitaka; Yabutani, Takashi

    This paper considers the effectiveness of service business approach for reducing CO2 emission. “HDRIVE” is a service business using inverters to reduce energy consumption of motor drive. The business model of this service is changed for finding new opportunities of CO2 emission reduction by combining various factors such as financial service or long-term service contract. Risk analysis of this business model is very important for giving stable services to users for long term. HDRIVE business model is found to be suitable for this objective. This service can be applied to the industries such as chemical or steel industry effectively, where CO2 emission is very large, and has the possibility of creating new business considering CDM or trading CO2 emission right. The effectiveness of this approach is demonstrated through several examples in real business.

  13. Sensitivity of Surface Air Quality and Global Mortality to Global, Regional, and Sectoral Black Carbon Emission Reductions

    NASA Astrophysics Data System (ADS)

    Anenberg, S.; Talgo, K.; Dolwick, P.; Jang, C.; Arunachalam, S.; West, J.

    2010-12-01

    Black carbon (BC), a component of fine particulate matter (PM2.5) released during incomplete combustion, is associated with atmospheric warming and deleterious health impacts, including premature cardiopulmonary and lung cancer mortality. A growing body of literature suggests that controlling emissions may therefore have dual benefits for climate and health. Several studies have focused on quantifying the potential impacts of reducing BC emissions from various world regions and economic sectors on radiative forcing. However, the impacts of these reductions on human health have been less well studied. Here, we use a global chemical transport model (MOZART-4) and a health impact function to quantify the surface air quality and human health benefits of controlling BC emissions. We simulate a base case and several emission control scenarios, where anthropogenic BC emissions are reduced by half globally, individually in each of eight world regions, and individually from the residential, industrial, and transportation sectors. We also simulate a global 50% reduction of both BC and organic carbon (OC) together, since they are co-emitted and both are likely to be impacted by actual control measures. Meteorology and biomass burning emissions are for the year 2002 with anthropogenic BC and OC emissions for 2000 from the IPCC AR5 inventory. Model performance is evaluated by comparing to global surface measurements of PM2.5 components. Avoided premature mortalities are calculated using the change in PM2.5 concentration between the base case and emission control scenarios and a concentration-response factor for chronic mortality from the epidemiology literature.

  14. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    NASA Astrophysics Data System (ADS)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  15. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: a case study of Ribeirão Pires, Brazil.

    PubMed

    King, Megan F; Gutberlet, Jutta

    2013-12-01

    Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions. PMID:24011434

  16. Effectiveness of selective catalytic reduction systems on reducing gaseous emissions from an engine using diesel and biodiesel blends.

    PubMed

    Borillo, Guilherme C; Tadano, Yara S; Godoi, Ana F L; Santana, Simone S M; Weronka, Fernando M; Penteado Neto, Renato A; Rempel, Dennis; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Potgieter, Johannes H; Godoi, Ricardo H M

    2015-03-01

    The aim of this investigation was to quantify organic and inorganic gas emissions from a four-cylinder diesel engine equipped with a urea selective catalytic reduction (SCR) system. Using a bench dynamometer, the emissions from the following mixtures were evaluated using a Fourier transform infrared (FTIR) spectrometer: low-sulfur diesel (LSD), ultralow-sulfur diesel (ULSD), and a blend of 20% soybean biodiesel and 80% ULSD (B20). For all studied fuels, the use of the SCR system yielded statistically significant (p < 0.05) lower NOx emissions. In the case of the LSD and ULSD fuels, the SCR system also significantly reduced emissions of compounds with high photochemical ozone creation potential, such as formaldehyde. However, for all tested fuels, the SCR system produced significantly (p < 0.05) higher emissions of N2O. In the case of LSD, the NH3 emissions were elevated, and in the case of ULSD and B20 fuels, the non-methane hydrocarbon (NMHC) and total hydrocarbon of diesel (HCD) emissions were significantly higher. PMID:25634131

  17. Neural network based supervisory & closed loop controls for NOx emission reductions and heat rate improvement

    SciTech Connect

    Radl, B.J.; Corfman, D.; Kish, B.

    1995-12-31

    This paper discusses the operational experience gained from installing a neural network based supervisor setpoint control system for selected combustion parameters at Penn Power`s New Castle station. The primary goal of the program is to reduce NOx emissions while maintaining or improving heat rate. The program was jointly funded by Ohio Edison, U.S. Department of Energy (DOE) and Pegasus Technologies Corp. The target power station, Penn Power`s New Castle Unit 5, is a 1950`s vintage Babcock & Wilcox wall fired furnace with gross generation capacity of 150 MW. Before installation of the neural network system (NeuSIGHT), NOx averaged 0.75 to 0.80 lbs/mbtu at full load conditions. Previous testing reduced this from 1.0 lbs/mbtu under normal operating conditions. To meet the new Pennsylvania DER limits, which set an absolute tonnage limit on NOx, and operate for a full year, a further NOx reduction of 20% was required. The control system setup interfaced a Unix workstation to a Bailey Controls N90 DCS. The neural network and data collection/processing system resided on the workstation. New setpoints were determined by the neural network periodically. These setpoints were constrained within existing control system limits. The objective was to model the multi-dimensional and non-linear problem of NOx formation in the furnace with a neural network. Once modeled the neural network performed many {open_quote}what if{close_quote} simulations to optimize setpoints for the current operating conditions. To keep up with changes in operating conditions the neural network was set to continually learn from the most recent set of measurements. Conditioning algorithms for the input data and output setpoints were developed to handle the inherently {open_quote}noisy{close_quote} input data and to provide stable output recommendations. Test results and parameters used for combustion optimization are summarized in this paper.

  18. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    SciTech Connect

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    2015-06-01

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiency measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.

  19. Measurements of black and organic carbon emission factors for household coal combustion in China: implication for emission reduction.

    PubMed

    Chen, Yingjun; Zhi, Guorui; Feng, Yanli; Liu, Dongyan; Zhang, Gan; Li, Jun; Sheng, Guoying; Fu, Jiamo

    2009-12-15

    Household coal combustion is considered as the greatest emission source for black carbon (BC) and an important source for organic carbon (OC) in China. However, measurements on BC and OC emission factors (EF(BC) and EF(OC)) are still scarce, which result in large uncertainties in emission estimates. In this study, a detailed data set of EF(BC) and EF(OC) for household coal burning was presented on the basis of 38 coal/stove combination experiments. These experiments included 13 coals with a wide coverage of geological maturity which were tested in honeycomb-coal-briquette and raw-coal-chunk forms in three typical coal stoves. Averaged values of EF(BC) are 0.004 and 0.007 g/kg for anthracite in briquette and chunk forms and 0.09 and 3.05 g/kg for bituminous coal, respectively; EF(OC) are 0.06 and 0.10 g/kg for anthracite and 3.74 and 5.50 g/kg for bituminous coal in both forms, respectively. Coal maturity was found to be the most important influencing factor relative to coal's burning forms and the stove's burning efficiency, and when medium-volatile bituminous coals (MVB) are excluded from use, averaged EF(BC) and EF(OC) for bituminous coal decrease by 50% and 30%, respectively. According to these EFs, China's BC and OC emissions from the household sector in 2000 were 94 and 244 gigagrams (Gg), respectively. Compared with previous BC emission estimates for this sector (e.g., 465 Gg by Ohara et al., Atmos. Chem. Phys. 2007, 7, 4419-4444), a dramatic decrease was observed and was mainly attributed to the update of EFs. As suggested by this study, if MVB is prohibited as household fuel together with further promotion of briquettes, BC and OC emissions in this sector will be reduced by 80% and 34%, respectively, and then carbonaceous emissions can be controlled to a large extent in China. PMID:20000546

  20. U.S. onroad transportation CO2 emissions analysis comparing highly resolved CO2 emissions and a national average approach : mitigation options and uncertainty reductions

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Gurney, K. R.

    2011-12-01

    significantly from the national average. We calculate the state-specific uncertainty of the Vulcan onroad emissions as a fraction of the state total emissions for each of the three sources; VMT, Age Distribution, and Fuel Efficiency. Uncertainty is largest for LD vehicles and urban roads that display more irregular and fuel-consuming start-and-go driving patterns. Therefore, states with greater urbanization levels (eg. New Jersey) and a larger proportion of LD vehicles (eg. California) generally display the largest levels of combined uncertainty. The disparity between expected and real emissions reductions, were policy to neglect spatial differences, highlights the importance of emissions mitigation strategies that incorporate the unique characteristics of geography in order to achieve consistently effective mitigation. In order to have measurable impact, mitigation must also ensure that potential reductions exceed the uncertainty associated with quantifying emissions. Thus climate agreements that fully account for uncertainties in emission estimates as well as regional differences will be best suited to enact the most effective policy.

  1. Coal-fired power plant and its emission reduction in Indonesia

    SciTech Connect

    Kuntjoro, D.

    1994-12-31

    Power generation availability is one important key to the rapid growth of Indonesia`s industrial sector. To secure future national energy needs, coal-fired power generation has been set up as a primary energy source. There are environmental concerns related to the emission of gases, particulates, and ash resulting from coal combustion. This paper discusses emission controls from burning high calorie, low sulfur coal and the national strategy to reduce emissions.

  2. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    SciTech Connect

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  3. Emissions reduction by varying the swirler airflow split in advanced gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Micklow, Gerald J.; Roychoudhury, Subir; Nguyen, H. L.; Cline, Michael C.

    1992-01-01

    A rich burn/quick mix/lean burn (RQL) combustor concept for reducing pollutant emissions is currently under investigation at the NASA Lewis Research Center. The current study investigates the effect of varying the mass flow rate split between the swirler passages for an equivalance ratio of 2.0 on fuel distribution, temperature distribution, and emissions for the fuel nozzle/rich burn section of an RQL combustor. It is seen that optimizing these parameters can substantially improve combustor performance and reduce combustor emissions. The optimal mass flow rate split for reducing NO(x) emissions based on the numerical study was the same as found by experiment.

  4. Purification and neutron emission reduction of 238Plutonium oxide by nitrate anion exchange processing

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Brock, J.; Nixon, J. Z.; Moniz, P.; Silver, G.; Ramsey, K. B.

    2001-02-01

    The use of ion exchange during the aqueous purification of 238Pu oxide results in low levels of uranium, thorium, and americium in the product oxide. Neutron emission rates are also reduced in the product oxide. Fluorine introduced during the dissolution of impure fuel increases the neutron emission rate of the product oxide due to the 238Pu-19F alpha/n reaction. Treating the 238Pu solution with aluminum nitrate prior to ion exchange reduces the neutron emission rate in the product oxide. Data are presented to show that neutron emission rates and concentrations of uranium, thorium, and americium are reduced by ion exchange processing. .

  5. Impacts of reductions in emissions of multipollutants over 2005-2030 on regional air quality and climate

    NASA Astrophysics Data System (ADS)

    Liao, H.; Yang, Y.; Chang, W.; Shindell, D. T.; Faluvegi, G.

    2011-12-01

    Many societal activities lead to emissions to the atmosphere that affect both air quality and climate. We examine how particular policies may be able to provide benefits in both these areas using three coupled global chemistry-climate models (CACTUS, GISS-PUCCINI, and NCAR-CESM). The anthropogenic emissions for years 2005 and 2030 are taken from the datasets generated by the International Institute for Applied Systems Analysis (IIASA) GAINS (Greenhouse gas-Air pollution Interactions and Synergies) model. The 2030 emissions scenarios include (1) a reference scenario, (2) a low GWP scenario, and (3) the lowest emissions scenario. The reference scenario assumes that all agreed air pollution policies are being implemented, and the other two scenarios have additional reductions in emissions based on a selected set of measures. We firstly evaluate the model predictions for 2005, and then investigate the simulated year 2030 concentrations of ozone, sulfate, black carbon, and organic carbon, aerosol optical depth, as well as year 2030 radiative forcing relative to 2005. Both direct and indirect radiative forcings of aerosols are considered. Our model results suggest that taking measures to reduce emissions in China can reduce year 2030 PM2.5 concentrations in China by 20-60% and help to mitigate near-term regional climate change.

  6. Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions

    SciTech Connect

    Wang, M.Q.

    1993-12-31

    Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

  7. Costs and benefits of an enhanced reduction policy of particulate matter exhaust emissions from road traffic in Flanders

    NASA Astrophysics Data System (ADS)

    Schrooten, Liesbeth; De Vlieger, Ina; Lefebre, Filip; Torfs, Rudi

    We demonstrate that accelerated policies beyond the steady improvement of technologies and the fleet turnover are not always justified by assumptions about health benefits. Between the years 2000 and 2010, particulate matter (PM) exhaust emissions from traffic in Flanders, a region of Belgium, will be reduced by about 44% without taking any extra reduction measures (baseline scenario). The PM emissions from road traffic were calculated using the MIMOSA model. Furthermore, we explored a range of options to increase attempts to reduce PM exhaust emission from traffic in 2010. When installing particle filters on heavy-duty trucks and buses, introducing biodiesel and diesel/hybrid cars, as well as slowing down the increase of private diesel cars, only an extra reduction of about 8% PM can be achieved in Flanders. The costs to achieve this small reduction are very high. To justify these costs, benefits for public health have been calculated and expressed in external costs. We demonstrate that only an enhanced effort to retrofit trucks and buses with particle filters has a net benefit. We have used Monte Carlo techniques to test the validity of this conclusion. It is concluded that a local or national policy that goes beyond European policies is not always beneficial and that additional measures should be assessed carefully.

  8. Reduction in NO(x) emission trends over China: regional and seasonal variations.

    PubMed

    Gu, Dasa; Wang, Yuhang; Smeltzer, Charles; Liu, Zhen

    2013-11-19

    We analyzed satellite observations of nitrogen dioxide (NO2) columns by the Ozone Monitoring Instrument (OMI) over China from 2005 to 2010 in order to estimate the top-down anthropogenic nitrogen oxides (NOx) emission trends. Since NOx emissions were affected by the economic slowdown in 2009, we removed one year of abnormal data in the analysis. The estimated average emission trend is 4.01 ± 1.39% yr(-1), which is slower than the trend of 5.8-10.8% yr(-1) reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trends. The average NOx emission trend of 3.47 ± 1.07% yr(-1) in warm season (June-September) is less than the trend of 5.03 ± 1.92% yr(-1) in cool season (October-May). The regional annual emission trends decrease from 4.76 ± 1.61% yr(-1) in North China Plain to 3.11 ± 0.98% yr(-1) in Yangtze River Delta and further down to -4.39 ± 1.81% yr(-1) in Pearl River Delta. The annual emission trends of the four largest megacities, Shanghai, Beijing, Guangzhou, and Shenzhen are -0.76 ± 0.29%, 0.69 ± 0.27%, -4.46 ± 1.22%, and -7.18 ± 2.88% yr(-1), considerably lower than the regional averages or surrounding rural regions. These results appear to suggest that a number of factors, including emission control measures of thermal power plants, increased hydro-power usage, vehicle emission regulations, and closure or migration of high-emission industries, have significantly reduced or even reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions, but their effects are not as significant in other major cities or less economically developed regions. PMID:24152067

  9. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel. PMID:25704338

  10. Evaluation of water seals on emission reductions of 1,3-dichloropropene and chloropicrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing emissions can minimize the detrimental impact of soil fumigation while maintaining the benefits of fumigants to agricultural productions. As a costly effective and environmentally friendly method, water seal (applying water to soil surface) has the potential to reduce emissions. This study ...

  11. Laboratory Assessment of Emission Reduction Strategies for the Agricultural Fumigants 1,3-Dichloropropene and Chloropicrin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the increased use of the agricultural fumigants 1,3-dichloropropene (1,3-D) and chloropicrin (CP), it is important that strategies to reduce emissions of these fumigant from soil to the air are assessed to protect air quality. Using an established soil column approach, the following emission re...

  12. Inventory of PCBs in Chicago and Opportunities for Reduction in Airborne Emissions and Human Exposure.

    PubMed

    Shanahan, Caitlin E; Spak, Scott N; Martinez, Andres; Hornbuckle, Keri C

    2015-12-01

    Urban areas are important regional sources of airborne polychlorinated biphenyls (PCBs) and population-scale airborne exposure, yet a comprehensive bottom-up source inventory of PCB emissions has never been quantified at urban scales in the United States. Here we report a comprehensive parcel level inventory of PCB stocks and emissions for Chicago, Illinois, developed with a transferable method from publicly available data. Chicago's legacy stocks hold 276 ± 147 tonnes ∑PCBs, with 0.2 tonnes added annually. Transformers and building sealants represent the largest legacy categories at 250 and 20 tonnes, respectively. From these stocks, annual emissions rates of 203 kg for ∑PCBs and 3 kg for PCB 11 explain observed concentrations in Chicago air. Sewage sludge drying contributes 25% to emissions, soils 31%, and transformers 21%. Known contaminated sites account for <1% of stocks and 17% of emissions to air. Paint is responsible for 0.00001% of stocks but up to 7% of ∑PCBs emissions. Stocks and emissions are highly concentrated and not correlated with population density or demographics at the neighborhood scale. Results suggest that strategies to further reduce exposure and ecosystem deposition must focus on the largest emissions sources rather than the most contaminated sites or the largest closed source legacy stocks. PMID:26440379

  13. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  14. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... consideration at any time. (d) EIA database and summary reports. The Administrator of EIA will establish a publicly accessible database composed of all reports that meet the definitional, measurement, calculation... emissions, indirect emissions and carbon fluxes. A portion of the database will provide summary...

  15. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... consideration at any time. (d) EIA database and summary reports. The Administrator of EIA will establish a publicly accessible database composed of all reports that meet the definitional, measurement, calculation... emissions, indirect emissions and carbon fluxes. A portion of the database will provide summary...

  16. SIMULATION OF METHANE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a sector, agriculture is reported to be the third greatest contributor to atmospheric methane (CH**4) in the U.S., emitting one-quarter of total emissions. Primary sources of CH**4 emission on dairy farms are the animals and manure storage, with smaller contributions from field-applied manure, fe...

  17. Avco Lycoming/NASA contract status. [on reduction of emissions from aircraft piston engines

    NASA Technical Reports Server (NTRS)

    Duke, L. C.

    1976-01-01

    The standards promulgated by the Environmental Protection Agency (EPA) for carbon monoxide (CO), unburned hydrocarbon (HC), and oxides-of-nitrogen (NOx) emissions were the basis in a study of ways to reduce emissions from aircraft piston engines. A variable valve timing system, ultrasonic fuel atomization, and ignition system changes were postulated.

  18. The contribution of waste management to the reduction of greenhouse gas emissions with applications in the city of Bucharest.

    PubMed

    Sandulescu, Elena

    2004-12-01

    Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest. PMID:15666445

  19. Reduction of the Livestock Ammonia Emission under the Changing Temperature during the Initial Manure Nitrogen Biomineralization

    PubMed Central

    Bagdonienė, Indrė; Baležentienė, Ligita

    2013-01-01

    Experimental data were applied for the modelling optimal cowshed temperature environment in laboratory test bench by a mass-flow method. The principal factor affecting exponent growth of ammonia emission was increasing air and manure surface temperature. With the manure temperature increasing from 4°C to 30°C, growth in the ammonia emission grew fourfold, that is, from 102 to 430 mg m−2h−1. Especial risk emerges when temperature exceeds 20°C: an increase in temperature of 1°C contributes to the intensity of ammonia emission by 17 mg m−2h−1. The temperatures of air and manure surface as well as those of its layers are important when analysing emission processes from manure. Indeed, it affects the processes occurring on the manure surface, namely, dehydration and crust formation. To reduce ammonia emission from cowshed, it is important to optimize the inner temperature control and to manage air circulation, especially at higher temperatures, preventing the warm ambient air from blowing direct to manure. Decrease in mean annual temperature of 1°C would reduce the annual ammonia emission by some 5.0%. The air temperature range varied between −15°C and 30°C in barns. The highest mean annual temperature (14.6°C) and ammonia emission (218 mg m−2h−1) were observed in the semideep cowshed. PMID:24453912

  20. Insights into the emission reductions of multiple unintentional persistent organic pollutants from industrial activities.

