Sample records for reduction strategies greenhouse

  1. The importance of health co-benefits in macroeconomic assessments of UK Greenhouse Gas emission reduction strategies.

    PubMed

    Jensen, Henning Tarp; Keogh-Brown, Marcus R; Smith, Richard D; Chalabi, Zaid; Dangour, Alan D; Davies, Mike; Edwards, Phil; Garnett, Tara; Givoni, Moshe; Griffiths, Ulla; Hamilton, Ian; Jarrett, James; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Haines, Andy

    We employ a single-country dynamically-recursive Computable General Equilibrium model to make health-focussed macroeconomic assessments of three contingent UK Greenhouse Gas (GHG) mitigation strategies, designed to achieve 2030 emission targets as suggested by the UK Committee on Climate Change. In contrast to previous assessment studies, our main focus is on health co-benefits additional to those from reduced local air pollution. We employ a conservative cost-effectiveness methodology with a zero net cost threshold. Our urban transport strategy (with cleaner vehicles and increased active travel) brings important health co-benefits and is likely to be strongly cost-effective; our food and agriculture strategy (based on abatement technologies and reduction in livestock production) brings worthwhile health co-benefits, but is unlikely to eliminate net costs unless new technological measures are included; our household energy efficiency strategy is likely to breakeven only over the long term after the investment programme has ceased (beyond our 20 year time horizon). We conclude that UK policy makers will, most likely, have to adopt elements which involve initial net societal costs in order to achieve future emission targets and longer-term benefits from GHG reduction. Cost-effectiveness of GHG strategies is likely to require technological mitigation interventions and/or demand-constraining interventions with important health co-benefits and other efficiency-enhancing policies that promote internalization of externalities. Health co-benefits can play a crucial role in bringing down net costs, but our results also suggest the need for adopting holistic assessment methodologies which give proper consideration to welfare-improving health co-benefits with potentially negative economic repercussions (such as increased longevity).

  2. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2018-05-18

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  3. Greenhouse Gas Reductions: SF6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Diana

    2012-04-20

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we savemore » taxpayers over $208,000 each year.« less

  4. Achieving Realistic Energy and Greenhouse Gas Emission Reductions in U.S. Cities

    NASA Astrophysics Data System (ADS)

    Blackhurst, Michael F.

    2011-12-01

    , and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual greenhouse gas reductions of 1 ton CO2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors, technologies, and end uses targeted for intervention vary depending on policy objectives and constraints. The optimal efficiency investment strategy for some end uses varies significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Section 3 then evaluates the impact of rebound effects on modeled efficiency program outcomes. Differential rebound effects across end-uses can change the optimal program design strategy, i.e., the end-uses and technologies targeted for intervention. The rebound effect results suggest that rebound should be integral to effective efficiency program design. Section 4 evaluates the life cycle assessment costs and benefits of the widespread retrofit of green roofs in a typical urban mixed-use neighborhood. Shadow-cost analysis was used to evaluate the cost-effectiveness of green roofs' many benefits. Results suggest green roofs are currently not cost effective on a private cost basis, but multi-family and commercial building green roofs are competitive when social benefits are included. Multifamily and commercial green roofs are also competitive alternatives for reducing greenhouse gases and storm water run-off. However, green roofs are not competitive energy conservation techniques. GHG impacts are dominated by the material production and use phases. Energy impacts are dominated by the use phase, with urban heat island (UHI) impacts being an order of magnitude higher than direct

  5. Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California

    PubMed Central

    Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob

    2015-01-01

    Background Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. Objective We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. Methods We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. Results In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. Conclusion These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits. Citation Ghosh R, Lurmann F, Perez L, Penfold B, Brandt S, Wilson J, Milet M, Künzli N, McConnell R. 2016. Near-roadway air pollution and coronary heart disease: burden of disease and potential

  6. Greenhouse gas reduction through state and local transportation

    DOT National Transportation Integrated Search

    2003-09-01

    This report will improve understanding of how states and localities might contribute to greenhouse gas (GHG) emissions : reduction through transportation planning. Transportation is a major contributor to GHG emissions. State and local transportation...

  7. Roadside management strategies to reduce greenhouse gases.

    DOT National Transportation Integrated Search

    2010-06-01

    Californias Global Warming Solutions Act of 2006 (AB 32), Sustainable Communities and Climate Protection Act : (SB 375), and Executive Order S-14-08 direct Caltrans to develop actions to reduce greenhouse gases (GHGs). Air : pollution reduction is...

  8. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.

    PubMed

    Thiel, Cassandra L; Woods, Noe C; Bilec, Melissa M

    2018-04-01

    To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices.

  9. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery

    PubMed Central

    Thiel, Cassandra L.; Woods, Noe C.

    2018-01-01

    Objectives. To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. Methods. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). Results. The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. Conclusions. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices. PMID:29698098

  10. Reduction of greenhouse gases by fiber-loaded lightweight, high-opacity newsprint production

    Treesearch

    John H. Klungness; Matthew L. Stroika; Said M. Abubakr

    1999-01-01

    We estimated the effectiveness of fiber loading in reducing greenhouse gas emissions for producing lightweight high-opacity newsprint. Fiber loading enhances fiber bonding at increased precipitated calcium carbonate levels without significant loss in Canadian Standard Freeness or additional energy use. We investigated the reduction of greenhouse gas emissions for a...

  11. Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions

    ERIC Educational Resources Information Center

    Deason, Jeffrey A.; Friedman, Lee S.

    2010-01-01

    Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…

  12. Research to Support California Greenhouse Gas Reduction Programs

    NASA Astrophysics Data System (ADS)

    Croes, B. E.; Charrier-Klobas, J. G.; Chen, Y.; Duren, R. M.; Falk, M.; Franco, G.; Gallagher, G.; Huang, A.; Kuwayama, T.; Motallebi, N.; Vijayan, A.; Whetstone, J. R.

    2016-12-01

    Since the passage of the California Global Warming Solutions Act in 2006, California state agencies have developed comprehensive programs to reduce both long-lived and short-lived climate pollutants. California is already close to achieving its goal of reducing greenhouse (GHG) emissions to 1990 levels by 2020, about a 30% reduction from business as usual. In addition, California has developed strategies to reduce GHG emissions another 40% by 2030, which will put the State on a path to meeting its 2050 goal of an 80% reduction. To support these emission reduction goals, the California Air Resources Board (CARB) and the California Energy Commission have partnered with NASA's Carbon Monitoring System (CMS) program on a comprehensive research program to identify and quantify the various GHG emission source sectors in the state. These include California-specific emission studies and inventories for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emission sources; a Statewide GHG Monitoring Network for these pollutants integrated with the Los Angeles Megacities Carbon Project funded by several federal agencies; efforts to verify emission inventories using inversion modeling and other techniques; mobile measurement platforms and flux chambers to measure local and source-specific emissions; and a large-scale statewide methane survey using a tiered monitoring and measurement program, which will include satellite, airborne, and ground-level measurements of the various regions and source sectors in the State. In addition, there are parallel activities focused on black carbon (BC) and fluorinated gases (F-gases) by CARB. This presentation will provide an overview of results from inventory, monitoring, data analysis, and other research efforts on Statewide, regional, and local sources of GHG emissions in California.

  13. Multi-objective optimisation of wastewater treatment plant control to reduce greenhouse gas emissions.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2014-05-15

    This study investigates the potential of control strategy optimisation for the reduction of operational greenhouse gas emissions from wastewater treatment in a cost-effective manner, and demonstrates that significant improvements can be realised. A multi-objective evolutionary algorithm, NSGA-II, is used to derive sets of Pareto optimal operational and control parameter values for an activated sludge wastewater treatment plant, with objectives including minimisation of greenhouse gas emissions, operational costs and effluent pollutant concentrations, subject to legislative compliance. Different problem formulations are explored, to identify the most effective approach to emissions reduction, and the sets of optimal solutions enable identification of trade-offs between conflicting objectives. It is found that multi-objective optimisation can facilitate a significant reduction in greenhouse gas emissions without the need for plant redesign or modification of the control strategy layout, but there are trade-offs to consider: most importantly, if operational costs are not to be increased, reduction of greenhouse gas emissions is likely to incur an increase in effluent ammonia and total nitrogen concentrations. Design of control strategies for a high effluent quality and low costs alone is likely to result in an inadvertent increase in greenhouse gas emissions, so it is of key importance that effects on emissions are considered in control strategy development and optimisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilello, D.; Katz, J.; Esterly, S.

    2014-09-01

    Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers asmore » they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.« less

  15. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    PubMed

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  16. A Compatible Control Algorithm for Greenhouse Environment Control Based on MOCC Strategy

    PubMed Central

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system. PMID:22163799

  17. Near-Roadway Air Pollution and Coronary Heart Disease: Burden of Disease and Potential Impact of a Greenhouse Gas Reduction Strategy in Southern California.

    PubMed

    Ghosh, Rakesh; Lurmann, Frederick; Perez, Laura; Penfold, Bryan; Brandt, Sylvia; Wilson, John; Milet, Meredith; Künzli, Nino; McConnell, Rob

    2016-02-01

    Several studies have estimated the burden of coronary heart disease (CHD) mortality from ambient regional particulate matter ≤ 2.5 μm (PM2.5). The burden of near-roadway air pollution (NRAP) generally has not been examined, despite evidence of a causal link with CHD. We investigated the CHD burden from NRAP and compared it with the PM2.5 burden in the California South Coast Air Basin for 2008 and under a compact urban growth greenhouse gas reduction scenario for 2035. We estimated the population attributable fraction and number of CHD events attributable to residential traffic density, proximity to a major road, elemental carbon (EC), and PM2.5 compared with the expected disease burden if the population were exposed to background levels of air pollution. In 2008, an estimated 1,300 CHD deaths (6.8% of the total) were attributable to traffic density, 430 deaths (2.4%) to residential proximity to a major road, and 690 (3.7%) to EC. There were 1,900 deaths (10.4%) attributable to PM2.5. Although reduced exposures in 2035 should result in smaller fractions of CHD attributable to traffic density, EC, and PM2.5, the numbers of estimated deaths attributable to each of these exposures are anticipated to increase to 2,500, 900, and 2,900, respectively, due to population aging. A similar pattern of increasing NRAP-attributable CHD hospitalizations was estimated to occur between 2008 and 2035. These results suggest that a large burden of preventable CHD mortality is attributable to NRAP and is likely to increase even with decreasing exposure by 2035 due to vulnerability of an aging population. Greenhouse gas reduction strategies developed to mitigate climate change offer unexploited opportunities for air pollution health co-benefits.

  18. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers.

    PubMed

    Haines, Andy; McMichael, Anthony J; Smith, Kirk R; Roberts, Ian; Woodcock, James; Markandya, Anil; Armstrong, Ben G; Campbell-Lendrum, Diarmid; Dangour, Alan D; Davies, Michael; Bruce, Nigel; Tonne, Cathryn; Barrett, Mark; Wilkinson, Paul

    2009-12-19

    This Series has examined the health implications of policies aimed at tackling climate change. Assessments of mitigation strategies in four domains-household energy, transport, food and agriculture, and electricity generation-suggest an important message: that actions to reduce greenhouse-gas emissions often, although not always, entail net benefits for health. In some cases, the potential benefits seem to be substantial. This evidence provides an additional and immediate rationale for reductions in greenhouse-gas emissions beyond that of climate change mitigation alone. Climate change is an increasing and evolving threat to the health of populations worldwide. At the same time, major public health burdens remain in many regions. Climate change therefore adds further urgency to the task of addressing international health priorities, such as the UN Millennium Development Goals. Recognition that mitigation strategies can have substantial benefits for both health and climate protection offers the possibility of policy choices that are potentially both more cost effective and socially attractive than are those that address these priorities independently. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    DOT National Transportation Integrated Search

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  20. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: a case study of Ribeirão Pires, Brazil.

    PubMed

    King, Megan F; Gutberlet, Jutta

    2013-12-01

    Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasismore » on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.« less

  2. Influences on Adoption of Greenhouse Gas Reduction Targets among US States, 1998-2008

    PubMed Central

    Cale, Tabitha M.; Reams, Margaret A.

    2016-01-01

    While the United States has not established federal regulations for greenhouse gas (GHG) reduction targets, many US states have adopted their own standards and guidelines. In this study we examine state adoption of targets for GHG reductions during the ten-year period of 1998–2008, and identify factors that explain variation in target adoption. Potential influences are drawn from research from the public policy formulation and diffusion literature, and from studies specific to climate policy adoption. Potential influences on GHG reduction efforts among US states include socioeconomic attributes of residents, political and ideological orientations of citizens and state government, interest group activities, environmental pressures, and proximity to other states that have adopted GHG reduction targets. The findings of the multinomial logistic regression analysis indicate that states are more likely to adopt GHG reduction targets if they share a border with another state with a similar climate program and if their citizens are more ideologically liberal. Other factors including socioeconomic resources and interest group activities were not found to be associated with policy adoption. The findings yield insights into the conditions under which states are more likely to take action to reduce GHG’s, and are relevant both to state policy makers and residents with an interest in climate planning, and for researchers attempting to estimate future greenhouse gas reduction scenarios. PMID:27471657

  3. Robust Derivation of Risk Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Richardson, Julian; Port, Daniel; Feather, Martin

    2007-01-01

    Effective risk reduction strategies can be derived mechanically given sufficient characterization of the risks present in the system and the effectiveness of available risk reduction techniques. In this paper, we address an important question: can we reliably expect mechanically derived risk reduction strategies to be better than fixed or hand-selected risk reduction strategies, given that the quantitative assessment of risks and risk reduction techniques upon which mechanical derivation is based is difficult and likely to be inaccurate? We consider this question relative to two methods for deriving effective risk reduction strategies: the strategic method defined by Kazman, Port et al [Port et al, 2005], and the Defect Detection and Prevention (DDP) tool [Feather & Cornford, 2003]. We performed a number of sensitivity experiments to evaluate how inaccurate knowledge of risk and risk reduction techniques affect the performance of the strategies computed by the Strategic Method compared to a variety of alternative strategies. The experimental results indicate that strategies computed by the Strategic Method were significantly more effective than the alternative risk reduction strategies, even when knowledge of risk and risk reduction techniques was very inaccurate. The robustness of the Strategic Method suggests that its use should be considered in a wide range of projects.

  4. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    PubMed

    Cloyd, Raymond A

    2015-04-09

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  5. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies

    PubMed Central

    Cloyd, Raymond A.

    2015-01-01

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems. PMID:26463188

  6. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Megan F., E-mail: mfking@uvic.ca; Gutberlet, Jutta, E-mail: gutber@uvic.ca

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solidmore » waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.« less

  7. Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses

    EPA Pesticide Factsheets

    Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.

  8. Integrated Analysis of Greenhouse Gas Mitigation Options and Related Impacts

    EPA Science Inventory

    Increased concerns over air pollution (combined with detrimental health effects) and climate change have called for more stringent emission reduction strategies for criteria air pollutants and greenhouse gas emissions. However, stringent regulatory policies can possibly have a...

  9. SIMULATION OF NITROUS OXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    USDA-ARS?s Scientific Manuscript database

    Farming practices can have a large impact on the net emission of greenhouse gases including carbon dioxide, methane, and nitrous oxide (N**2O). The primary sources of N**2O from dairy farms are nitrification and denitrification processes in soil, with smaller contributions from manure storage and ba...

  10. SIMULATION OF CARBON DIOXIDE EMISSIONS FROM DAIRY FARMS TO ASSESS GREENHOUSE GAS REDUCTION STRATEGIES

    USDA-ARS?s Scientific Manuscript database

    Farming practices can have a large impact on the soil carbon cycle and the resulting net emission of greenhouse gases including carbon dioxide (CO**2), methane and nitrous oxide. Primary sources of CO**2 emission on dairy farms are soil, plant, and animal respiration with smaller contributions from ...

  11. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    PubMed

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  12. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pena, Federico

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  13. Local Government Strategy Series

    EPA Pesticide Factsheets

    An overview for policy makers and program implementers of greenhouse gas emissions reduction strategies that local governments can use to achieve economic, environmental, social, and human health benefits.

  14. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth

    PubMed Central

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  15. A New Strategy in Observer Modeling for Greenhouse Cucumber Seedling Growth.

    PubMed

    Qiu, Quan; Zheng, Chenfei; Wang, Wenping; Qiao, Xiaojun; Bai, He; Yu, Jingquan; Shi, Kai

    2017-01-01

    State observer is an essential component in computerized control loops for greenhouse-crop systems. However, the current accomplishments of observer modeling for greenhouse-crop systems mainly focus on mass/energy balance, ignoring physiological responses of crops. As a result, state observers for crop physiological responses are rarely developed, and control operations are typically made based on experience rather than actual crop requirements. In addition, existing observer models require a large number of parameters, leading to heavy computational load and poor application feasibility. To address these problems, we present a new state observer modeling strategy that takes both environmental information and crop physiological responses into consideration during the observer modeling process. Using greenhouse cucumber seedlings as an instance, we sample 10 physiological parameters of cucumber seedlings at different time point during the exponential growth stage, and employ them to build growth state observers together with 8 environmental parameters. Support vector machine (SVM) acts as the mathematical tool for observer modeling. Canonical correlation analysis (CCA) is used to select the dominant environmental and physiological parameters in the modeling process. With the dominant parameters, simplified observer models are built and tested. We conduct contrast experiments with different input parameter combinations on simplified and un-simplified observers. Experimental results indicate that physiological information can improve the prediction accuracies of the growth state observers. Furthermore, the simplified observer models can give equivalent or even better performance than the un-simplified ones, which verifies the feasibility of CCA. The current study can enable state observers to reflect crop requirements and make them feasible for applications with simplified shapes, which is significant for developing intelligent greenhouse control systems for modern

  16. Control strategies for nitrous oxide emissions reduction on wastewater treatment plants operation.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2017-11-15

    The present paper focused on reducing greenhouse gases emissions in wastewater treatment plants operation by application of suitable control strategies. Specifically, the objective is to reduce nitrous oxide emissions during the nitrification process. Incomplete nitrification in the aerobic tanks can lead to an accumulation of nitrite that triggers the nitrous oxide emissions. In order to avoid the peaks of nitrous oxide emissions, this paper proposes a cascade control configuration by manipulating the dissolved oxygen set-points in the aerobic tanks. This control strategy is combined with ammonia cascade control already applied in the literature. This is performed with the objective to take also into account effluent pollutants and operational costs. In addition, other greenhouse gases emissions sources are also evaluated. Results have been obtained by simulation, using a modified version of Benchmark Simulation Model no. 2, which takes into account greenhouse gases emissions. This is called Benchmark Simulation Model no. 2 Gas. The results show that the proposed control strategies are able to reduce by 29.86% of nitrous oxide emissions compared to the default control strategy, while maintaining a satisfactory trade-off between water quality and costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Smart Transportation CO2 Emission Reduction Strategies

    NASA Astrophysics Data System (ADS)

    Tarulescu, S.; Tarulescu, R.; Soica, A.; Leahu, C. I.

    2017-10-01

    Transport represents the sector with the fastest growing greenhouse gas emissions around the world. The main global objective is to reduce energy usage and associated greenhouse gas emissions from the transportation sector. For this study it was analyzed the road transportation system from Brasov Metropolitan area. The study was made for the transportation route that connects Ghimbav city to the main surrounding objectives. In this study ware considered four optimization measures: vehicle fleet renewal; building the detour belt for the city; road increasing the average travel speed; making bicycle lanes; and implementing an urban public transport system for Ghimbav. For each measure it was used a mathematical model to calculate the energy consumption and carbon emissions from the road transportation sector. After all four measures was analyzed is calculated the general energy consumption and CO2 reduction if this are applied from year 2017 to 2020.

  18. Environment Eu agrees on cut in greenhouse gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-12

    In an unexpected development, the European Union`s (EU) Council of Environment Ministers has agreed to a 2010 deadline for a 15% reduction in emissions of greenhouse gases. The agreement outlines the European Commission`s strategy for the reduction of greenhouse gases, including carbon dioxide (CO{sub 2}), to be negotiated in the UN conference on climate change to be held in Kyoto, Japan in December (CW, Feb. 26, p. 8). The European Chemical Industry Council (Cefic) says the commission`s target could curb competitiveness and even lead to the closure of some plants. {open_quotes}It`s certainly a target that is unrealistic--2010 is too close.more » Industry needs more time to adjust, assuming that it can at all,{close_quotes} Cefic environment counselor Claude Culem tells CW. {open_quotes}It [is] obviously a unilateral decision [made] by the commission with little [consideration] for industry.{close_quotes}« less

  19. Six steps to a successful dose-reduction strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, M.

    1995-03-01

    The increased importance of demonstrating achievement of the ALARA principle has helped produce a proliferation of dose-reduction ideas. Across a company there may be many dose-reduction items being pursued in a variety of areas. However, companies have a limited amount of resource and, therefore, to ensure funding is directed to those items which will produce the most benefit and that all areas apply a common policy, requires the presence of a dose-reduction strategy. Six steps were identified in formulating the dose-reduction strategy for Rolls-Royce and Associates (RRA): (1) collating the ideas; (2) quantitatively evaluating them on a common basis; (3)more » prioritizing the ideas in terms of cost benefit, (4) implementation of the highest priority items; (5) monitoring their success; (6) periodically reviewing the strategy. Inherent in producing the dose-reduction strategy has been a comprehensive dose database and the RRA-developed dose management computer code DOMAIN, which allows prediction of dose rates and dose. The database enabled high task dose items to be identified, assisted in evaluating dose benefits, and monitored dose trends once items had been implemented. The DOMAIN code was used both in quantifying some of the project dose benefits and its results, such as dose contours, used in some of the dose-reduction items themselves. In all, over fifty dose-reduction items were evaluated in the strategy process and the items which will give greatest benefit are being implemented. The strategy has been successful in giving renewed impetus and direction to dose-reduction management.« less

  20. Requirements for a Global Greenhouse Gas Information System

    NASA Astrophysics Data System (ADS)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  1. Inventories and reduction scenarios of urban waste-related greenhouse gas emissions for management potential.

    PubMed

    Yang, Dewei; Xu, Lingxing; Gao, Xueli; Guo, Qinghai; Huang, Ning

    2018-06-01

    Waste-related greenhouse gas (GHG) emissions have been recognized as one of the prominent contributors to global warming. Current urban waste regulations, however, face increasing challenges from stakeholders' trade-offs and hierarchic management. A combined method, i.e., life cycle inventories and scenario analysis, was employed to investigate waste-related GHG emissions during 1995-2015 and to project future scenarios of waste-driven carbon emissions by 2050 in a pilot low carbon city, Xiamen, China. The process-based carbon analysis of waste generation (prevention and separation), transportation (collection and transfer) and disposal (treatment and recycling) shows that the main contributors of carbon emissions are associated with waste disposal processes, solid waste, the municipal sector and Xiamen Mainland. Significant spatial differences of waste-related CO 2e emissions were observed between Xiamen Island and Xiamen Mainland using the carbon intensity and density indexes. An uptrend of waste-related CO 2e emissions from 2015 to 2050 is identified in the business as usual, waste disposal optimization, waste reduction and the integrated scenario, with mean annual growth rates of 8.86%, 8.42%, 6.90% and 6.61%, respectively. The scenario and sensitivity analysis imply that effective waste-related carbon reduction requires trade-offs among alternative strategies, actions and stakeholders in a feasible plan, and emphasize a priority of waste prevention and collection in Xiamen. Our results could benefit to the future modeling of urban multiple wastes and life-cycle carbon control in similar cities within and beyond China. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Supporting Greenhouse Gas Management Strategies with Observations and Analysis - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tarasova, O. A.

    2014-12-01

    Climate-change challenges facing society in the 21st century require an improved understanding of the global carbon-cycle and of the impacts and feedbacks of past, present, and future emissions of carbon-cycle gases. Global society faces a major challenge of reducing greenhouse gas emissions to virtually zero, most notably those of CO2, while at the same time facing variable and potentially overwhelming Earth System feedbacks. How it goes about this will depend upon the nature of impending international agreements, national laws, regional strategies, and social and economic forces. The challenge to those making observations to support, inform, or verify these reduction efforts, or to address potential Earth System feedbacks, lies in harmonizing a diverse array of observations and observing systems. Doing so is not trivial. Providing coherent, regional-scale information from these observations also requires improved modelling and ensemble reanalysis, but in the end such information must be relevant and reasonably certain. The challenge to us is to ensure a globally coherent observing and analysis system to supply the information that society will need to succeed. Policy-makers, scientists, government agencies, and businesses will need the best information available for decision-making and any observing and analysis system ultimately must be able to provide a coherent story over decades.

  3. Assessing the co-benefits of greenhouse gas reduction: health benefits of particulate matter related inspection and maintenance programs in Bangkok, Thailand.

    PubMed

    Li, Ying; Crawford-Brown, Douglas J

    2011-04-15

    Since the 1990s, the capital city of Thailand, Bangkok has been suffering from severe ambient particulate matter (PM) pollution mainly attributable to its wide use of diesel-fueled vehicles and motorcycles with poor emission performance. While the Thai government strives to reduce emissions from transportation through enforcing policy measures, the link between specific control policies and associated health impacts is inadequately studied. This link is especially important in exploring the co-benefits of greenhouse gas emissions reductions, which often brings reduction in other pollutants such as PM. This paper quantifies the health benefits potentially achieved by the new PM-related I/M programs targeting all diesel vehicles and motorcycles in the Bangkok Metropolitan Area (BMA). The benefits are estimated by using a framework that integrates policy scenario development, exposure assessment, exposure-response assessment and economic valuation. The results indicate that the total health damage due to the year 2000 PM emissions from vehicles in the BMA was equivalent to 2.4% of Thailand's GDP. Under the business-as-usual (BAU) scenario, total vehicular PM emissions in the BMA will increase considerably over time due to the rapid growth in vehicle population, even if the fleet average emission rates are projected to decrease over time as the result of participation of Thailand in post-Copenhagen climate change strategies. By 2015, the total health damage is estimated to increase by 2.5 times relative to the year 2000. However, control policies targeting PM emissions from automobiles, such as the PM-oriented I/M programs, could yield substantial health benefits relative to the BAU scenario, and serve as co-benefits of greenhouse gas control strategies. Despite uncertainty associated with the key assumptions used to estimate benefits, we find that with a high level confidence, the I/M programs will produce health benefits whose economic impacts considerably outweigh

  4. Estimating the Health Effects of Greenhouse Gas Mitigation Strategies: Addressing Parametric, Model, and Valuation Challenges

    PubMed Central

    Hess, Jeremy J.; Ebi, Kristie L.; Markandya, Anil; Balbus, John M.; Wilkinson, Paul; Haines, Andy; Chalabi, Zaid

    2014-01-01

    Background: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. Objective: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. Methods: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. Discussion: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. Conclusion: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while

  5. Greenhouse gas and criteria emission benefits through reduction of vessel speed at sea.

    PubMed

    Khan, M Yusuf; Agrawal, Harshit; Ranganathan, Sindhuja; Welch, William A; Miller, J Wayne; Cocker, David R

    2012-11-20

    Reducing emissions from ocean-going vessels (OGVs) as they sail near populated areas is a widely recognized goal, and Vessel Speed Reduction (VSR) is one of several strategies that is being adopted by regulators and port authorities. The goal of this research was to measure the emission benefits associated with greenhouse gas and criteria pollutants by operating OGVs at reduced speed. Emissions were measured from one Panamax and one post-Panamax class container vessels as their vessel speed was reduced from cruise to 15 knots or below. VSR to 12 knots yielded carbon dioxide (CO(2)) and nitrogen oxides (NO(x)) emissions reductions (in kg/nautical mile (kg/nmi)) of approximately 61% and 56%, respectively, as compared to vessel cruise speed. The mass emission rate (kg/nmi) of PM(2.5) was reduced by 69% with VSR to 12 knots alone and by ~97% when coupled with the use of the marine gas oil (MGO) with 0.00065% sulfur content. Emissions data from vessels while operating at sea are scarce and measurements from this research demonstrated that tidal current is a significant parameter affecting emission factors (EFs) at lower engine loads. Emissions factors at ≤20% loads calculated by methodology adopted by regulatory agencies were found to underestimate PM(2.5) and NO(x) by 72% and 51%, respectively, when compared to EFs measured in this study. Total pollutant emitted (TPE) in the emission control area (ECA) was calculated, and emission benefits were estimated as the VSR zone increased from 24 to 200 nmi. TPE(CO2) and TPE(PM2.5) estimated for large container vessels showed benefits for CO(2) (2-26%) and PM(2.5) (4-57%) on reducing speeds from 15 to 12 knots, whereas TPE(CO2) and TPE(PM2.5) for small and medium container vessels were similar at 15 and 12 knots.

  6. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    PubMed

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  7. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    PubMed Central

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  8. Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions

    PubMed Central

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified. PMID:24696663

  9. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions.

    PubMed

    Songolzadeh, Mohammad; Soleimani, Mansooreh; Takht Ravanchi, Maryam; Songolzadeh, Reza

    2014-01-01

    Increasing concentrations of greenhouse gases (GHGs) such as CO2 in the atmosphere is a global warming. Human activities are a major cause of increased CO2 concentration in atmosphere, as in recent decade, two-third of greenhouse effect was caused by human activities. Carbon capture and storage (CCS) is a major strategy that can be used to reduce GHGs emission. There are three methods for CCS: pre-combustion capture, oxy-fuel process, and post-combustion capture. Among them, post-combustion capture is the most important one because it offers flexibility and it can be easily added to the operational units. Various technologies are used for CO2 capture, some of them include: absorption, adsorption, cryogenic distillation, and membrane separation. In this paper, various technologies for post-combustion are compared and the best condition for using each technology is identified.

  10. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    NASA Astrophysics Data System (ADS)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  11. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study.

    PubMed

    Sokolow, Sharona; Godwin, Hilary; Cole, Brian L

    2016-05-01

    To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public's health. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations.

  12. Health Cobenefits and Transportation-Related Reductions in Greenhouse Gas Emissions in the San Francisco Bay Area

    PubMed Central

    Woodcock, James; Co, Sean; Ostro, Bart; Fanai, Amir; Fairley, David

    2013-01-01

    Objectives. We quantified health benefits of transportation strategies to reduce greenhouse gas emissions (GHGE). Methods. Statistics on travel patterns and injuries, physical activity, fine particulate matter, and GHGE in the San Francisco Bay Area, California, were input to a model that calculated the health impacts of walking and bicycling short distances usually traveled by car or driving low-emission automobiles. We measured the change in disease burden in disability-adjusted life years (DALYs) based on dose–response relationships and the distributions of physical activity, particulate matter, and traffic injuries. Results: Increasing median daily walking and bicycling from 4 to 22 minutes reduced the burden of cardiovascular disease and diabetes by 14% (32 466 DALYs), increased the traffic injury burden by 39% (5907 DALYS), and decreased GHGE by 14%. Low-carbon driving reduced GHGE by 33.5% and cardiorespiratory disease burden by less than 1%. Conclusions: Increased physical activity associated with active transport could generate a large net improvement in population health. Measures would be needed to minimize pedestrian and bicyclist injuries. Together, active transport and low-carbon driving could achieve GHGE reductions sufficient for California to meet legislative mandates. PMID:23409903

  13. Developments in greenhouse gas emissions and net energy use in Danish agriculture - how to achieve substantial CO(2) reductions?

    PubMed

    Dalgaard, T; Olesen, J E; Petersen, S O; Petersen, B M; Jørgensen, U; Kristensen, T; Hutchings, N J; Gyldenkærne, S; Hermansen, J E

    2011-11-01

    Greenhouse gas (GHG) emissions from agriculture are a significant contributor to total Danish emissions. Consequently, much effort is currently given to the exploration of potential strategies to reduce agricultural emissions. This paper presents results from a study estimating agricultural GHG emissions in the form of methane, nitrous oxide and carbon dioxide (including carbon sources and sinks, and the impact of energy consumption/bioenergy production) from Danish agriculture in the years 1990-2010. An analysis of possible measures to reduce the GHG emissions indicated that a 50-70% reduction of agricultural emissions by 2050 relative to 1990 is achievable, including mitigation measures in relation to the handling of manure and fertilisers, optimization of animal feeding, cropping practices, and land use changes with more organic farming, afforestation and energy crops. In addition, the bioenergy production may be increased significantly without reducing the food production, whereby Danish agriculture could achieve a positive energy balance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Transit Greenhouse Gas Management Compendium

    DOT National Transportation Integrated Search

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  15. Electrification of the transportation sector offers limited country-wide greenhouse gas reductions

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2014-03-01

    Compared with conventional propulsion, plugin and hybrid vehicles may offer reductions in greenhouse gas (GHG) emissions, regional air/noise pollution, petroleum dependence, and ownership cost. Comparing only plugins and hybrids amongst themselves, and focusing on GHG, relative merits of different options have been shown to be more nuanced, depending on grid-carbon-intensity, range and thus battery manufacturing and weight, and trip patterns. We present a life-cycle framework to compare GHG emissions for three drivetrains (plugin-electricity-only, gasoline-only-hybrid, and plugin-hybrid) across driving ranges and grid-carbon-intensities, for passenger cars, vans, buses, or trucks (well-to-wheel plus storage manufacturing). Parameter and model uncertainties are quantified via sensitivity analyses. We find that owing to the interplay of range, GHG/km, and portions of country-wide kms accessible to electrification, GHG reductions achievable from plugins (whether electricity-only or hybrids) are limited even when assuming low-carbon future grids. Furthermore, for policy makers considering GHG from electricity and transportation sectors combined, plugin technology may in fact increase GHG compared to gasoline-only-hybrids, regardless of grid-carbon-intensity.

  16. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    PubMed

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  17. Impacts of Urban Water Conservation Strategies on Energy, Greenhouse Gas Emissions, and Health: Southern California as a Case Study

    PubMed Central

    Sokolow, Sharona; Godwin, Hilary

    2016-01-01

    Objectives. To determine how urban water conservation strategies in California cities can affect water and energy conservation efforts, reduce greenhouse gas emissions, and benefit public health. Methods. We expanded upon our 2014 health impact assessment of California's urban water conservation strategies by comparing the status quo to 2 options with the greatest potential impact on the interrelated issues of water and energy in California: (1) banning landscape irrigation and (2) expanding alternative water sources (e.g., desalination, recycled water). Results. Among the water conservation strategies evaluated, expanded use of recycled water stood out as the water conservation strategy with potential to reduce water use, energy use, and greenhouse gas emissions, with relatively small negative impacts for the public’s health. Conclusions. Although the suitability of recycled water for urban uses depends on local climate, geography, current infrastructure, and finances, analyses similar to that presented here can help guide water policy decisions in cities across the globe facing challenges of supplying clean, sustainable water to urban populations. PMID:26985606

  18. Benefits of improved municipal solid waste management on greenhouse gas reduction in Luangprabang, Laos.

    PubMed

    Vilaysouk, Xaysackda; Babel, Sandhya

    2017-07-01

    Climate change is a consequence of greenhouse gas emissions. Greenhouse gas (GHG) emissions from the waste sector contribute to 3% of total anthropogenic emissions. In this study, applicable solutions for municipal solid waste (MSW) management in Luangprabang (LPB) and Laos were examined. Material flow analysis of MSW was performed to estimate the amount of MSW generated in 2015. Approximately 29,419 tonnes of MSW is estimated for 2015. Unmanaged landfilling was the main disposal method, while MSW open burning was also practiced to some extent. The International Panel on Climate Change 2006 model and the Atmospheric Brown Clouds Emission Inventory Manual were used to estimate GHG emissions from existing MSW management, and total emissions are 33,889 tonnes/year carbon dioxide-equivalents (CO 2 -eq). Three scenarios were developed in order to reduce GHG emissions and environmental problems. Improvement of the MSW management by expanding MSW collection services, introducing composting and recycling, and avoiding open burning, can be considered as solutions to overcome the problems for LPB. The lowest GHG emissions are achieved in the scenario where composting and recycling are proposed, with the total GHG emissions reduction by 18,264 tonnes/year CO 2 -eq.

  19. How ground-based observations can support satellite greenhouse gas retrievals

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Dlugokencky, E. J.

    2012-04-01

    Global society will eventually accelerate efforts to reduce greenhouse gas emissions in a variety of ways. These would likely involve international treaties, national policies, and regional strategies that will affect a number of economic, social, and environmental sectors. Some strategies will work better than others and some will not work at all. Because trillions of dollars will be involved in pursuing greenhouse gas emission reductions - through realignment of energy production, improvement of efficiencies, institution of taxes, implementation of carbon trading markets, and use of offsets - it is imperative that society be given all the tools at its disposal to ensure the ultimate success of these efforts. Providing independent, globally coherent information on the success of these efforts will give considerable strength to treaties, policies, and strategies. Doing this will require greenhouse gas observations greatly expanded from what we have today. Satellite measurements may ultimately be indispensable in achieving global coverage, but the requirements for accuracy and continuity of measurements over time are demanding if the data are to be relevant. Issues such as those associated with sensor drift, aging electronics, and retrieval artifacts present challenges that can be addressed in part by close coordination with ground-based and in situ systems. This presentation identifies the information that ground-based systems provide very well, but it also looks at what would be deficient even in a greatly expanded surface system, where satellites can fill these gaps, and how on-going, ground and in situ measurements can aid in addressing issues associated with accuracy, long-term continuity, and retrieval artifacts.

