Sample records for reduction gears

  1. Characteristics of Reduction Gear in Electric Agricultural Vehicle

    NASA Astrophysics Data System (ADS)

    Choi, W. S.; Pratama, P. S.; Supeno, D.; Jeong, S. W.; Byun, J. Y.; Woo, J. H.; Lee, E. S.; Park, C. S.

    2018-03-01

    In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

  2. Functioning of reduction gears on airplane engines

    NASA Technical Reports Server (NTRS)

    Matteucci, Raffaelli

    1926-01-01

    In undertaking to analyze the functioning conditions of a reduction gear on an aviation engine, we will consider an ordinary twelve-cylinder V-engine. The reduction gear employed consists either of a pair of spur gears, one of which is integral with the engine shaft and the other with the propeller shaft, or of a planetary system of gears.

  3. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  4. 30 CFR 75.1404 - Automatic brakes; speed reduction gear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic brakes; speed reduction gear. 75.1404... Automatic brakes; speed reduction gear. [Statutory Provisions] Each locomotive and haulage car used in an... permit automatic brakes, locomotives and haulage cars shall be subject to speed reduction gear, or other...

  5. Optimal design of compact spur gear reductions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Lattime, S. B.; Kimmel, J. A.; Coe, H. H.

    1992-01-01

    The optimal design of compact spur gear reductions includes the selection of bearing and shaft proportions in addition to gear mesh parameters. Designs for single mesh spur gear reductions are based on optimization of system life, system volume, and system weight including gears, support shafts, and the four bearings. The overall optimization allows component properties to interact, yielding the best composite design. A modified feasible directions search algorithm directs the optimization through a continuous design space. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for optimization. After finding the continuous optimum, the designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearings on the optimal configurations.

  6. Life and reliability modeling of bevel gear reductions

    NASA Technical Reports Server (NTRS)

    Savage, M.; Brikmanis, C. K.; Lewicki, D. G.; Coy, J. J.

    1985-01-01

    A reliability model is presented for bevel gear reductions with either a single input pinion or dual input pinions of equal size. The dual pinions may or may not have the same power applied for the analysis. The gears may be straddle mounted or supported in a bearing quill. The reliability model is based on the Weibull distribution. The reduction's basic dynamic capacity is defined as the output torque which may be applied for one million output rotations of the bevel gear with a 90 percent probability of reduction survival.

  7. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears test program

    NASA Technical Reports Server (NTRS)

    Misel, O. W.

    1977-01-01

    Sets of under the wing (UTW) engine reduction gears and sets of over the wing (OTW) engine reduction gears were fabricated for rig testing and subsequent installation in engines. The UTW engine reduction gears which have a ratio of 2.465:1 and a design rating of 9712 kW at 3157 rpm fan speed were operated at up to 105% speed at 60% torque and 100% speed at 125% torque. The OTW engine reduction gears which have a ratio of 2.062:1 and a design rating of 12,615 kW at 3861 rpm fan speed were operated at up to 95% speed at 50% torque and 80% speed at 109% torque. Satisfactory operation was demonstrated at powers up to 12,172 kW, mechanical efficiency up to 99.1% UTW, and a maximum gear pitch line velocity of 112 m/s (22,300 fpm) with a corresponding star gear spherical roller bearing DN of 850,00 OTW. Oil and star gear bearing temperatures, oil churning, heat rejection, and vibratory characteristics were acceptable for engine installation.

  8. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  9. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report

    NASA Technical Reports Server (NTRS)

    Defeo, A.; Kulina, M.

    1977-01-01

    Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13,256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented.

  10. 3. SIDE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SIDE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING SOUTH - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  11. 4. END VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. END VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING SOUTHEAST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  12. The effects of gear reduction on robot dynamics

    NASA Technical Reports Server (NTRS)

    Chen, J.

    1989-01-01

    The effect of the joint drive system with gear reduction for a generic two-link system is studied. It is done by comparing the kinetic energy of such a system with that of a direct drive two-link system. The only difference are two terms involving the inertia of the motor rotor and gear ratio. Modifications of the equations of motion from a direct drive system are then developed and generalized to various cases encountered in robot manipulators.

  13. 5. OBLIQUE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. OBLIQUE VIEW OF HOIST, SHOWING REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING EAST (McNALLY DRYER AND COVER SHOWN IN EXTREME UPPER RIGHT BACKGROUND) - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  14. Aeroacoustic Evaluation of Flap and Landing Gear Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.; Ravetta, Patricio A.

    2014-01-01

    Aeroacoustic measurements for a semi-span, 18% scale, high-fidelity Gulfstream aircraft model are presented. The model was used as a test bed to conduct detailed studies of flap and main landing gear noise sources and to determine the effectiveness of numerous noise mitigation concepts. Using a traversing microphone array in the flyover direction, an extensive set of acoustic data was obtained in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the information was acquired with the model in a landing configuration with the flap deflected 39 deg and the main landing gear alternately installed and removed. Data were obtained at Mach numbers of 0.16, 0.20, and 0.24 over directivity angles between 56 deg and 116 deg, with 90 deg representing the overhead direction. Measured acoustic spectra showed that several of the tested flap noise reduction concepts decrease the sound pressure levels by 2 - 4 dB over the entire frequency range at all directivity angles. Slightly lower levels of noise reduction from the main landing gear were obtained through the simultaneous application of various gear devices. Measured aerodynamic forces indicated that the tested gear/flap noise abatement technologies have a negligible impact on the aerodynamic performance of the aircraft model.

  15. Prediction of Landing Gear Noise Reduction and Comparison to Measurements

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.

    2010-01-01

    Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.

  16. A Landing Gear Noise Reduction Study Based on Computational Simulations

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Lockard, David P.

    2006-01-01

    Landing gear is one of the more prominent airframe noise sources. Techniques that diminish gear noise and suppress its radiation to the ground are highly desirable. Using a hybrid computational approach, this paper investigates the noise reduction potential of devices added to a simplified main landing gear model without small scale geometric details. The Ffowcs Williams and Hawkings equation is used to predict the noise at far-field observer locations from surface pressure data provided by unsteady CFD calculations. Because of the simplified nature of the model, most of the flow unsteadiness is restricted to low frequencies. The wheels, gear boxes, and oleo appear to be the primary sources of unsteadiness at these frequencies. The addition of fairings around the gear boxes and wheels, and the attachment of a splitter plate on the downstream side of the oleo significantly reduces the noise over a wide range of frequencies, but a dramatic increase in noise is observed at one frequency. The increased flow velocities, a consequence of the more streamlined bodies, appear to generate extra unsteadiness around other parts giving rise to the additional noise. Nonetheless, the calculations demonstrate the capability of the devices to improve overall landing gear noise.

  17. SECONDARY GENERAL MOTORS DIESEL ENGINE WITH CONNECTION TO REDUCTION GEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECONDARY GENERAL MOTORS DIESEL ENGINE WITH CONNECTION TO REDUCTION GEAR BELT DRIVE SYSTEM, LOOKING SOUTH. - Mad River Glen, Single Chair Ski Lift, 62 Mad River Glen Resort Road, Fayston, Washington County, VT

  18. 7. VIEW OF REDUCTION GEARS. TRUNNION SUPPORT GIRDERS, SIDES OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF REDUCTION GEARS. TRUNNION SUPPORT GIRDERS, SIDES OF COUNTERWEIGHTS, WITH LOWER BUFFERS, LOOKING WEST FROM WEST CANAL PIER. - East Division Street Bridge, Spanning North Branch Canal at West Division Street, Chicago, Cook County, IL

  19. Offset Compound Gear Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2010-01-01

    The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.

  20. 29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SOUTH SWING SPAN, SHOWING REPRESENTATIVE REDUCTION GEAR/MOTOR DRIVE UNIT (CENTER) AND WEDGE MOTOR UNIT (RIGHT). - George P. Coleman Memorial Bridge, Spanning York River at U.S. Route 17, Yorktown, York County, VA

  1. Identification of mine rescue equipment reduction gears technical condition

    NASA Astrophysics Data System (ADS)

    Gerike, B. L.; Klishin, V. I.; Kuzin, E. G.

    2017-09-01

    The article presents the reasons for adopting intelligent service of mine belt conveyer drives concerning evaluation of their technical condition based on the diagnostic techniques instead of regular preventative maintenance. The article reveals the diagnostic results of belt conveyer drive reduction gears condition taking into account the parameters of lubricating oil, vibration and temperature. Usage of a complex approach to evaluate technical conditions allows reliability of the forecast to be improved, which makes it possible not only to prevent accidental breakdowns and eliminate unscheduled downtime, but also to bring sufficient economic benefits through reduction of the term and scope of work during overhauls.

  2. Actively Controlled Landing Gear for Aircraft Vibration Reduction

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Daugherty, Robert H.; Martinson, Veloria J.

    1999-01-01

    Concepts for long-range air travel are characterized by airframe designs with long, slender, relatively flexible fuselages. One aspect often overlooked is ground induced vibration of these aircraft. This paper presents an analytical and experimental study of reducing ground-induced aircraft vibration loads using actively controlled landing gears. A facility has been developed to test various active landing gear control concepts and their performance. The facility uses a NAVY A6-intruder landing gear fitted with an auxiliary hydraulic supply electronically controlled by servo valves. An analytical model of the gear is presented including modifications to actuate the gear externally and test data is used to validate the model. The control design is described and closed-loop test and analysis comparisons are presented.

  3. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  4. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  5. Design of aircraft turbine fan drive gear transmission system

    NASA Technical Reports Server (NTRS)

    Dent, E.; Hirsch, R. A.; Peterson, V. W.

    1970-01-01

    The following basic types of gear reduction concepts were studied as being feasible power train systems for a low-bypass-ratio, single-spool, geared turbofan engine for general aircraft use: (1) single-stage external-internal reduction, (2) gears (offset shafting), (3) multiple compound idler gear system (concentric shafting), and (4) star gear planetary system with internal ring gear final output member (concentric shafting-counterrotation). In addition, studies were made of taking the accessories drive power off both the high-speed and low-speed shafting, using either face gears or spiral bevel gears. Both antifriction and sleeve-type bearings were considered for the external-internal and star-planet reduction concepts.

  6. Effects of Planetary Gear Ratio on Mean Service Life

    NASA Technical Reports Server (NTRS)

    Savage, M.; Rubadeux, K. L.; Coe, H. H.

    1996-01-01

    Planetary gear transmissions are compact, high-power speed reductions which use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single plane transmission, the planet gear has no size at a ratio of two. As the ratio increases, so does the size of the planets relative to the sizes of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary with a fixed size, gear ratio, input speed power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives which point to an optimal planetary reduction ratio in the neighborhood of four to five.

  7. The reduction of takeoff ground roll by the application of a nose gear jump strut

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Maisel, Martin D.; Mcclain, J. Greer; Luce, W.

    1994-01-01

    A series of flight tests were conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short take off and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low-speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high-pressure pneumatic system and a control system provided the extendable nose gear, or jump strut, capability. The limited flight test program explored the effects of thrust-to-weight ratio, wing loading, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that a reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut, as predicted. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.

  8. Development in Geared Turbofan Aeroengine

    NASA Astrophysics Data System (ADS)

    Mohd Tobi, A. L.; Ismail, A. E.

    2016-05-01

    This paper looks into the implementation of epicyclic gear system to the aeroengine in order to increase the efficiency of the engine. The improvement made is in the direction of improving fuel consumption, reduction in pollutant gasses and perceived noise. Introduction of epicyclic gear system is capable to achieve bypass ratio of up to 15:1 with the benefits of weight and noise reduction. Radical new aircraft designs and engine installation are being studied to overcome some of the challenges associated with the future geared turbofan and open-rotor engine.

  9. 50 CFR 660.506 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 660.506 Section 660.506..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OFF WEST COAST STATES Coastal Pelagics Fisheries § 660.506 Gear restrictions. The only fishing gear authorized for use in the reduction fishery for northern anchovy off...

  10. Automated Inspection And Precise Grinding Of Gears

    NASA Technical Reports Server (NTRS)

    Frint, Harold; Glasow, Warren

    1995-01-01

    Method of precise grinding of spiral bevel gears involves automated inspection of gear-tooth surfaces followed by adjustments of machine-tool settings to minimize differences between actual and nominal surfaces. Similar to method described in "Computerized Inspection of Gear-Tooth Surfaces" (LEW-15736). Yields gears of higher quality, with significant reduction in manufacturing and inspection time.

  11. Handbook on Face Gear Drives with a Spur Involute Pinion

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Egelja, A.; Tan, J.; Chen, D. Y.-D.; Heath, G.

    2000-01-01

    The use of face gears in power transmission and drive systems has a significant number of benefits. Face gears allow a variety of new transmission arrangements as well as high reduction ratio capability. This leads to drive system weight reduction and improvements in performance. In this work, basic information about the design and analysis of face gear drives is presented. The work considers face gears in mesh with spur involute pinions for both intersecting axes and offset drives. Tooth geometry, kinematics, generation of face gears with localized bearing contact by cutting and grinding, avoidance of tooth undercutting, avoidance of tooth pointing, tooth contact analysis, and algorithms for the simulation of meshing and contact arc all topics which are discussed. In addition, applications of face gear drives are presented. Included are design uses in aerospace applications such as helicopter transmissions, split-torque face gear arrangements, comparisons of face gears with bevel gears, and general design considerations.

  12. Gear optimization

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Chen, Xiang; Zhang, Ning-Tian

    1988-01-01

    The use of formal numerical optimization methods for the design of gears is investigated. To achieve this, computer codes were developed for the analysis of spur gears and spiral bevel gears. These codes calculate the life, dynamic load, bending strength, surface durability, gear weight and size, and various geometric parameters. It is necessary to calculate all such important responses because they all represent competing requirements in the design process. The codes developed here were written in subroutine form and coupled to the COPES/ADS general purpose optimization program. This code allows the user to define the optimization problem at the time of program execution. Typical design variables include face width, number of teeth and diametral pitch. The user is free to choose any calculated response as the design objective to minimize or maximize and may impose lower and upper bounds on any calculated responses. Typical examples include life maximization with limits on dynamic load, stress, weight, etc. or minimization of weight subject to limits on life, dynamic load, etc. The research codes were written in modular form for easy expansion and so that they could be combined to create a multiple reduction optimization capability in future.

  13. The relative noise levels of parallel axis gear sets with various contact ratios and gear tooth forms

    NASA Technical Reports Server (NTRS)

    Drago, Raymond J.; Lenski, Joseph W., Jr.; Spencer, Robert H.; Valco, Mark; Oswald, Fred B.

    1993-01-01

    The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. This paper describes the design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use.

  14. New Methods for Improved Double Circular-Arc Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Lu, Jian

    1997-01-01

    The authors have extended the application of double circular-arc helical gears for internal gear drives. The geometry of the pinion and gear tooth surfaces has been determined. The influence of errors of alignment on the transmission errors and the shift of the bearing contact have been investigated. Application of a predesigned parabolic function for the reduction of transmission errors was proposed. Methods of grinding of the pinion-gear tooth surfaces by a disk-shaped tool and a grinding worm were proposed.

  15. Gear Performance Improved by Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    2004-01-01

    run until either surface fatigue occurred or 300 million stress cycles were completed. Tests were run using either a pair of uncoated gears or a pair of coated gears (coated gears mated with uncoated gears were not evaluated). The fatigue test results, shown on Weibull coordinates in the graph, demonstrate that the coating provided substantially longer fatigue lives even though some of the coated gears endured larger stresses. The increase in fatigue life was a factor of about 5 and the statistical confidence for the improvement is high (greater than 99 percent). Examination of the tested gears revealed substantial reductions of total wear for coated gears in comparison to uncoated gears. The coated gear surface topography changed with running, with localized areas of the tooth surface becoming smoother with running. Theories explaining how coatings can extend gear fatigue lives are research topics for coating, tribology, and fatigue specialists. This work was done as a partnership between NASA, the U.S. Army Research Laboratory, United Technologies Research Corporation, and Sikorsky Aircraft.

  16. Gearing

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1985-01-01

    Gearing technology in its modern form has a history of only 100 years. However, the earliest form of gearing can probably be traced back to fourth century B.C. Greece. Current gear practice and recent advances in the technology are drawn together. The history of gearing is reviewed briefly in the Introduction. Subsequent sections describe types of gearing and their geometry, processing, and manufacture. Both conventional and more recent methods of determining gear stress and deflections are considered. The subjects of life prediction and lubrication are additions to the literature. New and more complete methods of power loss predictions as well as an optimum design of spur gear meshes are described. Conventional and new types of power transmission systems are presented.

  17. Maximum life spur gear design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Mackulin, M. J.; Coe, H. H.; Coy, J. J.

    1991-01-01

    Optimization procedures allow one to design a spur gear reduction for maximum life and other end use criteria. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial guess values. The optimization algorithm is described, and the models for gear life and performance are presented. The algorithm is compact and has been programmed for execution on a desk top computer. Two examples are presented to illustrate the method and its application.

  18. Study of novel concepts of power transmission gears

    NASA Technical Reports Server (NTRS)

    Rivin, Eugene I.

    1991-01-01

    Two concepts in power transmission gear design are proposed which provide a potential for large noise reduction and for improving weight to payload ratio due to use of advanced fiber reinforced and ceramic materials. These concepts are briefly discussed. Since both concepts use ultrathin layered rubber-metal laminates for accommodating limited travel displacements, properties of the laminates, such as their compressive strength, compressive and shear moduli were studied. Extensive testing and computational analysis were performed on the first concept gears (laminate coated conformal gears). Design and testing of the second conceptual design (composite gear with separation of sliding and rolling motions) are specifically described.

  19. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  20. Computerized Design and Generation of Low-Noise Gears with Localized Bearing Contact

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Chen, Ningxin; Chen, Jui-Sheng; Lu, Jian; Handschuh, Robert F.

    1995-01-01

    The results of research projects directed at the reduction of noise caused by misalignment of the following gear drives: double-circular arc helical gears, modified involute helical gears, face-milled spiral bevel gears, and face-milled formate cut hypoid gears are presented. Misalignment in these types of gear drives causes periodic, almost linear discontinuous functions of transmission errors. The period of such functions is the cycle of meshing when one pair of teeth is changed for the next. Due to the discontinuity of such functions of transmission errors high vibration and noise are inevitable. A predesigned parabolic function of transmission errors that is able to absorb linear discontinuous functions of transmission errors and change the resulting function of transmission errors into a continuous one is proposed. The proposed idea was successfully tested using spiral bevel gears and the noise was reduced a substantial amount in comparison with the existing design. The idea of a predesigned parabolic function is applied for the reduction of noise of helical and hypoid gears. The effectiveness of the proposed approach has been investigated by developed TCA (tooth contact analysis) programs. The bearing contact for the mentioned gears is localized. Conditions that avoid edge contact for the gear drives have been determined. Manufacturing of helical gears with new topology by hobs and grinding worms has been investigated.

  1. A review of gear housing dynamics and acoustics literature

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Lim, Teik Chin

    1988-01-01

    A review of the available literature on gear housing vibration and noise reduction is presented. Analytical and experimental methodologies used for bearing dynamics, housing vibration and noise, mounts and suspensions, and the overall geared and housing system are discussed. Typical design guidelines as outlined by various investigators are given.

  2. Helical Face Gear Development Under the Enhanced Rotorcraft Drive System Program

    NASA Technical Reports Server (NTRS)

    Heath, Gregory F.; Slaughter, Stephen C.; Fisher, David J.; Lewicki, David G.; Fetty, Jason

    2011-01-01

    U.S. Army goals for the Enhanced Rotorcraft Drive System Program are to achieve a 40 percent increase in horsepower to weight ratio, a 15 dB reduction in drive system generated noise, 30 percent reduction in drive system operating, support, and acquisition cost, and 75 percent automatic detection of critical mechanical component failures. Boeing s technology transition goals are that the operational endurance level of the helical face gearing and related split-torque designs be validated to a TRL 6, and that analytical and manufacturing tools be validated. Helical face gear technology is being developed in this project to augment, and transition into, a Boeing AH-64 Block III split-torque face gear main transmission stage, to yield increased power density and reduced noise. To date, helical face gear grinding development on Northstar s new face gear grinding machine and pattern-development tests at the NASA Glenn/U.S. Army Research Laboratory have been completed and are described.

  3. Gear tooth stress measurements of two helicopter planetary stages

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.

    1992-01-01

    Two versions of the planetary reduction stages from U.S. Army OH-58 helicopter main rotor transmissions were tested at NASA Lewis. One sequential and one nonsequential planetary were tested. Sun gear and ring gear teeth strains were measured, and stresses were calculated from the strains. The alternating stress at the fillet of both the loaded and unloaded sides of the teeth and at the root of the sun gear teeth are reported. Typical stress variations as the gear tooth moves through mesh are illustrated. At the tooth root location of the thin rimmed sun gear, a significant stress was produced by a phenomenon other than the passing of a planet gear. The load variation among the planets was studied. Each planet produced its own distinctive load distribution on the ring and sun gears. The load variation was less for a three planet, nonsequential design as compared to that of a four planet, sequential design. The reported results enhance the data base for gear stress levels and provide data for the validation of analytical methods.

  4. Reliability optimization design of the gear modification coefficient based on the meshing stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Qianqian; Wang, Hui

    2018-04-01

    Since the time varying meshing stiffness of gear system is the key factor affecting gear vibration, it is important to design the meshing stiffness to reduce vibration. Based on the effect of gear modification coefficient on the meshing stiffness, considering the random parameters, reliability optimization design of the gear modification is researched. The dimension reduction and point estimation method is used to estimate the moment of the limit state function, and the reliability is obtained by the forth moment method. The cooperation of the dynamic amplitude results before and after optimization indicates that the research is useful for the reduction of vibration and noise and the improvement of the reliability.

  5. Rotor instability due to a gear coupling connected to a bearingless sun wheel of a planetary gear

    NASA Technical Reports Server (NTRS)

    Buehlmann, E. T.; Luzi, A.

    1989-01-01

    A 21 MW electric power generating unit comprises a gas turbine, a planetary gear, and a generator connected together by gear couplings. For simplicity of the design and high performance the pinion of the gear has no bearing. It is centered by the planet wheels only. The original design showed a strong instability and a natural frequency increasing with the load between 2 and 6.5 MW. In this operating range the natural frequency was below the operating speed of the gas turbine, n sub PT = 7729 RPM. By shortening the pinion shaft and reduction of its moment of inertia the unstable natural frequency was shifted well above the operating speed. With that measure the unit now operates with stability in the entire load range.

  6. Multi-mesh gear dynamics program evaluation and enhancements

    NASA Technical Reports Server (NTRS)

    Boyd, L. S.; Pike, J.

    1985-01-01

    A multiple mesh gear dynamics computer program was continually developed and modified during the last four years. The program can handle epicyclic gear systems as well as single mesh systems with internal, buttress, or helical tooth forms. The following modifications were added under the current funding: variable contact friction, planet cage and ring gear rim flexibility options, user friendly options, dynamic side bands, a speed survey option and the combining of the single and multiple mesh options into one general program. The modified program was evaluated by comparing calculated values to published test data and to test data taken on a Hamilton Standard turboprop reduction gear-box. In general, the correlation between the test data and the analytical data is good.

  7. Experimental investigation of active loads control for aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Dreher, R. C.

    1982-01-01

    Aircraft dynamic loads and vibrations resulting from landing impact and from runway and taxiway unevenness are recognized as significant in causing fatigue damage, dynamic stress on the airframe, crew and passenger discomfort, and reduction of the pilot's ability to control the aircraft during ground operations. One potential method for improving operational characteistics of aircraft on the ground is the application of active control technology to the landing gears to reduce ground loads applied to the airframe. An experimental investigation was conducted which simulated the landing dynamics of a light airplane to determine the feasibility and potential of a series hydraulic active control main landing gear. The experiments involved a passive gear and an active control gear. Results of this investigation show that a series hydraulically controlled gear is feasible and that such a gear is very effective in reducing the loads transmitted by the gear to the airframe during ground operations.

  8. Gear sound levels with various tooth contact ratios and forms

    NASA Technical Reports Server (NTRS)

    Lenski, Joseph W., Jr.; Spencer, Robert H.; Drago, Raymond J.; Valco, Mark J.; Oswald, Fred B.

    1993-01-01

    The real noise reduction benefits which may be obtained through the use of one gear tooth form as compared to another is an important design parameter for any geared system, especially for helicopters in which both weight and reliability are very important factors. The design and testing of nine sets of gears which are as identical as possible except for their basic tooth geometry are described. Noise measurements were made at various combinations of load and speed for each gear set so that direct comparisons could be made. The resultant data was analyzed so that valid conclusions could be drawn and interpreted for design use.

  9. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, D.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  10. Gear Design Effects on the Performance of High Speed Helical Gear Trains as Used in Aerospace Drive Systems

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.

    2013-01-01

    The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.

  11. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  12. The Strength Analysis of Differential Planetary Gears of Gearbox for Concrete Mixer Truck

    NASA Astrophysics Data System (ADS)

    Bae, M. H.; Bae, T. Y.; Kim, D. J.

    2018-03-01

    The power train of mixer gearbox for concrete mixer truck includes differential planetary gears to get large reduction ratio for operating mixer a drum and simple structure. The planetary gears are very important part of a mixer gearbox where strength problems namely gear bending stress, gear compressive stress and scoring failure are the main concern. In the present study, calculating specifications of the differential planetary gears and analyzing the gear bending and compressive stresses as well as scoring factor of the differential planetary gears gearbox for an optimal design of the mixer gearbox in respect to cost and reliability are investigated. The analyses of actual gear bending and compressive stresses of the differential planetary gears using Lewes & Hertz equation and verifications of the calculated specifications of the differential planetary gears evaluate the results with the data of allowable bending and compressive stress from the Stress-No. of cycles curves of gears. In addition, we also analyze actual gear scoring factor as well as evaluate the possibility of scoring failure of the differential planetary gear.

  13. Anti-backlash gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  14. Low-noise, high-strength, spiral-bevel gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Henry, Zachary S.; Litvin, Faydor L.

    1993-01-01

    Improvements in spiral-bevel gear design were investigated to support the Army/NASA Advanced Rotorcraft Transmission program. Program objectives were to reduce weight by 25 percent, reduce noise by 10 dB, and increase life to 5000 hr mean-time-between-removal. To help meet these goals, advanced-design spiral-bevel gears were tested in an OH-58D helicopter transmission using the NASA 500-hp Helicopter Transmission Test Stand. Three different gear designs tested included: (1) the current design of the OH-58D transmission except gear material X-53 instead of AISI 9310; (2) a higher-strength design the same as the current but with a full fillet radius to reduce gear tooth bending stress (and thus, weight); and (3) a lower-noise design the same as the high-strength but with modified tooth geometry to reduce transmission error and noise. Noise, vibration, and tooth strain tests were performed and significant gear stress and noise reductions were achieved.

  15. Two stage gear tooth dynamics program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda S.

    1989-01-01

    The epicyclic gear dynamics program was expanded to add the option of evaluating the tooth pair dynamics for two epicyclic gear stages with peripheral components. This was a practical extension to the program as multiple gear stages are often used for speed reduction, space, weight, and/or auxiliary units. The option was developed for either stage to be a basic planetary, star, single external-external mesh, or single external-internal mesh. The two stage system allows for modeling of the peripherals with an input mass and shaft, an output mass and shaft, and a connecting shaft. Execution of the initial test case indicated an instability in the solution with the tooth paid loads growing to excessive magnitudes. A procedure to trace the instability is recommended as well as a method of reducing the program's computation time by reducing the number of boundary condition iterations.

  16. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  17. Study on vibration characteristic of the marine beveloid gear RV reducer

    NASA Astrophysics Data System (ADS)

    Wen, Jianmin; Cui, Haiyue; Yang, Tong

    2018-05-01

    The paper focuses on the vibration characteristic of the marine beveloid gear RV reducer and provides the theoretical guidance for vibration reduction. The cycloid gears are replaced by the beveloid gears in the transmission system. Considering the impact of the backlash, time-varying meshing stiffness and transmission error, a three-dimensional lumped parameter dynamic model of the marine beveloid gear RV reducer is established. The dynamic differential equations are solved through the 4th-5th order Runge-Kutta numerical integration method. By comparing the change of the time-displacement curves and amplitude curves, the impact of the external and internal excitation on the system vibration characteristic is investigated.

  18. Flightworthy active control landing gear for a supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1980-01-01

    A flightworthy active control landing gear system for a supersonic aircraft was designed to minimize aircraft loads during takeoff, impact, rollout, and taxi. The design consists of hydromechanical modifications to the existing gear and the development of a fail-safe electronic controller. analytical RESULTS INDICATE that for an aircraft sink rate of 0.914 m/sec (3 ft/sec) the system achieves a peak load reduction of 36% during landing impact.

  19. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2009-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  20. Double Helical Gear Performance Results in High Speed Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  1. An electronic control for an electrohydraulic active control landing gear for the F-4 aircraft

    NASA Technical Reports Server (NTRS)

    Ross, I.

    1982-01-01

    A controller for an electrohydraulic active control landing gear was developed for the F-4 aircraft. A controller was modified for this application. Simulation results indicate that during landing and rollout over repaired bomb craters the active gear effects a force reduction, relative to the passive gear, or approximately 70%.

  2. Computerized Design and Generation of Low-noise Helical Gears with Modified Surface Topology

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Chen, N. X.; Lu, J.; Handschuh, R. F.

    1994-01-01

    An approach for design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.

  3. Feed-forward control of gear mesh vibration using piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Montague, Gerald T.; Kascak, Albert F.; Palazzolo, Alan; Manchala, Daniel; Thomas, Erwin

    1994-01-01

    This paper presents a novel means for suppressing gear mesh-related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed-forward controller. Test results are presented and show up to a 70-percent reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  4. Magnetic Gearing Versus Conventional Gearing in Actuators for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Puchhammer, Gregor

    2014-01-01

    Magnetic geared actuators (MGA) are designed to perform highly reliable, robust and precise motion on satellite platforms or aerospace vehicles. The design allows MGA to be used for various tasks in space applications. In contrast to conventional geared drives, the contact and lubrication free force transmitting elements lead to a considerable lifetime and range extension of drive systems. This paper describes the fundamentals of magnetic wobbling gears (MWG) and the deduced inherent characteristics, and compares conventional and magnetic gearing.

  5. An Assessment of Flap and Main Landing Gear Noise Abatement Concepts

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Humphreys, William M., Jr.; Lockard, David P.

    2015-01-01

    A detailed assessment of the acoustic performance of several noise reduction concepts for aircraft flaps and landing gear is presented. Consideration is given to the best performing concepts within the suite of technologies that were evaluated in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel using an 18 percent scale, semi-span, high-fidelity Gulfstream aircraft model as a test bed. Microphone array measurements were obtained with the model in a landing configuration (flap deflected 39 degrees and the main landing gear deployed or retracted). The effectiveness of each concept over the range of pitch angles, speeds, and directivity angles tested is presented. Comparison of the acoustic spectra, obtained from integration of the beamform maps between the untreated baseline and treated configurations, clearly demonstrates that the flap and gear concepts maintain noise reduction benefits over the entire range of the directivity angles tested.

  6. Detecting gear tooth fracture in a high contact ratio face gear mesh

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Handschuh, Robert F.; Lewicki, David G.; Decker, Harry J.

    1995-01-01

    This paper summarized the results of a study in which three different vibration diagnostic methods were used to detect gear tooth fracture in a high contact ratio face gear mesh. The NASA spiral bevel gear fatigue test rig was used to produce unseeded fault, natural failures of four face gear specimens. During the fatigue tests, which were run to determine load capacity and primary failure mechanisms for face gears, vibration signals were monitored and recorded for gear diagnostic purposes. Gear tooth bending fatigue and surface pitting were the primary failure modes found in the tests. The damage ranged from partial tooth fracture on a single tooth in one test to heavy wear, severe pitting, and complete tooth fracture of several teeth on another test. Three gear fault detection techniques, FM4, NA4*, and NB4, were applied to the experimental data. These methods use the signal average in both the time and frequency domain. Method NA4* was able to conclusively detect the gear tooth fractures in three out of the four fatigue tests, along with gear tooth surface pitting and heavy wear. For multiple tooth fractures, all of the methods gave a clear indication of the damage. It was also found that due to the high contact ratio of the face gear mesh, single tooth fractures did not significantly affect the vibration signal, making this type of failure difficult to detect.