    PubMed

    Liu, Guorui; Zheng, Minghui; Jiang, Xiaoxu; Jin, Rong; Zhao, Yuyang; Zhan, Jiayu

    2016-02-01

    Industrial activities result in unintentional production of multiple types of persistent organic pollutants (POPs) at various concentrations. Because of the potential adverse effect of these POPs on the environment, biota and human health, methods for controlling emission of POPs are required. Development and application of techniques for controlling emissions of POPs can be a technical and economic burden for the industry involved. Therefore, from the point of view of cost-benefit analysis, reducing emissions of multiple pollutants at the same time is optimal for sustainable industrial development. Although techniques have been developed for reducing the emissions of individual POPs, such as dioxins, further work is required on multi-POP control emissions from industrial activities. This paper discusses three important aspects that need to be taken to achieve multi-POP control. These aspects include the establishment of a comprehensive system for evaluating the risk from emissions of multiple POPs, determination of indicators for total emissions of multiple POPs, and the preparation and application of functional materials to inhibit formation of multiple POPs. These discussion might be helpful for the future research on the multi-POP control in industry. PMID:26386431

  1. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration...

  2. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration...

  3. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration...

  4. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration...

  5. 40 CFR Table 1 of Subpart Bbbbbbb... - Emission Reduction and PM Concentration Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Concentration Requirements 1 Table 1 of Subpart BBBBBBB of Part 63 Protection of Environment ENVIRONMENTAL... Reduction and PM Concentration Requirements For each * * * You must * * * Using * * * 1. Process Vent Stream... percent reduction efficiency of 95 percent (98 percent for new sources), or b. An outlet concentration...

  6. 77 FR 2677 - National Emission Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants'' is being extended for 12 days. DATES: Comments. The public comment period for the proposed rule published December 6, 2011, (76 FR... Aluminum Reduction Plants; Extension of Comment Period AGENCY: Environmental Protection Agency...

  7. Reduction of perfluorocarbon (PFC) emissions at Alcan`s primary aluminum smelters

    SciTech Connect

    Barber, M.A.

    1997-12-31

    Recent studies have indicated that perfluorocarbon (PFC) compounds are powerful greenhouse gases. The principal anthropogenic source of these compounds is believed to be primary aluminum smelters. As a result, most major aluminum producers have initiated programs to reduce PFC emissions. This paper outlines the actions Alcan has taken over the past 6 years to reduce PFC emissions, along with results obtained to date and projections for the future. An explanation of the mechanism of PFC formation is given. In addition, actual measured emission levels are compared to those predicted by models.

  8. Etude de l'electrocatalyse de la reduction de l'oxygene sur des alliages de palladium cuivre

    NASA Astrophysics Data System (ADS)

    Fouda-Onana, Frederic

    This thesis is on the development of the ORR on Pd-Cu alloys in acid medium. Density Functional Theory (DFT) was used to determine the intrinsic properties of the alloys. The alloys were fabricated by RF sputtering on glassy carbon support and chemical salt reduction on carbon support. They characterised by electrochemical methods and correlations were made between the intrinsic properties and the experimental electrochemical parameters. These correlations were used to explain the electrocatalytic performance of the ORR on these aklooys and to determine the mechanism of this reaction on these electrocatalysts. Accordingly the following aspects were studied in details. In the first step, ab initio investigations of the effect of the intermediate adsorption on the variation of the reversible potential of the ORR on Pt(100) was shown. Density Functional Theory (DFT) was used to determine the energies and the geometry parameters of the intermediates which can be adsorbed on Pt(100) during the oxygen reduction reaction (ORR) and their effect on the . The Comparison of these energies and parameters using the Bridge or the Griffiths sites adsorption mechanism suggests that the two paths are feasible. In both mechanisms, the total adsorption energies of the intermediates species continuously decrease. Moreover, according to the geometry analysis, the O-O bond distance in H2O2 is higher in both (Bridge and Griffiths) processes compared to the gas phase. Such a result suggests a dissociative H2O2 adsorption whatever the type of the involved mechanism involved. In the second step, the Oxygen reduction reaction (ORR) on palladium-copper alloys was studied through two approaches. The first one is based on the correlations between the surface chemical composition and the kinetics parameters of the ORR. The second approach is focused on the correlations between the adsorption energies of O2 and OH of Pd-Cu(111) surfaces and the electronic properties of the alloys. The adsorbtion

  9. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  10. Trends in concentrations of atmospheric gaseous and particulate species in rural eastern Tennessee as related to primary emission reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Bairai, S. T.; Mueller, S. F.

    2015-09-01

    Air quality measurements at Look Rock, Tennessee - on the western edge of the Great Smoky Mountains National Park - were begun in 1980 and expanded during the 1980s to a National Park Service (NPS) IMPROVE network station. Measurements were expanded again by the Tennessee Valley Authority (TVA, 1999-2007) to examine the effects of electric generating unit (EGU) emission reductions of SO2 and NOx on air quality at the station. Analysis of temporal trends (1999-2013) has been conducted at the site in collaboration with activities related to the 2013 Southeast Atmosphere Study (SAS) at Look Rock and other southeastern US locations. Key findings from these trend studies include the observation that primary pollutant levels have consistently tracked emission reductions from EGUs and other primary sources in the region, but reductions in secondary pollutants such as particulate sulfate and, specifically, ozone have been smaller compared to reductions in primary emissions. Organic carbonaceous material (OM) remains a major contributor (30-40 % in the period 2009-2013) to fine particulate mass at the site, as confirmed by ACSM measurements at the site in 2013. A large portion (65-85 %) of carbon in OM derives from modern carbon sources based on 14C measurements. Important parameters affecting ozone levels, fine mass, and visibility also include the specific diurnal meteorology at this ridge-top site, its location in a predominantly mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  11. Trends in concentrations of atmospheric gaseous and particulate species in rural eastern Tennessee as related to primary emissions reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Bairai, S. T.; Mueller, S. F.

    2015-05-01

    Air quality measurements at Look Rock, Tennessee - on the western edge of the Great Smoky Mountains National Park - were begun in 1980 and expanded during the 1980s to a National Park Service (NPS) IMPROVE network station. Measurements were expanded again by the Tennessee Valley Authority (TVA, 1999-2007) to examine the effects of electric generating unit (EGU) emission reductions of SO2 and NOx on air quality at the station. Analysis of temporal trends (1999-2013) has been conducted at the site in collaboration with activities related to the 2013 Southeast Atmosphere Study (SAS) at Look Rock and other southeastern US locations. Key findings from these trend studies include the observation that primary pollutant levels have consistently tracked emissions reductions from EGUs and other primary sources in the region but reductions in secondary pollutants such as particulate sulfate and, specifically, ozone have been smaller compared to reductions in primary emissions. Organic carbonaceous material (OM) remains a major contributor (30-40% in the period 2009-2013) to fine particulate mass at the site, as confirmed by ACSM measurements at the site in 2013. A large portion (65-85%) of carbon in OM derives from modern carbon sources based on 14C measurements. Important parameters affecting ozone levels, fine mass and visibility also include the specific diurnal meteorology at this ridge-top site, its location in a predominantly mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  12. Combined Catalyzed Soot Filter and SCR Catalyst System for Diesel Engine Emission Reduction

    SciTech Connect

    Kakwani, R.M.

    2000-08-20

    Substantially reduces particulate emission for diesel vehicles Up to 90% effective against carbonaceous particulate matter Significantly reduces CO and HC Filter regenerates at normal diesel operation temperatures Removable design for easy cleaning and maintenance.

  13. Reduction of gaseous pollutant emissions from gas turbine combustors using hydrogen-enriched jet fuel

    NASA Technical Reports Server (NTRS)

    Clayton, R. M.

    1976-01-01

    Recent progress in an evaluation of the applicability of the hydrogen enrichment concept to achieve ultralow gaseous pollutant emission from gas turbine combustion systems is described. The target emission indexes for the program are 1.0 for oxides of nitrogen and carbon monoxide, and 0.5 for unburned hydrocarbons. The basic concept utilizes premixed molecular hydrogen, conventional jet fuel, and air to depress the lean flammability limit of the mixed fuel. This is shown to permit very lean combustion with its low NOx production while simulataneously providing an increased flame stability margin with which to maintain low CO and HC emission. Experimental emission characteristics and selected analytical results are presented for a cylindrical research combustor designed for operation with inlet-air state conditions typical for a 30:1 compression ratio, high bypass ratio, turbofan commercial engine.

  14. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions

    PubMed Central

    Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G.; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V.; Margono, Belinda; Hansen, Matthew C.; Baccini, Alessandro

    2015-01-01

    To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas (“concessions”) for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17–127%, 44–129%, or 3.1–11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia’s moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241–615 MtCO2e (2.8–7.2%) lower without leakage, or 213–545 MtCO2e (2.5–6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30–7.50/tCO2e (mandatory) or $12.95–19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880

  15. Planning for future uncertainties in electric power generation; An analysis of transitional strategies for reduction of carbon and sulfur emissions

    SciTech Connect

    Tabors, R.D.; Monroe, B.L. III . Lab. for Electromagnetic and Electronic Systems)

    1991-11-01

    The objective of this paper is to identify strategies for the U.S. electric utility industry for reduction of both acid rain producing and global warming gasses. The research used the EPRI Electric Generation Expansion Analysis System (EGEAS) utility optimization/simulation modeling structure and the EPRI developed regional utilities. It focuses on the North East and East Central region of the U.S. Strategies identified were fuel switching -- predominantly between coal and natural gas, mandated emission limits, and a carbon tax. The overall conclusions of the study are that using less (conservation) will always benefit Carbon Emissions but may or may not benefit Acid Rain emissions by the off setting forces of improved performance of new plant as opposed to reduced overall consumption of final product. Results of the study are highly utility and regional demand specific. The study showed, however, that significant reductions in both acid rain and global warming gas production could be achieved with relatively small increases in the overall cost of production of electricity and that the current dispatch logics available to the utility control rooms were adequate to reschedule dispatch to meet these objectives.

  16. An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation.

    PubMed

    Yao, Yijun; Su, Yao; Wu, Yun; Liu, Weiping; He, Ruo

    2015-01-01

    Landfill is an important source of atmospheric methane (CH4). In this study, the development and partial validation are presented for an analytical model for predicting the reduction of CH4 emission in landfill cover soils by CH4 oxidation. The model combines an analytic solution of a coupled oxygen (O2) and CH4 soil gas transport in landfill covers with a piecewise first-order aerobic biodegradation, including the influences of environmental factors such as cover soil thickness, CH4 oxidation and CH4 production rate. Comparison of soil gas concentration profiles with a soil column experiment is provided for a partial validation, and then this model is applied to predict the reduction of CH4 emission through landfill covers in several other cases. A discussion is provided to illustrate the roles of soil layer thickness, reaction rate constant for CH4 oxidation and CH4 production rate in determining CH4 emissions. The results suggest that the increase of cover soil thickness cannot always increase CH4 oxidation rates or removal efficiency, which becomes constant if the thickness of landfill cover soil is larger than a limit. PMID:25464331

  17. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeil, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing

    2011-04-01

    China has implemented a series of minimum energy performance standards (MEPS) for over 30 appliances, voluntary energy efficiency label for 40 products and a mandatory energy information label that covers 19 products to date. However, the impact of these programs and their savings potential has not been evaluated on a consistent basis. This paper uses modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, under development or those proposed for development in 2010 under three scenarios that differ in the pace and stringency of MEPS development. In addition to a baseline 'Frozen Efficiency' scenario at 2009 MEPS level, the 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice efficiency in broad commercial use today in 2014. This paper concludes that under 'CIS', cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions of energy used for all 37 products would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction of energy used for 11 appliances would be 35% lower.

  18. Emission reduction of 1,3-dichloropropene by soil amendment with biochar.

    PubMed

    Wang, Qiuxia; Mao, Liangang; Wang, Dong; Yan, Dongdong; Ma, Taotao; Liu, Pengfei; Zhang, Chenglei; Wang, Ruoqi; Guo, Meixia; Cao, Aocheng

    2014-09-01

    Soil fumigation is an important treatment in the production chain of fruit and vegetable crops, but fumigant emissions contribute to air pollution. Biochar as a soil amendment has shown the potential to reduce organic pollutants, including pesticides, in soils through adsorption and other physicochemical reactions. A laboratory column study was performed to determine the effects of soil applications of biochar for reducing emissions of the fumigant 1,3-dichloropropene (1,3-D). The experimental treatments comprised of unamended and amended with biochar at doses of 0, 0.5, 1, 2, and 5% (w/w) in the top 5 cm soil layer. The unamended treatment resulted in the highest emission peak flux at 48 to 66 μg m s. Among the biochar amendment treatments, the highest peak flux (0.83 μg m s) was found in the biochar 0.5% treatment. The total emission loss was 35.7 to 40.2% of applied for the unamended treatment and <0.1 to 2.9% for the biochar-amendment treatments. A germination bioassay with cucumber seeds showed that ≥7 d of aeration would be needed to avoid phytotoxicity before replanting in biochar-containing fumigated soil. The results indicate that treatments with 0.5% or more biochar amendment reduced emission peak flux by >99.8% and showed total 1,3-D emission loss by >92% compared with that without biochar. The amendment of surface soil with biochar shows a great potential for reducing fumigant emissions. PMID:25603251

  19. 50% REDUCTION IN GLOBAL GHG EMISSION BY 2050 AND ITS IMPLICATION

    NASA Astrophysics Data System (ADS)

    Fujimori, Shinichiro; Masui, Toshihiko; Matsuoka, Yuzuru

    To prevent the global temperature increase by two degrees, global greenhouse gas emission in 2050 should be cut by half relative to its 1990 level. This study shows following three things by using multi regions and sectors recursive dynamic type computable general equilibrium model. One is the feasibility of that global emission target. The others are the counter measures and the impact on the macro economy, if that target were feasible. In addition, the scenarios with and without international emission trading are implemented and the effect of the trading is analyzed. As a result, that target can be achieved. The marginal abatement cost is 750/tCO2-eq in 2050. Energy efficiency improvement, renewable energy and carbon capture and storage technologies are the main players as counter measures. If the emission trading is available freely, GDP loss is 4.5% globally in 2050. Otherwise, the loss is increased to 6.1%. The emission trading mechanism is also one of the important measures.

  20. Methane mitigation in cities: how new measurements and partnerships can contribute to emissions reduction strategies

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Bush, S. E.; Ehleringer, J. R.; Lai, C. T.; Rambo, J. P.; Wiggins, E. B.; Miu, J. C. L.; Carranza, V.; Randerson, J. T.

    2014-12-01

    Cities generate a large fraction of anthropogenic methane emissions that are increasing with urbanization and greater reliance on natural gas as fuel. New measurements of methane in cities suggest an as-yet unrealized potential for city-scale methane mitigation. We present high-resolution methane observations from four cities in North America to demonstrate the utility of methane surveys for identifying urban methane sources. We used portable, continuous on-road measurements to determine the spatial distribution of methane in Fairbanks, Los Angeles, Salt Lake City, and San Diego. Across cities, methane tended to be highly concentrated in space, suggesting discrete, point emission sources. Elevated methane levels were found near known emission sources, such as landfills, wastewater treatment facilities, and natural gas-fueled power plants, and revealed the location of fugitive leaks in natural gas infrastructure. The mix of sources and sizes of methane leaks varied among cities, highlighting a need for locally adaptive emissions regulation. Urban methane observations can inform anthropogenic processes in development of methane mitigation strategies. We discuss specific examples of how continuous atmospheric measurements can enhance the design of mitigation strategies in these cities, and potential contributions of these approaches to cross-sectoral efforts to reduce methane emissions at the city level.

  1. Apparatus For Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers Using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    2000-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam, provide unobstructed access to laser emission for the formation of the external cavity, and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror or grating.

  2. Carbon emissions reduction strategies in Africa from improved waste management: A review

    SciTech Connect

    Couth, R.; Trois, C.

    2010-11-15

    The paper summarises a literature review into waste management practices across Africa as part of a study to assess methods to reduce carbon emissions. Research shows that the average organic content for urban Municipal Solid Waste in Africa is around 56% and its degradation is a major contributor to greenhouse gas emissions. The paper concludes that the most practical and economic way to manage waste in the majority of urban communities in Africa and therefore reduce carbon emissions is to separate waste at collection points to remove dry recyclables by door to door collection, compost the remaining biogenic carbon waste in windrows, using the maturated compost as a substitute fertilizer and dispose the remaining fossil carbon waste in controlled landfills.

  3. Reduction of VOC emissions from aeration basins using mobil hoods and circulating aeration

    SciTech Connect

    Zhu, Hongwei; Keener, T.C.; Bishop, P.L.

    1997-12-31

    As regulated under the Clean Air Act Amendments (CAAA) of 1990, Publicly Owned Treatment Works (POTWs) with large treatment capacities will be required to reduce their emissions of volatile organic hazardous air pollutants, primarily from the aeration basins. Previous studies indicate that circulating aeration may significantly reduce volatile organic compound (VOC) emissions, most of which are from the upstream portion of the aeration basin. Based on these findings, circulating aeration facilitated by partial tank covering using mobile hoods is proposed as an effective emission control strategy. Using this technology, less VOCs will be stripped into and concentrated in reduced amount of off-gases which can be efficiently treated by conventional control technologies. Compared with fixed rigid covers of aeration basins, mobile hoods are inexpensive to construct and easy to operate.

  4. Reduction of NO[sub x] emissions coke oven gas combustion process

    SciTech Connect

    Terza, R.R. ); Sardesai, U.V. )

    1993-01-01

    The paper describes by-product processing at Clairton Works which uses a unique cryogenic technology. Modifications to the desulfurization facility, nitrogen oxide formation in combustion processes (both thermal and fuel NO[sub x]), and the boilers plants are described. Boilers were used to study the contribution of fuel NO[sub x] formation during the combustion of coke oven gas. Results are summarized. The modifications made to the desulfurization facility resulted in the overall H[sub 2]S emission being reduced by 2-4 grains/100scf and the NO[sub x] emission being reduced by 21-42% in the boiler stacks.

  5. NASA Glenn's Advanced Subsonic Combustion Rig Supported the Ultra-Efficient Engine Technology Project's Emissions Reduction Test

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.

    2004-01-01

    The Advanced Subsonic Combustor Rig (ASCR) is NASA Glenn Research Center's unique high-pressure, high-temperature combustor facility supporting the emissions reduction element of the Ultra-Efficient Engine Technology (UEET) Project. The facility can simulate combustor inlet test conditions up to a pressure of 900 psig and a temperature of 1200 F (non-vitiated). ASCR completed three sector tests in fiscal year 2003 for General Electric, Pratt & Whitney, and Rolls-Royce North America. This will provide NASA and U.S. engine manufacturers the information necessary to develop future low-emission combustors and will help them to better understand durability and operability at these high pressures and temperatures.