  20. Evaluation of Contrail Reduction Strategies Based on Aircraft Flight Distances

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Li, Jinhua; Ng, Hok Kwan

    2012-01-01

    This paper evaluates a set of contrail reduction strategies based on the flight range of aircraft as contrail reduction strategies have different impacts on aircraft depending on how they plan to fly. In general, aircraft with longer flight distances cruise at the altitudes where contrails are more likely to form. The concept of the contrail frequency index is used to quantify contrail impacts. The strategy for reducing the persistent contrail formation is to minimize the contrail frequency index by altering the aircraft's cruising altitude. A user-defined factor is used to trade off between contrail reduction and extra CO2 emissions. A higher value of tradeoff factor results in more contrail reduction and extra CO2 emissions. Results show that contrail reduction strategies using various tradeo factors behave differently from short-range flights to long-range ights. Analysis shows that short-distance flights (less than 500 miles) are the most frequent flights but contribute least to contrail reduction. Therefore these aircraft have the lowest priority when applying contrail reduction strategies. Medium-distance flights (500 to 1000 miles) have a higher priority if the goal is to achieve maximum contrail reduction in total; long-distance flights (1000 to 1500 miles) have a higher priority if the goal is to achieve maximum contrail reduction per flight. The characteristics of transcontinental flights (greater than 1500 miles) vary with different weather days so the priority of applying contrail reduction strategies to the group needs to be evaluated based on the locations of the contrail areas during any given day. For the days tested, medium-distance ights contribute up to 42.6% of the reduction among the groups during a day. The contrail frequency index per 1,000 miles for medium-distance, long-distance, and transcontinental flights can be reduced by an average of 75%. The results provide a starting point for developing operational policies to reduce the impact of

  1. Engineering concepts for inflatable Mars surface greenhouses

    NASA Technical Reports Server (NTRS)

    Hublitz, I.; Henninger, D. L.; Drake, B. G.; Eckart, P.

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  2. Engineering concepts for inflatable Mars surface greenhouses.

    PubMed

    Hublitz, I; Henninger, D L; Drake, B G; Eckart, P

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power.

    PubMed

    Schivley, Greg; Ingwersen, Wesley W; Marriott, Joe; Hawkins, Troy R; Skone, Timothy J

    2015-07-07

    Improvements to coal power plant technology and the cofired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in unintended increases in impacts to air and water quality and human health. This study provides a unique analysis of the potential environmental impact reductions from upgrading existing subcritical pulverized coal power plants to increase their efficiency, improving environmental controls, cofiring biomass, and exporting steam for industrial use. The climate impacts are examined in both a traditional-100 year GWP-method and a time series analysis that accounts for emission and uptake timing over the life of the power plant. Compared to fleet average pulverized bed boilers (33% efficiency), we find that circulating fluidized bed boilers (39% efficiency) may provide GHG reductions of about 13% when using 100% coal and reductions of about 20-37% when cofiring with 30% biomass. Additional greenhouse gas reductions from combined heat and power are minimal if the steam coproduct displaces steam from an efficient natural gas boiler. These upgrades and cofiring biomass can also reduce other life cycle impacts, although there may be increased impacts to water quality (eutrophication) when using biomass from an intensely cultivated source. Climate change impacts are sensitive to the timing of emissions and carbon sequestration as well as the time horizon over which impacts are considered, particularly for long growth woody biomass.

  4. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.

    PubMed

    Baur, Albert H; Lauf, Steffen; Förster, Michael; Kleinschmit, Birgit

    2015-07-01

    Substantive and concerted action is needed to mitigate climate change. However, international negotiations struggle to adopt ambitious legislation and to anticipate more climate-friendly developments. Thus, stronger actions are needed from other players. Cities, being greenhouse gas emission centers, play a key role in promoting the climate change mitigation movement by becoming hubs for smart and low-carbon lifestyles. In this context, a stronger linkage between greenhouse gas emissions and urban development and policy-making seems promising. Therefore, simple approaches are needed to objectively identify crucial emission drivers for deriving appropriate emission reduction strategies. In analyzing 44 European cities, the authors investigate possible socioeconomic and spatial determinants of urban greenhouse gas emissions. Multiple statistical analyses reveal that the average household size and the edge density of discontinuous dense urban fabric explain up to 86% of the total variance of greenhouse gas emissions of EU cities (when controlled for varying electricity carbon intensities). Finally, based on these findings, a multiple regression model is presented to determine greenhouse gas emissions. It is independently evaluated with ten further EU cities. The reliance on only two indicators shows that the model can be easily applied in addressing important greenhouse gas emission sources of European urbanites, when varying power generations are considered. This knowledge can help cities develop adequate climate change mitigation strategies and promote respective policies on the EU or the regional level. The results can further be used to derive first estimates of urban greenhouse gas emissions, if no other analyses are available. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identifying/Quantifying Environmental Trade-offs Inherent in GHG Reduction Strategies for Coal-Fired Power. Environmental Science and Technology

    EPA Science Inventory

    Improvements to coal power plant technology and the co-fired combustion of biomass promise direct greenhouse gas (GHG) reductions for existing coal-fired power plants. Questions remain as to what the reduction potentials are from a life cycle perspective and if it will result in ...

  6. Preschoolers Explore Greenhouses by Visiting a Greenhouse, Making a Model, and Growing Plants

    ERIC Educational Resources Information Center

    Perkins, Leann M.; Stoycheva, Dessy

    2016-01-01

    This practical lesson on greenhouses implements standards of the Next Generation Science Standards ("K-2 ETS I-2"; "K-LS1-1") and the preschool objectives from the Teaching Strategies GOLD. Teaching Strategies GOLD is an assessment tool available online and in print that can be used with any developmentally appropriate early…

  7. The contribution of waste management to the reduction of greenhouse gas emissions with applications in the city of Bucharest.

    PubMed

    Sandulescu, Elena

    2004-12-01

    Waste management is a key process to protect the environment and conserve resources. The contribution of appropriate waste management measures to the reduction of greenhouse gas (GHG) emissions from the city of Bucharest was studied. An analysis of the distribution of waste flows into various treatment options was conducted using the material flows and stocks analysis (MFSA). An optimum scenario (i.e. municipal solid waste stream managed as: recycling of recoverable materials, 8%; incineration of combustibles, 60%; landfilling of non-combustibles, 32%) was modelled to represent the future waste management in Bucharest with regard to its relevance towards the potential for GHG reduction. The results indicate that it can contribute by 5.5% to the reduction of the total amount of GHGs emitted from Bucharest.

  8. Deep Reductions in Greenhouse Gas Emissions from the California Transportation Sector: Dynamics in Vehicle Fleet and Energy Supply Transitions to Achieve 80% Reduction in Emissions from 1990 Levels by 2050

    NASA Astrophysics Data System (ADS)

    Leighty, Wayne Waterman

    California's "80in50" target for reducing greenhouse gas emissions to 80 percent below 1990 levels by the year 2050 is based on climate science rather than technical feasibility of mitigation. As such, it raises four fundamental questions: is this magnitude of reduction in greenhouse gas emissions possible, what energy system transitions over the next 40 years are necessary, can intermediate policy goals be met on the pathway toward 2050, and does the path of transition matter for the objective of climate change mitigation? Scenarios for meeting the 80in50 goal in the transportation sector are modelled. Specifically, earlier work defining low carbon transport scenarios for the year 2050 is refined by incorporating new information about biofuel supply. Then transition paths for meeting 80in50 scenarios are modelled for the light-duty vehicle sub-sector, with important implications for the timing of action, rate of change, and cumulative greenhouse gas emissions. One aspect of these transitions -- development in the California wind industry to supply low-carbon electricity for plug-in electric vehicles -- is examined in detail. In general, the range of feasible scenarios for meeting the 80in50 target is narrow enough that several common themes are apparent: electrification of light-duty vehicles must occur; continued improvements in vehicle efficiency must be applied to improving fuel economy; and energy carriers must de-carbonize to less than half of the carbon intensity of gasoline and diesel. Reaching the 80in50 goal will require broad success in travel demand reduction, fuel economy improvements and low-carbon fuel supply, since there is little opportunity to increase emission reductions in one area if we experience failure in another. Although six scenarios for meeting the 80in50 target are defined, only one also meets the intermediate target of reducing greenhouse gas emissions to 1990 levels by the year 2020. Furthermore, the transition path taken to reach any

  9. Project identification for methane reduction options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of themore » projects, and additional gains which come from the projects.« less

  10. Public health co-benefits of greenhouse gas emissions reduction: A systematic review.

    PubMed

    Gao, Jinghong; Kovats, Sari; Vardoulakis, Sotiris; Wilkinson, Paul; Woodward, Alistair; Li, Jing; Gu, Shaohua; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Song, Xiaoqin; Zhai, Yunkai; Zhao, Jie; Liu, Qiyong

    2018-06-15

    Public health co-benefits from curbing climate change can make greenhouse gas (GHG) mitigation strategies more attractive and increase their implementation. The purpose of this systematic review is to summarize the evidence of these health co-benefits to improve our understanding of the mitigation measures involved, potential mechanisms, and relevant uncertainties. A comprehensive search for peer-reviewed studies published in English was conducted using the primary electronic databases. Reference lists from these articles were reviewed and manual searches were performed to supplement relevant studies. The identified records were screened based on inclusion criteria. We extracted data from the final retrieved papers using a pre-designed data extraction form and a quality assessment was conducted. The studies were heterogeneities, so meta-analysis was not possible and instead evidence was synthesized using narrative summaries. Thirty-six studies were identified. We identified GHG mitigation strategies in five domains - energy generation, transportation, food and agriculture, households, and industry and economy - which usually, although not always, bring co-benefits for public health. These health gains are likely to be multiplied by comprehensive measures that include more than one sectors. GHG mitigation strategies can bring about substantial and possibly cost-effective public health co-benefits. These findings are highly relevant to policy makers and other stakeholders since they point to the compounding value of taking concerted action against climate change and air pollution. Copyright © 2018. Published by Elsevier B.V.

  11. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam.

    PubMed

    Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.

  12. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    PubMed Central

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  13. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.

    PubMed

    Melaina, M; Webster, K

    2011-05-01

    Recent U.S. climate change policy developments include aggressive proposals to reduce greenhouse gas emissions, including cap-and-trade legislation with a goal of an 83% reduction below 2005 levels by 2050. This study examines behavioral and technological changes required to achieve this reduction within the light-duty vehicle (LDV) sector. Under this "fair share" sectoral assumption, aggressive near-term actions are necessary in three areas: vehicle miles traveled (VMT), vehicle fuel economy (FE), and fuel carbon intensity (FCI). Two generic scenarios demonstrate the important role of FCI in meeting the 2050 goal. The first scenario allows deep reductions in FCI to compensate for relatively modest FE improvements and VMT reductions. The second scenario assumes optimistic improvements in FE, relatively large reductions in VMT and less aggressive FCI reductions. Each generic scenario is expanded into three illustrative scenarios to explore the theoretical implications of meeting the 2050 goal by relying exclusively on biofuels and hybrid vehicles, biofuels and plug-in hybrid vehicles, or hydrogen fuel cell electric vehicles. These scenarios inform a discussion of resource limitations, technology development and deployment challenges, and policy goals required to meet the 2050 GHG goal for LDVs.

  14. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    PubMed

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-09-01

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Per-pack price reductions available from different cigarette purchasing strategies: United States, 2009-2010.

    PubMed

    Pesko, Michael F; Xu, Xin; Tynan, Michael A; Gerzoff, Robert B; Malarcher, Ann M; Pechacek, Terry F

    2014-06-01

    Following cigarette excise tax increases, smokers may use cigarette price minimization strategies to continue their usual cigarette consumption rather than reducing consumption or quitting. This reduces the public health benefits of the tax increase. This paper estimates the price reductions for a wide-range of strategies, compensating for overlapping strategies. We performed regression analysis on the 2009-2010 National Adult Tobacco Survey (N=13,394) to explore price reductions that smokers in the United States obtained from purchasing cigarettes. We examined five cigarette price minimization strategies: 1) purchasing discount brand cigarettes, 2) using price promotions, 3) purchasing cartons, 4) purchasing on Indian reservations, and 5) purchasing online. Price reductions from these strategies were estimated jointly to compensate for overlapping strategies. Each strategy provided price reductions between 26 and 99cents per pack. Combined price reductions were possible. Additionally, price promotions were used with regular brands to obtain larger price reductions than when price promotions were used with generic brands. Smokers can realize large price reductions from price minimization strategies, and there are many strategies available. Policymakers and public health officials should be aware of the extent that these strategies can reduce cigarette prices. Published by Elsevier Inc.

  16. Reduction in greenhouse gas emissions from sludge biodrying instead of heat drying combined with mono-incineration in China.

    PubMed

    Liu, Hong-Tao; Wang, Yan-Wen; Liu, Xiao-Jie; Gao, Ding; Zheng, Guo-di; Lei, Mei; Guo, Guang-Hui; Zheng, Hai-Xia; Kong, Xiang-Juan

    2017-02-01

    Sludge is an important source of greenhouse gas (GHG) emissions, both in the form of direct process emissions and as a result of indirect carbon-derived energy consumption during processing. In this study, the carbon budgets of two sludge disposal processes at two well-known sludge disposal sites in China (for biodrying and heat-drying pretreatments, both followed by mono-incineration) were quantified and compared. Total GHG emissions from heat drying combined with mono-incineration was 0.1731 tCO 2 e t -1 , while 0.0882 tCO 2 e t -1 was emitted from biodrying combined with mono-incineration. Based on these findings, a significant reduction (approximately 50%) in total GHG emissions was obtained by biodrying instead of heat drying prior to sludge incineration. Sludge treatment results in direct and indirect greenhouse gas (GHG) emissions. Moisture reduction followed by incineration is commonly used to dispose of sludge in China; however, few studies have compared the effects of different drying pretreatment options on GHG emissions during such processes. Therefore, in this study, the carbon budgets of sludge incineration were analyzed and compared following different pretreatment drying technologies (biodrying and heat drying). The results indicate that biodrying combined with incineration generated approximately half of the GHG emissions compared to heat drying followed by incineration. Accordingly, biodrying may represent a more environment-friendly sludge pretreatment prior to incineration.

  17. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi

    2017-01-03

    The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.

  18. Co-control of urban air pollutants and greenhouse gases in Mexico City.

    PubMed

    West, J Jason; Osnaya, Patricia; Laguna, Israel; Martínez, Julia; Fernández, Adrián

    2004-07-01

    This study addresses the synergies of mitigation measures to control urban air pollutant and greenhouse gas (GHG) emissions, in developing integrated "co-control" strategies for Mexico City. First, existing studies of emissions reduction measures--PROAIRE (the air quality plan for Mexico City) and separate GHG studies--are used to construct a harmonized database of options. Second, linear programming (LP) is developed and applied as a decision-support tool to analyze least-cost strategies for meeting co-control targets for multiple pollutants. We estimate that implementing PROAIRE measures as planned will reduce 3.1% of the 2010 metropolitan CO2 emissions, in addition to substantial local air pollutant reductions. Applying the LP, PROAIRE emissions reductions can be met at a 20% lower cost, using only the PROAIRE measures, by adjusting investments toward the more cost-effective measures; lower net costs are possible by including cost-saving GHG mitigation measures, but with increased investment. When CO2 emission reduction targets are added to PROAIRE targets, the most cost-effective solutions use PROAIRE measures for the majority of local pollutant reductions, and GHG measures for additional CO2 control. Because of synergies, the integrated planning of urban-global co-control can be beneficial, but we estimate that for Mexico City these benefits are often small.

  19. Poverty Reduction in Zambia: A Conceptual Analysis of the Zambian Poverty Reduction Strategy Paper

    ERIC Educational Resources Information Center

    Imboela, Bruce Lubinda

    2005-01-01

    Poverty reduction strategy papers (PRSPs) present a recipient country's program of intent for the utilization of World Bank loans and grants to alleviate debt under the bank's programs of action for poverty reduction in highly indebted poor countries (HIPCs). This article argues that structural transformation is a prerequisite for poverty…

  20. Biological control strategies for the South American tomato moth (Lepidoptera: Gelechiidae) in greenhouse tomatoes.

    PubMed

    Cabello, Tomas; Gallego, Juan R; Fernandez, Francisco J; Gamez, Manuel; Vila, Enric; Del Pino, Modesto; Hernandez-Suarez, Estrella

    2012-12-01

    The South American tomato pinworm, Tuta absoluta (Meyrick) has been introduced into new geographic areas, including the Mediterranean region, where it has become a serious threat to tomato production. Three greenhouse trials conducted in tomato crops during 2009 and 2010 explored control strategies using the egg-parasitoid Trichogramma achaeae Nagaraja and Nagarkatti compared with chemical control. The effectiveness of the predator Nesidiocoris tenuis (Reuter) was also tested. In greenhouses with early pest infestations (discrete generations), periodic inundative releases (eight releases at a rate of 50 adults/m2, twice a week) were necessary to achieve an adequate parasitism level (85.63 +/- 5.70%) early in the growing season. However, only one inoculative release (100 adults/m2) was sufficient to achieve a comparatively high parasitism level (91.03 +/- 12.58%) under conditions of high pest incidence and overlapping generations. Some intraguild competition was observed between T. achaeae and the predator, N. tenuis. This mirid species is commonly used in Mediterranean greenhouse tomato crops for the control of the sweetpotato whitefly, Bemisia tabaci (Gennadius). Tomato cultivars were also observed to influence the activity of natural enemies, mainly N. tenuis (whose average numbers ranged between 0.17 +/- 0.03 and 0.41 +/- 0.05 nymphs per leaf depending on the cultivar). This may be because of differences in plant nutrients in different cultivars, which may affect the feeding of omnivorous insects. In contrast, cultivar effects on T. achaeae were less apparent or possibly nonexistent. Nevertheless, there was an indirect effect in as much as T. achaeae was favored in cultivars not liked by N. tenuis.

  1. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.

  2. Energy Market Impacts of Alternative Greenhouse Gas Intensity Reduction Goals

    EIA Publications

    2006-01-01

    This report responds to a request from Senator Ken Salazar that the Energy Information Administration (EIA) analyze the impacts of implementing alternative variants of an emissions cap-and-trade program for greenhouse gases (GHGs).

  3. Ontario's Poverty Reduction Strategy: A Critical Discourse Analysis.

    PubMed

    Benbow, Sarah; Gorlick, Carolyne; Forchuk, Cheryl; Ward-Griffin, Catherine; Berman, Helene

    2016-01-01

    This article overviews the second phase of a two-phase study which examined experiences of health and social exclusion among mothers experiencing homelessness in Ontario, Canada. A critical discourse analysis was employed to analyze the policy document, Realizing Our Potential: Ontario's Poverty Reduction Strategy, 2014-2019. In nursing, analysis of policy is an emerging form of scholarship, one that draws attention to the macro levels influencing health and health promotion, such as the social determinants of health, and the policies that impact them. The clear neo-liberal underpinnings, within the strategy, with a focus on productivity and labor market participation leave little room for an understanding of poverty reduction from a human rights perspective. Further, gender-neutrality rendered the poverty experienced by women, and mothers, invisible. Notably, there were a lack of deadlines, target dates, and thorough action and evaluation plans. Such absence troubles whether poverty reduction is truly a priority for the government, and society as a whole.

  4. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    DOT National Transportation Integrated Search

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  5. Calculation of energy recovery and greenhouse gas emission reduction from palm oil mill effluent treatment by an anaerobic granular-sludge process.

    PubMed

    Show, K Y; Ng, C A; Faiza, A R; Wong, L P; Wong, L Y

    2011-01-01

    Conventional aerobic and low-rate anaerobic processes such as pond and open-tank systems have been widely used in wastewater treatment. In order to improve treatment efficacy and to avoid greenhouse gas emissions, conventional treatment can be upgraded to a high performance anaerobic granular-sludge system. The anaerobic granular-sludge systems are designed to capture the biogas produced, rendering a potential for claims of carbon credits under the Kyoto Protocol for reducing emissions of greenhouse gases. Certified Emission Reductions (CERs) would be issued, which can be exchanged between businesses or bought and sold in international markets at the prevailing market prices. As the advanced anaerobic granular systems are capable of handling high organic loadings concomitant with high strength wastewater and short hydraulic retention time, they render more carbon credits than other conventional anaerobic systems. In addition to efficient waste degradation, the carbon credits can be used to generate revenue and to finance the project. This paper presents a scenario on emission avoidance based on a methane recovery and utilization project. An example analysis on emission reduction and an overview of the global emission market are also outlined.

  6. Policy suggestions to carry out the research on the standards of greenhouse gas emission allowances in key industries

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Liu, Mei; Zong, Jianfang; Guo, Huiting; Sun, Liang

    2018-05-01

    On the basis of summarizing and combing the functions and effects of the long-term implementation of the serial standards on the limitation of energy consumption per unit product in China, this paper focuses on the analysis of the practical demands of the green house gas emission allowances for key industrial enterprises, and puts forward the suggestions on the formulation of relevant standards. The differences and connections between the present standards of the energy consumption per unit product and future standards of greenhouse gas emission allowances in the key industries are discussed. The proposal is provided to the administrations with helpful guidelines and promotes enterprises to establish the clearer GHG emission reduction strategies and to reduce their greenhouse gas emissions. These suggestions will provide guarantee for realizing the target of reducing greenhouse gas emissions in China.

  7. Polish country study to address climate change: Strategies of the GHG`s emission reduction and adaptation of the Polish economy to the changed climate. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-01

    The Polish Country Study Project was initiated in 1992 as a result of the US Country Study Initiative whose objective was to grant the countries -- signatories of the United Nations` Framework Convention on Climate Change -- assistance that will allow them to fulfill their obligations in terms of greenhouse gases (GHG`s) inventory, preparation of strategies for the reduction of their emission, and adapting their economies to the changed climatic conditions. In February 1993, in reply to the offer from the United States Government, the Polish Government expressed interest in participation in this program. The Study proposal, prepared by themore » Ministry of Environmental Protection, Natural Resources and Forestry was presented to the US partner. The program proposal assumed implementation of sixteen elements of the study, encompassing elaboration of scenarios for the strategy of mission reduction in energy sector, industry, municipal management, road transport, forestry, and agriculture, as well as adaptations to be introduced in agriculture, forestry, water management, and coastal management. The entire concept was incorporated in macroeconomic strategy scenarios. A complementary element was the elaboration of a proposal for economic and legal instruments to implement the proposed strategies. An additional element was proposed, namely the preparation of a scenario of adapting the society to the expected climate changes.« less

  8. Greenhouse gas emission reduction: A case study of Sri Lanka

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, P.; Munasinghe, M.

    1995-12-31

    In this paper we describe a case study for Sri Lanka that explores a wide range of options for reducing greenhouse gas (GHG) emissions. Options range from renewable technologies to carbon taxes and transportation sector initiatives. We find that setting electricity prices to reflect long-run marginal cost has a significant beneficial impact on the environment, and the expected benefits predicted on theoretical grounds are confirmed by the empirical results. Pricing reform also has a much broader impact than physical approaches to demand side management, although several options such as compact fluorescent lighting appear to have great potential. Options to reducemore » GHG emissions are limited as Sri Lanka lacks natural gas, and nuclear power is not practical until the system reaches a much larger size. Building the few remaining large hydro facilities would significantly reduce GHG emissions, but these would require costly resettlement programs. Given the inevitability for fossil-fuel base load generation, both clean coal technologies such as pressurized fluidized bed combustion, as well as steam-cycle residual oil fueled plants merit consideration as alternatives to the conventional pulverized coal-fired plants currently being considered. Transportation sector measures necessary to ameliorate local urban air pollution problems, such as vehicle inspection and maintenance programs, also bring about significant reductions of GHG emissions. 51 refs., 10 figs., 3 tabs.« less

  9. [Reduction of meat consumption and greenhouse gas emissions associated with health benefits in Italy].

    PubMed

    Farchi, Sara; Lapucci, Enrica; Michelozzi, Paola

    2015-01-01

    the reduction in red meat consumption has been proposed as one of the climate change mitigation policies associated to health benefits. In the developed world, red meat consumption is above the recommended intake level. the aim is to evaluate health benefits, in term of mortality decline, associated to different bovine meat consumption reduction scenarios and the potential reduction in greenhouse gas (GHG) emissions. meat consumption in Italy has been estimated using the Italian National Food Consumption Survey INRAN-SCAI (2005-2006) and the Multipurpose survey on household (2012) of the Italian National Institute for Statistics. Colorectal cancer and stoke mortality data are derived from the national survey on causes of death in 2012. Bovine meat consumption risk function has been retrieved from systematic literature reviews. Mean meat consumption in Italy is equal to 770 grams/week; gender and geographical variations exist: 69 per cent of the adult population are habitual bovine meat consumers; males have an average intake of over 400 grams/week in all areas of Italy (with the exception of the South), while females have lower intakes (360 grams per week), with higher consumption in the North-West (427 gr) and lower in the South of Italy. Four scenarios of reduction of bovine meat consumption (20%, 40%, 50% e 70%, respectively) have been evaluated and the number of avoidable deaths by gender and area of residence have been estimated. GHG emissions attributed to bovine meat adult consumption have been estimated to be to 10 gigagrams CO2-eq. from low to high reduction scenario, the percentage of avoidable deaths ranged from 2.1% to 6.5% for colorectal cancer and from 1.6% to 5.6% for stroke. Health benefits were greatest for males and for people living in the North-Western regions of Italy. in Italy, in order to adhere to bovine meat consumption recommendations and to respect EU GHG emission reduction targets, scenarios between 50% and 70% need to be adopted.

  10. Modeling travel choices to assess potential greenhouse gas emissions reductions.

    DOT National Transportation Integrated Search

    2015-06-01

    The transportation sector is the source of approximately 27% of total U.S. greenhouse gas : (GHG) emissions (EPA, 2015), and these emissions are projected to increase in the future : (NHTSA, 2011). Given the potentially severe impacts of climate chan...

  11. Where do California's greenhouse gases come from?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Marc

    2009-12-11

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaborationmore » between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.« less

  12. Development of pollution reduction strategies for Mexico City: Estimating cost and ozone reduction effectiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.; Hardie, R.W.; Barrera-Roldan, A.

    1993-12-31

    This reports on the collection and preparation of data (costs and air quality improvement) for the strategic evaluation portion of the Mexico City Air Quality Research Initiative (MARI). Reports written for the Mexico City government by various international organizations were used to identify proposed options along with estimates of cost and emission reductions. Information from appropriate options identified by SCAQMD for Southem California were also used in the analysis. A linear optimization method was used to select a group of options or a strategy to be evaluated by decision analysis. However, the reduction of ozone levels is not a linearmore » function of the reduction of hydrocarbon and NO{sub x} emissions. Therefore, a more detailed analysis was required for ozone. An equation for a plane on an isopleth calculated with a trajectory model was obtained using two endpoints that bracket the expected total ozone precursor reductions plus the starting concentrations for hydrocarbons and NO{sub x}. The relationship between ozone levels and the hydrocarbon and NO{sub x} concentrations was assumed to lie on this plane. This relationship was used in the linear optimization program to select the options comprising a strategy.« less

  13. Single and Multiple Microphone Noise Reduction Strategies in Cochlear Implants

    PubMed Central

    Azimi, Behnam; Hu, Yi; Friedland, David R.

    2012-01-01

    To restore hearing sensation, cochlear implants deliver electrical pulses to the auditory nerve by relying on sophisticated signal processing algorithms that convert acoustic inputs to electrical stimuli. Although individuals fitted with cochlear implants perform well in quiet, in the presence of background noise, the speech intelligibility of cochlear implant listeners is more susceptible to background noise than that of normal hearing listeners. Traditionally, to increase performance in noise, single-microphone noise reduction strategies have been used. More recently, a number of approaches have suggested that speech intelligibility in noise can be improved further by making use of two or more microphones, instead. Processing strategies based on multiple microphones can better exploit the spatial diversity of speech and noise because such strategies rely mostly on spatial information about the relative position of competing sound sources. In this article, we identify and elucidate the most significant theoretical aspects that underpin single- and multi-microphone noise reduction strategies for cochlear implants. More analytically, we focus on strategies of both types that have been shown to be promising for use in current-generation implant devices. We present data from past and more recent studies, and furthermore we outline the direction that future research in the area of noise reduction for cochlear implants could follow. PMID:22923425

  14. Impact of a surgical site infection reduction strategy after colorectal resection.

    PubMed

    Connolly, T M; Foppa, C; Kazi, E; Denoya, P I; Bergamaschi, R

    2016-09-01

    This study was performed to determine the impact of a surgical site infection (SSI) reduction strategy on SSI rates following colorectal resection. American College of Surgeons National Surgical Quality Improvement Program (NSQIP) data from 2006-14 were utilized and supplemented by institutional review board-approved chart review. The primary end-point was superficial and deep incisional SSI. The inclusion criterion was colorectal resection. The SSI reduction strategy consisted of preoperative (blood glucose, bowel preparation, shower, hair removal), intra-operative (prophylactic antibiotics, antimicrobial incisional drape, wound protector, wound closure technique) and postoperative (wound dressing technique) components. The SSI reduction strategy was prospectively implemented and compared with historical controls (pre-SSI strategy arm). Statistical analysis included Pearson's chi-square test, and Student's t-test performed with spss software. Of 1018 patients, 379 were in the pre-SSI strategy arm, 311 in the SSI strategy arm and 328 were included to test durability. The study arms were comparable for all measured parameters. Preoperative wound class, operation time, resection type and stoma creation did not differ significantly. The SSI strategy arm demonstrated a significant decrease in overall SSI rates (32.19% vs 18.97%) and superficial SSI rates (23.48% vs 8.04%). Deep SSI and organ space rates did not differ. A review of patients testing durability demonstrated continued improvement in overall SSI rates (8.23%). The implementation of an SSI reduction strategy resulted in a 41% decrease in SSI rates following colorectal resection over its initial 3 years, and its durability as demonstrated by continuing improvement was seen over an additional 2 years. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  15. Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions.

    PubMed

    Kelly, Jarod C; Sullivan, John L; Burnham, Andrew; Elgowainy, Amgad

    2015-10-20

    This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.

  16. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  17. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    NASA Astrophysics Data System (ADS)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  18. Environmental optimal control strategies based on plant canopy photosynthesis responses and greenhouse climate model

    NASA Astrophysics Data System (ADS)

    Deng, Lujuan; Xie, Songhe; Cui, Jiantao; Liu, Tao

    2006-11-01

    It is the essential goal of intelligent greenhouse environment optimal control to enhance income of cropper and energy save. There were some characteristics such as uncertainty, imprecision, nonlinear, strong coupling, bigger inertia and different time scale in greenhouse environment control system. So greenhouse environment optimal control was not easy and especially model-based optimal control method was more difficult. So the optimal control problem of plant environment in intelligent greenhouse was researched. Hierarchical greenhouse environment control system was constructed. In the first level data measuring was carried out and executive machine was controlled. Optimal setting points of climate controlled variable in greenhouse was calculated and chosen in the second level. Market analysis and planning were completed in third level. The problem of the optimal setting point was discussed in this paper. Firstly the model of plant canopy photosynthesis responses and the model of greenhouse climate model were constructed. Afterwards according to experience of the planting expert, in daytime the optimal goals were decided according to the most maximal photosynthesis rate principle. In nighttime on plant better growth conditions the optimal goals were decided by energy saving principle. Whereafter environment optimal control setting points were computed by GA. Compared the optimal result and recording data in real system, the method is reasonable and can achieve energy saving and the maximal photosynthesis rate in intelligent greenhouse

  19. The Impact of Advanced Greenhouse Gas Measurement Science on Policy Goals and Research Strategies

    NASA Astrophysics Data System (ADS)

    Abrahams, L.; Clavin, C.; McKittrick, A.

    2016-12-01

    In support of the Paris agreement, accurate characterizations of U.S. greenhouse gas (GHG) emissions estimates have been area of increased scientific focus. Over the last several years, the scientific community has placed significant emphasis on understanding, quantifying, and reconciling measurement and modeling methods that characterize methane emissions from petroleum and natural gas sources. This work has prompted national policy discussions and led to the improvement of regional and national methane emissions estimates. Research campaigns focusing on reconciling atmospheric measurements ("top-down") and process-based emissions estimates ("bottom-up") have sought to identify where measurement technology advances could inform policy objectives. A clear next step is development and deployment of advanced detection capabilities that could aid U.S. emissions mitigation and verification goals. The breadth of policy-relevant outcomes associated with advances in GHG measurement science are demonstrated by recent improvements in the petroleum and natural gas sector emission estimates in the EPA Greenhouse Gas Inventory, ambitious efforts to apply inverse modeling results to inform or validate national GHG inventory, and outcomes from federal GHG measurement science technology development programs. In this work, we explore the variety of policy-relevant outcomes impacted by advances in GHG measurement science, with an emphasis on improving GHG inventory estimates, identifying emissions mitigation strategies, and informing technology development requirements.

  20. Comparing the effects of different land management strategies across several land types on California's landscape carbon and associated greenhouse gas budgets

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Simmonds, M.; Nico, P. S.

    2017-12-01

    Land-based carbon sequestration and GreenHouse Gas (GHG) reduction strategies are often implemented in small patches and evaluated independently from each other, which poses several challenges to determining their potential benefits at the regional scales at which carbon/GHG targets are defined. These challenges include inconsistent methods, uncertain scalability to larger areas, and lack of constraints such as land ownership and competition among multiple strategies. To address such challenges we have developed an integrated carbon and GHG budget model of California's entire landscape, delineated by geographic region, land type, and ownership. This empirical model has annual time steps and includes net ecosystem carbon exchange, wildfire, multiple forest management practices including wood and bioenergy production, cropland and rangeland soil management, various land type restoration activities, and land cover change. While the absolute estimates vary considerably due to uncertainties in initial carbon densities and ecosystem carbon exchange rates, the estimated effects of particular management activities with respect to baseline are robust across these uncertainties. Uncertainty in land use/cover change data is also critical, as different rates of shrubland to grassland conversion can switch the system from a carbon source to a sink. The results indicate that reducing urban area expansion has substantial and consistent benefits, while the effects of direct land management practices vary and depend largely on the available management area. Increasing forest fuel reduction extent over the baseline contributes to annual GHG costs during increased management, and annual benefits after increased management ceases. Cumulatively, it could take decades to recover the cost of 14 years of increased fuel reduction. However, forest carbon losses can be completely offset within 20 years through increases in urban forest fraction and marsh restoration. Additionally, highly

  1. Wastewater treatment process impact on energy savings and greenhouse gas emissions.

    PubMed

    Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D

    2015-01-01

    The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions.

  2. Reducing Fatal Opioid Overdose: Prevention, Treatment and Harm Reduction Strategies

    PubMed Central

    Hawk, Kathryn F.; Vaca, Federico E.; D’Onofrio, Gail

    2015-01-01

    The opioid overdose epidemic is a major threat to the public’s health, resulting in the development and implementation of a variety of strategies to reduce fatal overdose [1-3]. Many strategies are focused on primary prevention and increased access to effective treatment, although the past decade has seen an exponential increase in harm reduction initiatives. To maximize identification of opportunities for intervention, initiatives focusing on prevention, access to effective treatment, and harm reduction are examined independently, although considerable overlap exists. Particular attention is given to harm reduction approaches, as increased public and political will have facilitated widespread implementation of several initiatives, including increased distribution of naloxone and policy changes designed to increase bystander assistance during a witnessed overdose [4-7]. PMID:26339206

  3. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective.

    PubMed

    Llonch, P; Haskell, M J; Dewhurst, R J; Turner, S P

    2017-02-01

    Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win-win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness

  4. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  5. Benefits of using biogas technology in rural area: karo district on supporting local action plan for greenhouse gas emission reduction of north sumatera province 2010-2020

    NASA Astrophysics Data System (ADS)

    Ginting, N.

    2017-05-01

    Indonesia committed to reduce its greenhouse gas (GHG) by 26% in 2020. At the UNFCCC (Conference of the United Nation Framework Convention on Climate Change) held in Paris in December 2015 Indonesia committed to reduce GHG; one way by promoting clean energy use for example biogas. Agricultural industry produces organic waste which contributes to global warming and climate change. In Karo District, mostly the people were farmers, either horticulture or fruit and produces massive organic waste. Biogas research was conducted in Karo District in May until July 2016 used 5 biodigesters. The purpose was to determine benefits of using biogas technology in order to reduct GHG emissions. The used design was Completely Randomized Design (CRD) with treatments: T1 (100% cow feces), T2 (75% cow feces + 25% horticultural waste), T3 (50% cow feces + 50% horticultural waste), T4 (25% cow feces + 75% horticultural waste) and T5 (100% horticultural waste). Parameter research were gas production, pH and temperature. The research result showed that T1 produced the highest methane ( P<0.05) compared to other treatments while T2 produced methane higher (P<0.05) compared to T4 or T5. There was no difference on methane production between T4 and T5. As conclusion application of biogas on agricultural waste supported local action plan for greenhouse gas emission reduction of North Sumatera Province 2010-2020. From horticultural waste, there were 2.1 × 106 ton CO2 eq in 2014 which were not calculated in RAD GRK (Regional Action Plan for Greenhouse Gas Emissions Reduction).

  6. Evaluation of Contrail Reduction Strategies Based on Environmental and Operational Costs

    NASA Technical Reports Server (NTRS)

    Chen, Neil Y.; Sridhar, Banavar; Ng, Hok K.; Li, Jinhua

    2013-01-01

    This paper evaluates a set of contrail reduction strategies based on environmental and operational costs. A linear climate model was first used to convert climate effects of carbon dioxide emissions and aircraft contrails to changes in Absolute Global Temperature Potential, a metric that measures the mean surface temperature change due to aircraft emissions and persistent contrail formations. The concept of social cost of carbon and the carbon auction price from recent California's cap-and-trade system were then used to relate the carbon dioxide emissions and contrail formations to an environmental cost index. The strategy for contrail reduction is based on minimizing contrail formations by altering the aircraft's cruising altitude. The strategy uses a user-defined factor to trade off between contrail reduction and additional fuel burn and carbon dioxide emissions. A higher value of tradeoff factor results in more contrail reduction but also more fuel burn and carbon emissions. The strategy is considered favorable when the net environmental cost benefit exceeds the operational cost. The results show how the net environmental benefit varies with different decision-making time-horizon and different carbon cost. The cost models provide a guidance to select the trade-off factor that will result in the most net environmental benefit.