  7. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor); Weinberg, Brian (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  8. STEPPED GEAR SYNCHRONIZERS,

    DTIC Science & Technology

    The book concerns Soviet and foreign experience in the design and use of synchronizers in the step gear boxes of transport vehicles. Side by side...with description of the basic steps in the development of the gear engagement mechanisms and of the design used in synchronizers of domestic and foreign...manufacture, in this work much attention is devoted to the theory of gear engagement in gear boxes equipped with synchronizers , and to figuring out

  9. Gear Tooth Root Stresses of a Very Heavily Loaded Gear Pair-Case Study: Orbiter Body Flap Actuator Pinion and Ring Gear

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Handschuh, Robert F.

    2015-01-01

    The space shuttle orbiter's body flap actuator gearing was assessed as a case study of the stresses for very heavily loaded external-internal gear pairs (meshing pinion and ring gear). For many applications, using the high point of single tooth contact (HPSTC) to locate the position of the tooth force is adequate for assessing the maximum tooth root stress condition. But for aerospace gearing such an approach may be inadequate for assessing the stress condition while also simultaneously minimizing mass. In this work specialized contact analyses and finite element methods were used to study gear tooth stresses of body flap actuator gears. The analytical solutions considered the elastic deformations as an inherent part of the solutions. The ratio for the maximum tooth stresses using the HPSTC approach solutions relative to the contact analysis and finite element solutions were 1.40 for the ring gear and 1.28 for the pinion gear.

  10. Geared power transmission technology

    NASA Technical Reports Server (NTRS)

    Coy, J. J.

    1983-01-01

    The historical path of the science and art of gearing is reviewed. The present state of gearing technology is discussed along with examples of some of the NASA-sponsored contributions to gearing technology. Future requirements in gearing are summarized.

  11. School Counseling Programs: Comparing GEAR UP Schools with Non-GEAR UP Schools

    ERIC Educational Resources Information Center

    Thorngren, Jill M.; Nelson, Mark D.; Baker, Larry J.

    2004-01-01

    A survey was conducted using qualitative means to assess school counseling programs in Montana. Schools that were demonstration schools in a federal initiative, Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) were compared to non-GEAR UP schools. Several differences between GEAR UP and non-GEAR UP schools are noted and…

  12. Generation and Computerized Simulation of Meshing and Contact of Modified Involute Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Chen, Ningxin; Lu, Jian

    1995-01-01

    The design and generation of modified involute helical gears that have a localized and stable bearing contact, and reduced noise and vibration characteristics are described. The localization of the bearing contact is achieved by the mismatch of the two generating surfaces that are used for generation of the pinion and the gear. The reduction of noise and vibration will be achieved by application of a parabolic function of transmission errors that is able to absorb the almost linear function of transmission errors caused by gear misalignment. The meshing and contact of misaligned gear drives can be analyzed by application of computer programs that have been developed. The computations confirmed the effectiveness of the proposed modification of the gear geometry. A numerical example that illustrates the developed theory is provided.

  13. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  14. High reduction transaxle for electric vehicle

    DOEpatents

    Kalns, Ilmars

    1987-01-01

    A drivetrain (12) includes a transaxle assembly (16) for driving ground engaging wheels of a land vehicle powered by an AC motor. The transaxle includes a ratio change section having planetary gear sets (24, 26) and brake assemblies (28, 30). Sun gears (60, 62) of the gear sets are directly and continuously connected to an input drive shaft (38) driven by the motor. A first drive (78a) directly and continuously connects a planetary gear carrier (78) of gear sets (24) with a ring gear (68) of gear set (26). A second drive (80a) directly and continuously connects a planetary gear carrier (80) of gear set (26) with a sun gear (64) of a final speed reduction gear set (34) having a planetary gear carrier directly and continuously connected to a differential (22). Brakes (28, 30) are selectively engageable to respectively ground a ring gear 66 of gear set 24 and ring gear 68 of gear set 26.

  15. A new approach to complete aircraft landing gear noise prediction

    NASA Astrophysics Data System (ADS)

    Lopes, Leonard V.

    This thesis describes a new landing gear noise prediction system developed at The Pennsylvania State University, called Landing Gear Model and Acoustic Prediction code (LGMAP). LGMAP is used to predict the noise of an isolated or installed landing gear geometry. The predictions include several techniques to approximate the aeroacoustic and aerodynamic interactions of landing gear noise generation. These include (1) a method for approximating the shielding of noise caused by the landing gear geometry, (2) accounting for local flow variations due to the wing geometry, (3) the interaction of the landing gear wake with high-lift devices, and (4) a method for estimating the effect of gross landing gear design changes on local flow and acoustic radiation. The LGMAP aeroacoustic prediction system has been created to predict the noise generated by a given landing gear. The landing gear is modeled as a set of simple components that represent individual parts of the structure. Each component, ranging from large to small, is represented by a simple geometric shape and the unsteady flow on the component is modeled based on an individual characteristic length, local flow velocity, and the turbulent flow environment. A small set of universal models is developed and applied to a large range of similar components. These universal models, combined with the actual component geometry and local environment, give a unique loading spectrum and acoustic field for each component. Then, the sum of all the individual components in the complete configuration is used to model the high level of geometric complexity typical of current aircraft undercarriage designs. A line of sight shielding algorithm based on scattering by a two-dimensional cylinder approximates the effect of acoustic shielding caused by the landing gear. Using the scattering from a cylinder in two-dimensions at an observer position directly behind the cylinder, LGMAP is able to estimate the reduction in noise due to shielding

  16. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  17. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Abeysinghe, Amal (Inventor); Kwan, Hwa-Wan (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  18. Computer Synthesis Approaches of Hyperboloid Gear Drives with Linear Contact

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Kawasaki, Haruhisa

    2014-09-01

    The computer design has improved forming different type software for scientific researches in the field of gearing theory as well as performing an adequate scientific support of the gear drives manufacture. Here are attached computer programs that are based on mathematical models as a result of scientific researches. The modern gear transmissions require the construction of new mathematical approaches to their geometric, technological and strength analysis. The process of optimization, synthesis and design is based on adequate iteration procedures to find out an optimal solution by varying definite parameters. The study is dedicated to accepted methodology in the creation of soft- ware for the synthesis of a class high reduction hyperboloid gears - Spiroid and Helicon ones (Spiroid and Helicon are trademarks registered by the Illinois Tool Works, Chicago, Ill). The developed basic computer products belong to software, based on original mathematical models. They are based on the two mathematical models for the synthesis: "upon a pitch contact point" and "upon a mesh region". Computer programs are worked out on the basis of the described mathematical models, and the relations between them are shown. The application of the shown approaches to the synthesis of commented gear drives is illustrated.

  19. Gearing Up for Mountain Biking.

    ERIC Educational Resources Information Center

    Jahnke, Thomas; Hamson, Mike

    1999-01-01

    Examines the gear system of a mountain bike to discover any redundancy in the many gear settings available to the cyclist. Suggests a best strategy for changing up through the gears on a typical 21-gear system and an adjustment to the available gears that would result in a smoother change. (Author/ASK)

  20. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  1. A mathematical model of an active control landing gear for load control during impact and roll-out

    NASA Technical Reports Server (NTRS)

    Mcgehee, J. R.; Carden, H. D.

    1976-01-01

    A mathematical model of an active control landing gear (ACOLAG) was developed and programmed for operation on a digital computer. The mathematical model includes theoretical subsonic aerodynamics; first-mode wing bending and torsional characteristics; oleo-pneumatic shock strut with fit and binding friction; closed-loop, series-hydraulic control; empirical tire force-deflection characteristics; antiskid braking; and sinusoidal or random runway roughness. The mathematical model was used to compute the loads and motions for a simulated vertical drop test and a simulated landing impact of a conventional (passive) main landing gear designed for a 2268-kg (5000-lbm) class airplane. Computations were also made for a simply modified version of the passive gear including a series-hydraulic active control system. Comparison of computed results for the passive gear with experimental data shows that the active control landing gear analysis is valid for predicting the loads and motions of an airplane during a symmetrical landing. Computed results for the series-hydraulic active control in conjunction with the simply modified passive gear show that 20- to 30-percent reductions in wing force, relative to those occurring with the modified passive gear, can be obtained during the impact phase of the landing. These reductions in wing force could result in substantial increases in fatigue life of the structure.

  2. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry I gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion. Previously announced in STAR as N82-30552

  3. Precision of spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    The kinematic errors in spiral bevel gear trains caused by the generation of nonconjugate surfaces, by axial displacements of the gears during assembly, and by eccentricity of the assembled gears were determined. One mathematical model corresponds to the motion of the contact ellipse across the tooth surface, (geometry I) and the other along the tooth surface (geometry II). The following results were obtained: (1) kinematic errors induced by errors of manufacture may be minimized by applying special machine settings, the original error may be reduced by order of magnitude, the procedure is most effective for geometry 2 gears, (2) when trying to adjust the bearing contact pattern between the gear teeth for geometry 1 gears, it is more desirable to shim the gear axially; for geometry II gears, shim the pinion axially; (3) the kinematic accuracy of spiral bevel drives are most sensitive to eccentricities of the gear and less sensitive to eccentricities of the pinion. The precision of mounting accuracy and manufacture are most crucial for the gear, and less so for the pinion.

  4. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  5. 3000-HP Roller Gear Transmission Development Program. Volume 3. Roller Gear Manufacture

    DTIC Science & Technology

    1975-07-01

    power is fed through the ramp roller clutch type free- wheel units to spur gears which mesh with the combining spur gear whose centerline is common...when the engine tends to turn faster than the main rotor shaft. It is in the free- wheel mode when the main rotor shaft tends to turn faster than the...gears are cut progrind at this time. Check face runout on each end of largo gears. Not to exceed .002" TIR 30 EBW one end 40 EBW opposite end

  6. Gears Based on Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  7. 49 CFR 230.89 - Reverse gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reverse gear. 230.89 Section 230.89 Transportation... Reversing Gear § 230.89 Reverse gear. (a) General provisions. Reverse gear, reverse levers, and quadrants... quadrant. Proper counterbalance shall be provided for the valve gear. (b) Air-operated power reverse gear...

  8. Effects of gear box vibration and mass imbalance on the dynamics of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, D. P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  9. A method for gear fatigue life prediction considering the internal flow field of the gear pump

    NASA Astrophysics Data System (ADS)

    Shen, Haidong; Li, Zhiqiang; Qi, Lele; Qiao, Liang

    2018-01-01

    Gear pump is the most widely used volume type hydraulic pump, and it is the main power source of the hydraulic system. Its performance is influenced by many factors, such as working environment, maintenance, fluid pressure and so on. It is different from the gear transmission system, the internal flow field of gear pump has a greater impact on the gear life, therefore it needs to consider the internal hydraulic system when predicting the gear fatigue life. In this paper, a certain aircraft gear pump as the research object, aim at the typical failure forms, gear contact fatigue, of gear pump, proposing the prediction method based on the virtual simulation. The method use CFD (Computational fluid dynamics) software to analyze pressure distribution of internal flow field of the gear pump, and constructed the unidirectional flow-solid coupling model of gear to acquire the contact stress of tooth surface on Ansys workbench software. Finally, employing nominal stress method and Miner cumulative damage theory to calculated the gear contact fatigue life based on modified material P-S-N curve. Engineering practice show that the method is feasible and efficient.

  10. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  11. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  12. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  13. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  14. 50 CFR 665.427 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Archipelago Fisheries § 665.427 Allowable gear and gear restrictions. (a) Mariana coral reef ecosystem MUS may... vehicles/submersibles. (b) Mariana coral reef ecosystem MUS may not be taken by means of poisons... subpart who is established to be fishing for Mariana coral reef ecosystem MUS in the management area is...

  15. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  16. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  17. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  18. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  19. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  20. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  1. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  2. 50 CFR 665.627 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Island Area Fisheries § 665.627 Allowable gear and gear restrictions. (a) Coral reef ecosystem MUS may be.../submersibles. (b) PRIA coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) PRIA coral...

  3. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  4. 50 CFR 665.227 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fisheries § 665.227 Allowable gear and gear restrictions. (a) Hawaii coral reef ecosystem MUS may be taken.../submersibles. (b) Hawaii coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for Hawaii coral reef ecosystem MUS in the Hawaii management area is prohibited. (c...

  5. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  6. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  7. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  8. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  9. 50 CFR 665.127 - Allowable gear and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Fisheries § 665.127 Allowable gear and gear restrictions. (a) American Samoa coral reef ecosystem MUS may be.../submersibles. (b) American Samoa coral reef ecosystem MUS may not be taken by means of poisons, explosives, or... established to be fishing for coral reef ecosystem MUS in the management area is prohibited. (c) Existing FEP...

  10. Stuck in gear: age-related loss of variable gearing in skeletal muscle.

    PubMed

    Holt, Natalie C; Danos, Nicole; Roberts, Thomas J; Azizi, Emanuel

    2016-04-01

    Skeletal muscles power a broad diversity of animal movements, despite only being able to produce high forces over a limited range of velocities. Pennate muscles use a range of gear ratios, the ratio of muscle shortening velocity to fiber shortening velocity, to partially circumvent these force-velocity constraints. Muscles operate with a high gear ratio at low forces; fibers rotate to greater angles of pennation, enhancing velocity but compromising force. At higher forces, muscles operate with a lower gear ratio; fibers rotate little so limiting muscle shortening velocity, but helping to preserve force. This ability to shift gears is thought to be due to the interplay of contractile force and connective tissue constraints. In order to test this hypothesis, gear ratios were determined in the medial gastrocnemius muscles of both healthy young rats, and old rats where the interaction between contractile and connective tissue properties was assumed to be disrupted. Muscle fiber and aponeurosis stiffness increased with age (P<0.05) from 19.1±5.0 kPa and 188.5±24.2 MPa, respectively, in young rats to 39.1±4.2 kPa and 328.0±48.3 MPa in old rats, indicating a mechanical change in the interaction between contractile and connective tissues. Gear ratio decreased with increasing force in young (P<0.001) but not old (P=0.72) muscles, indicating that variable gearing is lost in old muscle. These findings support the hypothesis that variable gearing results from the interaction between contractile and connective tissues and suggest novel explanations for the decline in muscle performance with age. © 2016. Published by The Company of Biologists Ltd.

  11. The Effect of Reduction Gearing on Propeller-body Interference as Shown by Full-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Weick, Fred E

    1931-01-01

    This report presents the results of full-scale tests made on a 10-foot 5-inch propeller on a geared J-5 engine and also on a similar 8-foot 11-inch propeller on a direct-drive J-5 engine. Each propeller was tested at two different pitch settings, and with a large and a small fuselage. The investigation was made in such a manner that the propeller-body interference factors were isolated, and it was found that, considering this interference only, the geared propellers had an appreciable advantage in propulsive efficiency, partially due to the larger diameter of the propellers with respect to the bodies, and partially because the geared propellers were located farther ahead of the engines and bodies.

  12. Maximum life spiral bevel reduction design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Prasanna, M. G.; Coe, H. H.

    1992-01-01

    Optimization is applied to the design of a spiral bevel gear reduction for maximum life at a given size. A modified feasible directions search algorithm permits a wide variety of inequality constraints and exact design requirements to be met with low sensitivity to initial values. Gear tooth bending strength and minimum contact ratio under load are included in the active constraints. The optimal design of the spiral bevel gear reduction includes the selection of bearing and shaft proportions in addition to gear mesh parameters. System life is maximized subject to a fixed back-cone distance of the spiral bevel gear set for a specified speed ratio, shaft angle, input torque, and power. Significant parameters in the design are: the spiral angle, the pressure angle, the numbers of teeth on the pinion and gear, and the location and size of the four support bearings. Interpolated polynomials expand the discrete bearing properties and proportions into continuous variables for gradient optimization. After finding the continuous optimum, a designer can analyze near optimal designs for comparison and selection. Design examples show the influence of the bearing lives on the gear parameters in the optimal configurations. For a fixed back-cone distance, optimal designs with larger shaft angles have larger service lives.

  13. Geared Electromechanical Rotary Joint

    NASA Technical Reports Server (NTRS)

    Vranish, John M.

    1994-01-01

    Geared rotary joint provides low-noise ac or dc electrical contact between electrical subsystems rotating relative to each other. Designed to overcome some disadvantages of older electromechanical interfaces, especially intermittency of sliding-contact and rolling-contact electromechanical joints. Hollow, springy planetary gears provide continuous, redundant, low-noise electrical contact between inner and outer gears.

  14. Interlocking Molecular Gear Chains Built on Surfaces.

    PubMed

    Zhao, Rundong; Qi, Fei; Zhao, Yan-Ling; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-05-17

    Periodic chains of molecular gears in which molecules couple with each other and rotate on surfaces have been previously explored by us theoretically using ab initio simulation tools. On the basis of the knowledge and experience gained about the interactions between neighboring molecular gears, we here explore the transmission of rotational motion and energy over larger distances, namely, through a longer chain of gear-like passive "slave" molecules. Such microscopic gears exhibit quite different behaviors compared to rigid cogwheels in the macroscopic world due to their structural flexibility affecting intermolecular interaction. Here, we investigate the capabilities of such gear chains and reveal the mechanisms of the transmission process in terms of both quantum-level density functional theory (DFT) and simple classical mechanics. We find that the transmission of rotation along gear chains depends strongly on the gear-gear distance: short distances can cause tilting of gears and even irregular "creep-then-jump" (or "stick-slip") motion or expulsion of gears; long gear-gear distances cause weak coupling between gears, slipping and skipping. More importantly, for transmission of rotation at intermediate gear-gear distances, our modeling clearly exhibits the relative roles of several important factors: flexibility of gear arms, axles, and supports, as well as resulting rotational delays, slippages, and thermal and other effects. These studies therefore allow better informed design of future molecular machine components involving motors, gears, axles, etc.

  15. Effects of gear box vibration and mass imbalance on the dynamics of multi-stage gear transmissions

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Tu, Yu K.; Zakrajsek, James J.; Townsend, Dennis P.

    1991-01-01

    The dynamic behavior of multistage gear transmission system, with the effects of gear-box-induced vibrations and rotor mass-imbalances is analyzed. The model method, using undamped frequencies and planar mode shapes, is used to reduce the degree-of-freedom of the system. The various rotor-bearing stages as well as lateral and torsional vibrations of each individual stage are coupled through localized gear-mesh-tooth interactions. Gear-box vibrations are coupled to the gear stage dynamics through bearing support forces. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domain. A typical three-staged geared system is used as an example. Effects of mass-imbalance and gear box vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  16. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  17. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  18. Investigation of Dynamic Force/Vibration Transmission Characteristics of Four-Square Type Gear Durability Test Machines

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet

    2002-01-01

    In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.

  19. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  20. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2018-07-01

    Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.

  1. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  2. Face Gear Drive with Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Fuentes, Alfonso; Zanzi, Claudio; Pontiggia, Matteo; Handschuh, Robert F. (Technical Monitor)

    2002-01-01

    A face gear drive with a spur involute pinion is considered. The generation of the face gear is based on application of a grinding or cutting worm whereas the conventional method of generation is based on application of an involute shaper. An analytical approach is proposed for the determination of: (1) the worm thread surface; (2) avoidance of singularities of the worm thread surface, (air) dressing of the worm; and (3) determination of stresses of the face-gear drive. A computer program for simulation of meshing and contact of the pinion and face-gear has been developed. Correction of machine-tool settings is proposed for reduction of the shift of the bearing contact caused by misalignment. An automatic development of the model of five contacting teeth has been proposed for stress analysis. Numerical examples for illustration of the developed theory are provided.

  3. Analysis of Landing-Gear Behavior

    NASA Technical Reports Server (NTRS)

    Milwitzky, Benjamin; Cook, Francis E

    1953-01-01

    This report presents a theoretical study of the behavior of the conventional type of oleo-pneumatic landing gear during the process of landing impact. The basic analysis is presented in a general form and treats the motions of the landing gear prior to and subsequent to the beginning of shock-strut deflection. The applicability of the analysis to actual landing gears has been investigated for the particular case of a vertical landing gear in the absence of drag loads by comparing calculated results with experimental drop-test data for impacts with and without tire bottoming. The calculated behavior of the landing gear was found to be in good agreement with the drop-test data.

  4. 77 FR 14505 - Proposed Information Collection; Comment Request; Gear-Marking Requirement for Atlantic Large...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... Collection; Comment Request; Gear-Marking Requirement for Atlantic Large Whale Take Reduction Plan AGENCY... of large whales, especially right whales, due to incidental entanglement in the United States (U.S... Large Whale Take Reduction Plan (ALWTRP), developed under the authority of the Marine Mammal Protection...

  5. Gear Tooth Wear Detection Algorithm

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.

    2015-01-01

    Vibration-based condition indicators continue to be developed for Health Usage Monitoring of rotorcraft gearboxes. Testing performed at NASA Glenn Research Center have shown correlations between specific condition indicators and specific types of gear wear. To speed up the detection and analysis of gear teeth, an image detection program based on the Viola-Jones algorithm was trained to automatically detect spiral bevel gear wear pitting. The detector was tested using a training set of gear wear pictures and a blind set of gear wear pictures. The detector accuracy for the training set was 75 percent while the accuracy for the blind set was 15 percent. Further improvements on the accuracy of the detector are required but preliminary results have shown its ability to automatically detect gear tooth wear. The trained detector would be used to quickly evaluate a set of gear or pinion pictures for pits, spalls, or abrasive wear. The results could then be used to correlate with vibration or oil debris data. In general, the program could be retrained to detect features of interest from pictures of a component taken over a period of time.

  6. Summary of NASA landing-gear research

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Sleeper, R. K.; Stubbs, S. M.

    1978-01-01

    This paper presents a brief summary of the airplane landing gear research underway at NASA. The technology areas include: ground handling simulator, antiskid braking systems, space shuttle nose-gear shimmy, active control landing gear, wire brush skid landing gear, air cushion landing systems, tire/surface friction characteristics, tire mechanical properties, tire-tread materials, powered wheels for taxiing, and crosswind landing gear. This paper deals mainly with the programs on tire-tread materials, powered wheel taxiing, air cushion landing systems, and crosswind landing gear research with particular emphasis on previously unreported results of recently completed flight tests. Work in the remaining areas is only mentioned.

  7. Advanced Face Gear Surface Durability Evaluations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.

    2016-01-01

    The surface durability life of helical face gears and isotropic super-finished (ISF) face gears was investigated. Experimental fatigue tests were performed at the NASA Glenn Research Center. Endurance tests were performed on 10 sets of helical face gears in mesh with tapered involute helical pinions, and 10 sets of ISF-enhanced straight face gears in mesh with tapered involute spur pinions. The results were compared to previous tests on straight face gears. The life of the ISF configuration was slightly less than that of previous tests on straight face gears. The life of the ISF configuration was slightly greater than that of the helical configuration.

  8. Technologies for the marking of fishing gear to identify gear components entangled on marine animals and to reduce abandoned, lost or otherwise discarded fishing gear.

    PubMed

    He, Pingguo; Suuronen, Petri

    2018-04-01

    Fishing gears are marked to establish and inform origin, ownership and position. More recently, fishing gears are marked to aid in capacity control, reduce marine litter due to abandoned, lost or otherwise discarded fishing gear (ALDFG) and assist in its recovery, and to combat illegal, unreported and unregulated (IUU) fishing. Traditionally, physical marking, inscription, writing, color, shape, and tags have been used for ownership and capacity purposes. Buoys, lights, flags, and radar reflectors are used for marking of position. More recently, electronic devices have been installed on marker buoys to enable easier relocation of the gear by owner vessels. This paper reviews gear marking technologies with focus on coded wire tags, radio frequency identification tags, Automatic Identification Systems, advanced electronic buoys for pelagic longlines and fish aggregating devices, and re-location technology if the gear becomes lost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Wabble gear drive mechanism. [for aerospace environments

    NASA Technical Reports Server (NTRS)

    Winiarski, F. J. (Inventor)

    1967-01-01

    The wabble gear principle was applied in the design of a driving mechanism for controlling spacecraft solar panels. The moving elements, other than the output gear, are contained within a hermetically sealed package to prevent escape of lubricants and ingestion of contaminant particles. The driving gear contains one more tooth than the output gear on a concave, conical pitch surface of slightly larger apex angle. The two gears mesh face to face such that engagement takes place at one point along the circumference. The driving gear is not permitted to rotate by virtue of its attachment through the bellows which permits flexure in the pitch and yaw position, but not in roll. As the bearing carrier rotates, the inclined mounting of the bearing causes the driving gear to perform a wabbling, irrotational motion. This wabbling motion causes the contact point between the output gear and the driving gear to traverse around the circumference of the gears once per revolution of the bearing carrier.

  10. 50 CFR 648.123 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.123 Section 648.123... § 648.123 Gear restrictions. (a) Trawl vessel gear restrictions—(1) Minimum mesh size. No owner or... and paragraph (a)(1) of this section shall not use any device, gear, or material, including, but not...

  11. Shuttle Rudder/Speed Brake Power Drive Unit (PDU) Gear Scuffing Tests With Flight Gears

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P.; Oswald, Fred B.; Krants, Timothy L.

    2005-01-01

    Scuffing-like damage has been found on the tooth surfaces of gears 5 and 6 of the NASA space shuttle rudder/speed brake power drive unit (PDU) number 2 after the occurrence of a transient back-driving event in flight. Tests were conducted using a pair of unused spare flight gears in a bench test at operating conditions up to 2866 rpm and 1144 in.-lb at the input ring gear and 14,000 rpm and 234 in.-lb at the output pinion gear, corresponding to a power level of 52 hp. This test condition exceeds the maximum estimated conditions expected in a backdriving event thought to produce the scuffing damage. Some wear marks were produced, but they were much less severe than the scuffing damaged produced during shuttle flight. Failure to produce scuff damage like that found on the shuttle may be due to geometrical variations between the scuffed gears and the gears tested herein, more severe operating conditions during the flight that produced the scuff than estimated, the order of the test procedures, the use of new hydraulic oil, differences between the dynamic response of the flight gearbox and the bench-test gearbox, or a combination of these. This report documents the test gears, apparatus, and procedures, summarizes the test results, and includes a discussion of the findings, conclusions, and recommendations.

  12. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  13. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  14. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  15. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  16. 29 CFR 1919.19 - Gear requiring welding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Gear requiring welding. 1919.19 Section 1919.19 Labor... (CONTINUED) GEAR CERTIFICATION Certification of Vessels' Cargo Gear § 1919.19 Gear requiring welding. Chains or other gear which have been lengthened, altered or repaired by welding shall be properly heat...

  17. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  18. 50 CFR 648.203 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.203 Section 648.203... Herring Fishery § 648.203 Gear restrictions. (a) Midwater trawl gear may only be used by a vessel issued a... Lightship Area as described in § 648.81(c)(1), provided it complies with the midwater trawl gear exemption...

  19. RDS-21 Face-Gear Surface Durability Tests

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Heath, Gregory F.; Filler, Robert R.; Slaughter, Stephen C.; Fetty, Jason

    2007-01-01

    Experimental fatigue tests were performed to determine the surface durability life of a face gear in mesh with a tapered spur involute pinion. Twenty-four sets of gears were tested at three load levels: 7200, 8185, and 9075 lb-in face gear torque, and 2190 to 3280 rpm face gear speed. The gears were carburized and ground, shot-peened and vibro-honed, and made from VIM-VAR Pyrowear 53 steel per AMS 6308. The tests produced 17 gear tooth spalling failures and 7 suspensions. For all the failed sets, spalling occurred on at least one tooth of all the pinions. In some cases, the spalling initiated a crack in the pinion teeth which progressed to tooth fracture. Also, spalling occurred on some face gear teeth. The AGMA endurance allowable stress for a tapered spur involute pinion in mesh with a face gear was determined to be 275 ksi for the material tested. For the application of a tapered spur involute pinion in mesh with a face gear, proper face gear shim controlled the desired gear tooth contact pattern while proper pinion shim was an effective way of adjusting backlash without severely affecting the contact pattern.

  20. Precise low cost chain gears for heliostats

    NASA Astrophysics Data System (ADS)

    Liedke, Phillip; Lewandowski, Arkadiusz; Pfahl, Andreas; Hölle, Erwin

    2016-05-01

    This work investigates the potential of chain gears as precise and low cost driving systems for rim drive heliostats. After explaining chain gear basics the polygon effect and chain lengthening are investigated. The polygon effect could be measured by a heliostat with chain rim gear and the chain lengthening with an accordant test set up. Two gear stages are scope of this work: a rim gear and an intermediate gear. Dimensioning, pretensioning and designing for both stages are explained.

  1. 50 CFR 697.23 - Restricted gear areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Measures § 697.23 Restricted gear areas. (a) Resolution of lobster gear conflicts with fisheries managed... all mobile gear is on board the vessel while inside the area. (ii) Lobster trap gear. From June 16 through September 30 of each fishing year, no fishing vessel with lobster trap gear or person on a fishing...

  2. 50 CFR 697.23 - Restricted gear areas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Measures § 697.23 Restricted gear areas. (a) Resolution of lobster gear conflicts with fisheries managed... all mobile gear is on board the vessel while inside the area. (ii) Lobster trap gear. From June 16 through September 30 of each fishing year, no fishing vessel with lobster trap gear or person on a fishing...

  3. Investigation on wear characteristic of biopolymer gear

    NASA Astrophysics Data System (ADS)

    Ghazali, Wafiuddin Bin Md; Daing Idris, Daing Mohamad Nafiz Bin; Sofian, Azizul Helmi Bin; Basrawi, Mohamad Firdaus bin; Khalil Ibrahim, Thamir

    2017-10-01

    Polymer is widely used in many mechanical components such as gear. With the world going to a more green and sustainable environment, polymers which are bio based are being recognized as a replacement for conventional polymers based on fossil fuel. The use of biopolymer in mechanical components especially gear have not been fully explored yet. This research focuses on biopolymer for spur gear and whether the conventional method to investigate wear characteristic is applicable. The spur gears are produced by injection moulding and tested on several speeds using a custom test equipment. The wear formation such as tooth fracture, tooth deformation, debris and weight loss was observed on the biopolymer spur gear. It was noted that the biopolymer gear wear mechanism was similar with other type of polymer spur gears. It also undergoes stages of wear which are; running in, linear and rapid. It can be said that the wear mechanism of biopolymer spur gear is comparable to fossil fuel based polymer spur gear, thus it can be considered to replace polymer gears in suitable applications.

  4. Numerical Simulation Of Cutting Of Gear Teeth

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Huston, Ronald L.; Mavriplis, Dimitrios

    1994-01-01

    Shapes of gear teeth produced by gear cutters of specified shape simulated computationally, according to approach based on principles of differential geometry. Results of computer simulation displayed as computer graphics and/or used in analyses of design, manufacturing, and performance of gears. Applicable to both standard and non-standard gear-tooth forms. Accelerates and facilitates analysis of alternative designs of gears and cutters. Simulation extended to study generation of surfaces other than gears. Applied to cams, bearings, and surfaces of arbitrary rolling elements as well as to gears. Possible to develop analogous procedures for simulating manufacture of skin surfaces like automobile fenders, airfoils, and ship hulls.

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  6. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The

  7. Dynamics of early planetary gear trains

    NASA Technical Reports Server (NTRS)

    August, R.; Kasuba, R.; Frater, J. L.; Pintz, A.

    1984-01-01

    A method to analyze the static and dynamic loads in a planetary gear train was developed. A variable-variable mesh stiffness (VVMS) model was used to simulate the external and internal spur gear mesh behavior, and an equivalent conventional gear train concept was adapted for the dynamic studies. The analysis can be applied either involute or noninvolute spur gearing. By utilizing the equivalent gear train concept, the developed method may be extended for use for all types of epicyclic gearing. The method is incorporated into a computer program so that the static and dynamic behavior of individual components can be examined. Items considered in the analysis are: (1) static and dynamic load sharing among the planets; (2) floating or fixed Sun gear; (3) actual tooth geometry, including errors and modifications; (4) positioning errors of the planet gears; (5) torque variations due to noninvolute gear action. A mathematical model comprised of power source, load, and planetary transmission is used to determine the instantaneous loads to which the components are subjected. It considers fluctuating output torque, elastic behavior in the system, and loss of contact between gear teeth. The dynamic model has nine degrees of freedom resulting in a set of simultaneous second order differential equations with time varying coefficients, which are solved numerically. The computer program was used to determine the effect of manufacturing errors, damping and component stiffness, and transmitted load on dynamic behavior. It is indicated that this methodology offers the designer/analyst a comprehensive tool with which planetary drives may be quickly and effectively evaluated.

