Science.gov

Sample records for reduction reaction catalysis

  1. Selenium catalyzed Fe(III)-EDTA reduction by Na2SO3: a reaction-controlled phase transfer catalysis.

    PubMed

    Xiang, Kaisong; Liu, Hui; Yang, Bentao; Zhang, Cong; Yang, Shu; Liu, Zhilou; Liu, Cao; Xie, Xiaofeng; Chai, Liyuan; Min, Xiaobo

    2016-04-01

    Fe(II)-EDTA, a typical chelated iron, is able to coordinate with nitric oxide (NO) which accelerates the rates and kinetics of the absorption of flue gas. However, Fe(II)-EDTA can be easily oxidized to Fe(III)-EDTA which is unable to absorb NO. Therefore, the regeneration of fresh Fe(II)-EDTA, which actually is the reduction of Fe(III)-EDTA to Fe(II)-EDTA, becomes a crucial step in the denitrification process. To enhance the reduction rate of Fe(III)-EDTA, selenium was introduced into the SO3 (2-)/Fe(III)-EDTA system as catalyst for the first time. By comparison, the reduction rate was enhanced by four times after adding selenium even at room temperature (25 °C). Encouragingly, elemental Se could precipitate out when SO3 (2-) was consumed up by oxidation to achieve self-separation. A catalysis mechanism was proposed with the aid of ultraviolet-visible (UV-Vis) spectroscopy, Tyndall scattering, horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR) spectroscopy, and X-ray diffraction (XRD). In the catalysis process, the interconversion between SeSO3 (2-) and nascent Se formed a catalysis circle for Fe(III)-EDTA reduction in SO3 (2-) circumstance. PMID:26888642

  2. Catalysis in reaction networks.

    PubMed

    Gopalkrishnan, Manoj

    2011-12-01

    We define catalytic networks as chemical reaction networks with an essentially catalytic reaction pathway: one which is "on" in the presence of certain catalysts and "off" in their absence. We show that examples of catalytic networks include synthetic DNA molecular circuits that have been shown to perform signal amplification and molecular logic. Recall that a critical siphon is a subset of the species in a chemical reaction network whose absence is forward invariant and stoichiometrically compatible with a positive point. Our main theorem is that all weakly-reversible networks with critical siphons are catalytic. Consequently, we obtain new proofs for the persistence of atomic event-systems of Adleman et al., and normal networks of Gnacadja. We define autocatalytic networks, and conjecture that a weakly-reversible reaction network has critical siphons if and only if it is autocatalytic. PMID:21503834

  3. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  4. Reaction Selectivity in Heterogeneous Catalysis

    SciTech Connect

    Somorjai, Gabor A.; Kliewer, Christopher J.

    2009-02-02

    The understanding of selectivity in heterogeneous catalysis is of paramount importance to our society today. In this review we outline the current state of the art in research on selectivity in heterogeneous catalysis. Current in-situ surface science techniques have revealed several important features of catalytic selectivity. Sum frequency generation vibrational spectroscopy has shown us the importance of understanding the reaction intermediates and mechanism of a heterogeneous reaction, and can readily yield information as to the effect of temperature, pressure, catalyst geometry, surface promoters, and catalyst composition on the reaction mechanism. DFT calculations are quickly approaching the ability to assist in the interpretation of observed surface spectra, thereby making surface spectroscopy an even more powerful tool. HP-STM has revealed three vitally important parameters in heterogeneous selectivity: adsorbate mobility, catalyst mobility, and selective site-blocking. The development of size controlled nanoparticles from 0.8 to 10 nm, of controlled shape, and of controlled bimetallic composition has revealed several important variables for catalytic selectivity. Lastly, DFT calculations may be paving the way to guiding the composition choice for multi-metallic heterogeneous catalysis for the intelligent design of catalysts incorporating the many factors of selectivity we have learned.

  5. Hydrocracking reactions and catalysis

    SciTech Connect

    Dolbear, G.E.

    1995-12-31

    Hydrocracking processes convert aromatic gas oils into high quality gasoline, diesel, and turbine stocks. In doing this, they saturate aromatic rings, crack naphthenes and paraffins, and saturate olefins formed during cracking. The organic chemistry of these steps is well known. Catalysts for hydrocracking contain components for both the hydrogenation and cracking reactions. Hydrogenation activity is provided by Pd or promoted molybdenum or tungsten sulfides. Cracking takes place on strong acid sites in zeolites or amorphous silica aluminas. Specialty catalysts including narrow pore zeolites are used in dewaxing tube oil stocks. Basic nitrogen compounds such as quinoline can poison the acid sites. They are usually removed in a pretreating step, typically with a nickel/molybdenum sulfide catalyst that also removes sulfur.

  6. Micelle Catalysis of an Aromatic Substitution Reaction

    ERIC Educational Resources Information Center

    Corsaro, Gerald; Smith J. K.

    1976-01-01

    Describes an experiment in which the iodonation of aniline reaction is shown to undergo catalysis in solution of sodium lauryl sulfate which forms micelles with negatively charged pseudo surfaces. (MLH)

  7. Diffusion and Surface Reaction in Heterogeneous Catalysis

    ERIC Educational Resources Information Center

    Baiker, A.; Richarz, W.

    1978-01-01

    Ethylene hydrogenation on a platinum catalyst, electrolytically applied to a tube wall, is a good system for the study of the interactions between diffusion and surface reaction in heterogeneous catalysis. Theoretical background, apparatus, procedure, and student performance of this experiment are discussed. (BB)

  8. MOF catalysis of Fe(II)-to-Fe(III) reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(vi) reduction by iron(ii) under ambient conditions.

    PubMed

    Xiong, Yang Yang; Li, Jian Qiang; Yan, Chang Sheng; Gao, Heng Ya; Zhou, Jian Ping; Gong, Le Le; Luo, Ming Biao; Zhang, Le; Meng, Pan Pan; Luo, Feng

    2016-08-01

    Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required. PMID:27380820

  9. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  10. Biodiesel forming reactions using heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  11. GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS

    EPA Science Inventory

    Green chemical synthesis through catalysis and alternate reaction conditions

    Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...

  12. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    PubMed Central

    Holby, Edward F.; Taylor, Christopher D.

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  13. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: role of *OH ligands.

    PubMed

    Holby, Edward F; Taylor, Christopher D

    2015-01-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date. PMID:25788358

  14. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    NASA Astrophysics Data System (ADS)

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-01

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O2 bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H2O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  15. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    DOE PAGESBeta

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH boundmore » structures have the highest calculated activity to date.« less

  16. Activity of N-coordinated multi-metal-atom active site structures for Pt-free oxygen reduction reaction catalysis: Role of *OH ligands

    SciTech Connect

    Holby, Edward F.; Taylor, Christopher D.

    2015-03-19

    We report calculated oxygen reduction reaction energy pathways on multi-metal-atom structures that have previously been shown to be thermodynamically favorable. We predict that such sites have the ability to spontaneously cleave the O₂ bond and then will proceed to over-bind reaction intermediates. In particular, the *OH bound state has lower energy than the final 2 H₂O state at positive potentials. Contrary to traditional surface catalysts, this *OH binding does not poison the multi-metal-atom site but acts as a modifying ligand that will spontaneously form in aqueous environments leading to new active sites that have higher catalytic activities. These *OH bound structures have the highest calculated activity to date.

  17. γ-Amino alcohols via organocascade reactions involving dienamine catalysis.

    PubMed

    Appayee, Chandrakumar; Fraboni, Americo J; Brenner-Moyer, Stacey E

    2012-10-01

    Whereas cascade reactions catalyzed by secondary amines combine iminium- and/or enamine-catalyzed reactions, we introduce the feasibility of combining these modes of catalysis with dienamine-catalysis as a new general mechanism for cascade reactions. Enantioenriched β-functionalized-γ-amino alcohols were produced from simple achiral enals in one flask by combining dienamine- and iminium-catalyzed intermolecular reactions. Reaction products are precursors of γ-amino acids, γ-lactams, and pyrrolidines; one was employed in a synthesis of γ-amino acid (S)-vigabatrin, the bioactive enantiomer of Sabril. PMID:22970912

  18. Facial synthesis of PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges and their enhanced catalysis for oxygen reduction reaction.

    PubMed

    Zhu, Zhijun; Zhai, Yanling; Dong, Shaojun

    2014-10-01

    Constructing electrocatalysts with enhanced activity and stability is necessary due to the increasing demands of the fuel cell industry. This work demonstrates a facile approach to synthesize well-defined three-dimensional (3D) PtM (M = Fe, Co, Cu, Ni) bimetallic alloy nanosponges (BANs) in the presence of Al. Significantly, with the aid of Al, the as-prepared BANs exhibit greatly enhanced electrochemistry catalytic activity in an oxygen reduction reaction (ORR), and PtFe BANs appear the best ORR property among the four BANs and commercial Pt/C catalysts. This work may provide a universal approach for convenient and large-scale fabrication of porous bimetallic nanocatalysts, thus providing promising potential application as an efficient cathodic component in fuel cells for industrial production. PMID:25223424

  19. Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers: An electrochemical study in solution and a membrane-electrode-assembly study in fuel cells

    NASA Astrophysics Data System (ADS)

    He, Qinggang; Mugadza, Tawanda; Kang, Xiongwu; Zhu, Xiaobing; Chen, Shaowei; Kerr, John; Nyokong, Tebello

    2012-10-01

    This study was motivated by the need for improved understanding of the kinetics and transport phenomena in a homogeneous catalyst system for the oxygen reduction reaction (ORR). Direct interaction between the sulfonic groups of Nafion and an Fe(III) meso-tetra(N-methyl-4-pyridyl) porphine chloride (Fe(III)TMPyP) compound was observed using FTIR and in situ UV-Vis spectroelectrochemical characterizations. A positive shift of the half wave potential value (E1/2) for ORR on the iron porphyrin catalyst (Fe(III)TMPyP) was observed upon addition of a specific quantity of Nafion ionomer on a glassy carbon working electrode, indicating not only a faster charge transfer rate but also the role of protonation in the oxygen reduction reaction (ORR) process. A membrane electrode assembly (MEA) was made as a sandwich of a Pt-coated anode, a Nafion® 212 membrane, and a Fe(III)TMPyP + Nafion ionomer-coated cathode. This three-dimensional catalysis system has been demonstrated to be working in a H2/O2 proton exchange membrane (PEM) fuel cell test.

  20. Computational Catalysis Using the Artificial Force Induced Reaction Method.

    PubMed

    Sameera, W M C; Maeda, Satoshi; Morokuma, Keiji

    2016-04-19

    The artificial force induced reaction (AFIR) method in the global reaction route mapping (GRRM) strategy is an automatic approach to explore all important reaction paths of complex reactions. Most traditional methods in computational catalysis require guess reaction paths. On the other hand, the AFIR approach locates local minima (LMs) and transition states (TSs) of reaction paths without a guess, and therefore finds unanticipated as well as anticipated reaction paths. The AFIR method has been applied for multicomponent organic reactions, such as the aldol reaction, Passerini reaction, Biginelli reaction, and phase-transfer catalysis. In the presence of several reactants, many equilibrium structures are possible, leading to a number of reaction pathways. The AFIR method in the GRRM strategy determines all of the important equilibrium structures and subsequent reaction paths systematically. As the AFIR search is fully automatic, exhaustive trial-and-error and guess-and-check processes by the user can be eliminated. At the same time, the AFIR search is systematic, and therefore a more accurate and comprehensive description of the reaction mechanism can be determined. The AFIR method has been used for the study of full catalytic cycles and reaction steps in transition metal catalysis, such as cobalt-catalyzed hydroformylation and iron-catalyzed carbon-carbon bond formation reactions in aqueous media. Some AFIR applications have targeted the selectivity-determining step of transition-metal-catalyzed asymmetric reactions, including stereoselective water-tolerant lanthanide Lewis acid-catalyzed Mukaiyama aldol reactions. In terms of establishing the selectivity of a reaction, systematic sampling of the transition states is critical. In this direction, AFIR is very useful for performing a systematic and automatic determination of TSs. In the presence of a comprehensive description of the transition states, the selectivity of the reaction can be calculated more accurately

  1. Nucleophilic Aromatic Substitution Reactions in Water Enabled by Micellar Catalysis.

    PubMed

    Isley, Nicholas A; Linstadt, Roscoe T H; Kelly, Sean M; Gallou, Fabrice; Lipshutz, Bruce H

    2015-10-01

    Given the huge dependence on dipolar, aprotic solvents such as DMF, DMSO, DMAc, and NMP in nucleophilic aromatic substitution reactions (SNAr), a simple and environmentally friendly alternative is reported. Use of a "benign-by-design" nonionic surfactant, TPGS-750-M, in water enables nitrogen, oxygen, and sulfur nucleophiles to participate in SNAr reactions. Aromatic and heteroaromatic substrates readily participate in this micellar catalysis, which takes place at or near ambient temperatures. PMID:26368348

  2. Water gas shift reaction: homogeneous catalysis by ruthenium and other metal carbonyls

    SciTech Connect

    Ford, P.C.

    1981-02-01

    A number of chemical systems are active for homogeneous, solution phase catalysis of the water gas shift reaction (WGSR). Catalysis of the shift reaction appears to be a quite general property of carbonyl complexes in alkaline solutions. The key mechanistic steps for which some kinetics information is available are the activation of coordinated CO by reaction with hydroxide and the reductive elimination of dihydrogen from a resulting metal hydride. Which of these is rate limiting in a cycle is a function of the specific metal system and the specific reaction conditions. A basic solution is not a necessary condition for WGSR catalysis. Although WGSR catalysis is not as general a phenomenon in acidic media, several such systems have been characterized with activities which compare very favorably to those seen in basic solutions. While logical mechanisms have been proposed for several of the better characterized catalysts, it is clear that a more complete mechanistic understanding of the key steps in potential cycles is greatly needed. Recognition of such needs has led to fundamental studies into the acid/base natures of metal carbonyl hydride clusters, of CO activation on cluster and mononuclear metal carbonyls by bases, and of dihydrogen elimination from and declusterification and clusterification reactions of metal carbonyl hydrides. While none of these processes is in itself catalytic, the sum of several represents possible cycles. With regard to the future of homogeneous WGSR catalysts, it is obvious that under the conditions which these have been tested, the known systems are not commercially viable. Certainly, for a reaction such as the WGSR for which effective heterogeneous catalysts are known, it will take substantial advantages for a new system to be an attractive alternative to established technology.

  3. Anthraquinone catalysis in the glucose-driven reduction of indigo to leuco-indigo.

    PubMed

    Vuorema, Anne; John, Philip; Keskitalo, Marjo; Mahon, Mary F; Kulandainathan, M Anbu; Marken, Frank

    2009-03-21

    Anthraquinone immobilised onto the surface of indigo microcrystals enhances the reductive dissolution of indigo to leuco-indigo. Indigo reduction is driven by glucose in aqueous NaOH and a vibrating gold disc electrode is employed to monitor the increasing leuco-indigo concentration with time. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular "wedge effect" during co-intercalation of Na+ and anthraquinone into the layered indigo crystal structure. The glucose-driven indigo reduction, which is ineffective in 0.1 M NaOH at 65 degrees C, becomes facile and goes to completion in the presence of anthraquinone catalyst. Electron microscopy of indigo crystals before and after reductive dissolution confirms a delamination mechanism initiated at the edges of the plate-like indigo crystals. Catalysis occurs when the anthraquinone-indigo mixture reaches a molar ratio of 1 : 400 (at 65 degrees C; corresponding to 3 microM anthraquinone) with excess of anthraquinone having virtually no effect. A strong temperature effect (with a composite EA approximately 120 kJ mol(-1)) is observed for the reductive dissolution in the presence of anthraquinone. The molar ratio and temperature effects are both consistent with the heterogeneous nature of the anthraquinone catalysis in the aqueous reaction mixture. PMID:19290354

  4. Alkaline-Earth-Promoted CO Homologation and Reductive Catalysis

    PubMed Central

    Anker, Mathew D; Hill, Michael S; Lowe, John P; Mahon, Mary F

    2015-01-01

    Reaction between a β-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3, an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond. PMID:26220407

  5. Alkaline-Earth-Promoted CO Homologation and Reductive Catalysis.

    PubMed

    Anker, Mathew D; Hill, Michael S; Lowe, John P; Mahon, Mary F

    2015-08-17

    Reaction between a β-diketiminato magnesium hydride and carbon monoxide results in the isolation of a dimeric cis-enediolate species through the reductive coupling of two CO molecules. Under catalytic conditions with PhSiH3 , an observable magnesium formyl species may be intercepted for the mild reductive cleavage of the CO triple bond. PMID:26220407

  6. Reductive Cross-Coupling of Conjugated Arylalkenes and Aryl Bromides with Hydrosilanes by Cooperative Palladium/Copper Catalysis.

    PubMed

    Semba, Kazuhiko; Ariyama, Kenta; Zheng, Hong; Kameyama, Ryohei; Sakaki, Shigeyoshi; Nakao, Yoshiaki

    2016-05-17

    A method for the reductive cross-coupling of conjugated arylalkenes and aryl bromides with hydrosilanes by cooperative palladium/copper catalysis was developed, thus resulting in the highly regioselective formation of various 1,1-diarylalkanes, including a biologically active molecule. Under the applied reaction conditions, high levels of functional-group tolerance were observed, and the reductive cross-coupling of internal alkynes with aryl bromides afforded trisubstituted alkenes. PMID:27080165

  7. Metal Carbonyl-Hydrosilane Reactions and Hydrosilation Catalysis

    SciTech Connect

    Cutler, A. R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a siloxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Three relevant catalytic reactions are shown. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(C0){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(I) precatalysts.

  8. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development

    PubMed Central

    Allen, Anna E.; MacMillan, David W. C.

    2012-01-01

    Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature. PMID:22518271

  9. Electrostatic catalysis of a Diels-Alder reaction

    NASA Astrophysics Data System (ADS)

    Aragonès, Albert C.; Haworth, Naomi L.; Darwish, Nadim; Ciampi, Simone; Bloomfield, Nathaniel J.; Wallace, Gordon G.; Diez-Perez, Ismael; Coote, Michelle L.

    2016-03-01

    It is often thought that the ability to control reaction rates with an applied electrical potential gradient is unique to redox systems. However, recent theoretical studies suggest that oriented electric fields could affect the outcomes of a range of chemical reactions, regardless of whether a redox system is involved. This possibility arises because many formally covalent species can be stabilized via minor charge-separated resonance contributors. When an applied electric field is aligned in such a way as to electrostatically stabilize one of these minor forms, the degree of resonance increases, resulting in the overall stabilization of the molecule or transition state. This means that it should be possible to manipulate the kinetics and thermodynamics of non-redox processes using an external electric field, as long as the orientation of the approaching reactants with respect to the field stimulus can be controlled. Here, we provide experimental evidence that the formation of carbon-carbon bonds is accelerated by an electric field. We have designed a surface model system to probe the Diels-Alder reaction, and coupled it with a scanning tunnelling microscopy break-junction approach. This technique, performed at the single-molecule level, is perfectly suited to deliver an electric-field stimulus across approaching reactants. We find a fivefold increase in the frequency of formation of single-molecule junctions, resulting from the reaction that occurs when the electric field is present and aligned so as to favour electron flow from the dienophile to the diene. Our results are qualitatively consistent with those predicted by quantum-chemical calculations in a theoretical model of this system, and herald a new approach to chemical catalysis.

  10. PREDICTION OF BUFFER CATALYSIS IN FIELD AND LABORATORY STUDIES OF POLLUTANT HYDROLYSIS REACTIONS

    EPA Science Inventory

    A mathematical model, based on application of the Bronsted equations for general acid-base catalysis, has been developed for use in forecasting the maximum contribution of buffer catalysis in pollutant hydrolysis reactions. The predictive capacity of the model is utilized to exam...

  11. Radical Hydrodeiodination of Aryl, Alkenyl, Alkynyl, and Alkyl Iodides with an Alcoholate as Organic Chain Reductant through Electron Catalysis.

    PubMed

    Dewanji, Abhishek; Mück-Lichtenfeld, Christian; Studer, Armido

    2016-06-01

    A simple and efficient method for radical hydrodeiodination is reported. The novel approach uses electron catalysis. In situ generated Na-alcoholates are introduced as radical chain reducing reagents and reactions work with O2 as cheap initiator. Hydrodeiodination works on aryl, alkenyl, alkynyl iodides and a tert-alkyl iodide also gets reduced applying the method. Albeit less general, the method is also applicable to the reduction of aryl bromides. The novel reagent is successfully used to conduct typical reductive radical cyclization reactions and mechanistic studies are reported. PMID:27101530

  12. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Plasma-assisted heterogeneous catalysis for NOx reduction in lean-burn engine exhaust

    SciTech Connect

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E.; Wan, C.Z.; Rice, G.W.; Voss, K.E.

    1997-12-31

    This paper discusses the combination of a plasma with a catalyst to improve the reduction of NO{sub x} under lean-burn conditions. The authors have been investigating the effects of a plasma on the NO{sub x} reduction activity and temperature operating window of various catalytic materials. One of the goals is to develop a fundamental understanding of the interaction between the gas-phase plasma chemistry and the heterogeneous chemistry on the catalyst surface. The authors have observed that plasma assisted heterogeneous catalysis can facilitate NO{sub x} reduction under conditions that normally make it difficult for either the plasma or the catalyst to function by itself. By systematically varying the plasma electrode and catalyst configuration, they have been able to elucidate the process by which the plasma chemistry affects the chemical reduction of NO{sub x} on the catalyst surface. They have discovered that the main effect of the plasma is to induce the gas-phase oxidation of NO to NO{sub 21}. The reduction of NO{sub x} to N{sub 2} is then accomplished by heterogeneous reaction of O with activated hydrocarbons on the catalyst surface. The use of a plasma opens the opportunity for a new class of catalysts that are potentially more durable, more active, more selective and more sulfur-tolerant compared to conventional lean-NO{sub x} catalysts.

  14. Reductive dehalogenation by cytochrome P450CAM: Substrate binding and catalysis

    SciTech Connect

    Li, S.; Wackett, L.P. )

    1993-09-14

    Biological reductive dehalogenation reactions are important in environmental detoxification of organohalides. Only scarce information is available on the enzymology underlying these reactions. Cytochrome P450CAM with a known X-ray structure and well-studied oxygenase reaction cycle, has been studied for its ability to reduce carbon-halogen bonds under anaerobic conditions. The reductive reactions functioned with NADH and the physiological electron-transfer proteins or by using artificial electron donors to reduce cytochrome P450CAM. Halogenated methane and ethane substrates were transformed by a two-electron reduction and subsequent protonation, beta-elimination, or alpha-elimination to yield alkanes, alkene, or carbene-derived products, respectively. Halogenated substrates bound to the camphor binding site as indicated by saturable changes in the Fe(III)-heme spin state upon substrate addition. Hexachloromethane was bound with a dissociation constant (KD) of 0.7 microM and caused > 95% shift from low- to high-spin iron. Ethanes bearing fewer chlorine substituents were bound with increasing dissociation constants and gave lesser degrees of iron spin-state change. Camphor competitively inhibited hexachloroethane reduction with an inhibitor constant (KI) similar to the dissociation constant for camphor (KI = KD = 0.9 microM). Rate determinations with pentachloroethane indicated a 100-fold higher enzyme V/K compared to the second-order rate constant for hematin free in solution. These studies on substrate binding and catalysis will help reveal how biological systems enzymatically reduce carbon-halogen bonds in the environment.

  15. Chemo- and regioselective reductive transposition of allylic alcohol derivatives via iridium or rhodium catalysis.

    PubMed

    Lundgren, Rylan J; Thomas, Bryce N

    2016-01-18

    We report highly chemo- and regioselective reductive transpositions of methyl carbonates to furnish olefin products with complementary regioselectivity to that of established Pd-catalysis. These Rh- and Ir-catalysed transformations proceed under mild conditions and enable selective deoxygenation in the presence of functional groups that are susceptible to reduction by metal hydrides. PMID:26587569

  16. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis.

    PubMed

    Tao, Franklin Feng; Crozier, Peter A

    2016-03-23

    Heterogeneous catalysis is a chemical process performed at a solid-gas or solid-liquid interface. Direct participation of catalyst atoms in this chemical process determines the significance of the surface structure of a catalyst in a fundamental understanding of such a chemical process at a molecular level. High-pressure scanning tunneling microscopy (HP-STM) and environmental transmission electron microscopy (ETEM) have been used to observe catalyst structure in the last few decades. In this review, instrumentation for the two in situ/operando techniques and scientific findings on catalyst structures under reaction conditions and during catalysis are discussed with the following objectives: (1) to present the fundamental aspects of in situ/operando studies of catalysts; (2) to interpret the observed restructurings of catalyst and evolution of catalyst structures; (3) to explore how HP-STM and ETEM can be synergistically used to reveal structural details under reaction conditions and during catalysis; and (4) to discuss the future challenges and prospects of atomic-scale observation of catalysts in understanding of heterogeneous catalysis. This Review focuses on the development of HP-STM and ETEM, the in situ/operando characterizations of catalyst structures with them, and the integration of the two structural analytical techniques for fundamentally understanding catalysis. PMID:26955850

  17. A Molecular Reaction Cycle with a Solvatochromic Merocyanine Dye: An Experiment in Photochemistry, Kinetics, and Catalysis.

    ERIC Educational Resources Information Center

    Abdel-Kader, M. H.; Steiner, U.

    1983-01-01

    Three experiments using merocyanine M suitable as an integrated laboratory experience for undergraduates are described. Experiments demonstrate: complete molecular cycle composed of photochemical, thermal, and protolytic reaction steps; kinetics of cis-trans isomerization of the dye; and mechanism of base catalysis for thermal isomerization of the…

  18. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  19. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

    PubMed

    Lassila, Jonathan K; Zalatan, Jesse G; Herschlag, Daniel

    2011-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. PMID:21513457

  20. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Navin, Chelliah V.; Krishna, Katla Sai; Theegala, Chandra S.; Kumar, Challa S. S. R.

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors.Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06752a

  1. Uncovering the Role of Metal Catalysis in Tetrazole Formation by an In Situ Cycloaddition Reaction: An Experimental Approach.

