Science.gov

Sample records for reduction scr technology

  1. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  2. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1991-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  3. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    EPA Science Inventory

    The report provides a methodology for estimating budgetary costs associ-ated with retrofit applications of selec-tive catalytic reduction (SCR) technology on coal-fired boilers. SCR is a post-combustion nitrogen oxides (NOX) con-trol technology capable of providing NOX reductions...

  4. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    SciTech Connect

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  5. Innovative clean coal technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Fourth quarterly progress report

    SciTech Connect

    1992-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe, there are numerous technical uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal.

  6. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of Nitrogen Oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1995

    SciTech Connect

    1996-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  7. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, October 1993--December 1993

    SciTech Connect

    1995-06-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal.

  8. Innovative clean coal technology (ICCT): Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers

    SciTech Connect

    Not Available

    1990-11-01

    This project's objective is to demonstrate the selective catalytic reduction (SCR) process that removes nitrogen oxides (NOx) from the flue gas of boilers that burn US high-sulfur coal. The SCR technology involves the catalytic reduction of NH{sub 3} which is injected into the flue gas to react with NOx contained in the flue gas to produce molecular nitrogen (N{sub 2}) and water vapor. This quarter, work was initiated on the pilot plant ductwork layout, flue gas distribution and flow control concepts and preliminary pilot plant reactor designs concepts. Conceptual designs were produced for flue gas flow distribution and control philosophy that includes a variable speed fan, dampers, full-flow venturi and reactor bypass ducting to ensure proper control and distribution among all the reactors. 23 figs., 16 tabs.

  9. Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emissions from high-sulfur coal-fired boilers. Quarterly report No. 5, July--September 1991

    SciTech Connect

    Not Available

    1991-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor.

  10. Development of the integrated environmental control model: Cost models of selective catalytic reduction (SCR) NO{sub x} control systems. Quarterly progress report, October--December 1993

    SciTech Connect

    Frey, H.C.; Rubin, E.S.

    1994-01-31

    Selective catalytic reduction (SCR) is a process for the post-combustion removal of NO{sub x} from the flue gas of fossil-fuel-fired power plants. SCR is capable of NO{sub x} reduction efficiencies of up to 80 or 90 percent. SCR technology has been applied for treatment of flue gases from a variety of emission sources, including natural gas- and oil-fired gas turbines, process steam boilers in refineries, and coal-fired power plants. SCR applications to coal-fired power plants have occurred in Japan and Germany. Full-scale SCR systems have not been applied to coal-fired power plants in the U.S., although there have been small-scale demonstration projects. Increasingly strict NO{sub x} control requirements are being imposed by various state and local regulatory agencies in the U.S. These requirements may lead to U.S. SCR applications, particularly for plants burning low sulfur coals (Robie et al.). Furthermore, implicit in Title IV of the 1990 Clean Air Act Amendment is a national NO{sub x} emission reduction of 2 million tons per year. Thus, there may be other incentives to adapt SCR technology more generally to U.S. coal-fired power plants with varying coal sulfur contents. However, concern remains over the applicability of SCR technology to U.S. plants burning high sulfur coals or coals with significantly different fly ash characteristics than those burned in Germany and Japan. There is also concern regarding the application of SCR to peaking units due to potential startup and shutdown problems (Lowe et al.). In this report, new capital cost models of two SCR systems are developed. These are {open_quotes}hot-side high-dust{close_quotes} and {open_quotes}tail-end low-dust{close_quotes} options. In a previous quarterly report, performance models for these two systems were developed.

  11. SCR comes of age

    SciTech Connect

    Alfred Mann; Thomas Sarkus; James Staudt

    2005-11-01

    The authors take a close look at selective catalytic reduction (SCR), which has become the predominant post-combustion technology for reducing emissions of nitrogen oxides (NOx) from utility boilers, both in the United States and worldwide. An added, unanticipated benefit of SCR technology is the enhancement of Hg removal in coal-fired power plants. However, additional work remains to be done in developing low-temperature catlysts, in-situ catalyst regeneration processes, and hybrid SNCR/SCR systems. 10 refs., 1 fig., 1 photo.

  12. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  13. EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES

    EPA Science Inventory

    The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...

  14. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    ERIC Educational Resources Information Center

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  15. POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY

    EPA Science Inventory

    The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...

  16. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants. PMID:25961487

  17. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    SciTech Connect

    Harold, Michael; Crocker, Mark; Balakotaiah, Vemuri; Luss, Dan; Choi, Jae-Soon; Dearth, Mark; McCabe, Bob; Theis, Joe

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) commonly referred to as NO{sub x}, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NO{sub x} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NO{sub x} in the presence of excess O{sub 2}. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NO{sub x}. Two catalytic technologies that have emerged as effective for NO{sub x} abatement are NO{sub x} storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NO{sub x}. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and alternative reductants such as propylene, representing the

  18. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    SciTech Connect

    Hinton, W.S.; Maxwell, J.D.; Healy, E.C.; Hardman, R.R.; Baldwin, A.L.

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  19. Distributed Parameter Control of Selective Catalytic Reduction (SCR) for Diesel-Powered Vehicles

    NASA Astrophysics Data System (ADS)

    Pakravesh, Hallas

    The main scope of this work is to design a distributed parameter control for SCR, which is modelled by using coupled hyperbolic and parabolic partial differential equations (PDEs). This is a boundary control problem where the control objectives are to reduce the amount of NOx emissions and ammonia slip as far as possible. Two strategies are used to control SCR. The first strategy includes using the direct transcription (DT) as the open-loop control technique. The second strategy includes the design of a closed-loop control technique that uses a new numerical method developed in this work, which combines the method of characteristics and spectral decomposition, and the characteristic-based nonlinear model predictive control (CBNMPC) as the control algorithm. The results show that the designed advanced controllers are able to achieve very high control performance in terms of NOx and ammonia slip reduction.

  20. HYBRID SNCR-SCR TECHNOLOGIES FOR NOX CONTROL: MODELING AND EXPERIMENT

    EPA Science Inventory

    The hybrid process of homogeneous gas-phase selective non-catalytic reduction (SNCR) followed by selective catalytic reduction (SCR) of nitric oxide (NO) was investigated through experimentation and modeling. Measurements, using NO-doped flue gas from a gas-fired 29 kW test combu...

  1. EVALUATION OF NOX EMISSION CONTROL CATALYSTS FOR POWER PLANT SCR INSTALLATIONS

    EPA Science Inventory

    The paper gives results of an evaluation of nitrogen oxide (NOx) emission control catalysts commercially developed for power plant selective catalytic reduction (SCR) installations. ith the objective of establishing the performance of SCR catalysts and related technology, control...

  2. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    EPA Science Inventory

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  3. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    DOE PAGESBeta

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements revealmore » that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.« less

  4. SCR`s success

    SciTech Connect

    Seeley, R.S.

    1996-04-01

    The use of selective catalytic reduction (SCR) for reducing emissions of nitrous oxides is described. Suppliers of SCR systems for many oil-, coal- and gas-fired plants in the U.S. and internationally are listed. The cost and cost factors of SCR are also discussed.

  5. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    NASA Astrophysics Data System (ADS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  6. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies: Preprint

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-04-01

    An accelerated durability test method determined the potential impact of biodiesel ash impurities, including engine testing with multiple diesel particulate filter substrate types, as well as diesel oxidation catalyst and selective catalyst reduction catalysts. The results showed no significant degradation in the thermo-mechanical properties of a DPF after exposure to 150,000-mile equivalent biodiesel ash and thermal aging. However, exposure to 435,000-mile equivalent aging resulted in a 69% decrease in thermal shock resistance. A decrease in DOC activity was seen after exposure to 150,000-mile equivalent aging, resulting in higher hydrocarbon slip and a reduction in NO2 formation. The SCR catalyst experienced a slight loss in activity after exposure to 435,000-mile equivalent aging. The SCR catalyst, placed downstream of the DPF and exposed to B20 exhaust suffered a 5% reduction in overall NOx conversion activity over the HDDT test cycle. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. The results of this study suggest that long-term operation with B20 at the current specification limits for alkali and alkaline earth metal impurities will adversely impact the performance of DOC, DPF and SCR systems.

  7. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    SciTech Connect

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification problem

  8. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  9. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  10. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    PubMed

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O. PMID:23477804

  11. Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

    SciTech Connect

    Williams, A.; McCormick, R.; Luecke, J.; Brezny, R.; Geisselmann, A.; Voss, K.; Hallstrom, K.; Leustek, M.; Parsons, J.; Abi-Akar, H.

    2011-06-01

    It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter. It is estimated that the additional ash from 150,000 miles of biodiesel use would also result in a moderate increases in exhaust backpressure for a DPF. A decrease in DOC activity was seen after exposure to 150,000 mile equivalent aging, resulting in higher HC slip and a reduction in NO{sub 2} formation. The metal-zeolite SCR catalyst experienced a slight loss in activity after exposure to 435,000 mile equivalent aging. This catalyst, placed downstream of the DPF, showed a 5% reduction in overall NOx conversion activity over the HDDT test cycle.

  12. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts

    SciTech Connect

    Brookshear, Daniel William; Nam, Jeong -Gil; Nguyen, Ke; Toops, Todd J.; Binder, Andrew J.

    2015-06-05

    This bench reactor study investigates the impact of gaseous sulfur on the NOx reduction activity of Cu-chabazite SCR (Cu-CHA) catalysts at SO2 concentrations representative of marine diesel engine exhaust. After two hours of 500 ppm SO2 exposure at 250 and 400 °C in the simulated diesel exhaust gases, the NOx reduction activity of the sulfated Cu-CHA SCR catalysts is severely degraded at evaluation temperatures below 250 °C; however, above 250 °C the impact of sulfur exposure is minimal. EPMA shows that sulfur is located throughout the washcoat and along the entire length of the sulfated samples. Interestingly, BET measurements reveal that the sulfated samples have a 20% decrease in surface area. Moreover, the sulfated samples show a decrease in NOx/nitrate absorption during NO exposure in a DRIFTS reactor which suggests that Cu sites in the catalyst are blocked by the presence of sulfur. SO2 exposure also results in an increase in NH3 storage capacity, possibly due to the formation of ammonium sulfate species in the sulfated samples. In all cases, lean thermal treatments as low as 500 °C reverse the effects of sulfur exposure and restore the NOx reduction activity of the Cu-CHA catalyst to that of the fresh condition.

  13. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal

    SciTech Connect

    Yan Cao; Zhengyang Gao; Jiashun Zhu; Quanhai Wang; Yaji Huang; Chengchung Chiu; Bruce Parker; Paul Chu; Wei-ping Pan

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0) concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH{sub 3} addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH{sub 3} reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. 30 refs., 4 figs.

  14. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    PubMed

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation. PMID:18350905

  15. Thermal Durability of Cu-CHA NH3-SCR Catalysts for Diesel NOx Reduction

    SciTech Connect

    Schmieg, Steven J.; Oh, Se H.; Kim, Chang H.; Brown, David B.; Lee, Jong H.; Peden, Charles HF; Kim, Do Heui

    2012-04-30

    Multiple catalytic functions (NOx conversion, NO and NH3 oxidation, NH3 storage) of a commercial Cu-zeolite urea/NH3-SCR catalyst were assessed in a laboratory fixed-bed flow reactor system after differing degrees of hydrothermal aging. Catalysts were characterized by using x-ray diffraction (XRD), 27Al solid state nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) / energy dispersive X-ray (EDX) spectroscopy to develop an understanding of the degradation mechanisms during catalyst aging. The catalytic reaction measurements of laboratory-aged catalysts were performed, which allows us to obtain a universal curve for predicting the degree of catalyst performance deterioration as a function of time at each aging temperature. Results show that as the aging temperature becomes higher, the zeolite structure collapses in a shorter period of time after an induction period. The decrease in SCR performance was explained by zeolite structure destruction and/or Cu agglomeration, as detected by XRD/27Al NMR and by TEM/EDX, respectively. Destruction of the zeolite structure and agglomeration of the active phase also results in a decrease in the NO/NH3 oxidation activity and the NH3 storage capacity of the catalyst. Selected laboratory aging conditions (16 h at 800oC) compare well with a 135,000 mile vehicle-aged catalyst for both performance and characterization criteria.

  16. 2200 MW SCR installation on new coal-fired utility project

    SciTech Connect

    Tonn, D.P.; Uysal, T.A.

    1998-12-31

    NO{sub x} regulations in Germany and Japan in the mid-1980s resulted in the mandatory retrofit of Selective Catalytic Reduction (SCR) technology on many utility installations. The early 1990s brought SCR technology to small, single unit new coal fired installations around the world. This paper describes the application of high NO{sub x} reduction SCR technology to the first large scale, coal fired, multiple unit new installation. By integrating the SCR design into the initial boiler equipment arrangement and design, significant simplification of equipment arrangement resulted in project cost savings. The four 550 MW units at Taiwan Power`s Taichung 5--8 Power Plant were installed, commissioned (Unit 8 went on line in early 1997), and tested demonstrating the low NO{sub x} emission capabilities of SCR technology.

  17. OPERATIONAL EXPERIENCE OF THE EPA OWNED BENCH SCALE PILOT PLANT FOR EVALUATING SCR DENOX CATALYSTS

    EPA Science Inventory

    The paper discusses the use of EPA's bench-scale pilot plant to evaluate catalysts used in the ammonia (NH3)-based technology and process for selective catalytic reduction (SCR) of nitrogen oxides. A key objective was to establish the performance of SCR catalysts on U.S. uels and...

  18. EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS

    EPA Science Inventory

    The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...

  19. Utility experience with SCR in Germany

    SciTech Connect

    Hartenstein, H.U.; Gutberlet, H.; Licata, A.

    1999-07-01

    The selective catalytic reduction (SCR) technology was primarily developed by Japanese industry for the reduction of NOx concentrations from power plant flue gas emissions. The first commercial Japanese DeNOx plant began operation in 1980 while the first German high dust SCR plant started up in 1985 and the first German tail end SCR plant started up in 1986. Two German environmental resolutions (GFAVO of June, 1983 and UMK of April, 1984) enhanced the adaptation of the SCR technique in German power plants. From the end of 1984 to 1987 most German utility owners ran pilot plant studies in order to become acquainted with this technology and to determine whether there are special deterioration mechanisms. The first full-scale plant started operation at the end of 1985. Since then, around 120 SCR plants have been installed on coal, oil and gas fired utility power plants. SCR technology for NOx control has also been applied on waste-to-energy plants, wood fired boilers, chemical plants, hazardous waste incinerators, glass smelters, refinery crackers, stationary diesel generators and sewage sludge incinerators. In addition, a special catalyst was developed to control dioxin/furan emissions in waste-to-energy plants, hazardous waste incinerators, sewage sludge incinerators, crematoria, iron ore sintering plants, and other thermal processes requiring dioxin/furan control. The German NOx emission limit for utility power plants is 200 mg/Nm{sup 3} at 6% O{sub 2} for dry bottom boilers and 5% O{sub 2} for wet bottom boilers or about 117 ppmv NOx at 3% O{sub 2}. This is approximately 0.12 lbs/MMBtu. Many German SCR units achieve high online availability on an annual basis. In the following paper, the authors will emphasize some aspects of the SCR process: (a) The chemical and physical/chemical properties of the catalyst; (b) The chemical engineering design of the catalyst volume; (c) The deterioration of catalytic activity with time; and (d) The effect of NH{sub 3} slip

  20. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission diagnostics for SCR systems....112 Emission diagnostics for SCR systems. Engines equipped with SCR systems using separate reductant.... This section does not apply for SCR systems using the engine's fuel as the reductant. (a)...

  1. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B.; Schmieg, Steven J.; Sloane, Thompson M.; Hilden, David L.; Mulawa, Patricia A.; Lee, Jong H.; Cheng, Shi-Wai S.

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  2. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    PubMed

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously. PMID:23211727

  3. Numerical analysis of NOx reduction for compact design in marine urea-SCR system

    NASA Astrophysics Data System (ADS)

    Choi, Cheolyong; Sung, Yonmo; Choi, Gyung Min; Kim, Duck Jool

    2015-11-01

    In order to design a compact urea selective catalytic reduction system, numerical simulation was conducted by computational fluid dynamics tool. A swirl type static mixer and a mixing chamber were considered as mixing units in the system. It had great influence on flow characteristics and urea decomposition into ammonia. The mixer caused flow recirculation and high level of turbulence intensity, and the chamber increased residence time of urea-water-solution injected. Because of those effects, reaction rates of urea decomposition were enhanced in the region. When those mixing units were combined, it showed the maximum because the recirculation zone was significantly developed. NH3 conversion was maximized in the zone due to widely distributed turbulence intensity and high value of uniformity index. It caused improvement of NOx reduction efficiency of the system. It was possible to reduce 55% length of the chamber and connecting pipe without decrease of NOx reduction efficiency.

  4. Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2011-04-20

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of model based control design for integrated DPF-SCR aftertreatment systems.

  5. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  6. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  7. Modeling Species Inhibition of NO oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-15

    Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy-duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO ~ NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on conservation of species equations and was coded as a C-language S-function and implemented in Matlab/Simulink environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate’s storage in the SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data.

  8. Using SCR methods to analyze requirements documentation

    NASA Technical Reports Server (NTRS)

    Callahan, John; Morrison, Jeffery

    1995-01-01

    Software Cost Reduction (SCR) methods are being utilized to analyze and verify selected parts of NASA's EOS-DIS Core System (ECS) requirements documentation. SCR is being used as a spot-inspection tool. Through this formal and systematic approach of the SCR requirements methods, insights as to whether the requirements are internally inconsistent or incomplete as the scenarios of intended usage evolve in the OC (Operations Concept) documentation. Thus, by modelling the scenarios and requirements as mode charts using the SCR methods, we have been able to identify problems within and between the documents.

  9. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  10. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    PubMed

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-01

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2. PMID:25045767

  11. DEVELOPMENT OF UREA-SCR FOR HEAVY-DUTY TRUCKS DEMONSTRATION UPDATE

    SciTech Connect

    Miller, William

    2000-08-20

    This study included engine cell and vehicle tests. The engine cell tests are aimed at determining NOX reduction using the US transient and OICA emissions test cycles. These cycles will be included in future US HD emissions standards. The vehicle tests will show urea-SCR system performance during real-world operation. These tests will prove that the technology can be successfully implemented and demonstrated over-the-road. The program objectives are to: (a) apply urea-SCR to a US HD diesel engine; (b) determine engine cell emissions reduction during US-transient and OICA cycles; (c) apply urea-SCR to a US HD diesel truck; and (d) determine NOX reduction and urea consumption during over-the-road operation.