  6. Reduction of Positron Range Effects by the Application of a Magnetic Field: for Use with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond Robert

    The process of positron emission tomography has become a valuable medical research tool. This procedure involves the administration of a radiopharmaceutical labelled with a positron-emitting isotope to a living organism. Upon the emission and subsequent annihilation of a positron, the gamma rays produced are detected to create an image of metabolic activity within the subject. Many factors such as Compton scattering and photoelectric absorption of the gamma rays tend to limit the quality of these images. Another important limitation is the non-negligible distance the positron travels prior to annihilation. This phenomenon leads to the misplacement of data in the final image. A method for reducing this effect utilizing a magnetic field has been tested and evaluated. The application of a magnetic field constrains the positrons to travel in helical paths instead of their relatively straight courses. Thus, the effective distance the positrons travel from their point of emission is reduced. Results indicate that this technique is successful in reducing the blurring caused in PET images by positron range. The results also indicate that the amount of resolution improvement depends upon the choice of positron emitter and scanner resolution. Reduction of this blurring helps to produce clearer PET images which can allow for more precise localization of tumors, in addition to better measurement of metabolic rate constants. The use of a magnetic field to reduce the range of positrons will lead to more useful images produced by positron emission tomography.

  7. Estimates of ozone response to various combinations of NO(x) and VOC emission reductions in the eastern United States

    NASA Technical Reports Server (NTRS)

    Roselle, Shawn J.; Schere, Kenneth L.; Chu, Shao-Hang

    1994-01-01

    There is increasing recognition that controls on NO(x) emissions may be necessary, in addition to existing and future Volatile Organic Compounds (VOC) controls, for the abatement of ozone (O3) over portions of the United States. This study compares various combinations of anthropogenic NO(x) and VOC emission reductions through a series of model simulations. A total of 6 simulations were performed with the Regional Oxidant Model (ROM) for a 9-day period in July 1988. Each simulation reduced anthropogenic NO(x) and VOC emissions across-the-board by different amounts. Maximum O3 concentrations for the period were compared between the simulations. Comparison of the simulations suggests that: (1) NO(x) controls may be more effective than VOC controls in reducing peak O3 over most of the eastern United States; (2) VOC controls are most effective in urban areas having large sources of emissions; (3) NO(x) controls may increase O3 near large point sources; and (4) the benefit gained from increasing the amount of VOC controls may lessen as the amount of NO(x) control is increased. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

  8. Emerging Energy-efficiency and CO{sub 2} Emission-reduction Technologies for Cement and Concrete Production

    SciTech Connect

    Hasanbeigi, Ali; Price, Lynn; Lin, Elina

    2012-04-06

    Globally, the cement industry accounts for approximately 5 percent of current anthropogenic carbon dioxide (CO{sub 2}) emissions. World cement demand and production are increasing significantly, leading to an increase in this industry's absolute energy use and CO{sub 2} emissions. Development of new energy-efficiency and CO{sub 2} emission-reduction technologies and their deployment in the market will be key for the cement industry's mid- and long-term climate change mitigation strategies. This report is an initial effort to compile available information on process description, energy savings, environmental and other benefits, costs, commercialization status, and references for emerging technologies to reduce the cement industry's energy use and CO{sub 2} emissions. Although studies from around the world identify a variety of sector-specific and cross-cutting energy-efficiency technologies for the cement industry that have already been commercialized, information is scarce and/or scattered regarding emerging or advanced energy-efficiency and low-carbon technologies that are not yet commercialized. This report consolidates available information on nineteen emerging technologies for the cement industry, with the goal of providing engineers, researchers, investors, cement companies, policy makers, and other interested parties with easy access to a well-structured database of information on these technologies.

  9. A fair compromise to break the climate impasse. A major economies forum approach to emissions reductions budgeting

    SciTech Connect

    Grasso, Marco; J. Roberts, Timmons

    2013-04-15

    Key messages of the study are: Given the stalemate in U.N. climate negotiations, the best arena to strike a workable deal is among the members the Major Economies Forum on Energy and Climate (MEF); The 13 MEF members—including the EU-27 (but not double-counting the four EU countries that are also individual members of the MEF)—account for 81.3 percent of all global emissions; This proposal devises a fair compromise to break the impasse to develop a science-based approach for fairly sharing the carbon budget in order to have a 75 percent chance of avoiding dangerous climate change; To increase the likelihood of a future climate agreement, carbon accounting must shift from production-based inventories to consumption-based ones; The shares of a carbon budget to stay below 2 deg C through 2050 are calculated by cumulative emissions since 1990, i.e. according to a short-horizon polluter pays principle, and national capability (income), and allocated to MEF members through emission rights. This proposed fair compromise addresses key concerns of major emitters; According to this accounting, no countries have negative carbon budgets, there is substantial time for greening major developing economies, and some developed countries need to institute very rapid reductions in emissions; and, To provide a 'green ladder' to developing countries and to ensure a fair global deal, it will be crucial to agree how to extend sufficient and predictable financial support and the rapid transfer of technology.

  10. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    SciTech Connect

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-07-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

  11. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Masanet, Eric; Sathaye, Jayant; Xu, Tengfang

    2012-06-15

    China’s annual cement production (i.e., 1,868 Mt) in 2010 accounted for nearly half of the world’s annual cement production in the same year. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese cement industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 279 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 144 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 161 Mt CO2. The fuel CSC model for the cement industry suggests cumulative cost-effective fuel savings potential of 4,326 PJ which is equivalent to the total technical potential with associated CO2 emission reductions of 406 Mt CO2. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. We also developed a scenario in which instead of only implementing the international technologies in 2010-2030, we implement both international and Chinese domestic technologies during the analysis period and calculate the saving and cost of conserved energy accordingly. The result of this study gives a comprehensive and easy to understand perspective to the Chinese cement industry and policy makers about the energy efficiency potential and its associated cost.

  12. Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

    NASA Astrophysics Data System (ADS)

    Kittipongvises, Suthirat

    2015-12-01

    There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs) emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e) per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM) projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding) generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2) is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR), vertical roller mills (VRM), gravity pre-concentration and microwave heating technologies) that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and practice were

  13. A study of cooling time reduction of interferometric cryogenic gravitational wave detectors using a high-emissivity coating

    SciTech Connect

    Sakakibara, Y.; Yamamoto, K.; Chen, D.; Tokoku, C.; Uchiyama, T.; Ohashi, M.; Kuroda, K.; Kimura, N.; Suzuki, T.; Koike, S.

    2014-01-29

    In interferometric cryogenic gravitational wave detectors, there are plans to cool mirrors and their suspension systems (payloads) in order to reduce thermal noise, that is, one of the fundamental noise sources. Because of the large payload masses (several hundred kg in total) and their thermal isolation, a cooling time of several months is required. Our calculation shows that a high-emissivity coating (e.g. a diamond-like carbon (DLC) coating) can reduce the cooling time effectively by enhancing radiation heat transfer. Here, we have experimentally verified the effect of the DLC coating on the reduction of the cooling time.

  14. Uncle Sam goes to market: Federal agency disposal of emission reduction credits under the Federal property management regulations. Master's thesis

    SciTech Connect

    Rafferty, V.J.

    1994-01-30

    With the realignment and closure of Federal facilities, especially Department of Defense installations, Federal agencies have been presented with a unique opportunity: the chance to create and dispose of air emission reduction credits (ERCs). This situation and current commitments by the Congress and EPA to expand the use of market based pollution control programs have generated interest in certain circles as to whether and how Federal agencies can dispose of ERCs and similar pollution rights and allowances. This paper will discuss ERCs, why the disposal of ERCs by Federal agencies is a pressing issue, and how Federal agencies can dispose of ERCs under existing Federal property laws and regulations.

  15. Combustion efficiency: Greenhouse gas emission reductions from the power generation sector

    SciTech Connect

    Kane, R.; South, D.W.; Fish, A.L.

    1993-12-31

    Concern for the possibility of an enhanced greenhouse effect and global climate change (GCC) has often been associated with energy use in general, and fossil fuel combustion in particular, because of associated emissions of CO{sub 2} and other greenhouse gases (GHG). Therefore, energy policies play a significant role in determining greenhouse gas emissions. The generation of electricity and power from more efficient fossil energy technologies provides an opportunity to significantly lower GHG emissions, together with other pollutants. The U.S. government oversees a broad-based program to facilitate the development, demonstration, and deployment of these technologies. Advanced fossil technologies offer other benefits as well, in that they permit continued use of widely available fuels such as coal. An international perspective is critical for assessing the role of these fuels, since countries differ in terms of their ability to maximize these benefits. Often, new technologies are considered the domain of industrialized countries. Yet more efficient technologies may have their greatest potential - to concurrently permit the utilization of indigenous fuels and to lower global GHG emissions in developing countries, especially those in the Asia-Pacific region.

  16. CO-DEPENDENCIES OF REACTIVE AIR TOXIC AND CRITERIA POLLUTANTS ON EMISSION REDUCTIONS

    EPA Science Inventory

    It is important to understand the effect of emission controls on the concentrations of ozone, PM2.5, and hazardous air pollutants simultaneously, in order to evaluate the full range of both health related and economic effects. Until recently, the capability of simultan...

  17. Policy Attribute Framing: A Comparison between Three Policy Instruments for Personal Emissions Reduction

    ERIC Educational Resources Information Center

    Parag, Yael; Capstick, Stuart; Poortinga, Wouter

    2011-01-01

    A comparative experiment in the UK examined people's willingness to change energy consumption behavior under three different policy framings: energy tax, carbon tax, and personal carbon allowances (PCA). PCA is a downstream cap-and-trade policy proposed in the UK, in which emission rights are allocated to individuals. We hypothesized that due to…

  18. AN INTEGRATED ANALYSIS OF THE POTENTIAL EFFECTIVENESS OF MERCURY EMISSION REDUCTION STRATEGIES IN THE GREAT LAKES

    EPA Science Inventory

    Using atmospheric transport and fate models, it has been possible to link the changes in emissions to to the change in atmospheric deposition for the last thirty years for the criteria air pollutants, but it has only been in the last decade that advances have been made to allow t...

  19. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The paper gives results of research of the ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion. ilot-scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic ai...

  20. WHAT TO CONSIDER WHEN EMISSION REDUCTION IS REQUIRED FROM SOIL FUMIGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emission is one of the key factors affecting fumigant use in California due to regulations. Many commodities depend on pre-plant soil fumigation to achieve profitable yield and healthy crops. The phase-out of methyl bromide as a broad-spectrum soil fumigant in pest control has placed formidable chal...

  1. Fumigation efficacy and emission reduction using low-permeability film in orchard soil fumigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Many orchards in California, USA, apply fumigants to soil before replanting to reduce the impact of pest pressure or replanting disease on new tree establishment. Emission control of alternative fumigants to methyl bromide is mandatory in air quality (ozone) non-attainment areas. This s...

  2. SIMULATION OF NITROUS OXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farming practices can have a large impact on the net emission of greenhouse gases including carbon dioxide, methane, and nitrous oxide (N**2O). The primary sources of N**2O from dairy farms are nitrification and denitrification processes in soil, with smaller contributions from manure storage and ba...

  3. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  4. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  5. Assessment of the impact of emissions reductions on air quality over North China Plain

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen

    2016-04-01

    The production rate of secondary pollutants was highly non-linear with the emission intensity of their precursors. In this study, the air quality modeling system RAMS-CMAQ with zero-out sensitivity test was applied to conduct source sensitivity approaches of PM2.5 for four source categories (industry, power plants, transport, and residential) over the North China Plain (NCP) in January and July of 2013. The results show that the residential and industry emission sector were the greatest contributors to domain-wide PM2.5 in January and July, respectively. The largest variation could exceed 200 μg m-3 attributed to the residential sector in January when a heavy pollution period appeared, and could reach 40-60 μg m-3 attributed to the industry sector in July in the heavy pollution area, respectively. The nonlinear relationship between the secondary pollutant formation and its precursors was reflected by this source sensitivity approaches, as the summation of the secondary pollutant variations attributed to the four sources was obviously different from the simulated baseline concentration and the mass burden of nitrate would increase upon removal of the power plants or transport emission sector in the heavy pollution regions in January. Further analysis indicated that the improvement of atmospheric oxidation capacity due to emission sector removal coupled with the sufficient precursor nitrogen oxide under severe pollution background should be the main reason of the negative variation of nitrate appeared in the sensitivity test. This feature indicates that the atmospheric oxidation capacity is an important impact factor in determining the production rate of nitrate formation, and could further influence the variation feature of PM2.5 mass burden during the pollution episode. Thus, it is suggested that the comprehensive pollution control strategies should be implemented based on the specific pollution condition. Additionally, the nonlinearity of secondary pollutants

  6. Modelisation 0D/1D des emissions de particules de suie dans les turbines a gaz aeronautiques

    NASA Astrophysics Data System (ADS)

    Bisson, Jeremie

    Because of more stringent regulations of aircraft particle emissions as well as strong uncertainties about their formation and their effects on the atmosphere, a better understanding of particle microphysical mechanisms and their interactions with the engine components is required. This thesis focuses on the development of a 0D/1D combustion model with soot production in an aeronautical gas turbine. A major objective of this study is to assess the quality of soot particle emission predictions for different flight configurations. The model should eventually allow performing parametric studies on current or future engines with a minimal computation time. The model represents the combustor as well as turbines and nozzle with a chemical reactor network (CRN) that is coupled with a detailed combustion chemistry for kerosene (Jet A-1) and a soot particle dynamics model using the method of moments. The CRN was applied to the CFM56-2C1 engine during flight configurations of the LTO cycle (Landing-Take-Off) as in the APEX-1 study on aircraft particle emissions. The model was mainly validated on gas turbine thermodynamic data and pollutant concentrations (H2O, COX, NOx, SOX) which were measured in the same study. Once the first validation completed, the model was subsequently used for the computation of mass and number-based emissions indices of the soot particulate population and average diameter. Overall, the model is representative of the thermodynamic conditions and succeeds in predicting the emissions of major pollutants, particularly at high power. Concerning soot particulate emissions, the model's ability to predict simultaneously the emission indices as well as mean diameter has been partially validated. Indeed, the mass emission indices have remained higher than experimental results particularly at high power. These differences on particulate emission index may be the result of uncertainties on thermodynamic parameters of the CRN and mass air flow distribution in

  7. Part I - burner and ESP improvements for reduction of particulate and NO{sub x} emissions

    SciTech Connect

    Pickles, R.

    1994-08-01

    The Coleson Cove Generating Station is a 3 x 350 MW plant located on the Bay of Fundy in Southern New Brunswick, Canada. The plant was designed to burn a range of fuel oils including distillates, crudes, and residual oil. The original fuel was a light high sulphur residual. The fuel supply changed to Venezuelan high vanadium residual as a result of economics. Typical Venezuelan analysis is shown, together with the design fuel analysis. A result of this change was a significant increase in emissions. The plant was designed with electrostatic precipitators by Joy Technologies with 90% collection efficiency. Based on the design criteria problems with the ash handling system, the precipitators were not operated consistently for a significant period. As a result of the above conditions and because of high emissions, a program of combustion improvements was initiated followed by upgrading of the precipitator and ash handling system.

  8. Pollutant emissions reduction and performance optimization of an industrial radiant tube burner

    SciTech Connect

    Scribano, Gianfranco; Solero, Giulio; Coghe, Aldo

    2006-07-15

    This paper presents the results of an experimental investigation performed upon a single-ended self-recuperative radiant tube burner fuelled by natural gas in the non-premixed mode, which is used in the steel industry for surface treatment. The main goal of the research activity was a systematic investigation of the burner aimed to find the best operating conditions in terms of optimum equivalence ratio, thermal power and lower pollutant emissions. The analysis, which focused on the main parameters influencing the thermal efficiency and pollutant emissions at the exhaust (NO{sub x} and CO), has been carried out for different operating conditions of the burner: input thermal powers from 12.8 up to 18kW and equivalence ratio from 0.5 (very lean flame) to 0.95 (quasi-stoichiometric condition). To significantly reduce pollutant emissions ensuring at the same time the thermal requirements of the heating process, it has been developed a new burner configuration, in which a fraction of the exhaust gases recirculates in the main combustion region through a variable gap between the burner efflux and the inner flame tube. This internal recirculation mechanism (exhaust gases recirculation, EGR) has been favoured through the addition of a pre-combustion chamber terminated by a converging nozzle acting as a mixing/ejector to promote exhaust gas entrainment into the flame tube. The most important result of this solution was a decrease of NO{sub x} emissions at the exhaust of the order of 50% with respect to the original burner geometry, for a wide range of thermal power and equivalence ratio. (author)

  9. Monitoring Persistent Volcanic Emissions from Sulphur Springs, Saint Lucia: A Community Approach to Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Joseph, E. P.; Beckles, D. M.; Cox, L.; Jackson, V. B.; Alexander, D.

    2014-12-01

    Volcanic and geothermal emissions are known natural sources of volatiles to the atmosphere. Volcanogenic air pollutants known to cause the most serious impact are carbon dioxide (CO2), sulphur dioxide (SO2), hydrogen chloride (HCl) and hydrogen fluoride (HF). Some studies into the potential for volcanic emissions to produce chronic diseases in humans indicate that areas of major concern include respiratory problems, particularly silicosis (Allen et al. 2000; Baxter et al. 1999; Buist et al. 1986), psychological stress (Shore et al. 1986), and chemical impacts of gas or ash (Giammanco et al. 1998). Sulphur Springs Park in Saint Lucia has a very high recreational value with >200,000 visitors annually, while the nearby town of Soufrière has >8,400 residents. Residents and visitors have raised concerns about the volcanic emissions and its health effects. As part of the volcanic surveillance programme undertaken by the UWI, Seismic Research Centre (SRC) in Saint Lucia, a new monitoring network has been established for quantifying the ambient SO2 in air, to which staff and visitors at the volcanic park are exposed to. The implementation and continued operation of this network has involved the training of local personnel in the active field sampling and analytical techniques required for the assessment of ambient SO2 concentrations, using a low cost monitor as well as commercial passive samplers. This approach recognizes that environmental hazards are a usual part of life and productive livelihoods, and to minimize post-disaster response and recovery it is beneficial to promote preparedness and mitigation, which is best achieved at the local level with community involvement. It is also intended that the volcanic emissions monitoring network could be used as a method to establish and maintain community-based initiatives that would also be helpful when volcanic threat manifests.

  10. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction

    SciTech Connect

    Jennifer Rumsey

    2005-12-31

    Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, the letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.

  11. The reduction of dioxin emissions from the processes of heat and power generation.

    PubMed

    Wielgosiński, Grzegorz

    2011-05-01

    The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants. PMID:21608491

  12. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  13. Advanced Aerodynamic Technologies for Ground Vehicle Fuel Economy Improvement and Emission Reductions

    SciTech Connect

    Ricahrd Wood

    2007-01-15

    SOLUS-Solutions and Technologies LLC utilized the opportunity presented by the Department of Energy (DOE) Inventions and Innovations grant to successfully develop, market, and license two of the original three fuel and emissions saving aerodynamic trailer attachments for the trucking industry. Working independent of the grant and with SOLUS funding SOLUS also developed, marketed and licensed three additional fuel and emissions saving aerodynamic trailer attachments for the trucking industry. The five inventions include four inventions that are applicable to all heavy truck trailers and one invention specifically designed for van trailers with swing doors. The SOLUS inventions have been developed for use on all trailer types as well as light and medium trucks. SOLUS-Solutions and Technologies LLC has licensed the five inventions to Silver Eagle Manufacturing Company of Portland Oregon. Each trailer outfitted with the SOLUS inventions saves approximately 2,000 gallons of fuel every 100,000 miles, which prevents over 20 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save more than 4.0 billion gallons of diesel fuel, reduce emissions by 40 million tons and save 10.0 billion dollars annually.