    PubMed

    Zhong, Di-Chang; Wen, Ya-Qiong; Deng, Ji-Hua; Luo, Xu-Zhong; Gong, Yun-Nan; Lu, Tong-Bu

    2015-09-28

    Using an experimental approach, the role of metal catalysis has been investigated in the in situ cycloaddition reaction of nitrile with azide to form tetrazoles. It has been shown that metal catalysis serves to activate the cyano group in the nitrile reagent by a coordinative interaction. PMID:26293313

  2. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. Glutathione transferase mimics: micellar catalysis of an enzymic reaction.

    PubMed Central

    Lindkvist, B; Weinander, R; Engman, L; Koetse, M; Engberts, J B; Morgenstern, R

    1997-01-01

    Substances that mimic the enzyme action of glutathione transferases (which serve in detoxification) are described. These micellar catalysts enhance the reaction rate between thiols and activated halogenated nitroarenes as well as alpha,beta-unsaturated carbonyls. The nucleophilic aromatic substitution reaction is enhanced by the following surfactants in descending order: poly(dimethyldiallylammonium - co - dodecylmethyldiallylammonium) bromide (86/14) >>cetyltrimethylammonium bromide>zwittergent 3-16 (n-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulphonate)>zwittergent+ ++ 3-14 (n-tetradecyl-N,N-dimethyl - 3 - ammonio -1 - propanesulphonate) approximately N,N - dimethyl - laurylamine N-oxide>N,N-dimethyloctylamine N-oxide. The most efficient catalyst studied is a polymeric material that incorporates surfactant properties (n-dodecylmethyldiallylammonium bromide) and opens up possibilities for engineering sequences of reactions on a polymeric support. Michael addition to alpha,beta-unsaturated carbonyls is exemplified by a model substance, trans-4-phenylbut-3-en-2-one, and a toxic compound that is formed during oxidative stress, 4-hydroxy-2-undecenal. The latter compound is conjugated with the highest efficiency of those tested. Micellar catalysts can thus be viewed as simple models for the glutathione transferases highlighting the influence of a positive electrostatic field and a non-specific hydrophobic binding site, pertaining to two catalytic aspects, namely thiolate anion stabilization and solvent shielding. PMID:9173899

  4. Lean NOx Reduction in Two Stages: Non-thermal Plasma Followed by Heterogeneous Catalysis

    SciTech Connect

    Tonkyn, Russell G.; Yoon, Ilsop S.; Barlow, Stephan E.; Panov, Alexander G.; Kolwaite, A; Balmer, Mari LOU.

    2000-10-16

    We present data in this paper showing that non-thermal plasma in combination with heterogeneous catalysis is a promising technique for the treatment of NOx in diesel exhaust. Using a commonly available zeolite catalyst, sodium Y, to treat synthetic diesel exhaust we report approximately 50% chemical reduction of NOx over a broad, representative temperature range. We have measured the overall efficiency as a function of the temperature and hydrocarbon concentration. The direct detection of N2 and N2O when the background gas is replaced by helium confirms that true chemical reduction is occurring.

  5. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis.

    PubMed

    Becker, Julia; Modl, Tanja; Gessner, Viktoria H

    2014-09-01

    The synthesis of a ruthenium carbene complex based on a sulfonyl-substituted methandiide and its application in bond activation reactions and cooperative catalysis is reported. In the complex, the metal-carbon interaction can be tuned between a Ru-C single bond with additional electrostatic interactions and a Ru=C double bond, thus allowing the control of the stability and reactivity of the complex. Hence, activation of polar and non-polar bonds (O-H, H-H) as well as dehydrogenation reactions become possible. In these reactions the carbene acts as a non-innocent ligand supporting the bond activation as nucleophilic center in the 1,2-addition across the metal-carbon double bond. This metal-ligand cooperativity can be applied in the catalytic transfer hydrogenation for the reduction of ketones. This concept opens new ways for the application of carbene complexes in catalysis. PMID:25047390

  6. Tunable Cascade Reactions of Alkynols with Alkynes under Combined Sc(OTf)3 and Rhodium Catalysis.

    PubMed

    Li, Deng Yuan; Chen, Hao Jie; Liu, Pei Nian

    2016-01-01

    Two tunable cascade reactions of alkynols and alkynes have been developed by combining Sc(OTf)3 and rhodium catalysis. In the absence of H2O, an endo-cycloisomerization/C-H activation cascade reaction provided 2,3-dihydronaphtho[1,2-b]furans in good to high yields. In the presence of H2O, the product of alkynol hydration underwent an addition/C-H activation cascade reaction with an alkyne, which led to the formation of 4,5-dihydro-3H-spiro[furan-2,1'-isochromene] derivatives in good yields under mild reaction conditions. Mechanistic studies of the cascade reactions indicated that the rate-determining step involves C-H bond cleavage and that the hydration of the alkynol plays a key role in switching between the two reaction pathways. PMID:26531133

  7. SELECTIVE REDUCTION OF NOX IN OXYGEN RICH ENVIRONMENTS WITH PLASMA-ASSISTED CATALYSIS: CATALYST DEVELOPMENT AND MECHANISTIC STUDIES

    SciTech Connect

    Peden, C; Barlow, S; Hoard, J; Kwak, J; *Balmer-Millar, M; *Panov, A; Schmieg, S; Szanyi, J; Tonkyn, R

    2003-08-24

    The control of NOx (NO and NO2) emissions from so-called ''lean-burn'' vehicle engines remains a challenge. In recent years, there have been a number of reports that show that a plasma device combined with a catalyst can reduce as high as 90% or more of NOx in simulated diesel and other ''lean-burn'' exhaust. In the case of propylene containing simulated diesel exhaust, the beneficial role of a plasma treatment is now thought to be due to oxidation of NO to NO2, and the formation of partially oxidized hydrocarbons that are more active for the catalytic reduction of NO2 than propylene. Thus, the overall system can be most usefully described as hydrocarbon selective catalytic reduction (SCR) enhanced by 'reforming' the exhaust with a non-thermal plasma (NTP) device. For plasma-enhanced catalysis, both zeolite- and alumina-based materials have shown high activity, albeit in somewhat different temperature ranges, when preceded by an NTP reactor. This paper will briefly describe our research efforts aimed at optimizing the catalyst materials for NTP-catalysis devices based, in part, on our continuing studies of the NTP- and catalytic-reaction mechanisms. Various alkali- and alkaline earth-cation-exchanged Y zeolites have been prepared, their material properties characterized, and they have been tested as catalytic materials for NOx reduction in laboratory NTP-catalysis reactors. Interestingly, NO2 formed in the plasma and not subsequently removed over these catalysts, will back-convert to NO, albeit to varying extents depending upon the nature of the cation. Besides this comparative reactivity, we will also discuss selected synthesis strategies for enhancing the performance of these zeolite-based catalyst materials. A particularly important result from our mechanistic studies is the observation that aldehydes, formed during the plasma treatment of simulated diesel exhaust, are the important species for the reduction of NOx to N2. Indeed, acetaldehyde has been found to

  8. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis.

    PubMed

    Min, Wei; Xie, X Sunney; Bagchi, Biman

    2008-01-17

    We introduce a two-dimensional (2D) multisurface reaction free energy description of the catalytic cycle that explicitly connects the recently observed multi-time-scale conformational dynamics as well as dispersed enzymatic kinetics to the classical Michaelis-Menten equation. A slow conformational motion on a collective enzyme coordinate Q facilitates the catalytic reaction along the intrinsic reaction coordinate X, providing a dynamic realization of Pauling's well-known idea of transition-state stabilization. The catalytic cycle is modeled as transitions between multiple displaced harmonic wells in the XQ space representing different states of the cycle, which is constructed according to the free energy driving force of the cycle. Subsequent to substrate association with the enzyme, the enzyme-substrate complex under strain exhibits a nonequilibrium relaxation toward a new conformation that lowers the activation energy of the reaction, as first proposed by Haldane. The chemical reaction in X is thus enslaved to the down hill slow motion on the Q surface. One consequence of the present theory is that, in spite of the existence of dispersive kinetics, the Michaelis-Menten expression of the catalysis rate remains valid under certain conditions, as observed in recent single-molecule experiments. This dynamic theory builds the relationship between the protein conformational dynamics and the enzymatic reaction kinetics and offers a unified description of enzyme fluctuation-assisted catalysis. PMID:18085768

  9. Study on catalysis effect of TEPB on the curing reaction of HTPB binder system

    NASA Astrophysics Data System (ADS)

    Chang, S. J.; Tang, J.; Liu, X.; Yan, W.

    2016-07-01

    The catalysis effect of tri (exhoxyphenyl) bismuthine (TEPB) on the curing reaction of HTPB binder system was studied by using DSC method. The curing peak temperatures of the catalyst systems were measured to calculate kinetic parameters by using Kissinger and Crane methods, respectively. Two curing reaction kinetic equations were established. The results show that TEPB has high catalytic activity and can decrease the curing temperature of HTPB binder system, down to 35 °C, in which the optimum volume of TEPB is 0.5% of HTPB binder system.

  10. Towards quantum-based modeling of enzymatic reaction pathways: Application to the acetylholinesterase catalysis

    NASA Astrophysics Data System (ADS)

    Polyakov, Igor V.; Grigorenko, Bella L.; Moskovsky, Alexander A.; Pentkovski, Vladimir M.; Nemukhin, Alexander V.

    2013-01-01

    We apply computational methods aiming to approach a full quantum mechanical treatment of chemical reactions in proteins. A combination of the quantum mechanical - molecular mechanical methodology for geometry optimization and the fragment molecular orbital approach for energy calculations is examined for an example of acetylcholinesterase catalysis. The codes based on the GAMESS(US) package operational on the 'RSC Tornado' computational cluster are applied to determine that the energy of the reaction intermediate upon hydrolysis of acetylcholine is lower than that of the enzyme-substrate complex. This conclusion is consistent with the experiments and it is free from the empirical force field contributions.

  11. A Molybdenum(0) Isocyanide Analogue of Ru(2,2'-Bipyridine)3 (2+) : A Strong Reductant for Photoredox Catalysis.

    PubMed

    Büldt, Laura A; Guo, Xingwei; Prescimone, Alessandro; Wenger, Oliver S

    2016-09-01

    We report the first homoleptic Mo(0) complex with bidentate isocyanide ligands, which exhibits metal-to-ligand charge transfer ((3) MLCT) luminescence with quantum yields and lifetimes similar to Ru(bpy)3 (2+) (bpy=2,2'-bipyridine). This Mo(0) complex is a very strong photoreductant, which manifests in its capability to reduce acetophenone with essentially diffusion-limited kinetics as shown by time-resolved laser spectroscopy. The application potential of this complex for photoredox catalysis was demonstrated by the rearrangement of an acyl cyclopropane to a 2,3-dihydrofuran, which is a reaction that requires a reduction potential so negative that even the well-known and strongly reducing Ir(2-phenylpyridine)3 photosensitizer cannot catalyze it. Our study thus provides the proof-of-concept for the use of chelating isocyanides to obtain Mo(0) complexes with long-lived (3) MLCT excited states that are applicable to unusually challenging photoredox chemistry. PMID:27461452

  12. Space and time-resolved probing of heterogeneous catalysis reactions using lab-on-a-chip.

    PubMed

    Navin, Chelliah V; Krishna, Katla Sai; Theegala, Chandra S; Kumar, Challa S S R

    2016-03-01

    Probing catalytic reactions on a catalyst surface in real time is a major challenge. Herein, we demonstrate the utility of a continuous flow millifluidic chip reactor coated with a nanostructured gold catalyst as an effective platform for in situ investigation of the kinetics of catalytic reactions by taking 5-(hydroxymethyl)furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) conversion as a model reaction. The idea conceptualized in this paper can not only dramatically change the ability to probe the time-resolved kinetics of heterogeneous catalysis reactions but also used for investigating other chemical and biological catalytic processes, thereby making this a broad platform for probing reactions as they occur within continuous flow reactors. PMID:26888331

  13. Birnessite catalysis of the Maillard Reaction: Its significance in natural humification

    NASA Astrophysics Data System (ADS)

    Jokic, A.; Frenkel, A. I.; Vairavamurthy, M. A.; Huang, P. M.

    Although mineral colloids are known to play a significant role in transforming organic matter in soils and sediments, there still are many gaps in our understanding of the mechanisms of organic-mineral interactions. In this study, we investigated the role of a major oxide-mineral birnessite (a form of Mn(IV) oxide) in catalyzing the condensation reaction between sugars and amino acids, the Maillard reaction, for forming humic substances. The Maillard reaction is perceived to be a major pathway in natural humification. Using a suite of spectroscopic methods (including ESR, XANES, EXAFS and 13C NMR), our results show that Mn(IV) oxide markedly accelerates the Maillard reaction between glucose and glycine at ranges of temperatures and pH typical of natural environments. These results demonstrate the importance of manganese oxide catalysis in the Maillard reaction, and its significance in the natural abiotic formation of humic substances.

  14. Homogeneous catalysis on the gas-phase dehydration reaction of tertiary alcohols by hydrogen bromide. Density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Maldonado, Alexis; Rosas, Felix; Mora, Jose R.; Brusco, Yannely; Córdova-Sintjago, Tania C.; Chuchani, Gabriel

    2015-02-01

    The gas-phase thermal dehydration mechanism of tert-butanol, 2-methyl-2-butanol, 2-methyl-2-pentanol and 2,3-dimethyl-2-butanol by homogeneous catalysis of hydrogen bromide was examined by density functional theory calculations with the hybrid functionals: M062X, CAMB3LYP and WB97XD. Reasonable agreements were found between theoretical and experimental enthalpy values at the WB97XD/6-311++G(d,p) level. The dehydration mechanism of tert-butanol with and without catalysis was evaluated in order to examine the catalyst effect on the mechanism. The elimination reaction without catalysis involves a four-membered transition state (TS), while the reaction with catalysis involves a six-membered TS. The mechanism without catalysis has enthalpy activation over 150 kJ mol-1 greater than the catalysed reaction. In all these reactions, the elongation of the C-O bond is significant in the TS. The un-catalysed reaction is controlled by breaking of C-O bond, and it was found to be more synchronous (Sy ≈ 0.91) than the hydrogen bromide catalysed reactions (Sy ≈ 0.75-0.78); the latter reactions are dominated by the three reaction coordinates associated with water formation. No significant effect on the enthalpies of activation was observed when the size of the alkyl chain was increased.

  15. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    PubMed

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  16. Selective Reduction of NOx in Oxygen Rich Environment with Plasma-Assisted Catalysis: Role of Plasma and Reactive Intermediates

    SciTech Connect

    Panov, Alexander G.; Tonkyn, Russell G.; Balmer, Marilou L.; Peden, Charles HF.; Malkin, A; Hoard, John; Balmer, M.L.; Fisher, G.; Hoard, J.

    2001-09-01

    Catalytic activity of selected materials (BaY and NaY zeolites, and g-Alumina) for selective NOx reduction in combination with a non-thermal plasma was investigated. Our studies suggest that aldehydes formed during the plasma treatment of simulated diesel exhaust are the important species for the reduction of NOx to N2. Indeed, all materials that are active in plasma-assisted catalysis were found to be very effective in the thermal reduction of NOx in the presence of aldehydes. For example, the thermal catalytic activity of a BaY zeolite with aldehydes gives 80-90% NOx removal at 250 C with 200ppm NOx at the inlet, 1000ppm of C1 as acetaldehyde, propionaldehyde, and butyraldehyde, and SV=12,000 h?. The hydrocarbon reductants, n-octane and 1-propyl alcohol have also shown high thermal catalytic activity for NOx removal over BaY, NaY and g-alumina. We believe that this activity is due to the fact that in an oxygen rich environment these compounds can be thermally oxidized over the catalysts to form the important aldehyde reaction intermediates.

  17. An Upstream By-product from Ester Activation via NHC-Catalysis Catalyzes Downstream Sulfonyl Migration Reaction.

    PubMed

    Han, Runfeng; He, Liwenze; Liu, Lin; Xie, Xingang; She, Xuegong

    2016-01-01

    A sequential reaction combining N-heterocyclic carbene (NHC) and N-hydroxyphthalimide (NHPI) catalysis allowed for the upstream by-product NHPI, which was generated in the NHC-catalyzed cycloaddition reaction, to act as the catalyst for a downstream nitrogen-to-carbon sulfonyl migration reaction. Enantiomeric excess of the major product in the cycloaddition reaction remained intact in the follow-up sulfonyl migration reaction. PMID:26522328

  18. Regioselectivity and Enantioselectivity in Nickel-Catalysed Reductive Coupling Reactions of Alkynes

    PubMed Central

    Moslin, Ryan M.; Miller-Moslin, Karen; Jamison, Timothy F.

    2011-01-01

    Nickel-catalysed reductive coupling reactions of alkynes have emerged as powerful synthetic tools for the selective preparation of functionalized alkenes. One of the greatest challenges associated with these transformations is control of regioselectivity. Recent work from our laboratory has provided an improved understanding of several of the factors governing regioselectivity in these reactions, and related studies have revealed that the reaction mechanism can differ substantially depending on the ligand employed. A discussion of stereoselective transformations and novel applications of nickel catalysis in coupling reactions of alkynes is also included. PMID:17971951

  19. Oxygen reduction reaction: A framework for success

    DOE PAGESBeta

    Allendorf, Mark D.

    2016-05-06

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Here, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  20. Oxygen reduction reaction: A framework for success

    NASA Astrophysics Data System (ADS)

    Allendorf, Mark D.

    2016-05-01

    Oxygen reduction at the cathode of fuel cells typically requires a platinum-based material to catalyse the reaction, but lower-cost, more stable catalysts are sought. Now, an intrinsically conductive metal–organic framework based on cheaper elements is shown to be a durable, structurally well-defined catalyst for this reaction.

  1. Bifunctional mechanism of catalysis in reactions leading to formation of /alpha/-amino ketones

    SciTech Connect

    Popov, A.F.; Anikeev, A.V.

    1988-10-20

    The kinetics of the reaction of /alpha/-bromoacetophenone and benzyl bromide with aniline and pyridine in the presence of additions of acetic acid and phenol in benzene at 30/degree/C were investigated. The catalytic effects due to the activity of the uncombined forms of the catalyst, their dimers, and their 1:1 complexes with the amines were separated quantitatively. The change in the catalytic activity of the respective particles in the solutions with variation in the structure of the reagents is examined, and possible mechanisms for the catalytic reactions are discussed on this basis. It is concluded that there is a bifunctional mechanism of catalysis by acetic acid in the reaction of /alpha/-bromoacetophenone with aniline.

  2. Difluoromethanesulfonyl hypervalent iodonium ylides for electrophilic difluoromethylthiolation reactions under copper catalysis.

    PubMed

    Arimori, Sadayuki; Matsubara, Okiya; Takada, Masahiro; Shiro, Motoo; Shibata, Norio

    2016-05-01

    Difluoromethanesulfonyl hypervalent iodonium ylides 2 were developed as electrophilic difluoromethylthiolation reagents for a wide range of nucleophiles. Enamines, indoles, β-keto esters, silyl enol ethers and pyrroles were effectively reacted with 2 affording desired difluoromethylthio (SCF2H)-substituted compounds in good to high yields under copper catalysis. The reaction of allyl alcohols with 2 under the same conditions provided difluoromethylsulfinyl (S(O)CF2H) products in good yields. The difluoromethylthiolation of enamines is particularly effective with wide generality, thus the enamine method was nicely extended to the synthesis of a series of difluoromethythiolated cyclic and acyclic β-keto esters, 1,3-diketones, pyrazole and pyrimidine derivatives by a consecutive, two-step one-pot reaction using 2. PMID:27293790

  3. Difluoromethanesulfonyl hypervalent iodonium ylides for electrophilic difluoromethylthiolation reactions under copper catalysis

    PubMed Central

    Arimori, Sadayuki; Matsubara, Okiya; Takada, Masahiro; Shiro, Motoo; Shibata, Norio

    2016-01-01

    Difluoromethanesulfonyl hypervalent iodonium ylides 2 were developed as electrophilic difluoromethylthiolation reagents for a wide range of nucleophiles. Enamines, indoles, β-keto esters, silyl enol ethers and pyrroles were effectively reacted with 2 affording desired difluoromethylthio (SCF2H)-substituted compounds in good to high yields under copper catalysis. The reaction of allyl alcohols with 2 under the same conditions provided difluoromethylsulfinyl (S(O)CF2H) products in good yields. The difluoromethylthiolation of enamines is particularly effective with wide generality, thus the enamine method was nicely extended to the synthesis of a series of difluoromethythiolated cyclic and acyclic β-keto esters, 1,3-diketones, pyrazole and pyrimidine derivatives by a consecutive, two-step one-pot reaction using 2. PMID:27293790

  4. Shock tube propellant reactions: Ignition of M-9 and catalysis of RDX

    NASA Technical Reports Server (NTRS)

    Cohen, A.; Decker, L. J.

    1980-01-01

    The preliminary results of shock tube experiments to study RDX catalysis are presented. It is shown that using N2 as the test gas (P approximately equal to 90 KPa, T bar approximately equal to 650K), the replacement of RDX powder with NaBH4 (20% by weight) leads to a large increase in the amount of RDX reacting and a small decrease in ignition delays T sub i. It is further shown that higher temperatures due to exothermic pyrolysis reactions of NaBH4 are not responsible for these effects. Replacement of N2 by NO2 (10% by volume) in the environment of RDX powders (T bar approximately equal to 650K, P = 90-400 KPa) leads to an increase in T sub i and T sub i is directly proportional to NO2 pressure. Inhibition appears to be initiated by reactions between NO2 and either RDX or the RDX decomposition products.

  5. Individual Reactions of Permanganate & Various Reductants

    SciTech Connect

    Gauger, Amber M.; Hallen, Richard T. )

    2000-11-01

    Tank waste on the Hanford Site contains radioactive elements that need to be removed from solution prior to disposal. One effective way to do this is to precipitate the radioactive elements with manganese solids, produced by permanganate oxidation. When added to tank waste, the permanganate, Mn(VII), reacts quickly producing manganese (IV) dioxide precipitate. Because of the speed of reaction it is difficult to tell what exactly is happening. Individual reactions using non-radioactive reductants found in the tanks were done to determine reaction kinetics, what permanganate was reduced to, and what oxidation products were formed. In this project sodium formate, sodium nitrite, glycolic acid, glycine, and sodium oxalate were studied using various concentrations of reductant in alkaline sodium hydroxide solutions. It was determined that formate reacted the quickest, followed by glycine and glycolic acid. Oxalate and nitrite did not appear to react with the permanganate solutions. The formate reactions quickly reduced permanganate, Mn(VII), to manganate, Mn(VI), and then to manganese (IV) dioxide. These reactions oxidized formate to carbonate and water. The glycolic acid was oxidized slower producing oxalate, water, and manganate, which would disproportionate to permanganate and manganese (IV) dioxide solids. The rate at which Mn(VI) disproportionates is usually slower than the rate at which Mn(VII) is reduced to Mn(VI), however in this case the rates were about equal. The glycine reactions formed some ammonia in solution, oxalate, and water. They reacted similar to the glycolic acid reactions, producing manganese dioxide precipitate before the solution turned totally green from Mn(VI). The formate reactions consumed one mole of hydroxide for every 3 moles of formate, while the glycolic acid and glycine reactions consumed 7 moles of hydroxide for every 3 moles of reductant. These reactions should help to determine the majority of products found in mixtures of solutions.

  6. Catalysis of Dioxygen Reduction by Thermus thermophilus Strain HB27 Laccase on Ketjen Black Electrodes

    PubMed Central

    Agbo, Peter; Heath, James R.

    2012-01-01

    We present electrochemical analyses of the catalysis of dioxygen reduction by Thermus thermophilus strain HB27 laccase on ketjen black substrates. Our cathodes reliably produce 0.56 mA cm−2 at 0.0 V vs. Ag|AgCl reference at 30 °C in air-saturated buffer, under conditions of non-limiting O2 flux. We report the electrochemical activity of this laccase as a function of temperature, pH, time, and the efficiency of its conversion of dioxygen to water. We have measured the surface concentration of electrochemically active species, permitting the extraction of electron transfer rates at the enzyme-electrode interface: 1 s−1 for this process at zero driving force at 30 °C and a limiting rate of 23 s−1 at 240 mV overpotential at 50 °C. PMID:23163614

  7. Exploring reaction pathways for O-GlcNAc transferase catalysis. A string method study.

    PubMed

    Kumari, Manju; Kozmon, Stanislav; Kulhánek, Petr; Štepán, Jakub; Tvaroška, Igor; Koča, Jaroslav

    2015-03-26

    The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use. PMID:25731954

  8. Reduction of ferrylmyoglobin by theanine and green tea catechins. Importance of specific Acid catalysis.

    PubMed

    Yin, Jie; Andersen, Mogens L; Skibsted, Leif H

    2013-03-27

    Reduction of the hypervalent heme pigment ferrylmyoglobin by green tea catechins in aqueous solution of pH = 7.5 was investigated by stopped-flow spectroscopy. Reduction by the gallic acid esters epigallocatechin gallate (EGCG, k2 = 1460 L mol(-1) s(-1), 25.0 °C, 0.16 ionic strength) and epicatechin gallate (ECG, 1410 L mol(-1) s(-1)) was found faster than for epicatechin (EC, 300 L mol(-1) s(-1)) and epigallocatechin (EGC, 200 L mol(-1) s(-1)), even though the gallate ion (G, 330 L mol(-1) s(-1)) is similar in rate to EC. The rate for reduction by EC, EGC, ECG, EGCG, and G shows no correlation with their oxidation potentials or phenolic hydrogen-oxygen bond dissociation energy, but with the pKa of the most acidic phenol group. Theanine, with an acidity similar to that of EC, reduces ferrylmyoglobin with a similar rate (200 L mol(-1) s(-1)), in support of general acid catalysis with an initial proton transfer prior to electron transfer. PMID:23461366

  9. Homocoupling of Iodoarenes and Bromoalkanes Using Photoredox Gold Catalysis: A Light Enabled Au(III) Reductive Elimination.