  12. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  13. Optimal SCR Control Using Data-Driven Models

    SciTech Connect

    Stevens, Andrew J.; Sun, Yannan; Lian, Jianming; Devarakonda, Maruthi N.; Parker, Gordon

    2013-04-16

    We present an optimal control solution for the urea injection for a heavy-duty diesel (HDD) selective catalytic reduction (SCR). The approach taken here is useful beyond SCR and could be applied to any system where a control strategy is desired and input-output data is available. For example, the strategy could also be used for the diesel oxidation catalyst (DOC) system. In this paper, we identify and validate a one-step ahead Kalman state-space estimator for downstream NOx using the bench reactor data of an SCR core sample. The test data was acquired using a 2010 Cummins 6.7L ISB production engine with a 2010 Cummins production aftertreatment system. We used a surrogate HDD federal test procedure (FTP), developed at Michigan Technological University (MTU), which simulates the representative transients of the standard FTP cycle, but has less engine speed/load points. The identified state-space model is then used to develop a tunable cost function that simultaneously minimizes NOx emissions and urea usage. The cost function is quadratic and univariate, thus the minimum can be computed analytically. We show the performance of the closed-loop controller in using a reduced-order discrete SCR simulator developed at MTU. Our experiments with the surrogate HDD-FTP data show that the strategy developed in this paper can be used to identify performance bounds for urea dose controllers.

  14. LPV gain-scheduled control of SCR aftertreatment systems

    NASA Astrophysics Data System (ADS)

    Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.

    2012-01-01

    Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.

  15. SCR SYSTEMS FOR HEAVY DUTY TRUCKS: PROGRESS TOWARDS MEETING EURO 4 EMISSION STANDARDS IN 2005

    SciTech Connect

    Frank, W; Huethwohl, G; Maurer, B

    2003-08-24

    Emissions of diesel engines contain some components, which support the generation of smog and which are classified hazardous. Exhaust gas aftertreatment is a powerful tool to reduce the NOx and Particulate emissions. The NOx-emission can be reduced by the SCR technology. SCR stands for Selective Catalytic Reduction. A reduction agent has to be injected into the exhaust upstream of a catalyst. On the catalyst the NOx is reduced to N2 (Nitrogen) and H2O (Water). This catalytic process was developed in Japan about 30 years ago to reduce the NOx emission of coal-fired power plants. The first reduction agent used was anhydrous ammonia (NH3). SCR technology was used with diesel engines starting mid of the 80s. First applications were stationary operating generator-sets. In 1991 a joint development between DaimlerChrysler, MAN, IVECO and Siemens was started to use SCR technology for the reduction of heavy duty trucks. Several fleet tests demonstrated the durability of the systems. To day, SCR technology is the most promising technology to fulfill the new European Regulations EURO 4 and EURO 5 being effective Oct. 2005 and Oct. 2008. The efficient NOx reduction of the catalyst allows an engine calibration for low fuel consumption. DaimlerChrysler decided to use the SCR technology on every heavy duty truck and bus in Europe and many other truck manufacturers will introduce SCR technology to fulfill the 2005 emission regulation. The truck manufacturers in Europe agreed to use aqueous solution of Urea as reducing agent. The product is called AdBlue. AdBlue is a non toxic, non smelling liquid. The consumption is about 5% of the diesel fuel consumption to reduce the NOx emissions. A small AdBlue tank has to be installed to the vehicle. With an electronically controlled dosing system the AdBlue is injected into the exhaust. The dosing system is simple and durable. It has proven its durability during winter and summer testing as well as in fleet tests. The infrastructure for Ad

  16. Modeling Species Inhibition and Competitive Adsorption in Urea-SCR Catalysts

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Lee, Jong H.

    2012-04-16

    Although the urea-SCR technology exhibits high NOx reduction efficiency over a wide range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. Urea-SCR catalysts exhibit poor NOx reduction performance at low temperature operating conditions (T < 150 C). We postulate that the poor performance is either due to NH3 storage inhibition by species like hydrocarbons or due to competitive adsorption between NH3 and other adsorbates such as H2O and hydrocarbons in the exhaust stream. In this paper we attempt to develop one-dimensional models to characterize inhibition and competitive adsorption in Fe-zeolite based urea-SCR catalysts based on bench reactor experiments. We further use the competitive adsorption (CA) model to develop a standard SCR model based on previously identified kinetics. Simulation results indicate that the CA model predicts catalyst outlet NO and NH3 concentrations with minimal root mean square error.

  17. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction technology for the control of nitrogen oxide emissions from high-sulfur coal-fired boilers. First and second quarterly technical progress reports, [January--June 1995]. Final report

    SciTech Connect

    1995-12-31

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia (NH{sub 3}) into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor containing a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW nameplate capacity) near Pensacola, Florida. The project is funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  18. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    SciTech Connect

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions, respectively. Unit 1

  19. Environmental Technology Verification: Test Report of Mobile Source Selective Catalytic Reduction--Nett Technologies, Inc., BlueMAX 100 version A urea-based selective catalytic reduction technology

    EPA Science Inventory

    Nett Technologies’ BlueMAX 100 version A Urea-Based SCR System utilizes a zeolite catalyst coating on a cordierite honeycomb substrate for heavy-duty diesel nonroad engines for use with commercial ultra-low–sulfur diesel fuel. This environmental technology verification (ETV) repo...

  20. JV 58-Effects of Biomass Combustion on SCR Catalyst

    SciTech Connect

    Bruce C. Folkedahl; Christopher J. Zygarlicke; Joshua R. Strege; Donald P. McCollor; Jason D. Laumb; Lingbu Kong

    2006-08-31

    A portable slipstream selective catalytic reduction (SCR) reactor was installed at a biomass cofired utility boiler to examine the rates and mechanisms of catalyst deactivation when exposed to biomass combustion products. The catalyst was found to deactivate at a much faster rate than typically found in a coal-fired boiler, although this may have been the result of high ash loading rather than a general property of biomass combustion. Deactivation was mainly the result of alkali and alkaline-earth sulfate formation and growth in catalyst pores, apparently caused by alkaline-earth ash deposition on or near the pore sites. The high proportion of biomass in the fuel contributed to elevated levels of alkali and alkaline-earth material in the ash when compared to coal ash, and these higher levels provided more opportunity for sulfate formation. Based on laboratory tests, neither catalyst material nor ammonia contributed measurably to ash mass gains via sulfation. A model constructed using both field and laboratory data was able to predict catalyst deactivation of catalysts under subbituminous coal firing but performed poorly at predicting catalyst deactivation under cofiring conditions. Because of the typically higher-than coal levels of alkali and alkaline-earth elements present in biomass fuels that are available for sulfation at typical SCR temperatures, the use of SCR technology and biomass cofiring needs to be carefully evaluated prior to implementation.

  1. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    EPA Science Inventory

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  2. EFFECT OF SCR CATALYST ON MERCURY SPECIATION

    EPA Science Inventory

    A pilot-scale research study was conducted to investigate the effect of selective catalytic reduction (SCR) on elemental mercury speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois bituminous coals and one Powder River Basin (PRB) coal...

  3. Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts

    DOE PAGESBeta

    He, Yuanyuan; Ford, Michael E.; Zhu, Minghui; Liu, Qingcai; Tumuluri, Uma; Wu, Zili; Wachs, Israel E.

    2016-04-14

    We compared the molecular structures, surface acidity and catalytic activity for NO/NH3/O2 SCR of V2O5-WO3/TiO2 catalysts for two different synthesis methods: co-precipitation of aqueous vanadium and tungsten oxide precursors with TiO(OH)2 and by incipient wetness impregnation of the aqueous precursors on a reference crystalline TiO2 support (P25; primarily anatase phase). Bulk analysis by XRD showed that co-precipitation results in small and/or poorly ordered TiO2(anatase) particles and that VOx and WOx do not form solid solutions with the bulk titania lattice. Surface analysis of the co-precipitated catalyst by High Sensitivity-Low Energy Ion Scattering (HS-LEIS) confirms that the VOx and WOx aremore » surface segregated for the co-precipitated catalysts. In situ Raman and IR spectroscopy revealed that the vanadium and tungsten oxide components are present as surface mono-oxo O = VO3 and O = WO4 sites on the TiO2 supports. Co-precipitation was shown for the first time to also form new mono-oxo surface VO4 and WO4 sites that appear to be anchored at surface defects of the TiO2 support. IR analysis of chemisorbed ammonia showed the presence of both surface NH3* on Lewis acid sites and surface NH4+* on Brønsted acid sites. TPSR spectroscopy demonstrated that the specific SCR kinetics was controlled by the redox surface VO4 species and that the surface kinetics was independent of TiO2 synthesis method or presence of surface WO5 sites. SCR reaction studies revealed that the surface WO5 sites possess minimal activity below ~325 °C and their primary function is to increase the adsorption capacity of ammonia. A relationship between the SCR activity and surface acidity was not found. The SCR reaction is controlled by the surface VO4 sites that initiate the reaction at ~200 °C. The co-precipitated catalysts were always more active than the corresponding impregnated catalysts. Finally, we ascribe the higher activity of the co-precipitated catalysts to the presence of

  4. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J.A. Withum

    2006-03-07

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), evaluated the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)-wet flue gas desulfurization (FGD) combination or a spray dyer absorber-fabric filter (SDA-FF) combination. In this program CONSOL determined mercury speciation and removal at 10 bituminous coal-fired facilities; at four of these facilities, additional tests were performed on units without SCR, or with the existing SCR bypassed. This project final report summarizes the results and discusses the findings of the body of work as a whole. Eleven Topical Reports were issued (prior to this report) that describe in great detail the sampling results at each of the ten power plants individually. The results showed that the SCR-FGD combination removed a substantial fraction of mercury from flue gas. The coal-to-stack mercury removals ranged from 65% to 97% for the units with SCR and from 53% to 87% for the units without SCR. There was no indication that any type of FGD system was more effective at mercury removal than others. The coal-to-stack mercury removal and the removal in the wet scrubber were both negatively correlated with the elemental mercury content of the flue gas and positively correlated with the scrubber liquid chloride concentration. The coal chlorine content was not a statistically significant factor in either case. Mercury removal in the ESP was positively correlated with the fly ash carbon content and negatively correlated with the flue gas temperature. At most of the units, a substantial fraction (>35%) of the flue gas mercury was in the elemental form at the boiler economizer outlet. After passing through the SCR-air heater combination very little of the total mercury (<10%) remained in the elemental form in

  5. Carbon Dioxide Reduction Technology Trade Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Anderson, Molly S.; Abney, Morgan B.

    2011-01-01

    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system

  6. Predictable SCR co-benefits for mercury control

    SciTech Connect

    Pritchard, S.

    2009-01-15

    A test program, performed in cooperation with Dominion Power and the Babcock and Wilcox Co., was executed at Dominion Power's Mount Storm power plant in Grant County, W. Va. The program was focused on both the selective catalytic reduction (SCR) catalyst capability to oxide mercury as well as the scrubber's capability to capture and retain the oxidized mercury. This article focuses on the SCR catalyst performance aspects. The Mount Storm site consists of three units totaling approximately 1,660 MW. All units are equipped with SCR systems for NOx control. A full-scale test to evaluate the effect of the SCR was performed on Unit 2, a 550 MWT-fired boiler firing a medium sulfur bituminous coal. This test program demonstrated that the presence of an SCR catalyst can significantly affect the mercury speciation profile. Observation showed that in the absence of an SCR catalyst, the extent of oxidation of element a mercury at the inlet of the flue gas desulfurization system was about 64%. The presence of a Cornertech SCR catalyst improved this oxidation to levels greater than 95% almost all of which was captured by the downstream wet FGD system. Cornertech's proprietary SCR Hg oxidation model was used to accurately predict the field results. 1 ref., 2 figs., 1 tab.

  7. Recent Progress in Engine Noise Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Huff, Dennis; Gliebe, Philip

    2003-01-01

    Highlights from NASA-funded research over the past ten years for aircraft engine noise reduction are presented showing overall technical plans, accomplishments, and selected applications to turbofan engines. The work was sponsored by NASA's Advanced Subsonic Technology (AST) Noise Reduction Program. Emphasis is given to only the engine noise reduction research and significant accomplishments that were investigated at Technology Readiness Levels ranging from 4 to 6. The Engine Noise Reduction sub-element was divided into four work areas: source noise prediction, model scale tests, engine validation, and active noise control. Highlights from each area include technologies for higher bypass ratio turbofans, scarf inlets, forward-swept fans, swept and leaned stators, chevron/tabbed nozzles, advanced noise prediction analyses, and active noise control for fans. Finally, an industry perspective is given from General Electric Aircraft Engines showing how these technologies are being applied to commercial products. This publication contains only presentation vu-graphs from an invited lecture given at the 41st AIAA Aerospace Sciences Meeting, January 6-9, 2003.

  8. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are limited by the launch mass capacity of existing and planned launch vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Although mass is typically the focus of exploration missions, due to its strong impact on launch vehicle and habitable volume for the crew, logistics volume also needs to be considered. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing six logistics technologies guided by a systems engineering cradle-to-grave approach to enable after-use crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. Reduction of mass has a corresponding and significant impact to logistical volume. The reduction of logistical volume can reduce the overall pressurized vehicle mass directly, or indirectly benefit the mission by allowing for an increase in habitable volume during the mission. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as mission durations increase. Early studies have shown that the use of advanced logistics technologies can save approximately 20 m(sup 3) of volume during transit alone for a six-person Mars conjunction class mission.

  9. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  10. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE PAGESBeta

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  11. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel

  12. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    EPA Science Inventory

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  13. Logistics Reduction Technologies for Exploration Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.

    2014-01-01

    Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.

  14. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  15. Pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Tomlinson, J. G.

    1977-01-01

    The reduction of CO, HC, and smoke emissions while maintaining acceptable NO(x) emissions without affecting fuel consumption, durability, maintainability, and safety was accomplished. Component combustor concept screening directed toward the demonstration of advanced combustor technology required to meet the EPA exhaust emissions standards for class P2 turboprop engines was covered. The combustion system for the Allison 501-D22A engine was used, and three combustor design concepts - reverse flow, prechamber, and staged fuel were evaluated.

  16. Summary of emissions reduction technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1977-01-01

    The NASA emissions reduction contract programs for EPA aircraft engine classes P2 (turboshaft engines), T1 (jet engines with thrust under 8000 lb), T4 (JT8D) engines), and T2 (jet engines with thrust over 8000 lb) are discussed. The most important aspects of these programs, the commonality of approaches used, the test results, and assessments regarding applications of the derived technology are summarized.

  17. Hydrocarbon Fouling of SCR during PCCI combustion

    SciTech Connect

    Prikhodko, Vitaly Y; Pihl, Josh A; Lewis Sr, Samuel Arthur; Parks, II, James E

    2012-01-01

    The combination of advanced combustion with advanced selective catalytic reduction (SCR) catalyst formulations was studied in the work presented here to determine the impact of the unique hydrocarbon (HC) emissions from premixed charge compression ignition (PCCI) combustion on SCR performance. Catalyst core samples cut from full size commercial Fe- and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. The zeolites which form the basis of these catalysts are different with the Cu-based catalyst made on a chabazite zeolite which las smaller pore structures relative to the Fe-based catalyst. Subsequent to exposure, bench flow reactor characterization of performance and hydrocarbon release and oxidation enabled evaluation of overall impacts from the engine exhaust. The Fe-zeolite NOX conversion efficiency was significantly degraded, especially at low temperatures (<250 C), after the catalyst was exposed to the raw engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite showed better tolerance to HC fouling at low temperatures compared to the Fe-zeolite but PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOX conversion efficiency. Furthermore, chemical analysis of the hydrocarbons trapped on the SCR cores was conducted to better determine chemistry specific effects.

  18. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu+ for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia.

    PubMed

    Chen, Biaohua; Xu, Ruinian; Zhang, Runduo; Liu, Ning

    2014-12-01

    In this study, an economical way for SSZ-13 preparation with the essentially cheap choline chloride as template has been attempted. The as-synthesized SSZ-13 zeolite after ion exchange by copper nitrate solution exhibited a superior SCR performance (over 95% NOx conversion across a broad range from 150 to 400 °C) to the traditional zeolite-based catalysts of Cu-Beta and Cu-ZSM-5. Furthermore, the opportune size of pore opening (∼3.8 Å) made Cu-SSZ-13 exhibiting the best selectivity to N2 as well as satisfactory tolerance toward SO2 and C3H6 poisonings. The characterization (XRD, XPS, XRF, and H2-TPR) of samples confirmed that Cu-SSZ-13 possessed the most abundant Cu cations among three investigated Cu-zeolites; furthermore, either on the surface or in the bulk the ratio of Cu(+)/Cu(2+) ions for Cu-SSZ-13 is also the highest. New finding was announced that CHA-type topology is in favor of the formation of copper cations, especially generating much more Cu(+) ions than the others, rather than CuO. The activity test of Cu(CuCl)-ZSM-5 (prepared by a solid-state ion-exchange method) clearly indicated that Cu(+) ions could make a major contribution to the low-temperature deNOx activity. The activity of protonic zeolites (H-SSZ-13, H-Beta, H-ZSM-5) revealed the topology effect on SCR performances. PMID:25365767

  19. NOx technology for power plant emissions selection of catalysts and type of SCR for process for gas and coal fired power stations

    SciTech Connect

    Ghoreski, D.F.; Negrea, S.

    1993-12-31

    The paper will discuss the basic principle under which SCR system suppliers select the catalyst type and system appropriate for their project. A discussion of temperature, materials, contamination risks and activation properties will be covered for various types of catalysts. The presentation for the selection of type of SCR in the High Dust, Low Dust and Tail gas positions will also be discussed. Further covered is the decision making process to ascertain if an in-duct or conventional SCR system is to be considered. The paper uses examples of pricing for various arrangements in 2,500 MW of gas fired boilers in Southern California a 420 MW coal fired boiler in Florida.

  20. Environmental Technology Verification Test Report of Mobile Source Selective Catalytic Reduction, Johnson Matthey SCCRT, Version 1, Selective Catalytic Reduction Technology with a Catalyzed Continuously Regenerating Trap

    EPA Science Inventory

    The Johnson Matthey SCCRT, v.1 technology is a urea-based SCR system combined with a CCRT filter designed for on-highway light, medium, and heavy heavy-duty diesel, urban and non-urban, bus exhaust gas recirculation (EGR)-or non-EGR-equipped engines for use with commercial ultra-...