  14. Energy Saving and GHG Emission Reduction in a Micro-CCHP System by Use of Solar Energy

    NASA Astrophysics Data System (ADS)

    Ion, Ion V.; Ciocea, Gheorghe; Popescu, Florin

    2012-12-01

    In this work, the reduction of greenhouse gas emission, and the energy saving by integrating solar collectors and photovoltaic panels in a Stirling engine based microcombined cooling, heating and power (mCCHP) system are studied. The mCCHP system consists of a natural gas Stirling CHP and an adsorber chiller. When the thermal outputs of the Stirling CHP and solar collectors are not sufficient to cover the heat demand for domestic hot water (DHW), heating/cooling, an auxiliary heating boiler starts to operate. The energy saving by using solar energy varies from 13.35% in December to 59.62% in April, in the case of solar collectors usage and from 7.47% in December to 28.27% in July, in the case of photovoltaic panels usage. By using solar energy the annual GHG emission decreases by 31.98% and the fuel cost reduction varies from 12.73% in December to 49.78% in June.

  15. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  16. Reduction of regulated and unregulated exhaust gas emission components from diesel engines running with rapeseedmethylester using oxidation catalyst technologies

    SciTech Connect

    May, H.; Huettenberger, P.

    1996-12-31

    Up to now all engine research was based on engines, which are adapted to Diesel fuel but not to vegetableoilmethylester (VME). Caused by the special climate conditions in Europe rapeseed and sunflowers, in the US soya-beans and in the tropical countries palm trees are the favorable plants for vegetable oil production. The physical and chemical properties of Diesel fuel and VME are quite different. Therefore an engine adaption and redesign to VME is a suitable way of further reduction of noxious and climate-influencing emissions. To prove the effectiveness of the emission reduction the European test-cycle ECE/EUDC, the US-FTP 75 test for passenger cars and the European 13-stage-test-cycle for heavy duty-truck-engines has been used with and without an oxidation catalyst in each case. The results of the exhaust gas measurement both concerning regulated and unregulated components are shown. A comparison between engines fueled with fossil diesel fuel and rapeseedmethylester (RME) is given.

  17. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-02-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively.

  18. A Fe-C-Ca big cycle in modern carbon-intensive industries: toward emission reduction and resource utilization.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Seetharaman, Seshadri; Wang, Hao; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-01-01

    Herein a big Fe-C-Ca cycle, clarifying the basic element flows and energy flows in modern carbon-intensive industries including the metallurgical industry and the cement industry, was proposed for the first time in the contexts of emission reduction and iron ore degradation nowadays. This big cycle was focused on three industrial elements of Fe, C and Ca and thus it mainly comprised three interdependent loops, i.e., a C-cycle, a Fe-cycle and a Ca-path. As exemplified, we started from the integrated disposal of hot steel slags, a man-made iron resource via char gasification and the employment of hematite, a natural iron resource greatly extended the application area of this idea. Accordingly, based on this concept, the theoretical potentials for energy saving, emission reduction and Fe resource recovery achieved in modern industry are estimated up to 7.66 Mt of standard coal, 63.9 Mt of CO2 and 25.2 Mt of pig iron, respectively. PMID:26923104

  19. Analysis of Potential Energy Saving and CO2 Emission Reduction of Home Appliances and Commercial Equipments in China

    SciTech Connect

    Zhou, Nan; Fridley, David; McNeill, Michael; Zheng, Nina; Letschert, Virginie; Ke, Jing; Saheb, Yamina

    2010-06-07

    China is now the world's largest producer and consumer of household appliances and commercial equipment. To address the growth of electricity use of the appliances, China has implemented a series of minimum energy performance standards (MEPS) for 30 appliances, and voluntary energy efficiency label for 40 products. Further, in 2005, China started a mandatory energy information label that covers 19 products to date. However, the impact of these standard and labeling programs and their savings potential has not been evaluated on a consistent basis. This research involved modeling to estimate the energy saving and CO{sub 2} emission reduction potential of the appliances standard and labeling program for products for which standards are currently in place, or under development and those proposed for development in 2010. Two scenarios that have been developed differ primarily in the pace and stringency of MEPS development. The 'Continued Improvement Scenario' (CIS) reflects the likely pace of post-2009 MEPS revisions, and the likely improvement at each revision step considering the technical limitation of the technology. The 'Best Practice Scenario' (BPS) examined the potential of an achievement of international best practice MEPS in 2014. This paper concludes that under the 'CIS' of regularly scheduled MEPS revisions to 2030, cumulative electricity consumption could be reduced by 9503 TWh, and annual CO{sub 2} emissions would be 16% lower than in the frozen efficiency scenario. Under a 'BPS' scenario for a subset of products, cumulative electricity savings would be 5450 TWh and annual CO{sub 2} emissions reduction would be 35% lower than in the frozen scenario.

  20. Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components

    NASA Astrophysics Data System (ADS)

    Smith, Amanda D.

    Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission losses are averted, and heat which is a byproduct of power production may be useful to the building. That thermal energy can be used for hot water or space heating, among other applications. This dissertation focuses on CHP systems using natural gas, a common fuel, and systems serving commercial buildings in the United States. First, the necessary price difference between purchased electricity and purchased fuel is analyzed in terms of the efficiencies of system components by comparing CHP with a conventional separate heat and power (SHP) configuration, where power is purchased from the electrical grid and heat is provided by a gas boiler. Similarly, the relationship between CDE due to electricity purchases and due to fuel purchases is analyzed as well as the relationship between primary energy conversion factors for electricity and fuel. The primary energy conversion factor indicates the quantity of source energy necessary to produce the energy purchased at the site. Next, greenhouse gas emissions are investigated for a variety of commercial buildings using CHP or SHP. The relationship between the magnitude of the reduction in emissions and the parameters of the CHP system is explored. The cost savings and reduction in primary energy consumption are evaluated for the same buildings. Finally, a CHP system is analyzed with the addition of a thermal energy storage (TES) component, which can store excess thermal energy and deliver it later if necessary. The potential for CHP with TES to reduce cost, emissions, and primary energy consumption is investigated for a variety of buildings. A case study is developed for one building for which TES does provide additional benefits over a CHP system alone, and the requirements for a water tank TES device are examined.

  1. Reduction of VOC emissions from metal dip coating applications -- Canam Steel Corporation Point of Rocks, MD case study

    SciTech Connect

    Monfet, J.P.

    1997-12-31

    The reduction of VOC emissions from metal dip coating applications is not an environmental constraint, it is an economic opportunity. This case study shows how the industry can reap economic benefits from VOC reductions while improving air quality. The Canam Steel Corporation plant located in Point of Rocks, MD operates dip tanks for primer application on fabricated steel joists and joist girders. This process is presently subject to a regulation that limits the paint VOC content to 3.5 pounds per gallon of coating less water. As a result of the high paint viscosity associated with that regulation, the paint thickness of the dipped steel is thicker than the customers` specifications. Most of the VOC emissions can therefore be associated with the excess of paint applied to the products rather than to the required thickness of the coating. The higher paint usage rate has more than environmental consequences, it increases the cost of the applied coating. The project is to reduce the paint usage by controlling the viscosity of the coating in the tank. Experimental results as well as actual mass balance calculations show that using a higher VOC content paint would reduce the overall VOC emissions. The author explained the project to the Maryland Department of the Environment (MDE) Air and Radiation Management Administration. First, the MDE agreed to develop a new RACT determination for fabricated steel dipping operations. The new regulation would limit the amount of VOC than can be emitted to dip coat a ton of fabricated steel. Second, the MDE agreed to allow experimentation of the higher VOC content paint as a pilot project for the new regulation. This paper demonstrates the need for a RACT determination specific to fabricated steel dipping operations.

  2. Catalysts for cleaner combustion of coal, wood and briquettes sulfur dioxide reduction options for low emission sources

    SciTech Connect

    Smith, P.V.

    1995-12-31

    Coal fired, low emission sources are a major factor in the air quality problems facing eastern European cities. These sources include: stoker-fired boilers which feed district heating systems and also meet local industrial steam demand, hand-fired boilers which provide heat for one building or a small group of buildings, and masonary tile stoves which heat individual rooms. Global Environmental Systems is marketing through Global Environmental Systems of Polane, Inc. catalysts to improve the combustion of coal, wood or fuel oils in these combustion systems. PCCL-II Combustion Catalysts promotes more complete combustion, reduces or eliminates slag formations, soot, corrosion and some air pollution emissions and is especially effective on high sulfur-high vanadium residual oils. Glo-Klen is a semi-dry powder continuous acting catalyst that is injected directly into the furnace of boilers by operating personnel. It is a multi-purpose catalyst that is a furnace combustion catalyst that saves fuel by increasing combustion efficiency, a cleaner of heat transfer surfaces that saves additional fuel by increasing the absorption of heat, a corrosion-inhibiting catalyst that reduces costly corrosion damage and an air pollution reducing catalyst that reduces air pollution type stack emissions. The reduction of sulfur dioxides from coal or oil-fired boilers of the hand fired stoker design and larger, can be controlled by the induction of the Glo-Klen combustion catalyst and either hydrated lime or pulverized limestone.

  3. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  4. Modelling of ozone in Northrhine-Westphalia; effect of emission reduction on ozone distribution

    NASA Astrophysics Data System (ADS)

    Schoenemeyer, Th.; Emeis, S.; Wichmann-Fiebig, M.

    1996-12-01

    To study the efficiency of measures to reduce high ozone concentrations and to optimize abatement strategies, it is necessary to incorporate numerical photochemical model studies. For the simulation of an episode of four days with high concentrations (July 1994), meteorological fields were simulated by the nonhydrostatic mesoscale model METRAS. Chemistry, Transport and Deposition were calculated by RCDM using the RADM2-chemistry. For the simulations detailed emission inventories were provided by the State Environment Agency. Results show the inefficiency of speed limits and the weak effectiveness of regional measures against high ozon concentrations.

  5. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  6. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  7. Reduction of combustion emissions using hydrogen peroxide in a pilot scale combustion chamber

    SciTech Connect

    Martinez, A.I.; Corredor, L.F.; Tamara, W.

    1997-12-31

    A hydrogen peroxide injection system was designed and installed in the stack of a 5,274 million J/hr industrial pilot plant scale combustion chamber using natural gas as fuel. The concentration of peroxide in the gas stream was precisely controlled by continuous injection using an electromagnetic dosage pump, the liquid 50% peroxide solution was finely dispersed into the gases by a water cooled custom designed delivery system with a spray nozzle at the tip. Residence times between 0.1 and 1.8 seconds and concentrations of H{sub 2}O{sub 2} between 280 ppm and 4,000 ppm were used during the test runs. CEMS for total hydrocarbons, carbon monoxide, nitrogen oxides, as well as an ultrasonic gas flow monitor were used to measure the effect of hydrogen peroxide in reducing the emissions of these pollutants. Destruction removal efficiencies between 25% and 100% were observed for hydrocarbons, and concentrations of CO, as well as NO{sub x}. were reduced about 50%. The results indicate that this labscale proved technology yields similar results in reducing combustion emissions in pilot applications, and also a reliable injection system has been developed and tested successfully.

  8. Potential emissions reduction in road transport sector using biofuel in developing countries

    NASA Astrophysics Data System (ADS)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  9. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol).

    PubMed

    Zhang, Xinwen; Wang, Xiaoqing; Zhang, Jian; Huang, Xiaoyu; Wei, Dong; Lan, Wei; Hu, Zhen

    2016-10-01

    The purpose of this study was to evaluate the effect of mannitol as carbon source on nitrogen removal and nitrous oxide (N2O) emission during partial nitrification (PN) process. Laboratory-scale PN sequencing batch reactors (SBRs) were operated with mannitol and sodium acetate as carbon sources, respectively. Results showed that mannitol could remarkably reduce N2O-N emission by 41.03%, without influencing the removal efficiency of NH4(+)-N. However, it has a significant influence on nitrite accumulation ratio (NAR) and TN removal, which were 19.97% and 13.59% lower than that in PN with sodium acetate, respectively. Microbial analysis showed that the introduction of mannitol could increase the abundance of bacteria encoding nosZ genes. In addition, anti-oxidant enzymes (T-SOD, POD and CAT) activities were significantly reduced and the dehydrogenase activity had an obvious increase in mannitol system, indicating that mannitol could alleviate the inhibition of N2O reductase (N2OR) activities caused by high NO2(-)-N concentration. PMID:27423546

  10. Reduction of truncation artifacts in fan beam transmission by using parallel beam emission data

    SciTech Connect

    Pan, T.S.; King, M.A.; Luo, D.S.; Case, J.A.; Penney, B.C.; Rajeevan, N.

    1995-08-01

    Transmission imaging has been demonstrated to be a promising technique to provide a patient specific attenuation map for attenuation correction of SPECT cardiac perfusion images. The authors describe a method which uses the measurement of both photopeak and Compton scatter energy window images from a parallel beam collimation to augment the truncated attenuation map reconstruction in a fan beam transmission system. The method first estimates the body and lung outlines from the reconstructed emission data and truncated attenuation map. Based on the outline information, an assigned attenuation map is created and reprojected to estimate the missed projection data, which are then combined with the truncated projection data for the set of complete data without truncation. Finally, a reconstruction using the combined complete data is performed to obtain the attenuation map with no truncation. The authors demonstrate that this method can significantly reduce the truncation artifacts in two phantom studies and one patient study. When some portion of the heart walls stays outside the densely sampled region (defined as the region of the object that has no truncation in any projection angle), the attenuation map estimated from this method can more effectively correct for the attenuation in the emission data than the truncated attenuation map.

  11. Reduction of endocrine disruptor emissions in the environment: the benefit of wastewater treatment.

    PubMed

    Janex-Habibi, Marie-Laure; Huyard, Alain; Esperanza, Mar; Bruchet, Auguste

    2009-04-01

    The occurrence and fate of four estrogens and five alkylphenolic compounds were studied in thirteen plants with various treatment processes, sizes and countries. Complete load mass balance, including water and sludge phases, has shown a high reduction of the total load of hormones, around 90%. The removal of alkylphenols was more variable, due to the degradation of nonylphenol (NP) precursors - alkylphenol polyethoxylates (APnEO) - during the treatment, resulting in significant production of shorter and toxic alkylphenols (NP and short polyethoxylates) that concentrate in the sludges. Under anaerobic conditions, such as anaerobic digestion process, the load of NP was in most cases observed to increase. When considering the environmental impact, the high reduction of endocrine disrupting compounds (EDC) concentrations between raw wastewater and effluent enables to satisfy the requirements of the Water Framework Directive for NP except in very critical situations where the dilution factor of the effluent in the river would be lower than 7. For sludges, the pending European Directive on spreading of sludge on land would be complied with in all cases. PMID:19203777

  12. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  13. Emissions reductions in coal-fired home heating stoves through the use of briquettes. Final report

    SciTech Connect

    1996-06-19

    The purpose of Phase 1 was to optimize the clean burning coal briquette (Clean Fuel) formulation for Polish raw materials and to demonstrate the claimed pollution reducing benefits of its use in residential heating. Subsidiary goals were to test this fuel in larger scale facilities and to support the commercial tasks by producing Clean Fuel for use in the by-product market test. These goals were accomplished. Use of Clean Fuel in residential heating reduced particulate matter and total hydrocarbons emissions from ceramic home heating stoves compared to the combustion of premium chunk coal by 56 and 39%, respectively. It also results in higher thermal efficiency. An optimum formulation using Polish raw materials was determined and used in the production of Clean Fuel for the by-product market test. This fuel was also tested in a hand-stoked fixed grate boiler and 3 travelling grate boilers of varying size.

  14. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Bratsev, A. N.; Kumkova, I. I.; Kuznetsov, V. A.; Popov, V. E.; Shtengel', S. V.; Ufimtsev, A. A.

    2011-03-01

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  15. Greenhouse Gas Emission Reduction Due to Improvement of Biodegradable Waste Management System

    NASA Astrophysics Data System (ADS)

    Bendere, R.; Teibe, I.; Arina, D.; Lapsa, J.

    2014-12-01

    To reduce emissions of greenhouse gas (GHG) from landfills, the European Union (EU) Landfill Directive 1999/31/EC requires that there be a progressive decrease in the municipal biodegradable waste disposal. The main problem of waste management (WM) in Latvia is its heavy dependence on the waste disposal at landfills. The poorly developed system for the sorted municipal waste collection and the promotion of landfilling as a major treatment option led to the disposal of 84% of the total collected municipal waste in 2012, with a high biodegradable fraction. In Latvia, the volume of emissions due to activities of the WM branch was 5.23% (632.6 CO2 eq.) of the total GHG emissions produced in the National economy in 2010 (12 097 Gg CO2 eq., except the land use, land-use change and forestry). Having revised the current situation in the management of biodegradable waste in Latvia, the authors propose improvements in this area. In the work, analysis of environmental impact was carried out using Waste Management Planning System (WAMPS) software in the WM modelling scenarios. The software computes the emissions, energy and turnover of waste streams for the processes within the WM system such as waste collection and transportation, composting, anaerobic digestion, and the final disposal (landfilling or incineration). The results of WAMPS modelling are presented in four categories associated with the environmental impact: acidification, global warming, eutrophication and photo-oxidant formation, each characterised by a particular emission. These categories cover an integrated WM system, starting with the point when products turn to waste which is then thrown into the bin for waste at its generation source, and ending with the point where the waste transforms either into useful material (recycled material, biogas or compost) or contributes to emissions into environment after the final disposal at a landfill or an incineration plant Rakstā veikts pašvaldības bioloģiski no

  16. Estimating Energy and Cost Savings and Emissions Reductions for the State Energy Program Based on Enumeration Indicators Data

    SciTech Connect

    Schweitzer, M.

    2003-02-06

    As part of an effort to produce metrics for quantifying the effects of the U.S. Department of Energy's (DOE's) State Energy Program (SEP), staff at Oak Ridge National Laboratory (ORNL) developed a classification scheme for describing the various state activities supported by SEP funds. This involved identifying a number of distinct program areas into which all of the various state SEP activities could be placed. Then, a set of ''enumeration indicators'' was developed to describe key activities within each of those areas. Although originally developed to count program activities, the enumeration indicators are used here as a basis for estimating the savings and emissions reductions achieved by the SEP. While there are additional benefits associated with the SEP, such as increased energy security and economic well-being, they are not addressed in this study.

  17. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions.

    PubMed

    Barrett, Sophie E; Watmough, Shaun A

    2015-11-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. PMID:26160672

  18. Aircraft NO/x/ emissions and stratospheric ozone reductions - Another look

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Whitten, R. C.; Toon, O. B.; Inn, E. C. Y.; Hamill, P.

    1981-01-01

    New estimates for stratospheric ozone perturbations attributable to supersonic transport (SST) emissions are presented. First, a review is given of recent data pointing to lower OH concentrations below 30 km, as compared to the values predicted by photochemical models. The evidence for lower OH comes from a wide range of laboratory and atmospheric studies. The sensitivity of theoretical estimates of ozone change to OH abundances, and the coupling mechanisms between the O(x)-NO(x)-HO(x)-Cl(x) families which are responsible for the sensitivity, are discussed. Updated calculations for SST-induced ozone alterations are compared with older predictions. For example, assuming continuous aircraft injection of NO2 at 20 km at a rate of 1 x 10 to the 9th kg per year (globally), a 4% ozone decrease, is now calculated where earlier a 3% ozone increase was found. This large variance from previous forecasts suggests that new assessments of certain other polluting agents, particularly nitrogen fertilizers, are needed.

  19. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction

    NASA Astrophysics Data System (ADS)

    Cai, Yongyang; Lenton, Timothy M.; Lontzek, Thomas S.

    2016-05-01

    Evidence suggests that several elements of the climate system could be tipped into a different state by global warming, causing irreversible economic damages. To address their policy implications, we incorporated five interacting climate tipping points into a stochastic-dynamic integrated assessment model, calibrating their likelihoods and interactions on results from an existing expert elicitation. Here we show that combining realistic assumptions about policymakers’ preferences under uncertainty, with the prospect of multiple future interacting climate tipping points, increases the present social cost of carbon in the model nearly eightfold from US$15 per tCO2 to US$116 per tCO2. Furthermore, passing some tipping points increases the likelihood of other tipping points occurring to such an extent that it abruptly increases the social cost of carbon. The corresponding optimal policy involves an immediate, massive effort to control CO2 emissions, which are stopped by mid-century, leading to climate stabilization at <1.5 °C above pre-industrial levels.