  8. A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears

    NASA Astrophysics Data System (ADS)

    Lei, Yaguo; Liu, Zongyao; Wang, Delong; Yang, Xiao; Liu, Huan; Lin, Jing

    2018-06-01

    Tooth damage often causes a reduction in gear mesh stiffness. Thus time-varying mesh stiffness (TVMS) can be treated as an indication of gear health conditions. This study is devoted to investigating the mesh stiffness variations of a pair of external spur gears with tooth pitting, and proposes a new model for describing tooth pitting based on probability distribution. In the model, considering the appearance and development process of tooth pitting, we model the pitting on the surface of spur gear teeth as a series of pits with a uniform distribution in the direction of tooth width and a normal distribution in the direction of tooth height, respectively. In addition, four pitting degrees, from no pitting to severe pitting, are modeled. Finally, influences of tooth pitting on TVMS are analyzed in details and the proposed model is validated by comparing with a finite element model. The comparison results show that the proposed model is effective for the TVMS evaluations of pitting gears.

  9. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  10. Evaluation of Carburized and Ground Face Gears

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Heath, Gregory F.; Sheth, Vijay

    1999-01-01

    Experimental durability tests were performed on carburized and ground AIS19310 steel face gears. The tests were in support of a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP) to enhance face-gear technology. The tests were conducted in the NASA Glenn spiral-bevel-gear/face-gear test facility. Tests were run at 2300 rpm face gear speed and at loads of 64, 76, 88, 100, and 112-percent of the design torque of 377 N-m (3340 in-lb). The carburized and ground face gears demonstrated the required durability when run for ten-million cycles at each of the applied loads. Proper installation was critical for the successful operation of the spur pinions and face gears. A large amount of backlash produced tooth contact patterns that approached the inner-diameter edge of the face-gear tooth. Low backlash produced tooth contact patterns that approached the outer-diameter edge of the face-gear tooth. Measured backlashes in the range of 0.178 to 0.254 mm (0.007 to 0.010 in) produced acceptable tooth contact patterns.

  11. Procedure for Tooth Contact Analysis of a Face Gear Meshing With a Spur Gear Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Bibel, George; Lewicki, David G. (Technical Monitor)

    2002-01-01

    A procedure was developed to perform tooth contact analysis between a face gear meshing with a spur pinion using finite element analysis. The face gear surface points from a previous analysis were used to create a connected tooth solid model without gaps or overlaps. The face gear surface points were used to create a five tooth face gear Patran model (with rim) using Patran PCL commands. These commands were saved in a series of session files suitable for Patran input. A four tooth spur gear that meshes with the face gear was designed and constructed with Patran PCL commands. These commands were also saved in a session files suitable for Patran input. The orientation of the spur gear required for meshing with the face gear was determined. The required rotations and translations are described and built into the session file for the spur gear. The Abaqus commands for three-dimensional meshing were determined and verified for a simplified model containing one spur tooth and one face gear tooth. The boundary conditions, loads, and weak spring constraints were determined to make the simplified model work. The load steps and load increments to establish contact and obtain a realistic load was determined for the simplified two tooth model. Contact patterns give some insight into required mesh density. Building the two gears in two different local coordinate systems and rotating the local coordinate systems was verified as an easy way to roll the gearset through mesh. Due to limitation of swap space, disk space and time constraints of the summer period, the larger model was not completed.

  12. Worm Gear With Hydrostatic Engagement

    NASA Technical Reports Server (NTRS)

    Chaiko, Lev I.

    1994-01-01

    In proposed worm-gear transmission, oil pumped at high pressure through meshes between teeth of gear and worm coil. Pressure in oil separates meshing surfaces slightly, and oil reduces friction between surfaces. Conceived for use in drive train between gas-turbine engine and rotor of helicopter. Useful in other applications in which weight critical. Test apparatus simulates and measures some loading conditions of proposed worm gear with hydrostatic engagement.

  13. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  14. 49 CFR 230.77 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 230.77 Section 230.77... Tenders Brake and Signal Equipment § 230.77 Foundation brake gear. (a) Maintenance. Foundation brake gear...) Distance above the rails. No part of the foundation brake gear of the steam locomotive or tender shall be...

  15. Application of Face-Gear Drives in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face gears in helicopter transmissions was explored. A light-weight, split torque transmission design utilizing face gears was described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. Analytical study of transmission error showed face-gear drives were relatively insensitive to gear misalignment, but tooth contact was affected by misalignment. A method of localizing bearing contact to compensate for misalignment was explored. The proper choice of shaft support stiffness enabled good load sharing in the split torque transmission design. Face-gear experimental studies were also included and the feasibility of face gears in high-speed, high-load applications such as helicopter transmissions was demonstrated.

  16. 50 CFR 665.664 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.664 Section 665.664 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... § 665.664 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral...

  17. 50 CFR 665.464 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.464 Section 665.464 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION... Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  18. New Geometry of Worm Face Gear Drives with Conical and Cylindrical Worms: Generation, Simulation of Meshing, and Stress Analysis

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Nava, Alessandro; Fan, Qi; Fuentes, Alfonso

    2002-01-01

    New geometry of face worm gear drives with conical and cylindrical worms is proposed. The generation of the face worm-gear is based on application of a tilted head-cutter (grinding tool) instead of application of a hob applied at present. The generation of a conjugated worm is based on application of a tilted head-cutter (grinding tool) as well. The bearing contact of the gear drive is localized and is oriented longitudinally. A predesigned parabolic function of transmission errors for reduction of noise and vibration is provided. The stress analysis of the gear drive is performed using a three-dimensional finite element analysis. The contacting model is automatically generated. The developed theory is illustrated with numerical examples.

  19. 50 CFR 648.163 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. 648.163 Section 648.163... Bluefish Fishery § 648.163 Gear restrictions. If the Council determines through its annual review or framework adjustment process that gear restrictions are necessary to assure that the fishing mortality rate...

  20. 50 CFR 665.206 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.206 Section 665.206..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.206 Gear... MUS with bottom trawls and bottom set gillnets is prohibited. (b) Possession of gear. Possession of a...

  1. 50 CFR 665.264 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.264 Section 665.264..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC Hawaii Fisheries § 665.264 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  2. 50 CFR 665.164 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.164 Section 665.164..., DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES IN THE WESTERN PACIFIC American Samoa Fisheries § 665.164 Gear restrictions. Only selective gear may be used to harvest coral from any precious coral permit area. ...

  3. 50 CFR 665.804 - Gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear identification. 665.804 Section 665... Fisheries § 665.804 Gear identification. (a) Identification. The operator of each permitted vessel in the... action. Longline gear not marked in compliance with paragraph (a) of this section and found deployed in...

  4. Molecular Dynamics Simulation of Carbon Nanotube Based Gears

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Jaffe, Richard; Deardorff, Glenn; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    We used molecular dynamics to investigate the properties and design space of molecular gears fashioned from carbon nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. One gear was powered by forcing the atoms near the end of the buckytube to rotate, and a second gear was allowed.to rotate by keeping the atoms near the end of its buckytube on a cylinder. The meshing aromatic gear teeth transfer angular momentum from the powered gear to the driven gear. A number of gear and gear/shaft configurations were simulated. Cases in vacuum and with an inert atmosphere were examined. In an extension to molecular dynamics technology, some simulations used a thermostat on the atmosphere while the hydrocarbon gear's temperature was allowed to fluctuate. This models cooling the gears with an atmosphere. Results suggest that these gears can operate at up to 50-100 gigahertz in a vacuum or inert atmosphere at room temperature. The failure mode involves tooth slip, not bond breaking, so failed gears can be returned to operation by lowering temperature and/or rotation rate. Videos and atomic trajectory files in xyz format are presented.

  5. New Gear Transmission Error Measurement System Designed

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  6. Improving applied roughness measurement of involute helical gears

    NASA Astrophysics Data System (ADS)

    Koulin, G.; Zhang, J.; Frazer, R. C.; Wilson, S. J.; Shaw, B. A.

    2017-12-01

    With improving gear design and manufacturing technology, improvement in metrology is necessary to provide reliable feedback to the designer and manufacturer. A recommended gear roughness measurement method is applied to a micropitting contact fatigue test gear. The development of wear and micropitting is reliably characterised at the sub-micron roughness level. Changes to the features of the localised surface texture are revealed and are related to key gear meshing positions. The application of the recommended methodology is shown to provide informative feedback to the gear designer in reference to the fundamental gear coordinate system, which is used in gear performance simulations such as tooth contact analysis.

  7. A manufacturing error measurement methodology for a rotary vector reducer cycloidal gear based on a gear measuring center

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Zhou, Junxiang; Deng, Xiaozhong; Li, Jubo; Xing, Chunrong; Su, Jianxin; Wang, Huiliang

    2018-07-01

    A manufacturing error of a cycloidal gear is the key factor affecting the transmission accuracy of a robot rotary vector (RV) reducer. A methodology is proposed to realize the digitized measurement and data processing of the cycloidal gear manufacturing error based on the gear measuring center, which can quickly and accurately measure and evaluate the manufacturing error of the cycloidal gear by using both the whole tooth profile measurement and a single tooth profile measurement. By analyzing the particularity of the cycloidal profile and its effect on the actual meshing characteristics of the RV transmission, the cycloid profile measurement strategy is planned, and the theoretical profile model and error measurement model of cycloid-pin gear transmission are established. Through the digital processing technology, the theoretical trajectory of the probe and the normal vector of the measured point are calculated. By means of precision measurement principle and error compensation theory, a mathematical model for the accurate calculation and data processing of manufacturing error is constructed, and the actual manufacturing error of the cycloidal gear is obtained by the optimization iterative solution. Finally, the measurement experiment of the cycloidal gear tooth profile is carried out on the gear measuring center and the HEXAGON coordinate measuring machine, respectively. The measurement results verify the correctness and validity of the measurement theory and method. This methodology will provide the basis for the accurate evaluation and the effective control of manufacturing precision of the cycloidal gear in a robot RV reducer.

  8. 50 CFR 665.605 - Gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear restrictions. 665.605 Section 665.605... § 665.605 Gear restrictions. (a) Bottom trawls and bottom set gillnets. Fishing for PRIA bottomfish MUS with bottom trawls and bottom set gillnets is prohibited. (b) Possession of gear. Possession of a...

  9. Gear Durability Shown To Be Improved by Superfinishing

    NASA Technical Reports Server (NTRS)

    Krautz, Timothy L.

    2000-01-01

    Gears, bearings, and similar mechanical elements transmit loads through contacting surfaces. At the NASA Glenn Research Center at Lewis Field, we postulated that the fatigue lives of gears could be improved by providing smoother tooth surfaces. A superfinishing process was applied to a set of conventionally ground, aerospace-quality gears. This process produced a highly polished, mirrorlike surface as shown in the preceding photograph. The surface fatigue lives of both superfinished and conventionally ground gears were measured by experiments. The superfinished gears survived about four times longer than the conventionally ground gears. These superfinished gears were produced from conventionally ground, aerospace-quality gears whose geometry had been inspected. The gears were superfinished by placing them in a vibrating bath consisting of water, detergent, abrasive powder, and small pieces of zinc. Upon removal from the bath, the surfaces were highly polished, as depicted in the preceding photograph. The gears were again inspected, and dimensional measurements made before and after the superfinishing operation were compared. Superfinishing removed the peaks of the grinding marks and left a much smoother surface. Profile and spacing checks proved that the overall gear tooth shape was not affected in any harmful way. Superfinishing uniformly removed approximately 2.5 microns from each surface.

  10. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system

    NASA Astrophysics Data System (ADS)

    Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.; Parker, Robert G.

    2014-10-01

    This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.

  11. Computerized Generation and Simulation of Meshing and Contact of New Type of Novikov-Wildhaber Helical Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Feng, Pin-Hao; Lagutin, Sergei A.

    2000-01-01

    In this report, we propose a new geometry for low-noise, increased-strength helical gears of the Novikov-Wildhaber type. Contact stresses are reduced as a result of their convex-concave gear tooth surfaces. The gear tooth surfaces are crowned in the profile direction to localize bearing contact and in the longitudinal direction to obtain a parabolic function of transmission errors. Such a function results in the reduction of noise and vibrations. Methods for the generation of the proposed gear tooth surfaces by grinding and hobbing are considered, and a tooth contact analysis (TCA) computer program to simulate meshing and contact is applied. The report also investigates the influence of misalignment on transmission errors and shift of bearing contact. Numerical examples to illustrate the developed approaches are proposed. The proposed geometry was patented by Ford/UIC (Serial Number 09-340-824, pending) on June 28, 1999.

  12. Investigation on Multiple Algorithms for Multi-Objective Optimization of Gear Box

    NASA Astrophysics Data System (ADS)

    Ananthapadmanabhan, R.; Babu, S. Arun; Hareendranath, KR; Krishnamohan, C.; Krishnapillai, S.; A, Krishnan

    2016-09-01

    The field of gear design is an extremely important area in engineering. In this work a spur gear reduction unit is considered. A review of relevant literatures in the area of gear design indicates that compact design of gearbox involves a complicated engineering analysis. This work deals with the simultaneous optimization of the power and dimensions of a gearbox, which are of conflicting nature. The focus is on developing a design space which is based on module, pinion teeth and face-width by using MATLAB. The feasible points are obtained through different multi-objective algorithms using various constraints obtained from different novel literatures. Attention has been devoted in various novel constraints like critical scoring criterion number, flash temperature, minimum film thickness, involute interference and contact ratio. The output from various algorithms like genetic algorithm, fmincon (constrained nonlinear minimization), NSGA-II etc. are compared to generate the best result. Hence, this is a much more precise approach for obtaining practical values of the module, pinion teeth and face-width for a minimum centre distance and a maximum power transmission for any given material.

  13. Lubrication and cooling for high speed gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  14. Design of Spur Gears for Improved Efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system loss for a wide range of gear geometries and operating conditions was used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch line velocity and load on efficiency were determined. Peak efficiencies were found to be greater for large diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  15. Computer simulation of gear tooth manufacturing processes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri; Huston, Ronald L.

    1990-01-01

    The use of computer graphics to simulate gear tooth manufacturing procedures is discussed. An analytical basis for the simulation is established for spur gears. The simulation itself, however, is developed not only for spur gears, but for straight bevel gears as well. The applications of the developed procedure extend from the development of finite element models of heretofore intractable geometrical forms, to exploring the fabrication of nonstandard tooth forms.

  16. Gear distortion analysis due to heat treatment process

    NASA Astrophysics Data System (ADS)

    Guterres, Natalino F. D. S.; Rusnaldy, Widodo, Achmad

    2017-01-01

    One way to extend the life time of the gear is minimizing the distortion during the manufacturing process. One of the most important processes in manufacturing to produce gears is heat treatment process. The purpose of this study is to analyze the distortion of the gear after heat treatment process. The material of gear is AISI 1045, and it was designed with the module (m) 1.75, and a number of teeth (z) 29. Gear was heat-treated in the furnace at a temperature of 800°C, holding time of 30 minutes, and then quenched in water. Furthermore, surface hardening process was also performed on gear teeth at a temperature of 820°C and holding time of 35 seconds and the similar procedure of analysis was conducted. The hardness of gear after heat treatment average 63.2 HRC and the teeth surface hardness after gear to induction hardening was 64.9 HRC at the case depth 1 mm. The microstructure of tested gear are martensitic and pearlite. The highest distortion on tooth thickness to upper than 0.063 can cause high precision at the tooth contact is not appropriate. Besides the shrinkage of tooth thickness will also affect to contact angle because the size of gear tolerance was not standardized.

  17. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2009-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined. INTRODUCTION In some space mechanisms the loading can be so high that there is some possibility that a gear chip might be liberated while in operation of the mechanism [1-5]. Also, due to the closely packed nature of some space mechanisms and the fact that a space grease is used for lubrication, chips that are released can then be introduced to other gear meshes within this mechanism. In this instance, it is desirable to know the consequences of a gear chip entering in between meshing gear teeth. To help provide some understanding, a series of bench-top experiments was conducted to engage chips of simulated and gear material fragments into a meshing gear pair. One purpose of the experiments was to determine the relationship of chip size to the torque required to rotate the gear set through the mesh cycle. The second purpose was to determine the condition of the gear chip material after engagement by the meshing gears, primarily to determine if the chip would break into pieces and to observe the motion of the chip as the engagement was completed. This document also presents preliminary testing done with metal debris other than chips from gears, namely steel shim stock and drill bits of various sizes and diameters.

  18. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA Lewis Research Center, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  19. Recent manufacturing advances for spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Bill, Robert C.

    1991-01-01

    The U.S. Army Aviation Systems Command (AVSCOM), through the Propulsion Directorate at NASA LRC, has recently sponsored projects to advance the manufacturing process for spiral bevel gears. This type of gear is a critical component in rotary-wing propulsion systems. Two successfully completed contracted projects are described. The first project addresses the automated inspection of spiral bevel gears through the use of coordinate measuring machines. The second project entails the computer-numerical-control (CNC) conversion of a spiral bevel gear grinding machine that is used for all aerospace spiral bevel gears. The results of these projects are described with regard to the savings effected in manufacturing time.

  20. Dual lead-crowning for helical gears with anti-twist tooth flanks on the internal gear honing machine

    NASA Astrophysics Data System (ADS)

    Tran, Van-Quyet; Wu, Yu-Ren

    2017-12-01

    For some specific purposes, a helical gear with wide face-width is applied for meshing with two other gears simultaneously, such as the idle pinions in the vehicle differential. However, due to the fact of gear deformation, the tooth edge contact and stress concentration might occur. Single lead-crowning is no more suitable for such a case to get the appropriate position of contact pattern and improve the load distribution on tooth surfaces. Therefore, a novel *Email: method is proposed in this paper to achieve the wide-face-width helical gears with the dual lead-crowned and the anti-twisted tooth surfaces by controlling the swivel angle and the rotation angle of the honing wheel respectively on an internal gear honing machine. Numerical examples are practiced to illustrate and verified the merits of the proposed method.

  1. 6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. OBLIQUE VIEW OF HOIST, SHOWING WOODEN BRAKE SHOES, REDUCTION GEARS AND BED FOR (MISSING) CLUTCH/DRIVE GEAR UNIT, LOOKING NORTHWEST - Buffalo Coal Mine, Vulcan Cable Hoist, Wishbone Hill, Southeast end, near Moose Creek, Sutton, Matanuska-Susitna Borough, AK

  2. Face Gear Technology for Aerospace Power Transmission Progresses

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  3. Holistic assessment of Chwaka Bay's multi-gear fishery - Using a trophic modeling approach

    NASA Astrophysics Data System (ADS)

    Rehren, Jennifer; Wolff, Matthias; Jiddawi, Narriman

    2018-04-01

    . Instead, we recommend an effort control of traps and a reduction in the use of dragnets, partially by redistributing them to the more profitable and less impacting gears (e.g. longlines, gillnets, handlines).

  4. An Overview of Landing Gear Dynamics

    NASA Technical Reports Server (NTRS)

    Pritchard, Jocelyn I.

    1999-01-01

    One of the problems facing the aircraft community is landing gear dynamics, especially shimmy and brake-induced vibration. Shimmy and brake-induced vibrations can lead to accidents due to excessive wear and shortened life of gear parts and contribute to pilot and passenger discomfort. To increase understanding of these problems, a literature survey was performed. The major focus is on work from the last ten years. Some older publications are included to understand the longevity of the problem and the background from earlier researchers. The literature survey includes analyses, testing, modeling, and simulation of aircraft landing gear; and experimental validation and characterization of shimmy and brake-induced vibration of aircraft landing gear. The paper presents an overview of the problem, background information, and a history of landing gear dynamics problems and solutions. Based on the survey an assessment and recommendations of the most critically needed enhancements to the state of the art will be presented. The status of Langley work contributing to this activity will be given.

  5. 50 CFR 622.31 - Prohibited gear and methods.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prohibited gear and methods. 622.31... Management Measures § 622.31 Prohibited gear and methods. In addition to the prohibited gear/methods specified in this section, see §§ 622.33, 622.34, and 622.35 for seasonal/area prohibited gear/methods and...

  6. 50 CFR 622.46 - Prevention of gear conflicts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 622.46... Management Measures § 622.46 Prevention of gear conflicts. (a) No person may knowingly place in the Gulf EEZ... zones for shrimp trawling and the use of fixed gear to prevent gear conflicts. Necessary prohibitions or...

  7. Bearing and gear steels for aerospace applications

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    Research in metallurgy and processing for bearing and gear steels has resulted in improvements in rolling-element bearing and gear life for aerospace application by a factor of approximately 200 over that obtained in the early 1940's. The selection and specification of a bearing or gear steel is dependent on the integration of multiple metallurgical and physical variables. For most aerospace bearings, through-hardened VIM-VAR AISI M-50 steel is the material of preference. For gears, the preferential material is case-carburized VAR AISI 9310. However, the VAR processing for this material is being replaced by VIM-VAR processing. Since case-carburized VIM-VAR M-50NiL incorporates the desirable qualities of both the AISI M-50 and AISI 9310 materials, optimal life and reliability can be achieved in both bearings and gears with a single steel. Hence, this material offers the promise of a common steel for both bearings and gears for future aerospace applications.

  8. Fishing gear-related injury in California marine wildlife.

    PubMed

    Dau, Brynie Kaplan; Gilardi, Kirsten V K; Gulland, Frances M; Higgins, Ali; Holcomb, Jay B; Leger, Judy St; Ziccardi, Michael H

    2009-04-01

    We reviewed medical records from select wildlife rehabilitation facilities in California to determine the prevalence of injury in California Brown Pelicans (Pelecanus occidentalis), gulls (Larus spp.), and pinniped species (Zalophus californianus, Mirounga angustirostris, and Phoca vitulina) due to fishing gear entanglement and ingestion from 2001 to 2006. Of 9,668 Brown Pelican, gull, and pinniped cases described during the 6-yr study period (2001-06), 1,090 (11.3%) were fishing gear-related. Pelican injuries caused by fishing gear were most common in the Monterey Bay region, where 59.6% of the pelicans rescued in this area and admitted to a rehabilitation center were injured by fishing gear over the 6-yr period. The highest prevalence of fishing gear-related injury in gulls was documented in the Los Angeles/Orange County region (16.1%), whereas the highest prevalences in pinnipeds were seen in the San Diego region (3.7%). Despite these higher prevalences of gull and pinniped fishing gear-related injuries in these specific regions, there was no statistical significance in these trends. Juvenile gulls and pinnipeds were more commonly injured by fishing gear than adults (gulls: P = 0.03, odds ratio = 1.29; pinnipeds: P = 0.01, odds ratio = 2.07). Male pinnipeds were twice as likely to be injured by fishing gear as females (P < 0.01, odds ratio = 2.19). The proportion of fishing gear-related injury cases that were successfully rehabilitated and released (percentage of cases successfully rehabilitated to the point of release out of the total number of fishing gear-related injury cases) was high in all three species groups (pelicans: 63%; gulls: 54%; pinnipeds: 70%). Fishing gear-related injuries in Brown Pelicans and gulls were highest in the fall, but there was only a significant difference between seasons for fishing gear-related injuries in pelicans. Fishing gear-related injuries in pinnipeds most commonly occurred in summer; however, a statistical difference was

  9. Design of spur gears for improved efficiency

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1981-01-01

    A method to calculate spur gear system power loss for a wide range of gear geometries and operating conditions is used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch-line-velocity and load on efficiency are shown. A design example is given to illustrate how the method is to be applied. In general, peak efficiencies were found to be greater for larger diameter and fine pitched gears and tare (no-load) losses were found to be significant.

  10. Offset Compound Gear Inline Two-Speed Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)

    2012-01-01

    A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.

  11. Offset Compound Gear Inline Two-Speed Drive

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A. (Inventor); Handschuh, Robert F. (Inventor); Lewicki, David G. (Inventor)

    2014-01-01

    A two-speed transmission having an input shaft and an output shaft, the transmission being capable of transitioning between fixed ratios, the high-range ratio being direct 1:1 and the low-range ratio being about 2:1. The transmission is a simple lightweight, yet robust, configuration utilizing only two gear meshes, being comprised of an input gear, a cluster gear, and an output gear. The transmission is controlled with a clutch and a sprag and with the input and output shafts turning in the same direction.

  12. Experimental testing of prototype face gears for helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Handschuh, R.; Lewicki, D.; Bossler, R.

    1992-01-01

    An experimental program to test the feasibility of using face gears in a high-speed and high-power environment was conducted. Four face gear sets were tested, two sets at a time, in a closed-loop test stand at pinion rotational speeds to 19,100 rpm and to 271 kW. The test gear sets were one-half scale of the helicopter design gear set. Testing the gears at one-eighth power, the test gear set had slightly increased bending and compressive stresses when compared to the full scale design. The tests were performed in the LeRC spiral bevel gear test facility. All four sets of gears successfully ran at 100 percent of design torque and speed for 30 million pinion cycles, and two sets successfully ran at 200 percent of torque for an additional 30 million pinion cycles. The results, although limited, demonstrated the feasibility of using face gears for high-speed, high-load applications.

  13. Gear materials for high-production light-deputy service

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1973-01-01

    The selection of a material for high volume, low cost gears requires careful consideration of all the requirements and the processes used to manufacture the gears. The wrong choice in material selection could very well mean the difference between success and failure. A summary of the cost that might be expected for different materials and processes is presented; it can be seen that the cost can span nearly three order of magnitudes from the molded plastic gear to the machined gear with stamped and powder metal gears falling in between these extremes.

  14. Design and analysis of interior-magnet outer-rotor concentric magnetic gears

    NASA Astrophysics Data System (ADS)

    Liu, Xinhua; Chau, K. T.; Jiang, J. Z.; Yu, Chuang

    2009-04-01

    In this paper, a new topology of concentric magnetic gears is proposed and implemented. The key of the new topology is to bury permanent magnets (PMs) of the outer rotor into the iron core in a new way so that the mechanical integrity can be improved, and the PM material can be saved while the torque density is maintained. The proposed gear is designed with the speed reduction ratio of 7.33 and optimized by using the three-dimensional finite element method (3D-FEM). The key of the 3D-FEM is to employ scalar magnetic potential to reduce the required memory and time for data manipulation and computation. After prototyping, the measured maximum static torque well agrees with the calculated one, hence verifying the proposed design and analysis.

  15. RTAPS (Research and Technology for Aerospace Propulsion Systems): Simulation of Structural Loads within a Hybrid Gear Resulting From Loading at the Gear Teeth

    NASA Technical Reports Server (NTRS)

    Naffin, Richard K.; Ulun, Umut; Garmel, Charles D.; McManus, Nika; Hu, Zhenning; Ohlerking, Westin B.; Myers, David E.

    2017-01-01

    This report investigates the practical usage of hybrid structures for rotorcraft gearing. The primary driver for utilizing hybrid structures for rotorcraft gearing is to reduce the drive system weight. The hybrid structure concept featured in this study for rotorcraft gearing consists of a metallic gear tooth-rim, a web section manufactured from composite materials, and a metallic hub. The metallic gear tooth-rim is manufactured from conventional gear steel alloys, such as AISI 9310. The gear tooth-rim attaches to the outer diameter of the web section made from composite materials. The inner diameter of the composite web can then attach to a metallic hub, completing the assembly. It is assumed that areas of the shafting or hub where rolling element bearings may ride must remain as gear steel alloys for this study.

  16. Bending strength model for internal spur gear teeth

    NASA Technical Reports Server (NTRS)

    Savage, Michael; Rubadeux, K. L.; Coe, H. H.

    1995-01-01

    Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.

  17. Screening of Potential Landing Gear Noise Control Devices at Virginia Tech For QTD II Flight Test

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Burdisso, Ricardo A.; Ng, Wing F.; Khorrami, Mehdi R.; Stoker, Robert W.

    2007-01-01

    In support of the QTD II (Quiet Technology Demonstrator) program, aeroacoustic measurements of a 26%-scale, Boeing 777 main landing gear model were conducted in the Virginia Tech Stability Tunnel. The objective of these measurements was to perform risk mitigation studies on noise control devices for a flight test performed at Glasgow, Montana in 2005. The noise control devices were designed to target the primary main gear noise sources as observed in several previous tests. To accomplish this task, devices to reduce noise were built using stereo lithography for landing gear components such as the brakes, the forward cable harness, the shock strut, the door/strut gap and the lower truck. The most promising device was down selected from test results. In subsequent stages, the initial design of the selected lower truck fairing was improved to account for all the implementation constraints encountered in the full-scale airplane. The redesigned truck fairing was then retested to assess the impact of the modifications on the noise reduction potential. From extensive acoustic measurements obtained using a 63-element microphone phased array, acoustic source maps and integrated spectra were generated in order to estimate the noise reduction achievable with each device.

  18. 46 CFR 61.20-1 - Steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steering gear. 61.20-1 Section 61.20-1 Shipping COAST... Periodic Tests of Machinery and Equipment § 61.20-1 Steering gear. (a) The marine inspector must inspect the steering gear at each inspection for certification for vessels whose Certificate of Inspections...

  19. 50 CFR 648.296 - Gear restricted areas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restricted areas. 648.296 Section 648... Tilefish Fishery § 648.296 Gear restricted areas. No vessel of the United States may fish with bottom-tending mobile gear within the areas bounded by the following coordinates: Canyon N. Lat. Degrees Min...

  20. New Design and Improvement of Planetary Gear Trains

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Fuentes, Alfonso; Vecchiato, Daniele; Gonzalez-Perez, Ignacio

    2004-01-01

    The development of new types of planetary and planetary face-gear drives is proposed. The new designs are based on regulating backlash between the gears and modifying the tooth surfaces to improve the design. The goal of this work is to obtain a nearly uniform distribution of load between the planet gears. In addition, a new type of planetary face-gear drive was developed in this project.

  1. A Computational Investigation of Gear Windage

    NASA Technical Reports Server (NTRS)

    Hill, Matthew J.; Kunz, Robert F.

    2012-01-01

    A CFD method has been developed for application to gear windage aerodynamics. The goals of this research are to develop and validate numerical and modeling approaches for these systems, to develop physical understanding of the aerodynamics of gear windage loss, including the physics of loss mitigation strategies, and to propose and evaluate new approaches for minimizing loss. Absolute and relative frame CFD simulation, overset gridding, multiphase flow analysis, and sub-layer resolved turbulence modeling were brought to bear in achieving these goals. Several spur gear geometries were studied for which experimental data are available. Various shrouding configurations and free-spinning (no shroud) cases were studied. Comparisons are made with experimental data from the open literature, and data recently obtained in the NASA Glenn Research Center Gear Windage Test Facility. The results show good agreement with experiment. Interrogation of the validative and exploratory CFD results have led, for the first time, to a detailed understanding of the physical mechanisms of gear windage loss, and have led to newly proposed mitigation strategies whose effectiveness is computationally explored.

  2. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  3. 14 CFR 29.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 29.477 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.477 Landing gear arrangement. Sections 29.235, 29.479 through 29.485, and 29.493 apply to landing gear with two wheels aft, and...

  4. 14 CFR 27.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 27.477 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.477 Landing gear arrangement. Sections 27.235, 27.479 through 27.485, and 27.493 apply to landing gear with two wheels aft, and...

  5. 14 CFR 27.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 27.477 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.477 Landing gear arrangement. Sections 27.235, 27.479 through 27.485, and 27.493 apply to landing gear with two wheels aft, and...

  6. 14 CFR 29.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 29.477 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.477 Landing gear arrangement. Sections 29.235, 29.479 through 29.485, and 29.493 apply to landing gear with two wheels aft, and...

  7. 46 CFR 182.610 - Main steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Main steering gear. 182.610 Section 182.610 Shipping...) MACHINERY INSTALLATION Steering Systems § 182.610 Main steering gear. (a) A vessel must be provided with a main steering gear that is: (1) Of adequate strength and capable of steering the vessel at all service...

  8. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1986-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  9. New generation methods for spur, helical, and spiral-bevel gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Tsung, W.-J.; Coy, J. J.; Handschuh, R. F.; Tsay, C.-B. P.

    1987-01-01

    New methods for generating spur, helical, and spiral-bevel gears are proposed. These methods provide the gears with conjugate gear tooth surfaces, localized bearing contact, and reduced sensitivity to gear misalignment. Computer programs have been developed for simulating gear meshing and bearing contact.