  7. Per-pack price reductions available from different cigarette purchasing strategies: United States, 2009–2010☆

    PubMed Central

    Pesko, Michael F.; Xu, Xin; Tynan, Michael A.; Gerzoff, Robert B.; Malarcher, Ann M.; Pechacek, Terry F.

    2015-01-01

    Objective Following cigarette excise tax increases, smokers may use cigarette price minimization strategies to continue their usual cigarette consumption rather than reducing consumption or quitting. This reduces the public health benefits of the tax increase. This paper estimates the price reductions for a wide-range of strategies, compensating for overlapping strategies. Method We performed regression analysis on the 2009–2010 National Adult Tobacco Survey (N = 13,394) to explore price reductions that smokers in the United States obtained from purchasing cigarettes. We examined five cigarette price minimization strategies: 1) purchasing discount brand cigarettes, 2) using price promotions, 3) purchasing cartons, 4) purchasing on Indian reservations, and 5) purchasing online. Price reductions from these strategies were estimated jointly to compensate for overlapping strategies. Results Each strategy provided price reductions between 26 and 99 cents per pack. Combined price reductions were possible. Additionally, price promotions were used with regular brands to obtain larger price reductions than when price promotions were used with generic brands. Conclusion Smokers can realize large price reductions from price minimization strategies, and there are many strategies available. Policymakers and public health officials should be aware of the extent that these strategies can reduce cigarette prices. PMID:24594102

  8. Cigarette price minimization strategies in the United States: price reductions and responsiveness to excise taxes.

    PubMed

    Pesko, Michael F; Licht, Andrea S; Kruger, Judy M

    2013-11-01

    Because cigarette price minimization strategies can provide substantial price reductions for individuals continuing their usual smoking behaviors following federal and state cigarette excise tax increases, we examined independent price reductions compensating for overlapping strategies. The possible availability of larger independent price reduction opportunities in states with higher cigarette excise taxes is explored. Regression analysis used the 2006-2007 Tobacco Use Supplement of the Current Population Survey (N = 26,826) to explore national and state-level independent price reductions that smokers obtained from purchasing cigarettes (a) by the carton, (b) in a state with a lower average after-tax cigarette price than in the state of residence, and (c) in "some other way," including online or in another country. Price reductions from these strategies are estimated jointly to compensate for known overlapping strategies. Each strategy reduced the price of cigarettes by 64-94 cents per pack. These price reductions are 9%-22% lower than conventionally estimated results not compensating for overlapping strategies. Price reductions vary substantially by state. Following cigarette excise tax increases, the price reduction available from purchasing cigarettes by cartons increased. Additionally, the price reduction from purchasing cigarettes in a state with a lower average after-tax cigarette price is positively associated with state cigarette excise tax rates and border state cigarette excise tax rate differentials. Findings from this large, nationally representative study of cigarette smokers suggest that price reductions are larger in states with higher cigarette excise taxes, and increase as cigarette excise taxes rise.

  9. Strategies for emission reduction from thermal power plants.

    PubMed

    Prisyazhniuk, Vitaly A

    2006-07-01

    Major polluters of man's environment are thermal power stations (TPS) and power plants, which discharge into the atmosphere the basic product of carbon fuel combustion, CO2, which results in a build-up of the greenhouse effect and global warm-up of our planet's climate. This paper is intended to show that the way to attain environmental safety of the TPS and to abide by the decisions of the Kyoto Protocol lies in raising the efficiency of the heat power stations and reducing their fuel consumption by using nonconventional thermal cycles. Certain equations have been derived to define the quantitative interrelationship between the growth of efficiency of the TPS, decrease in fuel consumption and reduction of discharge of dust, fuel combustion gases, and heat into the environment. New ideas and new technological approaches that result in raising the efficiency of the TPS are briefly covered: magneto-hydrodynamic resonance, the Kalina cycle, and utilizing the ambient heat by using, as the working medium, low-boiling substances.

  10. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S

  11. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  12. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, C. D.; Brown, A.; DeFlorio, J.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategiesmore » are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less

  13. Greenhouse gas reductions through enhanced use of residues in the life cycle of Malaysian palm oil derived biodiesel.

    PubMed

    Hansen, Sune Balle; Olsen, Stig Irving; Ujang, Zaini

    2012-01-01

    This study identifies the potential greenhouse gas (GHG) reductions, which can be achieved by optimizing the use of residues in the life cycle of palm oil derived biodiesel. This is done through compilation of data on existing and prospective treatment technologies as well as practical experiments on methane potentials from empty fruit bunches. Methane capture from the anaerobic digestion of palm oil mill effluent was found to result in the highest GHG reductions. Among the solid residues, energy extraction from shells was found to constitute the biggest GHG savings per ton of residue, whereas energy extraction from empty fruit bunches was found to be the most significant in the biodiesel production life cycle. All the studied waste treatment technologies performed significantly better than the conventional practices and with dedicated efforts of optimized use in the palm oil industry, the production of palm oil derived biodiesel can be almost carbon neutral. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Greenhouse gas mitigation for U.S. plastics production: energy first, feedstocks later

    NASA Astrophysics Data System (ADS)

    Posen, I. Daniel; Jaramillo, Paulina; Landis, Amy E.; Griffin, W. Michael

    2017-03-01

    Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made from renewable feedstocks) is frequently proposed as a way to mitigate these impacts. Comparatively little research has considered the potential for green energy to reduce emissions in this industry. This paper compares two strategies for reducing greenhouse gas emissions from U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable energy pathways assume all process energy comes from wind power and renewable natural gas derived from landfill gas. Renewable feedstock pathways assume that all commodity thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made using either corn or switchgrass, and powered using either conventional or renewable energy. Corn-based biopolymers produced with conventional energy are the dominant near-term biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by 50%-75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies increase industry costs—by up to 85/tonne plastic (mean result) for renewable energy, and up to 3000 tonne-1 plastic for renewable feedstocks. Overall, switching to renewable energy achieves greater emission reductions, with less uncertainty and lower costs than switching to corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks (e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately 0 CO2e/year (mean value).

  15. Greenhouse Gas and Criteria Air Pollutant Emission Reductions from Forest Fuel Treatment Projects in Placer County, California

    NASA Astrophysics Data System (ADS)

    Saah, D. S.; Moritz, M.; Ganz, D. J.; Stine, P. A.; Moody, T.

    2010-12-01

    Years of successful fire suppression activities have left forests unnaturally dense, overstocked, and with high hazardous fuel loads. Wildfires, particularly those of high severity, may dramatically reduce carbon stocks and convert forested lands from carbon sinks to decades-long carbon sources . Forest resource managers are currently pursuing fuels reduction and mitigation strategies to reduce wildfire risk and maintain carbon stocks. These projects include selective thinning and removal of trees and brush to return forest ecosystems to more natural stocking levels, resulting in a more fire-resilient forest that in theory would retain higher carry capacity for standing above ground carbon. Resource managers are exploring the possibility of supporting these local forest management projects by offering greenhouse gas (GHG) offsets to project developers that require GHG emissions mitigation. Using robust field data, this research project modeled three types of carbon benefits that could be realized from forest management: 1. Fuels treatments in the study area were shown to reduce the GHG and Criteria Air Pollutant emissions from wildfires by decreasing the probability, extent, and severity of fires and the corresponding loss in forest carbon stocks; 2. Biomass utilization from fuel treatment was shown to reduce GHG and Criteria Air Pollutant emissions over the duration of the fuels treatment project compared to fossil fuel energy. 3. Management and thinning of forests in order to stimulate growth, resulting in more rapid uptake of atmospheric carbon and approaching a carbon carrying capacity stored in a forest ecosystem under prevailing environmental conditions and natural disturbance regimes.

  16. Cigarette Price Minimization Strategies in the United States: Price Reductions and Responsiveness to Excise Taxes

    PubMed Central

    2013-01-01

    Introduction: Because cigarette price minimization strategies can provide substantial price reductions for individuals continuing their usual smoking behaviors following federal and state cigarette excise tax increases, we examined independent price reductions compensating for overlapping strategies. The possible availability of larger independent price reduction opportunities in states with higher cigarette excise taxes is explored. Methods: Regression analysis used the 2006–2007 Tobacco Use Supplement of the Current Population Survey (N = 26,826) to explore national and state-level independent price reductions that smokers obtained from purchasing cigarettes (a) by the carton, (b) in a state with a lower average after-tax cigarette price than in the state of residence, and (c) in “some other way,” including online or in another country. Price reductions from these strategies are estimated jointly to compensate for known overlapping strategies. Results: Each strategy reduced the price of cigarettes by 64–94 cents per pack. These price reductions are 9%–22% lower than conventionally estimated results not compensating for overlapping strategies. Price reductions vary substantially by state. Following cigarette excise tax increases, the price reduction available from purchasing cigarettes by cartons increased. Additionally, the price reduction from purchasing cigarettes in a state with a lower average after-tax cigarette price is positively associated with state cigarette excise tax rates and border state cigarette excise tax rate differentials. Conclusions: Findings from this large, nationally representative study of cigarette smokers suggest that price reductions are larger in states with higher cigarette excise taxes, and increase as cigarette excise taxes rise. PMID:23729501

  17. Assessing university students' self-efficacy to employ alcohol-related harm reduction strategies.

    PubMed

    Rosenberg, Harold; Bonar, Erin E; Hoffmann, Erica; Kryszak, Elizabeth; Young, Kathleen M; Kraus, Shane W; Ashrafioun, Lisham; Bannon, Erin E; Pavlick, Michelle

    2011-01-01

    Develop and evaluate key psychometric properties of a self-report questionnaire specifically designed to assess student drinkers' self-confidence to employ a variety of strategies intended to reduce unhealthy consequences of high-risk drinking. Four hundred ninety-eight participants rated their confidence (from "not at all confident" to "completely confident") to employ 17 harm reduction strategies when drinking. Factor analysis and internal consistency reliability analyses indicated that the 17 items constitute a single scale with good test-retest reliability. Consistent with other research examining previous use of such strategies, women in our sample reported significantly higher harm reduction self-efficacy than did men. Harm reduction self-efficacy was also associated with reported number of high-risk drinking episodes in the previous 2 weeks. This brief and easily administered questionnaire holds promise as a clinical tool to identify individuals with low harm reduction self-efficacy and as an outcome measure for health promotion and educational interventions.

  18. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    PubMed

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  19. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    PubMed Central

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  20. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Warm Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, M. A.; Chaney, L.; Rugh, J. P.

    Passenger compartment climate control is one of the largest auxiliary loads on a vehicle. Like conventional vehicles, electric vehicles (EVs) require climate control to maintain occupant comfort and safety, but cabin heating and air conditioning have a negative impact on driving range for all electric vehicles. Range reduction caused by climate control and other factors is a barrier to widespread adoption of EVs. Reducing the thermal loads on the climate control system will extend driving range, thereby reducing consumer range anxiety and increasing the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have investigated strategies for vehiclemore » climate control load reduction, with special attention toward EVs. Outdoor vehicle thermal testing was conducted on two 2012 Ford Focus Electric vehicles to evaluate thermal management strategies for warm weather, including solar load reduction and cabin pre-ventilation. An advanced thermal test manikin was used to assess a zonal approach to climate control. In addition, vehicle thermal analysis was used to support testing by exploring thermal load reduction strategies, evaluating occupant thermal comfort, and calculating EV range impacts. Through stationary cooling tests and vehicle simulations, a zonal cooling configuration demonstrated range improvement of 6%-15%, depending on the drive cycle. A combined cooling configuration that incorporated thermal load reduction and zonal cooling strategies showed up to 33% improvement in EV range.« less

  1. Applicability of salt reduction strategies in pizza crust.

    PubMed

    Mueller, Eva; Koehler, Peter; Scherf, Katharina Anne

    2016-02-01

    In an effort to reduce population-wide sodium intake from processed foods, due to major health concerns, several different strategies for sodium reduction in pizza crust without any topping were evaluated by sensory analyses. It was possible to reduce sodium by 10% in one single step or to replace 30% of NaCl by KCl without a noticeable loss of salty taste. The late addition of coarse-grained NaCl (crystal size: 0.4-1.4 mm) to pizza dough led to an enhancement of saltiness through taste contrast and an accelerated sodium delivery measured in the mouth and in a model mastication simulator. Likewise, the application of an aqueous salt solution to one side of the pizza crust led to an enhancement of saltiness perception through faster sodium availability, leading to a greater contrast in sodium concentration. Each of these two strategies allowed a sodium reduction of up to 25% while maintaining taste quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India

    NASA Astrophysics Data System (ADS)

    Singh, N.; Mishra, T.; Banerjee, R.

    2017-12-01

    India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.

  3. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    NASA Astrophysics Data System (ADS)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  4. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Matthew A.; Chaney, Larry; Rugh, John P.

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less

  5. Voting strategy for artifact reduction in digital breast tomosynthesis.

    PubMed

    Wu, Tao; Moore, Richard H; Kopans, Daniel B

    2006-07-01

    Artifacts are observed in digital breast tomosynthesis (DBT) reconstructions due to the small number of projections and the narrow angular range that are typically employed in tomosynthesis imaging. In this work, we investigate the reconstruction artifacts that are caused by high-attenuation features in breast and develop several artifact reduction methods based on a "voting strategy." The voting strategy identifies the projection(s) that would introduce artifacts to a voxel and rejects the projection(s) when reconstructing the voxel. Four approaches to the voting strategy were compared, including projection segmentation, maximum contribution deduction, one-step classification, and iterative classification. The projection segmentation method, based on segmentation of high-attenuation features from the projections, effectively reduces artifacts caused by metal and large calcifications that can be reliably detected and segmented from projections. The other three methods are based on the observation that contributions from artifact-inducing projections have higher value than those from normal projections. These methods attempt to identify the projection(s) that would cause artifacts by comparing contributions from different projections. Among the three methods, the iterative classification method provides the best artifact reduction; however, it can generate many false positive classifications that degrade the image quality. The maximum contribution deduction method and one-step classification method both reduce artifacts well from small calcifications, although the performance of artifact reduction is slightly better with the one-step classification. The combination of one-step classification and projection segmentation removes artifacts from both large and small calcifications.

  6. The role of meat in strategies to achieve a sustainable diet lower in greenhouse gas emissions: A review.

    PubMed

    Hyland, John J; Henchion, Maeve; McCarthy, Mary; McCarthy, Sinéad N

    2017-10-01

    Food consumption is responsible for a considerable proportion of greenhouse gas emissions (GHGE). Hence, individual food choices have the potential to substantially influence both public health and the environment. Meat and animal products are relatively high in GHGE and therefore targeted in efforts to reduce dietary emissions. This review first highlights the complexities regarding sustainability in terms of meat consumption and thereafter discusses possible strategies that could be implemented to mitigate its climatic impact. It outlines how sustainable diets are possible without the elimination of meat. For instance, overconsumption of food in general, beyond our nutritional requirements, was found to be a significant contributor of emissions. Non-voluntary and voluntary mitigation strategies offer potential to reduce dietary GHGE. All mitigation strategies require careful consideration but on-farm sustainable intensification perhaps offers the most promise. However, a balance between supply and demand approaches is encouraged. Health should remain the overarching principle for policies and strategies concerned with shifting consumer behaviour towards sustainable diets. Copyright © 2017. Published by Elsevier Ltd.

  7. Reduction of the Powerful Greenhouse Gas N2O in the South-Eastern Indian Ocean.

    PubMed

    Raes, Eric J; Bodrossy, Levente; Van de Kamp, Jodie; Holmes, Bronwyn; Hardman-Mountford, Nick; Thompson, Peter A; McInnes, Allison S; Waite, Anya M

    2016-01-01

    Nitrous oxide (N2O) is a powerful greenhouse gas and a key catalyst of stratospheric ozone depletion. Yet, little data exist about the sink and source terms of the production and reduction of N2O outside the well-known oxygen minimum zones (OMZ). Here we show the presence of functional marker genes for the reduction of N2O in the last step of the denitrification process (nitrous oxide reductase genes; nosZ) in oxygenated surface waters (180-250 O2 μmol.kg(-1)) in the south-eastern Indian Ocean. Overall copy numbers indicated that nosZ genes represented a significant proportion of the microbial community, which is unexpected in these oxygenated waters. Our data show strong temperature sensitivity for nosZ genes and reaction rates along a vast latitudinal gradient (32°S-12°S). These data suggest a large N2O sink in the warmer Tropical waters of the south-eastern Indian Ocean. Clone sequencing from PCR products revealed that most denitrification genes belonged to Rhodobacteraceae. Our work highlights the need to investigate the feedback and tight linkages between nitrification and denitrification (both sources of N2O, but the latter also a source of bioavailable N losses) in the understudied yet strategic Indian Ocean and other oligotrophic systems.

  8. Teleconsultations reduce greenhouse gas emissions.

    PubMed

    Oliveira, Tiago Cravo; Barlow, James; Gonçalves, Luís; Bayer, Steffen

    2013-10-01

    Health services contribute significantly to greenhouse gas emissions. New models of delivering care closer to patients have the potential to reduce travelling and associated emissions. We aimed to compare the emissions of patients attending a teleconsultation - an outpatient appointment using video-conferencing equipment - with those of patients attending a face-to-face appointment. We estimated the total distances travelled and the direct and indirect greenhouse gas emissions for 20,824 teleconsultations performed between 2004 and 2011 in Alentejo, a Portuguese region. These were compared to the distances and emissions that would have resulted if teleconsultations were not available and patients had to attend face-to-face outpatient appointments. Estimates were calculated using survey data on mode of transport, and national aggregate data for car engine size and fuel. A sensitivity analysis using the lower and upper quartiles for survey distances was performed. Teleconsultations led to reductions in distances and emissions of 95%. 2,313,819 km of travelling and 455 tonnes of greenhouse gas emissions were avoided (22 kg of carbon dioxide equivalent per patient). The incorporation of modes of transport and car engine size and fuel in the analysis led to emission estimates which were 12% smaller than those assuming all patients used an average car. The availability of remote care services can significantly reduce road travel and associated emissions. At a time when many countries are committed to reducing their carbon footprint, it is desirable to explore how these reductions could be incorporated into technology assessments and economic evaluations.

  9. Injection Drug Users' Perceived Barriers to Using Self-Initiated Harm Reduction Strategies.

    PubMed

    Bonar, Erin E; Rosenberg, Harold

    2014-08-01

    Increasing the frequency with which injecting drug users (IDUs) engage in self-initiated harm reduction strategies could improve their health, but few investigations have examined IDUs' perceived barriers to engaging in these behaviors. We interviewed 90 IDUs recruited from needle exchanges to assess: a) perceived obstacles to their use of two specific harm reduction strategies (i.e., test shots and pre-injection skin cleaning) designed to reduce two unhealthy outcomes (i.e., overdose and bacterial infections, respectively) and b) their use of other risk-reduction practices. The most frequently cited barrier for both test shots and skin cleaning was being in a rush to inject one's drugs. Other, less commonly cited barriers were strategy-specific (e.g., buying drugs from a known dealer as a reason not to do a test shot; not having access to cleaning supplies as a reason not to clean skin). Regarding other risk reduction practices, participants' most frequently reported using new or clean injecting supplies and avoiding sharing needles and injecting supplies. Some, but not all, of the barriers generated by participants in our study were similar to those frequently reported in other investigations, perhaps due to differences in the type of sample recruited or in the harm reduction behaviors investigated.

  10. Ammonia and greenhouse gas emissions from a subtropical wheat field under different nitrogen fertilization strategies.

    PubMed

    Liu, Shuai; Wang, Jim J; Tian, Zhou; Wang, Xudong; Harrison, Stephen

    2017-07-01

    Minimizing soil ammonia (NH 3 ) and nitrous oxide (N 2 O) emission factors (EFs) has significant implications in regional air quality and greenhouse gas (GHG) emissions besides nitrogen (N) nutrient loss. The aim of this study was to investigate the impacts of different N fertilizer treatments of conventional urea, polymer-coated urea, ammonia sulfate, urease inhibitor (NBPT, N-(n-butyl) thiophosphoric triamide)-treated urea, and nitrification inhibitor (DCD, dicyandiamide)-treated urea on emissions of NH 3 and GHGs from subtropical wheat cultivation. A field study was established in a Cancienne silt loam soil. During growth season, NH 3 emission following N fertilization was characterized using active chamber method whereas GHG emissions of N 2 O, carbon dioxide (CO 2 ), and methane (CH 4 ) were by passive chamber method. The results showed that coated urea exhibited the largest reduction (49%) in the EF of NH 3 -N followed by NBPT-treated urea (39%) and DCD-treated urea (24%) over conventional urea, whereas DCD-treated urea had the greatest suppression on N 2 O-N (87%) followed by coated urea (76%) and NBPT-treated urea (69%). Split fertilization of ammonium sulfate-urea significantly lowered both NH 3 -N and N 2 O-N EF values but split urea treatment had no impact over one-time application of urea. Both NBPT and DCD-treated urea treatments lowered CO 2 -C flux but had no effect on CH 4 -C flux. Overall, application of coated urea or urea with NPBT or DCD could be used as a mitigation strategy for reducing NH 3 and N 2 O emissions in subtropical wheat production in Southern USA. Copyright © 2017. Published by Elsevier B.V.

  11. Towards a Novel Integrated Approach for Estimating Greenhouse Gas Emissions in Support of International Agreements

    NASA Astrophysics Data System (ADS)

    Reimann, S.; Vollmer, M. K.; Henne, S.; Brunner, D.; Emmenegger, L.; Manning, A.; Fraser, P. J.; Krummel, P. B.; Dunse, B. L.; DeCola, P.; Tarasova, O. A.

    2016-12-01

    In the recently adopted Paris Agreement the community of signatory states has agreed to limit the future global temperature increase between +1.5 °C and +2.0 °C, compared to pre-industrial times. To achieve this goal, emission reduction targets have been submitted by individual nations (called Intended Nationally Determined Contributions, INDCs). Inventories will be used for checking progress towards these envisaged goals. These inventories are calculated by combining information on specific activities (e.g. passenger cars, agriculture) with activity-related, typically IPCC-sanctioned, emission factors - the so-called bottom-up method. These calculated emissions are reported on an annual basis and are checked by external bodies by using the same method. A second independent method estimates emissions by translating greenhouse gas measurements made at regionally representative stations into regional/global emissions using meteorologically-based transport models. In recent years this so-called top-down approach has been substantially advanced into a powerful tool and emission estimates at the national/regional level have become possible. This method is already used in Switzerland, in the United Kingdom and in Australia to estimate greenhouse gas emissions and independently support the national bottom-up emission inventories within the UNFCCC framework. Examples of the comparison of the two independent methods will be presented and the added-value will be discussed. The World Meteorological Organization (WMO) and partner organizations are currently developing a plan to expand this top-down approach and to expand the globally representative GAW network of ground-based stations and remote-sensing platforms and integrate their information with atmospheric transport models. This Integrated Global Greenhouse Gas Information System (IG3IS) initiative will help nations to improve the accuracy of their country-based emissions inventories and their ability to evaluate the

  12. The Effect of a Reduction in Microbial Diversity on Greenhouse Gas Production in Alaskan Tundra Soils.

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Oechel, W. C.; Lipson, D.

    2017-12-01

    Atmospheric methane accounts for 20% of the warming potential of all greenhouse gases, has increased by 150% since pre-industrial times, and has the potential to double again over the next century. Microbially mediated CH4 emissions from natural wetlands represent the highest uncertainty in relative contributions to atmospheric CH4 levels of all CH4 sources, with Arctic wetlands currently experiencing twice the rate of warming as the rest of the planet. Notwithstanding the central role that the soil microbial community plays, and the high uncertainty in CH4 emissions from this ecosystem, surprisingly little research has been done to directly connect the microbial community structure to methane production rates. This is especially disconcerting given that most current CH4 emission models completely neglect microbial characteristics, despite the fact that the soil microbial community is predicted to be heavily impacted by a changing climate. Here, the effect of an artificial reduction in soil microbial α-diversity was investigated with regard to methane production and respiration rates. The microbial community was serially diluted followed by re-inoculation of sterilized Arctic soils in a mesocosm experiment. Methane production and respiration rates were measured, metagenomic sequencing was performed to determine microbial community diversity measures, and the effect of the oxidation state of iron was investigated. Preliminary results indicate that microbial communities with reduced α-diversity have lowered respiration rates in these soils. Analyses are ongoing and are expected to provide critical observations linking the role of soil microbial community diversity and greenhouse gas production in Arctic tundra ecosystems.

  13. Greenhouse gas emissions in the state of Morelos, Mexico: a first approximation for establishing mitigation strategies.

    PubMed

    Quiroz-Castañeda, Rosa Estela; Sánchez-Salinas, Enrique; Castrejón-Godínez, María Luisa; Ortiz-Hernández, Ma Laura

    2013-11-01

    In this study, the authors report the first greenhouse gas emission inventory of Morelos, a state in central Mexico, in which the emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) have been identified using the Intergovernmental Panel on Climate Change (IPCC) methodology. Greenhouse gas (GHG) emissions were estimated as CO2 equivalents (CO2 eq) for the years 2005, 2007, and 2009, with 2005 being treated as the base year. The percentage contributions from each category to the CO2 eq emissions in the base year were as follows: 38% from energy, 30% from industrial processes, 23% from waste, 5% from agriculture, and 4% from land use/land use change and forestry (LULUCF). As observed in other state inventories in Mexico, road transportation is the main source of CO2 emissions, wastewater handling and solid waste disposal are the main sources of CH4 emissions, and agricultural soils are the source of the most significant N2O emissions. The information reported in this inventory identifies the main emission sources. Based on these results, the government can propose public policies specifically designed for the state of Morelos to establish GHG mitigation strategies in the near future.

  14. Transit investments for greenhouse gas and energy reduction program : first assessment report.

    DOT National Transportation Integrated Search

    2012-07-01

    The purpose of this report is to provide an overview and preliminary analysis of the U.S. Department of Transportation, Federal Transit Administrations TIGGER Program. TIGGER, which stands for Transit Investments for Greenhouse Gas and Energy Redu...

  15. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.

    PubMed

    Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M

    2018-05-15

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.

  16. U.S. electric power sector transitions required to achieve 80% reductions in economy-wide greenhouse gas emissions: Results based on a state-level model of the U.S. energy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Gokul C.; Clarke, Leon E.; Edmonds, James A.

    The United States has articulated a deep decarbonization strategy for achieving a reduction in economy-wide greenhouse gas (GHG) emissions of 80% below 2005 levels by 2050. Achieving such deep emissions reductions will entail a major transformation of the energy system and of the electric power sector in particular. , This study uses a detailed state-level model of the U.S. energy system embedded within a global integrated assessment model (GCAM-USA) to demonstrate pathways for the evolution of the U.S. electric power sector that achieve 80% economy-wide reductions in GHG emissions by 2050. The pathways presented in this report are based onmore » feedback received during a workshop of experts organized by the U.S. Department of Energy’s Office of Energy Policy and Systems Analysis. Our analysis demonstrates that achieving deep decarbonization by 2050 will require substantial decarbonization of the electric power sector resulting in an increase in the deployment of zero-carbon and low-carbon technologies such as renewables and carbon capture utilization and storage. The present results also show that the degree to which the electric power sector will need to decarbonize and low-carbon technologies will need to deploy depends on the nature of technological advances in the energy sector, the ability of end-use sectors to electrify and level of electricity demand.« less

  17. Injection Drug Users’ Perceived Barriers to Using Self-Initiated Harm Reduction Strategies

    PubMed Central

    Rosenberg, Harold

    2014-01-01

    Introduction and Aims Increasing the frequency with which injecting drug users (IDUs) engage in self-initiated harm reduction strategies could improve their health, but few investigations have examined IDUs’ perceived barriers to engaging in these behaviors. Method We interviewed 90 IDUs recruited from needle exchanges to assess: a) perceived obstacles to their use of two specific harm reduction strategies (i.e., test shots and pre-injection skin cleaning) designed to reduce two unhealthy outcomes (i.e., overdose and bacterial infections, respectively) and b) their use of other risk-reduction practices. Results The most frequently cited barrier for both test shots and skin cleaning was being in a rush to inject one’s drugs. Other, less commonly cited barriers were strategy-specific (e.g., buying drugs from a known dealer as a reason not to do a test shot; not having access to cleaning supplies as a reason not to clean skin). Regarding other risk reduction practices, participants’ most frequently reported using new or clean injecting supplies and avoiding sharing needles and injecting supplies. Discussion and Conclusions Some, but not all, of the barriers generated by participants in our study were similar to those frequently reported in other investigations, perhaps due to differences in the type of sample recruited or in the harm reduction behaviors investigated. PMID:25419201

  18. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  19. Greenhouse gas footprint and the carbon flow associated with different solid waste management strategy for urban metabolism in Bangladesh.

    PubMed

    Islam, K M Nazmul

    2017-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) and associated climate change consequences are gripping attention globally, while MSW management as a vital subsystem of urban metabolism significantly influences the urban carbon cycles. This study evaluates the GHG emissions and carbon flow of existing and proposed MSW management in Bangladesh through scenario analysis, including landfill with landfill gas (LFG) recovery, waste to energy (WtE), and material recovery facility (MRF). The analysis indicates that, scenario H 2 and H 5 emitted net GHGs -152.20kg CO 2 eq. and -140.32kg CO 2 eq., respectively, in comparison with 420.88kg CO 2 eq. of scenario H 1 for managing per ton of wastes during the reference year 2015. The annual horizontal carbon flux of the waste input was 319Gg and 158Gg during 2015 in Dhaka and Chittagong, respectively. An integrated strategy of managing the wastes in the urban areas of Bangladesh involving WtE incineration plant and LFG recovery to generate electricity as well as MRF could reverse back 209.46Gg carbon and 422.29Gg carbon to the Chittagong and Dhaka urban system, respectively. This study provides valuable insights for the MSW policy framework and revamp of existing MSW management practices with regards to reduction of GHGs emissions from the waste sector in Bangladesh. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Simulating evolution of technology: An aid to energy policy analysis. A case study of strategies to control greenhouse gases in Canada

    NASA Astrophysics Data System (ADS)

    Nyboer, John

    Issues related to the reduction of greenhouse gases are encumbered with uncertainties for decision makers. Unfortunately, conventional analytical tools generate widely divergent forecasts of the effects of actions designed to mitigate these emissions. "Bottom-up" models show the costs of reducing emissions attained through the penetration of efficient technologies to be low or negative. In contrast, more aggregate "top-down" models show costs of reduction to be high. The methodological approaches of the different models used to simulate energy consumption generate, in part, the divergence found in model outputs. To address this uncertainty and bring convergence, I use a technology-explicit model that simulates turnover of equipment stock as a function of detailed data on equipment costs and stock characteristics and of verified behavioural data related to equipment acquisition and retrofitting. Such detail can inform the decision maker of the effects of actions to reduce greenhouse gases due to changes in (1) technology stocks, (2) products or services, or (3) the mix of fuels used. This thesis involves two main components: (1) the development of a quantitative model to analyse energy demand and (2) the application of this tool to a policy issue, abatement of COsb2 emissions. The analysis covers all of Canada by sector (8 industrial subsectors, residential commercial) and region. An electricity supply model to provide local electricity prices supplemented the quantitative model. Forecasts of growth and structural change were provided by national macroeconomic models. Seven different simulations were applied to each sector in each region including a base case run and three runs simulating emissions charges of 75/tonne, 150/tonne and 225/tonne CO sb2. The analysis reveals that there is significant variation in the costs and quantity of emissions reduction by sector and region. Aggregated results show that Canada can meet both stabilisation targets (1990 levels of

  1. Climate Control Load Reduction Strategies for Electric Drive Vehicles in Cold Weather: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Matthew; Chaney, Lawrence; Rugh, John

    When operated, the climate control system is the largest auxiliary load on a vehicle. This load has significant impact on fuel economy for conventional and hybrid vehicles, and it drastically reduces the driving range of all electric vehicles (EVs). Heating is even more detrimental to EV range than cooling because no engine waste heat is available. Reducing the thermal loads on the heating, ventilating, and air conditioning system will extend driving range and increase the market penetration of EVs. Researchers at the National Renewable Energy Laboratory have evaluated strategies for vehicle climate control load reduction with special attention toward gridmore » connected electric vehicles. Outdoor vehicle thermal testing and computational modeling were used to assess potential strategies for improved thermal management and to evaluate the effectiveness of thermal load reduction technologies. A human physiology model was also used to evaluate the impact on occupant thermal comfort. Experimental evaluations of zonal heating strategies demonstrated a 5.5% to 28.5% reduction in cabin heating energy over a 20-minute warm-up. Vehicle simulations over various drive cycles show a 6.9% to 18.7% improvement in EV range over baseline heating using the most promising zonal heating strategy investigated. A national-level analysis was conducted to determine the overall national impact. If all vehicles used the best zonal strategy, the range would be improved by 7.1% over the baseline heating range. This is a 33% reduction in the range penalty for heating.« less

  2. Strategies for implementing Climate Smart Agriculture and creating marketable Greenhouse emission reduction credits, for small scale rice farmers in Asia

    NASA Astrophysics Data System (ADS)

    Ahuja, R.; Kritee, K.; Rudek, J.; Van Sanh, N.; Thu Ha, T.

    2014-12-01

    Industrial agriculture systems, mostly in developed and some emerging economies, are far different from the small holder farms that dot the landscapes in Asia and Africa. At Environmental Defense Fund, along with our partners from non-governmental, corporate, academic and government sectors and farmers, we have worked actively in India and Vietnam for the last four years to better understand how small scale farmers working on rice paddy (and other upland crops) cultivation can best deal with climate change. Some of the questions we have tried to answer are: What types of implementable best practices, both old and new, on small farm systems lend themselves to improved yields, farm incomes, climate resilience and mitigation? Can these practices be replicated everywhere or is the change more landscape and people driven? What are the institutional, cultural, financial and risk-perception related barriers that prevent scaling up of these practices? How do we innovate and overcome these barriers? The research community needs to work more closely together and leverage multiple scientific, economic and policy disciplines to fully answer these questions. In the case of small farm systems, we find that it helps to follow certain steps if the climate-smart (or low carbon) farming programs are to succeed and the greenhouse credits generated are to be marketed: Demographic data collection and plot demarcation Farmer networks and diaries Rigorous baseline determination via surveys Alternative practice determination via consultation with local universities/experts Measurements on representative plots for 3-4 years (including GHG emissions, yields, inputs, economic and environmental savings) to help calibrate biogeochemical models and/or calculate regional emission factors. Propagation of alternative practices across the landscape via local NGOs/governments Recording of parameters necessary to extrapolate representative plot GHG emission reductions to all farmers in a given

  3. Operation GREENHOUSE-1951

    DTIC Science & Technology

    1983-06-15

    GREENHOUSE, DOG. 107 28 Runit Island radiological safety survey results following GREENHOUSE, DOG. 108 29 Estimate of maximum possible exposure at Parry...Enjebi Island radiological safety survey results following GREENHOUSE, EASY. 116 35 GREENHOUSE, EASY flight patterns. 118 36 Surface radex area and ship...positions during GREENHOUSE, GEORGE. 120 37 GREENHOUSE, GEORGE flight patterns. 122 38 Eleleron, Aomon, and Bijire island radiological safety survey

  4. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    DOE PAGES

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; ...

    2016-09-10

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less

  5. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    NASA Astrophysics Data System (ADS)

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; Duren, Riley M.; Miller, Charles E.; Lai, Chun-Ta; Hsu, Ying-Kuang; Carranza, Valerie; Randerson, James T.

    2016-09-01

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban CH4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. We suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.

  6. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less

  7. [Harm reduction strategy in tobacco control].

    PubMed

    Gorini, Giuseppe

    2011-01-01

    Potentially reduced exposure products (PREPs), already sold in USA and in some European Countries, are low-nitrosamine cigarettes, low-nitrosamine smokeless tobacco (e.g., the Swedish Snus), cigarette-like products, and medicinal nicotine products. Even e-cigarette delivers nicotine. With the exception of snus and medicinal nicotine, studies on the health effects of PREPs have not been carried out, although some PREPs are already sold and promoted as products that effectively reduce health risks. Thus, a second disaster similar to that occurred for light cigarettes could happen in the next years. Only medicinal nicotine and snus could be valid candidates to become PREPs, even if they pose some significant health risks. The World Health Organization, following a precautionary approach, has recently published a list of 9 carcinogens or toxicants recommended for mandated lowering (the tobacco-specific nitrosamines NNN and NNK, acetaldehyde, acrolein, benzene, benzo[a]pyrene, 1-3 butadiene, carbon monoxide, formaldehyde), and 9 carcinogens or toxicants for monitoring in usual cigarettes (not PREPs), underlining that tobacco companies cannot use this reduction strategy as a promotional message, as it occurred for light cigarettes in the 70s and 80s. The present status quo, in which cigarettes are freely available, medicinal nicotine, being a drug, is available under a regulated market, and Snus is prohibited, actually denies smokers the right to choose safer nicotine products. The solution suggested by the UK Royal College of Physicians is to balance the nicotine market, framing tobacco products and medicinal nicotine in the same regulation system; establishing a nicotine and tobacco regulatory authority;making medicinal nicotine more available; evaluating the feasibility of the introduction in the English market of Swedish Snus. California Government remarks that the nicotine maintenance is not a valid strategy, because it could induce smokers not to try to quit

  8. A modeling comparison of deep greenhouse gas emissions reduction scenarios by 2030 in California

    DOE PAGES

    Yeh, Sonia; Yang, Christopher; Gibbs, Michael; ...