  20. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  1. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    SciTech Connect

    Steinberg, M.; Dong, Yuanji; Borgwardt, R.H.

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  2. Health Cobenefits and Transportation-Related Reductions in Greenhouse Gas Emissions in the San Francisco Bay Area

    PubMed Central

    Woodcock, James; Co, Sean; Ostro, Bart; Fanai, Amir; Fairley, David

    2013-01-01

    Objectives. We quantified health benefits of transportation strategies to reduce greenhouse gas emissions (GHGE). Methods. Statistics on travel patterns and injuries, physical activity, fine particulate matter, and GHGE in the San Francisco Bay Area, California, were input to a model that calculated the health impacts of walking and bicycling short distances usually traveled by car or driving low-emission automobiles. We measured the change in disease burden in disability-adjusted life years (DALYs) based on dose–response relationships and the distributions of physical activity, particulate matter, and traffic injuries. Results: Increasing median daily walking and bicycling from 4 to 22 minutes reduced the burden of cardiovascular disease and diabetes by 14% (32 466 DALYs), increased the traffic injury burden by 39% (5907 DALYS), and decreased GHGE by 14%. Low-carbon driving reduced GHGE by 33.5% and cardiorespiratory disease burden by less than 1%. Conclusions: Increased physical activity associated with active transport could generate a large net improvement in population health. Measures would be needed to minimize pedestrian and bicyclist injuries. Together, active transport and low-carbon driving could achieve GHGE reductions sufficient for California to meet legislative mandates. PMID:23409903

  3. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process.

    PubMed

    Chiang, Kung-Yuh; Hu, Yu-Hsin

    2010-05-01

    This study investigated that water washing effects on the metals emission reduction in melting of municipal solid waste incinerator (MSWI) fly ash. Experimental conditions were conducted at liquid-to-solid (L/S) ratio 10, 20, and 100 for water-washing process and its subsequent melting treatment at 1450 degrees C for 2h. The simple water-washing process as a pre-treatment for MSWI fly ash can remove most of the chlorides, leachable salts, and amphoteric heavy metals from the MSWI fly ash, resulting in the washed ash having lowered chlorine content. MSWI fly ashes washed by L/S ratio 10 and above that were melted at 1450 degrees C produced slag containing relatively high vitrificaton ratio of Cu and Pb. Besides, the vitrification ratios of Na, K, Ca, and Mg in washed MSWI fly ash were also higher than that of MSWI fly ash. The results indicated that washed MSWI fly ash can reduce the emission of metallic chlorides during its subsequent melting treatment. PMID:20079621

  4. [Nutrients conservation of N & P and greenhouse gas reduction of N2O emission during swine manure composting].

    PubMed

    Zheng, Jia-Xi; Wei, Yuan-Song; Wu, Xiao-Feng; Zeng, Xiao-Lan; Han, Sheng-Hui; Fang, Yun

    2011-07-01

    Nitrogen loss and greenhouse gas (N2O) emission occur during animal manure composting, as well as phosphorus loss caused by runoff during land application of animal manure compost. Therefore, the purposes of this study were to simultaneously conserve nutrients of nitrogen & phosphorus and reduce N2O emission during animal manure composting using modified salts which are made from industrial solid waste. Experiments of in-vessel swine manure composting at lab-scale were carried out to investigate and compare effects of modified red-mud (MR) and modified forsterite (MF) as additives on nutrients conservation and greenhouse gas (N2O) reduction. As far as the nitrogen loss calculated on the basis of ammonia and nitrous oxide is concerned, the least nitrogen loss at only 6.38% of TKN occurred in the swine manure composting with MF addition at pH 7.0 +/- 0.2, compared with those of MR addition at pH 5.0 +/- 0.2 at 11.07% of TKN and the control at 14.68% of TKN, respectively. The best results of ammonia and nitrous oxide mitigation during swine manure composting were the treatments with MR addition and MF addition, which nitrogen losses were at 2.13% of TKN as NH3 and 0.65% of TKN, respectively. These results clearly showed that the modified salt additives from red-mud and forsterite were useful for saving nitrogen and reducing N2O emission. Moreover, the contents of soluble orthophosphate in swine manure compost with the addition of both modified salts were less than that of the control, which is helpful to reduce P loss during land application of swine manure compost. PMID:21922829

  5. The conversion of grassland to acacia forest as an effective option for net reduction in greenhouse gas emissions.

    PubMed

    de Godoi, Stefânia Guedes; Neufeld, Ângela Denise Hubert; Ibarr, Mariana Alves; Ferreto, Décio Oscar Cardoso; Bayer, Cimélio; Lorentz, Leandro Homrich; Vieira, Frederico Costa Beber

    2016-03-15

    This study aimed to evaluate the effect of forestation with leguminous Acacia mearnsii De Wild in native grasslands on the soil greenhouse (GHG) fluxes and their main driving factors. The experiment was conducted in the Brazilian Pampa over the period of one year in a six-year-old Acacia plantation, evaluating four treatments: Acacia (AM), Acacia with litter periodically removed (A-l), Acacia after harvest (AH) and native grassland (NG) (reference treatment). Air samples were obtained by the static chamber method, and gas concentrations were evaluated by gas chromatography. Soil and climate factors were monitored. The accumulated fluxes of methane (CH4) and nitrous oxide (N2O) were statistically similar between the soils in the AM and NG treatments, which tended to oxidize CH4 (-1445 and -1752 g C-CH4 ha(-1) yr(-1), respectively) and had low emission of N2O (242 and 316 g N-N2O ha(-1) yr(-1)), most likely influenced by the low water-filled pore space and the low content of mineral N in the soil. However, the soil in the AH treatment presented higher emissions of both gases, totaling 1889 g C-CH4 ha(-1) yr(-1) and 1250 g N-N2O ha(-1) yr(-1). Afforestation neither significantly affected the total organic C stocks nor their lability, keeping the C management index for the forested area similar to that in the NG treatment. The conversion from grassland to Acacia forest represents an effective option for mitigating the net reduction in greenhouse gas emissions, which is basically determined by C accumulation in biomass and wood products. PMID:26731308

  6. Hyperventilation-induced reduction in cerebral blood flow: Assessment by positron emission tomography

    SciTech Connect

    Bednarczyk, E.M.; Rutherford, W.F.; Leisure, G.P.; Munger, M.A.; Panacek, E.A.; Miraldi, F.D.; Green, J.A. )

    1990-05-01

    The use of positron emission tomography (PET) has been well documented as a relatively noninvasive method of measuring cerebral blood flow (CBF), both globally and regionally. The utility of readily detecting alterations in CBF is apparent, particularly when applied to the evaluation of therapeutic interventions thought to influence CBF. We report the effects of hypocapnia, an experimental condition of known cerebral vasoconstriction, in ten normal volunteers. Subjects had brain blood flow evaluated utilizing H215O as the positron emitter before and after approximately five minutes of hyperventilation. Baseline CBF was measured as a mean +/- SD of 61.2 +/- 16.3 mL/min/100 g of tissue. Mean baseline arterial blood gas values were PaO2 107.4 +/- 14 mm Hg, PaCO2 37.7 +/- 0.89 mm Hg, and pH 7.39 (calculated from mean (H+)). Post hyperventilation, global CBF was measured as 31.1 +/- 10.8 mL/min/100 g. Mean arterial blood gas values were PaO2 141.7 +/- 21 mm Hg, PaCO2 19.7 +/- 5 mm Hg, and pH 7.63 (calculated from mean (H+)). CBF decreased by a mean of 49.5 +/- 11 percent. Data analysis using the Student's t-test showed a significant change over baseline in PaCO2 (p less than 0.001) and CBF (p less than 0.001), in the hyperventilated state. Correlations were noted between the decrease in CBF and change in PaCO2 (r = 0.81) as well as between hyperventilation PaCO2 and the change in CBF (r = 0.97). We conclude that, as measured by PET, CBF decreases significantly during a state of artificial hyperventilation to a degree consistent with results seen using other methods. PET appears to be a valuable tool in the assessment of interventions that could influence CBF.

  7. Creating rigorous pathways to monetize methane and nitrous oxide emission reductions at small scale rice farms in three states of semi-arid peninsular India

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Tiwari, R.; Nair, D.; Adhya, T. K.; Rudek, J.

    2014-12-01

    As a part of a joint undertaking by Environmental Defense Fund and the Fair Climate Network, we have measured reduction in methane and nitrous oxide emissions due to alternate "low carbon" rice cultivation practices for three ago-ecological zones in India for the past two years. Sampling for nitrous oxide and methane emissions was done on approximately 60-80% of the total number of days in a growing season and was based on modified GRACEnet protocol. In recognition of farmer's economic interest and global food security demands, we also measured the effect of rice cultivation practices on farm economics and yields. Our data from three agro-ecological zones for 2012-2014 suggest that, for semi-arid peninsular India, low-carbon rice cultivation practices offer large range of emission reduction potential (0.5-5 metric tons CO2e/acre/year). The regions with sandy soils (Alfisols) had high rates of nitrous oxide emissions even under baseline "flooded" rice cultivation regimes and, thus, the Tier 1 IPCC emissions factors grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management. Also, the IPCC factors overestimate the methane emission reduction possible due to water management for rice paddies. Therefore, it is crucial to customize N and water management to each region such that yields and net GHG emission reduction are maximized. These practices also have the potential to decrease water use by 10-30% and improve long term soil health by optimizing organic matter and increasing water-holding capacity. In addition, through GPS based demarcation of farmer plots, recording baseline practices through extensive surveys, documenting the parameters required to aggregate and prove implementation of low carbon rice farming practices, and to model the GHG emission reduction over large scales, we have put forward a path for better monetization of GHG

  8. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    NASA Astrophysics Data System (ADS)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  9. Climate-driven increase of natural wetland methane emission offset by human-induced wetland reduction in China over the past three decades

    NASA Astrophysics Data System (ADS)

    Zhu, Qiuan; Peng, Changhui; Liu, Jinxun; Jiang, Hong; Gong, Peng

    2016-04-01

    Both anthropogenic activities and climate change can affect the biogeochemical processes of natural wetland methanogenesis. Chinese natural wetlands vanished considerably during recent decades mainly due to human activities. Quantifying possible impacts of changing climate and wetland area on wetland methane (CH4) emission in China is important for improving our knowledge on CH4 budgets locally and globally. However, their respective and combined effects are uncertain. We incorporated changes in wetland area derived from remote sensing into a dynamic CH4 model to quantify the human and climate change induced contributions to natural wetland CH4 emission in China over the past three decades. Here we found that human-induced wetland loss contributed 34.3% to the CH4 emission reduction (0.92 TgCH4), and climate change contributed 20.4% to the CH4 emission increase (0.31 TgCH4), suggesting that decreasing CH4 emission due to human-induced wetland reductions has offset the increasing climate-driven CH4 emission. With climate change only, temperature was a dominant controlling factor for wetland CH4 emission in the northeast (high latitude) and Qinghai-Tibet Plateau (high altitude) regions, whereas precipitation had a considerable influence in relative arid north China. Overall, ignoring human-induced wetlands dynamics may result in great uncertainties in quantifying global wetland CH4 emission.

  10. Reduction of Non-CO2 Gas Emissions Through The In Situ Bioconversion of Methane

    SciTech Connect

    Scott, A R; Mukhopadhyay, B; Balin, D F

    2012-09-06

    The primary objectives of this research were to seek previously unidentified anaerobic methanotrophs and other microorganisms to be collected from methane seeps associated with coal outcrops. Subsurface application of these microbes into anaerobic environments has the potential to reduce methane seepage along coal outcrop belts and in coal mines, thereby preventing hazardous explosions. Depending upon the types and characteristics of the methanotrophs identified, it may be possible to apply the microbes to other sources of methane emissions, which include landfills, rice cultivation, and industrial sources where methane can accumulate under buildings. Finally, the microbes collected and identified during this research also had the potential for useful applications in the chemical industry, as well as in a variety of microbial processes. Sample collection focused on the South Fork of Texas Creek located approximately 15 miles east of Durango, Colorado. The creek is located near the subsurface contact between the coal-bearing Fruitland Formation and the underlying Pictured Cliffs Sandstone. The methane seeps occur within the creek and in areas adjacent to the creek where faulting may allow fluids and gases to migrate to the surface. These seeps appear to have been there prior to coalbed methane development as extensive microbial soils have developed. Our investigations screened more than 500 enrichments but were unable to convince us that anaerobic methane oxidation (AMO) was occurring and that anaerobic methanotrophs may not have been present in the samples collected. In all cases, visual and microscopic observations noted that the early stage enrichments contained viable microbial cells. However, as the levels of the readily substrates that were present in the environmental samples were progressively lowered through serial transfers, the numbers of cells in the enrichments sharply dropped and were eliminated. While the results were disappointing we acknowledge that

  11. Renewable energy and its potential for carbon emissions reductions in developing countries: Methodology for technology evaluation. Case study application to Mexico

    SciTech Connect

    Corbus, D; Martinez, M; Rodriguez, L; Mark, J

    1994-08-01

    Many projects have been proposed to promote and demonstrate renewable energy technologies (RETs) in developing countries on the basis of their potential to reduce carbon emissions. However, no uniform methodology has been developed for evaluating RETs in terms of their future carbon emissions reduction potential. This study outlines a methodology for identifying RETs that have the potential for achieving large carbon emissions reductions in the future, while also meeting key criteria for commercialization and acceptability in developing countries. In addition, this study evaluates the connection between technology identification and the selection of projects that are designed to demonstrate technologies with a propensity for carbon emission reductions (e.g., Global Environmental Facility projects). Although this report applies the methodology to Mexico in a case study format, the methodology is broad based and could be applied to any developing country, as well as to other technologies. The methodology used in this report is composed of four steps: technology screening, technology identification, technology deployment scenarios, and estimates of carbon emissions reductions. The four technologies with the highest ranking in the technology identification process for the on-grid category were geothermal, biomass cogeneration, wind, and micro-/mini-hydro. Compressed natural gas (CNG) was the alternative that received the highest ranking for the transportation category.

  12. Estimating energy intensity and CO{sub 2} emission reduction potentials in the manufacturing sectors in Thailand

    SciTech Connect

    Wangskarn, P.; Khummongkol, P.; Schrattenholzer, L.

    1996-12-31

    The final energy consumption in Thailand increased at about ten percent annually within the last 10 years. To slow the energy demand growth rate while maintaining the country`s economic advance and environmental sustainability, the Energy Conservation Promotion Act (ECPA) was adopted in 1992. With this Act, a comprehensive Energy Conservation Program (ENCON) was initiated. ENCON commits the government to promoting energy conservation, to developing appropriate regulations, and to providing financial and organizational resources for program implementation. Due to this existing ENCON program a great benefit is expected not only to reducing energy consumption, but also to decreasing GHGs emissions substantially. This study is a part of the ENCON research program which was supported by the German Federal Government under the program called Prompt-Start Measures to Implement the U.N. Framework Convention on Climate Change (FCCC). The basic activities carried out during the project included (1) An assessment of Thailand`s total and specific energy consumption in the industrial sectors and commercial buildings; (2) Identification of existing and candidate technologies for GHG emission reduction and energy efficiency improvements in specific factories and commercial buildings; and (3) Identification of individual factories and commercial buildings as candidates for detailed further study. Although the energy assessment had been carried out for the commercial buildings also, this paper will cover only the work on the manufacturing sector. On the basis of these steps, 14 factories were visited by the project team and preliminary energy audits were performed. As a result, concrete measures and investments were proposed and classified into two groups according to their economic characteristics. Those investments with a payback time of less than four years were considered together in a Moderate scenario, and those with longer payback times in an Intensive scenario.

  13. DEVELOPMENT OF A NOVEL RADIATIVELY/CONDUCTIVELY STABILIZED BURNER FOR SIGNIFICANT REDUCTION OF NOx EMISSIONS AND FOR ADVANCING THE MODELING AND UNDERSTANDING OF PULVERIZED COAL COMBUSTION AND EMISSIONS

    SciTech Connect

    Noam Lior; Stuart W. Churchill

    2003-10-01

    the Gordon Conference on Modern Development in Thermodynamics. The results obtained are very encouraging for the development of the RCSC as a commercial burner for significant reduction of NO{sub x} emissions, and highly warrants further study and development.

  14. Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Zhang, Hua; Zhang, Xiaoye

    2015-12-01

    The response of the East Asian summer monsoon (EASM) system to reductions in emissions of anthropogenic aerosols and their precursors at the end of the twenty-first century projected by Representative Concentration Pathway 4.5 is studied using an aerosol-climate model with aerosol direct, semi-direct, and indirect effects included. Our results show that the global annual mean aerosol effective radiative forcing at the top of the atmosphere (TOA) is +1.45 W m-2 from 2000 to 2100. The summer mean net all-sky shortwave fluxes averaged over the East Asian monsoon region (EAMR) at the TOA and surface increased by +3.9 and +4.0 W m-2, respectively, due to the reductions of aerosols in 2100 relative to 2000. Changes in radiations affect local thermodynamic and dynamic processes and the hydrological cycle. The summer mean surface temperature and pressure averaged over the EAMR are shown to increase by 1.7 K and decreased by 0.3 hPa, respectively, due to the reduced aerosols. The magnitudes of these changes are larger over land than ocean, causing a marked increase in the contrast of land-sea surface temperature and pressure in the EAMR, thus strengthening the EASM. The summer mean southwest and south winds at 850 hPa are enhanced over eastern and southern China and the surrounding oceans, and the East Asian subtropical jet shifted northward due to the decreases of aerosols. These factors also indicate enhanced EASM circulation, which in turn causes a 10 % increase in summer mean precipitation averaged over the EAMR.

  15. Increased Use of Natural Gas for Power Generation in the U.S. and the Resulting Reductions in Emissions of CO2, NOx and SO2

    NASA Astrophysics Data System (ADS)

    De Gouw, J. A.; Parrish, D. D.; Trainer, M.

    2013-12-01

    Over the past decades, natural gas has increasingly replaced coal as a fuel for electrical power generation in the U.S. As a result, there have been significant reductions in the emissions of carbon dioxide (CO2), nitrogen oxides (NOx) and sulfur dioxide (SO2). Power plant emissions are continuously measured at the stack using continuous emissions monitoring systems (CEMS) required by the EPA. Previous studies using airborne measurements have shown these CEMS measurements to be accurate. Here, we use annual emissions since 1995 from all point sources included in the CEMS database to quantify the changes in CO2, NOx and SO2 emissions that have resulted from the changing use of fuels and technologies for power generation. In 1997, 83% of electrical power in the CEMS database was generated from coal-fired power plants. In 2012, the contribution from coal had decreased to 59%, and natural gas contributed 34% of the electrical power. Natural gas-fired power plants, in particular those equipped with combined cycle technology, emit less than 50% of CO2 per kWh produced compared to coal-fired plants. As a result of the increased use of natural gas, total CO2 emissions from U.S. power plants have decreased since 2008. In addition, natural gas-fired power plants emit less NOx and far less SO2 per kWh produced than coal-fired power plants. The increased use of natural gas has therefore led to significant emissions reductions of NOx and SO2 in addition to those obtained from the implementation of emissions control systems on coal-fired power plants. The increased use of natural gas for power generation has led to significant reductions in CO2 emissions as well as improvements in U.S. air quality. We will illustrate these points with examples from airborne measurements made using the NOAA WP-3D aircraft in the Southeastern U.S. in 2013 as part of the NOAA Southeast Nexus (SENEX) study. The emissions reductions from U.S. power plants due to the increased use of natural gas will

  16. Strategies for implementing Climate Smart Agriculture and creating marketable Greenhouse emission reduction credits, for small scale rice farmers in Asia

    NASA Astrophysics Data System (ADS)

    Ahuja, R.; Kritee, K.; Rudek, J.; Van Sanh, N.; Thu Ha, T.