  10. High Speed Gear Sized and Configured to Reduce Windage Loss

    NASA Technical Reports Server (NTRS)

    Kunz, Robert F. (Inventor); Medvitz, Richard B. (Inventor); Hill, Matthew John (Inventor)

    2013-01-01

    A gear and drive system utilizing the gear include teeth. Each of the teeth has a first side and a second side opposite the first side that extends from a body of the gear. For each tooth of the gear, a first extended portion is attached to the first side of the tooth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates. The gear may be utilized in drive systems that may have high rotational speeds, such as speeds where the tip velocities are greater than or equal to about 68 m/s. Some embodiments of the gear may also utilize teeth that also have second extended portions attached to the second sides of the teeth to divert flow of fluid adjacent to the body of the gear to reduce windage losses that occur when the gear rotates.

  11. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets With Face Mating Gears. Part 1: Basic Theoretical and Cad Experience

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-06-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid and Helicon gear drives. The classical gear drives of this type are the Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion possesses threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three types transmis- sions with face mating gears and a conic pinion are titled Spiroid and all three types transmissions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in this study. The presented research shows that the synthesis is realized by application of two mathematical models: pitch contact point and mesh region models. Two approaches for synthesis of the gear drives in accordance with Olivier's principles are illustrated. The algorithms and computer programs for optimization synthesis and design of the studied hyperboloid gear drives are presented.

  12. Vibration Based Sun Gear Damage Detection

    NASA Technical Reports Server (NTRS)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  13. Vibration signature analysis of multistage gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Savage, M.; Townsend, D. P.

    1989-01-01

    An analysis is presented for multistage multimesh gear transmission systems. The analysis predicts the overall system dynamics and the transmissibility to the gear box or the enclosed structure. The modal synthesis approach of the analysis treats the uncoupled lateral/torsional model characteristics of each stage or component independently. The vibration signature analysis evaluates the global dynamics coupling in the system. The method synthesizes the interaction of each modal component or stage with the nonlinear gear mesh dynamics and the modal support geometry characteristics. The analysis simulates transient and steady state vibration events to determine the resulting torque variations, speeds, changes, rotor imbalances, and support gear box motion excitations. A vibration signature analysis examines the overall dynamic characteristics of the system, and the individual model component responses. The gear box vibration analysis also examines the spectral characteristics of the support system.

  14. Surface micromachined microengine as the driver for micromechanical gears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, E.J.; Sniegowski, J.J.

    1995-05-01

    The transmission of mechanical power is often accomplished through the use of gearing. The recently developed surface micromachined microengine provides us with an actuator which is suitable for driving surface micromachined geared systems. In this paper we will present aspects of the microengine as they relate to the driving of geared mechanisms, issues relating to the design of micro gear mechanisms, and details of a design of a microengine-driven geared shutter mechanism.

  15. Interlocking Mechanism between Molecular Gears Attached to Surfaces.

    PubMed

    Zhao, Rundong; Zhao, Yan-Ling; Qi, Fei; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-03-27

    While molecular machines play an increasingly significant role in nanoscience research and applications, there remains a shortage of investigations and understanding of the molecular gear (cogwheel), which is an indispensable and fundamental component to drive a larger correlated molecular machine system. Employing ab initio calculations, we investigate model systems consisting of molecules adsorbed on metal or graphene surfaces, ranging from very simple triple-arm gears such as PF 3 and NH 3 to larger multiarm gears based on carbon rings. We explore in detail the transmission of slow rotational motion from one gear to the next by these relatively simple molecules, so as to isolate and reveal the mechanisms of the relevant intermolecular interactions. Several characteristics of molecular gears are discussed, in particular the flexibility of the arms and the slipping and skipping between interlocking arms of adjacent gears, which differ from familiar macroscopic rigid gears. The underlying theoretical concepts suggest strongly that other analogous structures may also exhibit similar behavior which may inspire future exploration in designing large correlated molecular machines.

  16. Hybrid Gear Performance Under Loss-of-Lubrication Conditions

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Berkebile, Stephen P.; Handschuh, Robert F.; Roberts, Gary D.

    2017-01-01

    Hybrid composite gear technology is being investigated to increase power density in rotorcraft drive systems. These gears differ from conventional steel gears in that the structural web material is replaced with a lightweight carbon fiber composite. Past studies have focused on performance of this technology under normal operating conditions, however, for this technology to be viable it must also withstand adverse conditions. The study presented here evaluates the performance of hybrid gears under loss-of-lubrication conditions in NASA Glenn Research Centers Contact Fatigue Test Facility. Two experiments are presented using small-scale 3.5 inch (8.9 cm) pitch diameter hybrid gears and compared to a baseline steel gear pair. Results of these tests show that there are limitations to the use of a hexagonal interlock pattern between the steel and composite. There is also evidence that the presence of polymer in the gear during an oil out event has a potential to increase time to failure. Further studies are planned to expand on these initial findings.

  17. Economic method for helical gear flank surface characterisation

    NASA Astrophysics Data System (ADS)

    Koulin, G.; Reavie, T.; Frazer, R. C.; Shaw, B. A.

    2018-03-01

    Typically the quality of a gear pair is assessed based on simplified geometric tolerances which do not always correlate with functional performance. In order to identify and quantify functional performance based parameters, further development of the gear measurement approach is required. Methodology for interpolation of the full active helical gear flank surface, from sparse line measurements, is presented. The method seeks to identify the minimum number of line measurements required to sufficiently characterise an active gear flank. In the form ground gear example presented, a single helix and three profile line measurements was considered to be acceptable. The resulting surfaces can be used to simulate the meshing engagement of a gear pair and therefore provide insight into functional performance based parameters. Therefore the assessment of the quality can be based on the predicted performance in the context of an application.

  18. Bevel gear driver and method having torque limit selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    This invention comprises a torque drive mechanism utilizing axially translatable, mutually engageable transmission members having mating crown gears, driven and driving members with a three-element drive train being biased together by resilient means or by a fluid actuator system, the apparatus being operable to transmit a precisely controlled degree of torque to a driven member. The apparatus is applicable for use in hand tools and as a replacement for impact torque drivers, torque wrenches, motorized screw drivers, or the like, wherein the applied torque must be precisely controlled or limited. The bevel torque drive includes a drive gear which is axially displaceable and rotatable within cylindrical driver housing, a rotatable intermediate gear, and an output gear. Key rotationally secures displaceable gear with respect to input shaft but permits axial movement therebetween. A thrust bearing is preferably connected to the lower end of shaft for support to reduce play and friction between shaft and a transmission joint disc during rotation of the gear train. Coaxially mounted coiled spring is footed against displaceable gear for biasing the displaceable gear toward and into engagement with the intermediate gear for driving intermediate gear and output gear. Torque control is achieved by the use of straight or spiral beveled gears which are of configurations adapted to withdraw from mutual engagement upon the torque exceeding a predetermined limit. The novel, advantageous features of the invention include the configuration of the mating, crown gear sets and the axially translatable, slidable drive gear. The mechanism is capable of transmitting a high degree of torque within a narrow, compact transmission housing. The compact size and narrow, elongated configuration of the housing is particularly applicable for use in hand tools and in multiple torque driver mechanisms in which it is necessary to drive multiple fasteners which are located in close proximity. Prior

  19. Effect of tooth profile modification on wear in internal gears

    NASA Astrophysics Data System (ADS)

    Tunalioglu, M. S.; Tuc, B.

    2018-05-01

    Internal gears are often used in the automotive industry when two gears are required to rotate in the same direction. Tooth shapes, slippage speeds at the beginning and end of meshing are different according to the external gears. Manufacturing of internal gears is more difficult than external gears. Thus, it is necessary to determine the working conditions and wear behavior of internal gears carefully. The profile modification method in terms of strength and surface tension of the gear mechanism are performed in order to increase the load-carrying capability. In this study, profile modification method was performed in the internal gears to reduce the wear on the teeth. For this purpose, the wear of the internal gears was theoretically investigated by adapting the Archard wear equation to the internal gears. Closed circuit power circulation system was designed and manufactured to experimentally investigate the wear in internal gears. With this system, wear tests of gears made of St 50 material without profile modification and different profile modifications were made and the results were compared. Experimental study was performed in the same loading and cycle time conditions to validate the theoretical results and it was seen that the results are compatible. According to the experimental results, it is seen that in the internal gears, when profile modification done the wear is decreased in the teeth tip region.

  20. One Approach to the Synthesis, Design and Manufacture of Hyperboloid Gear Sets with Face Mating Gears. Part 2: Review of Practical Realization

    NASA Astrophysics Data System (ADS)

    Abadjiev, Valentin; Abadjieva, Emilia

    2016-09-01

    Hyperboloid gear drives with face mating gears are used to transform rotations between shafts with non-parallel and non-intersecting axes. A special case of these transmissions are Spiroid1 and Helicon gear drives. The classical gear drives of this type are Archimedean ones. The objective of this study are hyperboloid gear drives with face meshing, when the pinion has threads of conic convolute, Archimedean and involute types, or the pinion has threads of cylindrical convolute, Archimedean and involute types. For simplicity, all three type transmissions with face mating gears and a conic pinion are titled Spiroid and all three type trans- missions with face mating gears and a cylindrical pinion are titled Helicon. Principles of the mathematical modelling of tooth contact synthesis are discussed in Part 1: Basic theoretical and CAD experience of this study. The second part of this article is a brief overview of the innovations and inventions created in this field at the Institute of Mechanics - Bulgarian Academy of Sciences in the last three decades. This study is also dedicated on elaboration of the specialized face gear sets for implementation into bio-robot hand. It is based on the application of 3D software technology, using 3D print for the realization of the physical models of the gear drives.

  1. Gear Fault Diagnosis Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Huang, Yongsheng; Huang, Ruoshi

    2018-03-01

    Gear transmission is more complex, widely used in machinery fields, which form of fault has some nonlinear characteristics. This paper uses BP neural network to train the gear of four typical failure modes, and achieves satisfactory results. Tested by using test data, test results have an agreement with the actual results. The results show that the BP neural network can effectively solve the complex state of gear fault in the gear fault diagnosis.

  2. The application of elastohydrodynamic lubrication in gear tooth contacts

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.

    1972-01-01

    An analytical method is presented for determining elastohydrodynamic film thickness in gears from theory and how the film affects gear failure and life. The practical aspects of gear lubrication are presented, including mechanical and service variables which must be considered to obtain optimum gear performance under severe operating conditions.

  3. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  4. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  5. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  6. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  7. 49 CFR 230.92 - Draw gear and draft systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Draw gear and draft systems. 230.92 Section 230.92 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Tenders Draw Gear and Draft Systems § 230.92 Draw gear and draft systems. Couplers, draft gear and...

  8. Effect of contact ratio on spur gear dynamic load

    NASA Technical Reports Server (NTRS)

    Liou, Chuen-Huei; Lin, Hsiang Hsi; Oswald, Fred B.; Townsend, Dennis P.

    1992-01-01

    A computer simulation is presented which shows how the gear contact ratio affects the dynamic load on a spur gear transmission. The contact ratio can be affected by the tooth addendum, the pressure angle, the tooth size (diametral pitch), and the center distance. The analysis presented was performed using the NASA gear dynamics code, DANST. In the analysis, the contact ratio was varied over the range 1.20 to 2.40 by changing the length of the tooth addendum. In order to simplify the analysis, other parameters related to contact ratio were held constant. The contact ratio was found to have a significant influence on gear dynamics. Over a wide range of operating speeds, a contact ratio close to 2.0 minimized dynamic load. For low contact ratio gears (contact ratio less than 2.0), increasing the contact ratio reduced the gear dynamic load. For high contact ratio gears (contact ratio = or greater than 2.0), the selection of contact ratio should take into consideration the intended operating speeds. In general, high contact ratio gears minimized dynamic load better than low contact ratio gears.

  9. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  10. 46 CFR 108.641 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 108.641 Section... steering gear. Instructions stating, in order, the different steps to be taken for changing to emergency and secondary steering gear must be posted in the steering gear room and at each secondary steering...

  11. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1984-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  12. Efficiency of nonstandard and high contact ratio involute spur gears

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1986-01-01

    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry.

  13. The Influence of Roughness on Gear Surface Fatigue

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy

    2005-01-01

    Gear working surfaces are subjected to repeated rolling and sliding contacts, and often designs require loads sufficient to cause eventual fatigue of the surface. This research provides experimental data and analytical tools to further the understanding of the causal relationship of gear surface roughness to surface fatigue. The research included evaluations and developments of statistical tools for gear fatigue data, experimental evaluation of the surface fatigue lives of superfinished gears with a near-mirror quality, and evaluations of the experiments by analytical methods and surface inspections. Alternative statistical methods were evaluated using Monte Carlo studies leading to a final recommendation to describe gear fatigue data using a Weibull distribution, maximum likelihood estimates of shape and scale parameters, and a presumed zero-valued location parameter. A new method was developed for comparing two datasets by extending the current methods of likelihood-ratio based statistics. The surface fatigue lives of superfinished gears were evaluated by carefully controlled experiments, and it is shown conclusively that superfinishing of gears can provide for significantly greater lives relative to ground gears. The measured life improvement was approximately a factor of five. To assist with application of this finding to products, the experimental condition was evaluated. The fatigue life results were expressed in terms of specific film thickness and shown to be consistent with bearing data. Elastohydrodynamic and stress analyses were completed to relate the stress condition to fatigue. Smooth-surface models do not adequately explain the improved fatigue lives. Based on analyses using a rough surface model, it is concluded that the improved fatigue lives of superfinished gears is due to a reduced rate of near-surface micropitting fatigue processes, not due to any reduced rate of spalling (sub-surface) fatigue processes. To complete the evaluations, surface

  14. Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle

    NASA Astrophysics Data System (ADS)

    Urbina Coronado, Pedro Daniel; Orta Castañón, Pedro; Ahuett-Garza, Horacio

    2018-02-01

    The architecture and design of the propulsion system of electric vehicles are highly important for the reduction of energy losses. This work presents a powertrain composed of four electric motors in which each motor is connected with a different gear ratio to the differential of the rear axle. A strategy to reduce energy losses is proposed, in which two phases are applied. Phase 1 uses a divide-and-conquer approach to increase the overall output efficiency by obtaining the optimal torque distribution for the electric motors. Phase 2 applies a genetic algorithm to find the optimal value of the gear ratios, in which each individual of each generation applies Phase 1. The results show an optimized efficiency map for the output torque and speed of the powertrain. The increase in efficiency and the reduction of energy losses are validated by the use of numerical experiments in various driving cycles.

  15. A Circularly Arranged Sextuple Triptycene Gear Molecule.

    PubMed

    Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko

    2017-11-22

    Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.

  16. Linear dynamic coupling in geared rotor systems

    NASA Technical Reports Server (NTRS)

    David, J. W.; Mitchell, L. D.

    1986-01-01

    The effects of high frequency oscillations caused by the gear mesh, on components of a geared system that can be modeled as rigid discs are analyzed using linear dynamic coupling terms. The coupled, nonlinear equations of motion for a disc attached to a rotating shaft are presented. The results of a trial problem analysis show that the inclusion of the linear dynamic coupling terms can produce significant changes in the predicted response of geared rotor systems, and that the produced sideband responses are greater than the unbalanced response. The method is useful in designing gear drives for heavy-lift helicopters, industrial speed reducers, naval propulsion systems, and heavy off-road equipment.

  17. 33 CFR 183.710 - Start-in-gear protection required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Start-in-gear protection required... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Start-in-Gear Protection § 183.710 Start-in-gear... starting must have a built-in start-in-gear protection device. (2) Outboard motors designed for remote...

  18. Theory of gearing

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.

    1989-01-01

    Basic mathematical problems on the theory of gearing are covered in this book, such as the necessary and sufficient conditions of envelope existence, relations between principal curvatures and directions for surfaces of mating gears. Also included are singularities of surfaces accompanied by undercutting the process of generation, the phenomena of envelope of lines of contact, and the principles for generation of conjugate surfaces. Special attention is given to the algorithms for computer aided simulation of meshing and tooth contact. This edition was complemented with the results of research recently performed by the author and his doctoral students. The book contains sample problems and also problems for the reader to solve.

  19. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  20. Experience with Geared Propeller Drives for Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kutzbach, K

    1920-01-01

    I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.

  1. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structures. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville Distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  2. Analytical and experimental vibration analysis of a faulty gear system

    NASA Astrophysics Data System (ADS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-10-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  3. Analytical and Experimental Vibration Analysis of a Faulty Gear System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Polyshchuk, V.; Zakrajsek, J. J.; Townsend, D. P.; Handschuh, R. F.

    1994-01-01

    A comprehensive analytical procedure was developed for predicting faults in gear transmission systems under normal operating conditions. A gear tooth fault model is developed to simulate the effects of pitting and wear on the vibration signal under normal operating conditions. The model uses changes in the gear mesh stiffness to simulate the effects of gear tooth faults. The overall dynamics of the gear transmission system is evaluated by coupling the dynamics of each individual gear-rotor system through gear mesh forces generated between each gear-rotor system and the bearing forces generated between the rotor and the gearbox structure. The predicted results were compared with experimental results obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. The Wigner-Ville distribution (WVD) was used to give a comprehensive comparison of the predicted and experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD's ability to detect the pitting damage, and to determine its relative performance. Overall results show good correlation between the experimental vibration data of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  4. Bevel Gear Driver and Method Having Torque Limit Selection

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including an axially displaceable gear with a biasing assembly to bias the displaceable gear into an engagement position. A rotatable cap is provided with a micrometer dial to select a desired output torque. An intermediate bevel gear assembly is disposed between an input gear and an output gear. A gear tooth profile provides a separation force that overcomes the bias to limit torque at a desired torque limit. The torque limit is adjustable and may be adjusted manually or automatically depending on the type of biasing assembly provided. A clutch assembly automatically limits axial force applied to a fastener by the operator to avoid alteration of the desired torque limit.

  5. Gear and Transmission Research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1997-01-01

    This paper is a review of some of the research work of the NASA Lewis Research Center Mechanical Components Branch. It includes a brief review of the NASA Lewis Research Center and the Mechanical Components Branch. The research topics discussed are crack propagation of gear teeth, gear noise of spiral bevel and other gears, design optimization methods, methods we have investigated for transmission diagnostics, the analytical and experimental study of gear thermal conditions, the analytical and experimental study of split torque systems, the evaluation of several new advanced gear steels and transmission lubricants and the evaluation of various aircraft transmissions. The area of research needs for gearing and transmissions is also discussed.

  6. The NASA landing gear test airplane

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.

    1995-01-01

    A tire and landing gear test facility has been developed and incorporated into a Convair 990 aircraft. The system can simulate tire vertical load profiles to 250,000 lb, sideslip angles to 15 degrees, and wheel braking on actual runways. Onboard computers control the preprogrammed test profiles through a feedback loop and also record three axis loads, tire slip angle, and tire condition. The aircraft to date has provided tire force and wear data for the Shuttle Orbiter tire on three different runways and at east and west coast landing sites. This report discusses the role of this facility in complementing existing ground tire and landing gear test facilities, and how this facility can simultaneously simulate the vertical load, tire slip, velocity, and surface for an entire aircraft landing. A description is given of the aircraft as well as the test system. An example of a typical test sequence is presented. Data collection and reduction from this facility are discussed, as well as accuracies of calculated parameters. Validation of the facility through ground and flight tests is presented. Tests to date have shown that this facility can operate at remote sites and gather complete data sets of load, slip, and velocity on actual runway surfaces. The ground and flight tests have led to a successful validation of this test facility.

  7. Displaceable Spur Gear Torque Controlled Driver and Method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1996-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driven members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  8. Displaceable spur gear torque controlled driver and method

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1994-01-01

    Methods and apparatus are provided for a torque driver including a laterally displaceable gear support member to carry an output spur gear. A biasing assembly biases the output spur gear into engagement with a pinion to which is applied an input torque greater than a desired output torque limit for a threaded fastener such as a nut or screw. A coiled output linkage connects the output spur gear with a fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. A gauged selector mechanism is provided to laterally displace multiple driver members for fasteners arranged in differing configurations. The torque limit is selectably adjustable and may be different for fasteners within the same fastener configuration.

  9. Surface micromachined counter-meshing gears discrimination device

    DOEpatents

    Polosky, Marc A.; Garcia, Ernest J.; Allen, James J.

    2000-12-12

    A surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock. Each of two CMG has a first portion of its perimeter devoted to continuous driving teeth that mesh with respective pinion gears. Each EMG also has a second portion of its perimeter devoted to regularly spaced discrimination gear teeth that extend outwardly on at least one of three levels of the CMG. The discrimination gear teeth are designed so as to pass each other without interference only if the correct sequence of partial rotations of the CMG occurs in response to a coded series of rotations from the pinion gears. A 24 bit code is normally input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect.

  10. Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.

    2012-01-01

    Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

  11. From discard ban to exemption: How can gear technology help reduce catches of undersized Nephrops and hake in the Bay of Biscay trawling fleet?

    PubMed

    Vogel, Camille; Kopp, Dorothée; Méhault, Sonia

    2017-01-15

    On January 1st, 2016, the French mixed Nephrops and hake fishery of the Grande Vasière, an area located in the Bay of Biscay, fell under the discard ban implemented as part of the new European Common Fisheries Policy. The fleet records historically high levels of discard despite numerous gear selectivity studies. Together with high discards survival, new technological solutions to minimize catches of undersized individuals could justify local exemptions from the discard ban. Our study focuses on the effects of two selective devices, a square mesh cylinder (SMC) and a grid, on the escapement of undersized individuals and discard reduction. Relative catch probability of the modified gear compared with the traditional gear was modelled using the catch comparison method. Potential losses from the commercial fraction of the catch were taken into account to assess their influence on the economic viability of fishing with the modified gears. The two devices had similar effects on undersized Nephrops escapement and on discard reduction, with median values of 26.5% and 23.6% for the SMC and of 30.4% and 21.4% for the grid, respectively. Only the grid was efficient for undersized hake, recording median values of escapement and discard reduction equal to 25.0% and 20.6%, respectively. Some loss from the commercial fraction of the catch was to be expected with both devices, which could be compensated for in the long term by the contribution of undersized individuals to the stock biomass. Our results support the use of selective gears technology as part of an integrated framework including control and management measures to mitigate the effect of the discard ban both for fishers and for the ecosystem. Further work is needed to quantify the effect of additional escapement from the gear on stock dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effects of rim thickness on spur gear bending stress

    NASA Technical Reports Server (NTRS)

    Bibel, G. D.; Reddy, S. K.; Savage, M.; Handschuh, R. F.

    1991-01-01

    Thin rim gears find application in high-power, light-weight aircraft transmissions. Bending stresses in thin rim spur gear tooth fillets and root areas differ from the stresses in solid gears due to rim deformations. Rim thickness is a significant design parameter for these gears. To study this parameter, a finite element analysis was conducted on a segment of a thin rim gear. The rim thickness was varied and the location and magnitude of the maximum bending stresses reported. Design limits are discussed and compared with the results of other researchers.

  13. 50 CFR 654.25 - Prevention of gear conflicts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Prevention of gear conflicts. 654.25... Measures § 654.25 Prevention of gear conflicts. (a) No person may knowingly place in the management area... necessary and appropriate to prevent gear conflicts. Necessary prohibitions or restrictions will be...

  14. K-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited

    NASA Astrophysics Data System (ADS)

    Wang, Dong

    2016-03-01

    Gears are the most commonly used components in mechanical transmission systems. Their failures may cause transmission system breakdown and result in economic loss. Identification of different gear crack levels is important to prevent any unexpected gear failure because gear cracks lead to gear tooth breakage. Signal processing based methods mainly require expertize to explain gear fault signatures which is usually not easy to be achieved by ordinary users. In order to automatically identify different gear crack levels, intelligent gear crack identification methods should be developed. The previous case studies experimentally proved that K-nearest neighbors based methods exhibit high prediction accuracies for identification of 3 different gear crack levels under different motor speeds and loads. In this short communication, to further enhance prediction accuracies of existing K-nearest neighbors based methods and extend identification of 3 different gear crack levels to identification of 5 different gear crack levels, redundant statistical features are constructed by using Daubechies 44 (db44) binary wavelet packet transform at different wavelet decomposition levels, prior to the use of a K-nearest neighbors method. The dimensionality of redundant statistical features is 620, which provides richer gear fault signatures. Since many of these statistical features are redundant and highly correlated with each other, dimensionality reduction of redundant statistical features is conducted to obtain new significant statistical features. At last, the K-nearest neighbors method is used to identify 5 different gear crack levels under different motor speeds and loads. A case study including 3 experiments is investigated to demonstrate that the developed method provides higher prediction accuracies than the existing K-nearest neighbors based methods for recognizing different gear crack levels under different motor speeds and loads. Based on the new significant statistical

  15. Investigation of Sideband Index Response to Prototype Gear Tooth Damage

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2013-01-01

    The objective of this analysis was to evaluate the ability of gear condition indicators (CI) to detect contact fatigue damage on spiral bevel gear teeth. Tests were performed in the NASA Glenn Spiral Bevel Gear Fatigue Rig on eight prototype gear sets (pinion/gear). Damage was initiated and progressed on the gear and pinion teeth. Vibration data was measured during damage progression at varying torque values while varying damage modes to the gear teeth were observed and documented with inspection photos. Sideband indexes (SI) and root mean square (RMS) CIs were calculated from the time synchronous averaged vibration data. Results found that both CIs respond differently to varying torque levels, damage levels and damage modes

  16. 50 CFR 635.6 - Vessel and gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Vessel and gear identification. 635.6... ADMINISTRATION, DEPARTMENT OF COMMERCE ATLANTIC HIGHLY MIGRATORY SPECIES General § 635.6 Vessel and gear... gear, or any other material on board obstructs the view of the vessel's number from an enforcement...

  17. 50 CFR 600.510 - Gear avoidance and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fishery in which the FFV is engaged. (b) Gear conflicts. The operator of each FFV that is involved in a conflict or that retrieves the gear of another vessel must immediately notify the appropriate USCG..., including the amount, type of gear, condition, and identification markings. (3) The location of the incident...

  18. Performance determinants of fixed gear cycling during criteriums.

    PubMed

    Babault, Nicolas; Poisson, Maxime; Cimadoro, Guiseppe; Cometti, Carole; Païzis, Christos

    2018-06-17

    Nowadays, fixed gear competitions on outdoor circuits such as criteriums are regularly organized worldwide. To date, no study has investigated this alternative form of cycling. The purpose of the present study was to examine fixed gear performance indexes and to characterize physiological determinants of fixed gear cyclists. This study was carried out in two parts. Part 1 (n = 36) examined correlations between performance indexes obtained during a real fixed gear criterium (time trial, fastest laps, averaged lap time during races, fatigue indexes) and during a sprint track time trial. Part 2 (n = 9) examined correlations between the recorded performance indexes and some aerobic and anaerobic performance outputs (VO 2max , maximal aerobic power, knee extensor and knee flexor maximal voluntary torque, vertical jump height and performance during a modified Wingate test). Results from Part 1 indicated significant correlations between fixed gear final performance (i.e. average lap time during the finals) and single lap time (time trial, fastest lap during races and sprint track time trial). In addition, results from Part 2 revealed significant correlations between fixed gear performance and aerobic indicators (VO 2max and maximal aerobic power). However, no significant relationship was obtained between fixed gear cycling and anaerobic qualities such as strength. Similarly to traditional cycling disciplines, we concluded that fixed gear cycling is mainly limited by aerobic capacity, particularly criteriums final performance. However, specific skills including technical competency should be considered.

  19. Modeling of automotive driveline system for reducing gear rattles

    NASA Astrophysics Data System (ADS)

    Shangguan, Wen-Bin; Liu, Xue-Lai; Yin, Yuming; Rakheja, Subhash

    2018-03-01

    A nonlinear torsional model for a driveline system with 4 degrees of freedom is proposed for studying gear rattle if a car is at idle. The time-varying meshing stiffness of geared teeth, gear backlash, and the damping from oil film are included in the model. The dynamic responses of the driveline system, such as clutch angular displacement, meshing force and relative displacement between geared teeth, are calculated using the presented model. The influences of stiffness and damping of a clutch on gear rattle of geared teeth in a generic transmission are investigated. Based on the calculation and analysis results, a design guideline to select clutch's stiffness and damping is developed to reduce gear rattle for a car at idle. Taking a generic driveline system of a passenger car as an example, the developed method is experimentally validated by comparing the baseline clutch and revised clutch, in terms of the measured noise inside engine compartment and cab and vibrations at transmission housing.

  20. Computer-aided design of bevel gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Shuo, Hung Chang; Huston, Ronald L.; Coy, John J.

    1989-01-01

    This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.

  1. Computer aided design of bevel gear tooth surfaces

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Huston, R. L.; Coy, J. J.

    1989-01-01

    This paper presents a computer-aided design procedure for generating bevel gears. The development is based on examining a perfectly plastic, cone-shaped gear blank rolling over a cutting tooth on a plane crown rack. The resulting impression on the plastic gear blank is the envelope of the cutting tooth. This impression and envelope thus form a conjugate tooth surface. Equations are presented for the locus of points on the tooth surface. The same procedures are then extended to simulate the generation of a spiral bevel gear. The corresponding governing equations are presented.

  2. 14 CFR 25.483 - One-gear landing conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false One-gear landing conditions. 25.483 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.483 One-gear landing conditions. For the one-gear landing conditions, the airplane is assumed to be in the level attitude and to...

  3. 50 CFR 665.246 - Gear identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear identification. 665.246 Section 665.246 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC... Gear identification. In Permit Area 1, the vessel's official number must be marked legibly on all traps...

  4. Recent Advances in the Analysis of Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1997-01-01

    A review of recent progress for the analysis of spiral bevel gears will be described. The foundation of this work relies on the description of the gear geometry of face-milled spiral bevel gears via the approach developed by Litvin. This methodology was extended by combining the basic gear design data with the manufactured surfaces using a differential geometry approach, and provides the data necessary for assembling three-dimensional finite element models. The finite element models have been utilized to conduct thermal and structural analysis of the gear system. Examples of the methods developed for thermal and structural/contact analysis are presented.

  5. A Comparative Study of Simulated and Measured Main Landing Gear Noise for Large Civil Transports

    NASA Technical Reports Server (NTRS)

    Konig, Benedikt; Fares, Ehab; Ravetta, Patricio; Khorrami, Mehdi R.

    2017-01-01

    Computational results for the NASA 26%-scale model of a six-wheel main landing gear with and without a toboggan-shaped noise reduction fairing are presented. The model is a high-fidelity representation of a Boeing 777-200 aircraft main landing gear. A lattice Boltzmann method was used to simulate the unsteady flow around the model in isolation. The computations were conducted in free-air at a Mach number of 0.17, matching a recent acoustic test of the same gear model in the Virginia Tech Stability Wind Tunnel in its anechoic configuration. Results obtained on a set of grids with successively finer spatial resolution demonstrate the challenge in resolving/capturing the flow field for the smaller components of the gear and their associated interactions, and the resulting effects on the high-frequency segment of the farfield noise spectrum. Farfield noise spectra were computed based on an FWH integral approach, with simulated pressures on the model solid surfaces or flow-field data extracted on a set of permeable surfaces enclosing the model as input. Comparison of these spectra with microphone array measurements obtained in the tunnel indicated that, for the present complex gear model, the permeable surfaces provide a more accurate representation of farfield noise, suggesting that volumetric effects are not negligible. The present study also demonstrates that good agreement between simulated and measured farfield noise can be achieved if consistent post-processing is applied to both physical and synthetic pressure records at array microphone locations.

  6. 50 CFR 648.84 - Gear-marking requirements and gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnetic south through west to, and including, north) of the gear displays a standard 12-inch (30.5-cm.... The easternmost end (meaning the half compass circle from magnetic north through east to, and...

  7. A multi-purpose method for analysis of spur gear tooth loading

    NASA Technical Reports Server (NTRS)

    Kasuba, R.; Evans, J. W.; August, R.; Frater, J. L.

    1981-01-01

    A large digitized approach was developed for the static and dynamic load analysis of spur gearing. An iterative procedure was used to calculate directly the "variable-variable" gear mesh stiffness as a function of transmitted load, gear tooth profile errors, gear tooth deflections and gear hub torsional deformation, and position of contacting profile points. The developed approach can be used to analyze the loads, Hertz stresses, and PV for the normal and high contrast ratio gearing, presently the modeling is limited to the condition that for a given gear all teeth have identical spacing and profiles (with or without surface imperfections). Certain types of simulated sinusoidal profile errors and pitting can cause interruptions of the gear mesh stiffness function and, thus, increase the dynamic loads in spur gearing. In addition, a finite element stress and mesh subprogram was developed for future introduction into the main program for calculating the gear tooth bending stresses under dynamic loads.