  1. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  2. Exploration Mission Benefits From Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Broyan, James Lee, Jr.; Ewert, Michael K.; Schlesinger, Thilini

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logistical mass can have a significant impact because it also reduces the packaging burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting, and trash processing technologies are under development to increase habitable volume and improve protection against solar storm events. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and to help locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio-frequency-identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and their mission benefits for exploration missions.

  3. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE PAGESBeta

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  4. WASTE REDUCTION TECHNOLOGY EVALUATIONS AT THREE PRINTED WIRE BOARD MANUFACTURERS

    EPA Science Inventory

    Technologies at three printed wire board (PWB) manufacturers were evaluated for waste reduction, and costs were compared to existing operations. rom 1989 to 1993, these evaluations were conducted under US EPA's Waste Reduction Innovative Technology Evaluation (WRITE) Program, in ...

  5. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James L.

    2012-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA fs Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash ]to ]supply ]gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  6. Mission Benefits Analysis of Logistics Reduction Technologies

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Broyan, James Lee, Jr.

    2013-01-01

    Future space exploration missions will need to use less logistical supplies if humans are to live for longer periods away from our home planet. Anything that can be done to reduce initial mass and volume of supplies or reuse or recycle items that have been launched will be very valuable. Reuse and recycling also reduce the trash burden and associated nuisances, such as smell, but require good systems engineering and operations integration to reap the greatest benefits. A systems analysis was conducted to quantify the mass and volume savings of four different technologies currently under development by NASA s Advanced Exploration Systems (AES) Logistics Reduction and Repurposing project. Advanced clothing systems lead to savings by direct mass reduction and increased wear duration. Reuse of logistical items, such as packaging, for a second purpose allows fewer items to be launched. A device known as a heat melt compactor drastically reduces the volume of trash, recovers water and produces a stable tile that can be used instead of launching additional radiation protection. The fourth technology, called trash-to-gas, can benefit a mission by supplying fuel such as methane to the propulsion system. This systems engineering work will help improve logistics planning and overall mission architectures by determining the most effective use, and reuse, of all resources.

  7. Integrated diesel engine NOx reduction technology development

    SciTech Connect

    Hoelzer, J.; Zhu, J.; Savonen, C.L.; Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J.

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  8. Fast SCR Thyratron Driver

    SciTech Connect

    Nguyen, M.N.; /SLAC

    2007-06-18

    As part of an improvement project on the linear accelerator at SLAC, it was necessary to replace the original thyratron trigger generator, which consisted of two chassis, two vacuum tubes, and a small thyratron. All solid-state, fast rise, and high voltage thyratron drivers, therefore, have been developed and built for the 244 klystron modulators. The rack mounted, single chassis driver employs a unique way to control and generate pulses through the use of an asymmetric SCR, a PFN, a fast pulse transformer, and a saturable reactor. The resulting output pulse is 2 kV peak into 50 {Omega} load with pulse duration of 1.5 {mu}s FWHM at 180 Hz. The pulse risetime is less than 40 ns with less than 1 ns jitter. Various techniques are used to protect the SCR from being damaged by high voltage and current transients due to thyratron breakdowns. The end-of-line clipper (EOLC) detection circuit is also integrated into this chassis to interrupt the modulator triggering in the event a high percentage of line reflections occurred.

  9. The Space Technology-7 Disturbance Reduction Systems

    NASA Technical Reports Server (NTRS)

    ODonnell, James R., Jr.; Hsu, Oscar C.; Hanson, John; Hruby, Vlad

    2004-01-01

    The Space Technology 7 Disturbance Reduction System (DRS) is an in-space technology demonstration designed to validate technologies that are required for future missions such as the Laser Interferometer Space Antenna (LISA) and the Micro-Arcsecond X-ray Imaging Mission (MAXIM). The primary sensors that will be used by DRS are two Gravitational Reference Sensors (GRSs) being developed by Stanford University. DRS will control the spacecraft so that it flies about one of the freely-floating Gravitational Reference Sensor test masses, keeping it centered within its housing. The other GRS serves as a cross-reference for the first as well as being used as a reference for .the spacecraft s attitude control. Colloidal MicroNewton Thrusters being developed by the Busek Co. will be used to control the spacecraft's position and attitude using a six degree-of-freedom Dynamic Control System being developed by Goddard Space Flight Center. A laser interferometer being built by the Jet Propulsion Laboratory will be used to help validate the results of the experiment. The DRS will be launched in 2008 on the European Space Agency (ESA) LISA Pathfinder spacecraft along with a similar ESA experiment, the LISA Test Package.

  10. Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst

    SciTech Connect

    Auvray, Xavier P; Partridge Jr, William P; Choi, Jae-Soon; Pihl, Josh A; Yezerets, Alex; Kamasamudram, Krishna; Currier, Neal; Olsson, Louise

    2012-01-01

    Selective catalytic reduction of NO with NH{sub 3} was studied on a Cu-beta zeolite catalyst, with specific focus on the distributed NH{sub 3} capacity utilization and inhibition. In addition, several other relevant catalyst parameter distributions were quantified including the SCR zone, or catalyst region where SCR occurs, and NO and NH{sub 3} oxidation. We show that the full NH{sub 3} capacity (100% coverage) is used within the SCR zone for a range of temperatures. By corollary, unused NH{sub 3} capacity exists downstream of the SCR zone. Consequently, the unused capacity relative to the total capacity is indicative of the portion of the catalyst unused for SCR. Dynamic NH{sub 3} inhibition distributions, which create local transient conversion inflections, are measured. Dynamic inhibition is observed where the gas phase NH{sub 3} and NO concentrations are high, driving rapid NH{sub 3} coverage buildup and SCR. Accordingly, we observe dynamic inhibition at low temperatures and in hydrothermally aged states, but predict its existence very near the catalyst front in higher conversion conditions where we did not specifically monitor its impact. While this paper addresses some general distributed SCR performance parameters including Oxidation and SCR zone, our major new contributions are associated with the NH{sub 3} capacity saturation within the SCR zone and dynamic inhibition distributions and the associated observations. These new insights are relevant to developing accurate models, designs and control strategies for automotive SCR catalyst applications.

  11. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    SciTech Connect

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  12. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: assessment of pollutant dispersion and health risk.

    PubMed

    Tadano, Yara S; Borillo, Guilherme C; Godoi, Ana Flávia L; Cichon, Amanda; Silva, Thiago O B; Valebona, Fábio B; Errera, Marcelo R; Penteado Neto, Renato A; Rempel, Dennis; Martin, Lucas; Yamamoto, Carlos I; Godoi, Ricardo H M

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. PMID:25217745

  13. Ammonia Production and Utilization in a Hybrid LNT+SCR System

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E

    2009-01-01

    A hybrid LNT+SCR system is used to control NOx from a light-duty diesel engine with in-cylinder regeneration controls. A diesel oxidation catalyst and diesel particulate filter are upstream of the LNT and SCR catalysts. Ultraviolet (UV) adsorption spectroscopy performed directly in the exhaust path downstream of the LNT and SCR catalysts is used to characterize NH3 production and utilization in the system. Extractive exhaust samples are analyzed with FTIR and magnetic sector mass spectrometry (H2) as well. Furthermore, standard gas analyzers are used to complete the characterization of exhaust chemistry. NH3 formation increases strongly with extended regeneration (or over regeneration ) of the LNT, but the amount of NOx reduction occurring over the SCR catalyst is limited by the amount of NH3 produced as well as the amount of NOx available downstream of the LNT. Control of lean-rich cycling parameters enables control of the ratio of NOx reduction between the LNT and SCR catalysts. During lean-rich cycling, fuel penalties are similar for either LNT dominant or LNT with supplemental SCR NOx reduction. However, stored NH3 after multiple lean-rich cycles can enable continued NOx reduction by the SCR after lean-rich cycling stops; thus, requirements for active regeneration of the LNT+SCR system can be modified during transient operation.

  14. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits

    NASA Astrophysics Data System (ADS)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J.; Sioutas, Constantinos

    Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT ®, V-SCRT ®, Z-SCRT ®, Horizon, DPX and CCRT ®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622-5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI-Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT ®-UDDS, Z-SCRT ®-Cruise, CRT ® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT ®-UDDS) or insignificant (CCRT ®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ˜5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT ®) had decreased OC solubility (WSOC/OC: 8-25%) unlike those with uncatalyzed filters (SCRT ®s, Horizon; WSOC/OC ˜ 60-100%). Ammonium was present predominantly in the

  15. MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOX CONTROL

    SciTech Connect

    Devarakonda, Maruthi N.; Tonkyn, Russell G.; Tran, Diana N.; Lee, Jong H.; Herling, Darrell R.

    2010-09-17

    Although the SCR technology exhibits higher NOx reduction efficiency over a wider range of temperatures among the lean NOx reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NOx reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional detailed kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas.

  16. Evaluation of the Advanced Subsonic Technology Program Noise Reduction Benefits

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Rawls, John W., Jr.; Russell, James W.

    2005-01-01

    This report presents a detailed evaluation of the aircraft noise reduction technology concepts developed during the course of the NASA/FAA Advanced Subsonic Technology (AST) Noise Reduction Program. In 1992, NASA and the FAA initiated a cosponsored, multi-year program with the U.S. aircraft industry focused on achieving significant advances in aircraft noise reduction. The program achieved success through a systematic development and validation of noise reduction technology. Using the NASA Aircraft Noise Prediction Program, the noise reduction benefit of the technologies that reached a NASA technology readiness level of 5 or 6 were applied to each of four classes of aircraft which included a large four engine aircraft, a large twin engine aircraft, a small twin engine aircraft and a business jet. Total aircraft noise reductions resulting from the implementation of the appropriate technologies for each class of aircraft are presented and compared to the AST program goals.

  17. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns.

    PubMed

    Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin

    2013-05-01

    NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China. PMID:23518281

  18. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    SciTech Connect

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).

  19. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ..., 2008, issue of the Federal Register (73 FR 3316). Background and Purpose The U.S. implemented the Clean... SECURITY Coast Guard Shipboard Air Emission Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION..., in conjunction with the Environmental Protection Agency, on Ship Emission Reduction Technology...

  20. Environmental Assessment for the Commercial Demonstration of the Low NOx Burner/Separated Over-Fire Air (LNB/SOFA) Integration System Emission Reduction Technology, Finney County, Kansas

    SciTech Connect

    n /a

    2003-03-11

    The U.S. Department of Energy (DOE) proposes to provide partial funding to the Sunflower Electric Power Corporation (Sunflower), to demonstrate the commercial application of Low-NO{sub x} Burner/Separated Over-Fire Air (LNB/SOFA) integration system to achieve NO{sub x} emission reduction to the level of 0.15 to 0.22 pounds per million British thermal units (lb/MM Btu). The proposed project station is Sunflower's 360 MW coal-fired generation station, Holcomb Unit No. 1 (Holcomb Station). The station, fueled by coal from Wyoming's Powder River Basin, is located near Garden City, in Finney County, Kansas. The period of performance is expected to last approximately 2 years. The Holcomb Station, Sunflower LNB/SOFA integrated system would be modified in three distinct phases to demonstrate the synergistic effect of layering NO{sub x} control technologies. Once modified, the station would demonstrate that a unit equipped with an existing low-NO{sub x} burner system can be retrofitted with a new separated over-fire air (SOFA) system, coal flow measurement and control, and enhanced combustion monitoring to achieve about 45 percent reduction in nitrogen oxides (NO{sub x}) emissions. The proposed project would demonstrate a technology alternative to Selective Catalytic Reduction (SCR) systems. While SCR does generally achieve high reductions in NO{sub x} emissions (from about 0.8 lb/MM to 0.12 lb/MM Btu), it does so at higher capital and operating cost, requires the extensive use of critical construction labor, requires longer periods of unit outage for deployment, and generally requires longer periods of time to complete shakedown and full-scale operation. Cost of the proposed project technology would be on the order of 15-25 percent of that for SCR, with consequential benefits derived from reductions in construction manpower requirements and periods of power outages. This proposed technology demonstration would generally be applicable to boilers using opposed-wall burners

  1. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    SciTech Connect

    Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  2. Evaluation of Control Strategies to Effectively Meet 70-90% Mercury Reduction on an Eastern Bituminous Coal Cyclone Boiler with SCR

    SciTech Connect

    Tom Campbell

    2008-12-31

    This is the final site report for testing conducted at Public Service of New Hampshire's (PSNH) Merrimack Unit 2 (MK2). This project was funded through the DOE/NETL Innovations for Existing Plants program. It was a Phase III project with the goal to develop mercury control technologies that can achieve 50-70% mercury capture at costs 25-50% less than baseline estimates of $50,000-$70,000/lb of mercury removed. While results from testing at Merrimack indicate that the DOE goal was partially achieved, further improvements in the process are recommended. Merrimack burned a test blend of eastern bituminous and Venezuelan coals, for a target coal sulfur content of 1.2%, in its 335-MW Unit 2. The blend ratio is approximately a 50/50 split between the two coals. Various sorbent injection tests were conducted on the flue gas stream either in front of the air preheater (APH) or in between the two in-series ESPs. Initial mercury control evaluations indicated that, without SO3 control, the sorbent concentration required to achieve 50% control would not be feasible, either economically or within constraints specific to the maximum reasonable particle loading to the ESP. Subsequently, with SO{sub 3} control via trona injection upstream of the APH, economically feasible mercury removal rates could be achieved with PAC injection, excepting balance-of-plant concerns. The results are summarized along with the impacts of the dual injection process on the air heater, ESP operation, and particulate emissions.

  3. NH3-SCR denitration catalyst performance over vanadium-titanium with the addition of Ce and Sb.

    PubMed

    Xu, Chi; Liu, Jian; Zhao, Zhen; Yu, Fei; Cheng, Kai; Wei, Yuechang; Duan, Aijun; Jiang, Guiyuan

    2015-05-01

    Selective catalytic reduction technology using NH3 as a reducing agent (NH3-SCR) is an effective control method to remove nitrogen oxides. TiO2-supported vanadium oxide catalysts with different levels of Ce and Sb modification were prepared by an impregnation method and were characterized by X-ray diffractometer (XRD), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), Raman and Hydrogen temperature-programmed reduction (H2-TPR). The catalytic activities of V5CexSby/TiO2 catalysts for denitration were investigated in a fixed bed flow microreactor. The results showed that cerium, vanadium and antimony oxide as the active components were well dispersed on TiO2, and the catalysts exhibited a large number of d-d electronic transitions, which were helpful to strengthen SCR reactivity. The V5CexSby/TiO2 catalysts exhibited a good low temperature NH3-SCR catalytic activity. In the temperature range of 210 to 400°C, the V5CexSby/TiO2 catalysts gave NO conversion rates above 90%. For the best V5Ce35Sb2/TiO2 catalyst, at a reaction temperature of 210°C, the NO conversion rate had already reached 90%. The catalysts had different catalytic activity with different Ce loadings. With the increase of Ce loading, the NO conversion rate also increased. PMID:25968261

  4. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    SciTech Connect

    Federal Energy Technology Center

    1999-12-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO{sub x}) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of $23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO{sub x} and NH{sub 3} react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  5. E-SMARRT: Energy Saving Melting and Revert Reduction Technology

    SciTech Connect

    2004-11-01

    This factsheet describes the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) program developed by Advanced Technology Institute (ATI). E-SMARRT is a balanced portfolio of projects to address energy-saving opportunities in the metalcasting industry.

  6. Engine Validation of Noise and Emission Reduction Technology Phase I

    NASA Technical Reports Server (NTRS)

    Weir, Don (Editor)

    2008-01-01

    This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period December 2004 through August 2007 for the NASA Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3-01136, Task Order 8, Engine Validation of Noise and Emission Reduction Technology Phase I. The NASA Task Manager was Dr. Joe Grady of the NASA Glenn Research Center. The NASA Contract Officer was Mr. Albert Spence of the NASA Glenn Research Center. This report is for a test program in which NASA funded engine validations of integrated technologies that reduce aircraft engine noise. These technologies address the reduction of engine fan and jet noise, and noise associated with propulsion/airframe integration. The results of these tests will be used by NASA to identify the engineering tradeoffs associated with the technologies that are needed to enable advanced engine systems to meet stringent goals for the reduction of noise. The objectives of this program are to (1) conduct system engineering and integration efforts to define the engine test-bed configuration; (2) develop selected noise reduction technologies to a technical maturity sufficient to enable engine testing and validation of those technologies in the FY06-07 time frame; (3) conduct engine tests designed to gain insight into the sources, mechanisms and characteristics of noise in the engines; and (4) establish baseline engine noise measurements for subsequent use in the evaluation of noise reduction.

  7. Adaptive Engine Technologies for Aviation CO2 Emissions Reduction

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Haller, William J.; Tong, Michael T.

    2006-01-01

    Adaptive turbine engine technologies are assessed for their potential to reduce carbon dioxide emissions from commercial air transports.Technologies including inlet, fan, and compressor flow control, compressor stall control, blade clearance control, combustion control, active bearings and enabling technologies such as active materials and wireless sensors are discussed. The method of systems assessment is described, including strengths and weaknesses of the approach. Performance benefit estimates are presented for each technology, with a summary of potential emissions reduction possible from the development of new, adaptively controlled engine components.

  8. Waiting for Disasters: A Risk Reduction Assessment of Technological Disasters

    NASA Astrophysics Data System (ADS)

    Rovins, Jane; Winningham, Sam

    2010-05-01

    This session provides a risk reduction/mitigation assessment of natural hazards causation of technological disasters and possible solution. People use technology in an attempt to not only control their environment but nature itself in order to make them feel safe and productive. Most strategies for managing hazards followed a traditional planning model i.e. study the problem, identify and implement a solution, and move on to the next problem. This approach is often viewed as static model and risk reduction is more of an upward, positive, linear trend. However, technological disasters do not allow risk reduction action to neatly fit this upward, positive, linear trend with actual or potential threats to the environment and society. There are different types of technological disasters, including industrial accidents; pipeline ruptures; accidents at power, water and heat supply systems and other lines of communication; sudden collapse of buildings and mines; air crashes; shipwrecks; automobile and railway accidents to name a few. Natural factors can play an essential role in triggering or magnifying technological disasters. They can result from the direct destruction of given technical objects by a hazardous natural process such as the destruction of an atomic power plant or chemical plant due to an earthquake. Other examples would include the destruction of communications or infrastructure systems by heavy snowfalls, strong winds, avalanches. Events in the past ten years clearly demonstrate that natural disasters and the technological disasters that accompany them are not problems that can be solved in isolation and risk reduction can play an important part. Risk reduction was designed to head off the continuing rising financial and structural tolls from disasters. All Hazard Risk Reduction planning was supposed to include not only natural, but technological, and human-made disasters as well. The subsequent disaster risk reduction (DRR) indicators were to provide the

  9. Chemical and Biological Mechanisms of Pathogen Reduction Technologies

    PubMed Central

    Mundt, Janna M; Rouse, Lindsay; Van den Bossche, Jeroen; Goodrich, Raymond P

    2014-01-01

    Within the last decade new technologies have been developed and implemented which employ light, often in the presence of a photosensitizer, to inactivate pathogens that reside in human blood products for the purpose of transfusion. These pathogen reduction technologies attempt to find the proper balance between pathogen kill and cell quality. Each system utilizes various chemistries that not only impact which pathogens they can inactivate and how, but also how the treatments affect the plasma and cellular proteins and to what degree. This paper aims to present the various chemical mechanisms for pathogen reduction in transfusion medicine that are currently practiced or in development. PMID:25041351

  10. Technology Roadmap for Energy Reduction in Automotive Manufacturing

    SciTech Connect

    none,

    2008-09-01

    U.S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), in collaboration with the United States Council for Automotive Research LLC (USCAR), hosted a technology roadmap workshop in Troy, Michigan in May 2008. The purpose of the workshop was to explore opportunities for energy reduction, discuss the challenges and barriers that might need to be overcome, and identify priorities for future R&D. The results of the workshop are presented in this report.