    2014-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small holder farms that dot the landscapes in Asia and Africa. At Environmental Defense Fund, along with our partners from non-governmental, corporate, academic and government sectors and farmers, we have worked actively in India and Vietnam for the last four years to better understand how small scale farmers working on rice paddy (and other upland crops) cultivation can best deal with climate change. Some of the questions we have tried to answer are: What types of implementable best practices, both old and new, on small farm systems lend themselves to improved yields, farm incomes, climate resilience and mitigation? Can these practices be replicated everywhere or is the change more landscape and people driven? What are the institutional, cultural, financial and risk-perception related barriers that prevent scaling up of these practices? How do we innovate and overcome these barriers? The research community needs to work more closely together and leverage multiple scientific, economic and policy disciplines to fully answer these questions. In the case of small farm systems, we find that it helps to follow certain steps if the climate-smart (or low carbon) farming programs are to succeed and the greenhouse credits generated are to be marketed: Demographic data collection and plot demarcation Farmer networks and diaries Rigorous baseline determination via surveys Alternative practice determination via consultation with local universities/experts Measurements on representative plots for 3-4 years (including GHG emissions, yields, inputs, economic and environmental savings) to help calibrate biogeochemical models and/or calculate regional emission factors. Propagation of alternative practices across the landscape via local NGOs/governments Recording of parameters necessary to extrapolate representative plot GHG emission reductions to all farmers in a given

  17. Integrated control of emission reductions, energy-saving, and cost-benefit using a multi-objective optimization technique in the pulp and paper industry.

    PubMed

    Wen, Zongguo; Xu, Chang; Zhang, Xueying

    2015-03-17

    Reduction of water pollutant emissions and energy consumption is regarded as a key environmental objective for the pulp and paper industry. The paper develops a bottom-up model called the Industrial Water Pollutant Control and Technology Policy (IWPCTP) based on an industrial technology simulation system and multiconstraint technological optimization. Five policy scenarios covering the business as usual (BAU) scenario, the structural adjustment (SA) scenario, the cleaner technology promotion (CT) scenario, the end-treatment of pollutants (EOP) scenario, and the coupling measures (CM) scenario have been set to describe future policy measures related to the development of the pulp and paper industry from 2010-2020. The outcome of this study indicates that the energy saving amount under the CT scenario is the largest, while that under the SA scenario is the smallest. Under the CT scenario, savings by 2020 include 70 kt/year of chemical oxygen demand (COD) emission reductions and savings of 7443 kt of standard coal, 539.7 ton/year of ammonia nitrogen (NH4-N) emission reductions, and savings of 7444 kt of standard coal. Taking emission reductions, energy savings, and cost-benefit into consideration, cleaner technologies like highly efficient pulp washing, dry and wet feedstock preparation, and horizontal continuous cooking, medium and high consistency pulping and wood dry feedstock preparation are recommended. PMID:25692210

  18. MODELING ASSESSMENT OF THE IMPACT OF NITROGEN OXIDES EMISSION REDUCTIONS ON OZONE AIR QUALITY IN THE EASTERN UNITED STATES: OFFSETTING INCREASES IN ENERGY USE

    EPA Science Inventory

    The objective of this study is to examine changes in ambient ozone concentrations estimated by a photochemical air quality model in response to the NOx emission reductions imposed on the utility sector. To accomplish this task, CMAQ air quality model simulations were performe...

  19. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  20. Catalytic oxidation of mixed wastes containing high organic content--emission reduction and the effect of steam.

    PubMed

    Chang, Li-Yang; Than, Chit; Morimoto, Hiromi; Williams, Philip G

    2006-01-01

    To resolve mixed organic and radioactive waste disposal problems, Lawrence Berkeley National Laboratory (LBNL) initiated a treatability study using the catalytic chemical oxidation (CCO) system to oxidize a mixed-waste stream and to confine tritium as part of LBNL's pollution prevention program. LBNL has also adopted a legal approach by seeking an equivalent waste-treatment determination for the CCO process, and by petitioning the United States Environmental Protection Agency (EPA) to delist F-coded treatment residues. The results of this study demonstrate that (1) the CCO process can treat aqueous wastes containing a broad range of organic chemicals and achieve more than 99.999% destruction efficiency; (2) greater than 99.9% trapping efficiency for tritiated water can be achieved using an emission-reduction system that also confines the vapor of hydrochloric acid or nitric acid to the liquid residue; and (3) neutralized treatment residues can be disposed of as low-level radioactive waste at a permitted facility after EPA has approved LBNL's petitions, or the tritium in the residues can be recycled. The high oxidation efficiency of the CCO process is mainly due to the optimized operating conditions of the CCO process and the combined effect of steam reforming in the oxidation cell and the catalytic oxidation of organic mixtures and CO in the Pt/Al2O3 catalyst bed. PMID:16401570

  1. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  2. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  3. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  4. Optimal fleetwide emissions reductions for passenger ferries: an application of a mixed-integer nonlinear programming model for the New York-New Jersey Harbor.

    PubMed

    Winebrake, James J; Corbett, James J; Wang, Chengfeng; Farrell, Alexander E; Woods, Pippa

    2005-04-01

    Emissions from passenger ferries operating in urban harbors may contribute significantly to emissions inventories and commuter exposure to air pollution. In particular, ferries are problematic because of high emissions of oxides of nitrogen (NOx) and particulate matter (PM) from primarily unregulated diesel engines. This paper explores technical solutions to reduce pollution from passenger ferries operating in the New York-New Jersey Harbor. The paper discusses and demonstrates a mixed-integer, non-linear programming model used to identify optimal control strategies for meeting NOx and PM reduction targets for 45 privately owned commuter ferries in the harbor. Results from the model can be used by policy-makers to craft programs aimed at achieving least-cost reduction targets. PMID:15887889

  5. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  6. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect

    Wang, Q.; Santini, D.L.

    1992-12-31

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO{sub x,} SO{sub x} - are estimated. CO{sub 2} emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO{sub 2} emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO{sub x}. NO{sub x} emissions are reduced in all four cities. An ``avoided cost`` value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA`s draft Mobile5 model for GV emissions, high values by using California`s EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  7. Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems

    SciTech Connect

    Wang, Q. ); Santini, D.L. )

    1992-01-01

    The emissions of logically competing mid-1990 gasoline vehicles (GVs) and electric vehicles (EVs) are estimated as if the vehicles were driven in the same pattern of driving. Six different driving cycles are evaluated, ranging in speed from 7 to 49 miles per hour (mph). These steps are repeated using specifics of fuel composition, electric power mix, and environmental conditions applicable to Chicago, Denver, Los Angeles, and New York in the month of July. The year 2000 emissions differences for each of four regulated pollutants - HC, CO, NO[sub x,] SO[sub x] - are estimated. CO[sub 2] emissions are also estimated. With use of EVs, HC and CO emissions are consistently lowered by 98% or more. CO[sub 2] emissions reductions are uniformly large at low speed, but variable at high speed. It is found that initially introduced EVs could achieve 100% emission reductions in Chicago by using off-peak power from nuclear power plants for EV electricity generation. Emissions reductions occur for all combinations in Los Angeles, and for most combinations in New York, excepting SO[sub x]. NO[sub x] emissions are reduced in all four cities. An avoided cost'' value for each regulated pollutant is estimated for each of the cities. The values for each city depend on severity of air quality violations. It is estimated that the emissions reduction value of EVs driven an average of one and one half hours per day in Los Angeles ranges from $1050 to $3,900; $590 to $2100 in New York; $270 to $1200 in Chicago, and $330 to $1250 in Denver (1989$). Assuming a range of about 100 miles in congested conditions with speeds of 10 mph or less, the estimates range from $3600 to $13300 for Los Angeles; $2004 to $7200 for New York; $930 to $2930 for Chicago; and $1120 to $4290 for Denver. Low estimates are obtained using EPA's draft Mobile5 model for GV emissions, high values by using California's EMFAC7EP-SCF1 model. The dollar value benefit estimates include no economic value.

  8. Calculation of energy recovery and greenhouse gas emission reduction from palm oil mill effluent treatment by an anaerobic granular-sludge process.

    PubMed

    Show, K Y; Ng, C A; Faiza, A R; Wong, L P; Wong, L Y

    2011-01-01

    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined. PMID:22170839

  9. Study of Reciprocal Effects between Mandatory Pollutant Emissions Reduction Policy and Structural Change within the Manufacturing Sector in a Chinese Coastal Area.

    PubMed

    Guo, Yang; Guo, Xianglin; Tian, Jinping; Chen, Lujun

    2015-11-01

    We develop a multicriteria decision-making model coupled with scenario analysis to quantitatively elucidate the reciprocal effect between a mandatory pollutant emissions reduction policy and industrial structure change within the manufacturing sector on the basis of an in-depth study of a well-developed coastal area in East China, Ningbo City, toward 2020. First, 18 two-digit level industries (TDLIs) in the manufacturing sector are screened out due to intensive emissions of the four pollutants (COD, NH3-N, SO2, and NOx). Second, a model is established to identify the optimal solution for the industrial structure adjustment of the 18 TDLIs under two scenarios, the "business-as-usual" scenario and the "industrial structure adjustment" scenario. Both scenarios are expanded into three subscenarios. Quantitative constraint conditions and two criteria are formulated to screen out the optimal solutions. We propose a coefficient of industrial structure adjustment, Ki, which could clearly reflect the policy preference in terms of industrial development and reallocate the quota of the four-pollutant emission among the 18 TDLIs with regards to the different expectations of economy development in 2020. The model will help local authorities make tailored policies to reduce pollution emissions effectively through industrial structure change by delicately allocating the pollutant emission quota and setting reasonable targets of emission intensity reduction among TDLIs. PMID:26421657

  10. A preliminary analysis of US CO/sub 2/ emissions reduction potential from energy conservation and the substitution of natural gas for coal in the period to 2010

    SciTech Connect

    Edmonds, J.A.; Ashton, W.B.; Cheng, H.C.; Steinberg, M.

    1989-02-01

    Carbon dioxide (CO/sub 2/) is a product of burning fossil fuels (oil, gas and coal) and fossil fuel burning is the dominant source of global CO/sub 2/ emissions amounting to 5.2 petagrams of carbon per year (PgC) in 1985. The control of CO/sub 2/ emissions would require control of energy production and use. US emissions were 1.25 PgC in 1985. National Energy Policy Plan (NEPP) projections show total US emissions rising 38% by 2010 to 1.7 PgC. The US Department of Energy (DOE) Carbon Dioxide Research Division (CDRD) has sponsored research at the Pacific Northwest Laboratory (PNL), Brookhaven National Laboratory (BNL), and at the Oak Ridge National Laboratory to do a preliminary assessment of the technical feasibility and consequences of reducing US CO/sub 2/ emissions from 1985 levels by 10, 25 or 50 percent by either the year 1995 and 2010. In addition, DOE/CDRD sponsored a day-long roundtable attended by nine experts in the field to discuss this issue. Two methods of CO/sub 2/ emissions reduction were considered: energy intensity reductions (conservation), and substitution of natural gas for coal. The study did not address the contribution of other energy supply options or the feasibility of pre- or post-combustion CO/sub 2/ removal. Furthermore, the study made no attempt to explore specific policies that might be employed to achieve technically feasible CO/sub 2/ emissions reductions. This is not a policy document.

  11. A Multimodel Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2013-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/-0.8, -4.0 +/- 1.7, and 29.5+/-18.1mW / sq m per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.

  12. Taking advantage of data on N leaching to improve estimates of N2O emission reductions from agriculture in response to management changes

    NASA Astrophysics Data System (ADS)

    Gurwick, N. P.; Tonitto, C.

    2012-12-01

    Estimates of reductions in N2O emissions from agricultural soils associated with different crop management practices often focus on in-field emissions. This is particularly true in the context of policy development for carbon offsets which are highly relevant in California, given the state's global warming protection law (AB 32). However, data sets often do not cover an entire year, missing key times such as spring thaw, and only rarely do they span multiple years even though inter-annual variation can be large. In the most productive grain systems on tile-drained Mollisols in the U.S. there are no long-term data sets of N2O flux, although these agroecosystems have the highest application rates of N fertilizer in grain systems and are prime candidates for large reductions in N2O emissions. In contrast, estimates of the influence of management practices like cover crops are much stronger because more data are available, and downstream N2O emissions should shift proportionally. Nevertheless, these changes in downstream emissions are frequently not included in estimates of N2O flux change. As an example, cereal cover crops reduce N leakage by 70%, and leguminous cover crops reduce N leakage by 40%. These data should inform estimates of downstream N2O emissions from agricultural fields, particularly in the context of protocol development, where project developers or aggregators will have information about basic management of individual crop fields. Even the IPCC default guidelines for simple (Tier 1) emission factors could take this information into account. Despite the complexity of estimating downstream N2O emissions in the absence of site-specific hydrology data, the IPCC estimates that 30% of applied N is lost and that between 0.75% and 1.0 % of lost N is converted to N2O. That single estimate should be refined based on data showing that leaching varies with management practices.

  13. A HTAP Multi-Model Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2012-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.

  14. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    PubMed

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. PMID:19320274

  15. Effects of Particle Filters and Selective Catalytic Reduction on Heavy-Duty Diesel Drayage Truck Emissions at the Port of Oakland.

    PubMed

    Preble, Chelsea V; Dallmann, Timothy R; Kreisberg, Nathan M; Hering, Susanne V; Harley, Robert A; Kirchstetter, Thomas W

    2015-07-21

    Effects of fleet modernization and use of diesel particle filters (DPF) and selective catalytic reduction (SCR) on heavy-duty diesel truck emissions were studied at the Port of Oakland in California. Nitrogen oxides (NOx), black carbon (BC), particle number (PN), and size distributions were measured in the exhaust plumes of ∼1400 drayage trucks. Average NOx, BC, and PN emission factors for newer engines (2010-2013 model years) equipped with both DPF and SCR were 69 ± 15%, 92 ± 32%, and 66 ± 35% lower, respectively, than 2004-2006 engines without these technologies. Intentional oxidation of NO to NO2 for DPF regeneration increased tailpipe NO2 emissions, especially from older (1994-2006) engines with retrofit DPFs. Increased deployment of advanced controls has further skewed emission factor distributions; a small number of trucks emit a disproportionately large fraction of total BC and NOx. The fraction of DPF-equipped drayage trucks increased from 2 to 99% and the median engine age decreased from 11 to 6 years between 2009 and 2013. Over this period, fleet-average BC and NOx emission factors decreased by 76 ± 22% and 53 ± 8%, respectively. Emission changes occurred rapidly compared to what would have been observed due to natural (i.e., unforced) turnover of the Port truck fleet. These results provide a preview of more widespread emission changes expected statewide and nationally in the coming years. PMID:26083075

  16. 3-D simulation of urban warming in Tokyo and effect of reduction of CO{sub 2} emissions

    SciTech Connect

    Saitoh, T.S.; Yamada, N.

    1998-07-01

    In most cities, it is becoming evident that the increase in energy consumption is causing environmental problems, including temperature rise in the urban atmosphere (urban warming or urban heat island), and air pollution. The present paper reports on the results of 3-D computer simulation of the urban heat island in the Tokyo metropolitan area, as well as moisture migration. The 3-D governing equations for the urban atmospheric boundary layer were formulated by virtue of the vorticity-velocity vector potential method. Particular attention was focused on the representation of a buoyancy term in the equation of motion in the vertical direction, thereby describing the cross-over effect and stratified inversion layer near the ground surface. Also incorporated in the present simulation is the effect of urban canopy layer in which various building structures and its surface material are included. In the present simulation, the degree of resolution is very much improved by using the data of geographic information systems for the Tokyo metro area, which provides the finer and detailed map of the land use and the buildings structures. Finally, the effect of reduction of CO{sub 2} emissions on urban warming will be discussed in detail by employing the newly developed 3-D simulation code in which the turbulence model in the inversion layer of the planetary boundary layer is improved. Recent computer projection of the urban warming in Tokyo metro area around the year 2030 showed that the urban temperature near Otemachi, heart of Tokyo, will exceed 43 C (110 F) at 6 p.m. in the summer. Therefore, it is very important to reduce the fuel consumption rate in the urban area.

  17. SUVmax reduction improves early prognosis value of interim positron emission tomography scans in diffuse large B-cell lymphoma.

    PubMed

    Casasnovas, René-Olivier; Meignan, Michel; Berriolo-Riedinger, Alina; Bardet, Stéphane; Julian, Anne; Thieblemont, Catherine; Vera, Pierre; Bologna, Serge; Brière, Josette; Jais, Jean-Philippe; Haioun, Corinne; Coiffier, Bertrand; Morschhauser, Franck

    2011-07-01

    The prognostic value of interim positron emission tomography (PET) interpreted according to visual criteria is a matter of debate in diffuse large B-cell lymphoma (DLBCL). Maximal standardized uptake value reduction (ΔSUVmax) may better predict outcome. To compare the prognostic value of both methods, we analyzed PET done at baseline (PET0) and after 2 (PET2) and 4 (PET4) cycles in 85 patients with high-risk DLBCL enrolled on a prospective multicenter trial. All images were centrally reviewed and interpreted visually according to the International Harmonization Project criteria and by computing ΔSUVmax between PET0 and PET2 (ΔSUVmaxPET0-2) or PET4 (ΔSUVmaxPET0-4). Optimal cutoff to predict progression or death was 66% for ΔSUVmaxPET0-2 and 70% for ΔSUVmaxPET0-4. Outcomes did not differ significantly whether PET2 and PET4 were visually positive or negative. Inversely, ΔSUVmaxPET0-2 analysis (> 66% vs ≤ 66%) identified patients with significantly different 2-year progression-free survival (77% vs 57%; P = .0282) and overall survival (93% vs 60%; P < .0001). ΔSUVmaxPET0-4 analysis (> 70% vs ≤ 70%) seemed even more predictive for 2-year progression-free survival (83 vs 40%; P < .0001) and overall survival (94% vs 50%; P < .0001). ΔSUVmax analysis of sequential interim PET is feasible for high-risk DLBCL and better predicts outcome than visual analysis. The trial was registered at http://clinicaltrials.gov as NCT00498043. PMID:21518924

  18. Reduction in the intensity of solar X-ray emission in the 2- to 15-keV photon energy range and heating of the solar corona

    SciTech Connect

    Mirzoeva, I. K.

    2013-04-15

    The time profiles of the energy spectra of low-intensity flares and the structure of the thermal background of the soft X-ray component of solar corona emission over the period of January-February, 2003, are investigated using the data of the RHESSI project. A reduction in the intensity of X-ray emission of the solar flares and the corona thermal background in the 2- to 15-keV photon energy range is revealed. The RHESSI data are compared with the data from the Interball-Geotail project. A new mechanism of solar corona heating is proposed on the basis of the results obtained.

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Menzies, B.; Smouse, S.M.; Stallings, J.W.

    1995-09-01

    Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide NOx emissions from coal-fired boilers. The primary objective of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control/optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  20. Assessing global radiative forcing due to regional emissions of tropospheric ozone precursors: a step towards climate credit for ozone reductions

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2005-05-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  1. Evaluation of the impact of low emission zone and heavy traffic ban in Munich (Germany) on the reduction of PM₁₀ in ambient air.