    2016-10-21

    California aims to reduce greenhouse gas (GHG) emissions to 40% below 1990 levels by 2030. We compare six energy models that have played various roles in informing the state policymakers in setting climate policy goals and targets. These models adopt a range of modeling structures, including stock-turnover back-casting models, a least-cost optimization model, macroeconomic/macro-econometric models, and an electricity dispatch model. Results from these models provide useful insights in terms of the transformations in the energy system required, including efficiency improvements in cars, trucks, and buildings, electrification of end-uses, low- or zero-carbon electricity and fuels, aggressive adoptions of zero-emission vehicles (ZEVs),more » demand reduction, and large reductions of non-energy GHG emissions. Some of these studies also suggest that the direct economic costs can be fairly modest or even generate net savings, while the indirect macroeconomic benefits are large, as shifts in employment and capital investments could have higher economic returns than conventional energy expenditures. These models, however, often assume perfect markets, perfect competition, and zero transaction costs. They also do not provide specific policy guidance on how these transformative changes can be achieved. Greater emphasis on modeling uncertainty, consumer behaviors, heterogeneity of impacts, and spatial modeling would further enhance policymakers' ability to design more effective and targeted policies. Here, this paper presents an example of how policymakers, energy system modelers and stakeholders interact and work together to develop and evaluate long-term state climate policy targets. Lastly, even though this paper focuses on California, the process of dialogue and interactions, modeling results, and lessons learned can be generally adopted across different regions and scales.« less

  9. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with

  10. Performance, profitability and greenhouse gas emissions of alternative finishing strategies for Holstein-Friesian bulls and steers.

    PubMed

    Murphy, B; Crosson, P; Kelly, A K; Prendiville, R

    2018-02-06

    Modifying finishing strategies within established production systems has the potential to increase beef output and farm profit while reducing greenhouse gas (GHG) emissions. Thus, the objectives of this study were to investigate the effects of finishing duration on animal performance of Holstein-Friesian (HF) bulls and steers and evaluate the profitability and GHG emissions of these finishing strategies. A total of 90 HF calves were assigned to a complete randomised block design; three bull and three steer finishing strategies. Calves were rotationally grazed in a paddock system for the first season at pasture, housed and offered grass silage ad libitum plus 1.5 kg DM of concentrate per head daily for the first winter and returned to pasture for a second season. Bulls were slaughtered at 19 months of age and either finished indoors on concentrates ad libitum for 100 days (19AL), finished at pasture supplemented with 5 kg DM of concentrate per head daily for 100 (19SP) or 150 days (19LP). Steers were slaughtered at 21 months of age and finished at pasture, supplemented with 5 kg DM of concentrate per head daily for 60 (21SP) and 110 days (21LP) or slaughtered at 24 months of age and finished indoors over the second winter on grass silage ad libitum plus 5 kg DM of concentrate per head daily (24MO). The Grange Dairy Beef Systems Model and the Beef Systems Greenhouse Gas Emissions Model were used to evaluate profitability and GHG emissions, respectively. Average daily gain during the finishing period (P<0.001), live weight at slaughter (P<0.01), carcass weight (P<0.05) and fat score (P<0.001) were greater for 19AL than 19SP and 19LP, respectively. Similarly, concentrate dry matter intake was greater for 19AL than 19SP; 19LP was intermediate (P<0.001). Live weight at slaughter (P<0.001), carcass weight (P<0.001), conformation score (P<0.05) and fat score (P<0.001) were greater for 24MO than 21SP and 21LP, respectively. During the finishing period concentrate dry matter

  11. Energy demand hourly simulations and energy saving strategies in greenhouses for the Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Priarone, A.; Fossa, M.; Paietta, E.; Rolando, D.

    2017-01-01

    This research has been devoted to the selection of the most favourable plant solutions for ventilation, heating and cooling, thermo-hygrometric control of a greenhouse, in the framework of the energy saving and the environmental protection. The identified plant solutions include shading of glazing surfaces, natural ventilation by means of controlled opening windows, forced convection of external air and forced convection of air treated by the HVAC system for both heating and cooling. The selected solution combines HVAC system to a Ground Coupled Heat Pump (GCHP), which is an innovative renewable technology applied to greenhouse buildings. The energy demand and thermal loads of the greenhouse to fulfil the requested internal design conditions have been evaluated through an hourly numerical simulation, using the Energy Plus (E-plus) software. The overall heat balance of the greenhouse also includes the latent heat exchange due to crop evapotranspiration, accounted through an original iterative calculation procedure that combines the E-plus dynamic simulations and the FAO Penman-Monteith method. The obtained hourly thermal loads have been used to size the borehole field for the geothermal heat pump by using a dedicated GCHP hourly simulation tool.

  12. Assessment of Emerging Regional Air Quality (AQ) and Greenhouse Gas (GHG) Impacts and Potential Mitigation Strategies in U.S. Energy Sectors

    NASA Astrophysics Data System (ADS)

    Kinnon, Michael Mac

    The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction

  13. Techno-economics of integrating bioethanol production from spent sulfite liquor for reduction of greenhouse gas emissions from sulfite pulping mills.

    PubMed

    Petersen, Abdul M; Haigh, Kate; Görgens, Johann F

    2014-01-01

    Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source. Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility. High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions

  14. Global Obesity Study on Drivers for Weight Reduction Strategies

    PubMed Central

    Grebitus, Carola; Hartmann, Monika; Reynolds, Nikolai

    2015-01-01

    Objective To assess factors determining the reaction of individuals to the threats of overweight and obesity and to examine the interdependencies between weight-reducing strategies. Methods Cross-country survey covering 19 countries and 13,155 interviews. Data were analysed using a bivariate probit model that allows simultaneously analysing two weight-reducing strategies. Results Results show that weight-reducing strategies chosen are not independent from each other. Findings also reveal that different strategies are chosen by different population segments. Women are more likely to change their dietary patterns and less likely to become physically active after surpassing a weight threshold. In addition, the probability of a dietary change in case of overweight differs considerably between countries. The study also reveals that attitudes are an important factor for the strategy choice. Conclusions It is vital for public health policies to understand determinants of citizens’ engagement in weight reduction strategies once a certain threshold is reached. Thus, results can support the design of public health campaigns and programmes that aim to change community or national health behaviour trends taking into account, e.g., national differences. PMID:25765165

  15. Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions

    PubMed Central

    2018-01-01

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606

  16. Identification of Conditions for Successful Aphid Control by Ladybirds in Greenhouses

    PubMed Central

    Riddick, Eric W.

    2017-01-01

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usually did not correlate with aphid reduction. The ratio of aphid reduction/release rate was slightly less for larvae than adults in some studies, suggesting that larvae were less effective (than adults) in suppressing aphids. Some adult releases were inside cages, thereby limiting adult dispersion from plants. Overall, the ratio of aphid reduction/release rate was greatest for ladybird adults of the normal strain (several species combined), but least for adults of a flightless Harmonia axyridis strain. The combined action of ladybirds and hymenopteran parasitoids could have a net positive effect on aphid population suppression and, consequently, on host (crop) plants. However, ladybird encounters with aphid-tending or foraging ants must be reduced. Deploying ladybirds to help manage aphids in greenhouses and similar protective structures is encouraged. PMID:28350349

  17. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems

    NASA Astrophysics Data System (ADS)

    Hendrickson, Thomas P.; Horvath, Arpad

    2014-01-01

    Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from -130 to 35 t-1 CO2(eq). Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO2(eq)) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure.

  18. Strengthening Borehole Configuration from the Retaining Roadway for Greenhouse Gas Reduction: A Case Study

    PubMed Central

    Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang

    2015-01-01

    A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368

  19. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission.

    PubMed

    Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun

    2017-07-01

    Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.

  20. Gardening with Greenhouses

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  1. Hospital downsizing and workforce reduction strategies: some inner workings.

    PubMed

    Weil, Thomas P

    2003-02-01

    Downsizing, manpower reductions, re-engineering, and resizing are used extensively in the United States to reduce cost and to evaluate the effectiveness and efficiency of various functions and processes. Published studies report that these managerial strategies result in a minimal impact on access to services, quality of care, and the ability to reduce costs. But, these approaches certainly alienate employees. These findings are usually explained by the significant difficulties experienced in eliminating nursing and other similar direct patient care-oriented positions and in terminating white-collar employees. Possibly an equally plausible reason why hospitals and physician practices react so poorly to these management strategies is their cost structure-high fixed (85%) and low variable (15%)-and that simply generating greater volume does not necessarily achieve economies of scale. More workable alternatives for health executives to effectuate cost reductions consist of simplifying prepayment, decreasing the overall availability and centralizing tertiary services at academic health centres, and closing superfluous hospitals and other health facilities. America's pluralistic values and these proposals having serious political repercussions for health executives and elected officials often present serious barriers in their implementation.

  2. Scenarios reducing greenhouse gas emission from motor vehicles in State University of Malang

    NASA Astrophysics Data System (ADS)

    Agustin, I. W.; Meidiana, C.

    2018-04-01

    State University of Malang (UM) is one of the universities in Malang city. It has the second largest number of student after Brawijaya University (UB) with the growing number of students each year, resulting in increase the amount of motorized vehicle usage on campus. The State University of Malang condition shows the number of motorcycles in the provided parking area exceeded the capacity, causing the emergence of the improperly parking area. The condition causes the increase of mileage for vehicles that do not get a parking space. They must find and move to another parking area were still empty. The movement to another parking area resulted in the increase of exhaust emissions from motorized vehicles into the air. The main purpose of the research was to create alternative scenario of greenhouse gas emissions reduction in the State University of Malang. Alternative emission reduction based on strategies of Avoid-Shift-Improve (A-S-I), and the importance level of alternative determined with Multi Criteria Analysis (MCA). The result showed that selected alternative in emission reduction with the highest score of 40 per cent was centralized parking management.

  3. 4. Perspective view, greenhouse, from the southwest. The greenhouse is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view, greenhouse, from the southwest. The greenhouse is the portion of the seed house to the right (south) of the double doors. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  4. Reduction of Greenhouse Gas and Criteria Pollutant Emissions by Direct Conversion of Associated Flare Gas to Synthetic Fuels at Oil Wellheads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Eric C; Zhang, Yi Min; Schuetzle, Dennis

    This study describes the results of a 'well-to-wheel' life cycle assessment (LCA) carried out to determine the potential greenhouse gas and criteria pollutant emission reductions that could be achieved by converting associated flare gas directly to synthetic fuels at oil wellheads in the US and globally. A Greyrock Flare Gas-to-Fuels(TM) conversion process at an Ohio oil well was used as the base case for this LCA. The liquid fuel produced directly from associated gas is comprised primarily of premium synthetic diesel with a small amount of synthetic gasoline. In this LCA scenario, the synthetic diesel and synthetic gasoline are blendedmore » at 20 and 10 vol% with petroleum diesel and gasoline, respectively. While the synthetic diesel fuel can be used as is (100%), the 20 vol% synthetic diesel blend (with petroleum diesel) was found to significantly improve engine performance, increase fuel economy, and reduce emissions. The direct conversion of associated gas to synthetic diesel fuels globally could reduce emissions of CO2 and CH4 by up to 356 and 5.96 million metric tons/year, respectively, resulting in the reduction of greenhouse gases (GHGs) by about 113.3 and 92.2% (20 year global warming potential) and 73.8 and 50.7% (100 year global warming potential) for synthetic diesel and gasoline fuels when compared to petroleum-derived gasoline fuels, respectively. Likewise, diesel criteria emissions could be reduced globally by up to 23.3, 0.374, 42.4, and 61.3 million metric tons/year globally for CO, particulates, NOx, and hydrocarbons, respectively. The potential economic benefit of this approach is that up to 5.30 and 71.1 billion liters of synthetic fuels could be produced each year in the US and globally from associated gas, respectively.« less

  5. Multiple models guide strategies for agricultural nutrient reductions

    USGS Publications Warehouse

    Scavia, Donald; Kalcic, Margaret; Muenich, Rebecca Logsdon; Read, Jennifer; Aloysius, Noel; Bertani, Isabella; Boles, Chelsie; Confesor, Remegio; DePinto, Joseph; Gildow, Marie; Martin, Jay; Redder, Todd; Robertson, Dale M.; Sowa, Scott P.; Wang, Yu-Chen; Yen, Haw

    2017-01-01

    In response to degraded water quality, federal policy makers in the US and Canada called for a 40% reduction in phosphorus (P) loads to Lake Erie, and state and provincial policy makers in the Great Lakes region set a load-reduction target for the year 2025. Here, we configured five separate SWAT (US Department of Agriculture's Soil and Water Assessment Tool) models to assess load reduction strategies for the agriculturally dominated Maumee River watershed, the largest P source contributing to toxic algal blooms in Lake Erie. Although several potential pathways may achieve the target loads, our results show that any successful pathway will require large-scale implementation of multiple practices. For example, one successful pathway involved targeting 50% of row cropland that has the highest P loss in the watershed with a combination of three practices: subsurface application of P fertilizers, planting cereal rye as a winter cover crop, and installing buffer strips. Achieving these levels of implementation will require local, state/provincial, and federal agencies to collaborate with the private sector to set shared implementation goals and to demand innovation and honest assessments of water quality-related programs, policies, and partnerships.

  6. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  7. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming.

    PubMed

    Van Middelaar, C E; Dijkstra, J; Berentsen, P B M; De Boer, I J M

    2014-01-01

    The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the farm gate). Strategies included were (1) dietary supplementation of an extruded linseed product (56% linseed; 1kg/cow per day in summer and 2kg/cow per day in winter), (2) dietary supplementation of a nitrate source (75% nitrate; 1% of dry matter intake), and (3) reducing the maturity stage of grass and grass silage (grazing at 1,400 instead of 1,700kg of dry matter/ha and harvesting at 3,000 instead of 3,500kg of dry matter/ha). A dairy farm linear programing model was used to define an average Dutch dairy farm on sandy soil without a predefined feeding strategy (reference situation). Subsequently, 1 of the 3 feeding strategies was implemented and the model was optimized again to determine the new economically optimal farm situation. Enteric CH4 production in the reference situation and after implementing the strategies was calculated based on a mechanistic model for enteric CH4 and empirical formulas explaining the effect of fat and nitrate supplementation on enteric CH4 production. Other GHG emissions along the chain were calculated using life cycle assessment. Total GHG emissions in the reference situation added up to 840kg of CO2 equivalents (CO2e) per t of fat- and protein-corrected milk (FPCM) and yearly labor income of €42,605. Supplementation of the extruded linseed product reduced emissions by 9kg of CO2e/t of FPCM and labor income by €16,041; supplementation of the dietary nitrate source reduced emissions by 32kg of CO2e/t of FPCM and labor income by €5,463; reducing the maturity stage of grass and grass silage reduced emissions by 11kg of CO2e/t of FPCM and labor income by €463. Of the 3 strategies, reducing grass maturity was the most cost

  8. Comparing chemical and biological control strategies for twospotted spider mites (Acari: Tetranychidae) in commercial greenhouse production of bedding plants.

    PubMed

    Opit, George P; Perret, Jamis; Holt, Kiffnie; Nechols, James R; Margolies, David C; Williams, Kimberly A

    2009-02-01

    Efficacy, costs, and impact on crop salability of various biological and chemical control strategies for Tetranychus urticae Koch (Acari: Tetranychidae) were evaluated on mixed plantings of impatiens, Impatiens wallerana Hook.f (Ericales: Balsaminaceae), and ivy geranium, Pelargonium peltatum (1.) L'Hér. Ex Aiton (Geraniales: Geraniaceae), cultivars in commercial greenhouses. Chemical control consisting of the miticide bifenazate (Floramite) was compared with two biological control strategies using the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). Treatments were 1) a single, early application of bifenazate; 2) a single, early release of predatory mites at a 1:4 predator:pest ratio based on leaf samples to estimate pest density; 3) a weekly release of predatory mites at numbers based on the area covered by the crop; and 4) an untreated control. T. urticae populations were monitored for 3 wk after the earliest treatment. When plants were ready for market, their salability was estimated. Bifenazate and density-based P. persimilis treatments effectively reduced T. urticae numbers starting 1 wk after plants had been treated, whereas the scheduled, area-based P. persimilis treatment had little or no effect. The percentage of flats that could be sold at the highest market wholesale price ranged from 15 to 33%, 44 to 86%, 84 to 95%, and 92 to 100%, in the control, weekly area-based P. persimilis, bifenazate, and single density-based P. persimilis treatments, respectively. We have shown that in commercial greenhouse production of herbaceous ornamental bedding plants, estimating pest density to determine the appropriate number of predators to release is as effective and offers nearly the same economic benefit as prophylactic use of pesticides.

  9. Study on highway transportation greenhouse effect external cost estimation in China

    NASA Astrophysics Data System (ADS)

    Chu, Chunchao; Pan, Fengming

    2017-03-01

    This paper focuses on estimating highway transportation greenhouse gas emission volume and greenhouse gas external cost in China. At first, composition and characteristics of greenhouse gases were analysed about highway transportation emissions. Secondly, an improved model of emission volume was presented on basis of highway transportation energy consumption, which may be calculated by virtue of main affecting factors such as the annual average operation miles of each type of the motor vehicles and the unit consumption level. the model of emission volume was constructed which considered not only the availability of energy consumption statistics of highway transportation but also the greenhouse gas emission factors of various fuel types issued by IPCC. Finally, the external cost estimation model was established about highway transportation greenhouse gas emission which combined emission volume with the unit external cost of CO2 emissions. An example was executed to confirm presented model which ranged from 2011 to 2015 Year in China. The calculated result shows that the highway transportation total emission volume and greenhouse gas external cost are growing up, but the unit turnover external cost is steadily declining. On the whole overall, the situation is still grim about highway transportation greenhouse gas emission, and the green transportation strategy should be put into effect as soon as possible.

  10. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  11. Balancing effluent quality, economic cost and greenhouse gas emissions during the evaluation of (plant-wide) control/operational strategies in WWTPs.

    PubMed

    Flores-Alsina, Xavier; Arnell, Magnus; Amerlinck, Youri; Corominas, Lluís; Gernaey, Krist V; Guo, Lisha; Lindblom, Erik; Nopens, Ingmar; Porro, Jose; Shaw, Andy; Snip, Laura; Vanrolleghem, Peter A; Jeppsson, Ulf

    2014-01-01

    The objective of this paper was to show the potential additional insight that result from adding greenhouse gas (GHG) emissions to plant performance evaluation criteria, such as effluent quality (EQI) and operational cost (OCI) indices, when evaluating (plant-wide) control/operational strategies in wastewater treatment plants (WWTPs). The proposed GHG evaluation is based on a set of comprehensive dynamic models that estimate the most significant potential on-site and off-site sources of CO₂, CH₄ and N₂O. The study calculates and discusses the changes in EQI, OCI and the emission of GHGs as a consequence of varying the following four process variables: (i) the set point of aeration control in the activated sludge section; (ii) the removal efficiency of total suspended solids (TSS) in the primary clarifier; (iii) the temperature in the anaerobic digester; and (iv) the control of the flow of anaerobic digester supernatants coming from sludge treatment. Based upon the assumptions built into the model structures, simulation results highlight the potential undesirable effects of increased GHG production when carrying out local energy optimization of the aeration system in the activated sludge section and energy recovery from the AD. Although off-site CO₂ emissions may decrease, the effect is counterbalanced by increased N₂O emissions, especially since N₂O has a 300-fold stronger greenhouse effect than CO₂. The reported results emphasize the importance and usefulness of using multiple evaluation criteria to compare and evaluate (plant-wide) control strategies in a WWTP for more informed operational decision making. © 2013.

  12. Development and evaluation of the Marijuana Reduction Strategies Self-Efficacy Scale.

    PubMed

    Davis, Alan K; Osborn, Lawrence A; Leith, Jaclyn; Rosenberg, Harold; Ashrafioun, Lisham; Hawley, Anna; Bannon, Erin E; Jesse, Samantha; Kraus, Shane; Kryszak, Elizabeth; Cross, Nicole; Carhart, Victoria; Baik, Kyoung-deok

    2014-06-01

    To evaluate several psychometric properties of a questionnaire designed to assess college students' self-efficacy to employ 21 cognitive-behavioral strategies intended to reduce the amount and/or frequency with which they consume marijuana, we recruited 273 marijuana-using students to rate their confidence that they could employ each of the strategies. Examination of frequency counts for each item, principal components analysis, internal consistency reliability, and mean interitem correlation supported retaining all 21 items in a single scale. In support of criterion validity, marijuana use-reduction self-efficacy scores were significantly positively correlated with cross-situational confidence to abstain from marijuana, and significantly negatively correlated with quantity and frequency of marijuana use and marijuana-related problems. In addition, compared with respondents whose use of marijuana either increased or remained stable, self-efficacy was significantly higher among those who had decreased their use of marijuana over the past year. This relatively short and easily administered questionnaire could be used to identify college students who have low self-efficacy to employ specific marijuana reduction strategies and as an outcome measure to evaluate educational and skill-training interventions.

  13. Production of Biomass-Based Automotive Lubricants by Reductive Etherification.

    PubMed

    Jadhav, Deepak; Grippo, Adam M; Shylesh, Sankaranarayanapillai; Gokhale, Amit A; Redshaw, John; Bell, Alexis T

    2017-06-09

    Growing concern with the effects of CO 2 emissions due to the combustion of petroleum-based transportation fuels has motivated the search for means to increase engine efficiency. The discovery of ethers with low viscosity presents an important opportunity to improve engine efficiency and fuel economy. We show here a strategy for the catalytic synthesis of such ethers by reductive etherification/O-alkylation of alcohols using building blocks that can be sourced from biomass. We find that long-chain branched ethers have several properties that make them superior lubricants to the mineral oil and synthetic base oils used today. These ethers provide a class of potentially renewable alternatives to conventional lubricants produced from petroleum and may contribute to the reduction of greenhouse gases associated with vehicle emissions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Missing the target: including perspectives of women with overweight and obesity to inform stigma‐reduction strategies

    PubMed Central

    Himmelstein, M. S.; Gorin, A. A.; Suh, Y. J.

    2017-01-01

    Summary Objective Pervasive weight stigma and discrimination have led to ongoing calls for efforts to reduce this bias. Despite increasing research on stigma‐reduction strategies, perspectives of individuals who have experienced weight stigma have rarely been included to inform this research. The present study conducted a systematic examination of women with high body weight to assess their perspectives about a broad range of strategies to reduce weight‐based stigma. Methods Women with overweight or obesity (N = 461) completed an online survey in which they evaluated the importance, feasibility and potential impact of 35 stigma‐reduction strategies in diverse settings. Participants (91.5% who reported experiencing weight stigma) also completed self‐report measures assessing experienced and internalized weight stigma. Results Most participants assigned high importance to all stigma‐reduction strategies, with school‐based and healthcare approaches accruing the highest ratings. Adding weight stigma to existing anti‐harassment workplace training was rated as the most impactful and feasible strategy. The family environment was viewed as an important intervention target, regardless of participants' experienced or internalized stigma. Conclusion These findings underscore the importance of including people with stigmatized identities in stigma‐reduction research; their insights provide a necessary and valuable contribution that can inform ways to reduce weight‐based inequities and prioritize such efforts. PMID:28392929

  15. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. Effect of greenhouse vegetable farming duration on Zinc accumulation in Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yu, Peiying; Cui, Shuang; Chen, Xin; Shi, Yi

    2018-02-01

    Greenhouse vegetable production (GVP) has rapidly expanded, and reqiures more attention due to its heavy metal contamination. In this study, different cultivation greenhouses of 1, 2, 3, 5 and 13 years were selected to investigate the effects of GVP duration on Zn accumulation. The results revealed high Zn (total Zn and available Zn) accumulation in GVP surface layers (0-20 cm), and Zn contents in 0-20 cm soil layers were positively correlated with GVP duration (P<0.01). Zn accumulation was mainly attributed to manure fertilizer application due to higher concentrations of Zn in manures. For greenhouse sustainability, reduction of manure application and reasonable use of passivation materials may alleviate metal phytoavailability and the health risk.

  17. [Stressor and stress reduction strategies for computer software engineers].

    PubMed

    Asakura, Takashi

    2002-07-01

    First, in this article we discuss 10 significant occupational stressors for computer software engineers, based on the review of the scientific literature on their stress and mental health. The stressors include 1) quantitative work overload, 2) time pressure, 3) qualitative work load, 4) speed and diffusion of technological innovation, and technological divergence, 5) low discretional power, 6) underdeveloped career pattern, 7) low earnings/reward from jobs, 8) difficulties in managing a project team for software development and establishing support system, 9) difficulties in customer relations, and 10) personality characteristics. In addition, we delineate their working and organizational conditions that cause such occupational stressors in order to find strategies to reduce those stressors in their workplaces. Finally, we suggest three stressor and stress reduction strategies for software engineers.

  18. Strategies to meet the challenges of monitoring greenhouse gas emissions in agriculture

    USDA-ARS?s Scientific Manuscript database

    Quantifying and predicting soil carbon sequestration and greenhouse gas emissions from agricultural systems have been research goals for numerous institutions, especially since the turn of the millennium. Cost, time, and politics are variables that have limited the rapid development of robust quant...

  19. Integrating social capacity into risk reduction strategies

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, S.; Pedoth, L.; Zebisch, M.

    2012-04-01

    The reduction of risk to impacts from external stresses and shocks is an important task in communities worldwide at all government levels and independent of the development status. The importance of building social capacity as part of risk reduction strategies is increasingly recognized. However, there is space for improvement to incorporate related activities into a holistic risk governance approach. Starting point for such enhancements is to promote and improve assessments of what is called 'sensitivity' or 'adaptive capacity' in the climate change community and what is named 'vulnerability' or 'resilience' in the hazard risk community. Challenging issues that need to be tackled in this context are the integration of concepts and method as well as the fusion of data. Against this background we introduce a method to assess regional adaptive capacity to climate change focusing on mountain areas accounting for sector specific problems. By considering three levels of specificity as base for the selection of most appropriate indicators the study results have the potential to support decision making regarding most appropriate adaptation actions. Advantages and shortcomings of certain aspects of adaptive capacity assessment in general and of the proposed method in particular are presented.

  20. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China

    PubMed Central

    DHINGRA, RADHIKA; CHRISTENSEN, ERICK R.; LIU, YANG; ZHONG, BO; WU, CHANG-FU; YOST, MICHAEL G.; REMAIS, JUSTIN V.

    2013-01-01

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than non-biogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than non-biogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton−1 CO2-eq.), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health co-benefits, are discussed. PMID:21348471

  1. Greenhouse gas emission reductions from domestic anaerobic digesters linked with sustainable sanitation in rural China.

    PubMed

    Dhingra, Radhika; Christensen, Erick R; Liu, Yang; Zhong, Bo; Wu, Chang-Fu; Yost, Michael G; Remais, Justin V

    2011-03-15

    Anaerobic digesters provide clean, renewable energy (biogas) by converting organic waste to methane, and are a key part of China's comprehensive rural energy plan. Here, experimental and modeling results are used to quantify the net greenhouse gas (GHG) reduction from substituting a household anaerobic digester for traditional energy sources in Sichuan, China. Tunable diode laser absorption spectroscopy and radial plume mapping were used to estimate the mass flux of fugitive methane emissions from active digesters. Using household energy budgets, the net improvement in GHG emissions associated with biogas installation was estimated using global warming commitment (GWC) as a consolidated measure of the warming effects of GHG emissions from cooking. In all scenarios biogas households had lower GWC than nonbiogas households, by as much as 54%. Even biogas households with methane leakage exhibited lower GWC than nonbiogas households, by as much as 48%. Based only on the averted GHG emissions over 10 years, the monetary value of a biogas installation was conservatively estimated at US$28.30 ($16.07 ton(-1) CO(2)-eq), which is available to partly offset construction costs. The interaction of biogas installation programs with policies supporting improved stoves, renewable harvesting of biomass, and energy interventions with substantial health cobenefits are discussed.

  2. High-Impact Actions for Individuals to Reduce Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Wynes, S. C.

    2015-12-01

    Climate change is the result of greenhouse gas accumulation in the atmosphere, which records the aggregation of billions of individual decisions. While systemic and structural changes receive great attention for addressing climate change, the contribution that individual citizens can make is often overlooked, especially in developed countries where per-capita emissions are highest. Here we consider a broad range of individual lifestyle choices and calculate their potential to reduce greenhouse gas emissions. We find that four widely applicable high-impact actions have the potential to reduce personal emissions by more than 1 tonne CO2-equivalent per year: having one fewer child (59.2 tonnes of reductions), living car-free (2.3 tonnes), avoiding airplane travel (1.5 tonnes per flight) and eating a plant-based diet (0.82 tonnes). These actions have much greater potential to reduce emissions than commonly promoted strategies like recycling (4 times less effective than a plant-based diet) or changing lightbulbs (8 times). However, high school textbooks from Canada and government resources from the EU, USA, Canada, and Australia largely fail to mention these actions, instead focusing on incremental changes with much smaller potential impact. We conclude that climate policy should focus not only on national and international targets, but also on encouraging responsible behaviour, especially for adolescents who will grow up in the era of climate change and are poised to establish a lifelong pattern of sustainable lifestyle choices.

  3. The MELiSSA GreenMOSS Study: Preliminary Design Considerations for a Greenhouse Module on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Lobascio, Cesare; Paille, Christel; Lamantea, Matteo Maria; Boscheri, Giorgio; Rossetti, Vittorio

    Extended human presence on an extraterrestrial planetary surface will be made possible by the development of life support systems affordable in the long term. The key elements to support the goal will be the maximization of closure of air and water cycles, as well as the development of cost-effective and reliable hardware, including a careful strategic effort toward reduction of spare parts and consumables. Regenerative life support systems likely represent the final step toward long term sustainability of a space crew, allowing in situ food production and regeneration of organic waste. Referring to the MELiSSA loop, a key element for food production is the Higher Plant Compartment. The paper focuses on the preliminary design of a Greenhouse at the lunar South Pole, as performed within the “Greenhouse Module for Space System” (GreenMOSS) study, under a contract from the European Space Agency. The greenhouse is in support to a relatively small crew for provision of an energetic food complement. Resources necessary for the greenhouse such as water, carbon dioxide and nitrogen are assumed available, as required. The relevant mass and energy balances for incoming resources should be part of future studies, and should help integrate this element with the interfacing MELISSA compartments. Net oxygen production and harvested crop biomass from the greenhouse system will be quantified. This work presents the results of the two major trade-offs performed as part of this study: artificial vs natural illumination and monocrop vs multicrop solutions. Comparisons among possible design solutions were driven by the ALiSSE metric as far as practicable within this preliminary stage, considering mass and power parameters. Finally, the paper presents the mission duration threshold for determining the convenience of the designed solution with respect to other resources provision strategies

  4. Assessment of self-efficacy to employ self-initiated pornography use-reduction strategies.

    PubMed

    Kraus, Shane W; Rosenberg, Harold; Tompsett, Carolyn J

    2015-01-01

    This study evaluated several psychometric properties of a newly developed questionnaire designed to assess individuals' self-efficacy (from 0% to 100%) to employ self-initiated cognitive-behavioral strategies intended to reduce the frequency and duration of their pornography use. Using a web-based data collection procedure, we recruited 1298 male users of pornography to complete questionnaires assessing hypersexuality, pornography use history, and general self-efficacy. Based on a principal component analysis and examination of inter-item correlations, we deleted 13 items from the initial pool of 21 strategies. The resulting 8-item questionnaire had excellent internal consistency reliability, and a moderate mean inter-item correlation considered indicative of unidimensionality. In support of criterion validity, self-efficacy to employ use-reduction strategies was significantly associated with the frequency with which participants used pornography, with scores on a measure of hypersexuality, and with the number of times one had attempted to cut back using pornography. In support of discriminant validity, we found that pornography use-reduction self-efficacy scores were not strongly correlated with general self-efficacy. Both researchers and clinicians could use this questionnaire to assess pornography users' confidence to employ self-initiated strategies intended to reduce the duration and frequency with which they use pornography. Published by Elsevier Ltd.

  5. Psychometric evaluation of the Marijuana Reduction Strategies Self-Efficacy Scale with young recreational marijuana users.

    PubMed

    Davis, Alan K; Osborn, Lawrence A; Rosenberg, Harold; Cross, Nicole; Lauritsen, Kirstin J; Ashrafioun, Lisham; Bradbury, Stacey; Feuille, Margaret; Lackey, Jennifer H; Hawley, Anna; Leith, Jaclyn

    2014-12-01

    This study evaluated the cue-reactivity and several psychometric properties of a questionnaire designed to assess marijuana users' self-efficacy to employ 21 specific cognitive-behavioral strategies to reduce their marijuana use. Using a web-based recruitment and data-collection procedure, 513 regular marijuana users completed dependent measures following marijuana-related or control cue exposure. Although exposure to marijuana-related stimuli significantly increased reported craving, mean reduction-strategy self-efficacy scores did not differ as a function of cue exposure. Reliability analyses supported retaining all 21 items as a single scale. Reduction-strategy self-efficacy was positively associated with marijuana-refusal self-efficacy and with recent past use of reduction strategies, was negatively associated with quantity and frequency of marijuana use and marijuana-related problems, and was positively but weakly associated with general self-efficacy. The most frequently reported strategies that were employed reflected restricting marijuana use to once per day, not keeping a large stash available, turning down unwanted hits, and not obtaining more marijuana right away if one's supply runs out. These findings further support the reliability and validity of the questionnaire when administered to a diverse sample of regular marijuana users. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Strategies for Sustainable Communities

    EPA Pesticide Factsheets

    The guidebook offers potential strategies for reducing greenhouse gas emissions using smart growth strategies, indicators to track progress, and resources for 10 community types ranging from major cities to rural communities.

  7. Drag reduction strategies

    NASA Technical Reports Server (NTRS)

    Hill, D. Christopher

    1994-01-01

    previously a description was given of an active control scheme using wall transpiration that leads to a 15% reduction in surface skin friction beneath a turbulent boundary layer, according to direct numerical simulation. In this research brief further details of that scheme and its variants are given together with some suggestions as to how sensor/actuator arrays could be configured to reduce surface drag. The research which is summarized here was performed during the first half of 1994. This research is motivated by the need to understand better how the dynamics of near-wall turbulent flow can be modified so that skin friction is reduced. The reduction of turbulent skin friction is highly desirable in many engineering applications. Experiments and direct numerical simulations have led to an increased understanding of the cycle of turbulence production and transport in the boundary layer and raised awareness of the possibility of disrupting the process with a subsequent reduction in turbulent skin friction. The implementation of active feedback control in a computational setting is a viable approach for the investigation of the modifications to the flow physics that can be achieved. Bewley et al. and Hill describe how ideas from optimal control theory are employed to give 'sub-optimal' drag reduction schemes. The objectives of the work reported here is to investigate in greater detail the assumptions implicit within such schemes and their limitations. It is also our objective to describe how an array of sensors and actuators could be arranged and interconnected to form a 'smart' surface which has low skin friction.

  8. NASA's Orbital Space Plane Risk Reduction Strategy

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan

    2003-01-01

    This paper documents the transformation of NASA s Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle Program under the revised Integrated Space Transportation Plan, announced November 2002. Outlining the technology development approach followed by the original SLI, this paper gives insight into the current risk-reduction strategy that will enable confident development of the Nation s first orbital space plane (OSP). The OSP will perform an astronaut and contingency cargo transportation function, with an early crew rescue capability, thus enabling increased crew size and enhanced science operations aboard the International Space Station. The OSP design chosen for full-scale development will take advantage of the latest innovations American industry has to offer. The OSP Program identifies critical technologies that must be advanced to field a safe, reliable, affordable space transportation system for U.S. access to the Station and low-Earth orbit. OSP flight demonstrators will test crew safety features, validate autonomous operations, and mature thermal protection systems. Additional enabling technologies may be identified during the OSP design process as part of an overall risk-management strategy. The OSP Program uses a comprehensive and evolutionary systems acquisition approach, while applying appropriate lessons learned.

  9. Determinants of underage college student drinking: implications for four major alcohol reduction strategies.

    PubMed

    Paek, Hye-Jin; Hove, Thomas

    2012-01-01

    Guided by the assumptions of the social ecological model and the social marketing approach, this study provides a simultaneous and comprehensive assessment of 4 major alcohol reduction strategies for college campuses: school education programs, social norms campaigns, alcohol counter-marketing, and alcohol control policies. Analysis of nationally representative secondary survey data among 5,472 underage students reveals that alcohol marketing seems to be the most formidable risk factor for underage drinking, followed by perceived drinking norms (injunctive norm) and lax policy enforcement. This analysis suggests that, to make social norms campaigns and alcohol control policies more effective, alcohol reduction strategies should be developed to counter the powerful influence of alcohol marketing and promotions.

  10. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    PubMed

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  11. Voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, E. Jr.; Vernet, J.E. Jr.