  11. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    SciTech Connect

    Laughlin, Michael; Owens, Russell J.

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  12. Circuit controls transients in SCR inverters

    NASA Technical Reports Server (NTRS)

    Moore, E. T.; Wilson, T. G.

    1964-01-01

    Elimination of starting difficulties in SCR inverters is accomplished by the addition of two taps of the output winding of the inverter. On starting or under transient loads, the two additional taps deliver power through diodes without requiring quenching of SCR currents in excess of normal starting load.

  13. Using a PFET To Commutate an SCR

    NASA Technical Reports Server (NTRS)

    Edwards, D. B.; Ripple, W. E.

    1984-01-01

    Accidental turn-on prevented. PFET diverts load current around SCR to prevent false SCR triggering from current and voltage switching transients. New circuit used in all types of single phase and polyphase inverters and in buck-boost-, and flyback regulators.

  14. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  15. Emerging technology for the reduction of sulfur in FCC fuels

    SciTech Connect

    Wormsbecher, R.F.; Weatherbee, G.D.; Kim, G.; Dougan, T.J. )

    1993-01-01

    Passage of the Clean Air Act of 1990 and new regulations issued in California will set new limits on the sulfur content of gasoline. Because most of the sulfur in the gasoline pool comes from FCC naphtha, there is a strong incentive to reduce the sulfur content of this stream in the most cost efficient manner. This work introduces emerging catalytic technology for the direct reduction of the sulfur content of FCC gasolines, called the GSR[trademark] (Gasoline Sulfur Reduction) technology. Studies of this new technology were carried out using the Davison Circulating Riser pilot unit. The GSR technology is shown to reduce the sulfur in FCC naphtha by 15%, with two feedstocks. It is shown that this technology is selective to sulfur species in the middle of the gasoline boiling range, and converts these species to H[sub 2]S, while preserving most of the base catalyst selectivities. Various other catalytic scenarios for minimizing the gasoline sulfur content are also given.

  16. Future developments in transport aircraft noise reduction technology

    SciTech Connect

    Pendley, R.E.

    1982-01-01

    During the past 13 years, important advances in the technology of aircraft noise control have resulted from industry and government research programs. Quieter commercial transport airplanes have entered the fleet and additional new designs now committed to production will begin service in a few years. This paper indicates the noise reductions that will be achieved by the quieter transports that will replace the older designs and remarks on the outlook for still quieter designs.

  17. Center for BioBased Binders and Pollution Reduction Technology

    SciTech Connect

    Thiel, Jerry

    2013-07-01

    Funding will support the continuation of the Center for Advanced Bio-based Binders and Pollution Reduction Technology Center (CABB) in the development of bio-based polymers and emission reduction technologies for the metal casting industry. Since the formation of the center several new polymers based on agricultural materials have been developed. These new materials have show decreases in hazardous air pollutants, phenol and formaldehyde as much as 50 to 80% respectively. The polymers termed bio-polymers show a great potential to utilize current renewable agricultural resources to replace petroleum based products and reduce our dependence on importing of foreign oil. The agricultural technology has shown drastic reductions in the emission of hazardous air pollutants and volatile organic compounds and requires further development to maintain competitive costs and productivity. The project will also research new and improved inorganic binders that promise to eliminate hazardous emissions from foundry casting operations and allow for the beneficial reuse of the materials and avoiding the burdening of overcrowded landfills.

  18. Sauder Woodworking Company, a waste wood electric generating facility with Selective Catalytic Reduction

    SciTech Connect

    Johnson, N.H.

    1995-08-01

    Although NO{sub x} is the focus of this conference and Selective Catalytic Reduction (SCR) is the topic of this paper, it is important to understand the development of the project purpose and the reasons for the requirements of an SCR. Sauder Woodworking Company (SWC) generates waste wood as a byproduct of its manufacturing operation. Studies suggested that energy costs could be reduced by utilizing the waste wood to generate steam and electricity. Since the wood is dry, it is possible to utilize suspension burner technology. Two (2) 45,000 lb/hr boilers produce steam at 625 psig and 750{degrees}F. Each boiler is equipped with an economizer, mechanical dust collector, selective catalytic reduction, and an electrostatic precipitator. Electricity is produced from two (2) 3500 KW turbine generators operating in a condensing mode with steam extraction used for plant heating and process. As part of the plant design, an SCR was required for each boiler for environmental reasons.

  19. Logistics Reduction and Repurposing Technology for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Broyan, James L.; Chu, Andrew; Ewert, Michael K.

    2014-01-01

    One of NASA's Advanced Exploration Systems (AES) projects is the Logistics Reduction and Repurposing (LRR) project, which has the goal of reducing logistics resupply items through direct and indirect means. Various technologies under development in the project will reduce the launch mass of consumables and their packaging, enable reuse and repurposing of items and make logistics tracking more efficient. Repurposing also reduces the trash burden onboard spacecraft and indirectly reduces launch mass by replacing some items on the manifest. Examples include reuse of trash as radiation shielding or propellant. This paper provides the status of the LRR technologies in their third year of development under AES. Advanced clothing systems (ACS) are being developed to enable clothing to be worn longer, directly reducing launch mass. ACS has completed a ground exercise clothing study in preparation for an International Space Station (ISS) technology demonstration in 2014. Development of launch packaging containers and other items that can be repurposed on-orbit as part of habitation outfitting has resulted in a logistics-to-living (L2L) concept. L2L has fabricated and evaluated several multi-purpose cargo transfer bags (MCTBs) for potential reuse on orbit. Autonomous logistics management (ALM) is using radio frequency identification (RFID) to track items and thus reduce crew requirements for logistics functions. An RFID dense reader prototype is under construction and plans for integrated testing are being made. Development of a heat melt compactor (HMC) second generation unit for processing trash into compact and stable tiles is nearing completion. The HMC prototype compaction chamber has been completed and system development testing is underway. Research has been conducted on the conversion of trash-to-gas (TtG) for high levels of volume reduction and for use in propulsion systems. A steam reformation system was selected for further system definition of the TtG technology

  20. Ammonia Generation over TWC for Passive SCR NOX Control for Lean Gasoline Engines

    SciTech Connect

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2014-01-01

    A commercial three-way catalyst (TWC) was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential low cost approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. NH3 generation was evaluated at different air-fuel equivalence ratios at multiple engine speed and load conditions. Near complete conversion of NOX to NH3 was achieved at =0.96 for nearly all conditions studied. At the =0.96 condition, HC emissions were relatively minimal, but CO emissions were significant. Operation at AFRs richer than =0.96 did not provide more NH3 yield and led to higher HC and CO emissions. Results of the reductant conversion and consumption processes were used to calculate a representative fuel consumption of the engine operating with an ideal passive SCR system. The results show a 1-7% fuel economy benefit at various steady-state engine speed and load points relative to a stoichiometric engine operation.

  1. Results of the pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 50-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  2. WASTE REDUCTION OF TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE)Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial application. EPA's Risk Reduction Engineering Laborato...

  3. WASTE REDUCTION TECHNOLOGY EVALUATIONS OF THE U.S. EPA WRITE PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE) Program was established in 1989 to provide objective, accurate performance and cost data about waste reducing technologies for a variety of industrial and commercial applications. PA's Risk Reduction Engineering Laborat...

  4. Space Technology 7 Disturbance Reduction System - precision control flight Validation

    NASA Technical Reports Server (NTRS)

    Carmain, Andrew J.; Dunn, Charles; Folkner, William; Hruby, Vlad; Spence, Doug; O'Donnell, James; Markley, Landis; Maghami, Peiman; Hsu, Oscar; Demmons, N.; Roy, T.; Gasdaska, C.; Young, J.; Connolly, W.; McCormick, R.; Gasdaska, C.

    2005-01-01

    The NASA New Millennium Program Space Technology 7 (ST7) project will validate technology for precision spacecraft control. The Disturbance Reduction System (DRS) will be part of the European Space Agency's LISA Pathfinder project. The DRS will control the position of the spacecraft relative to a reference to an accuracy of one nanometer over time scales of several thousand seconds. To perform the control, the spacecraft will use a new colloid thruster technology. The thrusters will operate over the range of 5 to 30 micro-Newtons with precision of 0.1 micro- Newton. The thrust will be generated by using a high electric field to extract charged droplets of a conducting colloid fluid and accelerating them with a precisely adjustable voltage. The control reference will be provided by the European LISA Technology Package, which will include two nearly freefloating test masses. The test mass positions and orientations will be measured using a capacitance bridge. The test mass position and attitude will be adjustable using electrostatically applied forces and torques. The DRS will control the spacecraft position with respect to one test mass while minimizing disturbances on the second test mass. The dynamic control system will cover eighteen degrees of freedom: six for each of the test masses and six for the spacecraft. After launch in late 2009 to a low Earth orbit, the LISA Pathfinder spacecraft will be maneuvered to a halo orbit about the Earth-Sun L1 Lagrange point for operations.

  5. Optimal application of NO{sub x} reduction technologies

    SciTech Connect

    Colannino, J.

    1995-10-01

    NO{sub x} emissions are coming under increasing regulatory scrutiny. For example, the South Coast Air Quality Management District (regulating the greater Los Angeles area) regulates industrial boilers to less the 30 ppm and utility boilers to as low as 0.15 lb/net-MW-hr by the year 2000. Other districts are following suit, and it is safe to say that the regulatory climate in the US is becoming increasing stringent. It`s also a fact that NO{sub x} emissions limits vary widely across the US, obviating a one-size-fits-all approach. The purpose of this paper is to provide a logical methodology for choosing the most effective and appropriate mix of current NO{sub x} reduction technologies. This paper is directed toward the overall goal of reaching compliant emissions levels at minimal cost. In order to select technologies wisely one requires an understanding of: basic NO{sub x} formation in flames, science underlying NO{sub x}-minimization techniques, and the practical application of appropriate NO{sub x}-reduction methodologies.

  6. Using the SCR Specification Technique in a High School Programming Course.

    ERIC Educational Resources Information Center

    Rosen, Edward; McKim, James C., Jr.

    1992-01-01

    Presents the underlying ideas of the Software Cost Reduction (SCR) approach to requirements specifications. Results of applying this approach to the teaching of programing to high school students indicate that students perform better in writing programs. An appendix provides two examples of how the method is applied to problem solving. (MDH)

  7. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    EPA Science Inventory

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  8. Evaluation of volatile organic compound reduction technologies for metal coatings

    SciTech Connect

    Wang, Y.; Huang, E.W.

    1997-12-31

    Under the sponsorship of California Air Resources Board, AeroVironment Environmental Services, Inc. (AVES) is currently conducting a study to demonstrate a new zero-VOC Industrial Maintenance Metal Coating. This new technology can help the coating industry reduce emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). In a previous study conducted by AVES, current VOCs technologies available on the market for metal parts and product coatings were evaluated for compliance with the South Coast Air Quality Management District (SCAQMD) proposed Rule 1107 (Metal Parts and Product Coatings). There are low-VOC coating products available for industries of interest. For general metal coating applications, certain coating products can comply with current SCAQMD Rule 1107 VOC limits. Some of the low-VOC products that are considered as a substitute or an alternative to high-VOC petroleum-based products are summarized. The current available emerging technologies offer a great opportunity for emission reduction through a gradual shift from high to low/no VOC coatings. By phasing in low/no VOC coatings, industries will be able to reduce energy use and air emissions without installation of add-on controls.

  9. Ammonia measurement with a pH electrode in the ammonia/urea-SCR process

    NASA Astrophysics Data System (ADS)

    Kröcher, Oliver; Elsener, Martin

    2007-03-01

    The selective catalytic reduction of nitrogen oxides with ammonia (ammonia SCR) and urea (urea SCR), respectively, is a widespread process to clean flue and diesel exhaust gases due to its simplicity and efficiency. The main challenge of the process is to minimize the ammonia emissions downstream of the SCR catalyst. We found that ammonia emissions of >10 ppm can reliably be detected with a simple pH electrode in the presence of CO2, SOx, NOx, and moderately weak organic acids. 10-20 ppm of ammonia in the exhaust gas are sufficient to neutralize the acids and to increase the pH value from 3 to 6. On this basis a continuous measuring method for ammonia was developed, which was used to control the dosage of urea in the SCR process. While keeping the ammonia emissions after the SCR catalyst at 5-30 ppm an average NOx removal efficiency (DeNOx) of >95% were achieved at a diesel test rig. The method can also be applied for exhaust gases with higher acid contents, if a basic pre-filter is added adsorbing the acidic exhaust components. Compared to water as absorption solution, more precise ammonia measurements are possible, if a 0.1 M NH4Cl absorption solution is applied, whose pH value is changing as a Nernst function of the ammonia concentration.

  10. LISA Technology Development and Risk Reduction at NASA

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2010-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA project to design, build and operate a space-based gravitational wave detector based on a laser interferometer. LISA relies on several technologies that are either new to spaceflight or must perform at levels not previously demonstrated in a spaceflight environment. The ESA-led LISA Pathfinder mission is the main effort to demonstrate LISA technology. NASA also supports complementary ground-based technology development and risk reduction activities. This presentation will report the status of NASA work on micronewton thrusters, the telescope, the optical pointing subsystem and mission formulation. More details on some of these topics will be given in posters. Other talks and posters will describe NASA-supported work on the laser subsystem, the phasemeter, and aspects of the interferometry. Two flight-qualified clusters of four colloid micronewton thrusters, each capable of thrust Levels between 5 and 30 microNewton with a resolution less than 0.l microNewton and a thrust noise less than 0.1 microNewton/vHz (0.001 to 4 Hz), have been integrated onto the LISA Pathfinder spacecraft. The complementary ground-based development focuses on lifetime demonstration. Laboratory verification of failure models and accelerated life tests are just getting started. LISA needs a 40 cm diameter, afocal telescope for beam expansion/reduction that maintains an optical pathlength stability of approximately 1 pm/vHz in an extremely stable thermal environment. A mechanical prototype of a silicon carbide primary-secondary structure has been fabricated for stability testing. Two optical assemblies must point at different distant spacecraft with nanoradian accuracy over approximately 1 degree annual variation in the angle between the distant spacecraft. A candidate piezo-inchworm actuator is being tested in a suitable testbed. In addition to technology development, NASA has carried out several studies in support of the

  11. Results of the pollution reduction technology program for turboprop engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1976-01-01

    A program was performed to evolve and demonstrate advanced combustor technology aimed at achieving the 1979 EPA standards for turboprop engines (Class P2). The engine selected for this program was the 501-D22A turboprop manufactured by Detroit Diesel Allison Division of General Motors Corporation. Three combustor concepts were designed and tested in a combustor rig at the exact combustor operating conditions of the 501-D22A engine over the EPA landing-takeoff cycle. Each combustor concept exhibited pollutant emissions well below the EPA standards, achieving substantial reductions in unburned hydrocarbons, carbon monoxide, and smoke emissions compared with emissions from the production combustor of this engine. Oxides of nitrogen emissions remained well below the EPA standards, also.

  12. Reductive photo-dechlorination (RPD) technology for remediation of TCA

    SciTech Connect

    Lavid, M.; Gulati, S.K.; Teytelboym, M.

    1994-12-31

    The Reductive Photo-Dechlorination (RPD) technology uses ultraviolet light in a reducing atmosphere to remove chlorine atoms from organo-chlorine waste streams at low to moderate temperatures. Because chlorinated organics are destroyed in a reducing environment, process products include valuable hydrocarbons and hydrogen chloride with no toxic oxygenated chlorocarbon by-products. The RPD process is designed specifically to treat volatile chlorinated wastes in the liquid or gaseous phases. Field applications include organic wastes produced from soil venting operations and those adsorbed on activated carbon. The process can also be used to pretreat gas streams entering catalytic oxidation systems, reducing chlorine content and hereby protecting the catalyst against poisoning. This paper focuses on photo-thermal remediation of 1,1,1-trichloroethane (TCA). It describes bench-scale experimental results, kinetic modeling predictions, and selected design parameters for a pilot-scale demonstration.

  13. Reduction Potato s hydric soil erosion using space technology

    NASA Astrophysics Data System (ADS)

    Guyot, E.; Rios, V.; Zelaya, D.; Rios, E.; Lepen, F.; Padilla, P.; Soria, F.

    The potato's crop has an econ omic importance in Tucuman's agricultural PBI (Gross Product Income) because its rank is fourth(4°). Production's potato area is a breakable agro system; its geographic location is in Pedemonte's agro-ecological region so is essential to handle hydric erosion. Therefore, the aim of this work is improve crop's potato irrigation management through satellite information merge with farm's practices. The space technology consented to obtain Digital Model Soil using both unique differential and dual frequency GPS signals and total station. The irrigation practices were carried out due to irrigation management (FAO) and satellite imagine software (ENVI). Preliminary results of this experience allowed to follow the crop's growing through multitemporal study; reprogramming farm's irrigation practices intended for manage reduction hydric erosion and heighten economically its productivity for the next period

  14. Augmentor emissions reduction technology program. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Colley, W. C.; Kenworthy, M. J.; Bahr, D. W.