    PubMed

    Tran, Huy; McCallum, Terry; Morin, Mathieu; Barriault, Louis

    2016-09-01

    The formation of homocoupled alkane byproducts have been identified in the reduction of bromoalkanes via photoredox gold catalysis with dimeric Au(I) complexes. This prompted further investigation into the mechanism of formation of these byproducts and the diversity of C-X bonds amenable to this transformation. Examples were found when considering bromoalkanes while a wide variety of iodoarenes underwent this process in good to excellent yields. The light enabled homocoupling of iodoarenes made possible by photoredox gold catalysis is reported. PMID:27522864

  10. Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Sai Siddhardha, R. S.; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2015-08-01

    Hydrogen has been proposed as the green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide attention for hydrogen evolution reaction (HER) in acid medium. The CPEs are advantageous owing to their chemical stability and ease of fabrication. Their applications for HER without any modification, however, are hampered on account of large hydrogen overpotential associated with carbon surface. In the present study, CPE has been modified with novel gold composites as electro-catalysts for HER in acid medium. The nanocomposites have shown ∼100 fold increased current density than unmodified CPE at -0.3 V. Most strikingly for the first time, this study has quantitatively brought out the difference in catalysis between surfactant capped and pristine gold nanoparticles in terms of their application as spot-free catalysts towards hydrogen gas production by electrochemical route.

  11. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes.

    PubMed

    Shirakawa, Eiji; Ikeda, Daiji; Masui, Seiji; Yoshida, Masatoshi; Hayashi, Tamio

    2012-01-11

    Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step. PMID:22128888

  12. Synergistic chiral iminium and palladium catalysis: Highly regio- and enantioselective [3 + 2] annulation reaction of 2-vinylcyclopropanes with enals

    PubMed Central

    Zhu, Haipan; Du, Peile; Li, Jianjun; Liao, Ziyang; Liu, Guohua

    2016-01-01

    Summary A cooperative catalytic strategy of chiral iminium catalysis by regioselective activation of the C=C bond in enals and a transition metal promoting to open the 2-vinylcyclopropanes for highly regio- and enantioselective [3 + 2] cycloaddition reaction of 2-vinylcyclopropanes with α,β-unsaturated aldehydes has been developed. PMID:27559383

  13. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    PubMed

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. PMID:26097101

  14. Reduction Methods for Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  15. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.

    PubMed

    Schauermann, Swetlana; Freund, Hans-Joachim

    2015-10-20

    Heterogeneous catalysts are widely employed in technological applications, such as chemical manufacturing, energy harvesting, conversion and storage, and environmental technology. Often they consist of disperse metal nanoparticles anchored onto a morphologically complex oxide support. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic performance. However, a rational design of heterogeneous catalysts based on an atomistic-level understanding of underlying surface processes has not been fully achieved so far and remains one of the primary goals for catalysis research. In our group, we developed concepts for replacing highly complex real supported catalysts by simplified model systems, which complexity can be gradually increased in order to mimic certain structural aspects of practically relevant catalysts in a controlled way. Well-defined model systems consisting of metal-nanoparticle ensembles supported on planar oxide substrates have proven to provide a successful approach to achieve fundamental insights into heterogeneous catalysis. In this Account, two mechanistic case studies focusing on an atomistic-level understanding of surface chemistry are presented in which we investigate how the nanoscopic nature of metal clusters affects their interaction with the adsorbates and the reactive processes. Particularly, we investigate the effects of the particle size and the flexibility of the atoms constituting metal clusters on the binding energy of gas-phase adsorbates, such as CO and oxygen. We identified two major structural factors determining the binding energy of gas phase adsorbates on metal nanoparticles: the local configuration of the adsorption site and the particle size. While the effect of the local configuration of the adsorption site was found to be adsorbate specific, the reduction of the cluster size results in a pronounced decrease of binding energy for both adsorbates and

  16. Enzyme catalysis-electrophoresis titration for multiplex enzymatic assay via moving reaction boundary chip.

    PubMed

    Zhong, Ran; Xie, Haiyang; Kong, Fanzhi; Zhang, Qiang; Jahan, Sharmin; Xiao, Hua; Fan, Liuyin; Cao, Chengxi

    2016-09-21

    In this work, we developed the concept of enzyme catalysis-electrophoresis titration (EC-ET) under ideal conditions, the theory of EC-ET for multiplex enzymatic assay (MEA), and a related method based on a moving reaction boundary (MRB) chip with a collateral channel and cell phone imaging. As a proof of principle, the model enzymes horseradish peroxidase (HRP), laccase and myeloperoxidase (MPO) were chosen for the tests of the EC-ET model. The experiments revealed that the EC-ET model could be achieved via coupling EC with ET within a MRB chip; particularly the MEA analyses of catalysis rate, maximum rate, activity, Km and Kcat could be conducted via a single run of the EC-ET chip, systemically demonstrating the validity of the EC-ET theory. Moreover, the developed method had these merits: (i) two orders of magnitude higher sensitivity than a fluorescence microplate reader, (ii) simplicity and low cost, and (iii) fairly rapid (30 min incubation, 20 s imaging) analysis, fair stability (<5.0% RSD) and accuracy, thus validating the EC-ET method. Finally, the developed EC-ET method was used for the clinical assay of MPO activity in blood samples; the values of MPO activity detected via the EC-ET chip were in agreement with those obtained by a traditional fluorescence microplate reader, indicating the applicability of the EC-ET method. The work opens a window for the development of enzymatic research, enzyme assay, immunoassay, and point-of-care testing as well as titration, one of the oldest methods of analysis, based on a simple chip. PMID:27464600

  17. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.

    PubMed

    Ding, San-Yuan; Gao, Jia; Wang, Qiong; Zhang, Yuan; Song, Wei-Guo; Su, Cheng-Yong; Wang, Wei

    2011-12-14

    Covalent organic frameworks (COFs) are crystalline porous solids with well-defined two- or three-dimensional molecular structures. Although the structural regularity provides this new type of porous material with high potentials in catalysis, no example has been presented so far. Herein, we report the first application of a new COF material, COF-LZU1, for highly efficient catalysis. The easily prepared imine-linked COF-LZU1 possesses a two-dimensional eclipsed layered-sheet structure, making its incorporation with metal ions feasible. Via a simple post-treatment, a Pd(II)-containing COF, Pd/COF-LZU1, was accordingly synthesized, which showed excellent catalytic activity in catalyzing the Suzuki-Miyaura coupling reaction. The superior utility of Pd/COF-LZU1 in catalysis was elucidated by the broad scope of the reactants and the excellent yields (96-98%) of the reaction products, together with the high stability and easy recyclability of the catalyst. We expect that our approach will further boost research on designing and employing functional COF materials for catalysis. PMID:22026454

  18. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction.

    PubMed

    Nie, Yao; Li, Li; Wei, Zidong

    2015-04-21

    Developing highly efficient catalysts for the oxygen reduction reaction (ORR) is key to the fabrication of commercially viable fuel cell devices and metal-air batteries for future energy applications. Herein, we review the most recent advances in the development of Pt-based and Pt-free materials in the field of fuel cell ORR catalysis. This review covers catalyst material selection, design, synthesis, and characterization, as well as the theoretical understanding of the catalysis process and mechanisms. The integration of these catalysts into fuel cell operations and the resulting performance/durability are also discussed. Finally, we provide insights into the remaining challenges and directions for future perspectives and research. PMID:25652755

  19. Chemoselective reduction of the carbonyl functionality through hydrosilylation: integrating click catalysis with hydrosilylation in one pot.

    PubMed

    Roy, Sudipta Raha; Sau, Samaresh Chandra; Mandal, Swadhin K

    2014-10-01

    Herein we report the chemoselective reduction of the carbonyl functionality via hydrosilylation using a copper(I) catalyst bearing the abnormal N-heterocyclic carbene 1 with low (0.25 mol %) catalyst loading at ambient temperature in excellent yield within a very short reaction time. The hydrosilylation reaction of α,β-unsaturated carbonyl compounds takes place selectively toward 1,2-addition (C═O) to yield the corresponding allyl alcohols in good yields. Moreover, when two reducible functional groups such as imine and ketone groups are present in the same molecule, this catalyst selectively reduces the ketone functionality. Further, 1 was used in a consecutive fashion by combining the Huisgen cycloaddition and hydrosilylation reactions in one pot, yielding a range of functionalized triazole substituted alcohols in excellent yields. PMID:25188382

  20. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis.

    PubMed

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-10-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  1. Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential.

    PubMed

    Passard, Guillaume; Ullman, Andrew M; Brodsky, Casey N; Nocera, Daniel G

    2016-03-01

    The selective four electron, four proton, electrochemical reduction of O2 to H2O in the presence of a strong acid (TFA) is catalyzed at a dicobalt center. The faradaic efficiency of the oxygen reduction reaction (ORR) is furnished from a systematic electrochemical study by using rotating ring disk electrode (RRDE) methods over a wide potential range. We derive a thermodynamic cycle that gives access to the standard potential of O2 reduction to H2O in organic solvents, taking into account the presence of an exogenous proton donor. The difference in ORR selectivity for H2O vs H2O2 depends on the thermodynamic standard potential as dictated by the pKa of the proton donor. The model is general and rationalizes the faradaic efficiencies reported for many ORR catalytic systems. PMID:26876226

  2. Surface Modification of Boron-Doped Diamond with Microcrystalline Copper Phthalocyanine: Oxygen Reduction Catalysis

    PubMed Central

    Gan, Patrick; Foord, John S; Compton, Richard G

    2015-01-01

    Surface modification of boron-doped diamond (BDD) with copper phthalocyanine was achieved using a simple and convenient dropcast deposition, giving rise to a microcrystalline structure. Both unmodified and modified BDD electrodes of different surface terminations (namely hydrogen and oxygen) were compared via the electrochemical reduction of oxygen in aqueous solution. A significant lowering of the cathodic overpotential by about 500 mV was observed after modification of hydrogen-terminated (hydrophobic) diamond, while no voltammetric peak was seen on modified oxidised (hydrophilic) diamond, signifying greater interaction between copper phthalocyanine and the hydrogen-terminated BDD. Oxygen reduction was found to undergo a two-electron process on the modified hydrogen-terminated diamond, which was shown to be also active for the reduction of hydrogen peroxide. The lack of a further conversion of the peroxide was attributed to its rapid diffusion away from the triple phase boundary at which the reaction is expected to exclusively occur. PMID:26491640

  3. Microwave Assisted Wolff-Kishner Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Parquet, Eric; Lin, Qun

    1997-10-01

    A Wolff-Kishner reduction of a carbonyl group was carried out in a household microwave oven. Isatin was first converted to the hydrazone with 55% hydrazine and ethylene glycol by irradiation in the microwave oven at medium power for 30 seconds. Then, isatin 3-hydrazone was mixed with ethylene glycol and potassium hydroxide and irradiated in the microwave oven for only 10 seconds. After simple work-up and recrystallization, oxindole was obtained in a yield of 32.4%. The two step syntheses described here offer several advantages: (1) very short reaction time with no need for special microscale glassware, (2) mild experimental conditions (hot oil baths and heating mantles are not required), (3) the reagents are easy to handle (students do not need to prepare sodium ethoxide from sodium metal and absolute ethanol).

  4. Silylium ion-catalyzed challenging Diels-Alder reactions: the danger of hidden proton catalysis with strong Lewis acids.

    PubMed

    Schmidt, Ruth K; Müther, Kristine; Mück-Lichtenfeld, Christian; Grimme, Stefan; Oestreich, Martin

    2012-03-01

    The pronounced Lewis acidity of tricoordinate silicon cations brings about unusual reactivity in Lewis acid catalysis. The downside of catalysis with strong Lewis acids is, though, that these do have the potential to mediate the formation of protons by various mechanisms, and the thus released Brønsted acid might even outcompete the Lewis acid as the true catalyst. That is an often ignored point. One way of eliminating a hidden proton-catalyzed pathway is to add a proton scavenger. The low-temperature Diels-Alder reactions catalyzed by our ferrocene-stabilized silicon cation are such a case where the possibility of proton catalysis must be meticulously examined. Addition of the common hindered base 2,6-di-tert-butylpyridine resulted, however, in slow decomposition along with formation of the corresponding pyridinium ion. Quantitative deprotonation of the silicon cation was observed with more basic (Mes)(3)P to yield the phosphonium ion. A deuterium-labeling experiment verified that the proton is abstracted from the ferrocene backbone. A reasonable mechanism of the proton formation is proposed on the basis of quantum-chemical calculations. This is, admittedly, a particular case but suggests that the use of proton scavengers must be carefully scrutinized, as proton formation might be provoked rather than prevented. Proton-catalyzed Diels-Alder reactions are not well-documented in the literature, and a representative survey employing TfOH is included here. The outcome of these catalyses is compared with our silylium ion-catalyzed Diels-Alder reactions, thereby clearly corroborating that hidden Brønsted acid catalysis is not operating with our Lewis acid. Several simple-looking but challenging Diels-Alder reactions with exceptionally rare dienophile/enophile combinations are reported. Another indication is obtained from the chemoselectivity of the catalyses. The silylium ion-catalyzed Diels-Alder reaction is general with regard to the oxidation level of the

  5. The Reductive Half-reaction of Xanthine Dehydrogenase from Rhodobacter capsulatus

    PubMed Central

    Hall, James; Reschke, Stefan; Cao, Hongnan; Leimkühler, Silke; Hille, Russ

    2014-01-01

    The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu232 in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu232 being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme. PMID:25258317

  6. C3N4-H5PMo10V2O40: a dual-catalysis system for reductant-free aerobic oxidation of benzene to phenol

    PubMed Central

    Long, Zhouyang; Zhou, Yu; Chen, Guojian; Ge, Weilin; Wang, Jun

    2014-01-01

    Hydroxylation of benzene is a widely studied atom economical and environmental benign reaction for producing phenol, aiming to replace the existing three-step cumene process. Aerobic oxidation of benzene with O2 is an ideal and dream process, but benzene and O2 are so inert that current systems either require expensive noble metal catalysts or wasteful sacrificial reducing agents; otherwise, phenol yields are extremely low. Here we report a dual-catalysis non-noble metal system by simultaneously using graphitic carbon nitride (C3N4) and Keggin-type polyoxometalate H5PMo10V2O40 (PMoV2) as catalysts, showing an exceptional activity for reductant-free aerobic oxidation of benzene to phenol. The dual-catalysis mechanism results in an unusual route to create phenol, in which benzene is activated on the melem unit of C3N4 and O2 by the V-O-V structure of PMoV2. This system is simple, highly efficient and thus may lead the one-step production of phenol from benzene to a more practical pathway. PMID:24413448

  7. Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts

    SciTech Connect

    Kwak, Ja Hun; Kovarik, Libor; Szanyi, Janos

    2013-11-01

    Temperature programmed reaction and scanning transmission electron microscopy experiments were applied to prove the requirement of two different catalyst functionalities for the reduction of CO2 with hydrogen on Pd/Al2O3 and Pd/MWCNT catalysts. The research described in this paper was supported by the Laboratory Directed Research and Development (LDRD) program of the Pacific Northwest National Laboratory (PNNL) and was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated for the US DOE by Battelle Memorial Institute.

  8. Petroleum catalysis

    SciTech Connect

    Lerner, B.

    1996-10-01

    Catalysis reaches almost every major industrial chemical process in place today and spans production of fine chemicals and pharmaceuticals to commodity plastics and gasoline. The catalytic upgrading of crude oil for example renders chemicals, fuels, lubricants, and even coke for steel production. The initial conversion point for all these end products is the petroleum refinery. While there are a variety of catalytic schemes in the modern refinery, four key processes make up the mainstay of refinery operations: Catalytic Cracking, Alkylation, Reforming, and Isomerization. A brief history and outline of the processes will be given followed by a more detailed discussion of the catalysis. It is intended that a knowledge of both the catalytic chemistry and catalytic materials useful in these reactions may be garnered along with a broader view of the importance of catalysis in modern industrial chemistry.

  9. Surface catalysis of uranium(VI) reduction by iron(II)

    NASA Astrophysics Data System (ADS)

    Liger, Emmanuelle; Charlet, Laurent; Van Cappellen, Philippe

    1999-10-01

    Colloidal hematite (α-Fe2O3) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O2- and CO2-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: (≡FeIIIOFeII)+ (or ≡FeIIIOFeII(OH2)n+) and ≡FeIIIOFeIIOH0 (or ≡FeIIIOFeII(OH2)n-1OH0). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH > 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH > 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO3. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6-7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2-160 μM). When analyzing the rate data in terms of the calculated surface speciation, the

  10. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily. PMID:27370473

  11. Development of a reaction cell for in-situ/operando studies of surface of a catalyst under a reaction condition and during catalysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Luan; Tao, Franklin Feng

    2016-06-01

    Tracking surface chemistry of a catalyst during catalysis is significant for fundamental understanding of catalytic performance of the catalyst since it allows for establishing an intrinsic correlation between surface chemistry of a catalyst at its working status and its corresponding catalytic performance. Ambient pressure X-ray photoelectron spectroscopy can be used for in-situ studies of surfaces of different materials or devices in a gas. To simulate the gaseous environment of a catalyst in a fixed-bed a flowing gaseous environment of reactants around the catalyst is necessary. Here, we report the development of a new flowing reaction cell for simulating in-situ study of a catalyst surface under a reaction condition in gas of one reactant or during catalysis in a mixture of reactants of a catalytic reaction. The homemade reaction cell is installed in a high vacuum (HV) or ultrahigh vacuum (UHV) environment of a chamber. The flowing gas in the reaction cell is separated from the HV or UHV environment through well sealings at three interfaces between the reaction cell and X-ray window, sample door and aperture of front cone of an energy analyzer. Catalyst in the cell is heated through infrared laser beam introduced through a fiber optics interfaced with the reaction cell through a homemade feedthrough. The highly localized heating on the sample holder and Au-passivated internal surface of the reaction cell effectively minimizes any unwanted reactions potentially catalyzed by the reaction cell. The incorporated laser heating allows a fast heating and a high thermal stability of the sample at a high temperature. With this cell, a catalyst at 800 °C in a flowing gas can be tracked readily.

  12. Gas phase contributions to topochemical hydride reduction reactions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoji; Li, Zhaofei; Hirai, Kei; Tassel, Cédric; Loyer, François; Ichikawa, Noriya; Abe, Naoyuki; Yamamoto, Takafumi; Shimakawa, Yuichi; Yoshimura, Kazuyoshi; Takano, Mikio; Hernandez, Olivier J.; Kageyama, Hiroshi

    2013-11-01

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H2 and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures.

  13. Evidence of enzymatic catalysis of oxygen reduction on stainless steels under marine biofilm.

    PubMed

    Faimali, Marco; Benedetti, Alessandro; Pavanello, Giovanni; Chelossi, Elisabetta; Wrubl, Federico; Mollica, Alfonso

    2011-04-01

    Cathodic current trends on stainless steel samples with different surface percentages covered by biofilm and potentiostatically polarized in natural seawater were studied under oxygen concentration changes, temperature increases, and additions of enzymic inhibitors to the solution. The results showed that on each surface fraction covered by biofilm the oxygen reduction kinetics resembled a reaction catalyzed by an immobilised enzyme with high oxygen affinity (apparent Michaelis-Menten dissociation constant close to K(O(2))(M)  ≈ 10 μM) and low activation energy (W ≈ 20 KJ mole(-1)). The proposed enzyme rapidly degraded when the temperature was increased above the ambient (half-life time of ∼1 day at 25°C, and of a few minutes at 50°C). Furthermore, when reversible enzymic inhibitors (eg sodium azide and cyanide) were added, the cathodic current induced by biofilm growth was inhibited. PMID:21526439

  14. Kinetics and Catalysis Demonstrations.

    ERIC Educational Resources Information Center

    Falconer, John L.; Britten, Jerald A.

    1984-01-01

    Eleven videotaped kinetics and catalysis demonstrations are described. Demonstrations include the clock reaction, oscillating reaction, hydrogen oxidation in air, hydrogen-oxygen explosion, acid-base properties of solids, high- and low-temperature zeolite reactivity, copper catalysis of ammonia oxidation and sodium peroxide decomposition, ammonia…

  15. Iron(III) Fluorinated Porphyrins: Greener Chemistry from Synthesis to Oxidative Catalysis Reactions.

    PubMed

    Rebelo, Susana L H; Silva, André M N; Medforth, Craig J; Freire, Cristina

    2016-01-01

    Iron(III) fluorinated porphyrins play a central role in the biomimetics of heme enzymes and enable cleaner routes to the oxidation of organic compounds. The present work reports significant improvements in the eco-compatibility of the synthesis of 5,10,15,20-tetrakis-pentafluorophenylporphyrin (H₂TPFPP) and the corresponding iron complex [Fe(TPFPP)Cl], and the use of [Fe(TPFPP)Cl] as an oxidation catalyst in green conditions. The preparations of H₂TPFPP and [Fe(TPFPP)Cl] typically use toxic solvents and can be made significantly greener and simpler using microwave heating and optimization of the reaction conditions. In the optimized procedure it was possible to eliminate nitrobenzene from the porphyrin synthesis and replace DMF by acetonitrile in the metalation reaction, concomitant with a significant reduction of reaction time and simplification of the purification procedure. The Fe(III)porphyrin is then tested as catalyst in the selective oxidation of aromatics at room temperature using a green oxidant (hydrogen peroxide) and green solvent (ethanol). Efficient epoxidation of indene and selective oxidation of 3,5-dimethylphenol and naphthalene to the corresponding quinones is observed. PMID:27077840

  16. A reaction path study of the catalysis and inhibition of the Bacillus anthracis CapD γ-glutamyl transpeptidase.

    PubMed

    Khavrutskii, Ilja V; Legler, Patricia M; Friedlander, Arthur M; Wallqvist, Anders

    2014-11-11

    The CapD enzyme of Bacillus anthracis is a γ-glutamyl transpeptidase from the N-terminal nucleophile hydrolase superfamily that covalently anchors the poly-γ-D-glutamic acid (pDGA) capsule to the peptidoglycan. The capsule hinders phagocytosis of B. anthracis by host cells and is essential for virulence. The role CapD plays in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known, and a covalent inhibitor, capsidin, has been identified, the mechanisms of CapD catalysis and inhibition are poorly understood. Here, we used a computational approach to map out the reaction steps involved in CapD catalysis and inhibition. We found that the rate-limiting step of either CapD catalysis or inhibition was a concerted asynchronous formation of the tetrahedral intermediate with a barrier of 22-23 kcal/mol. However, the mechanisms of these reactions differed for the two amides. The formation of the tetrahedral intermediate with pDGA was substrate-assisted with two proton transfers. In contrast, capsidin formed the tetrahedral intermediate in a conventional way with one proton transfer. Interestingly, capsidin coupled a conformational change in the catalytic residue of the tetrahedral intermediate to stretching of the scissile amide bond. Furthermore, capsidin took advantage of iminol-amide tautomerism of its diacetamide moiety to convert the tetrahedral intermediate to the acetylated CapD. As evidence of the promiscuous nature of CapD, the enzyme cleaved the amide bond of capsidin by attacking it on the opposite side compared to pDGA. PMID:25334088

  17. Palladium(0)/NHC-Catalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study.

    PubMed

    Raoufmoghaddam, Saeed; Mannathan, Subramaniyan; Minnaard, Adriaan J; de Vries, Johannes G; Reek, Joost N H

    2015-12-14

    We have studied the mechanism of the palladium-catalyzed reductive Heck reaction of para-substituted enones with 4-iodoanisole by using N,N-diisopropylethylamine (DIPEA) as the reductant. Kinetic studies and in situ spectroscopic analysis have provided a detailed insight into the reaction. Progress kinetic analysis demonstrated that neither catalyst decomposition nor product inhibition occurred during the catalysis. The reaction is first order in the palladium and aryl iodide, and zero order in the activated alkene, N-heterocyclic carbene (NHC) ligand, and DIPEA. The experiments with deuterated solvent ([D7]DMF) and deuterated base ([D15]Et3N) supported the role of the amine as a reductant in the reaction. The palladium complex [Pd(0)(NHC)(1)] has been identified as the resting state. The kinetic experiments by stopped-flow UV/Vis also revealed that the presence of the second substrate, benzylideneacetone 1, slows down the oxidative addition of 4-iodoanisole through its competing coordination to the palladium center. The kinetic and mechanistic studies indicated that the oxidative addition of the aryl iodide is the rate-determining step. Various scenarios for the oxidative addition step have been analyzed by using DFT calculations (bp86/def2-TZVP) that supported the inhibiting effect of substrate 1 by formation of resting state [Pd(0)(NHC)(1)] species at the cost of further increase in the energy barrier of the oxidative addition step. PMID:26561034

  18. Cooperative photoredox catalysis.

    PubMed

    Lang, Xianjun; Zhao, Jincai; Chen, Xiaodong

    2016-05-31

    Visible-light photoredox catalysis has been experiencing a renaissance in response to topical interest in renewable energy and green chemistry. The latest progress in this area indicates that cooperation between photoredox catalysis and other domains of catalysis could provide effective results. Thus, we advance the concept of cooperative photoredox catalysis for organic transformations. It is important to note that this concept can bridge the gap between visible-light photoredox catalysis and other types of redox catalysis such as transition-metal catalysis, biocatalysis or electrocatalysis. In doing so, one can take advantage of the best of both worlds in establishing organic synthesis with visible-light-induced redox reaction as a crucial step. PMID:27094803

  19. The crystal structure of xanthine oxidoreductase during catalysis: Implications for reaction mechanism and enzyme inhibition

    PubMed Central

    Okamoto, Ken; Matsumoto, Koji; Hille, Russ; Eger, Bryan T.; Pai, Emil F.; Nishino, Takeshi

    2004-01-01

    Molybdenum is widely distributed in biology and is usually found as a mononuclear metal center in the active sites of many enzymes catalyzing oxygen atom transfer. The molybdenum hydroxylases are distinct from other biological systems catalyzing hydroxylation reactions in that the oxygen atom incorporated into the product is derived from water rather than molecular oxygen. Here, we present the crystal structure of the key intermediate in the hydroxylation reaction of xanthine oxidoreductase with a slow substrate, in which the carbon–oxygen bond of the product is formed, yet the product remains complexed to the molybdenum. This intermediate displays a stable broad charge–transfer band at ≈640 nm. The crystal structure of the complex indicates that the catalytically labile Mo—OH oxygen has formed a bond with a carbon atom of the substrate. In addition, the Mo⋕S group of the oxidized enzyme has become protonated to afford Mo—SH on reduction of the molybdenum center. In contrast to previous assignments, we find this last ligand at an equatorial position in the square-pyramidal metal coordination sphere, not the apical position. A water molecule usually seen in the active site of the enzyme is absent in the present structure, which probably accounts for the stability of this intermediate toward ligand displacement by hydroxide. PMID:15148401

  20. Synthesis of S-(-)-5,6-Dihydrocanthin-4-ones via a Triple Cooperative Catalysis-Mediated Domino Reaction.

    PubMed

    Dighe, Shashikant U; Mahar, Rohit; Shukla, Sanjeev K; Kant, Ruchir; Srivastava, Kumkum; Batra, Sanjay

    2016-06-01

    An enantioselective synthesis of S-(-)-5,6-dihydrocanthin-4-ones via a triple cooperative catalysis-mediated domino reaction having a broad substrate scope is reported. The reaction between substituted 1-formyl-9H-β-carbolines and terminal alkynes in the presence of catalytic amounts of Jorgensen-Hayashi catalyst, copper iodide, and Hunig base proceeded via a multicascade route, affording the title compounds in good yields and excellent ees with interesting mechanistic features. These compounds were assessed for in vitro antiplasmodial activity against P. falciparum strains. Additionally, 5,6-dihydrocanthin-4-ones are demonstrated to be a versatile precursor to different fused β-carboline derivatives via simple synthetic transformations. PMID:27159615

  1. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  2. Gas phase contributions to topochemical hydride reduction reactions

    SciTech Connect

    Kobayashi, Yoji; Li, Zhaofei; Hirai, Kei; Tassel, Cédric; Loyer, François; Ichikawa, Noriya; Abe, Naoyuki; Yamamoto, Takafumi; Shimakawa, Yuichi; and others

    2013-11-15

    Alkali and alkali earth hydrides have been used as solid state reductants recently to yield many interesting new oxygen-deficient transition metal oxides. These reactions have tacitly been assumed to be a solid phase reaction between the reductant and parent oxide. We have conducted a number of experiments with physical separation between the reductant and oxides, and find that in some cases reduction proceeds even when the reagents are physically separated, implying reactions with in-situ generated H{sub 2} and, to a lesser extent, getter mechanisms. Our findings change our understanding of these topochemical reactions, and should enhance the synthesis of additional new oxides and nanostructures. - Graphical abstract: Topochemical reductions with hydrides: Solid state or gas phase reaction? Display Omitted - Highlights: • SrFeO{sub 2} and LaNiO{sub 2} were prepared by topochemical reduction of oxides. • Separating the reducing agent (CaH{sub 2}, Mg metal) from the oxide still results in reduction. • Such topochemical reactions can occur in the gas phase.