    DOE is developing guidelines for the voluntary reporting of greenhouse gas emissions and their reductions, under Section 1605(b) of the Energy Policy Act of 1992. The establishment of this voluntary program should encourage the reduction of greenhouse gases while providing the opportunity to share innovative approaches to achieving such reductions. This social learning aspect is an important element of the program. In addition to greenhouse gas reductions achieved during a given year, reporters are encouraged to also report their actual emissions of such gases for 1987 through 1990. Due to the voluntary nature of this program, and the myriad differencesmore » among the potential reporting entities and possible uses for the data reported, the guidelines will need to be structured so as to maximize participation without compromising the usefulness of the data collected. Through a broad notice of inquiry, published in the Federal Register on July 27, 1993, the Department began seeking input into development of the guidelines. Subsequently, to gain a better understanding of the various sectors of the economy, six public workshops were held during the 1993. One workshop addressed institutional issues of potential interest to all sectors of the economy, with the other five workshops focusing more on matters of concern to specific sectors. These meetings were structured so as to provide broad representation from potential reporting entities along with public interest organizations. It is clear that there are significant variations among those reporting greenhouse information. Presently voluntary, the program will need flexibility to encourage broad participation.« less

  12. Comparative Effectiveness of Personalized Lifestyle Management Strategies for Cardiovascular Disease Risk Reduction.

    PubMed

    Chu, Paula; Pandya, Ankur; Salomon, Joshua A; Goldie, Sue J; Hunink, M G Myriam

    2016-03-29

    Evidence shows that healthy diet, exercise, smoking interventions, and stress reduction reduce cardiovascular disease risk. We aimed to compare the effectiveness of these lifestyle interventions for individual risk profiles and determine their rank order in reducing 10-year cardiovascular disease risk. We computed risks using the American College of Cardiology/American Heart Association Pooled Cohort Equations for a variety of individual profiles. Using published literature on risk factor reductions through diverse lifestyle interventions-group therapy for stopping smoking, Mediterranean diet, aerobic exercise (walking), and yoga-we calculated the risk reduction through each of these interventions to determine the strategy associated with the maximum benefit for each profile. Sensitivity analyses were conducted to test the robustness of the results. In the base-case analysis, yoga was associated with the largest 10-year cardiovascular disease risk reductions (maximum absolute reduction 16.7% for the highest-risk individuals). Walking generally ranked second (max 11.4%), followed by Mediterranean diet (max 9.2%), and group therapy for smoking (max 1.6%). If the individual was a current smoker and successfully quit smoking (ie, achieved complete smoking cessation), then stopping smoking yielded the largest reduction. Probabilistic and 1-way sensitivity analysis confirmed the demonstrated trend. This study reports the comparative effectiveness of several forms of lifestyle modifications and found smoking cessation and yoga to be the most effective forms of cardiovascular disease prevention. Future research should focus on patient adherence to personalized therapies, cost-effectiveness of these strategies, and the potential for enhanced benefit when interventions are performed simultaneously rather than as single measures. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. Impact of cutting meat intake on hidden greenhouse gas emissions in an import-reliant city

    NASA Astrophysics Data System (ADS)

    Yau, Y. Y.; Thibodeau, B.; Not, C.

    2018-06-01

    Greenhouse gas emissions embodied in trade is a growing concern for the international community. Multiple studies have highlighted drawbacks in the territorial and production-based accounting of greenhouse gas emissions because it neglects emissions from the consumption of goods in trade. This creates weak carbon leakage and complicates international agreements on emissions regulations. Therefore, we estimated consumption-based emissions using input-output analysis and life cycle assessment to calculate the greenhouse gas emissions hidden in meat and dairy products in Hong Kong, a city predominately reliant on imports. We found that emissions solely from meat and dairy consumption were higher than the city’s total greenhouse gas emissions using conventional production-based calculation. This implies that government reports underestimate more than half of the emissions, as 62% of emissions are embodied in international trade. The discrepancy emphasizes the need of transitioning climate targets and policy to consumption-based accounting. Furthermore, we have shown that dietary change from a meat-heavy diet to a diet in accordance with governmental nutrition guidelines could achieve a 67% reduction in livestock-related emissions, allowing Hong Kong to achieve the Paris Agreement targets for 2030. Consequently, we concluded that consumption-based accounting for greenhouse gas emissions is crucial to target the areas where emissions reduction is realistically achievable, especially for import-reliant cities like Hong Kong.

  14. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies.

    PubMed

    Hu, Wenyou; Zhang, Yanxia; Huang, Biao; Teng, Ying

    2017-03-01

    Greenhouse vegetable production (GVP) has become an important source of public vegetable consumption and farmers' income in China. However, various pollutants can be accumulated in GVP soils due to the high cropping index, large agricultural input, and closed environment. Ecological toxicity caused by excessive pollutants' accumulation can then lead to serious health risks. This paper was aimed to systematically review the current status of soil environmental quality, analyze their impact factors, and consequently to propose integrated management strategies for GVP systems. Results indicated a decrease in soil pH, soil salinization, and nutrients imbalance in GVP soils. Fungicides, remaining nutrients, antibiotics, heavy metals, and phthalate esters were main pollutants accumulating in GVP soils comparing to surrounding open field soils. Degradation of soil ecological function, accumulation of major pollutants in vegetables, deterioration of neighboring water bodies, and potential human health risks has occurred due to the changes of soil properties and accumulation of pollutants such as heavy metals and fungicides in soils. Four dominant factors were identified leading to the above-mentioned issues including heavy application of agricultural inputs, outmoded planting styles with poor environmental protection awareness, old-fashion regulations, unreasonable standards, and ineffective supervisory management. To guarantee a sustainable GVP development, several strategies were suggested to protect and improve soil environmental quality. Implementation of various strategies not only requires the concerted efforts among different stakeholders, but also the whole lifecycle assessment throughout the GVP processes as well as effective enforcement of policies, laws, and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City.more » This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate

  16. Exploring Expansion and Reduction Strategies in Two English Translations of Masnavi

    ERIC Educational Resources Information Center

    Abbasi, Atefeh; Koosha, Mansour

    2016-01-01

    The present study aimed to investigate the frequency of the use of two semantic adjustment strategies; namely, expansion and reduction, in the two English translations of book one of "Masnavi." For this purpose, 300 lines of "Masnavi" by Rumi (2014) along its two corresponding English translations by Nicholson (2004) and…

  17. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  18. Greenhouse gases accounting and reporting for waste management--a South African perspective.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2010-11-01

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. GREENHOUSE GASES (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Greenhouse gas (GHG) emissions are projected for various scenarios and the most appropriate approaches and technologies for mitigation are identified by NRMRL's Air Pollution Prevention and Control Division's Atmospheric Protection Branch (APB). These methods contribute to reduct...

  20. Intelligent Bioreactor Management Information System (IBM-IS) for Mitigation of Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul Imhoff; Ramin Yazdani; Don Augenstein

    Methane is an important contributor to global warming with a total climate forcing estimated to be close to 20% that of carbon dioxide (CO2) over the past two decades. The largest anthropogenic source of methane in the US is 'conventional' landfills, which account for over 30% of anthropogenic emissions. While controlling greenhouse gas emissions must necessarily focus on large CO2 sources, attention to reducing CH4 emissions from landfills can result in significant reductions in greenhouse gas emissions at low cost. For example, the use of 'controlled' or bioreactor landfilling has been estimated to reduce annual US greenhouse emissions by aboutmore » 15-30 million tons of CO2 carbon (equivalent) at costs between $3-13/ton carbon. In this project we developed or advanced new management approaches, landfill designs, and landfill operating procedures for bioreactor landfills. These advances are needed to address lingering concerns about bioreactor landfills (e.g., efficient collection of increased CH4 generation) in the waste management industry, concerns that hamper bioreactor implementation and the consequent reductions in CH4 emissions. Collectively, the advances described in this report should result in better control of bioreactor landfills and reductions in CH4 emissions. Several advances are important components of an Intelligent Bioreactor Management Information System (IBM-IS).« less

  1. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  2. The effectiveness of measures to reduce the man-made greenhouse effect. The application of a Climate-policy Model

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Bach, W.

    1994-06-01

    In this paper we briefly describe the characteristics and the performance of our 1-D Muenster Climate Model. The model system consists of coupled models including gas cycle models, an energy balance model and a sea level rise model. The chemical feedback mechanisms among greenhouse gases are not included. This model, which is a scientifically-based parameterized simulation model, is used here primarily to help assess the effectiveness of various plausible policy options in mitigating the additional man-made greenhouse warming and the resulting sea level rise. For setting priorities it is important to assess the effectiveness of the various measures by which the greenhouse effect can be reduced. To this end we take a Scenario Business-as-Usual as a reference case (Leggett et al., 1992) and study the mitigating effects of the following four packages of measures: The Copenhagen Agreements on CFC, HCFC, and halon reduction (GECR, 1992), the Tropical Forest Preservation Plan of the Climate Enquete-Commission of the German Parliament on CO2 reduction (ECGP, 1990), a detailed reduction scheme for energy-related CO2 (ECGP, 1990), and a preliminary scheme for CH4, CO, and N2O reduction (Bach and Jain, 1992 1993). The required reduction depends, among others, on the desired climate and ecosystem protection. This is defined by the Enquete-Commission and others as a mean global rate of surface temperature change of ca. 0.1 °C per decade — assumed to be critical to many ecosystems — and a mean global warming ceiling of ca. 2 °C in 2100 relative to 1860. Our results show that the Copenhagen Agreements, the Tropical Forest Preservation Plan, the energy-related CO2 reduction scheme, and the CH4 and N2O reduction schemes could mitigate the anthropogenic greenhouse warming by ca. 12%, 6%, 35%, and 9% respectively. Taken together, all four packages of measures could reduce the man-made greenhouse effect by more than 60% until 2100; i.e. over the climate sensitivity range 2.5

  3. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    DOT National Transportation Integrated Search

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  4. Identification of conditions for successful aphid control by ladybirds in greenhouses

    USDA-ARS?s Scientific Manuscript database

    As part of my research on the mass production and augmentative release of ladybirds, I reviewed the primary research literature to test the prediction that ladybirds are effective aphid predators in greenhouses. Aphid population reduction exceeded 50% in most studies and ladybird release rates usual...

  5. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  6. Persistence of climate changes due to a range of greenhouse gases.

    PubMed

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  7. Development of a Questionnaire to Assess University Students' Intentions to Use Behavioral Alcohol-Reduction Strategies

    ERIC Educational Resources Information Center

    Bonar, Erin E.; Hoffmann, Erica; Rosenberg, Harold; Kryszak, Elizabeth; Young, Kathleen M.; Ashrafioun, Lisham; Kraus, Shane W.; Bannon, Erin E.

    2012-01-01

    Objective: To evaluate the psychometric properties of a new self-report questionnaire designed to assess college students' intentions to employ 31 specific alcohol-reduction strategies. Method: Students attending a large public university were recruited to complete alcohol-reduction, drinking history, and personality questionnaires online.…

  8. Modeling nitrate-nitrogen load reduction strategies for the des moines river, iowa using SWAT

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2009-01-01

    The Des Moines River that drains a watershed of 16,175 km2 in portions of Iowa and Minnesota is impaired for nitrate-nitrogen (nitrate) due to concentrations that exceed regulatory limits for public water supplies. The Soil Water Assessment Tool (SWAT) model was used to model streamflow and nitrate loads and evaluate a suite of basin-wide changes and targeting configurations to potentially reduce nitrate loads in the river. The SWAT model comprised 173 subbasins and 2,516 hydrologic response units and included point and nonpoint nitrogen sources. The model was calibrated for an 11-year period and three basin-wide and four targeting strategies were evaluated. Results indicated that nonpoint sources accounted for 95% of the total nitrate export. Reduction in fertilizer applications from 170 to 50 kg/ha achieved the 38% reduction in nitrate loads, exceeding the 34% reduction required. In terms of targeting, the most efficient load reductions occurred when fertilizer applications were reduced in subbasins nearest the watershed outlet. The greatest load reduction for the area of land treated was associated with reducing loads from 55 subbasins with the highest nitrate loads, achieving a 14% reduction in nitrate loads achieved by reducing applications on 30% of the land area. SWAT model results provide much needed guidance on how to begin implementing load reduction strategies most efficiently in the Des Moines River watershed. ?? 2009 Springer Science+Business Media, LLC.

  9. Operation Greenhouse: Communications

    DTIC Science & Technology

    1951-01-01

    jottication •__ By,. , Dtsl•-bution1 TECHNICAL REPORT mailability Code’s Avait and -or Dist Special COMMUNICATIONS OPERATION GREENHOUSE 1951 COMMANDED BY...stem GREENHOUSE to include technical informa- therefrom. tion and operational experience not desirable Details of operation, such as call sign, fre- for...Atomic planning, organization, and engineering for Weapons Proving Ground. Where, in this re- Operation GREENHOUSE , since the solution port, reference is

  10. Electrical resistivity tomography to delineate greenhouse soil variability

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Amato, M.; Bitella, G.; Bochicchio, R.

    2013-03-01

    Appropriate management of soil spatial variability is an important tool for optimizing farming inputs, with the result of yield increase and reduction of the environmental impact in field crops. Under greenhouses, several factors such as non-uniform irrigation and localized soil compaction can severely affect yield and quality. Additionally, if soil spatial variability is not taken into account, yield deficiencies are often compensated by extra-volumes of crop inputs; as a result, over-irrigation and overfertilization in some parts of the field may occur. Technology for spatially sound management of greenhouse crops is therefore needed to increase yield and quality and to address sustainability. In this experiment, 2D-electrical resistivity tomography was used as an exploratory tool to characterize greenhouse soil variability and its relations to wild rocket yield. Soil resistivity well matched biomass variation (R2=0.70), and was linked to differences in soil bulk density (R2=0.90), and clay content (R2=0.77). Electrical resistivity tomography shows a great potential in horticulture where there is a growing demand of sustainability coupled with the necessity of stabilizing yield and product quality.

  11. Self-enforcing strategies to deter free-riding in the climate change mitigation game and other repeated public good games

    PubMed Central

    Heitzig, Jobst; Lessmann, Kai; Zou, Yong

    2011-01-01

    As the Copenhagen Accord indicates, most of the international community agrees that global mean temperature should not be allowed to rise more than two degrees Celsius above preindustrial levels to avoid unacceptable damages from climate change. The scientific evidence distilled in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change and recent reports by the US National Academies shows that this can only be achieved by vast reductions of greenhouse gas emissions. Still, international cooperation on greenhouse gas emissions reductions suffers from incentives to free-ride and to renegotiate agreements in case of noncompliance, and the same is true for other so-called “public good games.” Using game theory, we show how one might overcome these problems with a simple dynamic strategy of linear compensation when the parameters of the problem fulfill some general conditions and players can be considered to be sufficiently rational. The proposed strategy redistributes liabilities according to past compliance levels in a proportionate and timely way. It can be used to implement any given allocation of target contributions, and we prove that it has several strong stability properties. PMID:21903930

  12. Effect of feeding strategies and cropping systems on greenhouse gas emission from Wisconsin certified organic dairy farms.

    PubMed

    Liang, D; Sun, F; Wattiaux, M A; Cabrera, V E; Hedtcke, J L; Silva, E M

    2017-07-01

    Organic agriculture continues to expand in the United States, both in total hectares and market share. However, management practices used by dairy organic producers, and their resulting environmental impacts, vary across farms. This study used a partial life cycle assessment approach to estimate the effect of different feeding strategies and associated crop production on greenhouse gas emissions (GHG) from Wisconsin certified organic dairy farms. Field and livestock-driven emissions were calculated using 2 data sets. One was a 20-yr data set from the Wisconsin Integrated Cropping System Trial documenting management inputs, crop and pasture yields, and soil characteristics, used to estimate field-level emissions from land associated with feed production (row crop and pasture), including N 2 O and soil carbon sequestration. The other was a data set summarizing organic farm management in Wisconsin, which was used to estimate replacement heifer emission (CO 2 equivalents), enteric methane (CH 4 ), and manure management (N 2 O and CH 4 ). Three combinations of corn grain (CG) and soybean (SB) as concentrate (all corn = 100% CG; baseline = 75% CG + 25% SB; half corn = 50% CG + 50% SB) were assigned to each of 4 representative management strategies as determined by survey data. Overall, GHG emissions associated with crop production was 1,297 ± 136 kg of CO 2 equivalents/t of ECM without accounting for soil carbon changes (ΔSC), and GHG emission with ΔSC was 1,457 ± 111 kg of CO 2 equivalents/t of ECM, with greater reliance on pasture resulting in less ΔSC. Higher levels of milk production were a major driver associated with reduction in GHG emission per metric tonne of ECM. Emissions per metric tonne of ECM increased with increasing proportion of SB in the ration; however, including SB in the crop rotation decreased N 2 O emission per metric tonne of ECM from cropland due to lower applications of organically approved N fertility inputs. More SB at the expense of CG

  13. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  14. Effect of stigma reduction intervention strategies on HIV test uptake in low- and middle-income countries: a realist review protocol.

    PubMed

    Thapa, Subash; Hannes, Karin; Cargo, Margaret; Buve, Anne; Mathei, Catharina

    2015-11-02

    Several stigma reduction intervention strategies have been developed and tested for effectiveness in terms of increasing human immunodeficiency virus (HIV) test uptake. These strategies have been more effective in some contexts and less effective in others. Individual factors, such as lack of knowledge and fear of disclosure, and social-contextual factors, such as poverty and illiteracy, might influence the effect of stigma reduction intervention strategies on HIV test uptake in low- and middle-income countries. So far, it is not clearly known how the stigma reduction intervention strategies interact with these contextual factors to increase HIV test uptake. Therefore, we will conduct a review that will synthesize existing studies on stigma reduction intervention strategies to increase HIV test uptake to better understand the mechanisms underlying this process in low- and middle-income countries. A realist review will be conducted to unpack context-mechanism-outcome configurations of the effect of stigma reduction intervention strategies on HIV test uptake. Based on a scoping review, we developed a preliminary theoretical framework outlining a potential mechanism of how the intervention strategies influence HIV test uptake. Our realist synthesis will be used to refine the preliminary theoretical framework to better reflect mechanisms that are supported by existing evidence. Journal articles and grey literature will be searched following a purposeful sampling strategy. Data will be extracted and tested against the preliminary theoretical framework. Data synthesis and analysis will be performed in five steps: organizing extracted data into evidence tables, theming, formulating chains of inference from the identified themes, linking the chains of inference and developing generative mechanisms, and refining the framework. This will be the first realist review that offers both a quantitative and a qualitative exploration of the available evidence to develop and propose

  15. Global Emissions of Nitrous Oxide: Key Source Sectors, their Future Activities and Technical Opportunities for Emission Reduction

    NASA Astrophysics Data System (ADS)

    Winiwarter, W.; Höglund-Isaksson, L.; Klimont, Z.; Schöpp, W.; Amann, M.

    2017-12-01

    Nitrous oxide originates primarily from natural biogeochemical processes, but its atmospheric concentrations have been strongly affected by human activities. According to IPCC, it is the third largest contributor to the anthropogenic greenhouse gas emissions (after carbon dioxide and methane). Deep decarbonization scenarios, which are able to constrain global temperature increase within 1.5°C, require strategies to cut methane and nitrous oxide emissions on top of phasing out carbon dioxide emissions. Employing the Greenhouse gas and Air pollution INteractions and Synergies (GAINS) model, we have estimated global emissions of nitrous oxide until 2050. Using explicitly defined emission reduction technologies we demonstrate that, by 2030, about 26% ± 9% of the emissions can be avoided assuming full implementation of currently existing reduction technologies. Nearly a quarter of this mitigation can be achieved at marginal costs lower than 10 Euro/t CO2-eq with the chemical industry sector offering important reductions. Overall, the largest emitter of nitrous oxide, agriculture, also provides the largest emission abatement potentials. Emission reduction may be achieved by precision farming methods (variable rate technology) as well as by agrochemistry (nitrification inhibitors). Regionally, the largest emission reductions are achievable where intensive agriculture and industry are prevalent (production and application of mineral fertilizers): Centrally Planned Asia including China, North and Latin America, and South Asia including India. Further deep cuts in nitrous oxide emissions will require extending reduction efforts beyond strictly technological solutions, i.e., considering behavioral changes, including widespread adoption of "healthy diets" minimizing excess protein consumption.

  16. Special Issue From the 4th USDA Greenhouse Gas Symposium

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gases emitted from agricultural and forest systems continue to be a topic of interest because of their potential role in the global climate and the potential monetary return in the form of carbon credits from the adoption of mitigation strategies. There are several challenges in the scien...

  17. Greenhouse gas reduction by recovery and utilization of landfill methane and CO{sub 2} technical and market feasibility study, Boului Landfill, Bucharest, Romania. Final report, September 30, 1997--September 19, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.J.; Brown, W.R.; Siwajek, L.

    1998-09-01

    The project is a landfill gas to energy project rated at about 4 megawatts (electric) at startup, increasing to 8 megawatts over time. The project site is Boului Landfill, near Bucharest, Romania. The project improves regional air quality, reduces emission of greenhouse gases, controls and utilizes landfill methane, and supplies electric power to the local grid. The technical and economic feasibility of pre-treating Boului landfill gas with Acrion`s new landfill gas cleanup technology prior to combustion for power production us attractive. Acrion`s gas treatment provides several benefits to the currently structured electric generation project: (1) increase energy density of landfillmore » gas from about 500 Btu/ft{sup 3} to about 750 Btu/ft{sup 3}; (2) remove contaminants from landfill gas to prolong engine life and reduce maintenance;; (3) recover carbon dioxide from landfill gas for Romanian markets; and (4) reduce emission of greenhouse gases methane and carbon dioxide. Greenhouse gas emissions reduction attributable to successful implementation of the landfill gas to electric project, with commercial liquid CO{sub 2} recovery, is estimated to be 53 million metric tons of CO{sub 2} equivalent of its 15 year life.« less

  18. Optimization strategies for sediment reduction practices on roads in steep, forested terrain

    USGS Publications Warehouse

    Madej, Mary Ann; Eschenbach, E.A.; Diaz, C.; Teasley, R.; Baker, K.

    2006-01-01

    Many forested steeplands in the western United States display a legacy of disturbances due to timber harvest, mining or wildfires, for example. Such disturbances have caused accelerated hillslope erosion, leading to increased sedimentation in fish-bearing streams. Several restoration techniques have been implemented to address these problems in mountain catchments, many of which involve the removal of abandoned roads and re-establishing drainage networks across road prisms. With limited restoration funds to be applied across large catchments, land managers are faced with deciding which areas and problems should be treated first, and by which technique, in order to design the most effective and cost-effective sediment reduction strategy. Currently most restoration is conducted on a site-specific scale according to uniform treatment policies. To create catchment-scale policies for restoration, we developed two optimization models - dynamic programming and genetic algorithms - to determine the most cost-effective treatment level for roads and stream crossings in a pilot study basin with approximately 700 road segments and crossings. These models considered the trade-offs between the cost and effectiveness of different restoration strategies to minimize the predicted erosion from all forest roads within a catchment, while meeting a specified budget constraint. The optimal sediment reduction strategies developed by these models performed much better than two strategies of uniform erosion control which are commonly applied to road erosion problems by land managers, with sediment savings increased by an additional 48 to 80 per cent. These optimization models can be used to formulate the most cost-effective restoration policy for sediment reduction on a catchment scale. Thus, cost savings can be applied to further restoration work within the catchment. Nevertheless, the models are based on erosion rates measured on past restoration sites, and need to be up-dated as

  19. Multi-sectorial convergence in greenhouse gas emissions.

    PubMed

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Strategies for price reduction of HIV medicines under a monopoly situation in Brazil

    PubMed Central

    Chaves, Gabriela Costa; Hasenclever, Lia; Osorio-de-Castro, Claudia Garcia Serpa; Oliveira, Maria Auxiliadora

    2016-01-01

    ABSTRACT OBJECTIVE To analyze Government strategies for reducing prices of antiretroviral medicines for HIV in Brazil. METHODS Analysis of Ministry of Health purchases of antiretroviral medicines, from 2005 to 2013. Expenditures and costs of the treatment per year were analyzed and compared to international prices of atazanavir. Price reductions were estimated based on the terms of a voluntary license of patent rights and technology transfer in the Partnership for Productive Development Agreement for atazanavir. RESULTS Atazanavir, a patented medicine, represented a significant share of the expenditures on antiretrovirals purchased from the private sector. Prices in Brazil were higher than international references, and no evidence was found of a relationship between purchase volume and price paid by the Ministry of Health. Concerning the latest strategy to reduce prices, involving local production of the 200 mg capsule, the price reduction was greater than the estimated reduction. As for the 300 mg capsule, the amounts paid in the first two years after the Partnership for Productive Development Agreement were close to the estimated values. Prices in nominal values for both dosage forms remained virtually constant between 2011 (the signature of the Partnership for Productive Development Agreement), 2012 and 2013 (after the establishment of the Partnership). CONCLUSIONS Price reduction of medicines is complex in limited-competition environments. The use of a Partnership for Productive Development Agreement as a strategy to increase the capacity of local production and to reduce prices raises issues regarding its effectiveness in reducing prices and to overcome patent barriers. Investments in research and development that can stimulate technological accumulation should be considered by the Government to strengthen its bargaining power to negotiate medicines prices under a monopoly situation. PMID:26759969

  1. Operating and Maintaining the Greenhouse.

    ERIC Educational Resources Information Center

    Gresser, Priscilla A.

    This learning guide is designed to assist vocational agriculture students in mastering 20 tasks involved in the operation and maintenance of a greenhouse. Addressed in the individual sections of the guide are the following topics: identification of greenhouse designs, greenhouse construction, basic greenhouse maintenance to conserve energy,…

  2. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  3. Joint implementation: Biodiversity and greenhouse gas offsets

    NASA Astrophysics Data System (ADS)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  4. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  5. Framework for Testing the Effectiveness of Bat and Eagle Impact-Reduction Strategies at Wind Energy Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinclair, Karin; DeGeorge, Elise

    2016-04-13

    The objectives of this framework are to facilitate the study design and execution to test the effectiveness of bat and eagle impact-reduction strategies at wind energy sites. Through scientific field research, the wind industry and its partners can help determine if certain strategies are ready for operational deployment or require further development. This framework should be considered a living document to be improved upon as fatality-reduction technologies advance from the initial concepts to proven readiness (through project- and technology-specific testing) and as scientific field methods improve.

  6. Cutaneous scarring: Pathophysiology, molecular mechanisms, and scar reduction therapeutics Part II. Strategies to reduce scar formation after dermatologic procedures.

    PubMed

    Tziotzios, Christos; Profyris, Christos; Sterling, Jane

    2012-01-01

    The evidence base underpinning most traditional scar reduction approaches is limited, but some of the novel strategies are promising and accumulating. We review a number of commonly adopted strategies for scar reduction. The outlined novel agents are paradigmatic of the value of translational medical research and are likely to change the scenery in the much neglected but recently revived field of scar reduction therapeutics. Copyright © 2012 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer

    PubMed Central

    de Visser, Pieter H. B.; Buck-Sorlin, Gerhard H.; van der Heijden, Gerie W. A. M.

    2014-01-01

    Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20°) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential. PMID

  8. Chapter 8: Uncertainty assessment for quantifying greenhouse gas sources and sinks

    Treesearch

    Jay Breidt; Stephen M. Ogle; Wendy Powers; Coeli Hoover

    2014-01-01

    Quantifying the uncertainty of greenhouse gas (GHG) emissions and reductions from agriculture and forestry practices is an important aspect of decision�]making for farmers, ranchers and forest landowners as the uncertainty range for each GHG estimate communicates our level of confidence that the estimate reflects the actual balance of GHG exchange between...

  9. The Dynamic Greenhouse Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  10. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  11. Strategies for an effective tobacco harm reduction policy in Indonesia

    PubMed Central

    Nurwidya, Fariz; Takahashi, Fumiyuki; Baskoro, Hario; Hidayat, Moulid; Yunus, Faisal; Takahashi, Kazuhisa

    2014-01-01

    Tobacco consumption is a major causative agent for various deadly diseases such as coronary artery disease and cancer. It is the largest avoidable health risk in the world, causing more problems than alcohol, drug use, high blood pressure, excess body weight or high cholesterol. As countries like Indonesia prepare to develop national policy guidelines for tobacco harm reduction, the scientific community can help by providing continuous ideas and a forum for sharing and distributing information, drafting guidelines, reviewing best practices, raising funds, and establishing partnerships. We propose several strategies for reducing tobacco consumption, including advertisement interference, cigarette pricing policy, adolescent smoking prevention policy, support for smoking cessation therapy, special informed consent for smokers, smoking prohibition in public spaces, career incentives, economic incentives, and advertisement incentives. We hope that these strategies would assist people to avoid starting smoking or in smoking cessation. PMID:25518881

  12. A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste.

    PubMed

    Yuan, Hongping; Chini, Abdol R; Lu, Yujie; Shen, Liyin

    2012-03-01

    During the past few decades, construction and demolition (C&D) waste has received increasing attention from construction practitioners and researchers worldwide. A plethora of research regarding C&D waste management has been published in various academic journals. However, it has been determined that existing studies with respect to C&D waste reduction are mainly carried out from a static perspective, without considering the dynamic and interdependent nature of the whole waste reduction system. This might lead to misunderstanding about the actual effect of implementing any waste reduction strategies. Therefore, this research proposes a model that can serve as a decision support tool for projecting C&D waste reduction in line with the waste management situation of a given construction project, and more importantly, as a platform for simulating effects of various management strategies on C&D waste reduction. The research is conducted using system dynamics methodology, which is a systematic approach that deals with the complexity - interrelationships and dynamics - of any social, economic and managerial system. The dynamic model integrates major variables that affect C&D waste reduction. In this paper, seven causal loop diagrams that can deepen understanding about the feedback relationships underlying C&D waste reduction system are firstly presented. Then a stock-flow diagram is formulated by using software for system dynamics modeling. Finally, a case study is used to illustrate the validation and application of the proposed model. Results of the case study not only built confidence in the model so that it can be used for quantitative analysis, but also assessed and compared the effect of three designed policy scenarios on C&D waste reduction. One major contribution of this study is the development of a dynamic model for evaluating C&D waste reduction strategies under various scenarios, so that best management strategies could be identified before being implemented

  13. Parent Perspectives of Applying Mindfulness-Based Stress Reduction Strategies to Special Education.

    PubMed

    Burke, Meghan M; Chan, Neilson; Neece, Cameron L

    2017-06-01

    Parents of children with (versus without) intellectual and developmental disabilities report greater stress; such stress may be exacerbated by dissatisfaction with school services, poor parent-school partnerships, and the need for parent advocacy. Increasingly, mindfulness interventions have been used to reduce parent stress. However, it is unclear whether parents apply mindfulness strategies during the special education process to reduce school-related stress. To investigate whether mindfulness may reduce school-related stress, interviews were conducted with 26 parents of children with intellectual and developmental disabilities who completed a mindfulness-based stress reduction intervention. Participants were asked about their stress during meetings with the school, use of mindfulness strategies in communicating with the school, and the impact of such strategies. The majority of parent participants reported: special education meetings were stressful; they used mindfulness strategies during IEP meetings; and such strategies affected parents' perceptions of improvements in personal well-being, advocacy, family-school relationships, and access to services for their children. Implications for future research, policy, and practice are discussed.

  14. Joint carbon footprint assessment and data envelopment analysis for the reduction of greenhouse gas emissions in agriculture production.

    PubMed

    Rebolledo-Leiva, Ricardo; Angulo-Meza, Lidia; Iriarte, Alfredo; González-Araya, Marcela C

    2017-09-01

    Operations management tools are critical in the process of evaluating and implementing action towards a low carbon production. Currently, a sustainable production implies both an efficient resource use and the obligation to meet targets for reducing greenhouse gas (GHG) emissions. The carbon footprint (CF) tool allows estimating the overall amount of GHG emissions associated with a product or activity throughout its life cycle. In this paper, we propose a four-step method for a joint use of CF assessment and Data Envelopment Analysis (DEA). Following the eco-efficiency definition, which is the delivery of goods using fewer resources and with decreasing environmental impact, we use an output oriented DEA model to maximize production and reduce CF, taking into account simultaneously the economic and ecological perspectives. In another step, we stablish targets for the contributing CF factors in order to achieve CF reduction. The proposed method was applied to assess the eco-efficiency of five organic blueberry orchards throughout three growing seasons. The results show that this method is a practical tool for determining eco-efficiency and reducing GHG emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    change so much except for the one of the sludges, which experienced an important reduction. According to the results, and from a point of view of future soil applications, the balance of the drying process could be considered as positive. It is using a free, renewable and clean energy, which reduces the water content and odours of sludge, thereby improving their management. Except for the water content, there was little modification of the behaviour in soil of greenhouse dried sludges compared to the dehydrated sludges, maintaining its large amount of available nitrogen after drying. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

  16. Comparison of greenhouse gas offset quantification protocols for nitrogen management in dryland wheat cropping systems in the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    In the carbon market, greenhouse gas (GHG) offset protocols need to ensure that emission reductions are of high quality, quantifiable and real. However, lack of consistency across protocols for quantifying emission reductions compromise the credibility of offsets generated. Thus, protocol quantifica...

  17. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  18. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  19. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-12

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  20. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  1. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review

    PubMed Central

    Abdel-Ghany, Ahmed M.; Al-Helal, Ibrahim M.; Alzahrani, Saeed M.; Alsadon, Abdullah A.; Ali, Ilias M.; Elleithy, Rabeh M.

    2012-01-01

    Cooling greenhouses is essential to provide a suitable environment for plant growth in arid regions characterized by brackish water resources. However, using conventional cooling methods are facing many challenges. Filtering out near infra-red radiation (NIR) at the greenhouse cover can significantly reduce the heating load and can solve the overheating problem of the greenhouse air. This paper is to review (i) the problems of using conventional cooling methods and (ii) the advantages of greenhouse covers that incorporate NIR reflectors. This survey focuses on how the cover type affects the transmittance of photosynthetically active radiation (PAR), the reflectance or absorptance of NIR and the greenhouse air temperature. NIR-reflecting plastic films seem to be the most suitable, low cost and simple cover for greenhouses under arid conditions. Therefore, this review discusses how various additives should be incorporated in plastic film to increase its mechanical properties, durability and ability to stand up to extremely harsh weather. Presently, NIR-reflecting covers are able to reduce greenhouse air temperature by no more than 5°C. This reduction is not enough in regions where the ambient temperature may exceed 45°C in summer. There is a need to develop improved NIR-reflecting plastic film covers. PMID:22629223

  2. An Introduction to Greenhouse Production. Second Edition.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual is presented in its first revision, providing a current, basic text for those preparing for greenhouse and floriculture work. Its fourteen chapters are: Overview of the Greenhouse Industry; Greenhouse Structures; Controlling the Greenhouse Environment; Greenhouse Equipment and Lighting; Greenhouse Irrigation Systems; Root Media…

  3. Occupational asthma in greenhouse workers.

    PubMed

    Monsó, Eduard

    2004-03-01

    A prevalence of asthma over 5% has been reported in flower farmers,and work inside greenhouses has emerged as an additional risk factor. Workplace determinants behind this high prevalence has been examined, and a prevalence of sensitization to workplace allergens over 30% has been reported being pollens, moulds, and Tetranychus urticae allergens the main sensitizers. Bronchial challenge tests in the workplace have demonstrated occupational asthma in more than 20% of the sensitized greenhouse growers. Air contamination inside greenhouses is mainly related to moulds, and is facilitated by the high indoor temperature and humidity. Cladosporium, Penicillium, Aspergillus, and Alternaria and a wide range of flower pollens are able to sensitize the greenhouse worker and cause occupational asthma. Tetranychus urticae have allergens shared with other mites, but the low prevalence of cross-sensitization between them confirm that Tetranychus urticae contains species-specific allergens that may cause respiratory symptoms. Additionally, working inside greenhouses has been related to an increase in the prevalence of chronic bronchitis in nonsmokers. The cultivation of greenhouse crops may cause occupational asthma through sensitization to workplace pollens, moulds, and Tetranychus urticae allergens. In greenhouse flower growers, skin testing identifies sensitization to these allergens in one third of the growers, and more than one fifth of the sensitized workers will develop occupational asthma. Greenhouse work has also been related to chronic bronchitis in nonsmokers, suggesting a causal effect of greenhouse air contaminants on this disease as well.

  4. Potential for large-scale solar collector system to offset carbon-based heating in the Ontario greenhouse sector

    NASA Astrophysics Data System (ADS)

    Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.

    2018-04-01

    In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.

  5. Uncertainty in the Work-Place: Hierarchical Differences of Uncertainty Levels and Reduction Strategies.

    ERIC Educational Resources Information Center

    Petelle, John L.; And Others

    A study examined the uncertainty levels and types reported by supervisors and employees at three hierarchical levels of an organization: first-line supervisors, full-time employees, and part-time employees. It investigated differences in uncertainty-reduction strategies employed by these three hierarchical groups. The 61 subjects who completed…

  6. Large-scale control strategy for drag reduction in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Yao, Jie; Chen, Xi; Thomas, Flint; Hussain, Fazle

    2017-06-01

    In a recent article, Canton et al. [J. Canton et al., Phys. Rev. Fluids 1, 081501(R) (2016), 10.1103/PhysRevFluids.1.081501] reported significant drag reduction in turbulent channel flow by using large-scale, near-wall streamwise swirls following the control strategy of Schoppa and Hussain [W. Schoppa and F. Hussain, Phys. Fluids 10, 1049 (1998), 10.1063/1.869789] for low Reynolds numbers only, but found no drag reduction at high friction Reynolds numbers (Reτ=550 ). Here we show that the lack of drag reduction at high Re observed by Canton et al. is remedied by the proper choice of the large-scale control flow. In this study, we apply near-wall opposed wall-jet forcing to achieve drag reduction at the same (high) Reynolds number where Canton et al. found no drag reduction. The steady excitation is characterized by three control parameters, namely, the wall-jet-forcing amplitude A+, the spanwise spacing Λ+, and the wall jet height yc+ (+ indicates viscous scaling); the primary difference between Schoppa and Hussain's work (also that of Canton et al.) and this Rapid Communication is the emphasis on the explicit choice of yc+ here. We show as an example that with a choice of A+≈0.015 ,Λ+≈1200 , and yc+≈30 the flow control definitely suppresses the wall shear stress at a series of Reynolds numbers, namely, 19 %,14 % , and 12 % drag reductions at Reτ=180 , 395, and 550, respectively. Further study should explore optimization of these parameter values.