    1977-01-01

    Technology to reduce pollutant emissions from duct-burner-type augmentors for use on advanced supersonic cruise aircraft was investigated. Test configurations, representing variations of two duct-burner design concepts, were tested in a rectangular sector rig at inlet temperature and pressure conditions corresponding to takeoff, transonic climb, and supersonic cruise flight conditions. Both design concepts used piloted flameholders to stabilize combustion of lean, premixed fuel/air mixtures. The concepts differed in the flameholder type used. High combustion efficiency (97%) and low levels of emissions (1.19 g/kg fuel) were achieved. The detailed measurements suggested the direction that future development efforts should take to obtain further reductions in emission levels and associated improvements in combustion efficiency over an increased range of temperature rise conditions.

  15. Reactive nitrogen compounds (RNCs) in exhaust of advanced PM-NO x abatement technologies for future diesel applications

    NASA Astrophysics Data System (ADS)

    Heeb, Norbert V.; Zimmerli, Yan; Czerwinski, Jan; Schmid, Peter; Zennegg, Markus; Haag, Regula; Seiler, Cornelia; Wichser, Adrian; Ulrich, Andrea; Honegger, Peter; Zeyer, Kerstin; Emmenegger, Lukas; Mosimann, Thomas; Kasper, Markus; Mayer, Andreas

    2011-06-01

    Long-term exposure to increased levels of reactive nitrogen compounds (RNCs) and particulate matter (PM) affect human health. Many cities are currently not able to fulfill European air quality standards for these critical pollutants. Meanwhile, promising new abatement technologies such as diesel particle filters (DPFs) and selective catalytic reduction (SCR) catalysts are developed to reduce PM and RNC emissions. Herein, effects of a urea-based SCR system on RNC emissions are discussed and we quantified the highly reactive intermediates isocyanic acid (HNCO) and ammonia (NH 3), both potential secondary pollutants of the urea-based SCR chemistry. A diesel engine (3.0 L, 100 kW), operated in the ISO 8178/4 C1, cycle was used as test platform. A V 2O 5-based SCR catalyst was either applied as such or down-stream of a high oxidation potential-DPF (hox-DPF). With active SCR, nitric oxide (NO) and nitrogen dioxide (NO 2) conversion efficiencies of 0.86-0.94 and 0.86-0.99 were obtained. On the other hand, mean HNCO and NH 3 emissions increased to 240-280 and 1800-1900 mg h -1. On a molar basis, HNCO accounted for 0.8-1.4% and NH 3 for 14-25% of the emitted RNCs. On roads, SCR systems will partly be inactive when exhaust temperatures drop below 220 °C. The system was active only during 75% of the test cycle, and urea dosing was stopped and restarted several times. Consequently, NO conversion stopped but interestingly, NO 2 was still converted. Such light-off and shutdown events are frequent in urban driving, compromising the overall deNO x efficiency. Another important effect of the SCR technology is illustrated by the NH 3/NO 2 ratio, which was >1 with active SCR, indicating that exhaust is basic rather than acidic after the SCR catalyst. Under these conditions, isocyanic acid is stable. The widespread use of various converter technologies already affected RNC release. Diesel oxidation catalysts (DOCs) and hox-DPFs increased NO 2 emissions, three-way catalysts (TWCs

  16. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  17. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  18. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    EPA Science Inventory

    The report details an investigation on the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury at power plants. If SCR and/or SNCR systems enhance mercury conversion/capture, t...

  19. The Ultra-Low Aspect Ratio Stellarator SCR-1

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso; Vargas, Ivan; Mora, Jaime; Zamora, Esteban; Asenjo, Jose; Ribas, Leonardo; Guadamuz, Saul

    2012-10-01

    The world most compact stellarator is currently being designed at the Costa Rica Institute of Technology (ITCR). The SCR-1(Stellarator of Costa Rica 1) is a 2-field period modular device with a circular cross-section vessel (Ro=0.238m, a=0.097m, Ro{/a≈ 2.5}, 0.014m3, {4mm} thickness 6061-T6 aluminum). The expected D-shaped high elongated plasma cross section has a maximum average radius of < a> ≈ 0.062m, leading to Ro/< a> ≥ 3.8. Such compactness was reached after a SCR-1 earlier proposal [1] was redesigned, both based on the low shear stellarator UST/1: Ro/< a> ≈ 6, ι =0.32/0.28 (core/edge) [2]. The set field at centre is 88mT produced by 12 copper modular coils, 8.7kA-turn each. This field is EC resonant at Ro with a 2.45GHz μ w, 1st harmonic, from 2/3kW magnetrons which will produce a second time-scale plasma pulse. The coil current will be produced by a bank of cell batteries. Poincar'{e} and EC deposition plots will be presented using COMSOL Multiphysics software. SCR-1 will be synergetic to the ST MEDUSA currently under donation to ITCR [3]. Both will benefit of the local new activities in technological plasmas.[4pt] [1] Barillas L et al., Proc.19th Int.Conf. Nucl.Eng., Japan, 2011[0pt] [2] Queral V, Stellarator News, 118, 2008[0pt] [3] Ribeiro C et al., 54th APS, Plasma Phys. Div., US, 2012

  20. Performance of optimised SCR retrofit buses under urban driving and controlled conditions

    NASA Astrophysics Data System (ADS)

    Carslaw, David C.; Priestman, Max; Williams, Martin L.; Stewart, Gregor B.; Beevers, Sean D.

    2015-03-01

    This work presents the first comprehensive real-world emissions results from urban buses retrofitted with an optimised low-NO2 selective catalytic reduction (SCR) system. The SCRT system combines a CRT (Continuously Regenerating Trap) to reduce particle emissions and SCR to reduce NOx emissions. The optimised low-NO2 SCRT was designed to work under urban conditions where the vehicle exhaust gas temperature is often too low for many SCR systems to work efficiently. The system was extensively tested through on-road and test track measurements using a vehicle emission remote sensing instrument capable of measuring both nitric oxide (NO) and nitrogen dioxide (NO2). Over 700 on-road measurements of the SCRT system were made in London. Compared with identical buses operating under the same conditions fitted with a CRT, NO2 emissions were reduced by 61% and total NOx by 45%. Under test track conditions reductions in NOx of 77% were observed. The test track results do reveal however that compared with an original Euro III bus without a CRT, the SCRT retrofit bus emissions of NO2 are 50% higher. Engine-out and tailpipe measurements of several important engine parameters under test track conditions showed the important effect of SCR inlet temperature on NOx conversion efficiency. Overall, we conclude that retrofitting urban buses to use low-NO2 SCRT systems is an effective method for delivering NOx and NO2 emissions reduction.

  1. Technology innovations and experience curves for nitrogen oxides control technologies.

    PubMed

    Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A

    2005-12-01

    This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale. PMID:16408687

  2. Development and analysis of SCR requirements tables for system scenarios

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Morrison, Jeffery L.

    1995-01-01

    We describe the use of scenarios to develop and refine requirement tables for parts of the Earth Observing System Data and Information System (EOSDIS). The National Aeronautics and Space Administration (NASA) is developing EOSDIS as part of its Mission-To-Planet-Earth (MTPE) project to accept instrument/platform observation requests from end-user scientists, schedule and perform requested observations of the Earth from space, collect and process the observed data, and distribute data to scientists and archives. Current requirements for the system are managed with tools that allow developers to trace the relationships between requirements and other development artifacts, including other requirements. In addition, the user community (e.g., earth and atmospheric scientists), in conjunction with NASA, has generated scenarios describing the actions of EOSDIS subsystems in response to user requests and other system activities. As part of a research effort in verification and validation techniques, this paper describes our efforts to develop requirements tables from these scenarios for the EOSDIS Core System (ECS). The tables specify event-driven mode transitions based on techniques developed by the Naval Research Lab's (NRL) Software Cost Reduction (SCR) project. The SCR approach has proven effective in specifying requirements for large systems in an unambiguous, terse format that enhance identification of incomplete and inconsistent requirements. We describe development of SCR tables from user scenarios and identify the strengths and weaknesses of our approach in contrast to the requirements tracing approach. We also evaluate the capabilities of both approach to respond to the volatility of requirements in large, complex systems.

  3. An improved GGNMOS triggered SCR for high holding voltage ESD protection applications

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Dong, Shu-Rong; Wu, Xiao-Jing; Zeng, Jie; Zhong, Lei; Wu, Jian

    2015-10-01

    Developing an electrostatic discharge (ESD) protection device with a better latch-up immunity has been a challenging issue for the nanometer complementary metal-oxide semiconductor (CMOS) technology. In this work, an improved grounded-gate N-channel metal-oxide semiconductor (GGNMOS) transistor triggered silicon-controlled rectifier (SCR) structure, named GGSCR, is proposed for high holding voltage ESD protection applications. The GGSCR demonstrates a double snapback behavior as a result of progressive trigger-on of the GGNMOS and SCR. The double snapback makes the holding voltage increase from 3.43 V to 6.25 V as compared with the conventional low-voltage SCR. The TCAD simulations are carried out to verify the modes of operation of the device.

  4. Staged NO[sub x] control seeks to avoid full-scale SCR

    SciTech Connect

    Collins, S.

    1993-09-01

    This article reports that San Diego Gas and Electric Co. (SDG and E) recently completed the third phase of a unique staged NO[sub x]-reduction system demonstration. The system is installed at the utility's 110-MW Encina station Unit 2, a balanced-draft, gas/oil-fired boiler supplied by Babcock and Wilcox Co., Barberton, Ohio. The new system combines urea-based selective non-catalytic reduction (SNCR) and two stages of ammonia (NH[sub 3])-based selective catalytic reduction (SCR). The SCR system combines an in-duct catalyst module and two parallel, catalyst-coated air heaters. Overall NO[sub x] reductions up to 91% at low loads and 72% at full load have been achieved to date.

  5. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    NASA Technical Reports Server (NTRS)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  6. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    SciTech Connect

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units

  7. IDENTIFICATION AND RESPONSES TO POTENTIAL EFFECTS OF SCR AND WET SCRUBBERS ON SUBMICRON PARTICULATE EMISSIONS AND PLUME CHARACTERISTICS

    EPA Science Inventory

    Applications of selective catalytic reduction (SCR) systems and wet flue gas desulfurization (FGD) scrubbers on coal-fired boilers have led to substantial reductions in emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2). However, observations of pilot- and full-scale tes...

  8. Deactivation of Accelerated Engine-Aged and Field-Aged Fe-Zeolite SCR Catalysts

    SciTech Connect

    Toops, Todd J; Nguyen, Ke; Foster, Adam; Bunting, Bruce G; Hagaman, Edward {Ed} W; Jiao, Jian

    2010-01-01

    A single-cylinder diesel engine with an emissions control system - diesel oxidation catalyst (DOC), Fe-zeolite selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF) - was used to perform accelerated thermal aging of the SCR catalyst. Cyclic aging is performed at SCR inlet temperatures of 650, 750 and 850 degrees C for up to 50 aging cycles. To assess the validity of the implemented accelerated thermal aging protocol, a field-aged SCR catalyst of similar formulation was also evaluated. The monoliths were cut into sections and evaluated for NO{sub x} performance in a bench-flow reactor. While the rear section of both the field-aged and the accelerated engine-aged SCR catalysts maintained high NO{sub x}conversion, 75-80% at 400 degrees C, the front section exhibited a drastic decrease to only 20-35% at 400 degrees C. This two-tiered deactivation was also observed for field-aged samples that were analyzed in this study. To understand the observed performance changes, thorough materials characterization was performed which revealed two primary degradation mechanisms. The first mechanism is a general Fe-zeolite deterioration which led to surface area losses, dealumination of the zeolite, and Fe{sub 2}O{sub 3} crystal growth. This degradation accelerated above 750 degrees C, and the effects were generally more severe in the front of the catalyst. The second deactivation mechanism is linked to trace levels of Pt that are suspected to be volatizing from the DOC and depositing on the front section of the SCR catalyst. Chemical evidence of this can be seen in the high levels of NH{sub 3} oxidation (80% conversion at 400 degrees C), which coincides with the decrease in performance.

  9. Disturbance reduction system: testing technology for drag-free operation

    NASA Astrophysics Data System (ADS)

    Hanson, John; Keiser, George; Buchman, Sasha; Byer, Robert L.; Lauben, Dave; Shelef, Ben; Shelef, Gad; Hruby, Vlad; Gamero-Castano, Manuel

    2003-03-01

    The Disturbance Reduction System (DRS) is designed to demonstrate technology required for future gravity missions, including the planned LISA gravitational-wave observatory, and for precision formation-flying missions. The DRS is based on a freely floating test mass contained within a spacecraft that shields the test mass from external forces. The spacecraft position will be continuously adjusted to stay centered about the test mass, essentially flying in formation with the test mass. Any departure of the test mass from a gravitational trajectory is characterized as acceleration noise, resulting from unwanted forces acting on the test mass. The DRS goal is to demonstrate a level of acceleration noise more than four orders of magnitude lower than previously demonstrated in space. The DRS will consist of an instrument package and a set of microthrusters, which will be attached to a suitable spacecraft. The instrument package will include two Gravitational Reference Sensors comprised of a test mass within a reference housing. The spacecraft position will be adjusted using colloidal microthrusters, which are miniature ion engines that provide continuous thrust with a range of 1-20 mN with resolution of 0.1 mN. The DRS will be launched in 2007 as part of the ESA SMART-2 spacecraft. The DRS is a project within NASA's New Millennium Program.

  10. 40 CFR 1042.110 - Recording reductant use and other diagnostic functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... other diagnostic functions. (a) Engines equipped with SCR systems using a reductant other than the... or printed by the operator. (3) SCR systems must also conform to the provisions of paragraph (d) of... paragraph (a) of this section also apply for SCR systems covered by this paragraph (d). For engines...

  11. Patient radiation dose reduction using an X-ray imaging noise reduction technology for cardiac angiography and intervention.

    PubMed

    Nakamura, Shigeru; Kobayashi, Tomoko; Funatsu, Atsushi; Okada, Tadahisa; Mauti, Maria; Waizumi, Yuki; Yamada, Shinichi

    2016-05-01

    Coronary angiography and intervention can expose patients to high radiation dose. This retrospective study quantifies the patient dose reduction due to the introduction of a novel X-ray imaging noise reduction technology using advanced real-time image noise reduction algorithms and optimized acquisition chain for fluoroscopy and exposure in interventional cardiology. Patient, procedure and radiation dose data were retrospectively collected in the period August 2012-August 2013 for 883 patients treated with the image noise reduction technology (referred as "new system"). The same data were collected for 1083 patients in the period April 2011-July 2012 with a system using state-of-the-art image processing and reference acquisition chain (referred as "reference system"). Procedures were divided into diagnostic (CAG) and intervention (PCI). Acquisition parameters such as fluoroscopy time, volume of contrast medium, number of exposure images and number of stored fluoroscopy images were collected to classify procedure complexity. The procedural dose reduction was investigated separately for three main cardiologists. The new system provides significant dose reduction compared to the reference system. Median DAP values decreased for all procedures (p < 0.0001) from 172.7 to 59.4 Gy cm(2), for CAG from 155.1 to 52.0 Gy cm(2) and for PCI from 229.0 to 85.8 Gy cm(2) with reduction quantified at 66, 66 and 63 %, respectively. Based on median values, the dose reduction for all procedures was 68, 60 and 67 % for cardiologists 1, 2 and 3, respectively. The X-ray imaging technology combining advanced real-time image noise reduction algorithms and anatomy-specific optimized fluoroscopy and cine acquisition chain provides 66 % patient dose reduction in interventional cardiology. PMID:25840815

  12. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. PMID:22318005

  13. Validation testing of drift reduction technology testing protocol

    EPA Science Inventory

    A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...

  14. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  15. The reaction mechanism for the SCR process on monomer V(5+) sites and the effect of modified Brønsted acidity.

    PubMed

    Arnarson, Logi; Falsig, Hanne; Rasmussen, Søren B; Lauritsen, Jeppe V; Moses, Poul Georg

    2016-06-22

    The energetics, structures and activity of a monomeric VO3H/TiO2(001) catalyst are investigated for the selective catalytic reduction (SCR) reaction by the use of density functional theory (DFT). Furthermore we study the influences of a dopant substitute in the TiO2 support and its effects on the known properties of the SCR system such as Brønsted acidity and reducibility of vanadium. We find for the reduction part of the SCR mechanism that it involves two Ti-O-V oxygen sites. One is a hydroxyl possessing Brønsted acidity which contributes to the formation of NH4(+), while the other accepts a proton which charge stabilizes the reduced active site. In the reduction the proton is donated to the latter due to a reaction between NH3 and NO that forms a H2NNO molecule which decomposes into N2(g) and H2O(g). A dopant substitution of 10 different dopants: Si, Ge, Se, Zr, Sn, Te, Hf, V, Mo and W at each of the sites, which participate in the reaction, modifies the energetics and therefore the SCR activity. We find that Brønsted acidity is a descriptor for the SCR activity at low temperatures. Based on this descriptor we find that Zr, Hf and Sn have a positive effect as they decrease the activation energy for the SCR reaction. PMID:27297567

  16. The J3 SCR model applied to resonant converter simulation

    NASA Technical Reports Server (NTRS)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  17. Solar central receivers: The technology, industry, markets, and economics

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Solar central receiver (SCR) technologies are described and compared briefly with other solar thermal technologies. Divergence in the capabilities of SCR technical options and the fact that no single SCR technology has emerged as the best technology for all applicatons are discussed. The necessity for continued technical development of both components and systems is presented. The geographic segmentation of the addressable market for SCR technology is considered. Economics and market factors favorable to adoption of SCR technology in the mid-1990's are described. The ways the competitive economics of SCR technology and its adoption rate in the market place can be improved with the implementation of specific federal programs are pointed out. The ways a cohesive federal program can serve to advance the date of free market competition and create a sustainable SCR industry are discussed.

  18. Application of Circulation Control Technology to Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  19. Achieving cost reductions in EOSDIS operations through technology evolution

    NASA Technical Reports Server (NTRS)

    Newsome, Penny; Moe, Karen; Harberts, Robert

    1996-01-01

    The earth observing system (EOS) data information system (EOSDIS) mission includes the cost-effective management and distribution of large amounts of data to the earth science community. The effect of the introduction of new information system technologies on the evolution of EOSDIS is considered. One of the steps taken by NASA to enable the introduction of new information system technologies into the EOSDIS is the funding of technology development through prototyping. Recent and ongoing prototyping efforts and their potential impact on the performance and cost-effectiveness of the EOSDIS are discussed. The technology evolution process as it related to the effective operation of EOSDIS is described, and methods are identified for the support of the transfer of relevant technology to EOSDIS components.