  3. NH3 Synthesis in the N2/H2 Reaction System using Cooperative Molecular Tungsten/Rhodium Catalysis in Ionic Hydrogenation: A DFT Study.

    PubMed

    Moha, Verena; Leitner, Walter; Hölscher, Markus

    2016-02-18

    The ionic hydrogenation of N2 with H2 to give NH3 is investigated by means of density functional theory (DFT) computations using a cooperatively acting catalyst system. In this system, N2 binds to a neutral tungsten pincer complex of the type [(PNP)W(N2)3] (PNP=pincer ligand) and is reduced to NH3. The protons and hydride centers necessary for the reduction are delivered by heterolytic cleavage of H2 between the N2-tungsten complex and the cationic rhodium complex [Cp*Rh{2-(2-pyridyl)phenyl}(CH3 CN)](+). Successive transfer of protons and hydrides to the bound N2, as well as all Nx Hy units that occur during the reaction, enable the computation of closed catalytic cycles in the gas and in the solvent phase. By optimizing the pincer ligands of the tungsten complex, energy spans as low as 39.3 kcal mol(-1) could be obtained, which is unprecedented in molecular catalysis for the N2/H2 reaction system. PMID:26711865

  4. N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions.

    PubMed

    Iturmendi, Amaia; García, Nestor; Jaseer, E A; Munárriz, Julen; Sanz Miguel, Pablo J; Polo, Victor; Iglesias, Manuel; Oro, Luis A

    2016-08-01

    The Ir(i) complexes [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 and [IrCl(cod)(κC-NHO(OMe))] (cod = 1,5-cyclooctadiene, NHO(PPh2) = 1,3-bis(2-(diphenylphosphanyl)ethyl)-2-methyleneimidazoline) and NHO(OMe) = 1,3-bis(2-(methoxyethyl)-2-methyleneimidazoline), both featuring an N-heterocyclic olefin ligand (NHO), have been tested in the transfer hydrogenation reaction; this representing the first example of the use of NHOs as ancillary ligands in catalysis. The pre-catalyst [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 has shown excellent activities in the transfer hydrogenation of aldehydes, ketones and imines using (i)PrOH as a hydrogen source, while [IrCl(cod)(κC-NHO(OMe))] decomposes throughout the reaction to give low yields of the hydrogenated product. Addition of one or two equivalents of a phosphine ligand to the latter avoids catalyst decomposition and significantly improves the reaction yields. The reaction mechanism has been investigated by means of stoichiometric studies and theoretical calculations. The formation of the active species ([Ir(κP,C,P'-NHO(PPh2))((i)PrO)]) has been proposed to occur via isopropoxide coordination and concomitant COD dissociation. Moreover, throughout the catalytic cycle the NHO moiety behaves as a hemilabile ligand, thus allowing the catalyst to adopt stable square planar geometries in the transition states, which reduces the energetic barrier of the process. PMID:27472896

  5. A sugar isomerization reaction established on various (βα)₈-barrel scaffolds is based on substrate-assisted catalysis.

    PubMed

    Reisinger, Bernd; Bocola, Marco; List, Felix; Claren, Jörg; Rajendran, Chitra; Sterner, Reinhard

    2012-11-01

    In the course of tryptophan biosynthesis, the isomerization of phosphoribosylanthranilate (PRA) is catalyzed by the (βα)₈-barrel enzyme TrpF. The reaction occurs via a general acid-base mechanism with an aspartate and a cysteine residue acting as acid and base, respectively. PRA isomerase activity could be established on two (βα)₈-barrel enzymes involved in histidine biosynthesis, namely HisA and HisF, and on a HisAF chimera, by introducing two aspartate-to-valine substitutions. We have analyzed the reaction mechanism underlying this engineered activity by measuring its pH dependence, solving the crystal structure of a HisF variant with bound product analogue, and applying molecular dynamics simulations and mixed quantum and molecular mechanics calculations. The results suggest that PRA is anchored by the C-terminal phosphate-binding sites of HisA, HisF and HisAF. As a consequence, a conserved aspartate residue, which is equivalent to Cys7 from TrpF, is properly positioned to act as catalytic base. However, no obvious catalytic acid corresponding to Asp126 from TrpF could be identified in the three proteins. Instead, this role appears to be carried out by the carboxylate group of the anthranilate moiety of PRA. Thus, the engineered PRA isomerization activity is based on a reaction mechanism including substrate-assisted catalysis and thus differs substantially from the naturally evolved reaction mechanism used by TrpF. PMID:23109729

  6. Metal carbonyl-hydrosilane reactions and hydrosilation catalysis. Final report for period May 1, 1995 - August 14, 1999

    SciTech Connect

    Cutler, Alan R.

    2001-04-14

    Manganese carbonyl complexes serve as hydrosilation precatalysts for selectively transforming a carbonyl group into a doxy methylene or a fully reduced methylene group. Substrates of interest include (1) aldehydes, ketones, carboxylic acids, silyl esters, and esters, and (2) their organometallic acyl counterparts. Two types of manganese precatalysts have been reported: (a) alkyl and acyl complexes (L)(CO){sub 4}MnR [L = CO, PPh{sub 3}; R = COCH{sub 3}, COPh, CH{sub 3}] and (b) halides (CO){sub 5}MnX and [(CO){sub 4}MnX]{sub 2} (X = Br, I). The former promote hydrosilation and deoxygenation catalysis; the latter promote dehydrogenative silation of alcohols and carboxylic acids as well as hydrosilation and deoxygenation of some metallocarboxylic acid derivatives. In every case studied, these Mn precatalysts are far more reactive or selective than traditional Rh(l) precatalysts. The reaction chemistry of the above and other Mn alkyl complexes with hydrosilanes was studied in order to probe catalysis mechanism(s). Thus, Mn(CO){sub 5} methyl, benzyl, acetyl, and benzoyl (4 p-substituents) complexes reacted with hydrosilines by four different mechanisms, which were established. A noteworthy development was that the methyl and benzoyl complexes gave moderate yields of a new ({eta}{sup 2}-Si-H) silane adduct (CO){sub 4}Mn(SiMe{sub 2}Ph)(H-SiMe{sub 2}Ph), which is stable in the presence of excess silane. This silane adduct promotes all three catalytic reactions; its extraordinary activity and potential selectivity are under study.

  7. Whole cell biotransformation for reductive amination reactions

    PubMed Central

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  8. Practical aspects of the oxygen reduction reaction (ORR)

    SciTech Connect

    Uribe, F.A.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1995-12-31

    The oxygen reduction reaction (ORR) is quite sensitive to the details of the three phase interface at which the reaction occurs. We describe here studies of the ORR at a well-defined recast Nafion/Pt microelectrode interface, emphasizing the effects of temperature and humidification on the reaction rate. We compare our results to those obtained in thin film composite electrodes used in polymer electrolyte fuel cells.

  9. Morita-Baylis-Hillman Reaction of α,β-Unsaturated Ketones with Allylic Acetates by the Combination of Transition-Metal Catalysis and Organomediation.

    PubMed

    Li, Ya-Qiong; Wang, Hai-Jun; Huang, Zhi-Zhen

    2016-06-01

    An intermolecular Morita-Baylis-Hillman (MBH) reaction of α,β-unsaturated ketones with allylic acetates under the catalysis of 10 mol % of tetrakis(triphenylphosphine)palladium(0) and mediation of tributylphosphine has been developed in the presence of acetic acid, affording the desired α-coupling products. The MBH reaction has the advantages of good tolerance to many functional groups, excellent regioselectivity and E-stereoselectivity, and moderate to good yields. PMID:27186906

  10. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    PubMed Central

    2015-01-01

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NOx species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. PMID:27162977

  11. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]

  12. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With themore » core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  13. Microporous polyurethane material for size selective heterogeneous catalysis of the Knoevenagel reaction.

    PubMed

    Dey, Sandeep Kumar; de Sousa Amadeu, Nader; Janiak, Christoph

    2016-06-14

    The first polyurethane material which is microporous (BET surface area of 312 m(2) g(-1)) is prepared by solvothermal synthesis and acts as highly efficient and recyclable heterogeneous catalyst in the Knoevenagel condensation showing size selectivity, and in the Henry reaction showing substrate selectivity under mild reaction conditions. PMID:27240738

  14. Catalysis of Cascade and Multicomponent Reactions of Carbonyl Compounds and CH Acids by Electricity.

    PubMed

    Elinson, Michail N; Vereshchagin, Anatoly N; Ryzhkov, Fedor V

    2016-08-01

    This review is concerned with modern trends in the use of electrochemically induced chain reactions in cascade and multicomponent electroorganic synthesis. The review summarizes the data on the use of electrochemically induced chain reactions in cascade and multicomponent organic synthesis, which were published mainly in the last decade. PMID:27276501

  15. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  16. Green synthesis of Fe0 and bimetallic Fe0 for oxidative catalysis and reduction applications

    EPA Science Inventory

    A single-step green approach to the synthesis of nanoscale zero valent iron (nZVI) and nanoscale bimetallic (Fe0/Pd) particles using tea (Camellia sinensis) polyphenols is described. The expedient reaction between polyphenols and ferric chloride (FeCl3) occurs within a minute at ...

  17. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    PubMed

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  18. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment.

    PubMed

    Hemelsoet, Karen; Van der Mynsbrugge, Jeroen; De Wispelaere, Kristof; Waroquier, Michel; Van Speybroeck, Veronique

    2013-06-01

    The conversion of methanol to olefins (MTO) over a heterogeneous nanoporous catalyst material is a highly complex process involving a cascade of elementary reactions. The elucidation of the reaction mechanisms leading to either the desired production of ethene and/or propene or undesired deactivation has challenged researchers for many decades. Clearly, catalyst choice, in particular topology and acidity, as well as the specific process conditions determine the overall MTO activity and selectivity; however, the subtle balances between these factors remain not fully understood. In this review, an overview of proposed reaction mechanisms for the MTO process is given, focusing on the archetypal MTO catalysts, H-ZSM-5 and H-SAPO-34. The presence of organic species, that is, the so-called hydrocarbon pool, in the inorganic framework forms the starting point for the majority of the mechanistic routes. The combination of theory and experiment enables a detailed description of reaction mechanisms and corresponding reaction intermediates. The identification of such intermediates occurs by different spectroscopic techniques, for which theory and experiment also complement each other. Depending on the catalyst topology, reaction mechanisms proposed thus far involve aromatic or aliphatic intermediates. Ab initio simulations taking into account the zeolitic environment can nowadays be used to obtain reliable reaction barriers and chemical kinetics of individual reactions. As a result, computational chemistry and by extension computational spectroscopy have matured to the level at which reliable theoretical data can be obtained, supplying information that is very hard to acquire experimentally. Special emphasis is given to theoretical developments that open new perspectives and possibilities that aid to unravel a process as complex as methanol conversion over an acidic porous material. PMID:23595911

  19. Tandem Catalysis of an Aldol-'Click' Reaction System within a Molecular Hydrogel.

    PubMed

    Araújo, Marco; Muñoz Capdevila, Iván; Díaz-Oltra, Santiago; Escuder, Beatriu

    2016-01-01

    A heterogeneous supramolecular catalytic system for multicomponent aldol-'click' reactions is reported. The copper(I) metallohydrogel functionalized with a phenyltriazole fragment was able to catalyze the multicomponent reaction between phenylacetylene, p-nitrobenzaldehyde, and an azide containing a ketone moiety, obtaining the corresponding aldol products in good yields. A possible mechanistic pathway responsible for this unexpected catalytic behavior has been proposed. PMID:27338313

  20. Kinetics of the ferrous/ferric electrode reaction in the absence of chloride catalysis

    SciTech Connect

    Hung, N.C.; Nagy, Z.

    1987-09-01

    The kinetics of the ferrous ferric redox electrode reaction has been investigated by many workers as a simple, uncomplicated charge transfer reaction which seems ideal for testing experimental techniques and charge transfer theories. However, it has only recently been understood that very small traces of chloride can have a considerable effect on the reaction rate. The relation between the chloride content of the solution and the rate constant of the ferrous/ferric reaction on a gold electrode in perchloric acid solutions is confirmed in this work. The chloride effect free apparent standard rate constant is found to be 2.2 x 10/sup -5/ cm s/sup -1/, which is two to three orders of magnitude smaller than the rate constants normally reported for this reaction if the chloride content of the solution is not scrupulously controlled. Measurements were carried out by using two different in situ methods for cleaning the working electrode surface rather than employing extensive solution purification. In the first method the measuring electrode was potentiostated at sufficiently negative potentials to desorb the chloride from the surface followed by a potential step to the equilibrium potential and a pulse measurement of the kinetics. In the second method chloride ions were removed from the surface before and during the kinetic measurement by continuous oxidation of chromous ions added in small concentration to the test solution. Good agreement was found among the rate constants determined by these methods and a reported rate constant determined in ultraclean solution.

  1. Highly Efficient Catalysis of Retro-Claisen Reactions: From a Quinone Derivative to Functionalized Imidazolium Salts.

    PubMed

    Visbal, Renso; Laguna, Antonio; Gimeno, M Concepción

    2016-03-14

    A new and efficient method for the preparation of several imidazolium salts containing an ester group in the C4 position of the aromatic ring through a retro-Claisen reaction pathway between a quinone derivative and several alcohols is described. This new organic transformation proceeds in the absence of a catalyst, but it is greatly catalyzed by different Lewis acids, especially with AgOAc at a very low catalyst loading and in very short reaction times. The process takes place by the nucleophilic attack of the carbonyl groups by the alcohol functionality, thus promoting a double C-C bond cleavage and C-H and C-O bond formation. This reaction represents the first example of this type between a quinone derivative and alcohols. PMID:26864976

  2. Role of tetraalkyl(benzyl)ammonium alkoxides in the catalysis of the alkaline dehydrochlorination reaction

    SciTech Connect

    Shavanov, S.S.; Tolstikov, G.A.; Shutenkova, T.V.; Viktorov, G.A.

    1988-01-10

    The reaction was conducted by the action of aqueous NaOH taken as a 50% solution at a molar ratio to dichloroethane of 2:1 at 50-55 C in the 1% of catalyst on the dichloroethane. The results of the experiments indicated the rising activity of the tetra-alkyl(benzyl) ammonium alkoxides as the lipophilicity of the anion increased, which proceeds in the organic phase. Reaction was effected through a complex formed by the association of quaternary ammonium salts with a hydroxyl-containing compound, the solvation of the associated species with the organochlorine substrate, and coordination with NaOH. The reaction goes in the organic phase and on the interphase surface.

  3. Consecutive intermolecular reductive hydroamination: cooperative transition-metal and chiral Brønsted acid catalysis.

    PubMed

    Fleischer, Steffen; Werkmeister, Svenja; Zhou, Shaolin; Junge, Kathrin; Beller, Matthias

    2012-07-16

    Enantiomerically pure chiral amines are of increasing importance and commercial value in the fine chemical, pharmaceutical, and agrochemical industries. Here, we describe the straightforward synthesis of chiral amines by combining the atom-economic and environmentally friendly hydroamination of alkynes with an enantioselective hydrogenation of in situ generated imines by using inexpensive hydrogen. By following this novel approach, a wide range of terminal alkynes can be reductively hydroaminated with primary amines including alkyl-, and arylalkynes as well as aryl and heteroaryl amines. Excellent yields and selectivities up to 94 % ee and 96 % isolated yield were obtained. PMID:22707210

  4. Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS “Branch” with Tunable Catalysis Properties

    PubMed Central

    Zhang, Xiangdan; Yang, Feifei; Cui, Shizhong; Wei, Wutao; Chen, Weihua; Mi, Liwei

    2016-01-01

    New CuS nanocrystals with a 3D hierarchical branched structure are successfully synthesized through in situ consecutive reaction method with copper foam as template. The formation mechanism of the 3D hierarchical branched structure obtained from the secondary reaction is investigated by adjusting the reaction time. The morphology of CuS nanosheet arrays with the 3D hierarchical branched structure is changed through Cu2+ exchange. In this method, the copper foam reacted completely, and the as-synthesized CuS@Cu9S5 nanocrystals are firmly grown on the surface of the 3D framework. This tunable morphology significantly influence the physical and chemical properties, particularly catalytic performance, of the materials. The as-obtained material of Cu@CuS-2 with the 3D hierarchical branched structure as catalyst for methylene blue degradation exhibits good catalytic performance than that of the material of Cu@CuS with 2D nanosheets in dark environment. Furthermore, the cation exchange between Cu and Cu2+ indicates that Cu2+ in wastewater could be absorbed by Cu@CuS-2 with the 3D hierarchical branched structure. The exchanged resultant of CuS@Cu9S5 retains its capability to degrade organic dyes. This in situ consecutive reaction method may have a significant impact on controlling the crystal growth direction of inorganic material. PMID:27465583

  5. Hydrogen-Bonding Catalysis of Tetraalkylammonium Salts in an Aza-Diels-Alder Reaction.

    PubMed

    Kumatabara, Yusuke; Kaneko, Shiho; Nakata, Satoshi; Shirakawa, Seiji; Maruoka, Keiji

    2016-08-01

    A piperidine-derived tetraalkylammonium salt with a non-coordinating counteranion worked as an effective hydrogen-bonding catalyst in an aza-Diels-Alder reaction of imines and a Danishefsky diene. The hydrogen-bonding interaction between the ammonium salt and an imine was observed as part of a (1) H NMR titration study. PMID:27311924

  6. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  7. Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS "Branch" with Tunable Catalysis Properties.

    PubMed

    Zhang, Xiangdan; Yang, Feifei; Cui, Shizhong; Wei, Wutao; Chen, Weihua; Mi, Liwei

    2016-01-01

    New CuS nanocrystals with a 3D hierarchical branched structure are successfully synthesized through in situ consecutive reaction method with copper foam as template. The formation mechanism of the 3D hierarchical branched structure obtained from the secondary reaction is investigated by adjusting the reaction time. The morphology of CuS nanosheet arrays with the 3D hierarchical branched structure is changed through Cu(2+) exchange. In this method, the copper foam reacted completely, and the as-synthesized CuS@Cu9S5 nanocrystals are firmly grown on the surface of the 3D framework. This tunable morphology significantly influence the physical and chemical properties, particularly catalytic performance, of the materials. The as-obtained material of Cu@CuS-2 with the 3D hierarchical branched structure as catalyst for methylene blue degradation exhibits good catalytic performance than that of the material of Cu@CuS with 2D nanosheets in dark environment. Furthermore, the cation exchange between Cu and Cu(2+) indicates that Cu(2+) in wastewater could be absorbed by Cu@CuS-2 with the 3D hierarchical branched structure. The exchanged resultant of CuS@Cu9S5 retains its capability to degrade organic dyes. This in situ consecutive reaction method may have a significant impact on controlling the crystal growth direction of inorganic material. PMID:27465583

  8. Consecutive Reaction to Construct Hierarchical Nanocrystalline CuS “Branch” with Tunable Catalysis Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdan; Yang, Feifei; Cui, Shizhong; Wei, Wutao; Chen, Weihua; Mi, Liwei

    2016-07-01

    New CuS nanocrystals with a 3D hierarchical branched structure are successfully synthesized through in situ consecutive reaction method with copper foam as template. The formation mechanism of the 3D hierarchical branched structure obtained from the secondary reaction is investigated by adjusting the reaction time. The morphology of CuS nanosheet arrays with the 3D hierarchical branched structure is changed through Cu2+ exchange. In this method, the copper foam reacted completely, and the as-synthesized CuS@Cu9S5 nanocrystals are firmly grown on the surface of the 3D framework. This tunable morphology significantly influence the physical and chemical properties, particularly catalytic performance, of the materials. The as-obtained material of Cu@CuS-2 with the 3D hierarchical branched structure as catalyst for methylene blue degradation exhibits good catalytic performance than that of the material of Cu@CuS with 2D nanosheets in dark environment. Furthermore, the cation exchange between Cu and Cu2+ indicates that Cu2+ in wastewater could be absorbed by Cu@CuS-2 with the 3D hierarchical branched structure. The exchanged resultant of CuS@Cu9S5 retains its capability to degrade organic dyes. This in situ consecutive reaction method may have a significant impact on controlling the crystal growth direction of inorganic material.

  9. Reduction of chemical reaction networks through delay distributions

    NASA Astrophysics Data System (ADS)

    Barrio, Manuel; Leier, André; Marquez-Lago, Tatiana T.

    2013-03-01

    Accurate modelling and simulation of dynamic cellular events require two main ingredients: an adequate description of key chemical reactions and simulation of such chemical events in reasonable time spans. Quite logically, posing the right model is a crucial step for any endeavour in Computational Biology. However, more often than not, it is the associated computational costs which actually limit our capabilities of representing complex cellular behaviour. In this paper, we propose a methodology aimed at representing chains of chemical reactions by much simpler, reduced models. The abridgement is achieved by generation of model-specific delay distribution functions, consecutively fed to a delay stochastic simulation algorithm. We show how such delay distributions can be analytically described whenever the system is solely composed of consecutive first-order reactions, with or without additional "backward" bypass reactions, yielding an exact reduction. For models including other types of monomolecular reactions (constitutive synthesis, degradation, or "forward" bypass reactions), we discuss why one must adopt a numerical approach for its accurate stochastic representation, and propose two alternatives for this. In these cases, the accuracy depends on the respective numerical sample size. Our model reduction methodology yields significantly lower computational costs while retaining accuracy. Quite naturally, computational costs increase alongside network size and separation of time scales. Thus, we expect our model reduction methodologies to significantly decrease computational costs in these instances. We anticipate the use of delays in model reduction will greatly alleviate some of the current restrictions in simulating large sets of chemical reactions, largely applicable in pharmaceutical and biological research.

  10. Resonance scattering spectral detection of trace ATP based on label-free aptamer reaction and nanogold catalysis.

    PubMed

    Liang, Aihui; Ouyang, Huixiang; Jiang, Zhiliang

    2011-11-01

    Double-stranded DNA (dsDNA) cannot protect gold nanoparticles (AuNPs) in the presence of NaCl, and dsDNA interacted with adenosine triphosphate (ATP) to form stable G-quartet and a single-stranded DNA (DNA 2) that can protect AuNPs. The unprotected AuNPs were aggregated to AuNP aggregations (AuNPA) that exhibited a resonance scattering (RS) peak at 590 nm. The RS intensity at 590 nm decreased linearly when the ATP concentration increased in the range of 6.6-110 nM. The catalysis of AuNP-DNA 2 was stronger than that of the AuNPA on the glucose-Cu(II) particle reaction, and the product appeared as an RS peak at 620 nm. When the ATP concentration was increased, the AuNP-DNA 2 increased, and the RS intensity at 620 nm increased linearly. The increased RS intensity (ΔI(620 nm)) was linear to ATP concentration in the range of 2.2-220 nM, with a regression equation of ΔI(620 nm) = 0.709C + 7.7, and a detection limit of 0.5 nM. Hereby, a new RS method of ATP detection was set up with high sensitivity and selectivity. PMID:21912797

  11. Enhanced catalysis of the electrochemical hydrogen evolution reaction using composites of molybdenum-based compounds, gold nanoparticles and carbon.

    PubMed

    Joshi, Ubisha; Lee, Jing; Giordano, Cristina; Malkhandi, Souradip; Yeo, Boon Siang

    2016-08-21

    Molybdenum nitride has been recently reported to interact synergistically with gold to show an enhanced activity for the electrochemical hydrogen evolution reaction (2H(+) + 2e(-)→ H2, HER). In this work, we elucidated the roles of nitrogen, carbon, molybdenum and gold on this observed phenomenon. Composites of Mo-based compounds, carbon black (black pearl 2000) and/or Au nanoparticles (AuNP) were prepared, and their activities for the HER in a 0.5 M H2SO4 electrolyte were measured using linear sweep voltammetry. We show and discuss here for the first time that, while the presence of carbon is necessary for the synergy phenomenon, the nitrogen atoms present in the compounds play no apparent role in this synergy. In fact, all the compounds containing Mo, namely Mo2N, MoB and metallic Mo(0), exhibited extensive synergy with Au for the HER. A hypothesis for the enhanced catalysis of H2 evolution by the mixed metal composites is proposed and discussed. PMID:27424516

  12. Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction--diffusion patterned catalysis of cell surface growth

    PubMed Central

    Holloway, D. M.