  7. Energy Market and Economic Impacts Proposal to Reduce Greenhouse Gas Intensity with a Cap and Trade System

    EIA Publications

    2007-01-01

    This report was prepared by the Energy Information Administration (EIA), in response to a September 27, 2006, request from Senators Bingaman, Landrieu, Murkowski, Specter, Salazar, and Lugar. The Senators requested that EIA assess the impacts of a proposal that would regulate emissions of greenhouse gases (GHGs) through an allowance cap-and-trade system. The program would set the cap to achieve a reduction in emissions relative to economic output, or greenhouse gas intensity.

  8. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although themore » contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.« less

  9. Evaluating the mitigation of greenhouse gas emissions and adaptation in dairy production.

    USDA-ARS?s Scientific Manuscript database

    Process-level modeling at the farm scale provides a tool for evaluating strategies for both mitigating greenhouse gas emissions and adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to predict performance...

  10. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-18

    ..., 2009. The purpose of the Executive Order is to establish an integrated strategy toward sustainability... Federal agencies. Among other provisions, E.O. 13514 requires agencies to measure, report, and reduce.../sustainability/fed-ghg . DATES: The Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting'' is...

  11. [Strategies for successful weight reduction - focus on energy balance].

    PubMed

    Weck, M; Bornstein, S R; Barthel, A; Blüher, M

    2012-10-01

    The prevalence of obesity and related health problems is increasing worldwide and also in Germany. It is well known that substantial and sustained weight loss is difficult to accomplish. Therefore, a variety of studies has been performed in order to specify causes for weight gain and create hypotheses for better treatment options. Key factors of this problem are an adaptation of energy metabolism, especially resting metabolic rate (RMR), non-exercise thermogenesis and diet induced thermogenesis. The extremely high failure rate (> 80%) to keep the reduced weight after successful weight loss is due to adaptation processes of the body to maintain body energy stores. This so called "adaptive thermogenesis" is defined as a smaller than predicted change of energy expenditure in response to changes in energy balance. Adaptive thermogenesis appears to be a major reason for weight regain. The foremost objective of weight-loss programs is the reduction in body fat. However, a concomitant decline in lean tissue can frequently be observed. Since lean body mass (LBM) represents a key determinant of RMR it follows that a decrease in lean tissue could counteract the progress of weight loss. Therefore, with respect to long-term effectiveness of weight reduction programs, the loss of fat mass while maintaining LBM and RMR seems desirable. In this paper we will discuss the mechanisms of adaptive thermogenesis and develop therapeutic strategies with respect to avoiding weight regain successful weight reduction. © Georg Thieme Verlag KG Stuttgart · New York.

  12. User-identified electronic cigarette behavioral strategies and device characteristics for cigarette smoking reduction.

    PubMed

    Soule, Eric K; Maloney, Sarah F; Guy, Mignonne C; Eissenberg, Thomas; Fagan, Pebbles

    2018-04-01

    There is limited evidence on how cigarette smokers use electronic cigarettes (ECIGs) for smoking cessation and reduction. This study used concept mapping, a participatory mixed-methods research approach, to identify ECIG use behaviors and device characteristics perceived to be associated with cigarette smoking cessation or reduction. Current ECIG users aged 18-64 were recruited from seven cities selected randomly from U.S. census tract regions. Participants were invited to complete concept mapping tasks: brainstorming, sorting and rating (n=72). During brainstorming, participants generated statements in response to a focus prompt ("A SPECIFIC WAY I HAVE USED electronic cigarettes to reduce my cigarette smoking or a SPECIFIC WAY electronic cigarettes help me reduce my cigarette smoking is…") and then sorted and rated the statements. Multidimensional scaling and hierarchical cluster analyses were used to generate a cluster map that was interpreted by the research team. Eight thematic clusters were identified: Convenience, Perceived Health Effects, Ease of Use, Versatility and Variety, Advantages of ECIGs over Cigarettes, Cigarette Substitutability, Reducing Harms to Self and Others, and Social Benefits. Participants generated several statements that related to specific behavioral strategies used when using ECIGs for smoking reduction/complete switching behaviors such as making rapid transitions from smoking to ECIG use or using certain ECIG liquids or devices. Former smokers rated the Perceived Health Effects cluster and several behavioral strategy statements higher than current smokers. These results help to identify ECIG use behaviors and characteristics perceived by ECIG users to aid in cigarette smoking cessation or reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Verification and accreditation schemes for climate change activities: A review of requirements for verification of greenhouse gas reductions and accreditation of verifiers—Implications for long-term carbon sequestration

    NASA Astrophysics Data System (ADS)

    Roed-Larsen, Trygve; Flach, Todd

    The purpose of this chapter is to provide a review of existing national and international requirements for verification of greenhouse gas reductions and associated accreditation of independent verifiers. The credibility of results claimed to reduce or remove anthropogenic emissions of greenhouse gases (GHG) is of utmost importance for the success of emerging schemes to reduce such emissions. Requirements include transparency, accuracy, consistency, and completeness of the GHG data. The many independent verification processes that have developed recently now make up a quite elaborate tool kit for best practices. The UN Framework Convention for Climate Change and the Kyoto Protocol specifications for project mechanisms initiated this work, but other national and international actors also work intensely with these issues. One initiative gaining wide application is that taken by the World Business Council for Sustainable Development with the World Resources Institute to develop a "GHG Protocol" to assist companies in arranging for auditable monitoring and reporting processes of their GHG activities. A set of new international standards developed by the International Organization for Standardization (ISO) provides specifications for the quantification, monitoring, and reporting of company entity and project-based activities. The ISO is also developing specifications for recognizing independent GHG verifiers. This chapter covers this background with intent of providing a common understanding of all efforts undertaken in different parts of the world to secure the reliability of GHG emission reduction and removal activities. These verification schemes may provide valuable input to current efforts of securing a comprehensive, trustworthy, and robust framework for verification activities of CO2 capture, transport, and storage.

  14. Controlled Landfill Project in Yolo County, California for Environmental Benefits of Waste Stabilization and Minimization of Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Yazdani, R.; Augenstein, D.; Kieffer, J.; Cohen, K.

    2003-12-01

    The Department of Public Works of Yolo County, California, USA has been testing an advanced approach to landfill bioreactors, controlled (or "enhanced") landfilling, at its Yolo County Central Landfill site near Davis, CA, since 1994. Overall objectives have been the management of waste landfilling for: (1) rapid completion of total gas generation; (2) maximum, high-efficiency gas capture; (3) waste volume reduction; and (4) maximum greenhouse gas and carbon sequestration benefits. Methane generation is controlled and enhanced through carefully managed moisture additions, and by taking advantage of landfill temperature elevation. The generated landfill methane, an important greenhouse gas, is recovered with high efficiency through extraction from a porous recovery layer beneath a surface geomembrane cover. Instrumentation included a total of 56 moisture and 15 temperature sensors in the two cells, gas flow monitoring by positive displacement gas meters, and accurate quantification of liquid inputs and outputs. Gas composition, waste volume reduction, base hydrostatic head, and a range of environmental compliance parameters has been monitored since 1995. Partitioning gas tracer tests using the injection of two gases at dilute concentrations in the landfill have also been initiated to compute the fraction of pore space occupied by water between the points of tracer injection and tracer measurement. There has been rapid waste volume reduction in the enhanced cell that corresponds to the solids' reduction to gas. Monitoring is planned for the next several years, until stabilization parameters are determined complete. Encouraging performance is indicated by: (1) sensor data; (2) gas generation results; (3) data from landfill cores; and (4) decomposition-related indicators including rapid volume reduction. When data are synthesized, project results have attractive implications for new approaches to landfill management. Over seven-years, methane recoveries have averaged

  15. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  16. Using the Theory of Planned Behavior to predict implementation of harm reduction strategies among MDMA/ecstasy users.

    PubMed

    Davis, Alan K; Rosenberg, Harold

    2016-06-01

    This prospective study was designed to test whether the variables proposed by the Theory of Planned Behavior (TPB) were associated with baseline intention to implement and subsequent use of 2 MDMA/ecstasy-specific harm reduction interventions: preloading/postloading and pill testing/pill checking. Using targeted Facebook advertisements, an international sample of 391 recreational ecstasy users were recruited to complete questionnaires assessing their ecstasy consumption history, and their attitudes, subjective norms, perceived behavioral control, habit strength (past strategy use), and intention to use these two strategies. Attitudes, subjective norms, and perceived behavioral control were significantly associated with baseline intention to preload/postload and pill test/pill check. Out of the 391 baseline participants, 100 completed the two-month follow-up assessment. Baseline habit strength and frequency of ecstasy consumption during the three months prior to baseline were the only significant predictors of how often participants used the preloading/postloading strategy during the follow-up. Baseline intention to pill test/pill check was the only significant predictor of how often participants used this strategy during the follow-up. These findings provide partial support for TPB variables as both correlates of baseline intention to implement and predictors of subsequent use of these two strategies. Future investigations could assess whether factors related to ecstasy consumption (e.g., subjective level of intoxication, craving, negative consequences following consumption), and environmental factors (e.g., accessibility and availability of harm reduction resources) improve the prediction of how often ecstasy users employ these and other harm reduction strategies. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. Plenary Lecture 3: Food and the planet: nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods.

    PubMed

    Millward, D Joe; Garnett, Tara

    2010-02-01

    Legally-binding legislation is now in place to ensure major reductions in greenhouse gas emissions in the UK. Reductions in intakes of meat and dairy products, which account for approximately 40% of food-related emissions, are an inevitable policy option. The present paper assesses, as far as is possible, the risk to nutritional status of such a policy in the context of the part played by these foods in overall health and well-being and their contribution to nutritional status for the major nutrients that they supply. Although meat may contribute to saturated fat intakes and a higher BMI, moderate meat consumption within generally-healthy population groups has no measurable influence on morbidity or mortality. However, high consumption of red and processed meat has been associated with increased risk of colo-rectal cancer and recent advice is to reduce intakes to a maximum of 70 g/d. Such reductions in meat and haem-Fe intake are unlikely to influence Fe status in functional terms. However, overall protein intakes would probably fall, with the potential for intakes to be less than current requirements for the elderly. Whether it is detrimental to health is uncertain and controversial. Zn intakes are also likely to fall, raising questions about child growth that are currently unanswerable. Milk and dairy products, currently specifically recommended for young children and pregnant women, provide 30-40% of dietary Ca, iodine, vitamin B12 and riboflavin. Population groups with low milk intakes generally show low intakes and poor status for each of these nutrients. Taken together it would appear that the reductions in meat and dairy foods, which are necessary to limit environmental damage, do pose serious nutritional challenges for some key nutrients. These challenges can be met, however, by improved public health advice on alternative dietary sources and by increasing food fortification.

  18. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  19. Documentation for the Waste Reduction Model (WARM)

    EPA Pesticide Factsheets

    This page describes the WARM documentation files and provides links to all documentation files associated with EPA’s Waste Reduction Model (WARM). The page includes a brief summary of the chapters documenting the greenhouse gas emission and energy factors.

  20. Agriculture: Nurseries and Greenhouses

    EPA Pesticide Factsheets

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  1. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms.

    PubMed

    Smith, R P; Andres, V; Martelli, F; Gosling, B; Marco-Jimenez, F; Vaughan, K; Tchorzewska, M; Davies, R

    2018-01-01

    The control of Salmonella in pig production is necessary for public and animal health, and vaccination was evaluated as a strategy to decrease pig prevalence. The study examined the efficacy of a live Salmonella Typhimurium vaccine, administered to sows on eight commercial farrow-to-finish herds experiencing clinical salmonellosis or Salmonella carriage associated with S. Typhimurium or its monophasic variants. Results of longitudinal Salmonella sampling were compared against eight similarly selected and studied control farms. At the last visit (~14 months after the start of vaccination), when all finishing stock had been born to vaccinated sows, both faecal shedding and environmental prevalence of Salmonella substantially declined on the majority of vaccinated farms in comparison to the controls. A higher proportion of vaccine farms resolved clinical salmonellosis than controls. However, Salmonella counts in positive faeces samples were similar between nonvaccinated and vaccinated herds. The results suggest that maternal vaccination is a suitable option for a Salmonella Typhimurium reduction strategy in farrow-to-finish pig herds. Salmonella vaccines have the potential to reduce the prevalence of Salmonella in pigs and result in a reduction of human cases attributed to pork. © 2017 Crown copyright. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

  2. The Peculiar Negative Greenhouse Effect Over Antarctica

    NASA Astrophysics Data System (ADS)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  3. Assessing self-efficacy to reduce one's drinking: further evaluation of the Alcohol Reduction Strategies-Current Confidence questionnaire.

    PubMed

    Kraus, Shane W; Rosenberg, Harold; Bonar, Erin E; Hoffmann, Erica; Kryszak, Elizabeth; Young, Kathleen M; Ashrafioun, Lisham; Bannon, Erin E

    2012-01-01

    To evaluate the psychometric properties of a previously published questionnaire designed to assess young drinkers' self-efficacy to employ 31 cognitive-behavioral alcohol reduction strategies. Undergraduates (n = 353) recruited from a large Midwestern university completed the previously published Alcohol Reduction Strategies-Current Confidence questionnaire (and other measures) for a self-selected heavy drinking setting. Item loadings from a principal components analysis, a high internal consistency reliability coefficient, and a moderate mean inter-item correlation suggested that all 31 items comprised a single scale. Correlations of questionnaire scores with selected aspects of drinking history and personality provided support for criterion and discriminant validity, respectively. Women reported higher current confidence to use these strategies than did men, but current confidence did not vary as a function of recent binge status. Given this further demonstration of its psychometric qualities, this questionnaire holds promise as a clinical tool to identify clients who lack confidence in their ability to employ cognitive-behavioral coping strategies to reduce their drinking.

  4. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton

    USDA-ARS?s Scientific Manuscript database

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton in mid-southern United States and causes yield reduction, and deprivation in fiber fitness. A greenhouse colony of the spider mite was used to infest cotton and pinto beans at the three-leaf and trifoliate stages, r...

  5. Potential of solar domestic hot water systems in rural areas for greenhouse gas emission reduction in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skowronski, P.; Wisniewski, G.

    Application of solar energy for preparing domestic hot water is one of the easiest methods of utilization of this energy. At least part of the needs for warm tap water could be covered by solar systems. At present, mainly coal is used for water heating at dwellings in rural areas in Poland. Warm tap water consumption will increase significantly in the future as standards of living are improved. This can result in the growth of electricity use and an increase in primary fuel consumption. Present and future methods of warm sanitary water generation in rural areas in Poland is discussed,more » and associated greenhouse gas (GHG) emissions are estimated. It is predicted that the emission of CO{sub 2} and NOx will increase. The emission of CO and CH{sub 4} will decrease because of changes in the structure of the final energy carriers used. The economic and market potentials of solar energy for preparing warm water in rural areas are discussed. It is estimated that solar systems can meet 30%-45% of the energy demand for warm water generation in rural areas at a reasonable cost, with a corresponding CO{sub 2} emission reduction. The rate of realization of the economic potential of solar water heaters depends on subsidies for the installation of equipment. 13 refs., 9 tabs.« less

  6. Probabilistic risk assessment of nitrate groundwater contamination from greenhouses in Albenga plain (Liguria, Italy) using lysimeters.

    PubMed

    Paladino, Ombretta; Seyedsalehi, Mahdi; Massabò, Marco

    2018-09-01

    The use of fertilizers in greenhouse-grown crops can pose a threat to groundwater quality and, consequently, to human beings and subterranean ecosystem, where intensive farming produces pollutants leaching. Albenga plain (Liguria, Italy) is an alluvial area of about 45km 2 historically devoted to farming. Recently the crops have evolved to greenhouses horticulture and floriculture production. In the area high levels of nitrates in groundwater have been detected. Lysimeters with three types of reconstituted soils (loamy sand, sandy clay loam and sandy loam) collected from different areas of Albenga plain were used in this study to evaluate the leaching loss of nitrate (NO 3 - ) over a period of 12weeks. Leaf lettuce (Lactuca sativa L.) was selected as a representative green-grown crop. Each of the soil samples was treated with a slow release fertilizer, simulating the real fertilizing strategy of the tillage. In order to estimate the potential risk for aquifers as well as for organisms exposed via pore water, nitrate concentrations in groundwater were evaluated by applying a simplified attenuation model to the experimental data. Results were refined and extended from comparison of single effects and exposure values (Tier I level) up to the evaluation of probabilistic distributions of exposure and related effects (Tier II, III IV levels). HHRA suggested HI >1 and about 20% probability of exceeding RfD for all the greenhouses, regardless of the soil. ERA suggested HQ>100 for all the greenhouses; 93% probability of PNEC exceedance for greenhouses containing sand clay loam. The probability of exceeding LC50 for 5% of the species was about 40% and the probability corresponding to DBQ of DEC/EC50>0.001 was >90% for all the greenhouses. The significantly high risk, related to the detected nitrate leaching loss, can be attributed to excessive and inappropriate fertigation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Low-Computation Strategies for Extracting CO2 Emission Trends from Surface-Level Mixing Ratio Observations

    NASA Astrophysics Data System (ADS)

    Shusterman, A.; Kim, J.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    Global momentum is building for drastic, regulated reductions in greenhouse gas emissions over the coming decade. With this increasing regulation comes a clear need for increasingly sophisticated monitoring, reporting, and verification (MRV) strategies capable of enforcing and optimizing emissions-related policy, particularly as it applies to urban areas. Remote sensing and/or activity-based emission inventories can offer MRV insights for entire sectors or regions, but are not yet sophisticated enough to resolve unexpected trends in specific emitters. Urban surface monitors can offer the desired proximity to individual greenhouse gas sources, but due to the densely-packed nature of typical urban landscapes, surface observations are rarely representative of a single source. Most previous efforts to decompose these complex signals into their contributing emission processes have involved inverse atmospheric modeling techniques, which are computationally intensive and believed to depend heavily on poorly understood a priori estimates of error covariance. Here we present a number of transparent, low-computation approaches for extracting source-specific emissions estimates from signals with a variety of nearfield influences. Using observations from the first several years of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), we demonstrate how to exploit strategic pairings of monitoring "nodes," anomalous wind conditions, and well-understood temporal variations to hone in on specific CO2 sources of interest. When evaluated against conventional, activity-based bottom-up emission inventories, these strategies are seen to generate quantitatively rigorous emission estimates. With continued application as the BEACO2N data set grows in time and space, these approaches offer a promising avenue for optimizing greenhouse gas mitigation strategies into the future.

  8. Heavy metal accumulation and source analysis in greenhouse soils of Wuwei District, Gansu Province, China.

    PubMed

    Bai, L Y; Zeng, X B; Su, S M; Duan, R; Wang, Y N; Gao, X

    2015-04-01

    Greenhouse soils and arable (wheat field) soil samples were collected to identify the effects of greenhouse cultivation on the accumulation of six heavy metals (Cd, Cu, Zn, Pb, Cr, and Ni) and to evaluate the likely sources responsible for heavy metal accumulation in the irrigated desert soils of Wuwei District, China. The results indicated that the mean concentrations of Cd, Cu, Zn, Pb, Cr, and Ni were 0.421, 33.85, 85.31, 20.76, 53.12, and 28.59 mg kg(-1), respectively. The concentrations of Cd, Cu, and Zn in greenhouse soils were 60, 23, and 14% higher than those in arable soils and 263, 40, and 25% higher than background concentrations of natural soils in the study area, respectively. These results indicated that Cd, Cu, and Zn accumulation occurred in the greenhouse soils, and Cd was the most problematically accumulated heavy metal, followed by Cu and Zn. There was a significant positive correlation between the concentrations of Cd, Cu, and Zn in greenhouse soils and the number of years under cultivation (P < 0.05). Greenhouse cultivation had little impact on the accumulation of Cr, Ni, or Pb. Correlation analysis and principal component analysis suggested that the accumulation of Cd, Cu, and Zn in greenhouse soils resulted mainly from fertilizer applications. Our results indicated that the excessive and long-term use of fertilizers and livestock manures with high heavy metal levels leads to the accumulation of heavy metals in soils. Therefore, rational fertilization programs and reductions in the concentrations of heavy metals in both fertilizers and manure must be recommended to maintain a safe concentration of heavy metals in greenhouse soils.

  9. Measurements of Greenhouse Gases around the Sacramento Area: The Airborne Greenhouse Emissions Survey (AGES) Campaign

    NASA Astrophysics Data System (ADS)

    Karion, A.; Fischer, M. L.; Turnbull, J. C.; Sweeney, C.; Faloona, I. C.; Zagorac, N.; Guilderson, T. P.; Saripalli, S.; Sherwood, T.

    2009-12-01

    The state of California is leading the United States by enacting legislation (AB-32) to reduce greenhouse gas emissions to 1990 levels by 2020. The success of reduction efforts can be gauged with accurate emissions inventories and potentially verified with atmospheric measurements of greenhouse gases (GHGs) over time. Measurements of multiple GHGs and associated trace gas species in a specific region also provide information on emissions ratios for source apportionment. We conducted the Airborne Greenhouse Emissions Survey (AGES) campaign to determine emissions signature ratios for the sources that exist in the San Francisco Bay and Sacramento Valley areas. Specifically, we attempt to determine the emissions signatures of sources that influence ongoing measurements made at a tall-tower measurement site near Walnut Grove, CA. For two weeks in February and March of 2009, a Cessna 210 was flown throughout the Sacramento region, making continuous measurements of CO2, CH4, and CO while also sampling discrete flasks for a variety of additional tracers, including SF6, N2O, and 14C in CO2 (Δ14CO2). Flight paths were planned using wind predictions for each day to maximize sampling of sources whose emissions would also be sampled contemporaneously by the instrumentation at the Walnut Grove tower (WGC), part of the ongoing California Greenhouse Gas Emissions Measurement (CALGEM) project between NOAA/ESRL’s Carbon Cycle group and Lawrence Berkeley National Laboratory (LBNL). Flights were performed in two distinct patterns: 1) flying across a plume upwind and downwind of the Sacramento urban area, and 2) flying across the Sacramento-San Joaquin Delta from Richmond to Walnut Grove, a region consisting of natural wetlands as well as several power plants and refineries. Results show a variety of well-correlated mixing ratio signals downwind of Sacramento, documenting the urban signature emission ratios, while emissions ratios in the Delta region were more variable, likely due

  10. PROTOTYPE TOOL FOR EVALUATING THE COST AND EFFECTIVENESS OF GREENHOUSE GAS MITIGATION TECHNOLOGIES

    EPA Science Inventory

    The paper introduces the structure of a tool, being developed by the U.S. EPA's Office of Research and Development, that will be able to analyze the benefits of new technologies and strategies for controlling greenhouse gas (GHG) emissions. When completed, the tool will be able ...

  11. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    PubMed

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  12. Towards European organisation for integrated greenhouse gas observation system

    NASA Astrophysics Data System (ADS)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  13. How will greenhouse gas observations meet changing requirements, laws, and demands?

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Tans, P. P.; Sweeney, C.; Andrews, A. E.; Miller, J. B.; Montzka, S. A.

    2010-12-01

    Recent efforts to develop a global greenhouse gas information system (GHGIS) have been driven by an anticipated need to support future national emission reduction policies or international treaties with observations. Such an effort would be similar to that done in support of the Montreal Protocol on Substances that Deplete Ozone, but more complex. However, greenhouse gas emissions are much more difficult to manage and may not be controlled by international agreement. The Kyoto Protocol has been fraught with political and practical difficulties, not the least of which is the absence of an independent observation and analysis requirement. Nevertheless, no unifying agreement was reached at the much heralded 2009 Conference of Parties (COP-15) in Copenhagen. Thus, it is quite possible (likely?) that greenhouse gas emissions may be reduced owing to other, uncoordinated policies that have their own merits, e.g., energy efficiency, alternative energy development, air quality improvement, forest development, agricultural practices, etc. If this is the future, then what observations and observation system design are needed and to what end? This presentation will discuss those needs in light of critical observations, analytical approaches, and evolving, disparate policies.

  14. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    PubMed

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  15. Impact assessment of the carbon reduction strategy for transport, low carbon transport : a greener future

    DOT National Transportation Integrated Search

    2009-07-01

    This is an impact assessment for the Carbon Reduction Strategy for Transport (DfT, 2009), Low Carbon Transport: A Greener Future, which is part of the UK Governments wider UK Low Carbon Transition Plan (DECC, 2009), Britains path to ta...

  16. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    NASA Astrophysics Data System (ADS)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  17. Review of Tools for Energy Use and Greenhouse Gas Reduction Applicable to Small- and Medium-Sized Communities

    EPA Science Inventory

    Considerable attention has already been given to ways of assessing and reducing transportation energy use and greenhouse gas emissions in large cities. This presentation provides a review of what tools, if any, may be used to assess and reduce transportation energy use and green...

  18. Greenhouse gas mitigation in a carbon constrained world - the role of CCS in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schumacher, Katja; Sands, Ronald D.

    2009-01-05

    In a carbon constrained world, at least four classes of greenhouse gas mitigation options are available: energy efficiency, switching to low or carbon-free energy sources, introduction of carbon dioxide capture and storage along with electric generating technologies, and reductions in emissions of non-CO2 greenhouse gases. The contribution of each option to overall greenhouse gas mitigation varies by cost, scale, and timing. In particular, carbon dioxide capture and storage (CCS) promises to allow for low-emissions fossil-fuel based power generation. This is particularly relevant for Germany, where electricity generation is largely coal-based and, at the same time, ambitious climate targets are inmore » place. Our objective is to provide a balanced analysis of the various classes of greenhouse gas mitigation options with a particular focus on CCS for Germany. We simulate the potential role of advanced fossil fuel based electricity generating technologies with CCS (IGCC, NGCC) as well the potential for retrofit with CCS for existing and currently built fossil plants from the present through 2050. We employ a computable general equilibrium (CGE) economic model as a core model and integrating tool.« less

  19. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’smore » and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing

  20. Air quality impacts of implementing emission reduction strategies at southern California airports

    NASA Astrophysics Data System (ADS)

    Benosa, Guillem; Zhu, Shupeng; Kinnon, Michael Mac; Dabdub, Donald

    2018-07-01

    Reducing aviation emissions will be a major concern in the coming years, as the relative contribution of aviation to overall emissions is projected to increase in the future. The South Coast Air Basin of California (SoCAB) is an extreme nonattainment area with many airports located upwind of the most polluted regions in the basin. Techniques to reduce aviation emissions have been studied in the past, and strategies that can be implemented at airports include taxi-out times reduction, ground support equipment electrification and aviation biofuel implementation. These strategies have been analyzed only at the national scale, their effectiveness to improve air quality within the SoCAB given the local meteorology and chemical regimes is unclear. This work studies how the adoption of the techniques at commercial SoCAB airports affect ozone (O3) and fine particulate matter (PM2.5) concentrations. In addition, potential impacts on public exposure to PM2.5 and O3 resulting from changes in the concentration of these pollutants are estimated. In addition, the work calculates aviation emissions for each scenario and simulate the transport and atmospheric chemistry of the pollutants using the Community Multiscale Air Quality (CMAQ) model. The simultaneous application of all reduction strategies is projected to reduce the aviation-attributable population weighted ground-level PM2.5 by 36% in summer and 32% in winter. On the other hand, O3 increases by 16% in winter. Occurring mostly in densely populated areas, the decrease in ground-level PM2.5 would have a positive health impact and help the region achieve attainment of national ambient air quality standards.

  1. The state of greenhouse gases in the atmosphere using global observations through 2013

    NASA Astrophysics Data System (ADS)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed; Montzka, Stephen A.; Keeling, Ralph; Tanhua, Toste; Lorenzoni, Laura

    2015-04-01

    We present results from the tenth annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG), and for the first time, it includes a summary of ocean acidification. Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. The summary of ocean acidification and trends in ocean pCO2 was jointly produced by the International Ocean Carbon Coordination Project (IOCCP) of the Intergovernmental Oceanographic Commission of UNESCO (IOC-UNESCO), the Scientific Committee on Oceanic Research (SCOR), and the Ocean Acidification International Coordination Centre (OA-ICC) of the International Atomic Energy Agency (IAEA). The tenth Bulletin included a special edition published prior to the United Nations Climate Summit in September 2014. The scope of this edition was to demonstrate the level of emission reduction necessary to stabilize radiative forcing by long-lived greenhouse gases. It shows in particular that a reduction in radiative forcing from its current level (2.92 W m-2 in 2013) requires significant reductions in anthropogenic emissions of all major greenhouse gases. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of carbon dioxide, methane and nitrous oxide derived from this network reached new highs in 2013, with CO2 at 396.0 ± 0.1 ppm, CH4 at

  2. Interpretation of Series National Standards of China on “Greenhouse Gas Emissions Accounting and Reporting for Enterprises”

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zong, Jianfang; Guo, Huiting; Sun, Liang; Liu, Mei

    2018-05-01

    Standardization is playing an increasingly important role in reducing greenhouse gas emission and in climatic change adaptation, especially in the “three” greenhouse gas emission aspects (measurement, report, verification). Standardization has become one of the most important ways in mitigating the global climate change. Standardization Administration of China (SAC) has taken many productive measures in actively promoting standardization work to cope with climate change. In April 2014, SAC officially approved the establishment of “National Carbon Emission Management Standardization Technical Committee” In November 2015, SAC officially issued the first 11 national standards on carbon management including <Greenhouse Gas Emissions Accounting and Reporting for Industrial Enterprises>> and the requirements of the greenhouse gas emissions accounting and reporting in 10 sectors including power generation, power grid, iron and steel, chemical engineering, electrolytic aluminum, magnesium smelting, plate glass, cement, ceramics and civil aviation, which proposes unified requirements of “what to calculate and how to calculate” the greenhouse gas emission for enterprises. This paper focuses on the detailed interpretation of the main contents of the first 11 national standards, so as to provide technical supports for users of the standards and to comprehensively promote the emission reduction of greenhouse gas at the enterprise level.

  3. Integrating sodium reduction strategies in the procurement process and contracting of food venues in the County of Los Angeles government, 2010-2012.

    PubMed

    Cummings, Patricia L; Kuo, Tony; Gase, Lauren N; Mugavero, Kristy

    2014-01-01

    Since sodium is ubiquitous in the food supply, recent approaches to sodium reduction have focused on increasing the availability of lower-sodium products through system-level and environmental changes. This article reviews integrated efforts by the Los Angeles County Sodium Reduction Initiative to implement these strategies at food venues in the County of Los Angeles government. The review used mixed methods, including a scan of the literature, key informant interviews, and lessons learned during 2010-2012 to assess program progress. Leveraging technical expertise and shared resources, the initiative strategically incorporated sodium reduction strategies into the overall work plan of a multipartnership food procurement program in Los Angeles County. To date, 3 County departments have incorporated new or updated nutrition requirements that included sodium limits and other strategies. The strategic coupling of sodium reduction to food procurement and general health promotion allowed for simultaneous advancement and acceleration of the County's sodium reduction agenda.

  4. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  5. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere.

    PubMed

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M; Canadell, Josep G; Saikawa, Eri; Huntzinger, Deborah N; Gurney, Kevin R; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R; Wofsy, Steven C

    2016-03-10

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  6. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; Michalak, Anna M.; Canadell, Josep G.; Saikawa, Eri; Huntzinger, Deborah N.; Gurney, Kevin R.; Sitch, Stephen; Zhang, Bowen; Yang, Jia; Bousquet, Philippe; Bruhwiler, Lori; Chen, Guangsheng; Dlugokencky, Edward; Friedlingstein, Pierre; Melillo, Jerry; Pan, Shufen; Poulter, Benjamin; Prinn, Ronald; Saunois, Marielle; Schwalm, Christopher R.; Wofsy, Steven C.

    2016-03-01

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and therefore has an important role in regulating atmospheric composition and climate. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect on the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.

  7. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    PubMed

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  8. Does carbon reduction increase sustainability? A study in wastewater treatment.

    PubMed

    Sweetapple, Christine; Fu, Guangtao; Butler, David

    2015-12-15

    This study investigates the relationships between carbon reduction and sustainability in the context of wastewater treatment, focussing on the impacts of control adjustments, and demonstrates that reducing energy use and/or increasing energy recovery to reduce net energy can be detrimental to sustainability. Factorial sampling is used to derive 315 control options, containing two different control strategies and a range of sludge wastage flow rates and dissolved oxygen setpoints, for evaluation. For each, sustainability indicators including operational costs, net energy and multiple environmental performance measures are calculated. This enables identification of trade-offs between different components of sustainability which must be considered before implementing energy reduction measures. In particular, it is found that the impacts of energy reduction measures on sludge production and nitrogen removal must be considered, as these are worsened in the lowest energy solutions. It also demonstrates that a sufficiently large range of indicators need to be assessed to capture trade-offs present within the environmental component of sustainability. This is because no solutions provided a move towards sustainability with respect to every indicator. Lastly, it is highlighted that improving the energy balance (as may be considered an approach to achieving carbon reduction) is not a reliable means of reducing total greenhouse gas emissions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. A Hiatus of the Greenhouse Effect.

    PubMed

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  10. A Hiatus of the Greenhouse Effect

    PubMed Central

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  11. A Hiatus of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  12. Tobacco Smoke–Related Health Effects Induced by 1,3-Butadiene and Strategies for Risk Reduction

    PubMed Central

    Soeteman-Hernández, Lya G.

    2013-01-01

    1,3-Butadiene (BD) is a smoke component selected by the World Health Organization (WHO) study group on Tobacco Product Regulation (TobReg) for mandated lowering. We examined the tobacco smoke–related health effects induced by BD and possible health impacts of risk reduction strategies. BD levels in mainstream smoke (MSS) from international and Canadian cigarettes and environmental tobacco smoke (ETS) were derived from scientific journals and international government reports. Dose-response analyses from toxicity studies from government reports were evaluated and the most sensitive cancer and noncancer endpoints were selected. The risks were evaluated by taking the ratio (margin of exposure, MOE) from the most sensitive toxicity endpoint and appropriate exposure estimates for BD in MSS and ETS. BD is a good choice for lowering given that MSS and ETS were at levels for cancer (leukemia) and noncancer (ovarian atrophy) risks, and the risks can be significantly lowered when lowering the BD concentrations in smoke. Several risk reduction strategies were analyzed including a maximum level of 125% of the median BD value per milligram nicotine obtained from international brands as recommended by the WHO TobReg, tobacco substitute sheets, dual and triple carbon filters, and polymer-derived carbon. The use of tobacco substitute sheet with a polymer-derived carbon filter resulted in the most significant change in risk for cancer and noncancer effects. Our results demonstrate that MOE analysis might be a practical way to assess the impact of risk reduction strategies on human health in the future. PMID:24014643

  13. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  14. Taking the Initiative: Risk-Reduction Strategies and Decreased Malpractice Costs.

    PubMed

    Raper, Steven E; Rose, Deborah; Nepps, Mary Ellen; Drebin, Jeffrey A

    2017-11-01

    To heighten awareness of attending and resident surgeons regarding strategies for defense against malpractice claims, a series of risk reduction initiatives have been carried out in our Department of Surgery. We hypothesized that emphasis on certain aspects of risk might be associated with decreased malpractice costs. The relative impact of Department of Surgery initiatives was assessed when compared with malpractice experience for the rest of the Clinical Practices of the University of Pennsylvania (CPUP). Surgery and CPUP malpractice claims, indemnity, and expenses were obtained from the Office of General Counsel. Malpractice premium data were obtained from CPUP finance. The Department of Surgery was assessed in comparison with all other CPUP departments. Cost data (yearly indemnity and expenses), and malpractice premiums (total and per physician) were expressed as a percentage of the 5-year mean value preceding implementation of the initiative program. Surgery implemented 38 risk reduction initiatives. Faculty participated in 27 initiatives; house staff participated in 10 initiatives; and advanced practitioners in 1 initiative. Department of Surgery claims were significantly less than CPUP (74.07% vs 81.07%; p < 0.05). The mean yearly indemnity paid by the Department of Surgery was significantly less than that of the other CPUP departments (84.08% vs 122.14%; p < 0.05). Department of Surgery-paid expenses were also significantly less (83.17% vs 104.96%; p < 0.05), and surgical malpractice premiums declined from baseline, but remained significantly higher than CPUP premiums. The data suggest that educating surgeons on malpractice and risk reduction may play a role in decreasing malpractice costs. Additional extrinsic factors may also affect cost data. Emphasis on risk reduction appears to be cumulative and should be part of an ongoing program. Copyright © 2017 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  15. The response of tropical cyclone activity to tropospheric aerosols, greenhouse gases and volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Camargo, S. J.; Sobel, A. H.; Polvani, L. M.; Emanuel, K.; Previdi, M. J.