  8. Face-gear drives: Design, analysis, and testing for helicopter transmission applications

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Wang, J.-C.; Bossler, R. B., Jr.; Chen, Y.-J. D.; Heath, G.; Lewicki, D. G.

    1992-01-01

    The use of face-gears in helicopter transmissions was explored. A light-weight, split-torque transmission design utilizing face-gears is described. Face-gear design and geometry were investigated. Topics included tooth generation, limiting inner and outer radii, tooth contact analysis, contact ratio, gear eccentricity, grinding, and structural stiffness. Design charts were developed to determine minimum and maximum face-gear inner and outer radii. An analytical study showed that the face-gear drive is relatively insensitive to gear misalignment with respect to transmission errors, but the tooth contact is affected by misalignment. A method of localizing the bearing contact to permit operation with misalignment was explored. Two new methods for grinding of the face-gear tooth surfaces were also investigated. The proper choice of shaft stiffness enabled good load sharing in the split-torque transmission design. Face-gear experimental studies were also conducted. These tests demonstrated the feasibility of face-gears in high-speed, high-load applications such as helicopter transmissions.

  9. 29 CFR 1918.54 - Rigging gear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR LONGSHORING Vessel's Cargo Handling Gear § 1918.54 Rigging gear. (a... provided, the guys shall be so placed as to produce a minimum stress and not permit the boom to jackknife...

  10. From design to manufacturing of asymmetric teeth gears using computer application

    NASA Astrophysics Data System (ADS)

    Suciu, F.; Dascalescu, A.; Ungureanu, M.

    2017-05-01

    The asymmetric cylindrical gears, with involutes teeth profiles having different base circle diameters, are nonstandard gears, used with the aim to obtain better function parameters for the active profile. We will expect that the manufacturing of these gears became possible only after the design and realization of some specific tools. The paper present how the computer aided design and applications developed in MATLAB, for obtain the geometrical parameters, in the same time for calculation some functional parameters like stress and displacements, transmission error, efficiency of the gears and the 2D models, generated with AUTOLISP applications, are used for computer aided manufacturing of asymmetric gears with standard tools. So the specific tools considered one of the disadvantages of these gears are not necessary and implicitly the expected supplementary costs are reduced. The calculus algorithm established for the asymmetric gear design application use the „direct design“ of the spur gears. This method offers the possibility of determining first the parameters of the gears, followed by the determination of the asymmetric gear rack’s parameters, based on those of the gears. Using original design method and computer applications have been determined the geometrical parameters, the 2D and 3D models of the asymmetric gears and on the base of these models have been manufacturing on CNC machine tool asymmetric gears.

  11. Dynamic Forces in Spur Gears - Measurement, Prediction, and Code Validation

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Townsend, Dennis P.; Rebbechi, Brian; Lin, Hsiang Hsi

    1996-01-01

    Measured and computed values for dynamic loads in spur gears were compared to validate a new version of the NASA gear dynamics code DANST-PC. Strain gage data from six gear sets with different tooth profiles were processed to determine the dynamic forces acting between the gear teeth. Results demonstrate that the analysis code successfully simulates the dynamic behavior of the gears. Differences between analysis and experiment were less than 10 percent under most conditions.

  12. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  13. Data Fusion Tool for Spiral Bevel Gear Condition Indicator Data

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Antolick, Lance J.; Branning, Jeremy S.; Thomas, Josiah

    2014-01-01

    Tests were performed on two spiral bevel gear sets in the NASA Glenn Spiral Bevel Gear Fatigue Test Rig to simulate the fielded failures of spiral bevel gears installed in a helicopter. Gear sets were tested until damage initiated and progressed on two or more gear or pinion teeth. During testing, gear health monitoring data was collected with two different health monitoring systems. Operational parameters were measured with a third data acquisition system. Tooth damage progression was documented with photographs taken at inspection intervals throughout the test. A software tool was developed for fusing the operational data and the vibration based gear condition indicator (CI) data collected from the two health monitoring systems. Results of this study illustrate the benefits of combining the data from all three systems to indicate progression of damage for spiral bevel gears. The tool also enabled evaluation of the effectiveness of each CI with respect to operational conditions and fault mode.

  14. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  15. 46 CFR 58.25-80 - Automatic pilots and ancillary steering gear.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-80 Automatic pilots and ancillary steering gear. (a) Automatic pilots and ancillary steering gear, and steering-gear control systems, must be arranged to allow immediate resumption of manual operation of the steering-gear control system required in...

  16. X-38 Landing Gear Skid Test Report

    NASA Technical Reports Server (NTRS)

    Gafka, George K.; Daugherty, Robert H.

    2000-01-01

    NASA incorporates skid-equipped landing gear on its series of X-38 flight test vehicles. The X-38 test program is the proving ground for the Crew Return Vehicle (CRV) a gliding parafoil-equipped vehicle designed to land at relatively low speeds. The skid-equipped landing gear is designed to attenuate the vertical landing energy of the vehicle at touchdown using crushable materials within the struts themselves. The vehicle then slides out as the vehicle horizontal energy is dissipated through the skids. A series of tests was conducted at Edwards Airforce Base (EAFB) in an attempt to quantify the drag force produced while "dragging" various X-38 landing gear skids across lakebed regions of varying surface properties. These data were then used to calculate coefficients of friction for each condition. Coefficient of friction information is critical for landing analyses as well as for landing gear load and interface load analysis. The skid specimens included full- and sub-scale V201 (space test vehicle) nose and main gear designs, a V131/V 132 (atmospheric flight test vehicles) main gear skid (actual flight hardware), and a newly modified, full-scale V201 nose -ear skid with substantially increased edge curvature as compared to its original design. Results of the testing are discussed along with comments on the relative importance of various parameters that influence skid stability and other dynamic behavior.

  17. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.

  18. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  19. Effects of lubrication on the performance of high speed spur gears

    NASA Technical Reports Server (NTRS)

    Mizutani, Hachiro; Isikawa, Yuuichi; Townsend, Dennis P.

    1989-01-01

    An experimental analysis was conducted to determine power loss and gear noise of high speed spur gears with long addendum under various conditions of load, speed, and oil jet pressure for into mesh lubrication. Power losses were calculated from temperature measurements of lubricating oil, gears, gear box, and oil flow rate. Furthermore, power loss was divided into windage loss, friction loss and churning loss. The results show that windage loss and churning loss were the main components of gear power loss of high gear speed. In addition, lubricating conditions had some influences on gear noise especially under low oil temperature or high viscosity.

  20. Empirical Prediction of Aircraft Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Golub, Robert A. (Technical Monitor); Guo, Yue-Ping

    2005-01-01

    This report documents a semi-empirical/semi-analytical method for landing gear noise prediction. The method is based on scaling laws of the theory of aerodynamic noise generation and correlation of these scaling laws with current available test data. The former gives the method a sound theoretical foundation and the latter quantitatively determines the relations between the parameters of the landing gear assembly and the far field noise, enabling practical predictions of aircraft landing gear noise, both for parametric trends and for absolute noise levels. The prediction model is validated by wind tunnel test data for an isolated Boeing 737 landing gear and by flight data for the Boeing 777 airplane. In both cases, the predictions agree well with data, both in parametric trends and in absolute noise levels.

  1. Geometrical analysis of circular-cut spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.

    1983-01-01

    Geometrical studies of circular cut spiral bevel gears are reported. Tooth profile changes heel to toe are studied in the transverse plane. Pressure angle changes are determined. The radiuses of curvature of the tooth surfaces generated by various cutter profiles are also determined. The consequences of cutter profile changes are explored. Crown gears are emphasized and the implications for conical gears are discussed.

  2. Computer numerical control grinding of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Scott, H. Wayne

    1991-01-01

    The development of Computer Numerical Control (CNC) spiral bevel gear grinding has paved the way for major improvement in the production of precision spiral bevel gears. The object of the program was to decrease the setup, maintenance of setup, and pattern development time by 50 percent of the time required on conventional spiral bevel gear grinders. Details of the process are explained.

  3. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The results of the NASA gear research is reviewed as well as those programs which are presently being undertaken. Research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. The impact of advanced gear research technology on rotorcraft transmission design is discussed.

  4. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  5. 46 CFR 58.25-10 - Main and auxiliary steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Main and auxiliary steering gear. 58.25-10 Section 58.25... AUXILIARY MACHINERY AND RELATED SYSTEMS Steering Gear § 58.25-10 Main and auxiliary steering gear. (a) Power-operated main and auxiliary steering gear must be separate systems that are independent throughout their...

  6. 46 CFR 97.37-33 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Instructions for changing steering gear. 97.37-33... steering gear. (a) Instructions in at least 1/2 inch letters and figures shall be posted in the steering... gear. Each clutch, gear, wheel, lever, valve, or switch which is used during the changeover shall be...

  7. Surface Fatigue Life of High Temperature Gear Materials

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.

    1994-01-01

    Three high temperature gear materials were evaluated using spur gear surface fatigue tests. These materials were, VASCO max 350, VASCO matrix 2, and nitralloy N and were evaluated for possible use in high temperature gear applications. The fatigue life of the three high temperature gear materials were compared with the life of the standard AISI 9310 aircraft gear material. Surface fatigue tests were conducted at a lubricant inlet temperature of 321 K (120 F), a lubricant outlet temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), a speed of 10,000 rpm, and with a synthetic paraffinic lubricant. The life of the nitralloy N was approximately the same as the AISI 9310, the life of the VASCO max 350 was much less than the AISI 9310 while the life of the VASCO matrix 2 was several times the life of the AISI 9310. The VASCO max 350 also showed very low fracture toughness with approximately half of the gears failed by tooth fracture through the fatigue spall. The VASCO matrix 2 had approximately 10-percent fracture failure through the fatigue spalls indicating moderate to good fracture toughness.

  8. Influence of tooth profile on the noncircular gear tooth contact

    NASA Astrophysics Data System (ADS)

    Cristescu, A.; Andrei, L.; Cristescu, B.

    2017-02-01

    With noncircular gears, the continuous modification of the tooth meshing, in terms of variation of the tooth profiles and the line of action position and inclination, makes difficult the implementation of a general standard procedure for the analysis of the noncircular gears tooth contact. In this paper, the authors present a graphical approach that enables the tooth contact static pattern to be produced and evaluated in case of a noncircular gear with complex geometry of the pitch curve. The study is virtually developed, in AutoCAD environment, by animating and investigating the gear solid models in mesh. The tooth static contact analysis enables the path of contact area and distribution to be evaluated in correlation with the following variable initial data: gear pitch curve geometry, tooth profile geometry, as a consequence of different generating procedures, and the gear pressure angle. It was found out that the noncircular gear tooth contact could be improved by choosing different procedures for the tooth flank generation in concave and convex zones and by increasing the gear pressure angle.

  9. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  10. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  11. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  12. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  13. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  14. 14 CFR 25.1515 - Landing gear speeds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Limitations § 25.1515 Landing gear speeds. (a) The established landing gear operating speed or speeds, V LO... retraction speed, the two speeds must be designated as V LO(EXT) and V LO(RET), respectively. (b) The...

  15. 50 CFR 622.31 - Buoy gear identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF COMMERCE FISHERIES OF THE CARIBBEAN, GULF OF MEXICO, AND SOUTH ATLANTIC Reef Fish Resources of the Gulf of Mexico § 622.31 Buoy gear identification. (a) Buoy gear. In the Gulf EEZ, if buoy...

  16. Fault Analysis on Bevel Gear Teeth Surface Damage of Aeroengine

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Chen, Lishun; Li, Silu; Liang, Tao

    2017-12-01

    Aiming at the trouble phenomenon for bevel gear teeth surface damage of Aero-engine, Fault Tree of bevel gear teeth surface damage was drawing by logical relations, the possible cause of trouble was analyzed, scanning electron-microscope, energy spectrum analysis, Metallographic examination, hardness measurement and other analysis means were adopted to investigate the spall gear tooth. The results showed that Material composition, Metallographic structure, Micro-hardness, Carburization depth of the fault bevel gear accord with technical requirements. Contact fatigue spall defect caused bevel gear teeth surface damage. The small magnitude of Interference of accessory gearbox install hole and driving bevel gear bearing seat was mainly caused. Improved measures were proposed, after proof, Thermoelement measures are effective.

  17. Roller-gear drives for robotic manipulators design, fabrication and test

    NASA Technical Reports Server (NTRS)

    Anderson, William J.; Shipitalo, William

    1991-01-01

    Two single axis planetary roller-gear drives and a two axis roller-gear drive with dual inputs were designed for use as robotic transmissions. Each of the single axis drives is a two planet row, four planet arrangement with spur gears and compressively loaded cylindrical rollers acting in parallel. The two axis drive employs bevel gears and cone rollers acting in parallel. The rollers serve a dual function: they remove backlash from the system, and they transmit torque when the gears are not fully engaged.

  18. 50 CFR 648.84 - Gear-marking requirements and gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) tetrahedral corner radar reflector and a pennant positioned on a staff at least 6 ft (1.8 m) above the buoy... including, south) of the gear need display only the standard 12-inch (30.5-cm) tetrahedral radar reflector...

  19. Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Lewicki, David G.

    1996-01-01

    Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.

  20. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  1. An Integrated Approach for Gear Health Prognostics

    NASA Technical Reports Server (NTRS)

    He, David; Bechhoefer, Eric; Dempsey, Paula; Ma, Jinghua

    2012-01-01

    In this paper, an integrated approach for gear health prognostics using particle filters is presented. The presented method effectively addresses the issues in applying particle filters to gear health prognostics by integrating several new components into a particle filter: (1) data mining based techniques to effectively define the degradation state transition and measurement functions using a one-dimensional health index obtained by whitening transform; (2) an unbiased l-step ahead RUL estimator updated with measurement errors. The feasibility of the presented prognostics method is validated using data from a spiral bevel gear case study.

  2. Molecular Dynamics Simulation of a Multi-Walled Carbon Nanotube Based Gear

    NASA Technical Reports Server (NTRS)

    Han, Jie; Globus, Al; Srivastava, Deepak; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We used molecular dynamics to investigate the properties of a multi-walled carbon nanotube based gear. Previous work computationally suggested that molecular gears fashioned from (14,0) single-walled carbon nanotubes operate well at 50-100 gigahertz. The gears were formed from nanotubes with teeth added via a benzyne reaction known to occur with C60. A modified, parallelized version of Brenner's potential was used to model interatomic forces within each molecule. A Leonard-Jones 6-12 potential was used for forces between molecules. The gear in this study was based on the smallest multi-walled nanotube supported by some experimental evidence. Each gear was a (52,0) nanotube surrounding a (37,10) nanotube with approximate 20.4 and 16,8 A radii respectively. These sizes were chosen to be consistent with inter-tube spacing observed by and were slightly larger than graphite inter-layer spacings. The benzyne teeth were attached via 2+4 cycloaddition to exterior of the (52,0) tube. 2+4 bonds were used rather than the 2+2 bonds observed by Hoke since 2+4 bonds are preferred by naphthalene and quantum calculations by Jaffe suggest that 2+4 bonds are preferred on carbon nanotubes of sufficient diameter. One gear was 'powered' by forcing the atoms near the end of the outside buckytube to rotate to simulate a motor. A second gear was allowed to rotate by keeping the atoms near the end of its outside buckytube on a cylinder. The ends of both gears were constrained to stay in an approximately constant position relative to each other, simulating a casing, to insure that the gear teeth meshed. The stiff meshing aromatic gear teeth transferred angular momentum from the powered gear to the driven gear. The simulation was performed in a vacuum and with a software thermostat. Preliminary results suggest that the powered gear had trouble turning the driven gear without slip. The larger radius and greater mass of these gears relative to the (14,0) gears previously studied requires a

  3. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The NASA Lewis Research Center devised a comprehensive gear technology research program beginning in 1969, the results of which are being integrated into the NASA civilian Helicopter Transmission System Technology Program. Attention is given to the results of this gear research and those programs which are presently being undertaken. In addition, research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. Finally, the impact of advanced gear research technology on rotorcraft transmission design is discussed.

  4. Gearing.

    DTIC Science & Technology

    1985-12-01

    trichloroethyl phosphite and a phosphate ester containing a pentachlorphenyl radical. Most of the Asperity heights phosphorous compounds in gear oils...108) found that phosphorous compounds chemisorption. These boundary films can be thinner than ( 1 0 u ts n 0.025 pm (I in ) or several microinches thick...Pinion 1 .. dibutylxanthic acid disulfide. Ŗ %- Lead soaps have been used in lubricants for many 02 years. They resist the wiping and sliding action in

  5. Turbine Engine with Differential Gear Driven Fan and Compressor

    NASA Technical Reports Server (NTRS)

    Suciu, Gabriel L. (Inventor); Pagluica, Gino J. (Inventor); Duong, Loc Quang (Inventor); Portlock, Lawrence E. (Inventor)

    2013-01-01

    A gas turbine engine provides a differential gear system coupling the turbine to the bypass fan and the compressor. In this manner, the power/speed split between the bypass fan and the compressor can be optimized under all conditions. In the example shown, the turbine drives a sun gear, which drives a planet carrier and a ring gear in a differential manner. One of the planet carrier and the ring gear is coupled to the bypass fan, while the other is coupled to the compressor.

  6. Manufacturing Technology Research Needs of the Gear Industry.

    DTIC Science & Technology

    1987-12-31

    Management Shortcomings within the U.S. Precision Gear Industry ........... 33 2.2.7 European Gear and Machine Tool Companies ....... .. 35 2.2.8 German...manufacturing becomes more sophisticated, workers are running numerically con- trolled computer equipment requiring an understanding of math. 2.2.6.9 Management ...inefficiencies of the job shop environ- ment by managing the gear business as a backward integra- tion of the assembly line. o Develop and maintain

  7. An experimental simulation study of four crosswind landing gear concepts

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.; Byrdsong, T. A.; Sleeper, R. K.

    1975-01-01

    An experimental investigation was conducted in order to evaluate several crosswind landing-gear concepts which have a potential application to tricycle-gear-configured, short take-off and landing (STOL) aircraft landing at crab or heading angles up to 30 deg. In this investigation, the landing gears were installed on a dynamic model which had a scaled mass distribution and gear spacing but no aerodynamic similarities when compared with a typical STOL aircraft. The model was operated as a free body with radio-control steering and was launched onto a runway sloped laterally in order to provide a simulated crosswind side force. During the landing rollout, the gear forces and the model trajectory were measured and the various concepts were compared with each other. Within the test limitations, the landing gear system, in which the gears were alined by the pilot and locked in the direction of motion prior to touchdown, gave the smoothest runout behavior with the vehicle maintaining its crab angle throughout the landing runout.

  8. Evaluation of CBS 600 carburized steel as a gear material

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Parker, R. J.; Zaretsky, E. V.

    1979-01-01

    Gear endurance tests were conducted with one lot of consumable-electrode vacuum-melted (CVM) AISI 9310 gears and one lot of air-melt CBS 600 gears. The gears were 8 pitch with a pitch diameter of 8.89 centimeters (3.5 in.). Bench-type rolling-element fatigue tests were also conducted with one lot of CVM AISI 9310, three lots of CVM CBS 600, and one of air-melt CBS 600 material. The rolling-element bars were 0.952 centimeter (0.375 in.) in diameter. The CBS 600 material exhibited pitting fatigue lives in both rolling-element specimens and gears at least equivalent to that of CVM AISI 9310. Tooth fracture failure occurred with the CBS 600 gears after overrunning a fatigue spall, but it did not occur with the CVM AISI 9310 gears. Tooth fracture in the CBS 600 was attributed to excessive carbon content in the case, excessive case depth, and a higher than normal core hardness.

  9. Analysis of the vibratory excitation arising from spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Mark, William D.

    1987-01-01

    Tools required to understand and predict in terms of its underlying causes the vibratory excitation arising from meshing spiral bevel gears are developed. A generalized three component transmission error of meshing spiral bevel gears is defined. Equations are derived that yield the three components of the generalized transmission error in terms of deviations of tooth running surfaces from equispaced perfect spherical involute surfaces and tooth/gearbody elastic deformations arising from the three components of the generalized force transmitted by the meshing gears. A method for incorporating these equations into the equations of motion of a gear system is described. Equations are derived for the three components of the generalized force transmitted by the gears which are valid whenever inertial effects of the meshing gears and their supports are negligible. Bearing offsets from the positions occupied by the shaft centerlines of perfect spherical involute bevel gears and bearing/bearing support flexibilities enter into the computation of these forces.

  10. Effect of Bearing Dynamic Stiffness on Gear Vibration

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2002-01-01

    Noise is a major consideration in the design of high performance geared transmissions, such as for helicopters. Transmission error, that is, the accuracy with which the driven gear follows the driver gear, is a common indicator of noise generation. It is well known that bearing properties have a strong influence on shaft dynamics. However, up to now the contribution of bearings to transmission error has received little attention. In this paper, a torsional-axial-lateral geared rotor analysis is used to determine dynamic transmission error as a function of bearing stiffness and damping. Bearings have a similar effect as found in shaft dynamics; transmission error can be reduced more than 10 decibels by appropriate selection of bearing properties.

  11. 50 CFR 660.372 - Fixed gear sablefish fishery management.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Fixed gear sablefish fishery management... West Coast Groundfish Fisheries § 660.372 Fixed gear sablefish fishery management. This section applies to the primary season for the fixed gear limited entry sablefish fishery north of 36° N. lat., except...

  12. 50 CFR 648.234 - Gear restrictions. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Gear restrictions. [Reserved] 648.234 Section 648.234 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Spiny Dogfish Fishery § 648.234 Gear restrictions. [Reserved] ...

  13. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  14. Method for Manufacturing Bulk Metallic Glass-Based Strain Wave Gear Components

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian H. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention implement bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a method of fabricating a strain wave gear includes: shaping a BMG-based material using a mold in conjunction with one of a thermoplastic forming technique and a casting technique; where the BMG-based material is shaped into one of: a wave generator plug, an inner race, an outer race, a rolling element, a flexspline, a flexspline without a set of gear teeth, a circular spline, a circular spline without a set of gear teeth, a set of gear teeth to be incorporated within a flexspline, and a set of gear teeth to be incorporated within a circular spline.

  15. Molecular Dynamics Simulations of Laser Powered Carbon Nanotube Gears

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Globus, Al; Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Dynamics of laser powered carbon nanotube gears is investigated by molecular dynamics simulations with Brenner's hydrocarbon potential. We find that when the frequency of the laser electric field is much less than the intrinsic frequency of the carbon nanotube, the tube exhibits an oscillatory pendulam behavior. However, a unidirectional rotation of the gear with oscillating frequency is observed under conditions of resonance between the laser field and intrinsic gear frequencies. The operating conditions for stable rotations of the nanotube gears, powered by laser electric fields are explored, in these simulations.

  16. Spur-Gear-System Efficiency at Part and Full Load

    NASA Technical Reports Server (NTRS)

    Anderson, N. E.; Loewenthal, S. H.

    1980-01-01

    A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss.

  17. Non-Standard Gearing as the Possibility of Increasing Resistance to Pitting

    NASA Astrophysics Data System (ADS)

    Kopiláková, Beáta; Bošanský, Miroslav

    2014-12-01

    In this article are shown the influence of the type non-standard gearing to reduce damage to the pitting. The introduction of the article describes a fundamental difference between the involute and non-involute gearing and the influence of some parameters, especially of the slip ratio to damage of gearing. The paper describes the principle of evaluation pitting by makrofoto graphical method, too and also shows the basic results of the experiment, which was executed on two types of gearing (HCR gearing and C-C gearing) on the Niemanńs stend in term of the damage to pitting.

  18. Manufacturing Technology Research Needs of the Gear Industry

    DTIC Science & Technology

    1987-12-31

    Precision Gear Industry, . .... 31 2.2.6.8 Availability’of Skilied Craftsmen. o.... 32 2.2.6.9 Management Shortcomings within the U.S. Precision Gear...becomes more sophisticated, workers are running numerically con- trolled computer equipment requiring an understanding of math. I 2.2.6.9 Management ...inefficiencies of the job shop environ- ment by managing the gear business as a backward integra- tion of the assembly line. o Develop and maintain employee

  19. 14 CFR 25.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 25.477 Section 25.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.477 Landing gear arrangement...

  20. 14 CFR 25.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 25.477 Section 25.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Ground Loads § 25.477 Landing gear arrangement...

  1. Application of Generative Topographic Mapping to Gear Failures Monitoring

    NASA Astrophysics Data System (ADS)

    Liao, Guanglan; Li, Weihua; Shi, Tielin; Rao, Raj B. K. N.

    2002-07-01

    The Generative Topographic Mapping (GTM) model is introduced as a probabilistic re-formation of the self-organizing map and has already been used in a variety of applications. This paper presents a study of the GTM in industrial gear failures monitoring. Vibration signals are analyzed using the GTM model, and the results show that gear feature data sets can be projected into a two-dimensional space and clustered in different areas according to their conditions, which can classify and identify clearly a gear work condition with cracked or broken tooth compared with the normal condition. With the trace of the image points in the two-dimensional space, the variation of gear work conditions can be observed visually, therefore, the occurrence and varying trend of gear failures can be monitored in time.

  2. Multi-stage internal gear/turbine fuel pump

    DOEpatents

    Maier, Eugen; Raney, Michael Raymond

    2004-07-06

    A multi-stage internal gear/turbine fuel pump for a vehicle includes a housing having an inlet and an outlet and a motor disposed in the housing. The multi-stage internal gear/turbine fuel pump also includes a shaft extending axially and disposed in the housing. The multi-stage internal gear/turbine fuel pump further includes a plurality of pumping modules disposed axially along the shaft. One of the pumping modules is a turbine pumping module and another of the pumping modules is a gerotor pumping module for rotation by the motor to pump fuel from the inlet to the outlet.

  3. Three new models for evaluation of standard involute spur gear mesh stiffness

    NASA Astrophysics Data System (ADS)

    Liang, Xihui; Zhang, Hongsheng; Zuo, Ming J.; Qin, Yong

    2018-02-01

    Time-varying mesh stiffness is one of the main internal excitation sources of gear dynamics. Accurate evaluation of gear mesh stiffness is crucial for gear dynamic analysis. This study is devoted to developing new models for spur gear mesh stiffness evaluation. Three models are proposed. The proposed model 1 can give very accurate mesh stiffness result but the gear bore surface must be assumed to be rigid. Enlighted by the proposed model 1, our research discovers that the angular deflection pattern of the gear bore surface of a pair of meshing gears under a constant torque basically follows a cosine curve. Based on this finding, two other models are proposed. The proposed model 2 evaluates gear mesh stiffness by using angular deflections at different circumferential angles of an end surface circle of the gear bore. The proposed model 3 requires using only the angular deflection at an arbitrary circumferential angle of an end surface circle of the gear bore but this model can only be used for a gear with the same tooth profile among all teeth. The proposed models are accurate in gear mesh stiffness evaluation and easy to use. Finite element analysis is used to validate the accuracy of the proposed models.

  4. Nonlinear dynamics of planetary gears using analytical and finite element models

    NASA Astrophysics Data System (ADS)

    Ambarisha, Vijaya Kumar; Parker, Robert G.

    2007-05-01

    Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.

  5. Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet

    NASA Technical Reports Server (NTRS)

    Antolick, Lance J.; Branning, Jeremy S.; Wade, Daniel R.; Dempsey, Paula J.

    2010-01-01

    The U.S. Army is currently expanding its fleet of Health Usage Monitoring Systems (HUMS) equipped aircraft at significant rates, to now include over 1,000 rotorcraft. Two different on-board HUMS, the Honeywell Modern Signal Processing Unit (MSPU) and the Goodrich Integrated Vehicle Health Management System (IVHMS), are collecting vibration health data on aircraft that include the Apache, Blackhawk, Chinook, and Kiowa Warrior. The objective of this paper is to recommend the most effective gear condition indicators for fleet use based on both a theoretical foundation and field data. Gear diagnostics with better performance will be recommended based on both a theoretical foundation and results of in-fleet use. In order to evaluate the gear condition indicator performance on rotorcraft fleets, results of more than five years of health monitoring for gear faults in the entire HUMS equipped Army helicopter fleet will be presented. More than ten examples of gear faults indicated by the gear CI have been compiled and each reviewed for accuracy. False alarms indications will also be discussed. Performance data from test rigs and seeded fault tests will also be presented. The results of the fleet analysis will be discussed, and a performance metric assigned to each of the competing algorithms. Gear fault diagnostic algorithms that are compliant with ADS-79A will be recommended for future use and development. The performance of gear algorithms used in the commercial units and the effectiveness of the gear CI as a fault identifier will be assessed using the criteria outlined in the standards in ADS-79A-HDBK, an Army handbook that outlines the conversion from Reliability Centered Maintenance to the On-Condition status of Condition Based Maintenance.

  6. 50 CFR 648.144 - Black sea bass gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Black sea bass gear restrictions. 648.144... Measures for the Black Sea Bass Fishery § 648.144 Black sea bass gear restrictions. (a) Trawl gear restrictions—(1) General. (i) Otter trawlers whose owners are issued a black sea bass moratorium permit and...

  7. 50 CFR 648.144 - Black sea bass gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Black sea bass gear restrictions. 648.144... Measures for the Black Sea Bass Fishery § 648.144 Black sea bass gear restrictions. (a) Trawl gear restrictions—(1) General. (i) Otter trawlers whose owners are issued a black sea bass moratorium permit and...

  8. 50 CFR 648.144 - Black sea bass gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Black sea bass gear restrictions. 648.144... Measures for the Black Sea Bass Fishery § 648.144 Black sea bass gear restrictions. (a) Trawl gear restrictions—(1) General. (i) Otter trawlers whose owners are issued a black sea bass moratorium permit and...

  9. 14 CFR 121.289 - Landing gear: Aural warning device.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Landing gear: Aural warning device. 121.289... gear: Aural warning device. (a) Except for airplanes that comply with the requirements of § 25.729 of this chapter on or after January 6, 1992, each airplane must have a landing gear aural warning device...

  10. 14 CFR 121.289 - Landing gear: Aural warning device.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Landing gear: Aural warning device. 121.289... gear: Aural warning device. (a) Except for airplanes that comply with the requirements of § 25.729 of this chapter on or after January 6, 1992, each airplane must have a landing gear aural warning device...

  11. 14 CFR 121.289 - Landing gear: Aural warning device.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Landing gear: Aural warning device. 121.289... gear: Aural warning device. (a) Except for airplanes that comply with the requirements of § 25.729 of this chapter on or after January 6, 1992, each airplane must have a landing gear aural warning device...

  12. 14 CFR 121.289 - Landing gear: Aural warning device.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Landing gear: Aural warning device. 121.289... gear: Aural warning device. (a) Except for airplanes that comply with the requirements of § 25.729 of this chapter on or after January 6, 1992, each airplane must have a landing gear aural warning device...

  13. 14 CFR 121.289 - Landing gear: Aural warning device.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Landing gear: Aural warning device. 121.289... gear: Aural warning device. (a) Except for airplanes that comply with the requirements of § 25.729 of this chapter on or after January 6, 1992, each airplane must have a landing gear aural warning device...

  14. The design and analysis of single flank transmission error testor for loaded gears

    NASA Technical Reports Server (NTRS)

    Houser, D. R.; Bassett, D. E.

    1985-01-01

    Due to geometrical imperfections in gears and finite tooth stiffnesses, the motion transmitted from an input gear shaft to an output gear shaft will not have conjugate action. In order to strengthen the understanding of transmission error and to verify mathematical models of gear transmission error, a test stand that will measure the transmission error of a gear pair at operating loads, but at reduced speeds would be desirable. This document describes the design and development of a loaded transmission error tester. For a gear box with a gear ratio of one, few tooth meshing combinations will occur during a single test. In order to observe the effects of different tooth mesh combinations and to increase the ability to load test gear pairs with higher gear ratios, the system was designed around a gear box with a gear ratio of two.

  15. 50 CFR 660.319 - Open access fishery gear identification and marking.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Open access fishery gear identification... COAST STATES West Coast Groundfish-Open Access Fisheries § 660.319 Open access fishery gear identification and marking. (a) Gear identification. (1) Open access fixed gear (longline, trap or pot, set net...

  16. Increased Surface Fatigue Lives of Spur Gears by Application of a Coating

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Cooper, Clark V.; Townsend, Dennis P.; Hansen, Bruce D.