  20. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  1. An assessment of propeller aircraft noise reduction technology

    NASA Technical Reports Server (NTRS)

    Metzger, F. Bruce

    1995-01-01

    This report is a review of the literature regarding propeller airplane far-field noise reduction. Near-field and cabin noise reduction are not specifically addressed. However, some of the approaches used to reduce far-field noise produce beneficial effects in the near-field and in the cabin. The emphasis is on propeller noise reduction but engine exhaust noise reduction by muffling is also addressed since the engine noise becomes a significant part of the aircraft noise signature when propeller noise is reduced. It is concluded that there is a substantial body of information available that can be used as the basis to reduce propeller airplane noise. The reason that this information is not often used in airplane design is the associated weight, cost, and performance penalties. It is recommended that the highest priority be given to research for reducing the penalties associated with lower operating RPM and propeller diameter while increasing the number of blades. Research to reduce engine noise and explore innovative propeller concepts is also recommended.

  2. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    EPA Science Inventory

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  3. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    EPA Science Inventory

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  4. Recent developments in aircraft engine noise reduction technology

    NASA Technical Reports Server (NTRS)

    Stone, J. R.; Feiler, C. E.

    1981-01-01

    Some of the more important developments and progress in jet and fan noise reduction and flight effects are reviewed. Experiments are reported which show that nonaxisymmetric coannular nozzles have the potential to reduce jet noise for conventional and inverted velocity profiles. It is shown that an improved understanding of suppressive linear behavior, coupled with the new understanding of fan source noise, will soon allow the joint optimization of acoustic liner and fan design for low noise. It is also shown that fan noise source reduction concepts are applicable to advanced turboprops. Advances in inflow control device design are reviewed that appear to offer an adequate approach to the ground simulation of inflight fan noise.

  5. Technology Evaluation for Conditioning of Hanford Tank Waste Using Solids Segregation and Size Reduction

    SciTech Connect

    Restivo, Michael L.; Stone, M. E.; Herman, D. T.; Lambert, Daniel P.; Duignan, Mark R.; Smith, Gary L.; Wells, Beric E.; Lumetta, Gregg J.; Enderlin, Carl W.; Adkins, Harold E.

    2014-04-24

    The Savannah River National Laboratory and the Pacific Northwest National Laboratory team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm. The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application. Any technology selected would require testing to verify the ability to meet the High-Level Waste Feed Waste Acceptance Criteria to the Hanford Tank Waste Treatment and Immobilization Plant Pretreatment Facility.

  6. Innovative Clean Coal Technology (ICCT). Technical progress report, second & third quarters, 1993, April 1993--June 1993, July 1993--September 1993

    SciTech Connect

    1995-09-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NOx) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NOx to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by constructing and operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing all aspects of this project.

  7. VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES

    EPA Science Inventory

    Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...

  8. Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology

    SciTech Connect

    McGill, R.N.

    1998-08-04

    Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

  9. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use

    PubMed Central

    Cicchetti, Americo; Berrino, Alexandra; Casini, Marina; Codella, Paola; Facco, Giuseppina; Fiore, Alessandra; Marano, Giuseppe; Marchetti, Marco; Midolo, Emanuela; Minacori, Roberta; Refolo, Pietro; Romano, Federica; Ruggeri, Matteo; Sacchini, Dario; Spagnolo, Antonio G.; Urbina, Irene; Vaglio, Stefania; Grazzini, Giuliano; Liumbruno, Giancarlo M.

    2016-01-01

    Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains. Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed. PMID:27403740

  10. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use.

    PubMed

    Cicchetti, Americo; Berrino, Alexandra; Casini, Marina; Codella, Paola; Facco, Giuseppina; Fiore, Alessandra; Marano, Giuseppe; Marchetti, Marco; Midolo, Emanuela; Minacori, Roberta; Refolo, Pietro; Romano, Federica; Ruggeri, Matteo; Sacchini, Dario; Spagnolo, Antonio G; Urbina, Irene; Vaglio, Stefania; Grazzini, Giuliano; Liumbruno, Giancarlo M

    2016-07-01

    Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed. PMID:27403740

  11. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR...

  12. 40 CFR 1033.112 - Emission diagnostics for SCR systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Emission diagnostics for SCR systems. 1033.112 Section 1033.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM LOCOMOTIVES Emission Standards and Related Requirements § 1033.112 Emission diagnostics for SCR...

  13. Novel drilling technology and reduction in drilling costs

    SciTech Connect

    Enger, T.; Torvund, T.; Mikkelsen, J.

    1995-12-31

    Historically offshore drilling costs represent a large part of Norsk Hydro`s E and P investments. Thus a reduction in drilling costs is a major issue. Consequently an aggressive approach to drilling has taken place focusing upon: (1) Reduction in conventional drilling costs, both in exploration and production drilling. An ambitious program to reduce drilling costs by 50% has been introduced. The main improvement potentials include rapid drilling, improved contracts and more selective data gathering. (2) Drilling of long reach wells up to approximately 9 km to reduce the number of subsea wells and fixed platforms, and thus improving the total field economy. Norsk Hydro has also been aggressive in pursuing drilling techniques which could improve the total oil recovery. Horizontal drilling has made possible the development of the giant Troll oil field, even though the oil leg is only 0--26 m thick. Oil reserves in the order of up to 650 mill bbl will be recovered solely due to introduction of horizontal wells. Recently, offshore tests of techniques such as coiled tubing drilling and conventional slim hole drilling have been carried out. The aim is to qualify a concept which could enable them to use a light vessel for exploration drilling, and not the large semi submersible rigs presently used. Potential future savings could be substantial.

  14. Mobil-Badger technologies for benzene reduction in gasoline

    SciTech Connect

    Goelzer, A.R.; Ram, S.; Hernandez, A. ); Chin, A.A.; Harandi, M.N.; Smith, C.M. Mobil Research and Development Corp., Paulsboro, NJ )

    1993-01-01

    Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformate with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.

  15. Load Reduction, Demand Response and Energy Efficient Technologies and Strategies

    SciTech Connect

    Boyd, Paul A.; Parker, Graham B.; Hatley, Darrel D.

    2008-11-19

    The Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) was tasked by the DOE Office of Electricity (OE) to recommend load reduction and grid integration strategies, and identify additional demand response (energy efficiency/conservation opportunities) and strategies at the Forest City Housing (FCH) redevelopment at Pearl Harbor and the Marine Corps Base Hawaii (MCBH) at Kaneohe Bay. The goal was to provide FCH staff a path forward to manage their electricity load and thus reduce costs at these FCH family housing developments. The initial focus of the work was at the MCBH given the MCBH has a demand-ratchet tariff, relatively high demand (~18 MW) and a commensurate high blended electricity rate (26 cents/kWh). The peak demand for MCBH occurs in July-August. And, on average, family housing at MCBH contributes ~36% to the MCBH total energy consumption. Thus, a significant load reduction in family housing can have a considerable impact on the overall site load. Based on a site visit to the MCBH and meetings with MCBH installation, FCH, and Hawaiian Electric Company (HECO) staff, recommended actions (including a "smart grid" recommendation) that can be undertaken by FCH to manage and reduce peak-demand in family housing are made. Recommendations are also made to reduce overall energy consumption, and thus reduce demand in FCH family housing.

  16. Effect of Unburned Methyl Esters on the NOx Conversion of Fe-Zeolite SCR Catalyst

    SciTech Connect

    Williams, A.; Ratcliff, M.; Pedersen, D.; McCormick, R.; Cavataio, G.; Ura, J.

    2010-03-01

    Engine and flow reactor experiments were conducted to determine the impact of biodiesel relative to ultra-low-sulfur diesel (ULSD) on inhibition of the selective catalytic reduction (SCR) reaction over an Fe-zeolite catalyst. Fe-zeolite SCR catalysts have the ability to adsorb and store unburned hydrocarbons (HC) at temperatures below 300 C. These stored HCs inhibit or block NO{sub x}-ammonia reaction sites at low temperatures. Although biodiesel is not a hydrocarbon, similar effects are anticipated for unburned biodiesel and its organic combustion products. Flow reactor experiments indicate that in the absence of exposure to HC or B100, NO{sub x} conversion begins at between 100 and 200 C. When exposure to unburned fuel occurs at higher temperatures (250-400 C), the catalyst is able to adsorb a greater mass of biodiesel than of ULSD. Experiments show that when the catalyst is masked with ULSD, NO{sub x} conversion is inhibited until it is heated to 400 C. However, when masked with biodiesel, NO{sub x} conversion is observed to begin at temperatures as low as 200 C. Engine test results also show low-temperature recovery from HC storage. Engine tests indicate that, overall, the SCR system has a faster recovery from HC masking with biodiesel. This is at least partially due to a reduction in exhaust HCs, and thus total HC exposure with biodiesel.

  17. Combined SO sub 2 /NO sub x reduction technology

    SciTech Connect

    Livengood, C.D.; Huang, H.S. ); Markussen, J.M. )

    1992-01-01

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO{sub x}) regulations have fueled research and development efforts on technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x}, in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup (FGC) systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  18. TECHNOLOGY EVALUATION FOR CONDITIONING OF HANFORD TANK WASTE USING SOLIDS SEGREGATION AND SIZE REDUCTION

    SciTech Connect

    Restivo, M.; Stone, M.; Herman, D.; Lambert, D.; Duignan, M.; SMITH, G.; WELLS, B.; LUMETTA, G.; ENDRELIN, C.; ADKINS, H.

    2014-04-15

    The Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) team performed a literature search on current and proposed technologies for solids segregation and size reduction of particles in the slurry feed from the Hanford Tank Farm (HTF). The team also investigated technology research performed on waste tank slurries, both real and simulated, and reviewed academic theory applicable to solids segregation and size reduction. This review included text book applications and theory, commercial applications suitable for a nuclear environment, research of commercial technologies suitable for a nuclear environment, and those technologies installed in a nuclear environment, including technologies implemented at Department of Energy (DOE) facilities. Information on each technology is provided in this report along with the advantages and disadvantages of the technologies for this application.

  19. Method and system for SCR optimization

    DOEpatents

    Lefebvre, Wesley Curt; Kohn, Daniel W.

    2009-03-10

    Methods and systems are provided for controlling SCR performance in a boiler. The boiler includes one or more generally cross sectional areas. Each cross sectional area can be characterized by one or more profiles of one or more conditions affecting SCR performance and be associated with one or more adjustable desired profiles of the one or more conditions during the operation of the boiler. The performance of the boiler can be characterized by boiler performance parameters. A system in accordance with one or more embodiments of the invention can include a controller input for receiving a performance goal for the boiler corresponding to at least one of the boiler performance parameters and for receiving data values corresponding to boiler control variables and to the boiler performance parameters. The boiler control variables include one or more current profiles of the one or more conditions. The system also includes a system model that relates one or more profiles of the one or more conditions in the boiler to the boiler performance parameters. The system also includes an indirect controller that determines one or more desired profiles of the one or more conditions to satisfy the performance goal for the boiler. The indirect controller uses the system model, the received data values and the received performance goal to determine the one or more desired profiles of the one or more conditions. The system model also includes a controller output that outputs the one or more desired profiles of the one or more conditions.

  20. Technology could deliver 90% Hg reduction from coal

    SciTech Connect

    Maize, K.

    2009-07-15

    Reducing mercury emissions at coal-fired power plants by 90% has been considered the holy grail of mercury control. A new technology promises to get used there, but at a price. This is a mixture of chemical approaches, including activated carbon injection into the gases coming off the combustor along with injection of trona or calcium carbonate to reduce sulfur trioxide in the exhaust gases. The trick according to Babcock and Wilcox's manager Sam Kumar, to 'capture the mercury as a particulate on the carbon and then capture the particulate' in an electrostatic precipitator or a fabric filter baghouse. 2 figs.

  1. HSCT noise reduction technology development at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Majjigi, Rudramuni K.

    1992-04-01

    The topics covered include the following: High Speed Civil Transport (HSCT) exhaust nozzle design approaches; GE aircraft engine (GEAE) HSCT acoustics research; 2DCD non-IVP suppressor ejector; key sensitivities from reference aircraft; acoustic experiments; aero-mixing experimental set-up; fluid shield nozzle; HSCT Mach 2.4 flade nozzle; noise prediction; nozzle concept for GE/Boeing joint test; scale model hot core flow path modified to prevent hub-choking CFL3-D solution; HSCT exhaust nozzle status; and key acoustic technology issues for HSCT's.

  2. Atmospheric emissions from a passenger ferry with selective catalytic reduction.

    PubMed

    Nuszkowski, John; Clark, Nigel N; Spencer, Thomas K; Carder, Daniel K; Gautam, Mridul; Balon, Thomas H; Moynihan, Paul J

    2009-01-01

    The two main propulsion engines on Staten Island Ferry Alice Austen (Caterpillar 3516A, 1550 hp each) were fitted with selective catalytic reduction (SCR) aftertreatment technology to reduce emissions of oxides of nitrogen (NOx). After the installation of the SCR system, emissions from the ferry were characterized both pre- and post-aftertreatment. Prior research has shown that the ferry operates in four modes, namely idle, acceleration, cruise, and maneuvering modes. Emissions were measured for both engines (designated NY and SI) and for travel in both directions between Manhattan and Staten Island. The emissions characterization used an analyzer system, a data logger, and a filter-based particulate matter (PM) measurement system. The measurement of NOx, carbon monoxide (CO), and carbon dioxide (CO2) were based on federal reference methods. With the existing control strategy for the SCR urea injection, the SCR provided approximately 64% reduction of NOx for engine NY and 36% reduction for engine SI for a complete round trip with less than 6.5 parts per million by volume (ppmv) of ammonia slip during urea injection. Average reductions during the cruise mode were 75% for engine NY and 47% for engine SI, which was operating differently than engine NY. Reductions for the cruise mode during urea injection typically exceeded 94% from both engines, but urea was injected only when the catalyst temperature reached a 300 degrees C threshold pre- and postcatalyst. Data analysis showed a total NOx mass emission split with 80% produced during cruise, and the remaining 20% spread across idle, acceleration, and maneuvering. Examination of continuous NOx data showed that higher reductions of NOx could be achieved on both engines by initiating the urea injection at an earlier point (lower exhaust temperature) in the acceleration and cruise modes of operation. The oxidation catalyst reduced the CO production 94% for engine NY and 82% for engine SI, although the high CO levels

  3. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  4. Developments in management and technology of waste reduction and disposal.

    PubMed

    Rushbrook, Philip

    2006-09-01

    Scandals and public dangers from the mismanagement and poor disposal of hazardous wastes during the 1960s and 1970s awakened the modern-day environmental movement. Influential publications such as "Silent Spring" and high-profile disposal failures, for example, Love Canal and Lekkerkerk, focused attention on the use of chemicals in everyday life and the potential dangers from inappropriate disposal. This attention has not abated and developments, invariably increasing expectations and tightening requirements, continue to be implemented. Waste, as a surrogate for environmental improvement, is a topic where elected representatives and administrations continually want to do more. This article will chart the recent changes in hazardous waste management emanating from the European Union legislation, now being implemented in Member States across the continent. These developments widen the range of discarded materials regarded as "hazardous," prohibit the use of specific chemicals, prohibit the use of waste management options, shift the emphasis from risk-based treatment and disposal to inclusive lists, and incorporate waste producers into more stringent regulatory regimes. The impact of the changes is also intended to provide renewed impetus for waste reduction. Under an environmental control system where only certainty is tolerated, the opportunities for innovation within the industry and the waste treatment and disposal sector will be explored. A challenging analysis will be offered on the impact of this regulation-led approach to the nature and sustainability of hazardous waste treatment and disposal in the future. PMID:17119227

  5. Jet Noise Reduction Potential from Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bridges, James; Wernet, Mark

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  6. Jet Noise Reduction Potential From Emerging Variable Cycle Technologies

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts utilized ejectors, inverted velocity profiles, and fluidic shields. One of the ejector concepts was found to produce stagnant flow within the ejector and the other ejector concept produced discrete-frequency tones that degraded the acoustic performance of the model. The concept incorporating an inverted velocity profile and fluid shield produced overall-sound-pressure-level reductions of 6 dB relative to a single stream nozzle at the peak jet noise angle for some nozzle pressure ratios. Flow separations in the nozzle degraded the acoustic performance of the inverted velocity profile model at low nozzle pressure ratios.

  7. Coolerado Cooler Helps to Save Cooling Energy and Dollars: New Cooling Technology Targets Peak Load Reduction

    SciTech Connect

    Robichaud, R.

    2007-06-01

    This document is about a new evaporative cooling technology that can deliver cooler supply air temperatures than either direct or indirect evaporative cooling systems, without increasing humidity. The Coolerado Cooler technology can help Federal agencies reach the energy-use reduction goals of EPAct 2005, particularly in the western United States.

  8. The role and future of space technology in disaster reduction

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1992-01-01

    Disaster mitigation consists of many activities, including vulnerability assessment, disaster warning and prediction and disaster relief. Various types of satellites can be applied to these endeavors: communications, geophysical, meteorological and Earth resources. The latter two are considered 'remote sensing' satellites. There are many limitations in the design and development of remote sensing satellites; limitations in cost and the acceptable data rate and limitations in our technology. Nevertheless, there are a large number of satellites, both currently in orbit and planned, with capabilities pertinent to disaster mitigation. Some of these are operational and can be relied upon to provide continued data sources. Others are experimental and provide the disaster management community and opportunity to assess the potential usefulness of the techniques and to impact the design of future operational systems. A table lists the operational parameters and potential application in disaster mitigation of 44 current and planned remote sensing satellites and instruments.

  9. Medication error reduction and the use of PDA technology.

    PubMed

    Greenfield, Sue

    2007-03-01

    The purpose of this study was to determine whether nursing medication errors could be reduced and nursing care provided more efficiently using personal digital assistant (PDA) technology. The sample for this study consisted of junior and senior undergraduate baccalaureate nursing students. By self-selection of owning a PDA or not, students were placed in the PDA (experimental) group or the textbook (control) group, provided with a case study to read, and asked to answer six questions (i.e., three medication administration calculations and three clinical decisions based on medication administration). The analysis of collected data, calculated using a t test, revealed that the PDA group answered the six questions with greater accuracy and speed than did the textbook group. PMID:17396552

  10. Pollution Reduction Technology Program, Turboprop Engines, Phase 1

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.; Herman, A. S.; Tomlinson, J. G.; Vaught, J. M.; Verdouw, A. J.

    1976-01-01

    Exhaust pollutant emissions were measured from a 501-D22A turboprop engine combustor and three low emission combustor types -- reverse flow, prechamber, and staged fuel, operating over a fuel-air ratio range of .0096 to .020. The EPAP LTO cycle data were obtained for a total of nineteen configurations. Hydrocarbon emissions were reduced from 15.0 to .3 lb/1000 Hp-Hr/cycle, CO from 31.5 to 4.6 lb/1000 Hp-Hr/cycle with an increase in NOx of 17 percent, which is still 25% below the program goal. The smoke number was reduced from 59 to 17. Emissions given here are for the reverse flow Mod. IV combustor which is the best candidate for further development into eventual use with the 501-D22A turboprop engine. Even lower emissions were obtained with the advanced technology combustors.