    2017-12-01

    Previous work has shown that aerosol cooling reduces tropical cyclone (TC) potential intensity (PI) more strongly than greenhouse gas warming increases it. This has the consequence that PI shows only small increases in simulations of the historical period despite considerable global warming over that period. We use CMIP5 models, as well as offline radiative kernels, to better understand this result. The outsize effect of aerosol forcing is a consequence of the fact that tropospheric aerosols act in the shortwave while greenhouse gases act in the longwave. Shortwave forcing has a greater impact on PI than does longwave, because of the differences in the response of the surface energy budget to the direct, temperature-independent component of the forcing. Shortwave forcing mainly drives the climate system in the surface, while greenhouse gases do so at the top of the atmosphere, so that net longwave flux associated with a temperature change can be small, especially at high temperature. Our kernel results also indicate that the temperature-dependent longwave feedback component is also greater by approximately a factor of two for the shortwave than the longwave forcing. Recent papers using observations and proxy reconstructions suggested a reduction of frequency, duration and intensity of Atlantic TCs in the years following volcanic eruptions. Observations show no significant reduction of TC activity in the first season after three large volcanic eruptions in the 20th Century, with the exception of the North Atlantic. The response to these volcanic eruptions cannot be separated from the coinciding El Niño events either in observations or in reanalysis. Both the NCAR Large Ensemble and CMIP5 models show a strong reduction in the PI following large volcanic eruptions. But, given that the models response to volcanic aerosols is known to be too strong, when a bias correction is considered, the PI signal after the volcanic eruptions becomes much smaller. Furthermore, there

  16. Observational determination of the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  17. Launcher Systems Development Cost: Behavior, Uncertainty, Influences, Barriers and Strategies for Reduction

    NASA Technical Reports Server (NTRS)

    Shaw, Eric J.

    2001-01-01

    This paper will report on the activities of the IAA Launcher Systems Economics Working Group in preparations for its Launcher Systems Development Cost Behavior Study. The Study goals include: improve launcher system and other space system parametric cost analysis accuracy; improve launcher system and other space system cost analysis credibility; and provide launcher system and technology development program managers and other decisionmakers with useful information on development cost impacts of their decisions. The Working Group plans to explore at least the following five areas in the Study: define and explain development cost behavior terms and concepts for use in the Study; identify and quantify sources of development cost and cost estimating uncertainty; identify and quantify significant influences on development cost behavior; identify common barriers to development cost understanding and reduction; and recommend practical, realistic strategies to accomplish reductions in launcher system development cost.

  18. Strategy for the reduction of Trichloromethane residue levels in farm bulk milk.

    PubMed

    Ryan, Siobhan; Gleeson, David; Jordan, Kieran; Furey, Ambrose; O'Sullivan, Kathleen; O'Brien, Bernadette

    2013-05-01

    High fat dairy products, such as butter and margarine can be contaminated during the milk production process with a residue called Trichloromethane (TCM), which results from the use of chlorine based detergent solutions. Although, TCM concentrations in Irish products are not at levels that are a public health issue, such contamination can cause marketing difficulties in countries to which Irish products are being exported. In an attempt to reduce such milk residues, a template procedure was developed, tried and tested on 43 farms (from 3 processing companies). This involved identifying farms with high TCM milk, applying corrective action in the form of advice and recommendations to reduce TCM and re-measuring milks from these farms. Trichloromethane in milk was measured by head-space gas chromatography with electron capture detector. The TCM reduction strategy proved successful in significantly reducing the levels in milk in the farms tested, e.g. TCM was reduced from 0.006 to the target of 0.002 mg/kg (P < 0.05). The strategy was then applied to farms who supplied milk to six Irish dairy processors with the objective of reducing TCM in those milks to a level of ≤ 0.002 mg/kg. Initially, milk tankers containing milks from approximately 10-15 individual farms were sampled and analysed and tankers with high TCM (>0.002 mg/kg) identified. Individual herd milks contributing to these tankers were subsequently sampled and analysed and farms supplying high TCM identified. Guidance and advice was provided to the high TCM milk suppliers and levels of TCM of these milk supplies were monitored subsequently. A significant reduction (minimum P < 0.05) in milk TCM was observed in 5 of the 6 dairy processor milks, while a numerical reduction in TCM was observed in the remaining processor milk.

  19. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon

    PubMed Central

    Galford, Gillian L.; Melillo, Jerry M.; Kicklighter, David W.; Cronin, Timothy W.; Cerri, Carlos E. P.; Mustard, John F.; Cerri, Carlos C.

    2010-01-01

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006–2050) impacts on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO2-equivalents (CO2-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24–49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2–0.4 Pg CO2-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso. PMID:20651250

  20. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  2. Thoughts from the Greenhouse

    ERIC Educational Resources Information Center

    Sonstrom, Wendy Jean

    2006-01-01

    In this article, the author compares the functions of a graduate adult education program and a greenhouse. A graduate adult education program is a place where, like in a greenhouse, exciting new hybrids can be developed--working with people outside the school of education, in different disciplines and beyond the university's walls, sharing what…

  3. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    NASA Astrophysics Data System (ADS)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  4. Perceptions of Health Co-Benefits in Relation to Greenhouse Gas Emission Reductions: A Survey among Urban Residents in Three Chinese Cities

    PubMed Central

    Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong

    2017-01-01

    Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher’s exact tests were employed to examine the associations between socio-demographic variables and individuals’ perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents’ awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents’ perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors. PMID:28335404

  5. Perceptions of Health Co-Benefits in Relation to Greenhouse Gas Emission Reductions: A Survey among Urban Residents in Three Chinese Cities.

    PubMed

    Gao, Jinghong; Xu, Guozhang; Ma, Wenjun; Zhang, Yong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; He, Tianfeng; Lin, Hualiang; Liu, Tao; Gu, Shaohua; Wang, Jun; Li, Jing; Yang, Jun; Liu, Xiaobo; Li, Jing; Wu, Haixia; Liu, Qiyong

    2017-03-13

    Limited information is available on the perceptions of stakeholders concerning the health co-benefits of greenhouse gas (GHG) emission reductions. The purpose of this study was to investigate the perceptions of urban residents on the health co-benefits involving GHG abatement and related influencing factors in three cities in China. Beijing, Ningbo and Guangzhou were selected for this survey. Participants were recruited from randomly chosen committees, following quotas for gender and age in proportion to the respective population shares. Chi-square or Fisher's exact tests were employed to examine the associations between socio-demographic variables and individuals' perceptions of the health co-benefits related to GHG mitigation. Unconditional logistic regression analysis was performed to investigate the influencing factors of respondents' awareness about the health co-benefits. A total of 1159 participants were included in the final analysis, of which 15.9% reported that they were familiar with the health co-benefits of GHG emission reductions. Those who were younger, more educated, with higher family income, and with registered urban residence, were more likely to be aware of health co-benefits. Age, attitudes toward air pollution and governmental efforts to improve air quality, suffering from respiratory diseases, and following low carbon lifestyles are significant predictors of respondents' perceptions on the health co-benefits. These findings may not only provide information to policy-makers to develop and implement public welcome policies of GHG mitigation, but also help to bridge the gap between GHG mitigation measures and public engagement as well as willingness to change health-related behaviors.

  6. Strategies for the municipal waste management system to take advantage of carbon trading under competing policies: The role of energy from waste in Sydney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hanandeh, Ali; El-Zein, Abbas

    2009-07-15

    Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow themore » municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.« less

  7. Enhanced photocatalytic CO₂-reduction activity of electrospun mesoporous TiO₂ nanofibers by solvothermal treatment.

    PubMed

    Fu, Junwei; Cao, Shaowen; Yu, Jiaguo; Low, Jingxiang; Lei, Yongpeng

    2014-06-28

    Photocatalytic reduction of CO2 into renewable hydrocarbon fuels using semiconductor photocatalysts is considered as a potential solution to the energy deficiency and greenhouse effect. In this work, mesoporous TiO2 nanofibers with high specific surface areas and abundant surface hydroxyl groups are prepared using an electrospinning strategy combined with a subsequent calcination process, followed by a solvothermal treatment. The solvothermally treated mesoporous TiO2 nanofibers exhibit excellent photocatalytic performance on CO2 reduction into hydrocarbon fuels. The significantly improved photocatalytic activity can be attributed to the enhanced CO2 adsorption capacity and the improved charge separation after solvothermal treatment. The highest activity is achieved for the sample with a 2-h solvothermal treatment, showing 6- and 25-fold higher CH4 production rate than those of TiO2 nanofibers without solvothermal treatment and P25, respectively. This work may also provide a prototype for studying the effect of solvothermal treatment on the structure and photocatalytic activity of semiconductor photocatalysts.

  8. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere

    DOE PAGES

    Tian, Hanqin; Lu, Chaoqun; Ciais, Philippe; ...

    2016-03-09

    The terrestrial biosphere can release or absorb the greenhouse gases, carbon dioxide (CO2), methane (CH 4) and nitrous oxide (N 2O), and therefore has an important role in regulating atmospheric composition and climate 1. Anthropogenic activities such as land-use change, agriculture and waste management have altered terrestrial biogenic greenhouse gas fluxes, and the resulting increases in methane and nitrous oxide emissions in particular can contribute to climate change 2, 3. The terrestrial biogenic fluxes of individual greenhouse gases have been studied extensively 4, 5, 6, but the net biogenic greenhouse gas balance resulting from anthropogenic activities and its effect onmore » the climate system remains uncertain. Here we use bottom-up (inventory, statistical extrapolation of local flux measurements, and process-based modelling) and top-down (atmospheric inversions) approaches to quantify the global net biogenic greenhouse gas balance between 1981 and 2010 resulting from anthropogenic activities and its effect on the climate system. We find that the cumulative warming capacity of concurrent biogenic methane and nitrous oxide emissions is a factor of about two larger than the cooling effect resulting from the global land carbon dioxide uptake from 2001 to 2010. This results in a net positive cumulative impact of the three greenhouse gases on the planetary energy budget, with a best estimate (in petagrams of CO 2 equivalent per year) of 3.9 ± 3.8 (top down) and 5.4 ± 4.8 (bottom up) based on the GWP100 metric (global warming potential on a 100-year time horizon). Lastly, our findings suggest that a reduction in agricultural methane and nitrous oxide emissions, particularly in Southern Asia, may help mitigate climate change.« less

  9. Integrating Sodium Reduction Strategies in the Procurement Process and Contracting of Food Venues in the County of Los Angeles Government, 2010–2012

    PubMed Central

    Cummings, Patricia L.; Kuo, Tony; Gase, Lauren N.; Mugavero, Kristy

    2015-01-01

    Since sodium is ubiquitous in the food supply, recent approaches to sodium reduction have focused on increasing the availability of lower-sodium products through system-level and environmental changes. This article reviews integrated efforts by the Los Angeles County Sodium Reduction Initiative to implement these strategies at food venues in the County of Los Angeles government. The review used mixed methods, including a scan of the literature, key informant interviews, and lessons learned during 2010–2012 to assess program progress. Leveraging technical expertise and shared resources, the initiative strategically incorporated sodium reduction strategies into the overall work plan of a multipartnership food procurement program in Los Angeles County. To date, 3 County departments have incorporated new or updated nutrition requirements that included sodium limits and other strategies. The strategic coupling of sodium reduction to food procurement and general health promotion allowed for simultaneous advancement and acceleration of the County’s sodium reduction agenda. PMID:24322811

  10. Greenhouse Gas Emissions from Reservoir Water Surfaces: A ...

    EPA Pesticide Factsheets

    Collectively, reservoirs are an important anthropogenic source of greenhouse gases (GHGs) to the atmosphere. Attempts to model reservoir GHG fluxes, however, have been limited by inconsistencies in methodological approaches and data availability. An increase in the number of published reservoir GHG flux estimates during the last 15 years warrants a comprehensive analysis of the magnitude and potential controls on these fluxes. Here we synthesize worldwide reservoir CH4, CO2, and N2O emission data and estimate that GHG emissions from reservoirs account for 80.2 Tmol CO2 equivalents yr-1, thus constituting approximately 5% of anthropogenic radiative forcing. The majority (93%) of these emissions are from CH4, and mainly in the form of bubbles. While age and latitude have historically been linked to reservoir GHG emissions, we found that factors related to reservoir nutrient status and rainfall were better predictors. In particular, nutrient-rich eutrophic reservoirs were found to have an order of magnitude higher per-area CH4 fluxes, on average, than their nutrient-poor oligotrophic counterparts. Therefore, management measures to reduce reservoir eutrophication may result in an important co-benefit, the reduction of GHG emissions to the atmosphere. Greenhouse gas emissions (GHG)

  11. Medication errors in paediatric care: a systematic review of epidemiology and an evaluation of evidence supporting reduction strategy recommendations

    PubMed Central

    Miller, Marlene R; Robinson, Karen A; Lubomski, Lisa H; Rinke, Michael L; Pronovost, Peter J

    2007-01-01

    Background Although children are at the greatest risk for medication errors, little is known about the overall epidemiology of these errors, where the gaps are in our knowledge, and to what extent national medication error reduction strategies focus on children. Objective To synthesise peer reviewed knowledge on children's medication errors and on recommendations to improve paediatric medication safety by a systematic literature review. Data sources PubMed, Embase and Cinahl from 1 January 2000 to 30 April 2005, and 11 national entities that have disseminated recommendations to improve medication safety. Study selection Inclusion criteria were peer reviewed original data in English language. Studies that did not separately report paediatric data were excluded. Data extraction Two reviewers screened articles for eligibility and for data extraction, and screened all national medication error reduction strategies for relevance to children. Data synthesis From 358 articles identified, 31 were included for data extraction. The definition of medication error was non‐uniform across the studies. Dispensing and administering errors were the most poorly and non‐uniformly evaluated. Overall, the distributional epidemiological estimates of the relative percentages of paediatric error types were: prescribing 3–37%, dispensing 5–58%, administering 72–75%, and documentation 17–21%. 26 unique recommendations for strategies to reduce medication errors were identified; none were based on paediatric evidence. Conclusions Medication errors occur across the entire spectrum of prescribing, dispensing, and administering, are common, and have a myriad of non‐evidence based potential reduction strategies. Further research in this area needs a firmer standardisation for items such as dose ranges and definitions of medication errors, broader scope beyond inpatient prescribing errors, and prioritisation of implementation of medication error reduction strategies. PMID:17403758

  12. What is Climate Leadership: Examples and Lessons Learned in Supply Chain Management Webinar

    EPA Pesticide Factsheets

    Organizations that have developed comprehensive greenhouse gas inventories and aggressive emissions reduction goals discuss their strategies for managing greenhouse gases in their organizational supply chains and use of EPA Supply Chain resources.

  13. Greenhouse Gas Emissions Driven by the Transportation of Goods Associated with French Consumption.

    PubMed

    Hawkins, Troy R; Dente, Sebastien M R

    2010-11-15

    The transportation of goods plays a significant role in the overall greenhouse gas emissions from consumption. This study investigates the connections between French household consumption and production and transportation-related emissions throughout product supply chains. Here a two-region, environmentally extended input-output model is combined with a novel detailed, physical-unit transportation model to examine the connection between product, location of production, choice of transport mode, and greenhouse gas emissions. Total emissions associated with French household consumption are estimated to be 627 MtCO2e, or 11 tCO2e per capita. Of these, 3% are associated with the transportation of goods within France and 10% with transport of goods outside or into France. We find that most transport originating in northern Europe is by road, whereas most transport from other regions is conducted by sea and ocean transport. Rail, inland water, and air transportation play only a minor role in terms of mass, tonne-kilometers, and greenhouse gas emissions. By product, transport of coal and coke and intermediate goods make the largest contribution to overall freight transport emissions associated with French household consumption. In terms of mass, most goods are transported by road while in terms of tonne-kilometers, sea and ocean transport plays the largest role. Road transport contributes the highest share to the transport of all goods with the exceptions of coal and coke and petroleum. We examine the potential for emissions reductions associated with shifting 10% of direct imports by air freight to sea and ocean or road transport and find that the potential reductions are less than 0.03% of total emissions associated with French consumption. We also consider shifting 10% of direct imports by road transport to rail or inland water and find potential reductions on the order of 0.4−0.5% of the total or 3−4% of the freight transport emissions associated with French

  14. The 3 faces of clinical reasoning: Epistemological explorations of disparate error reduction strategies.

    PubMed

    Monteiro, Sandra; Norman, Geoff; Sherbino, Jonathan

    2018-06-01

    There is general consensus that clinical reasoning involves 2 stages: a rapid stage where 1 or more diagnostic hypotheses are advanced and a slower stage where these hypotheses are tested or confirmed. The rapid hypothesis generation stage is considered inaccessible for analysis or observation. Consequently, recent research on clinical reasoning has focused specifically on improving the accuracy of the slower, hypothesis confirmation stage. Three perspectives have developed in this line of research, and each proposes different error reduction strategies for clinical reasoning. This paper considers these 3 perspectives and examines the underlying assumptions. Additionally, this paper reviews the evidence, or lack of, behind each class of error reduction strategies. The first perspective takes an epidemiological stance, appealing to the benefits of incorporating population data and evidence-based medicine in every day clinical reasoning. The second builds on the heuristic and bias research programme, appealing to a special class of dual process reasoning models that theorizes a rapid error prone cognitive process for problem solving with a slower more logical cognitive process capable of correcting those errors. Finally, the third perspective borrows from an exemplar model of categorization that explicitly relates clinical knowledge and experience to diagnostic accuracy. © 2018 John Wiley & Sons, Ltd.

  15. [Risk of reproductive disorders in greenhouse workers].

    PubMed

    Jurewicz, Joanna; Hanke, Wojciech

    2007-01-01

    This study reviews the evidence on the association between work in greenhouses and reproductive disorders. The analysis indicate that employment in greenhouses may increase the risk of birth defects, preterm delivery and spontaneous abortion, and also may affect birth weight. The obtained results showed that employment in the agriculture production sector (greenhouses) of more than 10 years decreased the median sperm concentration in men. The data on the effect of employment in greenhouses on the time to pregnancy are unequivocal, but most of them suggest that there is a relationship between the decreased fecundity ratio and greenhouse work, mostly due to exposure to pesticides. The literature review indicates a great need to increase awareness among greenhouse workers occupationally exposed to pesticides about potential negative effects of these chemicals on their health.

  16. Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions

    PubMed Central

    Heimpel, George E.; Yang, Yi; Hill, Jason D.; Ragsdale, David W.

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions. PMID:23977273

  17. Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions.

    PubMed

    Heimpel, George E; Yang, Yi; Hill, Jason D; Ragsdale, David W

    2013-01-01

    Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.

  18. A Greenhouse for Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Rahaim, Christopher P.; Czysz, Paul A.

    2008-01-01

    A detailed design study for a deployable greenhouse for Mars mission is has been completed. The greenhouse has been designed so that it has a life span of at least 20 years, a leakage rate of no more that 1% of the total volume per day at the target working pressure of 50 kPa and provides at least six crewmembers with approximately twenty five percent of their food supply. Artificial light is provided by high intensity red and blue light emitting diodes, but sunlight is also used by installing small Lexan windows on the rooftop. The greenhouse structure is a rigid IM7/977-3 graphite/epoxy sandwich structure with a footprint of 38 m2. Radioisotope thermal electric generators are used to produce power for the greenhouse and its subsystems and the plants are grown in nested pockets located on vertical cylinders which allows for a growth area of 48 m2. An aeroponic water and nutrient delivery system is used in order to reduce the greenhouse water usage. Harvesting and planting is achieved through the use of robotics specifically designed for this mission. The greenhouse structure and subsystems have a total weight of less than 10 metric tons. In this paper the design highlights of several of the subsystems of the greenhouse design will be summarized.

  19. Low Carbon Rice Farming Practices in the Mekong Delta Yield Significantly Higher Profits and Lower Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Rudek, J.; Van Sanh, N.; Tinh, T. K.; Tin, H. Q.; Thu Ha, T.; Pha, D. N.; Cui, T. Q.; Tin, N. H.; Son, N. N.; Thanh, H. H.; Kien, H. T.; Kritee, K.; Ahuja, R.

    2014-12-01

    The Vietnam Low-Carbon Rice Project (VLCRP) seeks to significantly reduce GHG emissions from rice cultivation, an activity responsible for more than 30% of Vietnam's overall GHG emissions, while improving livelihoods for the rice farmer community by decreasing costs and enhancing yield as well as providing supplemental farmer income through the sale of carbon credits. The Mekong Delta makes up 12% of Vietnam's land area, but produces more than 50% of the country's rice, including more than 90% of the rice for export. Rice cultivation is the main source of income for 80% of farmers in the Mekong Delta. VLCRP was launched in late 2012 in the Mekong Delta in two major rice production provinces, Kien Giang and An Giang. To date, VLCRP has completed 11 crop seasons (in Kien Giang and An Giang combined), training over 400 farmer households in applying VLCRP's package of practices (known as 1 Must - 6 Reductions) and building technical capacity to its key stakeholders and rice farmer community leaders. By adopting the 1 Must- 6 Reductions practices (including reduced seeding density, reduced fertilizer and pesticide application, and alternative wetting and drying water management), rice farmers reduce their input costs while maintaining or improving yields, and decreasing greenhouse gas emissions. The VLCRP package of practices also deliver other environmental and social co-benefits, such as reduced water pollution, improved habitat for fishery resources and reduced health risks for farmers through the reduction of agri-chemicals. VLCRP farmers use significantly less inputs (50% reduction in seed, 30% reduction in fertilizer, 40-50% reduction in water) while improving yields 5-10%, leading to an increase in profit from 10% to as high as 60% per hectare. Preliminary results indicate that the 1 Must- 6 Reductions practices have led to approximately 40-65% reductions in greenhouse gas emissions, equivalent to 4 tons of CO2e/ha/yr in An Giang and 35 tons of CO2e/ha/yr in Kien

  20. Effect of Canine Play Interventions as a Stress Reduction Strategy in College Students.

    PubMed

    Delgado, Cheryl; Toukonen, Margaret; Wheeler, Corinne

    Forty-eight students engaged with a therapy dog for 15 minutes during finals week to evaluate the effect on stress. Psychological (Perceived Stress Scale, visual analog scales) and physiologic stress (vital signs, salivary cortisol) measures were collected before and after the intervention. Paired t tests showed significant reductions in all psychological and physiologic measures except diastolic blood pressure. This supports animal-assisted therapy as an effective stress management strategy for nursing and other college students.

  1. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  2. Understanding and quantifying greenhouse gases (GHG) emissions: the UK GHG Emissions and Feedback Programme

    NASA Astrophysics Data System (ADS)

    Matthiesen, Stephan; Palmer, Paul; Watson, Andrew; Williams, Mathew

    2016-04-01

    -annually. Integration activities link these three projects to foster knowledge exchange across different scales, methods and sub-disciplines, both within the Programme and with the wider research community. The three projects are integrated to improve our understanding of greenhouse gases across domains and scales. The observational components lay the foundation of new measurement infrastructure that will deliver beyond the lifetime of this Programme. Through the development of robust methods to reduce uncertainties in GHG emissions estimates, the Programme supports regulatory efforts to monitor emissions trends and the efficacy of reduction strategies.

  3. Comparison of individual pitch and smart rotor control strategies for load reduction

    NASA Astrophysics Data System (ADS)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  4. Transportation futures : policy scenarios for achieving greenhouse gas reduction targets.

    DOT National Transportation Integrated Search

    2014-03-01

    It is well established that GHG emissions must be reduced by 50% to 80% by 2050 in order to limit global temperature increase : to 2C. Achieving reductions of this magnitude in the transportation sector is a challenge and requires a multitude of po...

  5. Reduction of greenhouse gas emissions from feed supply chains by utilizing regionally produced protein sources: the case of Austrian dairy production.

    PubMed

    Hörtenhuber, Stefan Josef; Lindenthal, Thomas; Zollitsch, Werner

    2011-04-01

    The aim of this study was to analyse the potential greenhouse gas emissions (GHGE) for regionally alternative produced protein-rich feedstuffs (APRFs) which are utilized for dairy cattle in Austria in comparison to solvent-extracted soybean meal (SBME). In addition to GHGE from agriculture and related upstream supply chains, the effects of land use change were calculated and were included in the results for GHGE. Furthermore, mixtures of APRFs were evaluated which provided energy and utilizable protein equivalent to SBME. Highest GHGE were estimated for SBME, mainly due to land use change-related emissions. Medium GHGE were found for distillers' dried grains with solubles, for seed cake and solvent-extracted meal from rapeseed and for lucerne cobs. Cake and solvent-extracted meal from sunflower seed as well as faba beans were loaded with lowest GHGE. Substituting SBME by nutritionally equivalent mixtures of APRFs, on average, resulted in a reduction of GHGE of 42% (22-62%). Utilization of locally produced APRFs shows clear advantages in terms of GHGE. Balanced mixtures of APRFs may offer specific benefits, as they allow for a combination of desirable nutritional value and reduced GHGE. Copyright © 2011 Society of Chemical Industry.

  6. Year-round Application of Water Curtain for Environmental Control in Greenhouse

    NASA Astrophysics Data System (ADS)

    Ibuki, R.; Sugita, E.

    2011-12-01

    covering way to realize higher water covering ratio. With this way selective reduction effect of water curtain, which reduce infrared more than visible light is quantitatively measured. Also small greenhouse to growth plants under it is settled to measure thermal net, heat absorption, water and air temperature variation and yields growth. From measurements way of making water membrane influenced water temperature elevation.

  7. Improving and Assessing Aircraft-based Greenhouse Gas Emission Rate Measurements at Indianapolis as part of the INFLUX project.

    NASA Astrophysics Data System (ADS)

    Heimburger, A. M. F.; Shepson, P. B.; Stirm, B. H.; Susdorf, C.; Cambaliza, M. O. L.

    2015-12-01

    Since the Copenhagen accord in 2009, several countries have affirmed their commitment to reduce their greenhouse gas emissions. The United States and Canada committed to reduce their emissions by 17% below 2005 levels, by 2020, Europe by 14% and China by ~40%. To achieve such targets, coherent and effective strategies in mitigating atmospheric carbon emissions must be implemented in the next decades. Whether such goals are actually achieved, they require that reductions are "measurable", "reportable", and "verifiable". Management of greenhouse gas emissions must focus on urban environments since ~74% of CO2 emissions worldwide will be from cities, while measurement approaches are highly uncertain (~50% to >100%). The Indianapolis Flux Experiment (INFLUX) was established to develop, assess and improve top-down and bottom-up quantifications of urban greenhouse gas emissions. Based on an aircraft mass balance approach, we performed a series of experiments focused on the improvement of CO2, CH4 and CO emission rates quantification from Indianapolis, our final objective being to drastically improve the method overall uncertainty from the previous estimate of 50%. In November-December 2014, we conducted nine methodologically identical mass balance experiments in a short period of time (24 days, one downwind distance) for assumed constant total emission rate conditions, as a means to obtain an improved standard deviation of the mean determination. By averaging the individual emission rate determinations, we were able to obtain a method precision of 17% and 16% for CO2 and CO, respectively, at the 95%C.L. CH4 emission rates are highly variable day to day, leading to precision of 60%. Our results show that repetitive sampling can enable improvement in precision of the aircraft top-down methods through averaging.

  8. Tobacco harm reduction: an alternative cessation strategy for inveterate smokers

    PubMed Central

    Rodu, Brad; Godshall, William T

    2006-01-01

    consumers in distinguishing real health threats from spurious health claims. As this report documents, there is a strong scientific and medical foundation for tobacco harm reduction, and it shows great potential as a public health strategy to help millions of smokers. PMID:17184539

  9. HIV-negative and HIV-discordant Gay Male Couples’ Use of HIV Risk-Reduction Strategies: Differences by Partner Type and Couples’ HIV-status

    PubMed Central

    Mitchell, Jason W.

    2014-01-01

    Previous research has found that gay men and other men who have sex with men (MSM) have adopted a variety of HIV risk-reduction strategies to engage in unprotected anal intercourse (UAI). However, whether gay male couples’ use these strategies within and out of their relationships remains unknown. The present national cross-sectional study collected dyadic data from an online sample of 275 HIV-negative and 58 discordant gay male couples to assess their use of these strategies, and whether their use of these strategies had differed by partner type and couples’ HIV-status. The sample used a variety of risk-reduction strategies for UAI. Some differences and patterns by partner type and couples’ HIV status were detected about men’s use of these strategies. Findings indicate the need to bolster HIV prevention and education with gay male couples about their use of these strategies within and outside of their relationships. PMID:23247364

  10. Greenhouse Gases

    MedlinePlus

    ... Information Administration (EIA) does not estimate emissions of water vapor. Research by NASA suggests a stronger impact from the indirect human effects on water vapor concentrations. Ozone is technically a greenhouse gas ...

  11. Solar greenhouse workshop; video documentary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, B.; Devine B.; Taylor, C.

    1980-01-01

    A 38 minute video-tape documentary of the building of an attached solar greenhouse is presented. The tape follows the construction process from foundation preparation to greenhouse completion. The tape allows greater outreach to potential builders of solar greenhouses than a conventional construction workshop. It allows viewers to appreciate the simplicity of construction, and encourages, by example, interested people to start building. The process of making the documentary is briefly described, as are its potential uses. Copies of the video-tape are available, for the cost of the tape alone, from Antioch Video, Antioch College, Yellow Springs, Ohio 45387.

  12. Strategies to improve industrial energy efficiency

    NASA Astrophysics Data System (ADS)

    O'Rielly, Kristine M.

    A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG

  13. Household scale of greenhouse design in Merauke

    NASA Astrophysics Data System (ADS)

    Alahudin, Muchlis; Widarnati, Indah; Luh Sri Suryaningsih, Ni

    2018-05-01

    Merauke is one of the areas that still use conventional methods in agriculture, The agricultural business does not run the maximum during the year because agricultural products quite difficult to obtain in the market. In the rainy season, the intensity of rain is very high, the water condition is abundant and hard to be channeled due to topography/soil contour conditions average, otherwise in the dry season the water is quite difficult to obtain. The purpose of this research is to compare the thermal conditions between greenhouse with auvplastic and plastic bottle roof.This research is experimental, measurement of thermal conditions in Greenhouse using measuring weather station.Greenhouse design with Quonset type with area of 24 m2The result of this research are greenhouse with paranet + UV plastic roof has an average temperature of 28.7 °C, 70.4% humidity and 0.5 m/s wind speed, while the greenhouse with paranet + plastic bottle roof has an average temperature of 26, 2 °C, humidity 66.4% and wind speed 0.9 m/s. Conclusion is Greenhouse with paranet + plastic bottle roof more thermally comfortable than greenhouse with paranet + UV plastic roof.

  14. Biochar: from laboratory mechanisms through the greenhouse to field trials

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Gao, X.; Dugan, B.; Silberg, J. J.; Zygourakis, K.; Alvarez, P. J. J.

    2014-12-01

    The biochar community is excellent at pointing to individual cases where biochar amendment has changed soil properties, with some studies showing significant improvements in crop yields, reduction in nutrient export, and remediation of pollutants. However, many studies exist which do not show improvements, and in some cases, studies clearly show detrimental outcomes. The next, crucial step in biochar science and engineering research will be to develop a process-based understanding of how biochar acts to improve soil properties. In particular, we need a better mechanistic understanding of how biochar sorbs and desorbs contaminants, how it interacts with soil water, and how it interacts with the soil microbial community. These mechanistic studies need to encompass processes that range from the nanometer to the kilometer scale. At the nanometer scale, we need a predictive model of how biochar will sorb and desorb hydrocarbons, nutrients, and toxic metals. At the micrometer scale we need models that explain biochar's effects on soil water, especially the plant-available fraction of soil water. The micrometer scale is also where mechanistic information is neeed about microbial processes. At the macroscale we need physical models to describe the landscape mobility of biochar, because biochar that washes away from fields can no longer provide crop benefits. To be most informative, biochar research should occur along a lab-greenhouse-field trial trajectory. Laboratory experiments should aim determine what mechanisms may act to control biochar-soil processes, and then greenhouse experiments can be used to test the significance of lab-derived mechanisms in short, highly replicated, controlled experiments. Once evidence of effect is determined from greenhouse experiments, field trials are merited. Field trials are the gold standard needed prior to full deployment, but results from field trials cannot be extrapolated to other field sites without the mechanistic backup provided

  15. Greenhouse gas and air pollutant emission reduction potentials of renewable energy--case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan.

    PubMed

    Kuo, Yu-Ming; Fukushima, Yasuhiro

    2009-03-01

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.

  16. Greenhouse gas and air pollutant emission reduction potentials of renewable energy - case studies on photovoltaic and wind power introduction considering interactions among technologies in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu-Ming Kuo; Yasuhiro Fukushima

    2009-03-15

    To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be takenmore » into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.« less

  17. Has your greenhouse gone virtual?

    USDA-ARS?s Scientific Manuscript database

    Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...

  18. Farm simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    USDA-ARS?s Scientific Manuscript database

    Process-level modeling at the farm scale provides a tool for evaluating both strategies for mitigating greenhouse gas emissions and strategies for adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to pred...

  19. Ecodriving and carbon footprinting : understanding how public education can reduce greenhouse gas emissions and fuel use [research brief].

    DOT National Transportation Integrated Search

    2012-04-01

    Ecodriving, the concept of altering driving behavior and vehicle maintenance practices in existing vehicles, has gained recent prominence as a strategy for drivers to reduce gasoline consumption and greenhouse gas (GHG) emissions. Ecodriving is gaini...

  20. Using risk elasticity to prioritize risk reduction strategies for geographical areas and industry sectors.

    PubMed

    Li, Pei-Chiun; Ma, Hwong-Wen

    2016-01-25

    The total quantity of chemical emissions does not take into account their chemical toxicity, and fails to be an accurate indicator of the potential impact on human health. The sources of released contaminants, and therefore, the potential risk, also differ based on geography. Because of the complexity of the risk, there is no integrated method to evaluate the effectiveness of risk reduction. Therefore, this study developed a method to incorporate the spatial variability of emissions into human health risk assessment to evaluate how to effectively reduce risk using risk elasticity analysis. Risk elasticity analysis, the percentage change in risk in response to the percentage change in emissions, was adopted in this study to evaluate the effectiveness and efficiency of risk reduction. The results show that the main industry sectors are different in each area, and that high emission in an area does not correspond to high risk. Decreasing the high emissions of certain sectors in an area does not result in efficient risk reduction in this area. This method can provide more holistic information for risk management, prevent the development of increased risk, and prioritize the risk reduction strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Voluntary Reporting of Greenhouse Gases

    EIA Publications

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  2. "It's not rocket science, what I do": Self-directed harm reduction strategies among drug using ethno-racially diverse gay and bisexual men.

    PubMed

    Greenspan, Nicole R; Aguinaldo, Jeffrey P; Husbands, Winston; Murray, James; Ho, Peter; Sutdhibhasilp, Noulmook; Cedano, José; Lau, Chris; Gray, Trevor; Maharaj, Rajendra

    2011-01-01

    Research on harm reduction has typically focused on broad-based or organisational strategies such as needle exchange and opiate substitute programmes. Less attention has been paid to the self-directed harm reduction practices of substance users themselves. Few studies have focused on sexual minority populations such as gay and bisexual men and fewer still on the marginalised groups that constitute these populations. This paper identifies self-directed harm reduction strategies among substance using ethno-racially diverse gay and bisexual men. This article presents findings from the Party Drugs Study in Toronto's gay dance club scene, a community-based qualitative study in Toronto, Canada. We present a thematic analysis of interviews with 43 gay and bisexual men from diverse ethno-racial backgrounds about their substance use in the gay dance club scene. We identify five self-directed harm reduction strategies: rationing, controlling or avoiding mixing, controlling quality, maintaining a healthy lifestyle, and following guidelines during substance use. We discuss our findings in relation to prior research and to critical theory. We suggest that drug users' awareness of possible harm, and their personal investment in harm reduction, constitute a viable platform from which community-based and public health organisations may promote and strengthen harm reduction among gay and bisexual men from ethno-racially diverse backgrounds. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Cutting greenhouse gas emissions is only the beginning: a literature review of the co-benefits of reducing vehicle miles traveled.

    DOT National Transportation Integrated Search

    2017-03-01

    Traditional evaluation of the transportation system focuses on automobile traffic flow and : congestion reduction. However, this paradigm is shifting. In an effort to combat global warming : and reduce greenhouse gas (GHG) emissions, a number of citi...

  4. Automated Signal Processing Applied to Volatile-Based Inspection of Greenhouse Crops

    PubMed Central

    Jansen, Roel; Hofstee, Jan Willem; Bouwmeester, Harro; van Henten, Eldert

    2010-01-01

    Gas chromatograph–mass spectrometers (GC-MS) have been used and shown utility for volatile-based inspection of greenhouse crops. However, a widely recognized difficulty associated with GC-MS application is the large and complex data generated by this instrument. As a consequence, experienced analysts are often required to process this data in order to determine the concentrations of the volatile organic compounds (VOCs) of interest. Manual processing is time-consuming, labour intensive and may be subject to errors due to fatigue. The objective of this study was to assess whether or not GC-MS data can also be automatically processed in order to determine the concentrations of crop health associated VOCs in a greenhouse. An experimental dataset that consisted of twelve data files was processed both manually and automatically to address this question. Manual processing was based on simple peak integration while the automatic processing relied on the algorithms implemented in the MetAlign™ software package. The results of automatic processing of the experimental dataset resulted in concentrations similar to that after manual processing. These results demonstrate that GC-MS data can be automatically processed in order to accurately determine the concentrations of crop health associated VOCs in a greenhouse. When processing GC-MS data automatically, noise reduction, alignment, baseline correction and normalisation are required. PMID:22163594

  5. Efficiency of energy recovery from municipal solid waste and the resultant effect on the greenhouse gas balance.

    PubMed

    Gohlke, Oliver

    2009-11-01

    Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.

  6. INCA Modelling of the Lee System: strategies for the reduction of nitrogen loads

    NASA Astrophysics Data System (ADS)

    Flynn, N. J.; Paddison, T.; Whitehead, P. G.