    PubMed

    Fensterer, Veronika; Küchenhoff, Helmut; Maier, Verena; Wichmann, Heinz-Erich; Breitner, Susanne; Peters, Annette; Gu, Jianwei; Cyrys, Josef

    2014-05-01

    Concentrations of ambient fine particles (PM10: particles with an aerodynamic diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities. In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of those measures on PM10 mass concentrations in Munich were investigated with a semiparametric regression model for modeling PM10 levels adjusted for time, background pollution, public holidays and wind direction. The reduction of PM10 concentration after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. PMID:24828081

  2. Evaluation of the Impact of Low Emission Zone and Heavy Traffic Ban in Munich (Germany) on the Reduction of PM10 in Ambient Air

    PubMed Central

    Fensterer, Veronika; Küchenhoff, Helmut; Maier, Verena; Wichmann, Heinz-Erich; Breitner, Susanne; Peters, Annette; Gu, Jianwei; Cyrys, Josef

    2014-01-01

    Concentrations of ambient fine particles (PM10: particles with an aerodynamic diameter ≤ 10 µm) are still exceeding current air quality standards in many European cities. In Munich (Germany), low emission zone and transit bans for heavy-duty vehicles were introduced in 2008 aiming at reduction of traffic emissions contribution to PM10. The effects of those measures on PM10 mass concentrations in Munich were investigated with a semiparametric regression model for modeling PM10 levels adjusted for time, background pollution, public holidays and wind direction. The reduction of PM10 concentration after the introduction of the measures was larger at a traffic monitoring site (13.0 %, 19.6 % in summer, and 6.8 % in winter) and smaller in urban background (4.5 %, 5.7 % in summer, and 3.2 % in winter). The effect was most pronounced on Fridays and on the weekends in summer. PMID:24828081

  3. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    SciTech Connect

    n /a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed-wall burners

  4. Identifying sensitive sources and key control handles for the reduction of greenhouse gas emissions from wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-10-01

    This research investigates the effects of adjusting control handle values on greenhouse gas emissions from wastewater treatment, and reveals critical control handles and sensitive emission sources for control through the combined use of local and global sensitivity analysis methods. The direction of change in emissions, effluent quality and operational cost resulting from variation of control handles individually is determined using one-factor-at-a-time sensitivity analysis, and corresponding trade-offs are identified. The contribution of each control handle to variance in model outputs, taking into account the effects of interactions, is then explored using a variance-based sensitivity analysis method, i.e., Sobol's method, and significant second order interactions are discovered. This knowledge will assist future control strategy development and aid an efficient design and optimisation process, as it provides a better understanding of the effects of control handles on key performance indicators and identifies those for which dynamic control has the greatest potential benefits. Sources with the greatest variance in emissions, and therefore the greatest need to monitor, are also identified. It is found that variance in total emissions is predominantly due to changes in direct N2O emissions and selection of suitable values for wastage flow rate and aeration intensity in the final activated sludge reactor is of key importance. To improve effluent quality, costs and/or emissions, it is necessary to consider the effects of adjusting multiple control handles simultaneously and determine the optimum trade-off. PMID:24960125

  5. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  6. A comprehensive study over the recent important reduction in SO2 and NO2 emissions from the power plants located in S-E Europe using space observations

    NASA Astrophysics Data System (ADS)

    Bocǎnealǎ, Corina; Constantin, Daniel-Eduard; Theys, Nicolas; Merlaud, Alexis; Van Roozendael, Michel

    2016-04-01

    The aim of this study is to investigate the recent important reduction of atmospheric SO2 and NO2 emissions from several power plants located in S-E Europe during 2005-2014 using space observations. The study is focused over three large power plants which are located in Romania and Bulgaria: Turceni (44.66°N, 23.38°E), Rovinari (44.9°N, 23.15°E) and Stara Zagora (42.43°N, 25.65°E). The space observations used in this work are based on OMI (Ozone Monitoring Instrument) and GOME-2 (Global Ozone Monitoring Experiment Measurements) measurements. The results obtained using data from satellites are compared with in-situ observations and calculated emissions. The OMI and GOME-2 observed SO2 and NO2 content is well correlated with the in-situ data and calculated SO2 and NOx emissions. This study investigates the potential of using satellite observations as an instrument to check quality air as a standard procedure by governmental and non-governmental institutions. To this aim, we compared the emissions calculated from ground and space with the European Directive 2001/80/EC which refers to the limitation of emissions of certain pollutants by large combustion plants.

  7. The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid (CNSL).

    PubMed

    Kim, Sumin

    2010-10-15

    To discuss the reduction of formaldehyde and volatile organic compound (VOC) emissions from engineered flooring, cashew nut shell liquid (CNSL)-formaldehyde (CF) resin and CF/PVAc resin were applied for the maple face of the veneer bonding on plywood. The CF resin was used to replace urea-formaldehyde (UF) resin in the formaldehyde-based resin system in order to reduce formaldehyde and VOC emissions from the adhesives used between the plywoods and fancy veneers. For the CF/PVAc resins, 5, 10, 20 or 30% of PVAc was added to the CF resin. The CF/PVAc resins showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The standard formaldehyde emission test and a VOC analyzer were used to determine the formaldehyde and VOC emissions, respectively, from the engineered floorings. The CF resin and CF/PVAc resin systems with UV coating satisfied the E(1) and E(0) grades of the Korean Standard. TVOC emission was slightly increased by the PVAc addition. PMID:20362392

  8. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region. PMID:27355197

  9. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    SciTech Connect

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.

  10. Reduction in NO{sub x} emissions from an industrial sewage sludge incineration plant by employing primary measures in a fluidized bed furnace

    SciTech Connect

    Ludwig, P.; Stamer, F.

    1999-07-01

    The results of an inquiry in 1997 show that the percentage of sewage sludge disposed of by incineration in Germany is 19%. Legal developments in Germany clearly show that this percentage amount is expected to increase in the next few years. According to legislation, the treatment of the sewage sludge will have to achieve a result of {le}5% combustible (according to TA-Siedlungsabfall, i.e., Technical guideline for handling and disposal of urban waste). Sewage sludge incineration will therefore become a preferred treatment process. Fluidized bed combustion is especially suitable in relation to the burn-up results. Around 19 sewage sludge incineration plants are operating in Germany, 17 of which have stationary fluidized bed furnaces, the others are multiple hearth roasters. The German statutory law affecting emissions from sewage sludge incineration plants is 17.BlmSchV (i.e., Paragraph 17 of the Federal Emissions Control Regulations). These regulations stipulate mandatory compliance with limit values as a daily average value figured in standard conditions. The intention is to build up an overview of the various possibilities to reduce the NO{sub x} emissions from one problematic industrial sludge by using primary measures, and if possible, to avoid expensive secondary measures, like the SNCR (selective non catalytic reduction) or SCR (selective catalytic reduction) processes.

  11. OBSERVABLE INDICATORS OF THE SENSITIVITY OF PM 2.5 NITRATE TO EMISSION REDUCTIONS, PART II: SENSITIVITY TO ERRORS IN TOTAL AMMONIA AND TOTAL NITRATE OF THE CMAQ-PREDICTED NONLINEAR EFFECT OF SO 2 EMISSION REDUCTIONS

    EPA Science Inventory

    The inorganic aerosol system of sulfate, nitrate, and ammonium can respond nonlinearly to changes in precursor sulfur dioxide (SO2) emissions. The potential increase in nitrate, when sulfate is reduced and the associated ammonia is released, can negate the sulfate mass...

  12. Method and Apparatus for Linewidth Reduction in Distributed Feedback or Distributed Bragg Reflector Semiconductor Lasers using Vertical Emission

    NASA Technical Reports Server (NTRS)

    Cook, Anthony L. (Inventor); Hendricks, Herbert D. (Inventor)

    1998-01-01

    The linewidth of a distributed feedback semiconductor laser or a distributed Bragg reflector laser having one or more second order gratings is reduced by using an external cavity to couple the vertical emission back into the laser. This method and device prevent disturbance of the main laser beam. provide unobstructed access to laser emission for the formation of the external cavity. and do not require a very narrow heat sink. Any distributed Bragg reflector semiconductor laser or distributed feedback semiconductor laser that can produce a vertical emission through the epitaxial material and through a window in the top metallization can be used. The external cavity can be formed with an optical fiber or with a lens and a mirror of grating.

  13. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.

    PubMed

    Fantozzi, L; Ferrara, R; Dini, F; Tamburello, L; Pirrone, N; Sprovieri, F

    2013-08-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000ngm(-2)h(-1)) were observed on bare soils during the hours of maximum insulation, while lower values (250ngm(-2)h(-1)) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500ngm(-2)h(-1), which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28°C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. PMID:23477569

  14. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS OBTAINED BY USE OF ALTERNATIVE OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSIONS AND LUBRICANTS FOR HIGHWAY AND NONROAD USE DISEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    This report sets standards by which the emissions reduction provided by fuel and lubricant technologies can be tested and be tested in a comparable way. It is a generic protocol under the Environmental Technology Verification program.

  15. 180 MW demonstration of advanced tangentially-fired combustion techniques for the reduction of nitrogen oxide (NO sub x ) emissions from coal-fired boilers

    SciTech Connect

    Not Available

    1991-01-01

    ABB CE's Low NOx Bulk Furnace Staging (LNBFS) System and Low NOx Concentric Firing System (LNCFS) are demonstrated in stepwise fashion. These systems incorporate the concept of advanced overfire air (AOFA), clustered coal nozzles, and offset air. A complete description of the installed technologies is provided in the following section. The primary objective of the Plant Lansing Smith demonstration is to determine the long-term effects of commercially available tangentially-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology are also being performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project.

  16. An application of long-range transport models to a comparison of selected SO/sub 2/ emission-reduction strategies

    SciTech Connect

    Norris, W.B.; Gautney, L.L.; Koss, T.C.

    1985-01-01

    The purpose of this study is to compare six emission-reduction strategies: by the examples: (1) strategy to reduce total atmospheric loading of sulfur; (2) a strategy to reduce wet sulfate deposition in the Adirondacks; (3) an alternative strategy to reduce wet sulfate deposition in the Adirondacks; (4) a strategy to reduce wet sulfate deposition in the southern section of the Appalachian Mountains (a region also ecologically sensitive) (5) a strategy to reduce sulfur flux to southeastern Canada; and (6) a strategy that embodies the three goals of strategies (3) - (5). The application of these strategies will be limited to SO/sub 2/ emission control in the 31 easternmost States of the U.S. The study will be presented in two parts. First, the strategies are explained in detail. Then, on the basis of modeling results, the strategies are compared. In the appendix, a description will be given of the two long-range transport models used to quantify emission-impact relationships--Model T for wet deposition, and Model F (a variation of Model T) for sulfur flux. Also, the emission levels, meteorology, and other parameters used in these models will be specified.

  17. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China

    SciTech Connect

    Hasanbeigi, Ali; Morrow, William; Sathaye, Jayant; Masanet, Eric; Xu, Tengfang

    2012-05-15

    China’s annual crude steel production in 2010 was 638.7 Mt accounting for nearly half of the world’s annual crude steel production in the same year. Around 461 TWh of electricity and 14,872 PJ of fuel were consumed to produce this quantity of steel in 2010. We identified and analyzed 23 energy efficiency technologies and measures applicable to the processes in the iron and steel industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model, the cumulative cost-effective electricity savings potential for the Chinese iron and steel industry for 2010-2030 is estimated to be 251 TWh, and the total technical electricity saving potential is 416 TWh. The CO2 emissions reduction associated with cost-effective electricity savings is 139 Mt CO2 and the CO2 emission reduction associated with technical electricity saving potential is 237 Mt CO2. The FCSC model for the iron and steel industry shows cumulative cost-effective fuel savings potential of 11,999 PJ, and the total technical fuel saving potential is 12,139. The CO2 emissions reduction associated with cost-effective and technical fuel savings is 1,191 Mt CO2 and 1,205 Mt CO2, respectively. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Chinese iron and steel industry and policy makers about the energy efficiency potential and its associated cost.

  18. Delay of actions involves large risks in estimations of economic damages and reduction ratios of carbon dioxide emission for lower climate targets.

    NASA Astrophysics Data System (ADS)

    Ishizaki, Y.; Emori, S.; Takahashi, K.; Shiogama, H.; Yokohata, T.

    2014-12-01

    Because future projections by AOGCMs require huge computer and human resources, simple climate models are used under a wide range of emission scenarios. The observation obtained in the past cannot provide a strong constraint on equilibrium climate sensitivity (ECS) and thus the future projections by simple climate models. However, when observations are obtained more in future, the uncertainty of future projections is expected to reduce. There is a public debate over whether to start to reduce carbon dioxide emissions now or to delay implementing mitigation policy in future. If the observation obtained in future can provide substantive benefits to climate policy, a climate policy of "wait and see", or a sequential-decision strategy for climate change would be useful. We investigated how much the uncertainty in economic damage and reduction ratios of CO2 emission, by which a climate target can be achieved, will reduce in future after future observation can be obtained. To conduct this, we first produced hypothetical observations of different ECSs using a simple climate model, and then validated whether the sequential decision strategy is useful or not for the estimations of economic damages and reduction ratios of carbon dioxide emissions. In low ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are small, and they reduce rapidly after observations are obtained in future. On the other hand, in high ECS, the magnitudes of the uncertainty for future projections in global mean SAT changes are large, and they still remain large in future. Because economic damages increase nonlinearly for the global mean SAT changes, the uncertainty of future projections in the economic damages is larger, and still remains larger after obtaining observations in future in high ECS. In particular, peaks of the pdfs of the economic damages shift to more serious values after obtaining observations in future in high ECS.

  19. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Ohio (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Ohio. We forecast the cumulative economic benefits from 1000 MW of development in Ohio to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,343 million gallons.

  20. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Nebraska (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nebraska. We forecast the cumulative economic benefits from 1000 MW of development in Nebraska to be $1.1 billion, annual CO2 reductions are estimated at 4.1 million tons, and annual water savings are 1,840 million gallons.

  1. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Idaho (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Idaho. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Idaho to be $1.1 billion, annual CO2 reductions are estimated at 2.2 million tons, and annual water savings are 906 million gallons.

  2. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Utah (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Utah. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Utah to be $1.1 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 828 million gallons.

  3. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arizona (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arizona. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Arizona to be $1.15 billion, annual CO2 reductions are estimated at 2.0 million tons, and annual water savings are 818 million gallons.

  4. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Nevada (Fact Sheet)

    SciTech Connect

    Not Available

    2008-10-01

    The U.S. Department of Energy?s Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Nevada. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Nevada to be $1.1 billion, annual CO2 reductions are estimated at 2.3 million tons, and annual water savings are 944 million gallons.

  5. R&D on fuel cells in Japan and possible contributions of fuel cells to the Global Reduction of CO{sub 2} emissions

    SciTech Connect

    Takenaka, Hiroyasu

    1993-12-31

    Fuel cells can generate electricity equivalent to 40-60% of the energy contained In the fuel consumed, and an overall efficiency as high as 80% is not impossible to achieve through utilization of the exhaust heat. In addition, emissions of pollutants such as NOx and SOx from fuel cells are low. Since various reformed gases derived from natural gas, methanol and coal can be used as fuel for fuel cells, the wide range of applications for fuel cells is expected to contribute to the reduction of petroleum dependence in Japan.

  6. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.

  7. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Michigan

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Michigan to be $1.3 billion, annual CO2 reductions are estimated at 2.9 million tons, and annual water savings are 1,542 million gallons.

  8. Economic Benefits, Carbon Dioxide (CO2) Emissions Reduction, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Georgia (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Georgia. We forecast the cumulative economic benefits from 1000 MW of development in Georgia to be $2.1 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,628 million gallons.

  9. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1000 Megawatts (MW) of New Wind Power in Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Michigan. We forecast the cumulative economic benefits from 1000 MW of development in Maryland to be $1.2 billion, annual CO2 reductions are estimated at 3 million tons, and annual water savings are 1,581 million gallons.

  10. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Kansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Kansas. We forecast the cumulative economic benefits from 1000 MW of development in Kansas to be $1.08 billion, annual CO2 reductions are estimated at 3.2 million tons, and annual water savings are 1,816 million gallons.

  11. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Arkansas (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Arkansas. We forecast the cumulative economic benefits from 1000 MW of development in Arkansas to be $1.15 billion, annual CO2 reductions are estimated at 2.7 million tons, and annual water savings are 1,507 million gallons.

  12. Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Indiana

    SciTech Connect

    Lantz, E.; Tegen, S.

    2008-05-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policymakers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Indiana. Although construction and operation of 1000 MW of wind power is a significant effort, six states have already reached the 1000-MW mark. We forecast the cumulative economic benefits from 1000 MW of development in Indiana to be $1.3 billion, annual CO2 reductions are estimated at 2.8 million tons, and annual water savings are 1,684 million gallons.

  13. Economic Benefits, Carbon Dioxide (CO2) Emissions reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in New York (Fact Sheet)

    SciTech Connect

    Not Available

    2008-06-01

    The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in New York. We forecast the cumulative economic benefits from 1000 MW of development in New York to be $1.3 billion, annual CO2 reductions are estimated at 2.5 million tons, and annual water savings are 1,230 million gallons.

  14. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    SciTech Connect

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  15. Borax and Octabor Treatment of Stored Swine Manure: Reduction in Hydrogen Sulfide Emissions and Phytotoxicity to Agronomic Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaseous emissions from stored manure have become environmental and health issues for humans and animals as the livestock industry becomes specialized and concentrated. Of particular concern is hydrogen sulfide, which is being targeted for regulatory control in concentrated animal farm operations. ...

  16. Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production

    SciTech Connect

    D. Craig Cooper; Gerald Sehlke

    2012-01-01

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

  17. Effect of in-house chicken litter composting on ammonia and nitrous oxide emissions and pathogen reduction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inhouse composting is a management practice to reduce pathogen in poultry litter. In between flocks, growers windrow the litter inside the broiler houses. This results in high temperatures that can reduce some pathogens in the litter. However, this practice is likely to increase emissions of NH3 and...

  18. Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments

    EPA Science Inventory

    In the United States, regional-scale photochemical models are being used to design emission control strategies needed to meet the relevant National Ambient Air Quality Standards (NAAQS) within the framework of the attainment demonstration process. Previous studies have shown that...

  19. Reduction of Multi-pollutant Emissions from Industrial Sectors: The U.S. Cement Industry – A Case Study

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Carbon dioxide (CO2) accounts for more than 90% of worldwide CO2-eq green-house gas (GHG) emissions from industrial sectors other than power generation. Amongst these sectors, the cement industry is one ...

  20. Optimization of Wastewater Lift Stations for Reduction of Energy Usage and Greenhouse Gas Emissions (WERF Report INFR3R11)

    EPA Science Inventory

    One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...

  1. Plenary Lecture 3: Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods.

    PubMed

    Millward, D Joe; Garnett, Tara

    2010-02-01

    Legally-binding legislation is now in place to ensure major reductions in greenhouse gas emissions in the UK. Reductions in intakes of meat and dairy products, which account for approximately 40% of food-related emissions, are an inevitable policy option. The present paper assesses, as far as is possible, the risk to nutritional status of such a policy in the context of the part played by these foods in overall health and well-being and their contribution to nutritional status for the major nutrients that they supply. Although meat may contribute to saturated fat intakes and a higher BMI, moderate meat consumption within generally-healthy population groups has no measurable influence on morbidity or mortality. However, high consumption of red and processed meat has been associated with increased risk of colo-rectal cancer and recent advice is to reduce intakes to a maximum of 70 g/d. Such reductions in meat and haem-Fe intake are unlikely to influence Fe status in functional terms. However, overall protein intakes would probably fall, with the potential for intakes to be less than current requirements for the elderly. Whether it is detrimental to health is uncertain and controversial. Zn intakes are also likely to fall, raising questions about child growth that are currently unanswerable. Milk and dairy products, currently specifically recommended for young children and pregnant women, provide 30-40% of dietary Ca, iodine, vitamin B12 and riboflavin. Population groups with low milk intakes generally show low intakes and poor status for each of these nutrients. Taken together it would appear that the reductions in meat and dairy foods, which are necessary to limit environmental damage, do pose serious nutritional challenges for some key nutrients. These challenges can be met, however, by improved public health advice on alternative dietary sources and by increasing food fortification. PMID:20003639

  2. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    SciTech Connect

    Fantozzi, L.; Dini, F.; Tamburello, L.; Pirrone, N.; Sprovieri, F.