    2003-01-01

    Hard coatings have potential for increasing gear surface fatigue lives. Experiments were conducted using gears both with and without a metal-containing, carbonbased coating. The gears were case-carburized AISI 9310 steel spur gears. Some gears were provided with the coating by magnetron sputtering. Lives were evaluated by accelerated life tests. For uncoated gears, all of fifteen tests resulted in fatigue failure before completing 275 million revolutions. For coated gears, eleven of the fourteen tests were suspended with no fatigue failure after 275 million revolutions. The improved life owing to the coating, approximately a six-fold increase, was a statistically significant result.

  17. 14 CFR 23.477 - Landing gear arrangement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear arrangement. 23.477 Section 23.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....477 Landing gear arrangement. Sections 23.479 through 23.483, or the conditions in appendix C, apply...

  18. 14 CFR 23.477 - Landing gear arrangement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear arrangement. 23.477 Section 23.477 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT....477 Landing gear arrangement. Sections 23.479 through 23.483, or the conditions in appendix C, apply...

  19. 50 CFR 648.166 - Bluefish gear restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Bluefish gear restrictions. 648.166 Section 648.166 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Atlantic Bluefish Fishery § 648.166 Bluefish gear restrictions. If the MAFMC determines...

  20. 50 CFR 648.166 - Bluefish gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Bluefish gear restrictions. 648.166 Section 648.166 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Atlantic Bluefish Fishery § 648.166 Bluefish gear restrictions. If the MAFMC determines...

  1. 50 CFR 648.166 - Bluefish gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Bluefish gear restrictions. 648.166 Section 648.166 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Atlantic Bluefish Fishery § 648.166 Bluefish gear restrictions. If the MAFMC determines...

  2. 50 CFR 648.166 - Bluefish gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Bluefish gear restrictions. 648.166 Section 648.166 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... Measures for the Atlantic Bluefish Fishery § 648.166 Bluefish gear restrictions. If the MAFMC determines...

  3. Flight investigation of the use of a nose gear jump strut to reduce takeoff ground roll distance of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Eppel, Joseph C.; Hardy, Gordon; Martin, James L.

    1994-01-01

    A series of flight tests was conducted to evaluate the reduction of takeoff ground roll distance obtainable from a rapid extension of the nose gear strut. The NASA Quiet Short-haul Research Aircraft (QSRA) used for this investigation is a transport-size short takeoff and landing (STOL) research vehicle with a slightly swept wing that employs the upper surface blowing (USB) concept to attain the high lift levels required for its low speed, short-field performance. Minor modifications to the conventional nose gear assembly and the addition of a high pressure pneumatic system and a control system provided the extendible nose gear, or 'jump strut,' capability. The limited flight test program explored the effects of thrust-to-weight ratio, storage tank initial pressure, and control valve open time duration on the ground roll distance. The data show that the predicted reduction of takeoff ground roll on the order of 10 percent was achieved with the use of the jump strut. Takeoff performance with the jump strut was also found to be essentially independent of the pneumatic supply pressure and was only slightly affected by control valve open time within the range of the parameters examined.

  4. Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2001-01-01

    Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

  5. Instabilities of geared couplings: Theory and practice

    NASA Technical Reports Server (NTRS)

    Kirk, R. G.; Mondy, R. E.; Murphy, R. C.

    1982-01-01

    The use of couplings for high speed turbocompressors or pumps is essential to transmit power from the driver. Typical couplings are either of the lubricated gear or dry diaphragm type design. Gear couplings have been the standard design for many years and recent advances in power and speed requirements have pushed the standard design criteria to the limit. Recent test stand and field data on continuous lube gear type couplings have forced a closer examination of design tolerances and concepts to avoid operational instabilities. Two types of mechanical instabilities are reviewed in this paper: (1) entrapped fluid, and (2) gear mesh instability resulting in spacer throw-out onset. Test stand results of these types of instabilities and other directly related problems are presented together with criteria for proper coupling design to avoid these conditions. An additional test case discussed shows the importance of proper material selection and processing and what can happen to an otherwise good design.

  6. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  7. Simulating Fatigue Crack Growth in Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2000-01-01

    The majority of helicopter transmission systems utilize spiral bevel gears to convert the horizontal power from the engine into vertical power for the rotor. Due to the cyclical loading on a gear's tooth, fatigue crack propagation can occur. In rotorcraft applications, a crack's trajectory determines whether the gear failure will be benign or catastrophic for the aircraft. As a result, the capability to predict crack growth in gears is significant. A spiral bevel gear's complex shape requires a three dimensional model of the geometry and cracks. The boundary element method in conjunction with linear elastic fracture mechanics theories is used to predict arbitrarily shaped three dimensional fatigue crack trajectories in a spiral bevel pinion under moving load conditions. The predictions are validated by comparison to experimental results. The sensitivity of the predictions to variations in loading conditions and crack growth rate model parameters is explored. Critical areas that must be understood in greater detail prior to predicting more accurate crack trajectories and crack growth rates in three dimensions are identified.

  8. Dynamic measurements of gear tooth friction and load

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1991-01-01

    As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.

  9. Hardness and microstructure analysis of damaged gear caused by adhesive wear

    NASA Astrophysics Data System (ADS)

    Mahendra, Rizky Budi; Nugroho, Sri; Ismail, Rifky

    2018-03-01

    This study was a result from research on repairing project of damaged elevator gear box. The objective of this research is to analyze the failure part on elevator gearbox at flourmill factory. The equipment was damaged after one year installed and running on factory. Severe wear was occurred on high speed helical gear. These helical gear was one of main part of elevator gearbox in flour mill manufacture. Visually, plastic deformation didn't occurred and not visible on the failure helical gear shaft. Some test would be performed to check the chemical composition, microstructure and hardness of failure helical gear. The material of failure helical gear shaft was a medium carbon steel alloy. The microstructure was showed a martensitic phase formed on the surface to the center area of gear shaft. Otherwise, the depth of hardness layer slight formed on surface and lack depth of hardness layer was a main trigger of severe wear. It was not enough to resist wear due to friction caused by rolling and sliding on surface between high speed gear and low speed gear. Enhancement of hardness layer on surface and depth of hardness layer will make the component has more long life time. Furthermore, to perform next research is needed to analyze the reliability of enhanced hardness on layer and depth of hardness layer on helical gear shaft.

  10. Video Imaging System Particularly Suited for Dynamic Gear Inspection

    NASA Technical Reports Server (NTRS)

    Broughton, Howard (Inventor)

    1999-01-01

    A digital video imaging system that captures the image of a single tooth of interest of a rotating gear is disclosed. The video imaging system detects the complete rotation of the gear and divide that rotation into discrete time intervals so that each tooth of interest of the gear is precisely determined when it is at a desired location that is illuminated in unison with a digital video camera so as to record a single digital image for each tooth. The digital images are available to provide instantaneous analysis of the tooth of interest, or to be stored and later provide images that yield a history that may be used to predict gear failure, such as gear fatigue. The imaging system is completely automated by a controlling program so that it may run for several days acquiring images without supervision from the user.

  11. Enhanced automated spiral bevel gear inspection

    NASA Technical Reports Server (NTRS)

    Frint, Harold K.; Glasow, Warren

    1992-01-01

    Presented here are the results of a manufacturing and technology program to define, develop, and evaluate an enhanced inspection system for spiral bevel gears. The method uses a multi-axis coordinate measuring machine which maps the working surface of the tooth and compares it with nominal reference values stored in the machine's computer. The enhanced technique features a means for automatically calculating corrective grinding machine settings, involving both first and second order changes, to control the tooth profile to within specified tolerance limits. This enhanced method eliminates the subjective decision making involved in the tooth patterning method, still in use today, which compares contract patterns obtained when the gear is set to run under light load in a rolling test machine. It produces a higher quality gear with significant inspection time and cost savings.

  12. 49 CFR 229.57 - Foundation brake gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foundation brake gear. 229.57 Section 229.57 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Foundation brake gear. A lever, rod, brake beam, hanger, or pin may not be worn through more than 30 percent...

  13. Increased Fidelity in Prediction Methods For Landing Gear Noise

    NASA Technical Reports Server (NTRS)

    Lopes, Leonard V.; Brentner, Kenneth S.; Morris, Philip J.; Lockard, David P.

    2006-01-01

    An aeroacoustic prediction scheme has been developed for landing gear noise. The method is designed to handle the complex landing gear geometry of current and future aircraft. The gear is represented by a collection of subassemblies and simple components that are modeled using acoustic elements. These acoustic elements are generic, but generate noise representative of the physical components on a landing gear. The method sums the noise radiation from each component of the undercarriage in isolation accounting for interference with adjacent components through an estimate of the local upstream and downstream flows and turbulence intensities. The acoustic calculations are made in the code LGMAP, which computes the sound pressure levels at various observer locations. The method can calculate the noise from the undercarriage in isolation or installed on an aircraft for both main and nose landing gear. Comparisons with wind tunnel and flight data are used to initially calibrate the method, then it may be used to predict the noise of any landing gear. In this paper, noise predictions are compared with wind tunnel data for model landing gears of various scales and levels of fidelity, as well as with flight data on fullscale undercarriages. The present agreement between the calculations and measurements suggests the method has promise for future application in the prediction of airframe noise.

  14. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    NASA Astrophysics Data System (ADS)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  15. 50 CFR Table 19 to Part 679 - Seabird Avoidance Gear Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AVOIDANCE GEAR OR METHOD. 1 Paired Streamer Lines: Used during deployment of hook-and-line gear to prevent...(e)(4)(iii). 2 Single Streamer Line: Used during deployment of hook-and-line gear to prevent birds... deployment of snap gear to prevent birds from taking hooks. The streamer line consists of three components: a...

  16. Generation of gear tooth surfaces by application of CNC machines

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Chen, N. X.

    1994-01-01

    This study will demonstrate the importance of application of computer numerically controlled (CNC) machines in generation of gear tooth surfaces with new topology. This topology decreases gear vibration and will extend the gear capacity and service life. A preliminary investigation by a tooth contact analysis (TCA) program has shown that gear tooth surfaces in line contact (for instance, involute helical gears with parallel axes, worm gear drives with cylindrical worms, etc.) are very sensitive to angular errors of misalignment that cause edge contact and an unfavorable shape of transmission errors and vibration. The new topology of gear tooth surfaces is based on the localization of bearing contact, and the synthesis of a predesigned parabolic function of transmission errors that is able to absorb a piecewise linear function of transmission errors caused by gear misalignment. The report will describe the following topics: description of kinematics of CNC machines with six degrees of freedom that can be applied for generation of gear tooth surfaces with new topology. A new method for grinding of gear tooth surfaces by a cone surface or surface of revolution based on application of CNC machines is described. This method provides an optimal approximation of the ground surface to the given one. This method is especially beneficial when undeveloped ruled surfaces are to be ground. Execution of motions of the CNC machine is also described. The solution to this problem can be applied as well for the transfer of machine tool settings from a conventional generator to the CNC machine. The developed theory required the derivation of a modified equation of meshing based on application of the concept of space curves, space curves represented on surfaces, geodesic curvature, surface torsion, etc. Condensed information on these topics of differential geometry is provided as well.

  17. Analysis of mixed model in gear transmission based on ADAMS

    NASA Astrophysics Data System (ADS)

    Li, Xiufeng; Wang, Yabin

    2012-09-01

    The traditional method of mechanical gear driving simulation includes gear pair method and solid to solid contact method. The former has higher solving efficiency but lower results accuracy; the latter usually obtains higher precision of results while the calculation process is complex, also it is not easy to converge. Currently, most of the researches are focused on the description of geometric models and the definition of boundary conditions. However, none of them can solve the problems fundamentally. To improve the simulation efficiency while ensure the results with high accuracy, a mixed model method which uses gear tooth profiles to take the place of the solid gear to simulate gear movement is presented under these circumstances. In the process of modeling, build the solid models of the mechanism in the SolidWorks firstly; Then collect the point coordinates of outline curves of the gear using SolidWorks API and create fit curves in Adams based on the point coordinates; Next, adjust the position of those fitting curves according to the position of the contact area; Finally, define the loading conditions, boundary conditions and simulation parameters. The method provides gear shape information by tooth profile curves; simulates the mesh process through tooth profile curve to curve contact and offer mass as well as inertia data via solid gear models. This simulation process combines the two models to complete the gear driving analysis. In order to verify the validity of the method presented, both theoretical derivation and numerical simulation on a runaway escapement are conducted. The results show that the computational efficiency of the mixed model method is 1.4 times over the traditional method which contains solid to solid contact. Meanwhile, the simulation results are more closely to theoretical calculations. Consequently, mixed model method has a high application value regarding to the study of the dynamics of gear mechanism.

  18. Dynamics of Multistage Gear Transmission with Effects of Gearbox Vibrations

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Tu, Y. K.; Zakrajsek, J. J.; Townsend, Dennis P.

    1990-01-01

    A comprehensive approach is presented in analyzing the dynamic behavior of multistage gear transmission systems with the effects of gearbox induced vibrations and mass imbalances of the rotor. The modal method, with undamped frequencies and planar mode shapes, is used to reduce the degrees of freedom of the gear system for time-transient dynamic analysis. Both the lateral and torsional vibration modes of each rotor-bearing-gear stage as well as the interstage vibrational characteristics are coupled together through localized gear mesh tooth interactions. In addition, gearbox vibrations are also coupled to the rotor-bearing-gear system dynamics through bearing support forces between the rotor and the gearbox. Transient and steady state dynamics of lateral and torsional vibrations of the geared system are examined in both time and frequency domains to develop interpretations of the overall modal dynamic characteristics under various operating conditions. A typical three-stage geared system is used as an example. Effects of mass imbalance and gearbox vibrations on the system dynamic behavior are presented in terms of modal excitation functions for both lateral and torsional vibrations. Operational characteristics and conclusions are drawn from the results presented.

  19. Investigation of Gear and Bearing Fatigue Damage Using Debris Particle Distributions

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Decker, Harry J.

    2004-01-01

    A diagnostic tool was developed for detecting fatigue damage to spur gears, spiral bevel gears, and rolling element bearings. This diagnostic tool was developed and evaluated experimentally by collecting oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig, Spiral Bevel Gear Test Facility, and the 500hp Helicopter Transmission Test Stand. During each test, data from an online, in-line, inductance type oil debris sensor was monitored and recorded for the occurrence of pitting damage. Results indicate oil debris alone cannot discriminate between bearing and gear fatigue damage.

  20. 50 CFR 622.46 - Prevention of gear conflicts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restrictions of the FMP for the Shrimp Fishery of the Gulf of Mexico, the RA may modify or establish separation zones for shrimp trawling and the use of fixed gear to prevent gear conflicts. Necessary prohibitions or...

  1. Continued Evaluation of Gear Condition Indicator Performance on Rotorcraft Fleet

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Antolick, Lance J.; Wade, Daniel R.

    2013-01-01

    This paper details analyses of condition indicator performance for the helicopter nose gearbox within the U.S. Army's Condition-Based Maintenance Program. Ten nose gearbox data sets underwent two specific analyses. A mean condition indicator level analysis was performed where condition indicator performance was based on a 'batting average' measured before and after part replacement. Two specific condition indicators, Diagnostic Algorithm 1 and Sideband Index, were found to perform well for the data sets studied. A condition indicator versus gear wear analysis was also performed, where gear wear photographs and descriptions from Army tear-down analyses were categorized based on ANSI/AGMA 1010-E95 standards. Seven nose gearbox data sets were analyzed and correlated with condition indicators Diagnostic Algorithm 1 and Sideband Index. Both were found to be most responsive to gear wear cases of micropitting and spalling. Input pinion nose gear box condition indicators were found to be more responsive to part replacement during overhaul than their corresponding output gear nose gear box condition indicators.

  2. Dynamic Capacity and Surface Fatigue Life for Spur and Helical Gears

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.

    1975-01-01

    A mathematical model for surface fatigue life of gear, pinion, or entire meshing gear train is given. The theory is based on a previous statistical approach for rolling-element bearings. Equations are presented which give the dynamic capacity of the gear set. The dynamic capacity is the transmitted tangential load which gives a 90 percent probability of survival of the gear set for one million pinion revolutions. The analytical results are compared with test data for a set of AISI 9310 spur gears operating at a maximum Hertz stress of 1.71 billion N/sq m and 10,000 rpm. The theoretical life predictions are shown to be good when material constants obtained from rolling-element bearing tests were used in the gear life model.

  3. Generation of noncircular gears for variable motion of the crank-slider mechanism

    NASA Astrophysics Data System (ADS)

    Niculescu, M.; Andrei, L.; Cristescu, A.

    2016-08-01

    The paper proposes a modified kinematics for the crank-slider mechanism of a nails machine. The variable rotational motion of the driven gear allows to slow down the velocity of the slider in the head forming phase and increases the period for the forming forces to be applied, improving the quality of the final product. The noncircular gears are designed based on a hybrid function for the gear transmission ratio whose parameters enable multiple variations of the noncircular driven gears and crack-slider mechanism kinematics, respectively. The AutoCAD graphical and programming facilities are used (i) to analyse and optimize the slider-crank mechanism output functions, in correlation with the predefined noncircular gears transmission ratio, (ii) to generate the noncircular centrodes using the kinematics hypothesis, (iii) to generate the variable geometry of the gear teeth profiles, based on the rolling method, and (iv) to produce the gears solid virtual models. The study highlights the benefits/limits that the noncircular gears transmission ratio defining hybrid functions have on both crank-slider mechanism kinematics and gears geometry.

  4. Investigation for Molecular Attraction Impact Between Contacting Surfaces in Micro-Gears

    NASA Astrophysics Data System (ADS)

    Yang, Ping; Li, Xialong; Zhao, Yanfang; Yang, Haiying; Wang, Shuting; Yang, Jianming

    2013-10-01

    The aim of this research work is to provide a systematic method to perform molecular attraction impact between contacting surfaces in micro-gear train. This method is established by integrating involute profile analysis and molecular dynamics simulation. A mathematical computation of micro-gear involute is presented based on geometrical properties, Taylor expression and Hamaker assumption. In the meantime, Morse potential function and the cut-off radius are introduced with a molecular dynamics simulation. So a hybrid computational method for the Van Der Waals force between the contacting faces in micro-gear train is developed. An example is illustrated to show the performance of this method. The results show that the change of Van Der Waals force in micro-gear train has a nonlinear characteristic with parameters change such as the modulus of the gear and the tooth number of gear etc. The procedure implies a potential feasibility that we can control the Van Der Waals force by adjusting the manufacturing parameters for gear train design.

  5. Oil-air mist lubrication for helicopter gearing

    NASA Technical Reports Server (NTRS)

    Mcgrogan, F.

    1976-01-01

    The applicability of a once-through oil mist system to the lubrication of helicopter spur gears was investigated and compared to conventional jet spray lubrication. In the mist lubrication mode, cooling air was supplied at 366K (200 F) to the out of mesh location of the gear sets. The mist air was also supplied at 366K (200 F) to the radial position mist nozzle at a constant rate of 0.0632 mol/s (3 SCFM) per nozzle. The lubricant contained in the mist air varied between 32 - 44 cc/hour. In the recirculating jet spray mode, the flow rate was varied between 1893 - 2650 cc/hour. Visual inspection revealed the jet spray mode produced a superior surface finish on the gear teeth but a thermal energy survey showed a 15 - 20% increase in heat generated. The gear tooth condition in the mist lubrication mode system could be improved if the cooling air and lubricant/air flow ratio were increased. The test gearbox and the procedure used are described.

  6. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  7. Detecting Tooth Damage in Geared Drive Trains

    NASA Technical Reports Server (NTRS)

    Nachtsheim, Philip R.

    1997-01-01

    This paper describes a method that was developed to detect gear tooth damage that does not require a priori knowledge of the frequency characteristic of the fault. The basic idea of the method is that a few damaged teeth will cause transient load fluctuations unlike the normal tooth load fluctuations. The method attempts to measure the energy in the lower side bands of the modulated signal caused by the transient load fluctuations. The method monitors the energy in the frequency interval which excludes the frequency of the lowest dominant normal tooth load fluctuation and all frequencies above it. The method reacted significantly to the tooth fracture damage results documented in the Lewis data sets which were obtained from tests of the OH-58A transmission and tests of high contact ratio spiral bevel gears. The method detected gear tooth fractures in all four of the high contact ratio spiral bevel gear runs. Published results indicate other detection methods were only able to detect faults for three out of four runs.

  8. The noise generated by a landing gear wheel with hub and rim cavities

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Angland, David; Zhang, Xin

    2017-03-01

    Wheels are one of the major noise sources of landing gears. Accurate numerical predictions of wheel noise can provide an insight into the physical mechanism of landing gear noise generation and can aid in the design of noise control devices. The major noise sources of a 33% scaled isolated landing gear wheel are investigated by simulating three different wheel configurations using high-order numerical simulations to compute the flow field and the FW-H equation to obtain the far-field acoustic pressures. The baseline configuration is a wheel with a hub cavity and two rim cavities. Two additional simulations are performed; one with the hub cavity covered (NHC) and the other with both the hub cavity and rim cavities covered (NHCRC). These simulations isolate the effects of the hub cavity and rim cavities on the overall wheel noise. The surface flow patterns are visualised by shear stress lines and show that the flow separations and attachments on the side of the wheel, in both the baseline and the configuration with only the hub cavity covered, are significantly reduced by covering both the hub and rim cavities. A frequency-domain FW-H equation is used to identify the noise source regions on the surface of the wheel. The tyre is the main low frequency noise source and shows a lift dipole and side force dipole pattern depending on the frequency. The hub cavity is identified as the dominant middle frequency noise source and radiates in a frequency range centered around the first and second depth modes of the cylindrical hub cavity. The rim cavities are the main high-frequency noise sources. With the hub cavity and rim cavities covered, the largest reduction in Overall Sound Pressure Level (OASPL) is achieved in the hub side direction. In the other directivities, there is also a reduction in the radiated sound.

  9. Natural Characteristics of The Herringbone Gear Transmission System

    NASA Astrophysics Data System (ADS)

    Zhou, Jianxing; Sun, Wenlei; Cao, Li

    2018-03-01

    According to the structure characteristics of herringbone gear transmission, a more realistic dynamic model of the transmission system is built in consideration of the inner excitation, herringbone gears axial positioning and sliding bearing etc. The natural frequencies of the system are calculated, and the vibration mode is divided into symmetric vibration modes and asymmetric vibration modes. The time history of system dynamic force is obtained by solving the dynamic model. The effects of the connection stiffness of left and right sides of herringbone gears and axial support stiffness on natural characteristics are discussed.

  10. Progress on S53 for Rotary Gear Actuators

    DTIC Science & Technology

    2008-02-01

    materials MP35N Ni alloy rods HP-9-4-30 or 4340 high strength steel gears (Cd plated) 17 - 4PH stainless bushings Ti wing spar Bad galvanic couples...Bushings: 17 - 4PH in Ti spar MP35N in gear 6 Galvanic corrosion of current system 7 Extent of the problem This is a problem with all F-18 lugs Matter...Titanium plate with 17 - 4PH bush – also refurbished from previous trials • Gears made from HP9-4-30 or S53 with MP35N bushes STREAMLINED CORROSION TESTING

  11. Engagement of Metal Debris into a Gear Mesh

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock, and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  12. Investigations of Shuttle Main Landing Gear Door Environmental Seals

    NASA Technical Reports Server (NTRS)

    Finkbeiner, Joshua; Dunlap, Pat; Steinetz, Bruce; DeMango, Jeff; Newswander, Daniel

    2005-01-01

    The environmental seals for the main landing gear doors of the Shuttle Orbiters were raised by the Columbia Accident Investigation Board as a potential safety concern. Inspections of seals installed on the Shuttle Discovery revealed that they were permanently deformed and no longer met certified seal compression requirements. Replacement of the seals led to the inability to fully close the main landing gear doors. Johnson Space Center requested that Glenn Research Center conduct tests on the main landing gear door environmental seals to assist in installing the seals in a manner to allow the main landing gear doors to fully close. Further testing was conducted to fill out the seal performance database. Results from the testing indicated that the method of bonding the seals was important in reducing seal loads on the main landing gear doors. Also, the replacement seals installed in Shuttle Discovery were found to have leakage performance sufficient to meet the certification requirements.

  13. Modelling of teeth of a gear transmission for modern manufacturing technologies

    NASA Astrophysics Data System (ADS)

    Monica, Z.; Banaś, W.; Ćwikla, G.; Topolska, S.

    2017-08-01

    The technological process of manufacturing of gear wheels is influenced by many factors. It is designated depending on the type of material from which the gear is to be produced, its heat treatment parameters, the required accuracy, the geometrical form and the modifications of the tooth. Therefor the parameters selection process is not easy and moreover it is unambiguous. Another important stage of the technological process is the selection of appropriate tools to properly machine teeth in the operations of both roughing and finishing. In the presented work the focus is put first of all on modern production methods of gears using technologically advanced instruments in comparison with conventional tools. Conventional processing tools such as gear hobbing cutters or Fellows gear-shaper cutters are used from the beginning of the machines for the production of gear wheels. With the development of technology and the creation of CNC machines designated for machining of gears wheel it was also developed the manufacturing technology as well as the design knowledge concerning the technological tools. Leading manufacturers of cutting tools extended the range of tools designated for machining of gears on the so-called hobbing cutters with inserted cemented carbide tips. The same have be introduced to Fellows gear-shaper cutters. The results of tests show that is advantaged to use hobbing cutters with inserted cemented carbide tips for milling gear wheels with a high number of teeth, where the time gains are very high, in relation to the use of conventional milling cutters.

  14. Minimization of Vibroacoustic Effects as a Criterion for Operation of Gear Transmissions in Accordance with Sustainable Development Principles

    NASA Astrophysics Data System (ADS)

    Wieczorek, Andrzej N.; Kruk, Radosław

    2016-03-01

    In correctly functioning maintenance systems it is most important to prevent possible failures. A reduction of the vibroacoustic effects accompanying the operation of machines and equipment, including transmissions, is among the factors that lower the probability of a failure. The paper presents the results of the research on the impact of operational factors on vibroacoustic conditions of transmissions. The factors covered by the analysis included a change in the mating conditions of gear wheels associated with the wear of tooth surfaces, operation of transmissions in subharmonic conditions of the main resonance and the temperature of the lubricating oil. The study demonstrated that it was possible to reduce the vibroacoustic effects generated by gear transmissions by changing the conditions of their operation. Based on the results obtained, it has been found that the operation of gear transmissions in accordance with the sustainable development principles requires technical services to take active measures consisting in the search for optimal operating conditions in terms of the vibroacoustic conditions.

  15. 47. Detail of gears for steam powered Marine Railway #1, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. Detail of gears for steam powered Marine Railway #1, and drive equipment for Railways #l and #2, Marine Railway Headhouse, ground floor, north end, drive gears in foreground, pulling gears for Railway # 1 in background. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  16. 50 CFR 622.30 - Required fishing gear.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Required fishing gear. 622.30 Section 622... Resources of the Gulf of Mexico § 622.30 Required fishing gear. For a person on board a vessel to fish for... steel circle hooks are required when fishing with natural baits. (b) Dehooking device. At least one...

  17. Possiblity of substituting 12XH3A steel in the manufacture of gears for a Sova motorcycle gearing box

    NASA Astrophysics Data System (ADS)

    Abramov, L. M.; Karabanov, V. P.; Abramov, V. L.; Astakhin, A. S.

    1996-03-01

    The experimental work describes the possibility of substituting the expensive alloying steel 12XH3A for the low-cost material (steel 40X) in manufacturing gears of the motor cycle gearing box. It ban be achieved on the basis of the obtained results and with the help of laser melting treatment of small-alloying steel. We can speak about the dependence of laser melting radiation efficiency on the regimes and procedures. The breakage of the gearing box of the motor cycle 'Sova' may be explained by the low carry ability of its first gearing box gear. This investigation includes the determination of the cause of this problem. One of the most wide spread methods of such decisions is the substitution of the used materials by another. The most important criteria for the new materials are: (1) the increase of mechanical characteristics (solidity, plasticity); (2) the increase of such characteristics as hardness, specific percussive viscosity; (3) the improvement of the technological characteristics; (4) the condencention of the manufacturing expenditures (economical effect). In accordance with these creations some materials (35X, 40X, 20XH, 40XHM steels) were chosen. The best material is 40X steel, because it allows us to treat the gears by laser radiation with the surface melt. Surface melt allows us to produce: (1) martensite structure with high solidity and low percussive viscosity; (2) martensite structure with chrome carbides and high percussive viscosity, but low plasticity; (3) amorphous or monocrystallic structures with the best characteristics. The last structure has the best characteristics because dislocation defects in such material are practically absent. Also, the amorphous surface of the materials is the most interesting. The spirit of the investigation is to define the parameters of production such as radiation power, size of laser spot, and speed of spot.

  18. Spiral Bevel Gear Damage Detection Using Decision Fusion Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Afjeh, Abdollah A.

    2002-01-01

    A diagnostic tool for detecting damage to spiral bevel gears was developed. Two different monitoring technologies, oil debris analysis and vibration, were integrated using data fusion into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual monitoring technologies. This diagnostic tool was evaluated by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spiral Bevel Gear Fatigue Rigs. Data was collected during experiments performed in this test rig when pitting damage occurred. Results show that combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spiral bevel gears.

  19. Gear Crack Propagation Path Studies-- Guidelines Developed for Ultrasafe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2002-01-01

    Effective gear designs balance strength, durability, reliability, size, weight, and cost. However, unexpected gear failures may occur even with adequate gear tooth design. To design an extremely safe system, the designer must ask and address the question "What happens when a failure occurs?" With regard to gear-tooth bending fatigue, tooth or rim fractures may occur. For aircraft, a crack that propagated through a rim would be catastrophic, leading to the disengagement of a rotor or propeller, the loss of an aircraft, and possible fatalities. This failure mode should be avoided. However, a crack that propagated through a tooth might or might not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode might be possible because of advances in modern diagnostic systems. An analysis was performed at the NASA Glenn Research Center to develop design guidelines to prevent catastrophic rim fracture failure modes in the event of gear-tooth bending fatigue. The finite element method was used with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear-tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth and rim fracture modes, including the effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant-pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 degree

  20. Research on vibration signal analysis and extraction method of gear local fault

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.

    2018-02-01

    Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..

  1. Fiber Optic Strain Sensor for Planetary Gear Diagnostics

    NASA Technical Reports Server (NTRS)

    Kiddy, Jason S.; Lewicki, David G.; LaBerge, Kelsen E.; Ehinger, Ryan T.; Fetty, Jason

    2011-01-01

    This paper presents a new sensing approach for helicopter damage detection in the planetary stage of a helicopter transmission based on a fiber optic strain sensor array. Complete helicopter transmission damage detection has proven itself a difficult task due to the complex geometry of the planetary reduction stage. The crowded and complex nature of the gearbox interior does not allow for attachment of sensors within the rotating frame. Hence, traditional vibration-based diagnostics are instead based on measurements from externally mounted sensors, typically accelerometers, fixed to the gearbox exterior. However, this type of sensor is susceptible to a number of external disturbances that can corrupt the data, leading to false positives or missed detection of potentially catastrophic faults. Fiber optic strain sensors represent an appealing alternative to the accelerometer. Their small size and multiplexibility allows for potentially greater sensing resolution and accuracy, as well as redundancy, when employed as an array of sensors. The work presented in this paper is focused on the detection of gear damage in the planetary stage of a helicopter transmission using a fiber optic strain sensor band. The sensor band includes an array of 13 strain sensors, and is mounted on the ring gear of a Bell Helicopter OH-58C transmission. Data collected from the sensor array is compared to accelerometer data, and the damage detection results are presented

  2. Gear Crack Propagation Path Studies: Guidelines for Ultra-Safe Design

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    Design guidelines have been established to prevent catastrophic rim fracture failure modes when considering gear tooth bending fatigue. Analysis was performed using the finite element method with principles of linear elastic fracture mechanics. Crack propagation paths were predicted for a variety of gear tooth and rim configurations. The effects of rim and web thicknesses, initial crack locations, and gear tooth geometry factors such as diametral pitch, number of teeth, pitch radius, and tooth pressure angle were considered. Design maps of tooth/rim fracture modes including effects of gear geometry, applied load, crack size, and material properties were developed. The occurrence of rim fractures significantly increased as the backup ratio (rim thickness divided by tooth height) decreased. The occurrence of rim fractures also increased as the initial crack location was moved down the root of the tooth. Increased rim and web compliance increased the occurrence of rim fractures. For gears with constant pitch radii, coarser-pitch teeth increased the occurrence of tooth fractures over rim fractures. Also, 25 deg pressure angle teeth had an increased occurrence of tooth fractures over rim fractures when compared to 20 deg pressure angle teeth. For gears with constant number of teeth or gears with constant diametral pitch, varying size had little or no effect on crack propagation paths.