    1999-01-01

    Semi-cell morphogenesis in unicellular desmid algae of the genus Micrasterias generates a stellar shape by repeated dichotomous branching of growing tips of the cell surface. The numerous species of the genus display variations of the branching pattern that differ markedly in number of branchings, lobe width and lobe length. We have modelled this morphogenesis, following previous work by D. M. Harrison and M. Kolar (1988), on the assumptions that patterning occurs by chemical reaction-diffusion activity within the plasma membrane, leading to morphological expression by patterned catalysis of the extension of the cell surface. The latter has been simulated in simplified form by two-dimensional computations. Our results indicate that for generation of repeated branchings and for the control of diverse species-specific shapes, the loss of patterning activity and of rapid growth in regions separating the active growing tips is an essential feature. We believe this conclusion to be much more general than the specific details of our model. We discuss the limitations of the model especially in terms of what extra features might be addressed in three-dimensional computation.

  13. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    NASA Technical Reports Server (NTRS)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  14. Mineral surface catalysis of reactions between Fe II and oxime carbamate pesticides

    NASA Astrophysics Data System (ADS)

    Strathmann, Timothy J.; Stone, Alan T.

    2003-08-01

    This study examines the reduction of oxime carbamate pesticides (oxamyl, methomyl, and aldicarb) by Fe II in aqueous suspensions containing twelve different (hydr)oxide and aluminosilicate minerals. In the absence of Fe II, mineral surfaces have no apparent effect on the pathways or rates of oxime carbamate degradation. In anoxic suspensions containing Fe II and mineral surfaces, rates of oxime carbamate reduction are significantly faster than in equivalent mineral-free homogeneous solutions. Rates increase with increasing surface area loading (mineral surface area per volume of suspension) and pH. Kinetic trends are interpreted in terms of changes in Fe II speciation. Quantitative modeling indicates a first-order dependence on total adsorbed Fe II concentration and no significant dependence on adsorbed oxime carbamate concentration. Bimolecular rate constants describing the reactivity of adsorbed Fe II with dissolved oxamyl decrease in the following order: silicon dioxide #2 > silicon dioxide #1 ≫ hematite #2 > titanium dioxide #1 > hematite #1 > titanium dioxide #2 > silicon dioxide #3 > aluminum oxide > kaolinite #1 > kaolinite #2 > goethite ≫ titanium dioxide #3. Possible factors responsible for the increased reactivity of adsorbed Fe II, as well as for the relative reactivity of Fe II adsorbed on different surfaces, are discussed. Results from this study demonstrate that mineral surfaces present in subsurface environments can substantially catalyze the reduction of oxime carbamate pesticides by Fe II. Overall rates of pesticide degradation may be under predicted by > 1 order of magnitude if the effects of mineral surfaces are not accounted for.

  15. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Vannice, M. A.

    1979-01-01

    Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)

  16. Asymmetric Cooperative Catalysis in a Three-Component Reaction: Mechanism and Origin of Enantio- and Diastereoselectivities.

    PubMed

    Kisan, Hemanta K; Sunoj, Raghavan B

    2016-08-01

    Mechanistic insights gained through density functional theory (DFT M06 and B3LYP) computations on a three-component cooperative asymmetric catalytic reaction between a diazo ester, a carbamate, and an imine, catalyzed by dirhodium acetate and chiral phosphoric acid (Brønsted acid), are presented. The addition of the dirhodium-bound enol to the imine yielding an α,β-diamino ester is energetically more preferred over a potentially competitive protonation of the same enol leading to an α-amino ester. PMID:27447290

  17. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels

    SciTech Connect

    Fiedler, Dorothea; Leung, Dennis H.; Raymond, Kenneth N.; Bergman, Robert G.

    2004-11-27

    Supramolecular chemistry represents a way to mimic enzyme reactivity by using specially designed container molecules. We have shown that a chiral self-assembled M{sub 4}L{sub 6} supramolecular tetrahedron can encapsulate a variety of cationic guests, with varying degrees of stereoselectivity. Reactive iridium guests can be encapsulated and the C-H bond activation of aldehydes occurs, with the host cavity controlling the ability of substrates to interact with the metal center based upon size and shape. In addition, the host container can act as a catalyst by itself. By restricting reaction space and preorganizing the substrates into reactive conformations, it accelerates the sigmatropic rearrangement of enammonium cations.

  18. Synthesis and structures of ruthenium–NHC complexes and their catalysis in hydrogen transfer reaction

    PubMed Central

    Chen, Chao; Lu, Chunxin; Zheng, Qing; Zhang, Min

    2015-01-01

    Summary Ruthenium complexes [Ru(L1)2(CH3CN)2](PF6)2 (1), [RuL1(CH3CN)4](PF6)2 (2) and [RuL2(CH3CN)3](PF6)2 (3) (L1= 3-methyl-1-(pyrimidine-2-yl)imidazolylidene, L2 = 1,3-bis(pyridin-2-ylmethyl)benzimidazolylidene) were obtained through a transmetallation reaction of the corresponding nickel–NHC complexes with [Ru(p-cymene)2Cl2]2 in refluxing acetonitrile solution. The crystal structures of three complexes determined by X-ray analyses show that the central Ru(II) atoms are coordinated by pyrimidine- or pyridine-functionalized N-heterocyclic carbene and acetonitrile ligands displaying the typical octahedral geometry. The reaction of [RuL1(CH3CN)4](PF6)2 with triphenylphosphine and 1,10-phenanthroline resulted in the substitution of one and two coordinated acetonitrile ligands and afforded [RuL1(PPh3)(CH3CN)3](PF6)2 (4) and [RuL1(phen)(CH3CN)2](PF6)2 (5), respectively. The molecular structures of the complexes 4 and 5 were also studied by X-ray diffraction analysis. These ruthenium complexes have proven to be efficient catalysts for transfer hydrogenation of various ketones. PMID:26664598

  19. Mechanistic Insight into the Photoredox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reactions

    PubMed Central

    2015-01-01

    We describe our efforts to understand the key mechanistic aspects of the previously reported alkene hydrofunctionalization reactions using 9-mesityl-10-methylacridinium (Mes-Acr+) as a photoredox catalyst. Importantly, we are able to detect alkene cation radical intermediates, and confirm that phenylthiyl radical is capable of oxidizing the persistent acridinyl radical in a fast process that unites the catalytic activity of the photoredox and hydrogen atom transfer (HAT) manifolds. Additionally, we present evidence that diphenyl disulfide ((PhS)2) operates on a common catalytic cycle with thiophenol (PhSH) by way of photolytic cleaveage of the disulfide bond. Transition structure analysis of the HAT step using DFT reveals that the activation barrier for H atom donation from PhSH is significantly lower than 2-phenylmalononitrile (PMN) due to structural reorganization. In the early stages of the reaction, Mes-Acr+ is observed to engage in off-cycle adduct formation, presumably as buildup of PhS− becomes significant. The kinetic differences between PhSH and (PhS)2 as HAT catalysts indicate that the proton transfer step may have significant rate limiting influence. PMID:25390821

  20. Catalysis of the Aza-Diels-Alder Reaction by Hydrogen and Halogen Bonds.

    PubMed

    Nziko, Vincent de Paul N; Scheiner, Steve

    2016-03-18

    The combination of H2C═NH and cis-1,3-butadiene to form a six-membered ring was examined by quantum calculations. The energy barrier for this reaction is substantially lowered by the introduction of an imidazolium catalyst with either a H or halogen (X) atom in the 2-position, which acts via a H or halogen bond to the N atom of the imine, respectively. X = I has the largest effect, and Cl the smallest; Br and H are roughly equivalent. The catalyst retards the formation of the incipient N-C bond from imine to diene while simultaneously accelerating the C-C bond formation. The energy of the π* LUMO of the imine is lowered by the catalyst, which thereby enhances charge transfer from the diene to the imine. Assessment of free energies suggests catalytic rate acceleration by as much as 4-6 orders of magnitude. PMID:26907727

  1. Computerized reduction of elementary reaction sets for combustion modeling

    NASA Technical Reports Server (NTRS)

    Wikstrom, Carl V.

    1991-01-01

    If the entire set of elementary reactions is to be solved in the modeling of chemistry in computational fluid dynamics, a set of stiff ordinary differential equations must be integrated. Some of the reactions take place at very high rates, requiring short time steps, while others take place more slowly and make little progress in the short time step integration. The goal is to develop a procedure to automatically obtain sets of finite rate equations, consistent with a partial equilibrium assumptions, from an elementary set appropriate to local conditions. The possibility of computerized reaction reduction was demonstrated. However, the ability to use the reduced reaction set depends on the ability of the CFD approach in incorporate partial equilibrium calculations into the computer code. Therefore, the results should be tested on a code with partial equilibrium capability.

  2. An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters

    NASA Astrophysics Data System (ADS)

    Chen, Ling; Sha, Liang; Qiu, Yuwei; Wang, Guangfeng; Jiang, Hong; Zhang, Xiaojun

    2015-02-01

    In the present study, based on the mimic oxidase catalytic character of nucleic-acid-stabilized silver nanoclusters (DNA/AgNCs) and hybridization chain reactions for signal amplification, the fabrication of a label-free sensitive ``turn-on'' electrochemical aptasensor for the amplified determination of lysozyme was demonstrated. First, the designed DNA duplex was modified on the electrode. With the specific binding of the target, lysozyme and its aptamer, the lysozyme-binding DNA sequence was liberated, exposing the induced DNA sequence, which in turn triggered the formation of the supersandwich DNA structure. Because the cytosine-rich sequence was designed ingeniously on the DNA sequence, DNA/AgNCs were formed on the supersandwich DNA structure. The peroxidase-like character of DNA/AgNCs produced detectable electrochemical signals for the lysozyme aptasensor, which showed a satisfying sensitive detection of lysozyme with a low detection limit of 42 pM and a wide linear range of 10-10 M to 10-5 M.In the present study, based on the mimic oxidase catalytic character of nucleic-acid-stabilized silver nanoclusters (DNA/AgNCs) and hybridization chain reactions for signal amplification, the fabrication of a label-free sensitive ``turn-on'' electrochemical aptasensor for the amplified determination of lysozyme was demonstrated. First, the designed DNA duplex was modified on the electrode. With the specific binding of the target, lysozyme and its aptamer, the lysozyme-binding DNA sequence was liberated, exposing the induced DNA sequence, which in turn triggered the formation of the supersandwich DNA structure. Because the cytosine-rich sequence was designed ingeniously on the DNA sequence, DNA/AgNCs were formed on the supersandwich DNA structure. The peroxidase-like character of DNA/AgNCs produced detectable electrochemical signals for the lysozyme aptasensor, which showed a satisfying sensitive detection of lysozyme with a low detection limit of 42 pM and a wide linear

  3. An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters.

    PubMed

    Chen, Ling; Sha, Liang; Qiu, Yuwei; Wang, Guangfeng; Jiang, Hong; Zhang, Xiaojun

    2015-02-21

    In the present study, based on the mimic oxidase catalytic character of nucleic-acid-stabilized silver nanoclusters (DNA/AgNCs) and hybridization chain reactions for signal amplification, the fabrication of a label-free sensitive "turn-on" electrochemical aptasensor for the amplified determination of lysozyme was demonstrated. First, the designed DNA duplex was modified on the electrode. With the specific binding of the target, lysozyme and its aptamer, the lysozyme-binding DNA sequence was liberated, exposing the induced DNA sequence, which in turn triggered the formation of the supersandwich DNA structure. Because the cytosine-rich sequence was designed ingeniously on the DNA sequence, DNA/AgNCs were formed on the supersandwich DNA structure. The peroxidase-like character of DNA/AgNCs produced detectable electrochemical signals for the lysozyme aptasensor, which showed a satisfying sensitive detection of lysozyme with a low detection limit of 42 pM and a wide linear range of 10(-10) M to 10(-5) M. PMID:25623467

  4. Understanding the cooperative NHC/LA catalysis for stereoselective annulation reactions with homoenolates. A DFT study.

    PubMed

    Domingo, Luis R; Zaragozá, Ramón J; Arnó, Manuel

    2011-10-01

    The role of Ti(Oi-Pr)(4) Lewis acid (LA) in the cooperative N-heterocyclic carbene (NHC)/LA catalyzed addition of enals to enones to yield cis-cyclopentenes has been investigated using DFT methods at the B3LYP/6-31G** computational level. Ti(IV) effectively catalyzes the reaction by formation of a complex with cinnamaldehyde 1, which favors the nucleophilic attack of NHC 5 on 1, and the subsequent proton abstraction to yield the extended Ti(IV)-Breslow intermediate 21. The nature of the metal involved in the LA catalyst plays a relevant role due to the more basic character of NHCs than aldehydes. Thus, strong LAs, such as Zn(OTf)(2), prevent the catalytic behavior of NHCs to form a very stable complex. The subsequent formation of a complex between chalcone 2 and the extended Ti(IV)-Breslow intermediate 21 favors the cis stereoselective C-C bond-formation. Analysis of the structures of Ti(IV)-complex precursors for the cis and trans C-C bond-formation steps allows for an explanation of the unexpected cis stereoselectivity. PMID:21842074

  5. Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles.

    PubMed

    Guo, Shaojun; Zhang, Xu; Zhu, Wenlei; He, Kai; Su, Dong; Mendoza-Garcia, Adriana; Ho, Sally Fae; Lu, Gang; Sun, Shouheng

    2014-10-22

    Controlling the electronic structure and surface strain of a nanoparticle catalyst has become an important strategy to tune and to optimize its catalytic efficiency for a chemical reaction. Using density functional theory (DFT) calculations, we predicted that core/shell M/CuPd (M = Ag, Au) NPs with a 0.8 or 1.2 nm CuPd2 shell have similar but optimal surface strain and composition and may surpass Pt in catalyzing oxygen reduction reactions. We synthesized monodisperse M/CuPd NPs by the coreduction of palladium acetylacetonate and copper acetylacetonate in the presence of Ag (or Au) nanoparticles with controlled shell thicknesses of 0.4, 0.75, and 1.1 nm and CuPd compositions and evaluated their catalysis for the oxygen reduction reaction in 0.1 M KOH solution. As predicted, our Ag/Cu37Pd63 and Au/Cu40Pd60 catalysts with 0.75 and 1.1 nm shells were more efficient catalysts than the commercial Pt catalyst (Fuel Cells Store), with their mass activity reaching 0.20 A/mg of noble metal at -0.1 V vs Ag/AgCl (4 M KCl); this was over 3 times higher than that (0.06 A/mg Pt) from the commercial Pt. These Ag(Au)/CuPd nanoparticles are promising non-Pt catalysts for oxygen reduction reactions. PMID:25279704

  6. Acid catalysis of the formation of the slow-folding species of RNase A: Evidence that the reaction is proline isomerization

    PubMed Central

    Schmid, Franz X.; Baldwin, Robert L.

    1978-01-01

    Unfolded RNase A is known to contain an equilibrium mixture of two forms, a slow-folding form (U1) and a fast-folding form (U2). If U1 is produced after unfolding by the slow cis-trans isomerization of proline residues about X-Pro imide bonds, then the formation of U1 should be catalyzed by strong acids. Therefore, the rate of formation of U1 has been measured at different HClO4 concentrations. After rapid unfolding of the native protein in concentrated HClO4 at 0°, the slow formation of U1 was measured by use of refolding assays. Catalysis of its formation was found at HClO4 concentrations above 5 M. The uncatalyzed reaction follows apparent first-order kinetics but, in the acid-catalyzed range, two reactions are found. The faster reaction produces two-thirds of the slow-folding species and shows acid catalysis above 5 M HClO4. Catalysis of the slower reaction begins at 8 M HClO4. The faster reaction shows a 100-fold increase in rate at 10.6 M HClO4 over the rate of the uncatalyzed reaction of 5 M. The activation enthalpy of the uncatalyzed reaction has been measured in two sets of unfolding conditions: ΔH‡ is 21.5 kcal/mol (1 kcal = 4.2 × 103 J) in 3.3 M HClO4 and 21.0 kcal/mol in 5 M guanidine HCl, pH 2.5. Both acid catalysis of the formation of U1 and its high activation enthalpy are consistent with the rate-limiting step being cis-trans isomerization either of X-Pro imide bonds or of peptide bond. The rate of the uncatalyzed reaction is in the range expected for proline isomerization and is 0.1% of that of peptide bond isomerization; thus, the simplest explanation for the formation of U1 is proline isomerization. Earlier data, showing that the kinetic properties of the U1 ⇄ U2 reaction in refolding conditions differ from those of proline isomerization, can be explained if there is kinetic coupling between early steps in the folding of U1 and its conversion to U2. The existence of two acid-catalyzed reactions that are distinguished by the HClO4

  7. Lewis acid catalysis of photochemical reactions. 5. Selective isomerization of conjugated butenoic and dienoic esters

    SciTech Connect

    Lewis, F.D.; Howard, D.K.; Barancyk, S.V.; Oxman, J.D.

    1986-05-28

    The effects of Lewis and Broensted acids upon the photoisomerization reactions of several conjugated butenoic and dienoic esters have been investigated. Lewis acids inhibit the photochemical deconjugation of ..cap alpha..,..beta..- to ..beta..,..gamma..-unsaturated butenoic esters and shift the photoequilibrium between E and Z isomers toward the Z isomer. As such, irradiation of E ..cap alpha..,..beta..-unsaturated esters in the presence of EtAlCl/sub 2/ provides a convenient method for the preparation of the thermodynamically less stable Z isomer. Irradiation of methyl (E,E)-2,4-hexadienoate and methyl (E,E)-5-phenyl-2,4-pentadienoate in the absence of added catalysts results in nonselective E,Z isomerization to give mixtures of all four stereoisomers in roughly comparable yields. In the presence of the Broensted acid trifluoroacetic acid, quantitative conversion of methyl 2,4-hexadienoates to methyl 3,4-hexadienoate is observed. The acid serves as a catalyst for the thermal 1,3-hydrogen shift of an allenic enol ester formed via a photochemical 1,5-hydrogen shift of the conjugated esters. Irradiation of the ground-state complexes of the conjugated esters with the Lewis acids EtAlCl/sub 2/ or BF/sub 3/ results in selective E,Z isomerization about the ..cap alpha..,..beta..-double bond in methyl 2,4-hexadienoate and the ..gamma..,delta-double bond in methyl 5-phenyl-24-pentadienoate. The mechanistic bases for the observed effects of Lewis acids are selective excitation of the more strongly absorbing E complex and more efficient isomerization of the excited E vs. Z complex.

  8. Monte Carlo simulations of surface reactions: NO reduction by CO or H{sub 2}

    SciTech Connect

    Álvarez-Falcón, L.; Vicente, L.

    2014-01-14

    The development of surface science has given an opportunity to investigate the process of heterogeneous catalysis at a molecular level. In this way there has been a great progress in understanding the mechanism in NO decomposition. Modeling has been an very important tool in this goal. In this work we analyze the reactions NO+H{sub 2} and NO+CO. The extremely narrow production peak of N{sub 2} and CO{sub 2} which occurs in the reaction of NO+CO on Pt(100), a phenomenon known as “surface explosion,” is studied using a dynamic Monte Carlo method on a square lattice at low pressure under isothermal conditions. The catalytic reduction of nitric oxide by hydrogen over a Pt surface is also studied by using a dynamic Monte Carlo. Using a Langmuir-Hinshelwod mechanism of reaction, a simplified model with only four adsorbed species (NO, H, O, and N) is constructed. The effect on NO dissociation rate, the limiting step in the whole reaction, is inhibited by coadsorbed NO and H{sub 2} molecules, and is enhanced both by the presence of empty sites and adsorbed N atoms as nearest-neighbors. In these simulations experimental parameters values are included, such as: adsorption, desorption and diffusion of the reactants. The phenomenon is studied changing the temperature in the range of 300–550 K. The modeling reproduces well observed TPD and TPR experimental results and allows a visualization of the spatial development of the surface explosion.

  9. Bioorganic modelling stereoselective reactions with chiral neutral ligand complexes as model systems for enzyme catalysis.

    PubMed

    Kellogg, R M

    1982-01-01

    amateurs. A better understanding of non-covalent interactions may also provide the key to achieving also the twin goals of both speed and selectivity in bioorganic modelling. As far as enantioselectivity is concerned it is clear that this can be achieved fairly effectively by the use of relatively small, but appropriately placed, groups that force the substrate to complex in an enantioselective step with the ligand. In other words, the problem of enantioselectivity can be solved at the stage of complex forming, which is kinetically rapid. The p]roblem of rate enhancement lies in the mentarity with the transition state of the reaction being catalyzed. Again the achievement of this goal lies in ingenuity of design. Potential areas of applications of chiral crown ether (or cryptate) ligand systems in bioorganic modelling lie in, for example, the formation of carbon-carbon bonds, development of oxidative processes (i.e... PMID:7036410

  10. Influence of water on the reaction path of the oxygen reduction reaction in fuel cells

    NASA Astrophysics Data System (ADS)

    Malardier-Jugroot, Cecile; Groves, Michael; Jugroot, Manish

    2015-04-01

    The development of fuel cell technology has been limited in part due to the cost of the catalyst used in the cell and the rate limiting oxygen reduction reaction. We will present a molecular modelling study focus toward the prediction of improved durability and catalytic efficiency of the Platinum catalyst using doped graphene and doped single walled carbon nanotube surface. The most promising carbon supports - active centre systems were then studied in the gas phase and with explicit water molecules to model the oxygen reduction reaction and tailor the catalytic centres to improve the efficiency of this reaction while reducing the probability of occurrence of side reactions. Two major conclusions have been drawn from this analysis of the oxygen reduction reaction with and without water present. The doping of the carbon surface leads to a stronger platinum-surface interaction and does help the breaking of the oxygen-oxygen bond. These two are interrelated since the stronger surface-platinum bond allows for the same orbitals to interact with the oxygen-oxygen orbital. In addition, the dopants could make the surfaces more polar thus retaining water which might help catalyze the reaction, this property could be very promising to increase the effectiveness of fuel cell cathodes.

  11. First principles based mean field model for oxygen reduction reaction.

    PubMed

    Jinnouchi, Ryosuke; Kodama, Kensaku; Hatanaka, Tatsuya; Morimoto, Yu

    2011-12-21

    A first principles-based mean field model was developed for the oxygen reduction reaction (ORR) taking account of the coverage- and material-dependent reversible potentials of the elementary steps. This model was applied to the simulation of single crystal surfaces of Pt, Pt alloy and Pt core-shell catalysts under Ar and O(2) atmospheres. The results are consistent with those shown by past experimental and theoretical studies on surface coverages under Ar atmosphere, the shape of the current-voltage curve for the ORR on Pt(111) and the material-dependence of the ORR activity. This model suggests that the oxygen associative pathway including HO(2)(ads) formation is the main pathway on Pt(111), and that the rate determining step (RDS) is the removal step of O(ads) on Pt(111). This RDS is accelerated on several highly active Pt alloys and core-shell surfaces, and this acceleration decreases the reaction intermediate O(ads). The increase in the partial pressure of O(2)(g) increases the surface coverage with O(ads) and OH(ads), and this coverage increase reduces the apparent reaction order with respect to the partial pressure to less than unity. This model shows details on how the reaction pathway, RDS, surface coverages, Tafel slope, reaction order and material-dependent activity are interrelated. PMID:22064886

  12. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Ye, Feng; Liu, Hui; Yang, Jun

    2016-04-01

    Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy starts with the synthesis of core-shell Pt@Ag nanoparticles, followed by galvanic replacement reaction between the Ag shell and Pd2+ ions to form core-shell-shell Pt@Ag@Ag-Pd nanoparticles with a Pt core and double shells composed of Ag at inner and alloy Ag-Pd at outer, respectively. Then, the core-shell-shell templates are agitated with saturated NaCl solution to eliminate the Ag component from the double shells, leading to the formation of bimetallic Pt-Pd nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a porous Pd shell, which show enhanced catalytic activity for oxygen reduction compared with that of the Pt seeds due to the additional catalysis from Pd shell. In addition, owing to the different diffusion behavior of methanol and oxygen molecules in the porous Pd shell, the Pt-Pd cage-bell nanostructures also exhibit superior methanol tolerant property in catalyzing the oxygen reduction.

  13. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.