  11. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides

    NASA Astrophysics Data System (ADS)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH3 at low temperature (150-300 °C). It is evidenced that CeO2 loaded catalysts present the best performance, and the optimum loading amount of CeO2 is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO2 are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O2 and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH3 at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir-Hinshlwood mechanism.

  12. [Comprehensive fuzzy evaluation of nitrogen oxide control technologies for coal-fired power plants].

    PubMed

    Yu, Chao; Wang, Shu-xiao; Hao, Ji-ming

    2010-07-01

    A multi-level assessment index system was established to quantitatively and comprehensively evaluate the performance of typical nitrogen oxide control technologies for coal-fired power plants. Comprehensive fuzzy evaluation was conducted to assess six NO, control technologies, including low NO, burner (LNB), over the fire (OFA), flue gas reburning (Reburning), selective catalyst reduction (SCR), selective non-catalyst reduction (SNCR) and hybrid SCR/SNCR. Case studies indicated that combination of SCR and LNB are the optimal choice for wall-fired boilers combusting anthracite coal which requires NO, removal efficiency to be over 70%, however, for W-flame or tangential boilers combusting bituminous and sub-bituminous coal which requires 30% NO, removal, LNB and reburning are better choices. Therefore, we recommend that in the developed and ecological frangible regions, large units burning anthracite or meager coal should install LNB and SCR and other units should install LNB and SNCR. In the regions with environmental capacity, units burning anthracite or meager coal shall install LNB and SNCR, and other units shall apply LNB to reduce NO, emissions. PMID:20825011

  13. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, Wallace J.

    1999-01-01

    A power controller device which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the "reset" input of a R-S flip flop, while an "0" crossing detector controls the "set" input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the "reset" and "set" inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations.

  14. TRIAC/SCR proportional control circuit

    DOEpatents

    Hughes, W.J.

    1999-04-06

    A power controller device is disclosed which uses a voltage-to-frequency converter in conjunction with a zero crossing detector to linearly and proportionally control AC power being supplied to a load. The output of the voltage-to frequency converter controls the ``reset`` input of a R-S flip flop, while an ``0`` crossing detector controls the ``set`` input. The output of the flip flop triggers a monostable multivibrator controlling the SCR or TRIAC firing circuit connected to the load. Logic gates prevent the direct triggering of the multivibrator in the rare instance where the ``reset`` and ``set`` inputs of the flip flop are in coincidence. The control circuit can be supplemented with a control loop, providing compensation for line voltage variations. 9 figs.

  15. An SCR inverter for electric vehicles

    NASA Technical Reports Server (NTRS)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  16. Emission rates of regulated pollutants from current technology heavy-duty diesel and natural gas goods movement vehicles.

    PubMed

    Thiruvengadam, Arvind; Besch, Marc C; Thiruvengadam, Pragalath; Pradhan, Saroj; Carder, Daniel; Kappanna, Hemanth; Gautam, Mridul; Oshinuga, Adewale; Hogo, Henry; Miyasato, Matt

    2015-04-21

    Chassis dynamometer emissions testing of 11 heavy-duty goods movement vehicles, including diesel, natural gas, and dual-fuel technology, compliant with US-EPA 2010 emissions standard were conducted. Results of the study show that three-way catalyst (TWC) equipped stoichiometric natural gas vehicles emit 96% lower NOx emissions as compared to selective catalytic reduction (SCR) equipped diesel vehicles. Characteristics of drayage truck vocation, represented by the near-dock and local drayage driving cycles, were linked to high NOx emissions from diesel vehicles equipped with a SCR. Exhaust gas temperatures below 250 °C, for more than 95% duration of the local and near-dock driving cycles, resulted in minimal SCR activity. The low percentage of activity SCR over the local and near-dock cycles contributed to a brake-specific NOx emissions that were 5-7 times higher than in-use certification limit. The study also illustrated the differences between emissions rate measured from chassis dynamometer testing and prediction from the EMFAC model. The results of the study emphasize the need for model inputs relative to SCR performance as a function of driving cycle and engine operation characteristics. PMID:25826745

  17. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    SciTech Connect

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy saving estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).

  18. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  19. Compact SCR trigger circuit for ignitron switch operates efficiently

    NASA Technical Reports Server (NTRS)

    Foster, L. E.

    1965-01-01

    Trigger circuit with two series-connected SCR triggers an ignitron switch used to discharge high-energy capacitor banks. It does not require a warmup period and operates at relatively high efficiency.

  20. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  1. Evolving expression patterns of the homeotic gene Scr in insects.

    PubMed

    Passalacqua, Karla D; Hrycaj, Steven; Mahfooz, Najmus; Popadic, Aleksandar

    2010-01-01

    While the mRNA expression patterns of homeotic genes have been examined in numerous arthropod species, data on their protein accumulation is extremely limited. To address this gap, we analyzed the protein expression pattern of the hox gene Sex combs reduced (Scr) in six hemimetabolous insects from four divergent orders (Thysanura, Orthoptera, Dictyoptera and Hemiptera). Our comparative analysis reveals that the original domain of SCR expression was likely confined to the head and then subsequently moved into the prothorax (T1) in winged insect lineages. The data also show a trend toward the posteriorization of the anterior boundary of SCR expression in the head, which starts in the mandibles (Thysanura) and then gradually shifts to the maxillary (Orthoptera) and labial segments (Dictyoptera and Hemiptera), respectively. In Thermobia (firebrat) and Oncopeltus (milkweed bug) we also identify instances where SCR protein is not detected in regions where mRNA is expressed. This finding suggests the presence of a post-transcriptional regulatory mechanism of Scr in these species. Finally, we show that SCR expression in insect T1 legs is highly variable and exhibits divergent patterning even among related species. In addition, signal in the prothoracic legs of more basal insect lineages cannot be associated with any T1 specific features, indicating that the acquisition of SCR in this region preceded any apparent gain of function. Overall, our results show that Scr expression has diverged considerably among hemimetabolous lineages and establish a framework for subsequent analyses to determine its role in the evolution of the insect head and prothorax. PMID:20336613

  2. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    SciTech Connect

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  3. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications. PMID:24032692

  4. Interface specifications for the SCR (a-7e) Extended Computer Module

    SciTech Connect

    Parnas, D.L.; Weiss, D.M.; Clements, P.C.; Britton, K.H.

    1983-01-01

    This document describes the programmer interface to a computing machine partially implemented in software. The Extended Computer is part of NRL's Software Cost Reduction (SCR) project, to demonstrate the feasibility of applying advanced software engineering techniques to complex real-time systems in order to simplify maintenance. The Extended Computer allows code portability among avionics computers by providing extensible addressing, uniform i/o and data access, representation-independent data types, uniform event signalling, a standard subprogram invocation mechanism, and parallel process capability. The purpose of the Extended Computer is to allow the remainder of the software to remain unchanged when the host computer is changed or replaced.

  5. Evaluation of a proposed drift reduction technology high-speed wind tunnel testing protocol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Environmental Protection Agency (EPA) has initiated the development of protocols for for measuring spray drift reduction technologies (DRTs) related to the application of agricultural protection chemicals. The DRT Program is an EPA-led initiative program to “achieve improved environmental ...

  6. Evaluation of the EPA Drift Reduction Technology (DRT) low-speed wind tunnel protocol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The EPA’s proposed Drift Reduction Technology low-speed wind tunnel evaluation protocol was tested across a series of modified ASAE reference nozzles. Both droplet size and deposition and flux volume measurements were made downwind from the nozzles operating in the tunnel at airspeeds of 1 and 2.5 ...

  7. Pollution reduction technology program for small jet aircraft engines: Class T1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  8. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  9. Field scale evaluation of spray drift reduction technologies from ground and aerial application systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work is to evaluate a proposed Test Plan for the validation testing of pesticide spray drift reduction technologies for row and field crops, focusing on the testing of ground and aerial application systems under full-scale field evaluations. The measure of performance for a gi...

  10. PROCEEDINGS: THE 1988 SYMPOSIUM ON RADON AND RADON REDUCTION TECHNOLOGY. VOLUME 2. SYMPOSIUM POSTER PAPERS

    EPA Science Inventory

    The two-volume proceedings document the 1988 symposium on Radon and Radon Reduction Technology, jointly sponsored by EPA's Air and Energy Engineering Research Laboratory (AEERL) and Office of Radiation Programs (ORP), in Denver, CO, October 17-21, 1988. The objective of the sympo...

  11. PROCEEDINGS: THE 1988 SYMPOSIUM ON RADON AND RADON REDUCTION TECHNOLOGY--VOLUME 1. SYMPOSIUM ORAL PAPERS

    EPA Science Inventory

    The two-volume proceedings document the 1988 symposium on Radon and Radon Reduction Technology, jointly sponsored by EPA's Air and Energy Engineering Research Laboratory (AEERL) and Office of Radiation Programs (ORP), in Denver, CO, October 17-21, 1988. The objective of the sympo...

  12. In-field results of SNCR/SCR hybrid on a group 1 boiler in the ozone transport region

    SciTech Connect

    Boyle, J.M.; Urbas, J.

    1998-07-01

    Electric utilities within the Ozone Transport Region must prepare for seasonal and potentially piecemeal NO{sub x} reductions to meet Title 1 requirements. In order to achieve additional NO{sub x} reductions beyond the existing SNCR System in a manner, which allows maximum flexibility at minimum cost. GPU GENCO, in cooperation with the DOE, EPRI, PETC, and PERC, has chosen to field demonstrate a SNCR/SCR hybrid system. Commercially known as NO{sub x}OUT CASCADE, the system employs a urea based SNCR system to produce a managed level of ammonia slip, which in turn charges an in duct SCR element. The system is presently scheduled for initial operation in October 1997. This paper discusses the decision path associated with the project, including design and operating criteria, performance expectations, retrofit considerations, testing protocol, and current results.

  13. Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

    SciTech Connect

    Gumerman, Etan; Marnay, Chris

    2004-01-16

    This report describes how Learning-by-Doing (LBD) is implemented endogenously in the National Energy Modeling System (NEMS) for generating plants. LBD is experiential learning that correlates to a generating technology's capacity growth. The annual amount of Learning-by-Doing affects the annual overnight cost reduction. Currently, there is no straightforward way to integrate and make sense of all the diffuse information related to the endogenous learning calculation in NEMS. This paper organizes the relevant information from the NEMS documentation, source code, input files, and output files, in order to make the model's logic more accessible. The end results are shown in three ways: in a simple spreadsheet containing all the parameters related to endogenous learning; by an algorithm that traces how the parameters lead to cost reductions; and by examples showing how AEO 2004 forecasts the reduction of overnight costs for generating technologies over time.

  14. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 2, Appendices A--N. Final report

    SciTech Connect

    1996-10-01

    Volume 2 contains the following appendices: Appendix A, Example Material Safety Data Sheet; Appendix B, Initial Site Characterization Test Results; Appendix C, Testing Proposal, Southern Research Institute; Appendix D, Example Laboratory Catalyst Test Protocol; Appendix E, Detailed Coal Analysis Data; Appendix F, Standard Methods-QA/QC Document; Appendix G, Task No. 1 Commissioning Tests; Appendix H, Task No. 2 Commissioning Tests; Appendix I, First Parametric Sequence Spreadsheets; Appendix J, Second Parametric Sequence Spreadsheets; Appendix K, Third Parametric Sequence Spreadsheets; Appendix L, Fourth Parametric Sequence Spreadsheets; Appendix M, Fifth Parametric Sequence Spreadsheets; and Appendix N, First Series-Manual APH Tests.

  15. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 3, Appendices O--T. Final report

    SciTech Connect

    1996-10-01

    Volume 3 contains the following appendices: Appendix O, Second Series-Manual APH Tests; Appendix P, Third Series-Manual APH Tests; Appendix Q, ABB Analysis of Air Preheaters-Final Report; Appendix R, ABB Corrosion Analysis Study; Appendix S, SRI Waste Stream Impacts Study; and Appendix T, Economic Evaluation.

  16. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    PubMed

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p <0.001) in coronary angiograms and from 7123 ± 4551 to 2431 ± 1788 cGycm(2) (69%, p <0.001) in coronary interventions using the new noise reduction technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. PMID:27344273

  17. Some consequences of scrPscrT symmetry for optical rotation experiments

    NASA Astrophysics Data System (ADS)

    Canright, G. S.; Rojo, A. G.

    1992-03-01

    We perform a general symmetry analysis of optical experiments on samples in the ``scrPscrT state,'' that is, samples for which 3D inversion symmetry scrP and time inversion symmetry scrT are each broken, but which are invariant under the product scrPscrT. We show that scrPscrT symmetry is compatible with all known results on optical rotation in the high-temperature superconductors. We also find a o/Iunique and accessible experimental signature for the scrPscrT state.

  18. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  19. NASA's Vision for Potential Energy Reduction from Future Generations of Propulsion Technology

    NASA Technical Reports Server (NTRS)

    Haller, Bill

    2015-01-01

    Through a robust partnership with the aviation industry, over the past 50 years NASA programs have helped foster advances in propulsion technology that enabled substantial reductions in fuel consumption for commercial transports. Emerging global trends and continuing environmental concerns are creating challenges that will very likely transform the face of aviation over the next 20-40 years. In recognition of this development, NASA Aeronautics has established a set of Research Thrusts that will help define the future direction of the agency's research technology efforts. Two of these thrusts, Ultra-Efficient Commercial Vehicles and Transition to Low-Carbon Propulsion, serve as cornerstones for the Advanced Air Transport Technology (AATT) project. The AATT project is exploring and developing high-payoff technologies and concepts that are key to continued improvement in energy efficiency and environmental compatibility for future generations of fixed-wing, subsonic transports. The AATT project is primarily focused on the N+3 timeframe, or 3 generations from current technology levels. As should be expected, many of the propulsion system architectures technologies envisioned for N+3 vary significantly from todays engines. The use of batteries in a hybrid-electric configuration or deploying multiple fans distributed across the airframe to enable higher bypass ratios are just two examples of potential advances that could enable substantial energy reductions over current propulsion systems.

  20. Performance and mechanism study for low-temperature SCR of NO with propylene in excess oxygen over Pt/TiO2 catalyst.

    PubMed

    Zhang, Zhixiang; Chen, Mingxia; Jiang, Zhi; Shangguan, Wenfeng

    2010-01-01

    A 0.5 wt.% Pt/TiO2 catalyst was prepared and used for the low-temperature selective catalytic reduction (SCR) of NO with C3H6 in the presence of excess oxygen. The effects of Pt loading and O2 concentration on Pt/TiO2 catalytic performance for low-temperature SCR were investigated. It was found that optimal Pt loading was 0.5 wt.% and excess O2 favored low-temperature SCR of NOx. The mechanism of low-temperature SCR of NO with C3H6 was investigated with respect to the behavior of adsorbed species over Pt/TiO2 at 150 degrees C using in situ DRIFTS. The results indicated that surface nitrosyl species (Ptdelta(+)-NO and Ti3(+)-NO) and Pt2(+)-CO are main reaction intermediates during the interactions of NO, C3H6 and O2. A simplified NO decomposition mechanism for the low-temperature SCR of NO with C3H6 was proposed. PMID:21174977

  1. Reduction of helicopter blade-vortex interaction noise by active rotor control technology

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Philippe, Jean J.; Prieur, Jean; Brooks, Thomas F.

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade-vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations.

  2. Reduction of Helicopter Blade-Vortex Interaction Noise by Active Rotor Control Technology

    NASA Technical Reports Server (NTRS)

    Yu, Yung H.; Gmelin, Bernd; Splettstoesser, Wolf; Brooks, Thomas F.; Philippe, Jean J.; Prieur, Jean

    1997-01-01

    Helicopter blade-vortex interaction noise is one of the most severe noise sources and is very important both in community annoyance and military detection. Research over the decades has substantially improved basic physical understanding of the mechanisms generating rotor blade-vortex interaction noise and also of controlling techniques, particularly using active rotor control technology. This paper reviews active rotor control techniques currently available for rotor blade vortex interaction noise reduction, including higher harmonic pitch control, individual blade control, and on-blade control technologies. Basic physical mechanisms of each active control technique are reviewed in terms of noise reduction mechanism and controlling aerodynamic or structural parameters of a blade. Active rotor control techniques using smart structures/materials are discussed, including distributed smart actuators to induce local torsional or flapping deformations, Published by Elsevier Science Ltd.

  3. Technological cost-reduction pathways for attenuator wave energy converters in the marine hydrokinetic environment.

    SciTech Connect

    Bull, Diana L; Ochs, Margaret Ellen

    2013-09-01

    This report considers and prioritizes the primary potential technical costreduction pathways for offshore wave activated body attenuators designed for ocean resources. This report focuses on technical research and development costreduction pathways related to the device technology rather than environmental monitoring or permitting opportunities. Three sources of information were used to understand current cost drivers and develop a prioritized list of potential costreduction pathways: a literature review of technical work related to attenuators, a reference device compiled from literature sources, and a webinar with each of three industry device developers. Data from these information sources were aggregated and prioritized with respect to the potential impact on the lifetime levelized cost of energy, the potential for progress, the potential for success, and the confidence in success. Results indicate the five most promising costreduction pathways include advanced controls, an optimized structural design, improved power conversion, planned maintenance scheduling, and an optimized device profile.

  4. SO2-induced stability of Ag-alumina catalysts in the SCR of NO with methane

    SciTech Connect

    She, Xiaoyan; Flytzani-Stephanopoulos, Maria; Wang, Chong M.; Wang, Yong; Peden, Charles HF

    2009-04-29

    We report on a stabilization effect on the structure and activity of Ag/Al2O3 for the selective catalytic reduction (SCR) of NOx with CH4 imparted by the presence of SO2 in the exhaust gasmixture. The reaction is carried out at temperature above 600 8C to keep the surface partially free of sulfates. In SO2-free gases, catalyst deactivation is fast and measurable at these temperatures. Time-resolved TEM analyses of used samples have determined that deactivation is due to sintering of silver from well-dispersed clusters to nanoparticles to micrometer-size particles with time-on-stream at 625 8C. However, sintering of silver was dramatically suppressed by the presence of SO2 in the reaction gas mixture. The structural stabilization by SO2 was accompanied by stable catalyst activity for the NO reduction to N2. The direct oxidation of methane was suppressed, thus the methane selectivity was improved in SO2-laden gas mixtures. In tests with high-content silver alumina with some of the silver present in metallic form, an increase in the SCR activity was found in SO2-containing gas mixtures. This is attributed to redispersion of the silver particles by SO2, an unexpected finding. The catalyst performance was reversible over many cycles of operation at 625 8C with the SO2 switched on and off in the gas mixture.