  3. 46 CFR 78.47-55 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Instructions for changing steering gear. 78.47-55... OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 78.47-55 Instructions for changing steering gear..., relating in order, the different steps to be taken in changing to the emergency steering gear. Each clutch...

  4. 46 CFR 131.845 - Instructions for shift of steering gear.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... alternative steering stations must be on water-resistant material and posted at each steering station and in... gear or steering stations. (d) Each clutch, gear, wheel, lever, valve, or switch used during any shift of steering gear or steering stations must be numbered or lettered on a metal plate or painted so...

  5. A basis for the analysis of surface geometry of spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Coy, J. J.

    1983-01-01

    Geometrical procedures helpful in the fundamental studies of the surface geometry of spiral bevel gears are summarized. These procedures are based upon: (1) fundamental gear geometry and kinematics as exposited by Buckingham, et al; (2) formulas developed from differential geometry; and (3) geometrical concepts developed in recent papers and reports on spiral bevel gear surface geometry. Procedures which characterize the geometry so that the surface parametric equations, the principal radii of curvature, and the meshing kinematics are systematically determined are emphasized. Initially, the focus in on theoretical, logarithmic spiral bevel gears as defined by Buckingham. The gears, however, are difficult to fabricate and are sometimes considered to be too straight. Circular-cut spiral bevel gears are an alternative to this. Surface characteristics of crown circular cut gears are analyzed.

  6. Thermal elastohydrodynamic lubrication of spur gears

    NASA Technical Reports Server (NTRS)

    Wang, K. L.; Cheng, H. S.

    1980-01-01

    An analysis and computer program called TELSGE were developed to predict the variations of dynamic load, surface temperature, and lubricant film thickness along the contacting path during the engagement of a pair of involute spur gears. The analysis of dynamic load includes the effect of gear inertia, the effect of load sharing of adjacent teeth, and the effect of variable tooth stiffness which are obtained by a finite-element method. Results obtained from TELSGE for the dynamic load distributions along the contacting path for various speeds of a pair of test gears show patterns similar to that observed experimentally. Effects of damping ratio, contact ratio, tip relief, and tooth error on the dynamic load were examined. In addition, two dimensionless charts are included for predicting the maximum equilibrium surface temperature, which can be used to estimate directly the lubricant film thickness based on well established EHD analysis.

  7. Elasto-dynamic analysis of a gear pump-Part III: Experimental validation procedure and model extension to helical gears

    NASA Astrophysics Data System (ADS)

    Mucchi, E.; Dalpiaz, G.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model's experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory globally, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure evolution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with the

  8. 46 CFR 196.37-33 - Instructions for changing steering gear.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Instructions for changing steering gear. 196.37-33... steering gear. (a) Instructions in at least 1/2 inch letters and figures shall be posted in the steering engineroom, relating in order, the different steps to be taken in changing to the emergency steering gear...

  9. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  10. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  11. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  12. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  13. 14 CFR 23.729 - Landing gear extension and retraction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Landing gear extension and retraction... Design and Construction Landing Gear § 23.729 Landing gear extension and retraction system. (a) General..., occurring during retraction at any airspeed up to 1.6 V S 1 with flaps retracted, and for any load factor up...

  14. Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.

  15. Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert; Hurrell, Michael

    2017-01-01

    Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss.

  16. Financial comparisons of fishing gear used in Kenya's coral reef lagoons.

    PubMed

    Mangi, Stephen C; Roberts, Callum M; Rodwell, Lynda D

    2007-12-01

    The cost of fishing and the income earned by fishers using small and large traps, gill nets, beach seines, hand lines, and spearguns were assessed in the multigear fishery of southern Kenya to establish a financial rationale for fishing gear use. Direct observations and key-informant interviews with fish leaders and boat captains were used to gather data on fish catch, cost of fishing gear, boats, and the price of fish. Among the fishing gear used, spearguns had the lowest monthly cost (USD 1 mo(-1)) while big traps had the highest (USD 13 mo(-1)). Income was highest among capital cost beach seine fishers (USD 183 mo(-1)) and lowest among noncapital cost beach seine fishers (USD 20 mo(-1)). There was a direct positive correlation between income earned and profitability of gear. Correlation of the financial measure for each gear to four categories of damage to fish and habitats showed that low cost fishing gear were associated with the highest environmental damage indicating a trade-off between cost of gear and environmental health.

  17. Experimental and Analytical Determinations of Spiral Bevel Gear-Tooth Bending Stress Compared

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2000-01-01

    Spiral bevel gears are currently used in all main-rotor drive systems for rotorcraft produced in the United States. Applications such as these need spiral bevel gears to turn the corner from the horizontal gas turbine engine to the vertical rotor shaft. These gears must typically operate at extremely high rotational speeds and carry high power levels. With these difficult operating conditions, an improved analytical capability is paramount to increasing aircraft safety and reliability. Also, literature on the analysis and testing of spiral bevel gears has been very sparse in comparison to that for parallel axis gears. This is due to the complex geometry of this type of gear and to the specialized test equipment necessary to test these components. To develop an analytical model of spiral bevel gears, researchers use differential geometry methods to model the manufacturing kinematics. A three-dimensional spiral bevel gear modeling method was developed that uses finite elements for the structural analysis. This method was used to analyze the three-dimensional contact pattern between the test pinion and gear used in the Spiral Bevel Gear Test Facility at the NASA Glenn Research Center at Lewis Field. Results of this analysis are illustrated in the preceding figure. The development of the analytical method was a joint endeavor between NASA Glenn, the U.S. Army Research Laboratory, and the University of North Dakota.

  18. Prediction of contact path and load sharing in spiral bevel gears

    NASA Technical Reports Server (NTRS)

    Bibel, George D.; Tiku, Karuna; Kumar, Ashok

    1994-01-01

    A procedure is presented to perform a contact analysis of spiral bevel gears in order to predict the contact path and the load sharing as the gears roll through mesh. The approach utilizes recent advances in automated contact methods for nonlinear finite element analysis. A sector of the pinion and gear is modeled consisting of three pinion teeth and four gear teeth in mesh. Calculation of the contact force and stresses through the gear meshing cycle are demonstrated. Summary of the results are presented using three dimensional plots and tables. Issues relating to solution convergence and requirements for running large finite element analysis on a supercomputer are discussed.

  19. 50 CFR 300.130 - Vessel and gear restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Vessel and gear restrictions. 300.130 Section 300.130 Wildlife and Fisheries INTERNATIONAL FISHING AND RELATED ACTIVITIES INTERNATIONAL... gear restrictions. (a) Factory vessels. Factory vessels are prohibited from operating in treaty waters...

  20. Technology Innovation of Power Transmission Gearing in Aviation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2009-01-01

    An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.

  1. Tools and methods for automated assembly of miniaturized gear systems

    NASA Astrophysics Data System (ADS)

    Nienhaus, Matthias; Ehrfeld, Wolfgang; Berg, Udo; Schmitz, Felix; Soultan, H.

    2000-10-01

    The assembly of gear systems with the size of a pin head is almost beyond the bound of human tactile skills. The magic formula for series fabrication of this hybrid micro systems is the automation of the assembly process. As a contribution, this paper presents and discusses three different assembly methods comprising specifically developed tools for different types of planetary gears with outer diameters of 1.9 mm. Because of the huge importance for the complete micro assembly process, particular attention will be dedicated to the feeding and magazining of the micro gear components. Starting with metallic gear wheels as bulk good, an extremely miniaturized gear system of the Wolfram type has been automatically assembled by employing the strategy of tolerance compensation movement. As a key component, a modular tong gripper with specifically adapted gripping jaws produced by LIGA technology has been used. Further detailed investigations were spend on handling and assembly of micro injection moulded gear wheels made of POM for a three state planetary gear system. One strategy, following the idea of in situ observation, focuses on the intensive use of electronic pattern recognition. Alternatively, an unusual method based on a novel plastic wafer magazine will be discussed in detail. Hereby the exact position and orientation of injection moulded micro components will be presented from the manufacturing process up to the final micro assembly procedure. By simplifying the moulding of the micro gears as well as their handling, storing and assembly, this method has the potential to revolutionize the series fabrication of products with dimensions in the microscopic range in general.

  2. Surface Fatigue Lives of Case-Carburized Gears With an Improved Surface Finish

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Alanou, M. P.; Evans, H. P.; Snidle, R. W.; Krantz, T. L. (Technical Monitor)

    2000-01-01

    Previous research provides qualitative evidence that an improved surface finish can increase the surface fatigue lives of gears. To quantify the influence of surface roughness on life, a set of AISI 93 10 steel gears was provided with a nearmirror finish by superfinishing. The effects of the superfinishing on the quality of the gear tooth surfaces were determined using data from metrology, profilometry, and interferometric microscope inspections. The superfinishing reduced the roughness average by about a factor of 5. The superfinished gears were subjected to surface fatigue testing at 1.71 -GPa (248-ksi) Hertz contact stress, and the data were compared with the NASA Glenn gear fatigue data base. The lives of gears with superfinished teeth were about four times greater compared with the lives of gears with ground teeth but with otherwise similar quality.

  3. Kinematic synthesis of bevel-gear-type robotic wrist mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Chou

    Bevel-gear-type robotic wrist mechanisms are commonly used in industry. The reasons for their popularity are that they are compact, light-weight, and relatively inexpensive. However, there are singularities in their workspace, which substantially degrade their manipulative performance. The objective of this research is to develop an atlas of three-degree-of-freedom bevel-gear-type wrist mechanisms, and through dimensional synthesis to improve their kinematic performance. The dissertation contains two major parts: the first is structural analysis and synthesis, the other is kinematic analysis and dimensional synthesis. To synthesize the kinematic structures of bevel-gear-type wrist mechanisms, the kinematic structures are separated from their functional considerations. All kinematic structures which satisfy the mobility condition are enumerated in an unbiased, systematic manner. Then the bevel-gear-type wrist mechanisms are identified by applying the functional requirements. Structural analysis shows that a three-degree-of-freedom wrist mechanism usually consists of non-fractionated, two degree-of-freedom epicyclic gear train jointed with the base link. Therefore, the structural synthesis can be simplified into a problem of examining the atlas of non-fractionated, two-degree-of-freedom epicyclic gear trains. The resulting bevel-gear-type wrist mechanism has been categorized and evaluated. It is shown that three-degree-of-freedom, four-jointed wrist mechanisms are promising for further improving the kinematic performance. It is found that a spherical planetary gear train is necessarily imbedded in a three-degree-of-freedom, four-jointed wrist mechanism. Therefore, to study the workspace and singularity problems of three-degree-of-freedom four-jointed spherical wrist mechanisms, we have to study the trajectories of spherical planetary gear trains. The parametric equations of the trajectories and some useful geometric properties for the analysis and synthesis of

  4. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  5. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries.

    PubMed

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery.

  6. Predation Risk within Fishing Gear and Implications for South Australian Rock Lobster Fisheries

    PubMed Central

    Briceño, Felipe; Linnane, Adrian Joseph; Quiroz, Juan Carlos; Gardner, Caleb; Pecl, Gretta Tatyana

    2015-01-01

    Depredation of southern rock lobster (Jasus edwardsii) within fishing gear by the Maori octopus (Pinnoctopus cordiformis) has economic and ecological impacts on valuable fisheries in South Australia. In addition, depredation rates can be highly variable resulting in uncertainties for the fishery. We examined how in-pot lobster predation was influenced by factors such as lobster size and sex, season, fishing zone, and catch rate. Using mixed modelling techniques, we found that in-pot predation risk increased with lobster size and was higher for male lobsters. In addition, the effect of catch rate of lobsters on predation risk by octopus differed among fishing zones. There was both a seasonal and a spatial component to octopus predation, with an increased risk within discrete fishing grounds in South Australia at certain times of the year. Information about predation within lobster gear can assist fishery management decision-making, potentially leading to significant reduction in economic losses to the fishery. PMID:26489035

  7. 33 CFR 164.39 - Steering gear: Foreign tankers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Steering gear: Foreign tankers. 164.39 Section 164.39 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PORTS AND WATERWAYS SAFETY NAVIGATION SAFETY REGULATIONS § 164.39 Steering gear: Foreign tankers...

  8. Analytical and experimental study of vibrations in a gear transmission

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.

    1991-01-01

    An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.

  9. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Gear Codes, Descriptions, and Use 15 Table... ALASKA Pt. 679, Table 15 Table 15 to Part 679—Gear Codes, Descriptions, and Use Gear Codes, Descriptions, and Use (X indicates where this code is used) Name of gear Use alphabetic code to complete the...

  10. Experimental Investigation of Shrouding on Meshed Spur Gear Windage Power Loss

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Hurrell, Michael J.

    2017-01-01

    Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.

  11. Injection molded plastic helical gear filled with carbon powder made from rice hull

    NASA Astrophysics Data System (ADS)

    Chen, Yen Chu; Itagaki, Takayoshi; Takahashi, Hideo; Takahashi, Mikio

    2017-07-01

    Natural materials are focused on the ecological responsibility, all over the world. The rice-hull contains natural silica about 20 wt.%. Therefore, a carbonized rice-hull; Rice-Hull-Silica-Carbon (RHSC) is focused as effective utilization of the discarded rice hull. In this study, test plastic helical gears were made form polyacetal copolymer filled with RHSC powder by injection molding. Test helical gears were operated on endurance test. The bulk temperature and noise of test gears were measured during gears operation. Then, the tooth damage of test gears were investigated by using optical microscope. It is clarified that difference of tooth damage by kind of test gears. Moreover, the transition of gear bulk temperature and noise during operation are investigated. Based on these results, the effect of RHSC powder is discussed. From the discussions, it seems reasonable to conclude : (1) The heat resistance of plastic gear is improved by adding the RHSC powder. (2) The fatigue life of plastic gear is improved by adding suitable amount of the RHSC powder. (3) The sound pressure level of plastic gear is reduced by adding the smaller median grain diameter of RHSC powder.

  12. Induction Hardening of External Gear

    NASA Astrophysics Data System (ADS)

    Bukanin, V. A.; Ivanov, A. N.; Zenkov, A. E.; Vologdin, V. V.; Vologdin, V. V., Jr.

    2018-03-01

    Problems and solution of gear induction hardening are described. Main attention is paid to the parameters of heating and cooling systems. ELTA 7.0 program has been used to obtain the required electrical parameters of inductor, power sources, resonant circuits, as well as to choose the quenching media. Comparison of experimental and calculated results of investigation is provided. In order to compare advantages and disadvantages of single- and dual-frequency heating processes, many variants of these technologies were simulated. The predicted structure and hardness of steel gears are obtained by use of the ELTA data base taken into account the Continuous Cooling Transformation diagrams.

  13. 46 CFR 35.20-10 - Steering gear test-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Steering gear test-T/ALL. 35.20-10 Section 35.20-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-10 Steering gear test—T/ALL. On all tankships making voyages of more than 48 hours' duration, the entire steering gear, the whistle, the means of...

  14. Correlation of Gear Surface Fatigue Lives to Lambda Ratio (Specific Film Thickness)

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy Lewis

    2013-01-01

    The effect of the lubrication regime on gear performance has been recognized, qualitatively, for decades. Often the lubrication regime is characterized by the specific film thickness being the ratio of lubricant film thickness to the composite surface roughness. Three studies done at NASA to investigate gearing pitting life are revisited in this work. All tests were done at a common load. In one study, ground gears were tested using a variety of lubricants that included a range of viscosities, and therefore the gears operated with differing film thicknesses. In a second and third study, the performance of gears with ground teeth and superfinished teeth were assessed. Thicker oil films provided longer lives as did improved surface finish. These datasets were combined into a common dataset using the concept of specific film thickness. This unique dataset of more 258 tests provides gear designers with some qualitative information to make gear design decisions.

  15. A method for determining spiral-bevel gear tooth geometry for finite element analysis

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.

    1991-01-01

    An analytical method was developed to determine gear tooth surface coordinates of face-milled spiral bevel gears. The method uses the basic gear design parameters in conjunction with the kinematical aspects of spiral bevel gear manufacturing machinery. A computer program, SURFACE, was developed. The computer program calculates the surface coordinates and outputs 3-D model data that can be used for finite element analysis. Development of the modeling method and an example case are presented. This analysis method could also find application for gear inspection and near-net-shape gear forging die design.

  16. Modeling and analysis of the space shuttle nose-gear tire with semianalytic finite elements

    NASA Technical Reports Server (NTRS)

    Kim, Kyun O.; Noor, Ahmed K.; Tanner, John A.

    1990-01-01

    A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The Space Shuttle Orbiter nose gear tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynominals in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell. Numerical results of the Space Shuttle Orbiter nose gear tire model are compared with experimental measurements of the tire subjected to inflation loading.

  17. Experimental and analytical investigation of active loads control for aircraft landing gear

    NASA Technical Reports Server (NTRS)

    Morris, D. L.; Mcgehee, J. R.

    1983-01-01

    A series hydraulic, active loads control main landing gear from a light, twin-engine civil aircraft was investigated. Tests included landing impact and traversal of simulated runway roughness. It is shown that the active gear is feasible and very effective in reducing the force transmitted to the airframe. Preliminary validation of a multidegree of freedom active gear flexible airframe takeoff and landing analysis computer program, which may be used as a design tool for active gear systems, is accomplished by comparing experimental and computed data for the passive and active gears.

  18. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  19. Characteristics study of the gears by the CAD/CAE

    NASA Astrophysics Data System (ADS)

    Wang, P. Y.; Chang, S. L.; Lee, B. Y.; Nguyen, D. H.; Cao, C. W.

    2017-09-01

    Gears are the most important transmission component in machines. The rapid development of the machines in industry requires a shorter time of the analysis process. In traditional, the gears are analyzed by setting up the complete mathematical model firstly, considering the profile of cutter and coordinate systems relationship between the machine and the cutter. It is a really complex and time-consuming process. Recently, the CAD/CAE software is well developed and useful in the mechanical design. In this paper, the Autodesk Inventor® software is introduced to model the spherical gears firstly, and then the models can also be transferred into ANSYS Workbench for the finite element analysis. The proposed process in this paper is helpful to the engineers to speed up the analyzing process of gears in the design stage.

  20. Study on Warm Forging Prosess of 45 Steel Asymmetric Gear

    NASA Astrophysics Data System (ADS)

    Qi, Yushi; Du, Zhiming; Sun, Hongsheng; Chen, Lihua; Wang, Changshun

    2017-09-01

    Asymmetric gear has complex structure, so using plastic forming technology to process the gear has problems of large forming load, short die life, bad tooth filling, and so on. To solve these problems, this paper presents a radial warm extrusion process of asymmetric gear to reduce the forming load and improve the filling in the toothed corner portion. Using the new mold and No. 45 steel to conducting forming experiments under the optimal forming parameters: billet temperature is 800°C, mold temperature is 250°C, the forming speed is 30mm/s, and the friction coefficient is 0.15, we can obtain the complete asymmetric gear with better surface and tooth filling. Asymmetric gears’ microstructure analysis and mechanical testing showed that the small grain evenly distributed in the region near the addendum circle with high strength; the area near the central portion of the gear had a coarse grain size, uneven distribution and low strength. Significant metal flow lines at the corner part of the gear indicated that a large number of late-forming metal flowed into the tooth cavity filling the corner portion.

  1. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  2. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  3. 46 CFR 185.320 - Steering gear, controls, and communication system tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Steering gear, controls, and communication system tests... gear, controls, and communication system tests. The master of a vessel shall have examined and tested the steering gear, signaling whistle, propulsion controls, and communication systems of the vessel...

  4. 49 CFR 230.90 - Draw gear between steam locomotive and tender.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Draw gear between steam locomotive and tender. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Draw Gear and Draft Systems § 230.90 Draw gear between steam locomotive...

  5. 29 CFR 1919.31 - Proof tests-loose gear.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  6. 29 CFR 1919.31 - Proof tests-loose gear.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  7. 29 CFR 1919.31 - Proof tests-loose gear.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  8. 29 CFR 1919.31 - Proof tests-loose gear.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  9. 29 CFR 1919.31 - Proof tests-loose gear.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... safe working load. Hand-operated blocks used with pitched chains and rings, hooks, shackles or swivels... (a) of this section, and before being taken into use, all chains, rings, hooks, shackles, blocks or... Persons § 1919.31 Proof tests—loose gear. (a) Chains, rings, shackles and other loose gear (whether...

  10. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss - Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.

  11. The Effectiveness of Shrouding on Reducing Meshed Spur Gear Power Loss Test Results

    NASA Technical Reports Server (NTRS)

    Delgado, I. R.; Hurrell, M. J.

    2017-01-01

    Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.

  12. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    NASA Astrophysics Data System (ADS)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  13. 75 FR 31761 - Proposed Information Collection; Comment Request; Alaska Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... Collection; Comment Request; Alaska Region Gear Identification Requirements AGENCY: National Oceanic and... gear aids law enforcement and enables other fishermen to report on misplaced gear. II. Method of Collection No information is submitted; this is a gear-marking requirement. III. Data OMB Control Number...

  14. 76 FR 54737 - Proposed Information Collection; Comment Request; Southeast Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Collection; Comment Request; Southeast Region Gear Identification Requirements AGENCY: National Oceanic and... gear be marked are essential to facilitate enforcement. The ability to link fishing gear to the vessel... fishing gear is also valuable in actions concerning damage, loss, and civil proceedings. The requirements...

  15. Unilateral maxillary molar distalization with zygoma-gear appliance.

    PubMed

    Kilkis, Dogan; Bayram, Mehmet; Celikoglu, Mevlut; Nur, Metin

    2012-08-01

    The aim of this study was to present the orthodontic treatment of a 15-year-old boy with a unilateral maxillary molar distalization system, called the zygoma-gear appliance. It consisted of a zygomatic anchorage miniplate, an inner bow, and a Sentalloy closed coil spring (GAC International, Bohemia, NY). A distalizing force of 350 g was used during the distalization period. The unilateral Class II malocclusion was corrected in 5 months with the zygoma-gear appliance. The maxillary left first molar showed distalization of 4 mm with an inclination of 3°. The maxillary premolars moved distally with the help of the transseptal fibers. In addition, there were slight decreases in overjet (-0.5 mm) and maxillary incisor inclination (-1°), indicating no anchorage loss from the zygoma-gear appliance. Preadjusted fixed appliances (0.022 × 0.028-in, MBT system; 3M Unitek, Monrovia, Calif) were placed in both arches to achieve leveling and alignment. After 14 months of unilateral distalization with the zygoma-gear appliance and fixed appliances, Class I molar and canine relationships were established with satisfactory interdigitation of the posterior teeth. Acceptable overjet and overbite were also achieved. This article shows that this new system, the zygoma-gear appliance, can be used for unilateral maxillary molar distalization without anchorage loss. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Economical drive for large tube mills by means of planetary gears

    NASA Technical Reports Server (NTRS)

    Ackle, W.

    1980-01-01

    The performance of heavy-duty planetary gear drives for ball mills used in the cement industry since 1967 is described. These gear drives transmit up to 8500 HP per installation. A reliable method for establishing gear drive efficiency is described and possible savings due to higher efficiency are indicated.

  17. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  18. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  19. 50 CFR 648.108 - Summer flounder gear restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false Summer flounder gear restrictions. 648... Measures for the Summer Flounder Fisheries § 648.108 Summer flounder gear restrictions. (a) General. (1) Otter trawlers whose owners are issued a summer flounder permit and that land or possess 100 lb (45.4 kg...

  20. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  1. Research of HCR Gearing Properties from Warm Scuffing Damage Point of View

    NASA Astrophysics Data System (ADS)

    Kuzmanović, Siniša; Rackov, Milan; Vereš, Miroslav; Krajčovič, Adam

    2014-12-01

    The issue of design and dimensioning of HCR gearing, particularly of the gearings with an internal engagement, it nowadays, especially in the design of hybrid cars drives, highly topical. This kind of gearing has many advantages in operation, but at the same time it is more complicated in stage of its design and load capacity calculation. Authors in this contribution present some results of temperature scuffing research of internal and external HCR gearing. There are given the equations for calculation of warm scuffing resistance of both external and internal HCR gearing derived according to the integral temperature criterion.

  2. Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo

    2011-01-01

    An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.

  3. GEAR: A database of Genomic Elements Associated with drug Resistance.

    PubMed

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-03-15

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org.

  4. GEAR: A database of Genomic Elements Associated with drug Resistance

    PubMed Central

    Wang, Yin-Ying; Chen, Wei-Hua; Xiao, Pei-Pei; Xie, Wen-Bin; Luo, Qibin; Bork, Peer; Zhao, Xing-Ming

    2017-01-01

    Drug resistance is becoming a serious problem that leads to the failure of standard treatments, which is generally developed because of genetic mutations of certain molecules. Here, we present GEAR (A database of Genomic Elements Associated with drug Resistance) that aims to provide comprehensive information about genomic elements (including genes, single-nucleotide polymorphisms and microRNAs) that are responsible for drug resistance. Right now, GEAR contains 1631 associations between 201 human drugs and 758 genes, 106 associations between 29 human drugs and 66 miRNAs, and 44 associations between 17 human drugs and 22 SNPs. These relationships are firstly extracted from primary literature with text mining and then manually curated. The drug resistome deposited in GEAR provides insights into the genetic factors underlying drug resistance. In addition, new indications and potential drug combinations can be identified based on the resistome. The GEAR database can be freely accessed through http://gear.comp-sysbio.org. PMID:28294141

  5. Lubricant and additive effects on spur gear fatigue life

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Zaretsky, E. V.; Scibbe, H. W.

    1985-01-01

    Spur gear endurance tests were conducted with six lubricants using a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 spur gears. The sixth lubricant was divided into four batches each of which had a different additive content. Lubricants tested with a phosphorus-type load carrying additive showed a statistically significant improvement in life over lubricants without this type of additive. The presence of sulfur type antiwear additives in the lubricant did not appear to affect the surface fatigue life of the gears. No statistical difference in life was produced with those lubricants of different base stocks but with similar viscosity, pressure-viscosity coefficients and antiwear additives. Gears tested with a 0.1 wt % sulfur and 0.1 wt % phosphorus EP additives in the lubricant had reactive films that were 200 to 400 (0.8 to 1.6 microns) thick.

  6. An Impulse-Momentum Method for Calculating Landing-Gear Contact Conditions in Eccentric Landings

    NASA Technical Reports Server (NTRS)

    Yntema, Robert T; Milwitzky, Benjamin

    1952-01-01

    An impulse-momentum method for determining impact conditions for landing gears in eccentric landings is presented. The analysis is primarily concerned with the determination of contact velocities for impacts subsequent to initial touchdown in eccentric landings and with the determination of the effective mass acting on each landing gear. These parameters determine the energy-absorption requirements for the landing gear and, in conjunction with the particular characteristics of the landing gear, govern the magnitude of the ground loads. Changes in airplane angular and linear velocities and the magnitude of landing-gear vertical, drag, and side impulses resulting from a landing impact are determined by means of impulse-momentum relationships without the necessity for considering detailed force-time variations. The effective mass acting on each gear is also determined from the calculated landing-gear impulses. General equations applicable to any type of eccentric landing are written and solutions are obtained for the particular cases of an impact on one gear, a simultaneous impact on any two gears, and a symmetrical impact. In addition a solution is presented for a simplified two-degree-of-freedom system which allows rapid qualitative evaluation of the effects of certain principal parameters. The general analysis permits evaluation of the importance of such initial conditions at ground contact as vertical, horizontal, and side drift velocities, wing lift, roll and pitch angles, and rolling and pitching velocities, as well as the effects of such factors as landing gear location, airplane inertia, landing-gear length, energy-absorption efficiency, and wheel angular inertia on the severity of landing impacts. -A brief supplementary study which permits a limited evaluation of variable aerodynamic effects neglected in the analysis is presented in the appendix. Application of the analysis indicates that landing-gear impacts in eccentric landings can be appreciably more

  7. Analysis of Wear Behavior of Graphene OXIDE — Polyamide Gears for Engineering Applications

    NASA Astrophysics Data System (ADS)

    Rajamani, Geetha; Paulraj, Jawahar; Krishnan, Kanny

    Recent advances in polymer nanocomposites open a wide range of applications in various industrial sectors. Due to their high potential properties, these materials are replacing the usage of metals for many heavier components in automobile industries. In this experimental work, the tribological performance of Graphene oxide (GO) — Polyamide is investigated against pristine polyamide by fabricating gears for the usage in engineering applications. A gear test rig was developed in-house for analysis to study the specific wear rate and temperature gradient at different conditions of load and speeds. The wear resistance of the polyamide gears with the addition of 0.03wt.% of graphene oxide is better than the pristine polyamide gears and the specific wear rate is reduced significantly. The reduced specific wear rate of these polymer nanocomposite gears is attributed to the superior properties of graphene oxide such as High specific surface area, good adhesion properties and enhanced glass transition temperatures. The GO nanocomposite gear seems to be a potential alternative against conventional gears for engineering applications. Finally, the wear mechanisms and the potential of GO-based polyamide nanocomposite gears were proposed tentatively in the development of transmission gears for engineering applications.

  8. 50 CFR 660.211 - Fixed gear fishery-definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... vessel registered to a limited entry fixed gear permit(s) with a Tier 1, Tier 2, and/or Tier 3... fishery or sablefish tier limit fishery means, for the limited entry fixed gear sablefish fishery north of... tier limit and when they are not eligible to fish in the DTL fishery. Sablefish primary season means...

  9. How to determine spiral bevel gear tooth geometry for finite element analysis

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Litvin, Faydor L.

    1991-01-01

    An analytical method was developed to determine gear tooth surface coordinates of face milled spiral bevel gears. The method combines the basic gear design parameters with the kinematical aspects for spiral bevel gear manufacturing. A computer program was developed to calculate the surface coordinates. From this data a 3-D model for finite element analysis can be determined. Development of the modeling method and an example case are presented.

  10. Topology of modified helical gears and Tooth Contact Analysis (TCA) program

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Jiao

    1989-01-01

    The contents of this report covers: (1) development of optimal geometries for crowned helical gears; (2) a method for their generation; (3) tooth contact analysis (TCA) computer programs for the analysis of meshing and bearing contact of the crowned helical gears; and (4) modelling and simulation of gear shaft deflection. The developed method for synthesis was used to determine the optimal geometry for a crowned helical pinion surface and was directed to localize the bearing contact and guarantee favorable shape and a low level of transmission errors. Two new methods for generation of the crowned helical pinion surface are proposed. One is based on the application of a tool with a surface of revolution that slightly deviates from a regular cone surface. The tool can be used as a grinding wheel or as a shaver. The other is based on a crowning pinion tooth surface with predesigned transmission errors. The pinion tooth surface can be generated by a computer-controlled automatic grinding machine. The TCA program simulates the meshing and bearing contact of the misaligned gears. The transmission errors are also determined. The gear shaft deformation was modelled and investigated. It was found that the deflection of gear shafts has the same effect as gear misalignment.

  11. Flexibility effects on tooth contact location in spiral bevel gear transmissions

    NASA Technical Reports Server (NTRS)

    Altidis, P. C.; Savage, M.

    1987-01-01

    An analytical method to predict the shift of the contact ellipse between the meshing teeth in a spiral bevel gear set is presented in this report. The contact ellipse shift of interest is the motion of the nominal tooth contact location on each tooth from the ideal pitch point to the point of contact between the two teeth considering the elastic motions of the gears and their supporting shafts. This is the shift of the pitch point from the ideal, unloaded position on each tooth to the nominal contact location on the tooth when the gears are fully loaded. It is assumed that the major contributors of this motion are the elastic deflections of the gear shafts, the slopes of the shafts under load and the radial deflections of the four gear shaft bearings. The motions of the two pitch point locations on the pinion and the gear tooth surfaces are calculated in a FORTRAN program which also calculates the size and orientation of the Hertzian contact ellipse on the tooth faces. Based on the curvatures of the two spiral bevel gear teeth and the size of the contact ellipse, the program also predicts the basic dynamic capacity of the tooth pair. A complete numerical example is given to illustrate the use of the program.

  12. Evaluation of Standard Gear Metrics in Helicopter Flight Operation

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Pryor, A. H.; Huff, E. M.