    PubMed

    Chen, Dong; Ye, Feng; Liu, Hui; Yang, Jun

    2016-01-01

    Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy starts with the synthesis of core-shell Pt@Ag nanoparticles, followed by galvanic replacement reaction between the Ag shell and Pd(2+) ions to form core-shell-shell Pt@Ag@Ag-Pd nanoparticles with a Pt core and double shells composed of Ag at inner and alloy Ag-Pd at outer, respectively. Then, the core-shell-shell templates are agitated with saturated NaCl solution to eliminate the Ag component from the double shells, leading to the formation of bimetallic Pt-Pd nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a porous Pd shell, which show enhanced catalytic activity for oxygen reduction compared with that of the Pt seeds due to the additional catalysis from Pd shell. In addition, owing to the different diffusion behavior of methanol and oxygen molecules in the porous Pd shell, the Pt-Pd cage-bell nanostructures also exhibit superior methanol tolerant property in catalyzing the oxygen reduction. PMID:27079897

  14. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction

    PubMed Central

    Chen, Dong; Ye, Feng; Liu, Hui; Yang, Jun

    2016-01-01

    Precisely tailoring the structure and fully making use of the components of nanoparticles are effective to enhance their catalytic performance for a given reaction. We herein demonstrate the design of cage-bell structured Pt-Pd nanoparticles, where a Pd shell is deliberately selected to enhance the catalytic property and methanol tolerance of Pt for oxygen reduction reaction. This strategy starts with the synthesis of core-shell Pt@Ag nanoparticles, followed by galvanic replacement reaction between the Ag shell and Pd2+ ions to form core-shell-shell Pt@Ag@Ag-Pd nanoparticles with a Pt core and double shells composed of Ag at inner and alloy Ag-Pd at outer, respectively. Then, the core-shell-shell templates are agitated with saturated NaCl solution to eliminate the Ag component from the double shells, leading to the formation of bimetallic Pt-Pd nanoparticles with a cage-bell structure, defined as a movable Pt core enclosed by a porous Pd shell, which show enhanced catalytic activity for oxygen reduction compared with that of the Pt seeds due to the additional catalysis from Pd shell. In addition, owing to the different diffusion behavior of methanol and oxygen molecules in the porous Pd shell, the Pt-Pd cage-bell nanostructures also exhibit superior methanol tolerant property in catalyzing the oxygen reduction. PMID:27079897

  15. Chemical reactions occurring during direct solar reduction of CO2.

    PubMed

    Lyma, J L; Jensen, R J

    2001-09-28

    At high temperatures carbon dioxide may absorb solar radiation and react to form carbon monoxide and molecular oxygen. The CO, so produced, may be converted by well-established means to a combustible fuel, such as methanol. We intend to make a future demonstration of the solar reduction of CO2 based on these processes. This paper, however, addresses only the problem of preserving, or even enhancing, the initial photolytic CO by quenching the hot gas with colder H2O or CO2. We present model calculations with a reaction mechanism used extensively in other calculations. If a CO2 gas stream is heated and photolyzed by intense solar radiation and then allowed to cool slowly, it will react back to the initial CO2 by a series of elementary chemical reactions. The back reaction to CO2 can be terminated with the rapid addition of CO2, water, or a mixture. Calculations show that a three-fold quench with pure CO2 will stop the reactions and preserve over 90% of the initial photolytic CO. We find that water has one of two effects. It can either increase the CO level, or it can catalyze the recombination of O and CO to CO2. The gas temperature is the determining factor. If the quench gas is not sufficient to keep the temperature below approximately 1100 K, a chain-branching reaction dominates and the reaction to CO2 occurs. If the temperature stays below that level a chain terminating reaction dominates and the CO is increased. The former case occurs below approximately a fourfold quench with a water/CO2 mixture. The later case occurs when the quench is greater than fourfold. We conclude that CO2, H2O, or a mixture may quench the hot gas stream photolyzed by solar radiation and preserve the photolytic CO. PMID:11589409

  16. A model reduction method for biochemical reaction networks

    PubMed Central

    2014-01-01

    Background In this paper we propose a model reduction method for biochemical reaction networks governed by a variety of reversible and irreversible enzyme kinetic rate laws, including reversible Michaelis-Menten and Hill kinetics. The method proceeds by a stepwise reduction in the number of complexes, defined as the left and right-hand sides of the reactions in the network. It is based on the Kron reduction of the weighted Laplacian matrix, which describes the graph structure of the complexes and reactions in the network. It does not rely on prior knowledge of the dynamic behaviour of the network and hence can be automated, as we demonstrate. The reduced network has fewer complexes, reactions, variables and parameters as compared to the original network, and yet the behaviour of a preselected set of significant metabolites in the reduced network resembles that of the original network. Moreover the reduced network largely retains the structure and kinetics of the original model. Results We apply our method to a yeast glycolysis model and a rat liver fatty acid beta-oxidation model. When the number of state variables in the yeast model is reduced from 12 to 7, the difference between metabolite concentrations in the reduced and the full model, averaged over time and species, is only 8%. Likewise, when the number of state variables in the rat-liver beta-oxidation model is reduced from 42 to 29, the difference between the reduced model and the full model is 7.5%. Conclusions The method has improved our understanding of the dynamics of the two networks. We found that, contrary to the general disposition, the first few metabolites which were deleted from the network during our stepwise reduction approach, are not those with the shortest convergence times. It shows that our reduction approach performs differently from other approaches that are based on time-scale separation. The method can be used to facilitate fitting of the parameters or to embed a detailed model of

  17. Liquid crystal size selection of large-size graphene oxide for size-dependent N-doping and oxygen reduction catalysis.

    PubMed

    Lee, Kyung Eun; Kim, Ji Eun; Maiti, Uday Narayan; Lim, Joonwon; Hwang, Jin Ok; Shim, Jongwon; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2014-09-23

    Graphene oxide (GO) is aqueous-dispersible oxygenated graphene, which shows colloidal discotic liquid crystallinity. Many properties of GO-based materials, including electrical conductivity and mechanical properties, are limited by the small flake size of GO. Unfortunately, typical sonochemical exfoliation of GO from graphite generally leads to a broad size and shape distribution. Here, we introduce a facile size selection of large-size GO exploiting liquid crystallinity and investigate the size-dependent N-doping and oxygen reduction catalysis. In the biphasic GO dispersion where both isotropic and liquid crystalline phases are equilibrated, large-size GO flakes (>20 μm) are spontaneously concentrated within the liquid crystalline phase. N-Doping and reduction of the size-selected GO exhibit that N-dopant type is highly dependent on GO flake size. Large-size GO demonstrates quaternary dominant N-doping and the lowest onset potential (-0.08 V) for oxygen reduction catalysis, signifying that quaternary N-dopants serve as principal catalytic sites in N-doped graphene. PMID:25145457

  18. Diversity of Contaminant Reduction Reactions by Zero-Valent Iron: Role of the Reductate

    SciTech Connect

    Miehr, R; Tratnyek, Paul G.; Bandstra, J; Scherer, Michelle; Alowitz, M; Bylaska, Eric J.

    2004-01-01

    The reactions of 8 model contaminants with 9 types of granular Fe(0) were studied in batch experiments using consistent experimental conditions. The model contaminants (herein referred to as reductates because they were reduced by the iron metal) included cations (Cu2+), anions (CrO42-; NO3-; and 5,5,7,7-indigotetrasulfonate), and neutral species (2-chloroacetophenone; 2,4,6-trinitrotoluene; carbon tetrachloride; and trichloroethene). The diversity of this range of reductates offers a uniquely broad perspective on the reactivity of Fe(0). Rate constants for disappearance of the reductates vary over as much as 4 orders of magnitude for particular reductates (due to differences in the 9 types of iron) but differences among the reductates were even larger, ranging over almost 7 orders of magnitude. Various ways of summarizing the data all suggest that relative reactivities with Fe(0) varies in the order: Cu2, I4S > 2CAP, TNT > CT, Cr6 > TCE > NO3. Although the reductate h as the largest effect on disappearance kinetics, more subtle differences in reactivity due to the type of Fe(0) suggests that removal of Cr6 and NO3 (the inorganic anions) involves adsorption to oxides on the Fe(0), whereas the disappearance kinetics of all other types of reductants is favored by reduction on comparatively oxide-free metal. Correlation analysis of the disappearance rate constants using descriptors of the reductates calculated by molecular modeling (energies of the lowest unoccupied molecular orbitals, LUMO, highest occupied molecular orbitals, HOMO, and HOMO-LUMO gaps) showed that reactivities generally increase with decreasing ELUMO and increasing EGAP (and, therefore, increasing chemical hardness h).

  19. Influence of surface capping on oxygen reduction catalysis: A case study of 1.7 nm Pt nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Wang, Hailiang

    2016-06-01

    Organic and polymer capping agents are prevailingly used in the synthesis of metal nanocrystals to render size and shape controls for desirable catalytic properties. A general assumption in the electrocatalysis field is that the capping agents block active sites and hinder catalytic turnover. However there have been a number of experimental results suggesting otherwise. Investigation of the fundamental correlations between the surface capping and the catalytic kinetics of metal nanoparticles is of paramount importance yet still remains challenging in large part due to structural changes induced by capping agent removal or synthesis using different capping agents. Our approach involves a unique catalyst system comprising of 1.7 nm Pt nanoparticles with and without various surface capping. We find that surface capping affects both activity and selectivity of electrocatalytic oxygen reduction reaction. The influences can be positive, neutral or negative. The five capping agents studied fall into three groups. Polyacrylic acid (PAA) and polyvinylpyrrolidone (PVP) cappings do not change the onset potential or product selectivity, but increase the catalytic current density. Sodium dodecyl sulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB) cappings do not change the onset potential or product selectivity, but slightly decrease the catalytic current density. Oleylamine (OA) capping significantly decreases the onset potential and the catalytic current density as well as change the product selectivity by favoring a high percentage of 2-electron reduction.

  20. Reduction of dynamical biochemical reactions networks in computational biology

    PubMed Central

    Radulescu, O.; Gorban, A. N.; Zinovyev, A.; Noel, V.

    2012-01-01

    Biochemical networks are used in computational biology, to model mechanistic details of systems involved in cell signaling, metabolism, and regulation of gene expression. Parametric and structural uncertainty, as well as combinatorial explosion are strong obstacles against analyzing the dynamics of large models of this type. Multiscaleness, an important property of these networks, can be used to get past some of these obstacles. Networks with many well separated time scales, can be reduced to simpler models, in a way that depends only on the orders of magnitude and not on the exact values of the kinetic parameters. The main idea used for such robust simplifications of networks is the concept of dominance among model elements, allowing hierarchical organization of these elements according to their effects on the network dynamics. This concept finds a natural formulation in tropical geometry. We revisit, in the light of these new ideas, the main approaches to model reduction of reaction networks, such as quasi-steady state (QSS) and quasi-equilibrium approximations (QE), and provide practical recipes for model reduction of linear and non-linear networks. We also discuss the application of model reduction to the problem of parameter identification, via backward pruning machine learning techniques. PMID:22833754

  1. Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis.

    PubMed

    Lombard, M; Houée-Levin, C; Touati, D; Fontecave, M; Nivière, V

    2001-04-24

    Superoxide reductase (SOR) is a small metalloenzyme that catalyzes reduction of O(2)(*)(-) to H(2)O(2) and thus provides an antioxidant mechanism against superoxide radicals. Its active site contains an unusual mononuclear ferrous center, which is very efficient during electron transfer to O(2)(*)(-) [Lombard, M., Fontecave, M., Touati, D., and Nivière, V. (2000) J. Biol. Chem. 275, 115-121]. The reaction of the enzyme from Desulfoarculus baarsii with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bimolecular reaction of superoxide reductase with superoxide, with a rate constant of (1.1 +/- 0.3) x 10(9) M(-1) s(-1). A first intermediate is formed which is converted to a second one at a much slower rate constant of 500 +/- 50 s(-1). Decay of the second intermediate occurs with a rate constant of 25 +/- 5 s(-1). These intermediates are suggested to be iron-superoxide and iron-peroxide species. Furthermore, the role of glutamate 47 and lysine 48, which are the closest charged residues to the vacant sixth iron coordination site, has been investigated by site-directed mutagenesis. Mutation of glutamate 47 into alanine has no effect on the rates of the reaction. On the contrary, mutation of lysine 48 into an isoleucine led to a 20-30-fold decrease of the rate constant of the bimolecular reaction, suggesting that lysine 48 plays an important role during guiding and binding of superoxide to the iron center II. In addition, we report that expression of the lysine 48 sor mutant gene hardly restored to a superoxide dismutase-deficient Escherichia coli mutant the ability to grow under aerobic conditions. PMID:11305919

  2. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction.

    PubMed

    Shao, Minhua; Chang, Qiaowan; Dodelet, Jean-Pol; Chenitz, Regis

    2016-03-23

    The recent advances in electrocatalysis for oxygen reduction reaction (ORR) for proton exchange membrane fuel cells (PEMFCs) are thoroughly reviewed. This comprehensive Review focuses on the low- and non-platinum electrocatalysts including advanced platinum alloys, core-shell structures, palladium-based catalysts, metal oxides and chalcogenides, carbon-based non-noble metal catalysts, and metal-free catalysts. The recent development of ORR electrocatalysts with novel structures and compositions is highlighted. The understandings of the correlation between the activity and the shape, size, composition, and synthesis method are summarized. For the carbon-based materials, their performance and stability in fuel cells and comparisons with those of platinum are documented. The research directions as well as perspectives on the further development of more active and less expensive electrocatalysts are provided. PMID:26886420

  3. Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Miranda, R.

    1989-01-01

    Described is a heterogeneous catalysis course which has elements of materials processing embedded in the classical format of catalytic mechanisms and surface chemistry. A course outline and list of examples of recent review papers written by students are provided. (MVL)

  4. Reactions of imidic acid derivatives with nucleophilic reagents. Bifunctional catalysis of the arylaminolysis of aryl n-phenyl-sulfonylbenzimidates in chlorobenzene

    SciTech Connect

    Skrypka, A.V.; Drizhd, L.P.; Savelova, V.A.

    1987-10-20

    The kinetics of the reaction of aryl N-phenylsulfonylbenzimidates PhC(OArX)=NSO/sub 2/Ph (I,X=4-NO/sub 2/ (a), 4-N=NC/sub 6/H/sub 5/ (b)) with aniline in chlorobenzene at 25/sup 0/C are characterized by first-order in the imidate and third (compound (Ib)) and fourth (compound (Ia)) order in the arylamine. The reaction is accelerated by phenols, pyridines, acetic acid, and 2-hydroxypyridines and is described by a kinetic equation of first order in each of the reagents and in the catalyst (in the monomeric form). The catalytic activity of the ring-substituted 2-hydroxypyridines does not depend on the nature of the substituent. This face and the high activity of the acetic acid and 2-hydroxypyridines compared with the monofunctional compounds are explained by a bifunctional mechanism of catalysis.

  5. Oxygen reduction reaction on stepped platinum surfaces in alkaline media.

    PubMed

    Rizo, Ruben; Herrero, Enrique; Feliu, Juan M

    2013-10-01

    The oxygen reduction reaction (ORR) in 0.1 M NaOH on platinum single crystal electrodes has been studied using hanging meniscus rotating disk electrode configuration. Basal planes and stepped surfaces with (111) and (100) terraces have been employed. The results indicate that the Pt(111) electrode has the highest electrocatalytic activity among all the studied surfaces. The addition of steps on this electrode surface significantly diminishes the reactivity of the surface towards the ORR. In fact, the reactivity of the steps on the surfaces with wide terraces can be considered negligible with respect to that measured for the terrace. On the other hand, Pt(100) and Pt(110) electrodes have much lower activity than the Pt(111) electrode. These results have been compared with those obtained in acid media to understand the effect of the pH and the adsorbed OH on the mechanism. It is proposed that the surface covered by adsorbed OH is active for the reduction of the oxygen molecules. PMID:23936903

  6. Clusters, surfaces, and catalysis

    PubMed Central

    Somorjai, Gabor A.; Contreras, Anthony M.; Montano, Max; Rioux, Robert M.

    2006-01-01

    The surface science of heterogeneous metal catalysis uses model systems ranging from single crystals to monodispersed nanoparticles in the 1–10 nm range. Molecular studies reveal that bond activation (C–H, H–H, C–C, CO) occurs at 300 K or below as the active metal sites simultaneously restructure. The strongly adsorbed molecules must be mobile to free up these sites for continued turnover of reaction. Oxide–metal interfaces are also active for catalytic turnover. Examples using C–H and CO activation are described to demonstrate these properties. Future directions include synthesis, characterization, and reaction studies with 2D and 3D monodispersed metal nanoclusters to obtain 100% selectivity in multipath reactions. Investigations of the unique structural, dynamic, and electronic properties of nanoparticles are likely to have major impact in surface technologies. The fields of heterogeneous, enzyme, and homogeneous catalysis are likely to merge for the benefit of all three. PMID:16740668

  7. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    PubMed

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane. PMID:26673736

  8. Combinatorial search for oxygen reduction reaction electrocatalysts: A review

    NASA Astrophysics Data System (ADS)

    Jeon, Min Ku; Lee, Chang Hwa; Park, Geun Il; Kang, Kweon Ho

    2012-10-01

    Oxygen reduction reaction (ORR) is one of the most interesting research issues in the academia and industries due to its importance in polymer electrolyte membrane fuel cells. Development of new ORR catalysts with low cost and high activity is under intensive research, but it is a time-consuming process because of wide range of alloys to be explored. Combinatorial synthesis and high-throughput screening techniques were suggested as new experimental approaches to accelerate the ORR electrocatalyst research. The combinatorial method is focused on the synthesis of concentrated arrays and quick evaluation of the arrays via various screening techniques. In this report, the combinatorial approaches for the ORR catalyst research were reviewed based on the screening methods. Four screening techniques of optical screening, scanning electrochemical microscopy, multielectrode half cell, and multielectrode full cell were introduced as the representative ones. Other approaches were also briefly introduced. Merits and limitations of each method were discussed and representative research results of each method were shown in detail.

  9. Oxygen reduction reaction activity on Pt{111} surface alloys.

    PubMed

    Attard, Gary A; Brew, Ashley; Ye, Jin-Yu; Morgan, David; Sun, Shi-Gang

    2014-07-21

    PtM overlayers (where M=Fe, Co or Ni) supported on Pt{111} are prepared via thermal annealing in either a nitrogen/water or hydrogen ambient of dilute aqueous droplets containing M(Z+) cations directly attached to the electrode. Two different PtM phases are detected depending on the nature of the post-annealing cooling environment. The first of these consists of small (<20 nm), closely packed microcrystals comprised of a central metallic core and a shell (several monolayers thick) of mixed metal oxides/hydroxides. The second type of PtM phase is prepared by cooling in a stream of hydrogen gas. Although this second phase also consists of numerous microcrystals covering the Pt{111} electrode surface, these are both flatter than before and moreover are entirely metallic in character. A positive shift in the onset of PtM oxide formation correlates with increased activity towards the oxygen reduction reaction (ORR), which we ascribe to the greater availability of platinum metallic sites under ORR conditions. PMID:24986646

  10. Catalysis of Supramolecular Hydrogelation.

    PubMed

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  11. Fundamentals of several reactions for the carbothermic reduction of alumina

    NASA Astrophysics Data System (ADS)

    Walker, Matthew S.

    The current process used for primary aluminum production, the Hall-Heroult process, is reliable, but it also is expensive, consumes large amounts of energy, and generates significant quantities of greenhouse gas emissions. One possible alternative process is the carbothermic reduction of alumina, wherein aluminum is formed by reducing alumina with carbon at high temperatures. This process, if successful, has the potential for substantial reductions in energy consumption, capital costs, and greenhouse gas emissions. One critical component to making this process successful involves obtaining a better understanding of the thermodynamics. Specifically, the key thermodynamic data are the free energies of the reactions and the thermodynamic activities of the metal (Al-C) and slag systems (Al2O3-Al4C3). These are critical for evaluating and controlling the carbothermic process, but experimental data is extremely limited and much of it was measured many years ago when the experimental techniques available may not have been adequate. The overall objective for this research was to assess the validity of the thermodynamic data for this process, as well as its suitability for predicting the behavior of the process. This was done through experimental investigations into both the slag (carbide) making reaction and the binary Al2O 3-Al4C3 phase diagram. The comparison of these results, to those expected based on the current understanding for the process thermodynamics (using FactSage along with the ALCO database), assesses the validity of the thermodynamic data. In this document, the experimental results for investigating the reactions of Al2O3 with carbon are presented. This work involved measuring the operating line for the first step of the carbothermic aluminum process, slag making. This was done using two experimental methods. One involved measuring the evolution of CO from the reactions using a mass spectrometer. The other involved using a vacuum thermobalance (TGA) to

  12. Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene-Isoquinoline Complex

    SciTech Connect

    Thoi, VanSara; Kornienko, Nick; Margarit, C; Yang, Peidong; Chang, Christopher

    2013-06-07

    The solar-driven reduction of carbon dioxide to value-added chemical fuels is a longstanding challenge in the fields of catalysis, energy science, and green chemistry. In order to develop effective CO2 fixation, several key considerations must be balanced, including (1) catalyst selectivity for promoting CO2 reduction over competing hydrogen generation from proton reduction, (2) visible-light harvesting that matches the solar spectrum, and (3) the use of cheap and earth-abundant catalytic components. In this report, we present the synthesis and characterization of a new family of earth-abundant nickel complexes supported by N-heterocyclic carbene amine ligands that exhibit high selectivity and activity for the electrocatalytic and photocatalytic conversion of CO2 to CO. Systematic changes in the carbene and amine donors of the ligand have been surveyed, and [Ni(Prbimiq1)]2+ (1c, where Prbimiq1 = bis(3-(imidazolyl)isoquinolinyl)propane) emerges as a catalyst for electrochemical reduction of CO2 with the lowest cathodic onset potential (Ecat = 1.2 V vs SCE). Using this earth-abundant catalyst with Ir(ppy)3 (where ppy = 2-phenylpyridine) and an electron donor, we have developed a visible-light photoredox system for the catalytic conversion of CO2 to CO that proceeds with high selectivity and activity and achieves turnover numbers and turnover frequencies reaching 98,000 and 3.9 s1, respectively. Further studies reveal that the overall efficiency of this solar-to-fuel cycle may be limited by the formation of the active Ni catalyst and/or the chemical reduction of CO2 to CO at the reduced nickel center and provide a starting point for improved photoredox systems for sustainable carbon-neutral energy conversion.

  13. Synthetic control of FePtM nanorods (M = Cu, Ni) to enhance the oxygen reduction reaction.

    PubMed

    Zhu, Huiyuan; Zhang, Sen; Guo, Shaojun; Su, Dong; Sun, Shouheng

    2013-05-15

    To further enhance the catalytic activity and durability of nanocatalysts for the oxygen reduction reaction (ORR), we synthesized a new class of 20 nm × 2 nm ternary alloy FePtM (M = Cu, Ni) nanorods (NRs) with controlled compositions. Supported on carbon support and treated with acetic acid as well as electrochemical etching, these FePtM NRs were converted into core/shell FePtM/Pt NRs. These core/shell NRs, especially FePtCu/Pt NRs, exhibited much improved ORR activity and durability. The Fe10Pt75Cu15 NRs showed a mass current densities of 1.034 A/mgPt at 512 mV vs Ag/AgCl and 0.222 A/mgPt at 557 mV vs Ag/AgCl, which are much higher than those for a commercial Pt catalyst (0.138 and 0.035 A/mgPt, respectively). Our controlled synthesis provides a general approach to core/shell NRs with enhanced catalysis for the ORR or other chemical reactions. PMID:23634823

  14. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter < 2 nm) were controllably electrochemically reduced on nitrogen-doped graphene (NG) using effective single-stranded oligonucleotide sequences (ssDNA) as the performed template in absence of any other reluctant. The ssDNA is significant for providing AgNCs with growth template and anchoring the cluster on graphene surface. The strong interaction between the AgNCs, ssDNA and NG renders the as-synthesized AgNCs/NG composite with high-performance onset potential, half-wave potential and mass activity for ORR approaching to commercial Pt/C catalyst, and remarkably superior ORR performance than NG and Ag nanoparticle/NG. Importantly, the AgNCs/NG composite shows excellent methanol tolerance and accelerated electrochemical stability (8000 cycles), which is vital in high performance fuel cells, batteries and nanodevices.

  15. Multi-catalysis reactions: direct organocatalytic sequential one-pot synthesis of highly functionalized cyclopenta[b]chromen-1-ones.

    PubMed

    Ramachary, Dhevalapally B; Reddy, Y Vijayendar; Kishor, Mamillapalli

    2008-11-21

    We have developed a new technology called multi-catalysis for the sequential one-pot synthesis of highly functionalized heterocycles. A practical and novel multi-component aniline-, self- and Brønsted acid-catalyzed selective process for the sequential one-pot synthesis of highly substituted 2-(2-hydroxy-aryl)-cyclopentane-1,3-diones, 3,9-dihydro-2H-cyclopenta[b]chromen-1-ones and 3,3-dimethyl-2,3,4,9-tetrahydro-xanthen-1-ones is reported. Direct combination of aniline- and self-catalyzed cascade olefination-hydrogenation (O-H) and Brønsted acid-catalyzed cascade oxy-Michael-dehydration (OM-DH) of 1,3-diones, salicylic aldehydes and organic-hydrides is developed in one-pot to furnish the highly functionalized 3,9-dihydro-2H-cyclopenta[b]chromen-1-ones and 3,3-dimethyl-2,3,4,9-tetrahydro-xanthen-1-ones with high yields. PMID:18972049

  16. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    PubMed Central

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings1,2. Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. In this manuscript, we demonstrate that visible light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More significantly, we have developed a general strategy to “switch on” important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron transfer (SET) catalysts. PMID:26266976

  17. Switching on elusive organometallic mechanisms with photoredox catalysis.

    PubMed

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C

    2015-08-20

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts. PMID:26266976

  18. Switching on elusive organometallic mechanisms with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  19. Cyclopalladated complexes in enantioselective catalysis

    NASA Astrophysics Data System (ADS)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  20. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NO x Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis.

    PubMed

    Gerken, James B; Stahl, Shannon S

    2015-08-26

    Efficient reduction of O2 to water is a central challenge in energy conversion and many aerobic oxidation reactions. Here, we show that the electrochemical oxygen reduction reaction (ORR) can be achieved at high potentials by using soluble organic nitroxyl and nitrogen oxide (NO x ) mediators. When used alone, neither organic nitroxyls, such as 2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl (TEMPO), nor NO x species, such as sodium nitrite, are effective ORR mediators. The combination of nitroxyl/NO x species, however, mediates sustained O2 reduction with overpotentials as low as 300 mV in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The overpotentials accessible with this ORR system are significantly lower than widely studied molecular metal-macrocycle ORR catalysts and benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NO x species, together with kinetically efficient reduction of oxidized NO x species by TEMPO and other organic nitroxyls. PMID:27162977

  1. Catalysis via homolytic substitutions with C-O and Ti-O bonds: oxidative additions and reductive eliminations in single electron steps.

    PubMed

    Gansäuer, Andreas; Fleckhaus, André; Lafont, Manuel Alejandre; Okkel, Andreas; Kotsis, Konstantinos; Anoop, Anakuthil; Neese, Frank

    2009-11-25

    In a combined theoretical and experimental study, an efficient catalytic reaction featuring epoxide opening and tetrahydrofuran formation through homolytic substitution reactions at C-O and Ti-O bonds was devised. The performance of these two key steps of the catalytic cycle was studied and could be adjusted by modifying the electronic properties of the catalysts through introduction of electron-donating or -withdrawing substituents to the titanocene catalysts. By regarding both steps as single electron versions of oxidative addition and reductive elimination, a mechanism-based platform for the design of catalysts and reagents for electron transfer reactions evolved that opens broad perspectives for further investigations. PMID:19919150

  2. One- and two-dimensional infrared spectroscopic studies of solution-phase homogeneous catalysis and spin-forbidden reactions

    SciTech Connect

    Sawyer, Karma Rae

    2008-12-01

    Understanding chemical reactions requires the knowledge of the elementary steps of breaking and making bonds, and often a variety of experimental techniques are needed to achieve this goal. The initial steps occur on the femto- through picosecond time-scales, requiring the use of ultrafast spectroscopic methods, while the rate-limiting steps often occur more slowly, requiring alternative techniques. Ultrafast one and two-dimensional infrared and step-scan FTIR spectroscopies are used to investigate the photochemical reactions of four organometallic complexes. The analysis leads to a detailed understanding of mechanisms that are general in nature and may be applicable to a variety of reactions.