  5. Recent advances in membrane bio-technologies for sludge reduction and treatment.

    PubMed

    Wang, Zhiwei; Yu, Hongguang; Ma, Jinxing; Zheng, Xiang; Wu, Zhichao

    2013-12-01

    This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment. PMID:23466365

  6. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs). PMID:18574958

  7. Pt-Doped NiFe₂O₄ Spinel as a Highly Efficient Catalyst for H₂ Selective Catalytic Reduction of NO at Room Temperature.

    PubMed

    Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji

    2016-04-11

    H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR. PMID:26982816

  8. Engineering of the Stellarator of Costa Rica: SCR-1

    NASA Astrophysics Data System (ADS)

    Mora, J.; Vargas, V. I.; Otarola, C.; Piedra, C.; Jimenez, W.; Esquivel, L.; Esquivel, R.; Sanchez, K.; Gonzalez, J.; Asenjo, J.; Fonseca, L.

    2015-03-01

    This Paper aims at briefly describing the challenge of the design and construction of the Stellarator of Costa Rica 1 (SCR-1) [1]. The SCR-1 is a small modular Stellarator for magnetic confinement of plasma (Ro=0.238 m, =0.059 m, Ro/a>4.0, expected plasma volume ≈ 0.016 m3, 10 mm thickness 6061-T6 aluminum vacuum vessel) developed by the Plasma Laboratory for Fusion Energy and Applications of the Instituto Tecnológico de Costa Rica (ITCR).

  9. Operation of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery.

    PubMed

    Saktaywin, W; Tsuno, H; Nagare, H; Soyama, T

    2006-01-01

    This paper shows the potential application of a new sewage treatment process with technologies of excess sludge reduction and phosphorus recovery. The process incorporated ozonation for excess sludge reduction and crystallisation process for phosphorus recovery to a conventional anaerobic/oxic (A/O) phosphorus removal process. A lab-scale continuous operation experiment was conducted with the ratio of sludge flow rate to ozonation tank of 1.1% of sewage inflow under 30 to 40 mgO3/gSS of ozone consumption and with sludge wasting ratio of 0.34% (one-fifth of a conventional A/O process). Throughout the operational experiment, a 60% reduction of excess sludge production was achieved in the new process. A biomass concentration of 2300 mg/L was maintained, and the accumulation of inactive biomass was not observed. The new process was estimated to give a phosphorus recovery degree of more than 70% as an advantage of excess sludge reduction. The slight increase in effluent COD was observed, but the process performance was maintained at a satisfactory level. These facts demonstrate an effectiveness of the new process for excess sludge reduction as well as for phosphorus recovery. PMID:16889258

  10. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    SciTech Connect

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  11. Reducing Patient Radiation Dose With Image Noise Reduction Technology in Transcatheter Aortic Valve Procedures.

    PubMed

    Lauterbach, Michael; Hauptmann, Karl Eugen

    2016-03-01

    X-ray radiation exposure is of great concern for patients undergoing structural heart interventions. In addition, a larger group of medical staff is required and exposed to radiation compared with percutaneous coronary interventions. This study aimed at quantifying radiation dose reduction with implementation of specific image noise reduction technology (NRT) in transcatheter aortic valve implantation (TAVI) procedures. We retrospectively analyzed 104 consecutive patients with TAVI procedures, 52 patients before and 52 after optimization of x-ray radiation chain, and implementation of NRT. Patients with 1-step TAVI and complex coronary intervention, or complex TAVI procedures, were excluded. Before the procedure, all patients received a multislice computed tomography scan, which was used to size aortic annulus, select the optimal implantation plane, valve type and size, and guide valve implantation using a software tool. Air kerma and kerma-area product were compared in both groups to determine patient radiation dose reduction. Baseline parameters, co-morbidity, or procedural data were comparable between groups. Mean kerma-area product was significantly lower (p <0.001) in the NRT group compared with the standard group (60 ± 39 vs 203 ± 106 Gy × cm(2), p <0.001), which corresponds to a reduction of 70%. Mean air kerma was reduced by 64% (494 ± 360 vs 1,355 ± 657 mGy, p <0.001). In conclusion, using optimized x-ray chain combined with specific image noise reduction technology has the potential to significantly reduce by 2/3 radiation dose in standard TAVI procedures without worsening image quality or prolonging procedure time. PMID:26742472

  12. A fuel cycle framework for evaluating greenhouse gas emission reduction technology

    SciTech Connect

    Ashton, W.B.; Barns, D.W. ); Bradley, R.A. . Office of Environmental Analysis)

    1990-05-01

    Energy-related greenhouse gas (GHG) emissions arise from a number of fossil fuels, processes and equipment types throughout the full cycle from primary fuel production to end-use. Many technology alternatives are available for reducing emissions based on efficiency improvements, fuel switching to low-emission fuels, GHG removal, and changes in end-use demand. To conduct systematic analysis of how new technologies can be used to alter current emission levels, a conceptual framework helps develop a comprehensive picture of both the primary and secondary impacts of a new technology. This paper describes a broad generic fuel cycle framework which is useful for this purpose. The framework is used for cataloging emission source technologies and for evaluating technology solutions to reduce GHG emissions. It is important to evaluate fuel mix tradeoffs when investigating various technology strategies for emission reductions. For instance, while substituting natural gas for coal or oil in end-use applications to reduce CO{sub 2} emissions, natural gas emissions of methane in the production phase of the fuel cycle may increase. Example uses of the framework are given.

  13. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  14. A Synergy Framework for the integration of Earth Observation technologies into Disaster Risk Reduction

    NASA Astrophysics Data System (ADS)

    Gaetani, Francesco; Petiteville, Ivan; Pisano, Francesco; Rudari, Roberto; St Pierre, Luc

    2015-04-01

    Earth observations and space-based applications have seen a considerable advance in the last decade, and such advances should find their way in applications related to DRR, climate change and sustainable development, including in the indicators to monitor advances in these areas. The post-2015 framework for disaster risk reduction, as adopted by the 3rd WCDRR is a action-oriented framework for disaster risk reduction that builds on modalities of cooperation linking local, national, regional and global efforts. Earth observations from ground and space platforms and related applications will play a key role in facilitating the implementation of the HFA2 and represent a unique platform to observe and assess how risks have changed in recent years, as well as to track the reduction in the level of exposure of communities. The proposed white paper focuses mainly on Earth Observation from space but it also addresses the use of other sources of data ( airborne, marine, in-situ, socio-economic and model outputs) in combination to remote sensing data. Earth observations (EO) and Space-based technologies can play a crucial role in contributing to the generation of relevant information to support informed decision-making regarding risk and vulnerability reduction and to address the underlying factors of disaster risk. For example, long series of Earth observation data collected over more than 30 years already contribute to track changes in the environment and in particular, environmental degradation around the world. Earth observation data is key to the work of the scientific community. Whether due to inadequate land-use policies, lack of awareness or understanding regarding such degradation, or inadequate use of natural resources including water and the oceans; Earth observation technologies are now routinely employed by many Ministries of Environment and Natural Resources worldwide to monitor the extent of degradation and a basis to design and enact new environmental

  15. Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light.

    PubMed

    Marschner, Susanne; Goodrich, Raymond

    2011-01-01

    Bacterial contamination and emerging infections combined with increased international travel pose a great risk to the safety of the blood supply. Tests to detect the presence of infection in a donor have a 'window period' during which infections cannot be detected but the donor may be infectious. Agents and their transmission routes need to be recognized before specific tests can be developed. Pathogen reduction of blood components represents a means to address these concerns and is a proactive approach for the prevention of transfusion-transmitted diseases. The expectation of a pathogen reduction system is that it achieves high enough levels of pathogen reduction to reduce or prevent the likelihood of disease transmission while preserving adequate cell and protein quality. In addition the system needs to be non-toxic, non-mutagenic and should be simple to use. The Mirasol® Pathogen Reduction Technology (PRT) System for Platelets and Plasma uses riboflavin (vitamin B2) plus UV light to induce damage in nucleic acid-containing agents. The system has been shown to be effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the efficacy of the product or resulting in product loss. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. The same methodology is currently under development for the treatment of whole blood, making pathogen reduction of all blood products using one system achievable. This review gives an overview of the Mirasol PRT System, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process. PMID:21779202

  16. Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light

    PubMed Central

    Marschner, Susanne; Goodrich, Raymond

    2011-01-01

    Summary Bacterial contamination and emerging infections combined with increased international travel pose a great risk to the safety of the blood supply. Tests to detect the presence of infection in a donor have a ‘window period’ during which infections cannot be detected but the donor may be infectious. Agents and their transmission routes need to be recognized before specific tests can be developed. Pathogen reduction of blood components represents a means to address these concerns and is a proactive approach for the prevention of transfusion-transmitted diseases. The expectation of a pathogen reduction system is that it achieves high enough levels of pathogen reduction to reduce or prevent the likelihood of disease transmission while preserving adequate cell and protein quality. In addition the system needs to be non-toxic, non-mutagenic and should be simple to use. The Mirasol® Pathogen Reduction Technology (PRT) System for Platelets and Plasma uses riboflavin (vitamin B2) plus UV light to induce damage in nucleic acid-containing agents. The system has been shown to be effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the efficacy of the product or resulting in product loss. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. The same methodology is currently under development for the treatment of whole blood, making pathogen reduction of all blood products using one system achievable. This review gives an overview of the Mirasol PRT System, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process. PMID:21779202

  17. Regenerative Snubber For GTO-Commutated SCR Inverter

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  18. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    EPA Science Inventory

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  19. Science and technology based earthquake risk reduction strategies: The Indian scenario

    NASA Astrophysics Data System (ADS)

    Bansal, Brijesh; Verma, Mithila

    2013-08-01

    Science and Technology (S & T) interventions are considered to be very important in any effort related to earthquake risk reduction. Their three main components are: earthquake forecast, assessment of earthquake hazard, and education and awareness. In India, although the efforts towards earthquake forecast were initiated about two decades ago, systematic studies started recently with the launch of a National Program on Earthquake Precursors. The quantification of seismic hazard, which is imperative in the present scenario, started in India with the establishment of first seismic observatory in 1898 and since then a substantial progress has been made in this direction. A dedicated education and awareness program was initiated about 10 years ago to provide earthquake education and create awareness amongst the students and society at large. The paper highlights significant S & T efforts made in India towards reduction of risk due to future large earthquakes.

  20. Evaluation of technologies for volume reduction of plutonium-contaminated soils from the Nevada Test Site

    SciTech Connect

    Papelis, C.; Jacobson, R.L.; Miller, F.L.; Shaulis, L.K.

    1996-06-01

    Nuclear testing at and around the Nevada Test Site (NTS) resulted in plutonium (Pu) contamination of the soil over an area of several thousands of acres. The objective of this project was to evaluate the potential of five different processes to reduce the volume of Pu-contaminated soil from three different areas, namely Areas 11, 13, and 52. Volume reduction was to be accomplished by concentrating the Pu into a small but highly contaminated soil fraction, thereby greatly reducing the volume of soil requiring disposal. The processes tested were proposed by Paramag Corp. (PARAMAG), Advanced Processing Technologies Inc. (APT), Lockheed Environmental Systems and Technologies (LESAT), Nuclear Remediation Technologies (NRT), and Scientific Ecology Group (SEG). Because of time and budgetary restraints, the NRT and SEG processes were tested with soil from Area 11 only. These processes typically included a preliminary soil conditioning step (e.g., attrition scrubbing, wet sieving), followed by a more advanced process designed to separate Pu from the soil, based on physiochemical properties of Pu compounds (e.g., magnetic susceptibility, specific gravity). Analysis of the soil indicates that a substantial fraction of the total Pu contamination is typically confined in a relatively narrow and small particle size range. Processes which were able to separate this highly contaminated soil fraction (using physical methods, e.g., attrition scrubbing, wet sieving), from the rest of the soil achieved volume (mass) reductions on the order of 70%. The advanced, more complex processes tested did not enhance volume reduction. The primary reason why processes that rely on the dependence of settling velocity on density differences failed was the very fine grain size of the Pu-rich particles.

  1. Technology Roadmap. Energy Loss Reduction and Recovery in Industrial Energy Systems

    SciTech Connect

    none,

    2004-11-01

    To help guide R&D decision-making and gain industry insights on the top opportunities for improved energy systems, ITP sponsored the Energy Loss Reduction and Recoveryin Energy Systems Roadmapping Workshopin April 2004 in Baltimore, Maryland. This Technology Roadmapis based largely on the results of the workshop and additional industrial energy studies supported by ITP and EERE. It summarizes industry feedback on the top opportunities for R&D investments in energy systems, and the potential for national impacts on energy use and the environment.

  2. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    PubMed

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  3. Fe/SSZ-13 as an NH3-SCR Catalyst: A Reaction Kinetics and FTIR/Mössbauer Spectroscopic Study

    SciTech Connect

    Gao, Feng; Kollar, Marton; Kukkadapu, Ravi K.; Washton, Nancy M.; Wang, Yilin; Szanyi, Janos; Peden, Charles H.F.

    2015-03-01

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, an Fe/SSZ-13 catalyst active in NH3-SCR was synthesized. Mössbauer and FTIR spectroscopies were used to probe the nature of the Fe sites. In the fresh sample, the majority of Fe species are extra-framework cations. The likely monomeric and dimeric ferric ions in hydrated form are [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+, based on Mössbauer measurements. During the severe hydrothermal aging (HTA) applied in this study, a majority of cationic Fe species convert to FeAlOx and clustered FeOx species, accompanied by severe dealumination of the SSZ-13 framework. The clustered FeOx species do not give a sextet Mössbauer spectrum, indicating that these are highly disordered. However, some Fe species in cationic positions remain after aging as determined from Mössbauer measurements and CO/NO FTIR titrations. NO/NH3 oxidation reaction tests reveal that dehydrated cationic Fe are substantially more active in catalyzing oxidation reactions than the hydrated ones. For NH3-SCR, enhancement of NO oxidation under ‘dry’ conditions promotes SCR rates below ~300 • C. This is due mainly to contribution from the “fast” SCR channel. Above ~300 • C, enhancement of NH3 oxidation under ‘dry’ conditions, however, becomes detrimental to NOx conversions. The HTA sample loses much of the SCR activity below ~300 • C; however, above ~400 • C much of the activity remains. This may suggest that the FeAlOx and FeOx species become active at such elevated temperatures. Alternatively, the high-temperature activity may be maintained by the remaining extra-framework cationic species. For potential practical applications, Fe/SSZ-13 may be used as a co-catalyst for Cu/CHA as integral aftertreatment SCR catalysts on the basis of the stable high temperature activity after hydrothermal aging. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy

  4. Fighting Testing ACAT/FRRP: Automatic Collision Avoidance Technology/Fighter Risk Reduction Project

    NASA Technical Reports Server (NTRS)

    Skoog, Mark A.

    2009-01-01

    This slide presentation reviews the work of the Flight testing Automatic Collision Avoidance Technology/Fighter Risk Reduction Project (ACAT/FRRP). The goal of this project is to develop common modular architecture for all aircraft, and to enable the transition of technology from research to production as soon as possible to begin to reduce the rate of mishaps. The automated Ground Collision Avoidance System (GCAS) system is designed to prevent collision with the ground, by avionics that project the future trajectory over digital terrain, and request an evasion maneuver at the last instance. The flight controls are capable of automatically performing a recovery. The collision avoidance is described in the presentation. Also included in the presentation is a description of the flight test.

  5. SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV.

    PubMed

    Greco, George E; Matsumoto, Yoshihiro; Brooks, Rhys C; Lu, Zhengfei; Lieber, Michael R; Tomkinson, Alan E

    2016-07-01

    DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV. PMID:27235626

  6. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    SciTech Connect

    White, Thornton C

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been made possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June

  7. DEVELOPMENT AND IMPLEMENTATION OF THE U.S. EPA'S WASTE REDUCTION INNOVATIVE TECHNOLOGY EVALUATION (WRITE) RESEARCH PROGRAM

    EPA Science Inventory

    The Waste Reduction Innovative Technology Evaluation (WRITE) Program is one of EPA's major pollution prevention research programs. his program encourages joint interaction by industry and government in the development, demonstration and implementation of effective techniques and ...

  8. GENERIC VERIFICATION PROTOCOL FOR THE VERIFICATION OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES FOR ROW AND FIELD CROPS

    EPA Science Inventory

    This ETV program generic verification protocol was prepared and reviewed for the Verification of Pesticide Drift Reduction Technologies project. The protocol provides a detailed methodology for conducting and reporting results from a verification test of pesticide drift reductio...

  9. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs

  10. The potential of crowdsourcing and mobile technology to support flood disaster risk reduction

    NASA Astrophysics Data System (ADS)

    See, Linda; McCallum, Ian; Liu, Wei; Mechler, Reinhard; Keating, Adriana; Hochrainer-Stigler, Stefan; Mochizuki, Junko; Fritz, Steffen; Dugar, Sumit; Arestegui, Michael; Szoenyi, Michael; Laso-Bayas, Juan-Carlos; Burek, Peter; French, Adam; Moorthy, Inian

    2016-04-01

    The last decade has seen a rise in citizen science and crowdsourcing for carrying out a variety of tasks across a number of different fields, most notably the collection of data such as the identification of species (e.g. eBird and iNaturalist) and the classification of images (e.g. Galaxy Zoo and Geo-Wiki). Combining human computing with the proliferation of mobile technology has resulted in vast amounts of geo-located data that have considerable value across multiple domains including flood disaster risk reduction. Crowdsourcing technologies, in the form of online mapping, are now being utilized to great effect in post-disaster mapping and relief efforts, e.g. the activities of Humanitarian OpenStreetMap, complementing official channels of relief (e.g. Haiti, Nepal and New York). Disaster event monitoring efforts have been further complemented with the use of social media (e.g. twitter for earthquakes, flood monitoring, and fire detection). Much of the activity in this area has focused on ex-post emergency management while there is considerable potential for utilizing crowdsourcing and mobile technology for vulnerability assessment, early warning and to bolster resilience to flood events. This paper examines the use of crowdsourcing and mobile technology for measuring and monitoring flood hazards, exposure to floods, and vulnerability, drawing upon examples from the literature and ongoing projects on flooding and food security at IIASA.