    2002-01-01

    Each false alarm made by a machine monitoring system carries a high price tag. The machine must be taken out of service, thoroughly inspected with possible disassembly, and then made ready for service. Loss of use of the machine and the efforts to inspect it are costly. In addition, if a monitoring system is prone to false alarms, the system will soon be turned off or ignored. For aircraft applications, one growing concern is that the dynamic flight environment differs from the laboratory environment where fault detection methods are developed and tested. Vibration measurements made in flight are less stationary than those made in a laboratory, or test facility, and thus a given fault detection method may produce more false alarms in flight than might be anticipated. In 1977. Stewart introduced several metrics, including FM0 and FM4, for evaluating the health of a gear. These metrics are single valued functions of the vibration signal that indicate if the signal deviates from an ideal model of the signal. FM0 is a measure of the ratio of the peak-to-peak level to the harmonic energy in the signal. FM4 is the kurtosis of the signal with the gear mesh harmonics and first order side bands removed. The underlying theory is that a vibration signal from a gear in good condition is expected to be dominated by a periodic signal at the gear mesh frequency. If one or a small number of gear teeth contain damage or faults, the signal will change, possibly showing increased amplitude, local phase changes or both near the damaged region of the gear. FM0 increases if a signal contains a local increase in amplitude. FM4 increases if a signal contains a local increase in amplitude or local phase change in a periodic signal. Over the years, other single value metrics were also introduced to detect the onset and growth of damage in gears. These various metrics have detected faults in several gear tests in experimental test rigs. Conditions in these tests have been steady state in the

  13. A locomotive-track coupled vertical dynamics model with gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2017-02-01

    A gear transmission system is a key element in a locomotive for the transmission of traction or braking forces between the motor and the wheel-rail interface. Its dynamic performance has a direct effect on the operational reliability of the locomotive and its components. This paper proposes a comprehensive locomotive-track coupled vertical dynamics model, in which the locomotive is driven by axle-hung motors. In this coupled dynamics model, the dynamic interactions between the gear transmission system and the other components, e.g. motor and wheelset, are considered based on the detailed analysis of its structural properties and working mechanism. Thus, the mechanical transmission system for power delivery from the motor to the wheelset via gear transmission is coupled with a traditional locomotive-track dynamics system via the wheel-rail contact interface and the gear mesh interface. This developed dynamics model enables investigations of the dynamic performance of the entire dynamics system under the excitations from the wheel-rail contact interface and/or the gear mesh interface. Dynamic interactions are demonstrated by numerical simulations using this dynamics model. The results indicate that both of the excitations from the wheel-rail contact interface and the gear mesh interface have a significant effect on the dynamic responses of the components in this coupled dynamics system.

  14. The impact of various distance between axes of worm gear on torque value. Worm gear test stand

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.

    2017-08-01

    Transferring both rotational and translational movements in systems used in the automotive industry is a very important and complex issue. In addition, the situation becomes much more difficult and complicated when the design of the transition system requires a high precision of operation as well as a well definite and long operating life. Such requirements are imposed on all components of today’s motor vehicles. However, particular attention is paid to the elements that directly or indirectly affect the safety of persons traveling in the vehicle. Such components are undoubtedly components included as parts of the steering system of the vehicle. Power steering systems have been present in motor vehicles for more than a century. They go through continuous metamorphosis and they are getting better and better. Current power steering systems are based on an electric motor and some kind of transmission. Depending on the position of the drive relative to the steering column, different configurations of the transmission are used. This article will cover issues related to tests of power steering gearing using a worm drive. The worm drive is a very specific example of a propulsion system that uses twisted axles. Normally, in this type of transition you can find two gear units with the axis mounted with a 90° angle between. The components of the worm drive are a worm and a worm gear, also called a worm wheel. In terms of the geometrical form, the worm resembles a helical spur gear. The shape of the worm is similar to the shape of a screw with a trapezoidal thread. A correct matching of these two components ensures proper operation of the entire transmission. Incorrect positioning of the components in relation to each other can significantly reduce the lifetime of the drive unit, and also lead to abnormal work, eg by raising the noise level. This article describes a test method of finding the appropriate distance between the axles of both worm drive units by testing the

  15. Modified Involute Helical Gears: Computerized Design, Simulation of Meshing, and Stress Analysis

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert (Technical Monitor); Litvin, Faydor L.; Gonzalez-Perez, Ignacio; Carnevali, Luca; Kawasaki, Kazumasa; Fuentes-Aznar, Alfonso

    2003-01-01

    The computerized design, methods for generation, simulation of meshing, and enhanced stress analysis of modified involute helical gears is presented. The approaches proposed for modification of conventional involute helical gears are based on conjugation of double-crowned pinion with a conventional helical involute gear. Double-crowning of the pinion means deviation of cross-profile from an involute one and deviation in longitudinal direction from a helicoid surface. Using the method developed, the pinion-gear tooth surfaces are in point-contact, the bearing contact is localized and oriented longitudinally, and edge contact is avoided. Also, the influence of errors of aligment on the shift of bearing contact, vibration, and noise are reduced substantially. The theory developed is illustrated with numerical examples that confirm the advantages of the gear drives of the modified geometry in comparison with conventional helical involute gears.

  16. Modified Involute Helical Gears: Computerized Design, Simulation of Meshing and Stress Analysis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The computerized design, methods for generation, simulation of meshing, and enhanced stress analysis of modified involute helical gears is presented. The approaches proposed for modification of conventional involute helical gears are based on conjugation of double-crowned pinion with a conventional helical involute gear. Double-crowning of the pinion means deviation of cross-profile from an involute one and deviation in longitudinal direction from a helicoid surface. Using the method developed, the pinion-gear tooth surfaces are in point-contact, the bearing contact is localized and oriented longitudinally, and edge contact is avoided. Also, the influence of errors of alignment on the shift of bearing contact, vibration, and noise are reduced substantially. The theory developed is illustrated with numerical examples that confirm the advantages of the gear drives of the modified geometry in comparison with conventional helical involute gears.

  17. 46 CFR 167.65-25 - Steering gear tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Steering gear tests. 167.65-25 Section 167.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the...

  18. 46 CFR 167.65-25 - Steering gear tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steering gear tests. 167.65-25 Section 167.65-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Operating Requirements § 167.65-25 Steering gear tests. On all nautical school ships making voyages of more than 48 hours' duration, the...

  19. Shifting gears: Diversification, intensification, and effort increases in small-scale fisheries (1950-2010)

    PubMed Central

    Gergel, Sarah E.; Vincent, Amanda C. J.

    2018-01-01

    Locally sustainable resource extraction activities, at times, transform into ecologically detrimental enterprises. Understanding such transitions is a primary challenge for conservation and management of many ecosystems. In marine systems, over-exploitation of small-scale fisheries creates problems such as reduced biodiversity and lower catches. However, long-term documentation of how governance and associated changes in fishing gears may have contributed to such declines is often lacking. Using fisher interviews, we characterized fishing gear dynamics over 60 years (1950–2010) in a coral reef ecosystem in the Philippines subject to changing fishing regulations. In aggregate fishers greatly diversified their use of fishing gears. However, most individual fishers used one or two gears at a time (mean number of fishing gears < 2 in all years). Individual fishing effort (days per year) was fairly steady over the study period, but cumulative fishing effort by all fishers increased 240%. In particular, we document large increases in total effort by fishers using nets and diving. Other fishing gears experienced less pronounced changes in total effort over time. Fishing intensified through escalating use of non-selective, active, and destructive fishing gears. We also found that policies promoting higher production over sustainability influenced the use of fishing gears, with changes in gear use persisting decades after those same policies were stopped. Our quantitative evidence shows dynamic changes in fishing gear use over time and indicates that gears used in contemporary small-scale fisheries impact oceans more than those used in earlier decades. PMID:29538370

  20. The surface fatigue life of contour induction hardened AISI 1552 gears

    NASA Astrophysics Data System (ADS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-07-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  1. The Surface Fatigue Life of Contour Induction Hardened AISI 1552 Gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Turza, Alan; Chaplin, Mike

    1995-01-01

    Two groups of spur gears manufactured from two different materials and heat treatments were endurance tested for surface fatigue life. One group was manufactured from AISI 1552 and was finished ground to a 0.4 micron (16 micro-in.) rms surface finish and then dual frequency contour induction hardened. The second group was manufactured from CEVM AISI 9310 and was carburized, hardened, and ground to a 0.4 micron (16 micro-in.) rms surface finish. The gear pitch diameter was 8.89 cm (3.5 in.). Test conditions were a maximum Hertz stress of 1.71 GPa (248 ksi), a bulk gear temperature of approximately 350 K (170 F) and a speed of 10,000 rpm. The lubricant used for the tests was a synthetic paraffinic oil with an additive package. The test results showed that the 10 percent surface fatigue (pitting) life of the contour hardened AISI 1552 test gears was 1.7 times that of the carburized and hardened AISI 9310 test gears. Also there were two early failures of the AISI 1552 gears by bending fatigue.

  2. 41. #1 ARRESTING GEAR ENGINE AFT LOOKING FORWARD PORT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. #1 ARRESTING GEAR ENGINE - AFT LOOKING FORWARD PORT TO STARBOARD SHOWING ARRESTING GEAR ENGINE ACCUMULATOR, AIR FLASK, CONTROL VALVE, WITH CONTROL RAM, SHEAVES AND WIRES UNDERNEATH ENGINE STAND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  3. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  4. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  5. 50 CFR Table 15 to Part 679 - Gear Codes, Descriptions, and Use

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following: Alpha gear code NMFS logbooks Electronic check-in/ check-out Use numeric code to complete the following: Numeric gear code IERS eLandings ADF&G COAR NMFS AND ADF&G GEAR CODES Hook-and-line HAL X X 61 X...

  6. Integrating Condition Indicators and Usage Parameters for Improved Spiral Bevel Gear Health Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert R.

    2013-01-01

    The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Six gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.

  7. Integrating Condition Indicators and Usage Parameters for Improved Spiral Bevel Gear Health Monitoring

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Handschuh, Robert F.; Delgado, Irebert, R.

    2013-01-01

    The objective of this study was to illustrate the importance of combining Health Usage Monitoring Systems (HUMS) data with usage monitoring system data when detecting rotorcraft transmission health. Three gear sets were tested in the NASA Glenn Spiral Bevel Gear Fatigue Rig. Damage was initiated and progressed on the gear and pinion teeth. Damage progression was measured by debris generation and documented with inspection photos at varying torque values. A contact fatigue analysis was applied to the gear design indicating the effect temperature, load and reliability had on gear life. Results of this study illustrated the benefits of combining HUMS data and actual usage data to indicate progression of damage for spiral bevel gears.

  8. Gear wear monitoring by modulation signal bispectrum based on motor current signal analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Gu, Fengshou; Mansaf, Haram; Wang, Tie; Ball, Andrew D.

    2017-09-01

    Gears are important mechanical components for power transmissions. Tooth wear is one of the most common failure modes, which can present throughout a gear's lifetime. It is significant to accurately monitor gear wear progression in order to take timely predictive maintenances. Motor current signature analysis (MCSA) is an effective and non-intrusive approach which is able to monitor faults from both electrical and mechanical systems. However, little research has been reported in monitoring the gear wear and estimating its severity based on MCSA. This paper presents a novel gear wear monitoring method through a modulation signal bispectrum based motor current signal analysis (MSB-MCSA). For a steady gear transmission, it is inevitable to exist load and speed oscillations due to various errors including wears. These oscillations can induce small modulations in the current signals of the driving motor. MSB is particularly effective in characterising such small modulation signals. Based on these understandings, the monitoring process was implemented based on the current signals from a run-to-failure test of an industrial two stages helical gearbox under a moderate accelerated fatigue process. At the initial operation of the test, MSB analysis results showed that the peak values at the bifrequencies of gear rotations and the power supply can be effective monitoring features for identifying faulty gears and wear severity as they exhibit agreeable changes with gear loads. A monotonically increasing trend established by these features allows a clear indication of the gear wear progression. The dismantle inspection at 477 h of operation, made when one of the monitored features is about 123% higher than its baseline, has found that there are severe scuffing wear marks on a number of tooth surfaces on the driving gear, showing that the gear endures a gradual wear process during its long test operation. Therefore, it is affirmed that the MSB-MSCA approach proposed is reliable

  9. A Life Study of Ausforged, Standard Forged and Standard Machined AISI M-50 Spur Gears

    NASA Technical Reports Server (NTRS)

    Townsend, D. P.; Bamberger, E. N.; Zaretsky, E. V.

    1975-01-01

    Tests were conducted at 350 K (170 F) with three groups of 8.9 cm (3.5 in.) pitch diameter spur gears made of vacuum induction melted (VIM) consumable-electrode vacuum-arc melted (VAR), AISI M-50 steel and one group of vacuum-arc remelted (VAR) AISI 9310 steel. The pitting fatigue life of the standard forged and ausforged gears was approximately five times that of the VAR AISI 9310 gears and ten times that of the bending fatigue life of the standard machined VIM-VAR AISI M-50 gears run under identical conditions. There was a slight decrease in the 10-percent life of the ausforged gears from that for the standard forged gears, but the difference is not statistically significant. The standard machined gears failed primarily by gear tooth fracture while the forged and ausforged VIM-VAR AISI M-50 and the VAR AISI 9310 gears failed primarily by surface pitting fatigue. The ausforged gears had a slightly greater tendency to fail by tooth fracture than the standard forged gears.

  10. A dynamic model to determine vibrations in involute helical gears

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Vedmar, L.

    2003-02-01

    A method to determine the dynamic load between two rotating elastic helical gears is presented. The stiffness of the gear teeth is calculated using the finite element method and includes the contribution from the elliptic distributed tooth load. To make sure that the new incoming contacts which are the main excitation source are properly simulated, the necessary deformation of the gears is determined by using the true geometry and positions of the gears for every time step of the dynamic calculation. This allows the contact to be positioned outside the plane of action. A numerical example is presented with figures that show the behaviour of the dynamic transmission error as well as the variation of the contact pressure due to the dynamic load for different rotational speeds.

  11. Gear noise, vibration, and diagnostic studies at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Oswald, Fred B.; Townsend, Dennis P.; Coy, John J.

    1990-01-01

    The NASA Lewis Research Center and the U.S. Army Aviation Systems Command are involved in a joint research program to advance the technology of rotorcraft transmissions. This program consists of analytical as well as experimental efforts to achieve the overall goals of reducing weight, noise, and vibration, while increasing life and reliability. Recent analytical activities are highlighted in the areas of gear noise, vibration, and diagnostics performed in-house and through NASA and U.S. Army sponsored grants and contracts. These activities include studies of gear tooth profiles to reduce transmission error and vibration as well as gear housing and rotordynamic modeling to reduce structural vibration transmission and noise radiation, and basic research into current gear failure diagnostic methodologies. Results of these activities are presented along with an overview of near term research plans in the gear noise, vibration, and diagnostics area.

  12. Topics in landing gear dynamics research at NASA Langley

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr.; Tanner, J. A.

    1986-01-01

    Four topics in landing gear dynamics are discussed. Three of these topics are subjects of recent research: tilt steering phenomenon, water spray ingestion on flooded runways, and actively controlled landing gear. The fourth topic is a description of a major facility recently enhanced in capability.

  13. D Modelling with the Samsung Gear 360

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2017-02-01

    The Samsung Gear 360 is a consumer grade spherical camera able to capture photos and videos. The aim of this work is to test the metric accuracy and the level of detail achievable with the Samsung Gear 360 coupled with digital modelling techniques based on photogrammetry/computer vision algorithms. Results demonstrate that the direct use of the projection generated inside the mobile phone or with Gear 360 Action Direction (the desktop software for post-processing) have a relatively low metric accuracy. As results were in contrast with the accuracy achieved by using the original fisheye images (front and rear facing images) in photogrammetric reconstructions, an alternative solution to generate the equirectangular projections was developed. A calibration aimed at understanding the intrinsic parameters of the two lenses camera, as well as their relative orientation, allowed one to generate new equirectangular projections from which a significant improvement of geometric accuracy has been achieved.

  14. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2009-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear tooth pitting fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4) were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters performed average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant amount of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  15. Analytical and Experimental Vibration Analysis of a Faulty Gear System.

    DTIC Science & Technology

    1994-10-01

    Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.

  16. High Strength P/M Gears for Vehicle Transmissions - Phase 2

    DTIC Science & Technology

    2008-08-15

    and while it was considered amenable to standard work material transfer ("blue steel" chutes for example) from other P/M processing equipment, no...depend of the machine design but should be kept to a minimum in order to minimize part transfer times. Position control of the linear axis is...Establish design of ausform gear finishing machine for P/M gears: The "Focus" part identified in phase I (New Process Planet gear P/N 17864, component

  17. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  18. Zero torque gear head wrench

    NASA Technical Reports Server (NTRS)

    Mcdougal, A. R.; Norman, R. M. (Inventor)

    1976-01-01

    A gear head wrench particularly suited for use in applying torque to bolts without transferring torsional stress to bolt-receiving structures is introduced. The wrench is characterized by a coupling including a socket, for connecting a bolt head with a torque multiplying gear train, provided within a housing having an annulus concentrically related to the socket and adapted to be coupled with a spacer interposed between the bolt head and the juxtaposed surface of the bolt-receiving structure for applying a balancing counter-torque to the spacer as torque is applied to the bolt head whereby the bolt-receiving structure is substantially isolated from torsional stress. As a result of the foregoing, the operator of the wrench is substantially isolated from any forces which may be imposed.

  19. Local Synthesis and Tooth Contact Analysis of Face-Milled Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Yi

    1991-01-01

    Computerized simulation of meshing and bearing contact for spiral bevel gears and hypoid gears is a significant achievement that could substantially improve the technology and the quality of the gears. An approach to the synthesis of face-milled spiral bevel gears and their tooth contact analysis is presented. The proposed approach is based on the following ideas: application of the principle of local synthesis that provides optimal conditions of meshing and contact at the mean contact point, M, and in the neighborhood of M; and application of relations between principle directions and curvatures for surfaces being in line contact or in point contact. The developed local synthesis of gears provides the following: (1) the required gear ratio at M; (2) a localized bearing contact with the desired direction of the tangent to the contact path on gear tooth surface and the desired length of the major axis of contact ellipse at M; (3) a predesigned parabolic function of a controlled level for transmission errors which enables absorption of linear functions of transmission errors caused by misalignment and reduces the level of vibrations. The proposed approach does not require either the tilt of the head-cutter for the process of generation or modified roll for the pinion generation. Improved conditions of meshing and contact of the gears can be achieved without the above mentioned parameters. A computer program for determination of basic machine-tool settings and tooth contact analysis for the designed gears is presented. The approach is illustrated with a numerical example.

  20. Wear consideration in gear design for space applications

    NASA Technical Reports Server (NTRS)

    Akin, Lee S.; Townsend, Dennis P.

    1989-01-01

    A procedure is described that was developed for evaluating the wear in a set of gears in mesh under high load and low rotational speed. The method can be used for any low-speed gear application, with nearly negligible oil film thickness, and is especially useful in space stepping mechanism applications where determination of pointing error due to wear is important, such as in long life sensor antenna drives. A method is developed for total wear depth at the ends of the line of action using a very simple formula with the slide to roll ratio V sub s/V sub r. A method is also developed that uses the wear results to calculate the transmission error also known as pointing error of a gear mesh.

  1. Gearsketch: An Adaptive Drawing-Based Learning Environment for the Gears Domain

    ERIC Educational Resources Information Center

    Leenaars, Frank A.; Joolingen, Wouter R.; Gijlers, Hannie; Bollen, Lars

    2014-01-01

    GearSketch is a learning environment for the gears domain, aimed at students in the final years of primary school. It is designed for use with a touchscreen device and is based on ideas from drawing-based learning and research on cognitive tutors. At the heart of GearSketch is a domain model that is used to transform learners' strokes into…

  2. Development of a Model Based Technique for Gear Diagnostics using the Wigner-Ville method

    NASA Technical Reports Server (NTRS)

    Choy, F.; Xu, A.; Polyshchuk, V.

    1997-01-01

    Imperfections in gear tooth geometry often result from errors in the manufacturing process or excessive material wear during operation. Such faults in the gear tooth geometry can result in large vibrations in the transmission system, and, in some cases, may lead to early failure of the gear transmission system. This report presents the study of the effects of imperfection in gear tooth geometry on the dynamic characteristics of a gear transmission system. The faults in the gear tooth geometry are modeled numerically as the deviation of the tooth profile from its original involute geometry. The changes in gear mesh stiffness due to various profile and pattern variations are evaluated numerically. The resulting changes in the mesh stiffness are incorporated into a computer code to simulate the dynamics of the gear transmission system. A parametric study is performed to examine the sensitivity of gear tooth geometry imperfections on the vibration of a gear transmission system. The parameters variations in this study consist of the magnitude of the imperfection, the pattern of the profile variation, and the total number of teeth affected. Numerical results from the dynamic simulations are examined in both the time and the frequency domains. A joint time-frequency analysis procedure using the Wigner-Ville Distribution is also introduced to identify the location of the damaged tooth from the vibration signature. Numerical simulations of the system dynamics with gear faults were compared to experimental results. An optimal tracker was introduced to quantify the level of damage in the gear mesh system. Conclusions are drawn from the results of this numerical study.

  3. Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Tufts, Brian

    2007-01-01

    The power density of a gearbox is an important consideration for many applications and is especially important for gearboxes used on aircraft. One approach to improving power density of gearing is to improve the steel properties by design of the alloy. The alloy tested in this work was designed to be case-carburized with surface hardness of Rockwell C66 after hardening. Test gear performance was evaluated using surface fatigue tests and single-tooth bending fatigue tests. The performance of gears made from the new alloy was compared to the performance of gears made from two alloys currently used for aviation gearing. The new alloy exhibited significantly better performance in surface fatigue testing, demonstrating the value of the improved properties in the case layer. However, the alloy exhibited lesser performance in single-tooth bending fatigue testing. The fracture toughness of the tested gears was insufficient for use in aircraft applications as judged by the behavior exhibited during the single tooth bending tests. This study quantified the performance of the new alloy and has provided guidance for the design and development of next generation gear steels.

  4. Dynamic load-sharing characteristic analysis of face gear power-split gear system based on tooth contact characteristics

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Hu, Yahui

    2018-04-01

    The bend-torsion coupling dynamics load-sharing model of the helicopter face gear split torque transmission system is established by using concentrated quality standard, to analyzing the dynamic load-sharing characteristic. The mathematical models include nonlinear support stiffness, time-varying meshing stiffness, damping, gear backlash. The results showed that the errors collectively influenced the load sharing characteristics, only reduce a certain error, it is never fully reached the perfect loading sharing characteristics. The system load-sharing performance can be improved through floating shaft support. The above-method will provide a theoretical basis and data support for its dynamic performance optimization design.

  5. Numerical Simulations for Landing Gear Noise Generation and Radiation

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; Long, Lyle N.

    2002-01-01

    Aerodynamic noise from a landing gear in a uniform flow is computed using the Ffowcs Williams -Hawkings (FW-H) equation. The time accurate flow data on the surface is obtained using a finite volume flow solver on an unstructured and. The Ffowcs Williams-Hawkings equation is solved using surface integrals over the landing gear surface and over a permeable surface away from the landing gear. Two geometric configurations are tested in order to assess the impact of two lateral struts on the sound level and directivity in the far-field. Predictions from the Ffowcs Williams-Hawkings code are compared with direct calculations by the flow solver at several observer locations inside the computational domain. The permeable Ffowcs Williams-Hawkings surface predictions match those of the flow solver in the near-field. Far-field noise calculations coincide for both integration surfaces. The increase in drag observed between the two landing gear configurations is reflected in the sound pressure level and directivity mainly in the streamwise direction.

  6. Investigation of Current Methods to Identify Helicopter Gear Health

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.

    2007-01-01

    This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.

  7. Investigation of Current Methods to Identify Helicopter Gear Health

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.

    2007-01-01

    This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI s), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.

  8. Vibration Signature Analysis of a Faulted Gear Transmission System

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Huang, S.; Zakrajsek, J. J.; Handschuh, R. F.; Townsend, D. P.

    1994-01-01

    A comprehensive procedure in predicting faults in gear transmission systems under normal operating conditions is presented. Experimental data was obtained from a spiral bevel gear fatigue test rig at NASA Lewis Research Center. Time synchronous averaged vibration data was recorded throughout the test as the fault progressed from a small single pit to severe pitting over several teeth, and finally tooth fracture. A numerical procedure based on the Winger-Ville distribution was used to examine the time averaged vibration data. Results from the Wigner-Ville procedure are compared to results from a variety of signal analysis techniques which include time domain analysis methods and frequency analysis methods. Using photographs of the gear tooth at various stages of damage, the limitations and accuracy of the various techniques are compared and discussed. Conclusions are drawn from the comparison of the different approaches as well as the applicability of the Wigner-Ville method in predicting gear faults.

  9. Aerodynamics of a Gulfstream G550 Nose Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Khorrami, Mehdi R.; Choudhari, Meelan M.

    2009-01-01

    In this paper we discuss detailed steady and unsteady aerodynamic measurements of a Gulfstream G550 nose landing gear model. The quarter-scale, high-fidelity model includes part of the lower fuselage and the gear cavity. The full model configuration allowed for removal of various gear components (e.g. light cluster, steering mechanism, hydraulic lines, etc.) in order to document their effects on the local flow field. The measurements were conducted at a Reynolds number of 7.3 x 10(exp 4) based on the shock strut (piston) diameter and a freestream Mach number of 0.166. Additional data were also collected at lower Mach numbers of 0.12 and 0.145 and correspondingly lower Reynolds numbers. The boundary layer on the piston was tripped to enable turbulent flow separation, so as to better mimic the conditions encountered during flight. Steady surface pressures were gathered from an extensive number of static ports on the wheels, door, fuselage, and within the gear cavity. To better understand the resultant flow interactions between gear components, surface pressure fluctuations were collected via sixteen dynamic pressure sensors strategically placed on various subcomponents of the gear. Fifteen of the transducers were flush mounted on the gear surface at fixed locations, while the remaining one was a mobile transducer that could be placed at numerous varying locations. The measured surface pressure spectra are mainly broadband in nature, lacking any local peaks associated with coherent vortex shedding. This finding is in agreement with off-surface flow measurements using PIV that revealed the flow field to be a collection of separated shear layers without any dominant vortex shedding processes.

  10. HarmLES- Development of Dry Lubricated Harmonic Drives® Gears for Space Applications

    NASA Astrophysics Data System (ADS)

    Jansson, Markus; Koenen, Hans; Brizuela, Marta; Vivente, Jose-Luis; Merstallinger, Andreas

    2015-09-01

    Harmonic Drive® gears are used in several space flight mechanisms such as SADM’s or pointing mechanisms. Main reasons for choosing the gears are advantages like zero backlash, high gear stiffness and high transmission accuracy. Nowadays typically grease lubrication is used, whereas this is linked to the risk of outgassing and limits the operational temperature.In order to increase the temperature range, trials to apply solid lubricants to Harmonic Drive® gears, were performed. Based on these trials it was found that the gears can be operated even at -269°C. Anyhow, although being used in various cryogenic applications, the reachable lifetime is comparably short. So as to improve the achievable endurance an essential development was necessary. Hence the EU - funded project HarmLES was executed in order to significantly increase the accessible lifetime. Following an integrated approach covering gear design, materials and coating, the prototype of a new Harmonic Drive® gear type was developed.

  11. Gear Fault Detection Effectiveness as Applied to Tooth Surface Pitting Fatigue Damage

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Dempsey, Paula J.; Heath, Gregory F.; Shanthakumaran, Perumal

    2010-01-01

    A study was performed to evaluate fault detection effectiveness as applied to gear-tooth-pitting-fatigue damage. Vibration and oil-debris monitoring (ODM) data were gathered from 24 sets of spur pinion and face gears run during a previous endurance evaluation study. Three common condition indicators (RMS, FM4, and NA4 [Ed. 's note: See Appendix A-Definitions D were deduced from the time-averaged vibration data and used with the ODM to evaluate their performance for gear fault detection. The NA4 parameter showed to be a very good condition indicator for the detection of gear tooth surface pitting failures. The FM4 and RMS parameters perfomu:d average to below average in detection of gear tooth surface pitting failures. The ODM sensor was successful in detecting a significant 8lDOunt of debris from all the gear tooth pitting fatigue failures. Excluding outliers, the average cumulative mass at the end of a test was 40 mg.

  12. Conductive ink print on PA66 gear for manufacturing condition monitoring sensors

    NASA Astrophysics Data System (ADS)

    Futagawa, Shintaro; Iba, Daisuke; Kamimoto, Takahiro; Nakamura, Morimasa; Miura, Nanako; Iizuka, Takashi; Masuda, Arata; Sone, Akira; Moriwaki, Ichiro

    2018-03-01

    Failures detection of rotating machine elements, such as gears, is an important issue. The purpose of this study was to try to solve this issue by printing conductive ink on gears to manufacture condition-monitoring sensors. In this work, three types of crack detection sensor were designed and the sprayed conductive ink was directly sintered on polyimide (PI) - coated polyamide (PA) 66 gears by laser. The result showed that it was possible to produce narrow circuit lines of the conductive ink including Ag by laser sintering technique and the complex shape sensors on the lateral side of the PA66 gears, module 1.0 mm and tooth number 48. A preliminary operation test was carried out for investigation of the function of the sensors. As a result of the test, the sensors printed in this work should be effective for detecting cracks at tooth root of the gears and will allow for the development of better equipment and detection techniques for health monitoring of gears.

  13. Computerized Design of Low-noise Face-milled Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, YI; Handschuh, Robert F.

    1994-01-01

    An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the 'best' machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.

  14. Computerized design of low-noise face-milled spiral bevel gears

    NASA Astrophysics Data System (ADS)

    Litvin, Faydor L.; Zhang, Yi; Handschuh, Robert F.

    1994-08-01

    An advanced design methodology is proposed for the face-milled spiral bevel gears with modified tooth surface geometry that provides a reduced level of noise and has a stabilized bearing contact. The approach is based on the local synthesis of the gear drive that provides the 'best' machine-tool settings. The theoretical aspects of the local synthesis approach are based on the application of a predesigned parabolic function for absorption of undesirable transmission errors caused by misalignment and the direct relations between principal curvatures and directions for mating surfaces. The meshing and contact of the gear drive is synthesized and analyzed by a computer program. The generation of gears with the proposed geometry design can be accomplished by application of existing equipment. A numerical example that illustrates the proposed theory is presented.

  15. 46 CFR 58.25-70 - Steering-gear control systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Steering-gear control systems. 58.25-70 Section 58.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... gear must be operable from the pilothouse by mechanical, hydraulic, electrical, or other means...

  16. 46 CFR 58.25-70 - Steering-gear control systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Steering-gear control systems. 58.25-70 Section 58.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... gear must be operable from the pilothouse by mechanical, hydraulic, electrical, or other means...

  17. 46 CFR 58.25-70 - Steering-gear control systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steering-gear control systems. 58.25-70 Section 58.25-70 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... gear must be operable from the pilothouse by mechanical, hydraulic, electrical, or other means...

  18. Early Outcomes of the GEAR UP Program. Final Report

    ERIC Educational Resources Information Center

    Standing, Kim; Judkins, David; Keller, Brad; Shimshak, Amy

    2008-01-01

    In 1998, Congress authorized the Gaining Early Awareness and Readiness for Undergraduate Programs (GEAR UP) program. The purpose of the program is to foster increased knowledge, expectations, and preparation for postsecondary education among low-income students and their families. GEAR UP projects may provide services to students, parents and…

  19. 29 CFR 1919.28 - Unit proof tests-cranes and gear accessory thereto.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Unit proof tests-cranes and gear accessory thereto. 1919.28... ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) GEAR CERTIFICATION Certification of Vessels: Tests and Proof Loads; Heat Treatment; Competent Persons § 1919.28 Unit proof tests—cranes and gear accessory thereto...

  20. The development and production of thermo-mechanically forged tool steel spur gears

    NASA Technical Reports Server (NTRS)

    Bamberger, E. N.

    1973-01-01

    A development program to establish the feasibility and applicability of high energy rate forging procedures to tool steel spur gears was performed. Included in the study were relatively standard forging procedures as well as a thermo-mechanical process termed ausforming. The subject gear configuration utilized was essentially a standard spur gear having 28 teeth, a pitch diameter of 3.5 inches and a diametral pitch of 8. Initially it had been planned to use a high contact ratio gear design, however, a comprehensive evaluation indicated that severe forging problems would be encountered as a result of the extremely small teeth required by this type of design. The forging studies were successful in achieving gear blanks having integrally formed teeth using both standard and thermo-mechanical forging procedures.