  3. Synthesis of the salts of weakly coordination stibate ions & Students' perceptions of two- and three-dimensional animations depicting an oxidation-reduction reaction

    NASA Astrophysics Data System (ADS)

    Rosenthal, Deborah Renee

    2011-12-01

    SYTHESIS OF SALTS OF WEAKLY COORDINATING STIBATE IONS. Weakly coordinating anions have many important applications including olefin polymerization co-catalysis. In an attempt to make tristibic acid, distibic acid and tetrastibic acid were made. Cesium, barium, nickel(II), and diethylammonium salts of tetrastibic acid were also synthesized. Tetrastibic acid and the ammonium salts were concluded to be stable. Elemental analyses showed that neither tristibic acid nor tristibic acid were stable under the reaction conditions employed. STUDENTS' PERCEPTIONS OF TWO- AND THREE-DIMENSIONAL ANIMATIONS DEPICTING AN OXIDATION-REDUCATION REACTION. Electrochemistry is a difficult subject for many students to comprehend. In order to improve teaching in this area of chemistry, semi-structured clinical interviews on second-semester introductory chemistry students were conducted in which students' were asked to explain the particulate behavior of the chemicals in an oxidation-reduction reaction. The interviews included questions after students viewed the chemical demonstration and two computer animations depicting the particulate nature of the same chemical reaction. Misinterpretations of the two animations were identified and described in detail. The simpler 2-D animation was beneficial in helping students understand the oxidation-reduction reaction and write the balanced chemical equation. However, the 3-D animation did not appear to be detrimental to student understanding. Suggestions, taken from the students' comments in the interviews, for improving the animations and for teaching electrochemistry were discussed.

  4. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  5. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.

    PubMed

    Benson, John; Xu, Qian; Wang, Peng; Shen, Yuting; Sun, Litao; Wang, Tanyuan; Li, Meixian; Papakonstantinou, Pagona

    2014-11-26

    Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (<2.5±0.2 at. %), few layer graphene nanosheets with lateral dimensions smaller than a few hundred nanometers were achieved using a combination of ionic liquid assisted grinding of high purity graphite coupled with sequential centrifugation. We show for the first time that the graphene nanosheets possessing a plethora of edges exhibited considerably higher electron transfer numbers compared to the thicker graphene nanoplatelets. This enhanced ORR activity was accomplished by successfully exploiting the plethora of edges of the nanosized graphene as well as the efficient electron communication between the active edge sites and the electrode substrate. The graphene nanosheets were characterized by an onset potential of -0.13 V vs Ag/AgCl and a current density of -3.85 mA/cm2 at -1 V, which represent the best ORR performance ever achieved from an undoped carbon based catalyst. This work demonstrates how low oxygen content nanosized graphene synthesized by a simple route can considerably impact the ORR catalytic activity and hence it is of significance in designing and optimizing advanced metal-free ORR electrocatalysts. PMID:25334050

  6. Enantioselective domino reaction of CO2, amines and allyl chlorides under iridium catalysis: formation of allyl carbamates.

    PubMed

    Zhang, Min; Zhao, Xiaoming; Zheng, Shengcai

    2014-05-01

    The enantioselective domino reaction between CO2 (1 atm), amines and linear allyl chlorides in the presence of an iridium complex, DABCO and toluene at 15 °C was realized, which gave branched allyl carbamates in acceptable to high yields with up to excellent regioselectivity (99/1) and 94% ee. This is the first example of the synthesis of chiral allyl carbamates through catalytic domino reactions using CO2. PMID:24652315

  7. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offers a general approach to enhance Pd catalysis in acid for ORB.

  8. Core/shell face-centered tetragonal FePd/Pd nanoparticles as an efficient non-Pt catalyst for the oxygen reduction reaction

    DOE PAGESBeta

    Zhu, Huiyuan; Jiang, Guangming; Zhang, Xu; Shen, Bo; Wu, Liheng; Zhang, Sen; Lu, Gang; Wu, Zhongbiao; Sun, Shouheng

    2015-10-04

    We report the synthesis of core/shell face-centered tetragonal (fct)-FePd/Pd nanoparticles (NPs) via reductive annealing of core/shell Pd/Fe3O4 NPs followed by temperature-controlled Fe etching in acetic acid. Among three different kinds of core/shell FePd/Pd NPs studied (FePd core at similar to 8 nm and Pd shell at 0.27, 0.65, or 0.81 nm), the fct-FePd/Pd-0.65 NPs are the most efficient catalyst for the oxygen reduction reaction (ORR) in 0.1 M HClO4 with Pt-like activity and durability. This enhanced ORR catalysis arises from the desired Pd lattice compression in the 0.65 nm Pd shell induced by the fct-FePd core. Lastly, our study offersmore » a general approach to enhance Pd catalysis in acid for ORB.« less

  9. Merging photoredox catalysis with Lewis acid catalysis: activation of carbon-carbon triple bonds.

    PubMed

    Jin, Ruiwen; Chen, Yiyong; Liu, Wangsheng; Xu, Dawen; Li, Yawei; Ding, Aishun; Guo, Hao

    2016-08-01

    Here, we demonstrate that merging photoredox catalysis with Lewis acid catalysis provides a fundamentally new activation mode of C-C triple bonds, to achieve the bond-forming reaction of alkynes with weak nucleophiles. Using a synergistic merger of Eosin Y and Cu(OTf)2, a highly efficient cyclization reaction of arene-ynes was developed. PMID:27432542

  10. Palladium and gold nanotubes as oxygen reduction reaction and alcohol oxidation reaction catalysts in base.

    PubMed

    Alia, Shaun M; Duong, Kathlynne; Liu, Toby; Jensen, Kurt; Yan, Yushan

    2014-06-01

    Palladium (PdNTs) and gold nanotubes (AuNTs) were synthesized by the galvanic displacement of silver nanowires. PdNTs and AuNTs have wall thicknesses of 6 nm, outer diameters of 60 nm, and lengths of 5-10 and 5-20 μm, respectively. Rotating disk electrode experiments showed that the PdNTs and AuNTs have higher area normalized activities for the oxygen reduction reaction (ORR) than conventional nanoparticle catalysts. The PdNTs produced an ORR area activity that was 3.4, 2.2, and 3.7 times greater than that on carbon-supported palladium nanoparticles (Pd/C), bulk polycrystalline palladium, and carbon-supported platinum nanoparticles (Pt/C), respectively. The AuNTs produced an ORR area activity that was 2.3, 9.0, and 2.0 times greater than that on carbon-supported gold nanoparticles (Au/C), bulk polycrystalline gold, and Pt/C, respectively. The PdNTs also had lower onset potentials than Pd/C and Pt/C for the oxidation of methanol (0.236 V), ethanol (0.215 V), and ethylene glycol (0.251 V). In comparison to Pt/C, the PdNTs and AuNTs further demonstrated improved alcohol tolerance during the ORR. PMID:24757078

  11. Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Alkyl Bromides: Et3N as the Terminal Reductant.

    PubMed

    Duan, Zhengli; Li, Wu; Lei, Aiwen

    2016-08-19

    Reductive cross-coupling has emerged as a direct method for the construction of carbon-carbon bonds. Most cobalt-, nickel-, and palladium-catalyzed reductive cross-coupling reactions to date are limited to stoichiometric Mn(0) or Zn(0) as the reductant. One nickel-catalyzed cross-coupling paradigm using Et3N as the terminal reductant is reported. By using this photoredox catalysis and nickel catalysis approach, a direct Csp(2)-Csp(3) reductive cross-coupling of aryl bromides with alkyl bromides is achieved under mild conditions without stoichiometric metal reductants. PMID:27472556

  12. Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions.

    PubMed

    Menezes, Prashanth W; Indra, Arindam; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Strasser, Peter; Driess, Matthias

    2015-01-01

    Recently, there has been much interest in the design and development of affordable and highly efficient oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts that can resolve the pivotal issues that concern solar fuels, fuel cells, and rechargeable metal-air batteries. Here we present the synthesis and application of porous CoMn2 O4 and MnCo2 O4 spinel microspheres as highly efficient multifunctional catalysts that unify the electrochemical OER with oxidant-driven and photocatalytic water oxidation as well as the ORR. The porous materials were prepared by the thermal degradation of the respective carbonate precursors at 400 °C. The as-prepared spinels display excellent performances in electrochemical OER for the cubic MnCo2 O4 phase in comparison to the tetragonal CoMn2 O4 material in an alkaline medium. Moreover, the oxidant-driven and photocatalytic water oxidations were performed and they exhibited a similar trend in activity to that of the electrochemical OER. Remarkably, the situation is reversed in ORR catalysis, that is, the oxygen reduction activity and stability of the tetragonal CoMn2 O4 catalyst outperformed that of cubic MnCo2 O4 and rivals that of benchmark Pt catalysts. The superior catalytic performance and the remarkable stability of the unifying materials are attributed to their unique porous and robust microspherical morphology and the intrinsic structural features of the spinels. Moreover, the facile access to these high-performance materials enables a reliable and cost-effective production on a large scale for industrial applications. PMID:25394186

  13. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymatic catalysis

    NASA Astrophysics Data System (ADS)

    Mincer, Joshua S.; Schwartz, Steven D.

    2004-04-01

    A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.

  14. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their "Pt-like" properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  15. Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.; Kelly, Thomas G.; Meng, Qinghe; Chen, Jingguang G.

    2012-09-01

    Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.

  16. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions.

    PubMed

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian; Bica, Katharina

    2016-05-21

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  17. Merging Photoredox with Palladium Catalysis: Decarboxylative ortho-Acylation of Acetanilides with α-Oxocarboxylic Acids under Mild Reaction Conditions.

    PubMed

    Zhou, Chao; Li, Pinhua; Zhu, Xianjin; Wang, Lei

    2015-12-18

    A room temperature decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids has been developed via a novel Eosin Y with Pd dual catalytic system. This dual catalytic reaction shows a broad substrate scope and good functional group tolerance, and an array of ortho-acylacetanilides can be afforded in high yields under mild conditions. PMID:26646667

  18. Catalysis with two-dimensional materials and their heterostructures

    NASA Astrophysics Data System (ADS)

    Deng, Dehui; Novoselov, K. S.; Fu, Qiang; Zheng, Nanfeng; Tian, Zhongqun; Bao, Xinhe

    2016-03-01

    Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications.

  19. Catalysis with two-dimensional materials and their heterostructures.

    PubMed

    Deng, Dehui; Novoselov, K S; Fu, Qiang; Zheng, Nanfeng; Tian, Zhongqun; Bao, Xinhe

    2016-03-01

    Graphene and other 2D atomic crystals are of considerable interest in catalysis because of their unique structural and electronic properties. Over the past decade, the materials have been used in a variety of reactions, including the oxygen reduction reaction, water splitting and CO2 activation, and have been shown to exhibit a range of catalytic mechanisms. Here, we review recent advances in the use of graphene and other 2D materials in catalytic applications, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals). We discuss the advantages of these materials for catalysis and the different routes available to tune their electronic states and active sites. We also explore the future opportunities of these catalytic materials and the challenges they face in terms of both fundamental understanding and the development of industrial applications. PMID:26936816

  20. DOE Laboratory Catalysis Research Symposium - Abstracts

    SciTech Connect

    Dunham, T.

    1999-02-01

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  1. Synergistic Effect of Nitrogen in Cobalt Nitride and Nitrogen-Doped Hollow Carbon Spheres for Oxygen Reduction Reaction

    SciTech Connect

    Zhong, Xing; Liu, Lin; Jiang, Yu; Wang, Xinde; Wang, Lei; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jian-guo; Su, Dang S.

    2015-06-15

    The need for inexpensive and high-activity oxygen reduction reaction (ORR) electrocatalysts has attracted considerable research interest over the past years. Here we report a novel hybrid that contains cobalt nitride/nitrogen-rich hollow carbon spheres (CoxN/NHCS) as a high-performance catalyst for ORR. The CoxN nanoparticles were uniformly dispersed and confined in the hollow NHCS shell. The performance of the resulting CoxN/NHCS hybrid was comparable with that of a commercial Pt/C at the same catalyst loading toward ORR, but the mass activity of the former was 5.7 times better than that of the latter. The nitrogen in both CoxN and NHCS, especially CoxN, could weaken the adsorption of reaction intermediates (O and OOH), which follows the favourable reaction pathway on CoxN/NHCS according to the DFT-calculated Gibbs free energy diagrams. Our results demonstrated a new strategy for designing and developing inexpensive, non-precious metal electrocatalysts for next-generation fuels. The authors acknowledge the financial support from the National Basic Research Program (973 program, No. 2013CB733501) and the National Natural Science Foundation of China (No. 21306169, 21101137, 21136001, 21176221 and 91334013). Dr. D. Mei is supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  2. DFT Study of Oxygen Reduction Reaction on N-substituted Carbon Electrodes. Adsorption

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hisayoshi; Tomoya, Nakzono; Miyazaki, Soichi; Miura, Toshiko; Takeuchi, Nobuyuki; Yamabe, Tokio

    2011-05-01

    Carbon alloys attract attention as metal-free cathode catalysts. Mechanisms of oxygen reduction reactions are investigated using the DFT calculations and molecular models such as N-substituted coronene, circum pyrene, and corannulene. The overall oxygen reduction reaction (ORR) is decomposed into five elementary reactions. Adsorption of O2 is important as the first step of reduction, and it depends strongly on the spin density on C atoms, introduced by the N atom. Secondly the peripheral C atoms have an advantage due to the rehybridization freedom to the sp3 configuration. Based on the reversible electrode potential (REP) for each elementary reaction, the overpotential is expected for the first reduction of O2 to OOH and the final reduction of OH to H2O. These features indicate that N-substituted carbon electrode resembles Pt electrode compared to other less active metals, such as Au.

  3. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction stepsa)

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-01

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  4. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction steps

    SciTech Connect

    Das, Biswajit; Gangopadhyay, Gautam; Banerjee, Kinshuk

    2013-12-28

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  5. Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.

    PubMed

    Mel, Abdel-Aziz El; Tessier, Pierre-Yves; Buffiere, Marie; Gautron, Eric; Ding, JunJun; Du, Ke; Choi, Chang-Hwan; Konstantinidis, Stephanos; Snyders, Rony; Bittencourt, Carla; Molina-Luna, Leopoldo

    2016-06-01

    Controlling the porosity, the shape, and the morphology of Kirkendall hollow nanostructures is the key factor to tune the properties of these tailor-made nanomaterials which allow in turn broadening their applications. It is shown that by applying a continuous oxidation to copper nanowires following a temperature ramp protocol, one can synthesize cuprous oxide nanotubes containing periodic copper nanoparticles. A further oxidation of such nanoobjects allows obtaining cupric oxide nanotubes with a bamboo-like structure. On the other hand, by applying a sequential oxidation and reduction reactions to copper nanowires, one can synthesize hollow nanoobjects with complex shapes and morphologies that cannot be obtained using the Kirkendall effect alone, such as necklace-like cuprous oxide nanotubes, periodic solid copper nanoparticles or hollow cuprous oxide nanospheres interconnected with single crystal cuprous oxide nanorods, and aligned and periodic hollow nanospheres embedded in a cuprous oxide nanotube. The strategy demonstrated in this study opens new avenues for the engineering of hollow nanostructures with potential applications in gas sensing, catalysis, and energy storage. PMID:27061060

  6. Singly versus Doubly Reduced Nickel Porphyrins for Proton Reduction: Experimental and Theoretical Evidence for a Homolytic Hydrogen-Evolution Reaction.

    PubMed

    Han, Yongzhen; Fang, Huayi; Jing, Huize; Sun, Huiling; Lei, Haitao; Lai, Wenzhen; Cao, Rui

    2016-04-25

    A nickel(II) porphyrin Ni-P (P=porphyrin) bearing four meso-C6 F5 groups to improve solubility and activity was used to explore different hydrogen-evolution-reaction (HER) mechanisms. Doubly reduced Ni-P ([Ni-P](2-) ) was involved in H2 production from acetic acid, whereas a singly reduced species ([Ni-P](-) ) initiated HER with stronger trifluoroacetic acid (TFA). High activity and stability of Ni-P were observed in catalysis, with a remarkable ic /ip value of 77 with TFA at a scan rate of 100 mV s(-1) and 20 °C. Electrochemical, stopped-flow, and theoretical studies indicated that a hydride species [H-Ni-P] is formed by oxidative protonation of [Ni-P](-) . Subsequent rapid bimetallic homolysis to give H2 and Ni-P is probably involved in the catalytic cycle. HER cycling through this one-electron-reduction and homolysis mechanism has been proposed previously but rarely validated. The present results could thus have broad implications for the design of new exquisite cycles for H2 generation. PMID:27028563

  7. Reduction of a phosphorus oxide and acid reaction set

    SciTech Connect

    Twarowski, A.

    1995-07-01

    It has been predicted for some time that hypersonic aircraft will suffer from diminished fuel efficiency due to the slow speed of radical recombination in the nozzle of the aircraft and the consequent expulsion of high-energy fragments during high Mach number flight. The addition of small amounts of phosphine combustion products (phosphorus oxides and acids) to water vapor has been found to result in a faster relaxation rate of OH to its equilibrium density following H{sub 2}O photolysis. This article describes the systematic construction of a reaction model of 162 phosphorus reactions among 17 phosphorus-containing species. Those reactions that contribute to the reestablishment of equilibrium following the perturbation of the system by H{sub 2}O photolysis or by an increase in temperature are identified. A thermodynamic free energy function is used to quantify the rate of system relaxation back to equilibrium for a series of 36 reaction conditions covering a temperature range of 1,500 to 3,000 K, a gas density range of 5 {times} 10{sup {minus}7} to 5 {times} 10{sup {minus}5} mol/cm{sup 3} and a fuel equivalence ratio of 0.8 to 1.2.

  8. New insights in understanding plasma-catalysis reaction pathways: study of the catalytic ozonation of an acetaldehyde saturated Ag/TiO2/SiO2 catalyst

    NASA Astrophysics Data System (ADS)

    Sauce, Sonia; Vega-González, Arlette; Jia, Zixian; Touchard, Sylvain; Hassouni, Khaled; Kanaev, Andrei; Duten, Xavier

    2015-07-01

    This paper is a preliminary study intended to straighten out the role of reactive oxygen species in the activation mechanisms occurring in a plasma driven catalysis process for acetaldehyde decomposition. For this purpose, the interaction between the surface, the pollutant and one of the main oxidative species generated by non-thermal plasma, namely ozone, was studied. Acetaldehyde catalytic ozonation over a nanostructured Ag/TiO2/SiO2 catalyst is carried out at room temperature and atmospheric pressure, and followed by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). For this, the catalyst is firstly saturated with acetaldehyde. At the end of the saturation, acetaldehyde and crotonaldehyde, its condensation product, are identified as the major adsorbed species. In a second step, the surface ozonation is carried out and three additional intermediates are identified, namely, acetone, formic acid and acetic acid. Gaseous CO, CO2, methyl formate and methyl acetate are detected at the DRIFTS outlet, evidencing the partial mineralization of the adsorbed species. A global reaction scheme is proposed for explaining the formation of those adsorbed intermediates and gaseous products. This proposed heterogeneous ozone induced chemistry has to be taken into account when associating non-thermal plasma in air to a catalyst. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  9. Studies of reductive elimination reactions to form carbon-oxygen bonds from Pt(IV) complexes.

    PubMed

    Williams, B S; Goldberg, K I

    2001-03-21

    The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents. PMID:11456927

  10. Opening gates to oxygen reduction reactions on Cu(111) surface

    SciTech Connect

    Sumer, Aslihan; Chaudhuri, Santanu

    2015-03-28

    Electrocatalytic reduction of oxygen is composed of multiple steps, including the diffusion-adsorption-dissociation of molecular oxygen. This study explores the role of electrical double layer in aqueous medium in quantifying the rate of these coupled electrochemical processes at the electrode interface during oxygen reduction. The electronic, energetic, and configurational aspects of molecular oxygen diffusion and adsorption onto Cu(111) in water are identified through density functional theory based computations. The liquid phase on Cu(111) is modeled with hexagonal-ordered water bilayers, at two slightly different structures, with O–H bonds either facing the vacuum or the metal surface. The results indicate that the energetically preferred structure of water bilayers and adsorption configuration of O{sub 2} are different in cathodic and anodic potentials. The diffusion of O{sub 2} is found to be heavily hindered at the water/metal interface because of the ordering of water molecules in bilayers as compared to the bulk liquid. The unique correlations of diffusion and adsorption kinetics with water structure identified in this work can provide clues for improving oxygen reduction efficiency.

  11. Opening gates to oxygen reduction reactions on Cu(111) surface.

    PubMed

    Sumer, Aslihan; Chaudhuri, Santanu

    2015-03-28

    Electrocatalytic reduction of oxygen is composed of multiple steps, including the diffusion-adsorption-dissociation of molecular oxygen. This study explores the role of electrical double layer in aqueous medium in quantifying the rate of these coupled electrochemical processes at the electrode interface during oxygen reduction. The electronic, energetic, and configurational aspects of molecular oxygen diffusion and adsorption onto Cu(111) in water are identified through density functional theory based computations. The liquid phase on Cu(111) is modeled with hexagonal-ordered water bilayers, at two slightly different structures, with O-H bonds either facing the vacuum or the metal surface. The results indicate that the energetically preferred structure of water bilayers and adsorption configuration of O2 are different in cathodic and anodic potentials. The diffusion of O2 is found to be heavily hindered at the water/metal interface because of the ordering of water molecules in bilayers as compared to the bulk liquid. The unique correlations of diffusion and adsorption kinetics with water structure identified in this work can provide clues for improving oxygen reduction efficiency. PMID:25833599

  12. Opening gates to oxygen reduction reactions on Cu(111) surface

    NASA Astrophysics Data System (ADS)

    Sumer, Aslihan; Chaudhuri, Santanu

    2015-03-01

    Electrocatalytic reduction of oxygen is composed of multiple steps, including the diffusion-adsorption-dissociation of molecular oxygen. This study explores the role of electrical double layer in aqueous medium in quantifying the rate of these coupled electrochemical processes at the electrode interface during oxygen reduction. The electronic, energetic, and configurational aspects of molecular oxygen diffusion and adsorption onto Cu(111) in water are identified through density functional theory based computations. The liquid phase on Cu(111) is modeled with hexagonal-ordered water bilayers, at two slightly different structures, with O-H bonds either facing the vacuum or the metal surface. The results indicate that the energetically preferred structure of water bilayers and adsorption configuration of O2 are different in cathodic and anodic potentials. The diffusion of O2 is found to be heavily hindered at the water/metal interface because of the ordering of water molecules in bilayers as compared to the bulk liquid. The unique correlations of diffusion and adsorption kinetics with water structure identified in this work can provide clues for improving oxygen reduction efficiency.

  13. Studies related to the homogeneous catalysis of the water gas shift reaction. Technical progress report, December 1, 1983-November 30, 1984

    SciTech Connect

    Ford, P.C.

    1984-01-01

    Proposed are investigations related to the catalytic activation of carbon monoxide. These studies will be concerned with the design of catalysts for the water gas shift reaction and related processes such as the hydroformylation of olefins by homogeneous solution phase systems as well as by selected metal catalysts heterogenized by complexation to functional polymers. Also under investigation will be quantitative mechanistic aspects of reactions considered key to probable catalyst cycles. These are principally concerned with the fundamental chemistry of metal carbonyl and metal carbnyl hydride complexes including acid/base properties, reductive elimination, substitution and cluster fragmentation reactions and the nucleophilic activation of metal coordinated carbonyls toward reaction with water or dihydrogen. Goal of these studies is to provide chemical guidelines for the molecular design of new and more efficient catalysts for the utilization of carbonaceous materials such as coal for the production of fuels and other organic chemicals.

  14. Metal Catalysis in Thiolation and Selenation Reactions of Alkynes Leading to Chalcogen‐Substituted Alkenes and Dienes

    PubMed Central

    2015-01-01

    Abstract This review covers recent achievements in metal‐catalyzed Z−H and Z−Z (Z=S, Se) bond addition to the triple bonds of alkynes—a convenient and atom‐efficient way to carbon‐element bond formation. Various catalytic systems (both homogeneous and heterogeneous) developed to date to obtain mono‐ and bis‐chalcogen‐substituted alkenes or dienes, as well as carbonyl compounds or heterocycles, starting from simple and available alkynes and chalcogenols or dichalcogenides are described. The right choice of metal and ligands allows us to perform these transformations with high selectivities under mild reaction conditions, thus tolerating unprotected functional groups in substrates and broadening ways of further modification of the products. The main aim of the review is to show the potential of the catalytic methods developed in synthetic organic chemistry. Thus, emphasis is made on the scope of reactions, types of products that can be selectively formed, convenience, and scalability of the catalytic procedures. A brief mechanistic description is also given to introduce new readers to the topic. PMID:27308193

  15. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature: Heck, Suzuki-Miyaura and Negishi reactions carried out in the absence of organic solvents, enabled by micellar catalysis.

    PubMed

    Lipshutz, Bruce H; Taft, Benjamin R; Abela, Alexander R; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-04-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature. PMID:23555153

  16. Enhanced electrocatalysis of the oxygen reduction reaction based on pattering of platinum surfaces with cyanide.

    SciTech Connect

    Strmcnik, D.; Escudero-Escribano, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.; Materials Science Division; Inst. de Quimica Fisica; Toyota Central R&D Labs., Inc.

    2010-08-15

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  17. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide

    SciTech Connect

    Strmcnik, D.; Escudero, M.; Kodama, K.; Stamenkovic, V. R.; Cuesta, A.; Markovic, N. M.

    2010-10-01

    The slow rate of the oxygen reduction reaction in the phosphoric acid fuel cell is the main factor limiting its wide application. Here, we present an approach that can be used for the rational design of cathode catalysts with potential use in phosphoric acid fuel cells, or in any environments containing strongly adsorbing tetrahedral anions. This approach is based on molecular patterning of platinum surfaces with cyanide adsorbates that can efficiently block the sites for adsorption of spectator anions while the oxygen reduction reaction proceeds unhindered. We also demonstrate that, depending on the supporting electrolyte anions and cations, on the same CN-covered Pt(111) surface, the oxygen reduction reaction activities can range from a 25-fold increase to a 50-fold decrease. This behaviour is discussed in the light of the role of covalent and non-covalent interactions in controlling the ensemble of platinum active sites required for high turn over rates of the oxygen reduction reaction.

  18. Method of reduction of nitroaromatics by enzymatic reaction with redox enzymes

    DOEpatents

    Shah, Manish M.

    2000-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with redox enzymes, such as Oxyrase (Trademark of Oxyrase, Inc., Mansfield, Ohio).