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange

  3. OBSERVABLE INDICATORS OF THE SENSITIVITY OF PM2.5 NITRATE TO EMISSION REDUCTIONS PART I: DERIVATION OF THE ADJUSTED GAS RATIO AND APPLICABILITY AT REGULATORY-RELEVANT TIME SCALES

    EPA Science Inventory

    Chemical transport models have frequently been used to evaluate the impacts of emission reductions on inorganic PM2.5. However, such models are limited in their accuracy by uncertain estimates of the spatial and temporal characterization of emissions and meteorology. Site-speci...

  4. Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle.

    PubMed

    Vyas, D; McGinn, S M; Duval, S M; Kindermann, M; Beauchemin, K A

    2016-05-01

    The study objective was to evaluate the effects of sustained reduction of enteric methane (CH) emissions with dietary supplementation of the inhibitor 3-nitrooxypropanol (NOP) on growth rate and feed conversion efficiency of growing and finishing beef cattle. Eighty-four crossbred steers were used in a 238-d feeding study and fed a backgrounding diet for the first 105 d (backgrounding phase) and transition diets for 28 d followed by a finishing diet for 105 d (finishing phase) with 3 doses of NOP (0, 100, and 200 mg/kg DM). The experiment was a completely randomized design using 21 pens (4 cattle/pen) with 7 pens per treatment. When cattle were fed the backgrounding diet, pen DMI was reduced ( < 0.01) whereas G:F tended to improve ( = 0.06) with increasing dose of NOP supplementation. During the finishing phase, DMI ( = 0.06) and ADG ( = 0.07) tended to decrease with increasing dose of NOP supplementation. Although both levels of NOP were effective in reducing CH emissions from the backgrounding diet ( < 0.01), only NOP supplemented at the highest dose was effective in reducing total CH emissions from the finishing diet ( < 0.01). Methane yield (g/kg DMI) was reduced whereas hydrogen emissions were increased at the highest dose of NOP supplementation with both backgrounding and finishing diets ( < 0.01). Overall, these results demonstrate efficacy of NOP in reducing enteric CH emissions from cattle fed backgrounding and finishing diets, and these effects were negated once NOP supplementation was discontinued. PMID:27285700

  5. Source Resolution and Risk Apportionment of Air Emission Sources in AN Industrial Complex for Risk Reduction Considerations: AN Air Waste Management Methodology.

    NASA Astrophysics Data System (ADS)

    Mukerjee, Shaibal

    The purpose of this study was to develop an air waste management methodology for apportioning the health risks associated with air emission source categories that are identified in a given airshed. This was implemented by expanding the receptor model technique to assess the non-carcinogenic and carcinogenic inhalation risks to an exposed population for certain element pollutants determined to be coming from specific emission sources. The concept was demonstrated using air quality data from a mid-sized industrial complex located in a rural/residential area. It was demonstrated that risks from identified, major elemental emission categories can be quantified and that a total, additive risk be determined for main source categories in the airshed. Potential risk reduction measures were targeted at main risk sources without arbitrarily reducing risk for all sources in the airshed thereby making it a cost-effective approach. Dispersion modeling was utilized from previous emission inventory data so that risk estimates for these sources could be modeled at other receptor points in the airshed. The factor analytic procedure for Source Resolution in the initial receptor modeling approach was used to show whether the ambient data fitted a Maximum-Likelihood Factor Analysis or Principal Component Analysis for identifying underlying emission sources. It was also shown how Maximum -Likelihood Factor Analysis can be a stronger source resolution procedure as opposed to Principal Component Analysis since Factor Analysis is metrically invariant. Finally, the use of the ambient air data for total particulates was used to expand the Source Resolution and Risk Apportionment concepts to augment the Bubble Policy currently used in Air Quality Management.

  6. Use of Stochastic Simulation to Evaluate the Reduction in Methane Emissions and Improvement in Reproductive Efficiency from Routine Hormonal Interventions in Dairy Herds.

    PubMed

    Archer, Simon C; Hudson, Christopher D; Green, Martin J

    2015-01-01

    This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set. PMID:26061424

  7. Use of Stochastic Simulation to Evaluate the Reduction in Methane Emissions and Improvement in Reproductive Efficiency from Routine Hormonal Interventions in Dairy Herds

    PubMed Central

    Archer, Simon C.; Hudson, Christopher D.; Green, Martin J.

    2015-01-01

    This study predicts the magnitude and between herd variation in changes of methane emissions and production efficiency associated with interventions to improve reproductive efficiency in dairy cows. Data for 10,000 herds of 200 cows were simulated. Probability of conception was predicted daily from the start of the study (parturition) for each cow up to day 300 of lactation. Four scenarios of differing first insemination management were simulated for each herd using the same theoretical cows: A baseline scenario based on breeding from observed oestrus only, synchronisation of oestrus for pre-set first insemination using 2 methods, and a regime using prostaglandin treatments followed by first insemination to observed oestrus. Cows that did not conceive to first insemination were re-inseminated following detection of oestrus. For cows that conceived, gestation length was 280 days with cessation of milking 60 days before calving. Those cows not pregnant after 300 days of lactation were culled and replaced by a heifer. Daily milk yield was calculated for 730 days from the start of the study for each cow. Change in mean reproductive and economic outputs were summarised for each herd following the 3 interventions. For each scenario, methane emissions were determined by daily forage dry matter intake, forage quality, and cow replacement risk. Linear regression was used to summarise relationships. In some circumstances improvement in reproductive efficiency using the programmes investigated was associated with reduced cost and methane emissions compared to reliance on detection of oestrus. Efficiency of oestrus detection and the time to commencement of breeding after calving influenced variability in changes in cost and methane emissions. For an average UK herd this was a saving of at least £50 per cow and a 3.6% reduction in methane emissions per L of milk when timing of first insemination was pre-set. PMID:26061424

  8. Porous-insert technology for emissions reduction from gas-appliance burners. Topical report, March 1990-March 1995

    SciTech Connect

    Reuther, J.J.

    1995-05-01

    Because of interest worldwide regarding the quality of indoor air, gas-appliance user and manufacturers need to know, with certainty, the extent to which burner design and operator parameters can be used to simultaneously control the emission of NO, NO2, CO, and other trace species. Appreciating the principals of the Davy fire-safey lamp, it was surmised that this goal might be realized by placing a porous insert at the base of a blue flame, such that it did not incandesce, but acted as an excess free-radical filter. Reported are efforts to establish the performance of, rationalize a mechanism for, and secure a patent on porous inserts. Different sampling and analytical methods measured emissions from flames with different primary aerations from different burner caps, with and without 3 different inserts.

  9. Sustainability and energy development: influences of greenhouse gas emission reduction options on water use in energy production.

    PubMed

    Cooper, D Craig; Sehlke, Gerald

    2012-03-20

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a "safe" level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints will limit our options for meeting society's growing demand for energy while also reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the climate wedges proposal of Pacala and Socolow (Science2004, 305 (5686), 968-972) and evaluating the potential water-use impacts of the wedges associated with energy production. GHG mitigation options that improve energy conversion or use efficiency can simultaneously reduce GHG emissions, lower energy costs, and reduce energy impacts on water resources. Other GHG mitigation options (e.g., carbon capture and sequestration, traditional nuclear, and biofuels from dedicated energy crops) increase water requirements for energy. Achieving energy sustainability requires deployment of alternatives that can reduce GHG emissions, water resource impacts, and energy costs. PMID:22283709

  10. Methods for reducing biases and errors in regional photochemical model outputs for use in emission reduction and exposure assessments

    NASA Astrophysics Data System (ADS)

    Porter, P. Steven; Rao, S. Trivikrama; Hogrefe, Christian; Gego, Edith; Mathur, Rohit

    2015-07-01

    In the United States, regional-scale photochemical models are being used to design emission control strategies needed to meet the relevant National Ambient Air Quality Standards (NAAQS) within the framework of the attainment demonstration process. Previous studies have shown that the current generation of regional photochemical models can have large biases and errors in simulating absolute levels of pollutant concentrations. Studies have also revealed that regional air quality models were not always accurately reproducing even the relative changes in ozone air quality stemming from changes in emissions. This paper introduces four approaches to adjust for model bias and errors in order to provide greater confidence for their use in estimating future concentrations as well as using modeled pollutant concentrations in exposure assessments. The four methods considered here are a mean and variance (MV) adjustment, temporal component decomposition (TC) adjustment of modeled concentrations, and two variants of cumulative distribution function (CDF) mapping. These methods were compared against each other as well as against unadjusted model concentrations and a version of the relative response approach based on unadjusted model predictions. The analysis uses ozone concentrations simulated by the Community Multiscale Air Quality (CMAQ) model for the northeastern United States domain for the years 1996-2005. Ensuring that base case conditions are adequately represented through the combined use of observations and model simulations is shown to result in improved estimates of future air quality under changing emissions and meteorological conditions.

  11. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  12. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  13. Effects of emission reductions at the Hayden powerplant on precipitation, snowpack, and surface-water chemistry in the Mount Zirkel Wilderness Area, Colorado, 1995-2003

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.

    2005-01-01

    Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the

  14. Effect of Hydrocarbon Emissions from PCCI-type Combustion on the Performance of Selective Catalytic Reduction Catalysts

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    Core samples cut from full size commercial Fe- and Cu-zeolite selective catalytic reduction catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and premixed charge compression ignition (PCCI) combustion modes. Subsequently, the NO{sub x} reduction performance of the exposed catalysts was evaluated on a laboratory bench-reactor fed with simulated exhaust. The Fe-zeolite NO{sub x} conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to hydrocarbon (HC) fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NO{sub x} conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 C. Gas chromatography mass spectrometry analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NO{sub x} reduction performance trends.

  15. Operation costs and pollutant emissions reduction by definition of new collection scheduling and optimization of MSW collection routes using GIS. The case study of Barreiro, Portugal.

    PubMed

    Zsigraiova, Zdena; Semiao, Viriato; Beijoco, Filipa

    2013-04-01

    This work proposes an innovative methodology for the reduction of the operation costs and pollutant emissions involved in the waste collection and transportation. Its innovative feature lies in combining vehicle route optimization with that of waste collection scheduling. The latter uses historical data of the filling rate of each container individually to establish the daily circuits of collection points to be visited, which is more realistic than the usual assumption of a single average fill-up rate common to all the system containers. Moreover, this allows for the ahead planning of the collection scheduling, which permits a better system management. The optimization process of the routes to be travelled makes recourse to Geographical Information Systems (GISs) and uses interchangeably two optimization criteria: total spent time and travelled distance. Furthermore, rather than using average values, the relevant parameters influencing fuel consumption and pollutant emissions, such as vehicle speed in different roads and loading weight, are taken into consideration. The established methodology is applied to the glass-waste collection and transportation system of Amarsul S.A., in Barreiro. Moreover, to isolate the influence of the dynamic load on fuel consumption and pollutant emissions a sensitivity analysis of the vehicle loading process is performed. For that, two hypothetical scenarios are tested: one with the collected volume increasing exponentially along the collection path; the other assuming that the collected volume decreases exponentially along the same path. The results evidence unquestionable beneficial impacts of the optimization on both the operation costs (labor and vehicles maintenance and fuel consumption) and pollutant emissions, regardless the optimization criterion used. Nonetheless, such impact is particularly relevant when optimizing for time yielding substantial improvements to the existing system: potential reductions of 62% for the total

  16. Trends in Concentrations of Atmospheric Gaseous and Particulate Species at the Look Rock, TN NCORE Air Quality Station and Their Relation to Primary Emissions Reductions

    NASA Astrophysics Data System (ADS)

    Tanner, R. L.; Mueller, S. F.; Bairai, S. T.

    2013-12-01

    Air quality parameters, measured at Look Rock, TN, since 1980, were expanded by National Park Service (NPS) as an IMPROVE network station and again in 1999-2007 by Tennessee Valley Authority as part of efforts to determine the effects of reductions in EGU emissions of sulfur and nitrogen oxides on air quality at the site. Designated as a non-urban, NCORE-equivalent station in 2010, routine continuous monitoring of aerosol mass, sulfate, and black carbon, and primary and secondary gases at the site as well as additional measurements during a series of intensive research studies at the site have produced an extensive body to air quality data on background levels of species relevant to air quality standards (NAAQS) for ozone and fine particulate matter which is unique comprehensive for a high-altitude site in the southeastern U.S.A. Analysis of the temporal trends in these data (1999-present)is being conducted in conjunction with and support of 2013 Southern Atmosphere Studies at Look Rock and other southeastern U.S. locations. Key findings from analysis of temporal trends at Look Rock include the observation that primary pollutant levels have consistently tracked the emissions reductions from EGUs and other primary sources in the region, but reductions in secondary pollutants such as particulate sulfate and ozone have been less than proportional. Organic carbonaceous material (OM) remains a major contributor to fine particulate mass at the site, and a large portion (65-85%) of OM derives from modern carbon, based on 14C measurements. Important parameters affecting fine mass and ozone levels also include the specific diurnal meteorology at this ridge-top site, its location in a largely mixed-deciduous forest, and the presence of primary sources of precursors at distances of 50-500 km from the site in all directions.

  17. Reduction of the temperature sensitivity of minerotrophic fen methane emissions by simulated glacial atmospheric carbon dioxide starvation

    NASA Astrophysics Data System (ADS)

    Boardman, Carl P.; Gauci, Vincent; Fox, Andrew; Blake, Stephen; Beerling, David J.

    2013-06-01

    to the global wetland CH4 source strength in response to changes in orbital insolation patterns and atmospheric CO2 concentration ([CO2]a) are hypothesized to play an important role in determining glacial-interglacial variations in atmospheric CH4 concentration ([CH4]a). Here the interactive effects of temperature, a major controlling variable determining wetland CH4 flux, and the low [CO2]a of glacial intervals are investigated for the first time. We measured the temperature dependence of CH4 emissions from replicated mesocosms (n = 8 per CO2 treatment) collected from a minerotrophic fen and an ombrotrophic bog incubated in either ambient (c. 400 ppm) or glacial (c. 200 ppm) [CO2]a located in the United Kingdom. CH4 fluxes were measured at 5°C, 10°C, 15°C, 20°C, and 25°C and then in reverse order over a 20 day period under each [CO2]a treatment. Results showed that the Q10 temperature response of CH4 emissions from the Carex/Juncus-dominated fen declined significantly by approximately 39% under glacial [CO2]a (ambient [CO2]a = 2.60, glacial [CO2]a = 1.60; P < 0.01). By contrast, the response of CH4 emissions from the Sphagnum-dominated bog remained unaltered (ambient [CO2]a = 3.67, glacial [CO2]a = 3.67; P > 0.05). This contrasting response may be linked to differences in plant species assemblage and the varying impact of CO2 starvation on plant productivity and carbon availability in the rhizosphere. Furthermore, our results provide empirical evidence to support recent model-based indications that glacial-interglacial variations in [CH4]a may be explained by changes in wetland CH4 source strength in response to orbitally forced changes in climate and [CO2]a.

  18. Reduction of dioxin-like compound emissions from a Waelz plant with adsorbent injection and a dual baghouse filter system.

    PubMed

    Chi, Kai Hsien; Chang, Shu Hao; Chang, Moo Been

    2008-03-15

    Previous study indicates that the polychlorinated dibenzo-p-dioxin and -dibenzofurans (PCDD/F) concentration measured in the stack gas of the Waelz plant investigated reached 194 ng-TEQ/(N m3) (TEQ = toxic equivalence), due to the relatively high potential of PCDD/F formation and a low PCDD/F removal efficiency (<70%) achieved with the baghouse filter (BF). In September 2006, the Taiwan government setthe PCDD/F emission limit for existing Waelz plants as 1.0 ng-I-TEQO/(N m3). The retrofit technology for reducing PCDD/F emissions from the existing Waelz plant was evaluated at the same time. Carbon-type adsorbent injection technology was adopted in early 2006 to reduce the emission of dioxin-like compounds at the Waelz plant investigated. Flue gases and ambient air samplings were conducted during the two stages of retrofit to evaluate the removal efficiency of dioxin-like compounds at the Waelz plant investigated. At stage 1, by applying adsorbent injection + single baghouse filter (SBF), the PCDD/F and polychlorinated biphenyl (PCB) concentrations measured in the stack gas at the Waelz plant were 4.62 ng-TEQ/(N m3) and 0.08 ng-TEQ(WHO)/(N m3) (TEQ(WHO) = World Health Organization TEQ), respectively, as the adsorbent injection rate was controlled at 40 kg/h (or 540 mg/ (N m3)). At stage 2, the PCDD/F and PCB concentration measured at stack gas, achieved with adsorbent injection + dual baghouse filter (DBF) system, were further reduced to 0.235 + 0.04 ng-I-TEQ/(N m3) (I-TEQ = International TEQ) and 0.004 + 0.002 ng-TEQ(WHO)/(N m3) with the adsorbent injection rate at 16 kg/h (or 215 mg/(N m3)). In the meantime, the atmospheric PCDD/F concentrations measured in the vicinity area of the Waelz plant were greatly reduced from 568-1465 to 48.9-130 fg-I-TEQ/m3. Higher removal efficiency (>99.8%) achieved at a lower adsorbent injection rate (16 kg/h) of the adsorbent injection + DBF system also significantly reduced the total PCDD/-F and PCB emission flows (per kg of

  19. Essays on the U.S. biofuel policies: Welfare impacts and the potential for reduction of GHG emission

    NASA Astrophysics Data System (ADS)

    Hossiso, Kassu Wamisho

    This dissertation study investigates the impact of the US biofuel policies related to greenhouse gas (GHG) emission regulation, tax credit and renewable fuel standard (RFS2) mandate over production and consumption of ethanol as well as technical and environmental performance of corn ethanol plants. The study develops analytical models and provides quantitative estimation of the impact of various biofuel policies in each of the three chapters. Chapter 1 of this dissertation examines the tradeoff between achieving the environmental goal of minimizing life cycle GHG emissions and minimizing production costs in recently built dry-grind corn ethanol plants. The results indicate that the average ethanol plant is able to reduce GHG emissions by 36 % relative to the level under cost minimization, but production costs are 22 % higher. To move from least cost to least emissions allocations, ethanol plants would on average produce 25 % more of wet byproduct and 47% less of dry byproduct. Using a multi-output, multi-input partial equilibrium model, Chapter 2 explores the impact of the tax credit and RFS2 mandate policy on market price of ethanol, byproducts, corn, and other factor inputs employed in the production of corn ethanol. In the short-run, without tax credit ethanol plants will not have the incentive to produce the minimum level of ethanol required by RFS2. In the long-run, if ethanol plants to have the incentive to produce the minimum RFS2 mandate without tax credit policy, gasoline price will need to increase by order of 50% or more relative to the 2011 price. Chapter 3 develop meta-regression model to investigate the extent to which statistical heterogeneity among results of multiple studies on soil organic carbon (SOC) sequestration rates can be related to one or more characteristics of the studies in response to conventional tillage (CT) and no-till (NT). Regarding the difference in the rate of SOC sequestration between NT and CT, our results shows that the

  20. Study of water-oil emulsion combustion in large pilot power plants for fine particle matter emission reduction

    SciTech Connect

    Allouis, C.; Beretta, F.; L'Insalata, A.; Fortunato, L.; Saponaro, A.

    2007-04-15

    The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants. The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)