  19. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, M.M.; Campbell, J.A.

    1998-07-07

    A method is described for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase. 6 figs.

  20. Method of controlled reduction of nitroaromatics by enzymatic reaction with oxygen sensitive nitroreductase enzymes

    DOEpatents

    Shah, Manish M.; Campbell, James A.

    1998-01-01

    A method for the controlled reduction of nitroaromatic compounds such as nitrobenzene and 2,4,6-trinitrotoluene by enzymatic reaction with oxygen sensitive nitroreductase enzymes, such as ferredoxin NADP oxidoreductase.

  1. Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wu, Yijin; Zhao, Shenlong; Zhao, Kun; Tu, Tengxiu; Zheng, Jianzhong; Chen, Jie; Zhou, Haifeng; Chen, Dejian; Li, Shunxing

    2016-04-01

    A simple, low-cost and large-scale synthesis method for the carbonized porous cubes (CPCs) containing Fe and N co-doped porous carbon hybrid (Fe-Nx/C) with controlled-morphology, uniform elemental distribution and well-defined pore size is developed by pyrolyzing bimetallic FeIII-modified IRMOF-3 cubes in Argon atmosphere at 800 °C. Furtherly, the CPCs are used as the electrocatalyst for oxygen reduction reaction in alkaline solution. Impressively, the CPCs hybrid exhibits a superior electrocatalytic activity with high onset potential (0.93 V) and half-wave potential (0.78 V), and excellent stability, which is attributed to the synergistic effect of its high the surface to volume ratio, well-defined pore size, multi-active composition and high exposed catalytic active sites. We believe the materials based on earth-abundant elements have a huge potential to apply in catalysis, energy, and environment.

  2. Cooperative catalysis of noncompatible catalysts through compartmentalization: wacker oxidation and enzymatic reduction in a one-pot process in aqueous media.

    PubMed

    Sato, Hirofumi; Hummel, Werner; Gröger, Harald

    2015-04-01

    A Wacker oxidation using CuCl/PdCl2 as a catalyst system was successfully combined with an enzymatic ketone reduction to convert styrene enantioselectively into 1-phenylethanol in a one-pot process, although the two reactions conducted in aqueous media are not compatible due to enzyme deactivation by Cu ions. The one-pot feasibility was achieved via compartmentalization of the reactions. Conducting the Wacker oxidation in the interior of a polydimethylsiloxane thimble enables diffusion of only the organic substrate and product into the exterior where the biotransformation takes place. Thus, the Cu ions detrimental to the enzyme are withheld from the reaction media of the biotransformation. In this one-pot process, which formally corresponds to an asymmetric hydration of alkenes, a range of 1-arylethanols were formed with high conversions and 98-99 % ee. In addition, the catalyst system of the Wacker oxidation was recycled 15 times without significant decrease in conversion. PMID:25704961

  3. Organic radicals for the enhancement of oxygen reduction reaction in Li-O2 batteries.

    PubMed

    Tesio, A Y; Blasi, D; Olivares-Marín, M; Ratera, I; Tonti, D; Veciana, J

    2015-12-25

    We examine for the first time the ability of inert carbon free-radicals as soluble redox mediators to catalyze and enhance the oxygen reduction reaction in a (TEGDME)-based electrolyte. We demonstrate that the tris(2,4,6-trichlorophenyl)methyl (TTM) radical is capable of chemically favoring the oxygen reduction reaction improving significantly the Li-O2 battery performance. PMID:26488114

  4. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  5. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation

    NASA Astrophysics Data System (ADS)

    Wu, Jiang; Mao, Wujian; Wu, Zheng; Xu, Xiaoli; You, Huilin; Xue, A'xi; Jia, Yanmin

    2016-03-01

    A strong pyro-catalytic dye degradation with an ultrahigh degradation efficiency (>99%) in hydrothermally synthesized pyroelectric BiFeO3 nanoparticles was achieved under a room-temperature cold-hot alternating excitation (between 27 °C to 38 °C). The pyro-catalysis originated from a combination of the pyroelectric effect and the electrochemical oxidation-reduction reaction. The intermediate products (hydroxyl radicals and superoxide radicals) of pyro-electro-catalysis were observed. Pyro-catalysis provides a highly efficient and reusable dye wastewater decomposition technology through utilizing environmental day-night temperature variation.

  6. Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation.

    PubMed

    Wu, Jiang; Mao, Wujian; Wu, Zheng; Xu, Xiaoli; You, Huilin; Xue, A'Xi; Jia, Yanmin

    2016-03-24

    A strong pyro-catalytic dye degradation with an ultrahigh degradation efficiency (>99%) in hydrothermally synthesized pyroelectric BiFeO3 nanoparticles was achieved under a room-temperature cold-hot alternating excitation (between 27 °C to 38 °C). The pyro-catalysis originated from a combination of the pyroelectric effect and the electrochemical oxidation-reduction reaction. The intermediate products (hydroxyl radicals and superoxide radicals) of pyro-electro-catalysis were observed. Pyro-catalysis provides a highly efficient and reusable dye wastewater decomposition technology through utilizing environmental day-night temperature variation. PMID:26982212

  7. Processive catalysis.

    PubMed

    van Dongen, Stijn F M; Elemans, Johannes A A W; Rowan, Alan E; Nolte, Roeland J M

    2014-10-20

    Nature's enzymes are an ongoing source of inspiration for scientists. The complex processes behind their selectivity and efficiency is slowly being unraveled, and these findings have spawned many biomimetic catalysts. However, nearly all focus on the conversion of small molecular substrates. Nature itself is replete with inventive catalytic systems which modify, replicate, or decompose entire polymers, often in a processive fashion. Such processivity can, for example, enhance the rate of catalysis by clamping to the polymer substrate, which imparts a large effective molarity. Reviewed herein are the various strategies for processivity in nature's arsenal and their properties. An overview of what has been achieved by chemists aiming to mimic one of nature's greatest tricks is also included. PMID:25244684

  8. Biomimetic catalysis: Taking on the turnover challenge

    NASA Astrophysics Data System (ADS)

    Hooley, Richard J.

    2016-03-01

    Emulating the efficiency with which enzymes catalyse reactions has often been used as inspiration to develop self-assembled cages. Now two studies present approaches to achieving catalyst turnover -- one of the biggest challenges in achieving truly biomimetic catalysis.

  9. Protein Conformational Landscapes and Catalysis. Influence of Active Site Conformations in the Reaction Catalyzed by L-Lactate Dehydrogenase

    PubMed Central

    Świderek, Katarzyna; Tuñón, Iñaki; Martí, Sergio; Moliner, Vicent

    2015-01-01

    In the last decade L-Lactate Dehydrogenase (LDH) has become an extremely useful marker in both clinical diagnosis and in monitoring the course of many human diseases. It has been assumed from the 80s that the full catalytic process of LDH starts with the binding of the cofactor and the substrate followed by the enclosure of the active site by a mobile loop of the protein before the reaction to take place. In this paper we show that the chemical step of the LDH catalyzed reaction can proceed within the open loop conformation, and the different reactivity of the different protein conformations would be in agreement with the broad range of rate constants measured in single molecule spectrometry studies. Starting from a recently solved X-ray diffraction structure that presented an open loop conformation in two of the four chains of the tetramer, QM/MM free energy surfaces have been obtained at different levels of theory. Depending on the level of theory used to describe the electronic structure, the free energy barrier for the transformation of pyruvate into lactate with the open conformation of the protein varies between 12.9 and 16.3 kcal/mol, after quantizing the vibrations and adding the contributions of recrossing and tunneling effects. These values are very close to the experimentally deduced one (14.2 kcal·mol−1) and ~2 kcal·mol−1 smaller than the ones obtained with the closed loop conformer. Calculation of primary KIEs and IR spectra in both protein conformations are also consistent with our hypothesis and in agreement with experimental data. Our calculations suggest that the closure of the active site is mainly required for the inverse process; the oxidation of lactate to pyruvate. According to this hypothesis H4 type LDH enzyme molecules, where it has been propose that lactate is transformed into pyruvate, should have a better ability to close the mobile loop than the M4 type LDH molecules. PMID:25705562

  10. Hydrolysis of ketene catalyzed by formic acid: modification of reaction mechanism, energetics, and kinetics with organic acid catalysis.

    PubMed

    Louie, Matthew K; Francisco, Joseph S; Verdicchio, Marco; Klippenstein, Stephen J; Sinha, Amitabha

    2015-05-14

    The hydrolysis of ketene (H2C═C═O) to form acetic acid involving two water molecules and also separately in the presence of one to two water molecules and formic acid (FA) was investigated. Our results show that, while the currently accepted indirect mechanism, involving addition of water across the carbonyl C═O bond of ketene to form an ene-diol followed by tautomerization of the ene-diol to form acetic acid, is the preferred pathway when water alone is present, with formic acid as catalyst, addition of water across the ketene C═C double bond to directly produce acetic acid becomes the kinetically favored pathway for temperatures below 400 K. We find not only that the overall barrier for ketene hydrolysis involving one water molecule and formic acid (H2C2O + H2O + FA) is significantly lower than that involving two water molecules (H2C2O + 2H2O) but also that FA is able to reduce the barrier height for the direct path, involving addition of water across the C═C double bond, so that it is essentially identical with (6.4 kcal/mol) that for the indirect ene-diol formation path involving addition of water across the C═O bond. For the case of ketene hydrolysis involving two water molecules and formic acid (H2C2O + 2H2O + FA), the barrier for the direct addition of water across the C═C double bond is reduced even further and is 2.5 kcal/mol lower relative to the ene-diol path involving addition of water across the C═O bond. In fact, the hydrolysis barrier for the H2C2O + 2H2O + FA reaction through the direct path is sufficiently low (2.5 kcal/mol) for it to be an energetically accessible pathway for acetic acid formation under atmospheric conditions. Given the structural similarity between acetic and formic acid, our results also have potential implications for aqueous-phase chemistry. Thus, in an aqueous environment, even in the absence of formic acid, though the initial mechanism for ketene hydrolysis is expected to involve addition of water across the

  11. Copper N-Heterocyclic Carbene: A Catalyst for Aerobic Oxidation or Reduction Reactions.

    PubMed

    Zhan, Le-Wu; Han, Lei; Xing, Ping; Jiang, Biao

    2015-12-18

    Copper N-heterocyclic carbene complexes can be readily used as catalysts for both aerobic oxidation of alcohols to aldehydes and reduction of imines to amines. Our methodology is universal for aromatic substrates and shows versatile tolerance to potential cascade reactions. A one-pot tandem synthetic strategy could afford useful imines and secondary amines via an oxidation-reduction strategy. PMID:26633757

  12. Electrocatalytic reduction of acetone in a proton-exchange-membrane reactor: a model reaction for the electrocatalytic reduction of biomass.

    PubMed

    Green, Sara K; Tompsett, Geoffrey A; Kim, Hyung Ju; Bae Kim, Won; Huber, George W

    2012-12-01

    Acetone was electrocatalytically reduced to isopropanol in a proton-exchange-membrane (PEM) reactor on an unsupported platinum cathode. Protons needed for the reduction were produced on the unsupported Pt-Ru anode from either hydrogen gas or electrolysis of water. The current efficiency (the ratio of current contributing to the desired chemical reaction to the overall current) and reaction rate for acetone conversion increased with increasing temperature or applied voltage for the electrocatalytic acetone/water system. The reaction rate and current efficiency went through a maximum with respect to acetone concentration. The reaction rate for acetone conversion increased with increasing temperature for the electrocatalytic acetone/hydrogen system. Increasing the applied voltage for the electrocatalytic acetone/hydrogen system decreased the current efficiency due to production of hydrogen gas. Results from this study demonstrate the commercial feasibility of using PEM reactors to electrocatalytically reduce biomass-derived oxygenates into renewable fuels and chemicals. PMID:22961747

  13. Photoredox Catalysis in Organic Chemistry

    PubMed Central

    2016-01-01

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon–carbon and carbon–heteroatom bonds. PMID:27477076

  14. Recent Advances in Nickel Catalysis

    PubMed Central

    Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F.

    2015-01-01

    Preface The field of nickel catalysis has made tremendous advances in the past decade. There are several key properties of nickel that have allowed for a broad range of innovative reaction development, such as facile oxidative addition and ready access to multiple oxidation states. In recent years, these properties have been increasingly understood and leveraged to perform transformations long considered exceptionally challenging. Herein, we discuss some of the most recent and significant developments in homogeneous nickel catalysis with an emphasis on both synthetic outcome and mechanism. PMID:24828188

  15. Photoredox Catalysis in Organic Chemistry.

    PubMed

    Shaw, Megan H; Twilton, Jack; MacMillan, David W C

    2016-08-19

    In recent years, photoredox catalysis has come to the forefront in organic chemistry as a powerful strategy for the activation of small molecules. In a general sense, these approaches rely on the ability of metal complexes and organic dyes to convert visible light into chemical energy by engaging in single-electron transfer with organic substrates, thereby generating reactive intermediates. In this Perspective, we highlight the unique ability of photoredox catalysis to expedite the development of completely new reaction mechanisms, with particular emphasis placed on multicatalytic strategies that enable the construction of challenging carbon-carbon and carbon-heteroatom bonds. PMID:27477076

  16. Peptide-capped nanoparticles for catalysis and assembly

    NASA Astrophysics Data System (ADS)

    Briggs, Beverly D.

    Nature possesses methods for the formation and manipulation of inorganic materials with controlled size, shape, and compositions. Biomolecules, such as peptides, are known to be responsible for the generation of such inorganic materials on the nanoscale, where the enhanced properties can be exploited for various applications. Pd nanoparticles, capped with the Pd-specific Pd4 peptide (TSNAVHPTLRHL), were found to be active catalysts for Stille coupling, where the debated mechanism of oxidative addition was explored. Furthermore, the same Pd4-capped nanoparticles were found to be active in Suzuki coupling, another C-C coupling reaction that undergoes catalysis following a similar mechanism. Other considerations with peptide-capped metal catalysis involved the role of the reductant and the subsequent effects on morphology and reactivity, as seen by use of Au nanoparticles capped with a library of peptides. The role of the reductant was studied using varied reductants and was found to directly affect the catalytic activity. Additionally, such Au and Ag materials-binding peptides were expanded to generate multi-domain biomolecules capable of metal-specific binding and nanoparticle assembly. Such in-depth studies of peptide-capped nanomaterials and their uses in catalysis and assembly is important for optimized functionality and application.

  17. Multiply twinned AgNi alloy nanoparticles as highly active catalyst for multiple reduction and degradation reactions.

    PubMed

    Kumar, Mukesh; Deka, Sasanka

    2014-09-24

    Size dependent surface characteristics of nanoparticles lead to use of these nanomaterials in many technologically important fields, including the field of catalysis. Here Ag(1-x)Ni(x) bimetallic alloy nanoparticles have been developed having a 5-fold twinned morphology, which could be considered as an important alloy because of their excellent and unique catalytic and magnetic properties. Alloying between Ag and Ni atoms on a nanoscale has been confirmed with detailed X-ray diffraction, high resolution transmission electron microscopy, energy-dispersive X-ray analysis, X-ray photoelectron spectroscopy, and magnetization measurements. Although introduced for the first time as a catalyst due to having high active surface sites, the as-synthesized nanoparticles showed one of the best multiple catalytic activity in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) and 4-nitroaniline (4-NA) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. Additionally the same catalyst showed enhanced catalytic activity in degradation of environment polluting dye molecules. The highest ever activity parameter we report here for Ag0.6Ni0.4 composition is 156 s(-1)g(-1) with an apparent rate constant of 31.1 × 10(-3) s(-1) in a 4-NP reduction reaction where the amount of catalyst used was 0.2 mg and the time taken for complete conversion of 4-NP to 4-aminophenol was 60 s. Similarly, an incredible reaction rate constant (115 s(-1)) and activity parameter (576.6 s(-1)g(-1)) were observed for the catalytic degradation of methyl orange dye where 15 s is the maximum time for complete degradation of the dye molecules. The high catalytic performance of present AgNi alloy NPs over the other catalysts has been attributed to size, structural (twinned defect) and electronic effects. This study may lead to use of these bimetallic nanostructures with excellent recyclable catalytic

  18. Synthesis of PtM (M=Co, Ni)/Reduced Graphene Oxide Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction.

    PubMed

    Li, Jialiang; Fu, Xinning; Mao, Zhou; Yang, Yushi; Qiu, Tong; Wu, Qingzhi

    2016-12-01

    A series of PtM (M=Co, Ni)/reduced graphene oxide (rG-O) nanocomposites were successfully synthesized through a facile hydrothermal method. The as-synthesized nanocomposites were characterized using transmission electron microscopy and high-resolution transmission electron microscopy, X-ray diffraction, inductively coupled plasma-atomic emission spectrometer, and X-ray photoelectron spectroscopy. The electrochemical performance and oxygen reduction reaction (ORR) activity of PtM/rG-O nanocomposites were evaluated using cyclic voltammetry and the rotating disk electrode method. The results show that the addition of the reductant (1,2-hexadecanediol, HAD) in the reaction system slightly improved the ORR activity of PtM/rG-O nanocomposites with a negligible influence on the size and morphology of alloy NPs. Furthermore, PtNi/rG-O nanocomposites displayed the higher electrochemical stability than PtCo/rG-O nanocomposites. These results provide a facile strategy for the synthesis of Pt-based alloy NPs/rG-O nanocomposites for applications in catalysis and energy-related processes. PMID:26732276

  19. Nitrogen and phosphorus dual-doped hierarchical porous carbon foams as efficient metal-free electrocatalysts for oxygen reduction reactions.

    PubMed

    Jiang, Hongliang; Zhu, Yihua; Feng, Qian; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2014-03-10

    Despite tremendous progress in developing doped carbocatalysts for the oxygen reduction reaction (ORR), the ORR activity of current metal-free carbocatalysts is still inferior to that of conventional Pt/C catalysts, especially in acidic media and neutral solution. Moreover, it also remains a challenge to develop an effective and scalable method for the synthesis of metal-free carbocatalysts. Herein, we have developed nitrogen and phosphorus dual-doped hierarchical porous carbon foams (HP-NPCs) as efficient metal-free electrocatalysts for ORR. The HP-NPCs were prepared for the first time by copyrolyzing nitrogen- and phosphorus-containing precursors and poly(vinyl alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates. Remarkably, the resulting HP-NPCs possess controllable nitrogen and phosphorus content, high surface area, and a hierarchical interconnected macro-/mesoporous structure. In studying the effects of the HP-NPCs on the ORR, we found that the as-prepared HP-NPC materials exhibited not only excellent catalytic activity for ORR in basic, neutral, and acidic media, but also much better tolerance for methanol oxidation and much higher stability than the commercial, state-of-the-art Pt/C catalysts. Because of all these outstanding features, it is expected that the HP-NPC material will be a very suitable catalyst for next-generation fuel cells and lithium-air batteries. In addition, the novel synthetic method described here might be extended to the preparation of many other kinds of hierarchical porous carbon materials or porous carbon that contains metal oxide for wide applications including energy storage, catalysis, and electrocatalysis. PMID:24520023

  20. EFFECT OF PRETREATMENT ON PT-CO/C CATHODE CATALYSTS FOR THE OXYGEN-REDUCTION REACTION

    SciTech Connect

    Fox, E.; Colon-Mercado, H.

    2010-01-19

    Carbon supported Pt and Pt-Co electrocatalysts for the oxygen reduction reaction in low temperature fuel cells were prepared by the reduction of the metal salts with sodium borohydride and sodium formate. The effect of surface treatment with nitric acid on the carbon surface and Co on the surface of carbon prior to the deposition of Pt was studied. The catalysts where Pt was deposited on treated carbon the ORR reaction preceded more through the two electron pathway and favored peroxide production, while the fresh carbon catalysts proceeded more through the four electron pathway to complete the oxygen reduction reaction. NaCOOH reduced Pt/C catalysts showed higher activity that NaBH{sub 4} reduced Pt/C catalysts. It was determined that the Co addition has a higher impact on catalyst activity and active surface area when used with NaBH{sub 4} as reducing agent as compared to NaCOOH.

  1. Evidence for Localization of Reaction Upon Reduction of Carbon Tetrachloride by Granular Iron

    SciTech Connect

    Gaspar, Daniel J.; Lea, Alan S.; Engelhard, Mark H.; Baer, Donald R.; Miehr, R.; Tratnyek, Paul G.

    2002-10-01

    The distribution of reaction sites on iron particles exposed to water containing carbon tetrachloride has been examined by measuring the locations of reaction products. The uniformity or localization of reaction sites has implications for understanding and modeling the reduction of environmental contaminants by iron in ground water systems. Granular iron surfaces similar to those being used for environmental remediation applications were studied using surfaces analysis techniques to develop an understanding of the physical and chemical structure of the surface and oxide films. Scanning Auger microscopy and imaging time-of-flight secondary ion mass spectrometry revealed that granular iron exposed to carbon tetrachloride-saturated water exhibits chloride-enriched regions occurred at pits rather than on the passive oxide film on the metal. Understanding the nature of the local solute reduction sites will play an important role in modeling the kinetics of reaction at passive iron oxide films in environmental systems.

  2. Systematic Analysis of Electrochemical CO₂ Reduction with Various Reaction Parameters using Combinatorial Reactors.

    PubMed

    Hashiba, Hiroshi; Yotsuhashi, Satoshi; Deguchi, Masahiro; Yamada, Yuka

    2016-04-11

    Applying combinatorial technology to electrochemical CO2 reduction offers a broad range of possibilities for optimizing the reaction conditions. In this work, the CO2 pressure, stirring speed, and reaction temperature were varied to investigate the effect on the rate of CO2 supply to copper electrode and the associated effects on reaction products, including CH4. Experiments were performed in a 0.5 M KCl solution using a combinatorial screening reactor system consisting of eight identical, automatically controlled reactors. Increasing the CO2 pressure and stirring speed, or decreasing the temperature, steadily suppressed H2 production and increased the production of other reaction products including CH4 across a broad range of current densities. Our analysis shows that the CO2 pressure, stirring speed, and reaction temperature independently contributed to the limiting rate of CO2 supply to the electrode (Jlim). At a constant temperature, the limiting current density of CH4 increased proportionally with Jlim, illustrating that the production rate of CH4 was proportional to CO2 supply. Varying the CO2 pressure and stirring speed hardly affected the maximum Faradaic efficiency of CH4 production. However, changes to the reaction temperature showed a significant contribution to CH4 selectivity. This study highlights the importance of quantitative analysis of CO2 supply in clarifying the role of various reaction parameters and understanding more comprehensively the selectivity and reaction rate of electrochemical CO2 reduction. PMID:27003626

  3. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  4. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions.

    PubMed

    Yan, Xuecheng; Jia, Yi; Odedairo, Taiwo; Zhao, Xiaojun; Jin, Zhao; Zhu, Zhonghua; Yao, Xiangdong

    2016-06-21

    We utilized a facile method for creating unique defects in the activated carbon (AC), which makes it highly active for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The ORR activity of the defective AC (D-AC) is comparable to the commercial Pt/C in alkaline medium, and the D-AC also exhibits excellent HER activity in acidic solution. PMID:27277286

  5. Frustrated Lewis pairs: from concept to catalysis.

    PubMed

    Stephan, Douglas W

    2015-02-17

    CONSPECTUS: Frustrated Lewis pair (FLP) chemistry has emerged in the past decade as a strategy that enables main-group compounds to activate small molecules. This concept is based on the notion that combinations of Lewis acids and bases that are sterically prevented from forming classical Lewis acid-base adducts have Lewis acidity and basicity available for interaction with a third molecule. This concept has been applied to stoichiometric reactivity and then extended to catalysis. This Account describes three examples of such developments: hydrogenation, hydroamination, and CO2 reduction. The most dramatic finding from FLP chemistry was the discovery that FLPs can activate H2, thus countering the long-existing dogma that metals are required for such activation. This finding of stoichiometric reactivity was subsequently evolved to employ simple main-group species as catalysts in hydrogenations. While the initial studies focused on imines, subsequent studies uncovered FLP catalysts for a variety of organic substrates, including enamines, silyl enol ethers, olefins, and alkynes. Moreover, FLP reductions of aromatic anilines and N-heterocycles have been developed, while very recent extensions have uncovered the utility of FLP catalysts for ketone reductions. FLPs have also been shown to undergo stoichiometric reactivity with terminal alkynes. Typically, either deprotonation or FLP addition reaction products are observed, depending largely on the basicity of the Lewis base. While a variety of acid/base combinations have been exploited to afford a variety of zwitterionic products, this reactivity can also be extended to catalysis. When secondary aryl amines are employed, hydroamination of alkynes can be performed catalytically, providing a facile, metal-free route to enamines. In a similar fashion, initial studies of FLPs with CO2 demonstrated their ability to capture this greenhouse gas. Again, modification of the constituents of the FLP led to the discovery of reaction

  6. Quenchers and inhibitors of chemiluminescence in the reduction reactions of Mn3+

    NASA Astrophysics Data System (ADS)

    Tsaplev, Yu. B.; Vasil'ev, R. F.; Trofimov, A. V.

    2015-06-01

    The effect of NaF and CH3CN on the chemiluminescent reactions of Mn(III) reduction in solutions of sulfuric acid is studied. It is established that NaF is an inhibitor of these reactions, and the quenching of chemiluminescence under the effect of NaF is nominal. Acetonitrile does not affect the kinetics of reactions under similar conditions and acts as a specific quencher of the chemiexcited emitter. The Stern-Volmer quenching constant is 52 ± 11 M-1.

  7. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  8. Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.

    PubMed

    Kumar, Subodh; Singhal, Nikita; Singh, Raj K; Gupta, Piyush; Singh, Raghuvir; Jain, Suman L

    2015-07-14

    Chitosan coated magnetic nanoparticles were synthesized and used as a support for the immobilization of the cobalt(II) acetylacetonate complex [Co(acac)2] and quaternary triphenylphosphonium bromide [P(+)Ph3Br(-)] targeting -NH2 and -OH moieties located on the surface of chitosan. The synthesized material was used as a catalyst for one pot direct synthesis of cyclic carbonates from olefins via an oxidative carboxylation approach with carbon dioxide using isobutyraldehyde as the sacrificial reductant and molecular oxygen as the oxidant. After the reaction, the catalyst was recovered by applying an external magnet and reused for several runs without significant loss in catalytic activity and no leaching was observed during this course. PMID:26055991

  9. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  10. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800