    The Integrated Nitrogen Catchment model (INCA) was applied successfully to simulate nitrogen concentrations in the River Lee, a northern tributary of the River Thames for 1995-1999. Leaching from urban and agricultural areas was found to control nitrogen dynamics in reaches unaffected by effluent discharges and abstractions; the occurrence of minimal flows resulted in an upward trend in nitrate concentration. Sewage treatment works (STW) discharging into the River Lee raised nitrate concentrations substantially, a problem which was compounded by abstractions in the Lower Lee. The average concentration of nitrate (NO3) for the simulation period 1995-96 was 7.87 mg N l-1. Ammonium (NH4) concentrations were simulated less successfully. However, concentrations of ammonium rarely rose to levels which would be of environmental concern. Scenarios were run through INCA to assess strategies for the reduction of nitrate concentrations in the catchment. The conversion of arable land to ungrazed vegetation or to woodland would reduce nitrate concentrations substantially, whilst inclusion of riparian buffer strips would be unsuccessful in reducing nitrate loading. A 50% reduction in nitrate loading from Luton STW would result in a fall of up to 5 mg N l-1 in the reach directly affected (concentrations fell from maxima of 13 to 8 mg N l-1 , nearly a 40 % reduction), whilst a 20% reduction in abstractions would reduce maximum peaks in concentration in the lower Lee by up to 4 mg l-1 (from 17 to 13 mg N l-1, nearly a 25 % reduction),.

  7. Evolving Strategies, Opportunistic Implementation: HIV Risk Reduction in Tanzania in the Context of an Incentive-Based HIV Prevention Intervention

    PubMed Central

    Packel, Laura; Keller, Ann; Dow, William H.; de Walque, Damien; Nathan, Rose; Mtenga, Sally

    2012-01-01

    Background Behavior change communication (BCC) interventions, while still a necessary component of HIV prevention, have not on their own been shown to be sufficient to stem the tide of the epidemic. The shortcomings of BCC interventions are partly due to barriers arising from structural or economic constraints. Arguments are being made for combination prevention packages that include behavior change, biomedical, and structural interventions to address the complex set of risk factors that may lead to HIV infection. Methods In 2009/2010 we conducted 216 in-depth interviews with a subset of study participants enrolled in the RESPECT study - an HIV prevention trial in Tanzania that used cash awards to incentivize safer sexual behaviors. We analyzed community diaries to understand how the study was perceived in the community. We drew on these data to enhance our understanding of how the intervention influenced strategies for risk reduction. Results We found that certain situations provide increased leverage for sexual negotiation, and these situations facilitated opportunistic implementation of risk reduction strategies. Opportunities enabled by the RESPECT intervention included leveraging conditional cash awards, but participants also emphasized the importance of exploiting new health status knowledge from regular STI testing. Risk reduction strategies included condom use within partnerships and/or with other partners, and an unexpected emphasis on temporary abstinence. Conclusions Our results highlight the importance of increasing opportunities for implementing risk reduction strategies. We found that an incentive-based intervention could be effective in part by creating such opportunities, particularly among groups such as women with limited sexual agency. The results provide new evidence that expanding regular testing of STIs is another important mechanism for providing opportunities for negotiating behavior change, beyond the direct benefits of testing. Exploiting

  8. Warming Mars Using Artificial Super-Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Marinova, M. M.; McKay, C. P.; Hashimoto, H.

    Artificial super-greenhouse gases will be needed in terraforming Mars. They could be used to initiate warming and also to supplement the greenhouse effect of a breathable oxygen/nitrogen atmosphere containing a limited amount of carbon dioxide. The leading super-greenhouse gas candidates are SF6 and perfluorocarbons (PFCs) such as CF4 and C2F6. The transmission spectra of C2F6, CF2Cl2, and CF3Cl were analyzed, and their specific absorption bands quantitatively assessed. A detailed band model was used to accurately calculate and compare the greenhouse warming of Earth and Mars given different temperature profiles and concentrations of the gases. The results show that for the current Mars, 0.1 Pa (10-6 atm) of a single super-greenhouse gas will result in a warming of about 3 K. The synthesis of this amount of gas requires about 1020 J, equivalent to ~ 70 minutes of the total solar energy reaching Mars. Super-greenhouse gases are a viable method for warming up a planet alone and are certainly practical in combination with other methods.

  9. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions.

    PubMed

    Mohankumar Sajeev, Erangu Purath; Winiwarter, Wilfried; Amon, Barbara

    2018-01-01

    Farm livestock manure is an important source of ammonia and greenhouse gases. Concerns over the environmental impact of emissions from manure management have resulted in research efforts focusing on emission abatement. However, questions regarding the successful abatement of manure-related emissions remain. This study uses a meta-analytical approach comprising 89 peer-reviewed studies to quantify emission reduction potentials of abatement options for liquid manure management chains from cattle and pigs. Analyses of emission reductions highlight the importance of accounting for interactions between emissions. Only three out of the eight abatement options considered (frequent removal of manure, anaerobic digesters, and manure acidification) reduced ammonia (3-60%), nitrous oxide (21-55%), and methane (29-74%) emissions simultaneously, whereas in all other cases, tradeoffs were identified. The results demonstrate that a shift from single-stage emission abatement options towards a whole-chain perspective is vital in reducing overall emissions along the manure management chain. The study also identifies some key elements like proper clustering, reporting of influencing factors, and explicitly describing assumptions associated with abatement options that can reduce variability in emission reduction estimates. Prioritization of abatement options according to their functioning can help to determine low-risk emission reduction options, specifically options that alter manure characteristics (e.g., reduced protein diets, anaerobic digestion, or slurry acidification). These insights supported by comprehensive emission measurement studies can help improve the effectiveness of emission abatement and harmonize strategies aimed at reducing air pollution and climate change simultaneously. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. From Anti-greenhouse Effect of Solar Absorbers to Cooling Effect of Greenhouse Gases: A 1-D Radiative Convective Model Study

    NASA Astrophysics Data System (ADS)

    Shia, R.

    2012-12-01

    The haze layer in Titan's upper atmosphere absorbs 90% of the solar radiation, but is inefficient for trapping infrared radiation generated by the surface. Its existence partially compensates for the greenhouse warming and keeps the surface approximately 9°C cooler than would otherwise be expected from the greenhouse effect alone. This is the so called anti-greenhouse effect (McKay et al., 1991). This effect can be used to alleviate the warming caused by the increasing level of greenhouse gases in the Earth's atmosphere. A one-dimensional radiative convective model (Kasting et al., 2009 and references listed there) is used to investigate the anti-greenhouse effect in the Earth atmosphere. Increasing of solar absorbers, e.g. aerosols and ozone, in the stratosphere reduces the surface solar flux and cool the surface. However, the absorption of the solar flux also increases the temperature in the upper atmosphere, while reduces the temperature at the surface. Thus, the temperature profile of the atmosphere changes and the regions with positive vertical temperature gradient are expanded. According to Shia (2010) the radiative forcing of greenhouse gases is directly related to the vertical temperature gradient. Under the new temperature profile increases of greenhouse gases should have less warming effect. When the solar absorbers keep increasing, eventually most of the atmosphere has positive temperature gradient and increasing greenhouse gases would cool the surface (Shia, 2011). The doubling CO2 scenario in the Earth atmosphere is simulated for different levels of solar absorbers using the 1-D RC model. The model results show that if the solar absorber increases to a certain level that less than 50% solar flux reaching the surface, doubling CO2 cools the surface by about 2 C. This means if the snowball Earth is generated by solar absorbers in the stratosphere, increasing greenhouse gases would make it freeze even more (Shia, 2011). References: Kasting, J. et al

  11. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  12. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review.

    PubMed

    Khan, Aziz; Tan, Daniel Kean Yuen; Munsif, Fazal; Afridi, Muhammad Zahir; Shah, Farooq; Wei, Fan; Fahad, Shah; Zhou, Ruiyang

    2017-10-01

    Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH 3 ) is a central intermediate in plant N metabolism. NH 3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH 3 to glutamate to form glutamine (Gln), and the second step transfers the NH 3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH 3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic

  13. Risk-Reduction Strategies to Expand Radon Care Planning with Vulnerable Groups

    PubMed Central

    Larsson, Laura S.

    2016-01-01

    Objectives Radon is the second leading cause of lung cancer in the United States and the leading cause of lung cancer among nonsmokers. Residential radon is the cause of approximately 21,000 U.S. lung cancer deaths each year. Dangerous levels of radon are just as likely to be found in low-rise apartments and townhomes as single-family homes in the same area. The preferred radon mitigation strategy can be expensive and requires structural modifications to the home. The public health nurse (PHN) needs a collection of low-cost alternatives when working with low-income families or families who rent their homes. Method A review of the literature was performed to identify evidence-based methods to reduce radon risk with vulnerable populations. Results Fourteen recommendations for radon risk reduction were categorized into four strategies. Nine additional activities for raising awareness and increasing testing were also included. Discussion The results pair the PHN with practical interventions and the underlying rationale to develop radon careplans with vulnerable families across housing types. The PHN has both the competence and the access to help families reduce their exposure to this potent carcinogen. PMID:24547763

  14. Risk-reduction strategies to expand radon care planning with vulnerable groups.

    PubMed

    Larsson, Laura S

    2014-01-01

    Radon is the second leading cause of lung cancer in the United States and the leading cause of lung cancer among nonsmokers. Residential radon is the cause of approximately 21,000 U.S. lung cancer deaths each year. Dangerous levels of radon are just as likely to be found in low-rise apartments and townhomes as single-family homes in the same area. The preferred radon mitigation strategy can be expensive and requires structural modifications to the home. The public health nurse (PHN) needs a collection of low-cost alternatives when working with low-income families or families who rent their homes. A review of the literature was performed to identify evidence-based methods to reduce radon risk with vulnerable populations. Fourteen recommendations for radon risk reduction were categorized into four strategies. Nine additional activities for raising awareness and increasing testing were also included. The results pair the PHN with practical interventions and the underlying rationale to develop radon careplans with vulnerable families across housing types. The PHN has both the competence and the access to help families reduce their exposure to this potent carcinogen. © 2014 Wiley Periodicals, Inc.

  15. Application of strategies for sanitation management in wastewater treatment plants in order to control/reduce greenhouse gas emissions.

    PubMed

    Préndez, Margarita; Lara-González, Scarlette

    2008-09-01

    Greenhouse gases (GHG), basically methane (CH(4)), carbon dioxide (CO(2)) and nitrous oxide (N(2)O), occur at atmospheric concentrations of ppbv to ppmv under natural conditions. GHG have long mean lifetimes and are an important factor for the mean temperature of the Earth. However, increasing anthropogenic emissions could produce a scenario of progressive and cumulative effects over time, causing a potential "global climate change". Biological degradation of the organic matter present in wastewater is considered one of the anthropogenic sources of GHG. In this study, GHG emissions for the period 1990-2027 were estimated considering the sanitation process and the official domestic wastewater treatment startup schedule approved for the Metropolitan Region (MR) of Santiago, Chile. The methodology considers selected models proposed by the Intergovernmental Panel on Climate Change (IPCC) and some others published by different authors; these were modified according to national conditions and different sanitation and temporal scenarios. For the end of the modeled period (2027), results show emissions of about 65 Tg CO(2) equiv./year (as global warming potential), which represent around 50% of national emissions. These values could be reduced if certain sanitation management strategies were introduced in the environmental management by the sanitation company in charge of wastewater treatment.

  16. Using waste oil to heat a greenhouse

    Treesearch

    Marla Schwartz

    2009-01-01

    During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...

  17. Sonic Anemometry to Measure Natural Ventilation in Greenhouses

    PubMed Central

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, uo ≥ 4 m s−1) reaching 36.3% when wind speed was lower (uo = 2 m s−1). PMID:22163728

  18. Sonic anemometry to measure natural ventilation in greenhouses.

    PubMed

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  19. Assessment of biodiesel scenarios for Midwest freight transport emission reduction.

    DOT National Transportation Integrated Search

    2010-04-01

    There are trade-offs when attempting to reduce both greenhouse gas and criteria air pollutants for freight transport, as the control : strategies are not necessarily complimentary. While emission controls can remove ozone precursors and particulate f...

  20. N and P as ultimate and proximate limiting nutrients in the northern Gulf of Mexico: implications for hypoxia reduction strategies

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Laurent, Arnaud

    2018-05-01

    The occurrence of hypoxia in coastal oceans is a long-standing and growing problem worldwide and is clearly linked to anthropogenic nutrient inputs. While the need for reducing anthropogenic nutrient loads is generally accepted, it is costly and thus requires scientifically sound nutrient-reduction strategies. Issues under debate include the relative importance of nitrogen (N) and phosphorus (P) as well as the magnitude of the reduction requirements. The largest anthropogenically induced hypoxic area in North American coastal waters (of 15 000 ± 5000 km2) forms every summer in the northern Gulf of Mexico where the Mississippi and Atchafalaya rivers deliver large amounts of freshwater and nutrients to the shelf. A 2001 plan for reducing this hypoxic area by nutrient management in the watershed called for a reduction of N loads. Since then evidence of P limitation during the time of hypoxia formation has arisen, and a dual nutrient-reduction strategy for this system has been endorsed. Here we report the first systematic analysis of the effects of single and dual nutrient load reductions from a spatially explicit physical-biogeochemical model for the northern Gulf of Mexico. The model has been shown previously to skillfully represent the processes important for hypoxic formation. Our analysis of an ensemble of simulations with stepwise reductions in N, P, and N and P loads provides insight into the effects of both nutrients on primary production and hypoxia, and it allows us to estimate what nutrient reductions would be required for single and dual nutrient-reduction strategies to reach the hypoxia target. Our results show that, despite temporary P limitation, N is the ultimate limiting nutrient for primary production in this system. Nevertheless, a reduction in P load would reduce hypoxia because primary production is P limited in the region where density stratification is conducive to hypoxia development, but reductions in N load have a bigger effect

  1. Estimating regional greenhouse gas fluxes: An uncertainty analysis of planetary boundary layer techniques and bottom-up inventories

    USDA-ARS?s Scientific Manuscript database

    Quantification of regional greenhouse gas (GHG) fluxes is essential for establishing mitigation strategies and evaluating their effectiveness. Here, we used multiple top-down approaches and multiple trace gas observations at a tall tower to estimate GHG regional fluxes and evaluate the GHG fluxes de...

  2. The comparison of greenhouse gas emissions in sewage treatment plants with different treatment processes.

    PubMed

    Masuda, Shuhei; Sano, Itsumi; Hojo, Toshimasa; Li, Yu-You; Nishimura, Osamu

    2018-02-01

    Greenhouse gas emissions from different sewage treatment plants: oxidation ditch process, double-circulated anoxic-oxic process and anoxic-oxic process were evaluated based on the survey. The methane and nitrous oxide characteristics were discussed based on the gaseous and dissolved gas profiles. As a result, it was found that methane was produced in the sewer pipes and the primary sedimentation tank. Additionally, a ventilation system would promote the gasification of dissolved methane in the first treatment units. Nitrous oxide was produced and emitted in oxic tanks with nitrite accumulation inside the sewage treatment plant. A certain amount of nitrous oxide was also discharged as dissolved gas through the effluent water. If the amount of dissolved nitrous oxide discharge is not included, 7-14% of total nitrous oxide emission would be overlooked. Based on the greenhouse gas calculation, electrical consumption and the N 2 O emission from incineration process were major sources in all the plants. For greenhouse gas reduction, oxidation ditch process has an advantage over the other advanced systems due to lower energy consumption, sludge production, and nitrogen removal without gas stripping. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Renewable energies in electricity generation for reduction of greenhouse gases in Mexico 2025.

    PubMed

    Islas, Jorge; Manzini, Fabio; Martínez, Manuel

    2002-02-01

    This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).

  4. The Greenhouse Effect: Science and Policy.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  5. How can research on anthropogenic greenhouse gas flux quantification be better aligned with US climate change policy needs?

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.

    2014-12-01

    Scientific research on quantification of anthropogenic greenhouse gas emissions at national and sub-national scales within the US has advanced considerably in the last decade. Large investment has been made in building systems capable of observing greenhouse gases in the atmosphere at multiple scales, measuring direct anthropogenic fluxes near sources and modeling the linkages between fluxes and observed concentrations. Much of this research has been focused at improving the "verification" component of "monitoring, reporting, and verification" and indeed, has achieved successes in recent years. However, there are opportunities for ongoing scientific research to contribute critical new information to policymakers. In order to realize this contribution, additional but complementary, research foci must be emphasized. Examples include more focus on anthropogenic emission drivers, quantification at scales relevant to human decision-making, and exploration of cost versus uncertainty in observing/modeling systems. I will review what I think are the opportunities to better align scientific research with current and emerging US climate change policymaking. I will then explore a few examples of where expansion or alteration of greenhouse gas flux quantification research focus could better align with current and emerging US climate change policymaking such as embodied in the proposed EPA rule aimed at reducing emissions from US power plants, California's ongoing emissions reduction policymaking and aspirational emission reduction efforts in multiple US cities.

  6. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Curtis D.; Zhang, Xuesong; Reddy, Ashwan D.

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expectedmore » from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential

  7. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  8. Managing honey bees (Hymenoptera: Apidae) for greenhouse tomato pollination.

    PubMed

    Sabara, Holly A; Winston, Mark L

    2003-06-01

    Although commercially reared colonies of bumble bees (Bombus sp.) are the primary pollinator world-wide for greenhouse tomatoes (Lycopersicon esculentum Mill.) previous research indicates that honey bees (Apis mellifera L.) might be a feasible alternative or supplement to bumble bee pollination. However, management methods for honey bee greenhouse tomato pollination scarcely have been explored. We 1) tested the effect of initial amounts of brood on colony population size and flight activity in screened greenhouses during the winter, and 2) compared foraging from colonies with brood used within screened and unscreened greenhouses during the summer. Brood rearing was maintained at low levels in both brood and no-brood colonies after 21 d during the winter, and emerging honey bees from both treatments had significantly lower weights than bees from outdoor colonies. Honey bee flight activity throughout the day and over the 21 d in the greenhouse was not influenced by initial brood level. In our summer experiment, brood production in screened greenhouses neared zero after 21 d but higher levels of brood were reared in unscreened greenhouses with access to outside forage. Flower visitation measured throughout the day and over the 21 d the colonies were in the greenhouse was not influenced by screening treatment. An economic analysis indicated that managing honey bees for greenhouse tomato pollination would be financially viable for both beekeepers and growers. We conclude that honey bees can be successfully managed for greenhouse tomato pollination in both screened and unscreened greenhouses if the foraging force is maintained by replacing colonies every 3 wk.

  9. Low Simulated Radiation Limit for Runaway Greenhouse Climates

    NASA Technical Reports Server (NTRS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-01-01

    Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.

  10. Biochar as a tool to reduce the agricultural greenhouse-gas burden-knowns, unknowns, and future research needs

    USDA-ARS?s Scientific Manuscript database

    Agriculture and land use change has significantly increased atmospheric emissions of greenhouse gasses (GHG) such as nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategi...

  11. Transportation's role in reducing U.S. greenhouse gas emissions, volume 1 : report to Congress, U.S. Department of Transportation

    DOT National Transportation Integrated Search

    2010-04-01

    This study evaluates potentially viable strategies to reduce transportation : greenhouse gas (GHG) emissions. The study was mandated by the Energy : Independence and Security Act (P.L. 110-140, December 2007). The Act directed : the U.S. Department o...

  12. Feeding strategies and manure management for cost-effective mitigation of greenhouse gas emissions from dairy farms in Wisconsin.

    PubMed

    Dutreuil, M; Wattiaux, M; Hardie, C A; Cabrera, V E

    2014-09-01

    Greenhouse gas (GHG) emissions from dairy farms are a major concern. Our objectives were to assess the effect of mitigation strategies on GHG emissions and net return to management on 3 distinct farm production systems of Wisconsin. A survey was conducted on 27 conventional farms, 30 grazing farms, and 69 organic farms. The data collected were used to characterize 3 feeding systems scaled to the average farm (85 cows and 127ha). The Integrated Farm System Model was used to simulate the economic and environmental impacts of altering feeding and manure management in those 3 farms. Results showed that incorporation of grazing practices for lactating cows in the conventional farm led to a 27.6% decrease in total GHG emissions [-0.16kg of CO2 equivalents (CO2eq)/kg of energy corrected milk (ECM)] and a 29.3% increase in net return to management (+$7,005/yr) when milk production was assumed constant. For the grazing and organic farms, decreasing the forage-to-concentrate ratio in the diet decreased GHG emissions when milk production was increased by 5 or 10%. The 5% increase in milk production was not sufficient to maintain the net return; however, the 10% increase in milk production increased net return in the organic farm but not on the grazing farm. A 13.7% decrease in GHG emissions (-0.08kg of CO2eq/kg of ECM) was observed on the conventional farm when incorporating manure the day of application and adding a 12-mo covered storage unit. However, those same changes led to a 6.1% (+0.04kg of CO2eq/kg of ECM) and a 6.9% (+0.06kg of CO2eq/kg of ECM) increase in GHG emissions in the grazing and the organic farms, respectively. For the 3 farms, manure management changes led to a decrease in net return to management. Simulation results suggested that the same feeding and manure management mitigation strategies led to different outcomes depending on the farm system, and furthermore, effective mitigation strategies were used to reduce GHG emissions while maintaining

  13. The Dairy Greenhouse Gas Emission Model: Reference Manual

    USDA-ARS?s Scientific Manuscript database

    The Dairy Greenhouse Gas Model (DairyGHG) is a software tool for estimating the greenhouse gas emissions and carbon footprint of dairy production systems. A relatively simple process-based model is used to predict the primary greenhouse gas emissions, which include the net emission of carbon dioxide...

  14. The rising greenhouse effect: experiments and observations in and around the Alps

    NASA Astrophysics Data System (ADS)

    Philipona, R.

    2010-09-01

    The rapid temperature increase of more than 1°C in central Europe over the last three decades is larger than expected from anthropogenic greenhouse warming. Surface radiation flux measurements in and around the Alps in fact confirm that not only thermal longwave radiation but also solar shortwave radiation increased since the 1980s. Surface energy budget analyses reveal the rising surface temperature to be well correlated with the radiative forcing, and also show an increase of the kinetic energy fluxes explaining the rise of atmospheric water vapor. Solar radiation mainly increased due to a strong decline of anthropogenic aerosols since mid of the 1980s. While anthropogenic aerosols were mainly accumulated in the boundary layer, this reduction let solar radiation to recover (solar brightening after several decades of solar dimming) mainly at low altitudes around the Alps. At high elevations in the Alps, solar forcing is much smaller and the respective temperature rise is also found to be smaller than in the lowlands. The fact that temperature increases less in the Alps than at low elevations is unexpected in the concept of greenhouse warming, but the radiation budget analyses clearly shows that in the plains solar forcing due to declining aerosols additionally increased surface temperature, whereas in the Alps temperature increased primarily due to greenhouse warming that is particularly manifested by a strong water vapor feedback.

  15. Low-carbon infrastructure strategies for cities

    NASA Astrophysics Data System (ADS)

    Kennedy, C. A.; Ibrahim, N.; Hoornweg, D.

    2014-05-01

    Reducing greenhouse gas emissions to avert potentially disastrous global climate change requires substantial redevelopment of infrastructure systems. Cities are recognized as key actors for leading such climate change mitigation efforts. We have studied the greenhouse gas inventories and underlying characteristics of 22 global cities. These cities differ in terms of their climates, income, levels of industrial activity, urban form and existing carbon intensity of electricity supply. Here we show how these differences in city characteristics lead to wide variations in the type of strategies that can be used for reducing emissions. Cities experiencing greater than ~1,500 heating degree days (below an 18 °C base), for example, will review building construction and retrofitting for cold climates. Electrification of infrastructure technologies is effective for cities where the carbon intensity of the grid is lower than ~600 tCO2e GWh-1 whereas transportation strategies will differ between low urban density (<~6,000 persons km-2) and high urban density (>~6,000 persons km-2) cities. As nation states negotiate targets and develop policies for reducing greenhouse gas emissions, attention to the specific characteristics of their cities will broaden and improve their suite of options. Beyond carbon pricing, markets and taxation, governments may develop policies and target spending towards low-carbon urban infrastructure.

  16. Greenhouse effects on Venus

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  17. Care versus convenience: Examining paracetamol overdose in New Zealand and harm reduction strategies through sale and supply.

    PubMed

    Freeman, Nadia; Quigley, Paul

    2015-10-30

    To examine statistics on paracetamol overdose in New Zealand and investigate options to reduce paracetamol overdose rates, through supply reduction strategies. Data was gathered from the Ministry of Health's National Minimum Dataset and Wellington Hospital Emergency Department attendances. Twenty articles on supply reduction strategies were sourced through article database searches. A survey on paracetamol availability from online pharmacies within New Zealand was conducted by searching for New Zealand online pharmacies through Google. A five-year audit of data (2007-2012) from the Wellington Hospital Emergency Department revealed that paracetamol was the most common medication used for overdose (23%). National data on aminophenol derivatives accounted for 22.4% of poisonings in New Zealand's public hospitals. An online search found that 25 out of 27 online pharmacies sold packets containing 50 grams of paracetamol. However, the literature supported restricting packets to the minimum threshold for an acute exposure (10 g). Paracetamol poisoning is the most common form of drug overdose in many developed countries. Tightening restrictions on the quantity of paracetamol sold per packet, in all outlets in New Zealand, may be an effective strategy to reduce overdose rates. This includes online pharmacies where large quantities of paracetamol per packet are available for sale.

  18. Non-CO2 greenhouse gases and climate change.

    PubMed

    Montzka, S A; Dlugokencky, E J; Butler, J H

    2011-08-03

    Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.

  19. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  20. Transportation's role in reducing U.S. greenhouse gas emissions, volume 2 : report to Congress, U.S. Department of Transportation

    DOT National Transportation Integrated Search

    2010-04-01

    This study evaluates potentially viable strategies to reduce transportation greenhouse gas (GHG) emissions. The study was mandated by the Energy Independence and Security Act (P.L. 110-140, December 2007). The Act directed the U.S. Department of Tran...

  1. Costing climate change.

    PubMed

    Reay, David S

    2002-12-15

    Debate over how, when, and even whether man-made greenhouse-gas emissions should be controlled has grown in intensity even faster than the levels of greenhouse gas in our atmosphere. Many argue that the costs involved in reducing emissions outweigh the potential economic damage of human-induced climate change. Here, existing cost-benefit analyses of greenhouse-gas reduction policies are examined, with a view to establishing whether any such global reductions are currently worthwhile. Potential for, and cost of, cutting our own individual greenhouse-gas emissions is then assessed. I find that many abatement strategies are able to deliver significant emission reductions at little or no net cost. Additionally, I find that there is huge potential for individuals to simultaneously cut their own greenhouse-gas emissions and save money. I conclude that cuts in global greenhouse-gas emissions, such as those of the Kyoto Protocol, cannot be justifiably dismissed as posing too large an economic burden.

  2. Laboratory Investigations of Enhanced Sulfate Reduction as a Groundwater Arsenic Remediation Strategy

    PubMed Central

    KEIMOWITZ, A. R.; MAILLOUX, B. J.; COLE, P.; STUTE, M.; SIMPSON, H. J.; CHILLRUD, S. N.

    2011-01-01

    Landfills have the potential to mobilize arsenic via induction of reducing conditions in groundwater and subsequent desorption from or dissolution of arsenic-bearing iron phases. Laboratory incubation experiments were conducted with materials from a landfill where such processes are occurring. These experiments explored the potential for induced sulfate reduction to immobilize dissolved arsenic in situ. The native microbial community at this site reduced sulfate in the presence of added acetate. Acetate respiration and sulfate reduction were observed concurrent with dissolved iron concentrations initially increasing from 0.6 μM (0.03 mg L−1) to a maximum of 111 μM (6.1 mg L−1) and subsequently decreasing to 0.74 μM (0.04 mg L−1). Dissolved arsenic concentrations initially covaried with iron but subsequently increased again as sulfide accumulated, consistent with the formation of soluble thioarsenite complexes. Dissolved arsenic concentrations subsequently decreased again from a maximum of 2 μM (148 μg L−1) to 0.3 μM (22 μg L−1), consistent with formation of sulfide mineral phases or increased arsenic sorption at higher pH values. Disequilibrium processes may also explain this second arsenic peak. The maximum iron and arsenic concentrations observed in the lab represent conditions most equivalent to the in situ conditions. These findings indicate that enhanced sulfate reduction merits further study as a potential in situ groundwater arsenic remediation strategy at landfills and other sites with elevated arsenic in reducing groundwater. PMID:17969686

  3. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  4. ASTARTE: Assessment Strategy and Risk Reduction for Tsunamis in Europe

    NASA Astrophysics Data System (ADS)

    Baptista, M. A.; Yalciner, A. C.; Canals, M.

    2014-12-01

    enhancement of the Tsunami Warning System in the NEAM region in terms of monitoring, early warning and forecast, governance and resilience. This work is funded by project ASTARTE - Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3 ENV.2013.6.4-3)

  5. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  6. Action strategy paper : climate change and energy

    DOT National Transportation Integrated Search

    2008-10-01

    This strategy paper considers how the Chicago Metropolitan Agency for Planning (CMAP) might incorporate goals to reduce greenhouse gas (GHG) emissions, prepare for climate change impacts on transportation systems, and reduce energy with in the GO TO ...

  7. Effects of a radiation dose reduction strategy for computed tomography in severely injured trauma patients in the emergency department: an observational study.

    PubMed

    Kim, Soo Hyun; Jung, Seung Eun; Oh, Sang Hoon; Park, Kyu Nam; Youn, Chun Song

    2011-11-03

    Severely injured trauma patients are exposed to clinically significant radiation doses from computed tomography (CT) imaging in the emergency department. Moreover, this radiation exposure is associated with an increased risk of cancer. The purpose of this study was to determine some effects of a radiation dose reduction strategy for CT in severely injured trauma patients in the emergency department. We implemented the radiation dose reduction strategy in May 2009. A prospective observational study design was used to collect data from patients who met the inclusion criteria during this one year study (intervention group) from May 2009 to April 2010. The prospective data were compared with data collected retrospectively for one year prior to the implementation of the radiation dose reduction strategy (control group). By comparison of the cumulative effective dose and the number of CT examinations in the two groups, we evaluated effects of a radiation dose reduction strategy. All the patients met the institutional adult trauma team activation criteria. The radiation doses calculated by the CT scanner were converted to effective doses by multiplication by a conversion coefficient. A total of 118 patients were included in this study. Among them, 33 were admitted before May 2009 (control group), and 85 were admitted after May 2009 (intervention group). There were no significant differences between the two groups regarding baseline characteristics, such as injury severity and mortality. Additionally, there was no difference between the two groups in the mean number of total CT examinations per patient (4.8 vs. 4.5, respectively; p = 0.227). However, the mean effective dose of the total CT examinations per patient significantly decreased from 78.71 mSv to 29.50 mSv (p < 0.001). The radiation dose reduction strategy for CT in severely injured trauma patients effectively decreased the cumulative effective dose of the total CT examinations in the emergency department. But not

  8. Second Greenhouse Gas Information System Workshop

    NASA Astrophysics Data System (ADS)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  9. Energy savings for heat-island reduction strategies in Chicago and Houston (including updates for Baton Rouge, Sacramento, and Salt Lake City)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2002-02-28

    In 1997, the U.S. Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'' to quantify the potential benefits of Heat-Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling-energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective of investigating the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, LA; Sacramento, CA; and Salt Lake City,more » UT. Later two other cities, Chicago, IL and Houston, TX were added to the UHIPP. In an earlier report we summarized our efforts to calculate the annual energy savings, peak power avoidance, and annual CO2 reduction obtainable from the introduction of HIR strategies in the initial three cities. This report summarizes the results of our study for Chicago and Houston. In this analysis, we focused on three building types that offer the highest potential savings: single-family residence, office and retail store. Each building type was characterized in detail by vintage and system type (i.e., old and new building constructions, and gas and electric heat). We used the prototypical building characteristics developed earlier for each building type and simulated the impact of HIR strategies on building cooling- and heating-energy use and peak power demand using the DOE-2.1E model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on the building [direct effect], (3) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (4) combined strategies 1, 2, and 3 [direct and indirect effects]. We then estimated the total roof area of air

  10. Optimization of Wastewater Lift Stations for Reduction of Energy Usage and Greenhouse Gas Emissions (WERF Report INFR3R11)

    EPA Science Inventory

    One of the major contributions of Greenhouse Gas (GHG) emissions from water resource recovery facilities results from the energy used by the pumping regime of the lift stations. This project demonstrated an energy-efficient control method of lift station system operation that uti...

  11. Deployment of a Fully-Automated Green Fluorescent Protein Imaging System in a High Arctic Autonomous Greenhouse

    PubMed Central

    Abboud, Talal; Bamsey, Matthew; Paul, Anna-Lisa; Graham, Thomas; Braham, Stephen; Noumeir, Rita; Berinstain, Alain; Ferl, Robert

    2013-01-01

    Higher plants are an integral part of strategies for sustained human presence in space. Space-based greenhouses have the potential to provide closed-loop recycling of oxygen, water and food. Plant monitoring systems with the capacity to remotely observe the condition of crops in real-time within these systems would permit operators to take immediate action to ensure optimum system yield and reliability. One such plant health monitoring technique involves the use of reporter genes driving fluorescent proteins as biological sensors of plant stress. In 2006 an initial prototype green fluorescent protein imager system was deployed at the Arthur Clarke Mars Greenhouse located in the Canadian High Arctic. This prototype demonstrated the advantageous of this biosensor technology and underscored the challenges in collecting and managing telemetric data from exigent environments. We present here the design and deployment of a second prototype imaging system deployed within and connected to the infrastructure of the Arthur Clarke Mars Greenhouse. This is the first imager to run autonomously for one year in the un-crewed greenhouse with command and control conducted through the greenhouse satellite control system. Images were saved locally in high resolution and sent telemetrically in low resolution. Imager hardware is described, including the custom designed LED growth light and fluorescent excitation light boards, filters, data acquisition and control system, and basic sensing and environmental control. Several critical lessons learned related to the hardware of small plant growth payloads are also elaborated. PMID:23486220

  12. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  13. Quantifying and managing regional greenhouse gas emissions: waste sector of Daejeon, Korea.

    PubMed

    Yi, Sora; Yang, Heewon; Lee, Seung Hoon; An, Kyoung-Jin

    2014-06-01

    A credible accounting of national and regional inventories for the greenhouse gas (GHG) reduction has emerged as one of the most significant current discussions. This article assessed the regional GHG emissions by three categories of the waste sector in Daejeon Metropolitan City (DMC), Korea, examined the potential for DMC to reduce GHG emission, and discussed the methodology modified from Intergovernmental Panel on Climate Change and Korea national guidelines. During the last five years, DMC's overall GHG emissions were 239 thousand tons CO2 eq./year from eleven public environmental infrastructure facilities, with a population of 1.52 million. Of the three categories, solid waste treatment/disposal contributes 68%, whilst wastewater treatment and others contribute 22% and 10% respectively. Among GHG unit emissions per ton of waste treatment, the biggest contributor was waste incineration of 694 kg CO2 eq./ton, followed by waste disposal of 483 kg CO2 eq./ton, biological treatment of solid waste of 209 kg CO2 eq./ton, wastewater treatment of 0.241 kg CO2 eq./m(3), and public water supplies of 0.067 kg CO2 eq./m(3). Furthermore, it is suggested that the potential in reducing GHG emissions from landfill process can be as high as 47.5% by increasing landfill gas recovery up to 50%. Therefore, it is apparent that reduction strategies for the main contributors of GHG emissions should take precedence over minor contributors and lead to the best practice for managing GHGs abatement. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Empirical Studies of Self-Stigma Reduction Strategies: A Critical Review of the Literature.

    PubMed

    Mittal, Dinesh; Sullivan, Greer; Chekuri, Lakshminarayana; Allee, Elise; Corrigan, Patrick W

    2012-10-01

    The purpose of this article was to comprehensively review published literature about strategies to reduce self-stigma among people with mental illness. Recommendations and implications for research also are discussed. The electronic databases of Ovid, PubMed, and PsycINFO were searched for peer-reviewed articles published between January 2000 and August 2011 by using the key words “self-stigma,” “internalized stigma,” “perceived stigma,” and “stigma intervention.” The search was further narrowed to studies that described a detailed intervention and that used self-stigma as a primary or secondary outcome, tested the intervention among individuals with a psychiatric illness, and analyzed data quantitatively with acceptable statistical tools. Fourteen articles met inclusion criteria, and eight reported significant improvement in self-stigma outcomes. Participants predominantly had schizophrenia and related disorders or depression. Six self-stigma reduction strategies were identified. Psychoeducation was the most frequently tested intervention. Self-stigma definitions, measurements, and conceptual frameworks varied considerably across these studies. Several studies lacked a theoretical framework for their intervention. Six different scales were used to measure self-stigma. Two prominent approaches for self-stigma reduction emerged from our review: one, interventions that attempt to alter the stigmatizing beliefs and attitudes of the individual; and two, interventions that enhance skills for coping with self-stigma through improvements in self-esteem, empowerment, and help-seeking behavior. The second approach seems to have gained traction among stigma experts. Targeting high-risk groups to preempt self-stigma appears to be a promising area for future research.

  15. Solar Greenhouses and Sunspaces: Lessons Learned.

    ERIC Educational Resources Information Center

    Thomas, Stephen G.; And Others

    Solar technology systems are being studied, managed, built and offered as an effective alternative energy option. This publication presents background material for the building and operation of better sunspaces and greenhouses. Recent developments in solar technology are explained and information on solar greenhouse and sunspace is provided (in…

  16. Fault-Tolerant Control of ANPC Three-Level Inverter Based on Order-Reduction Optimal Control Strategy under Multi-Device Open-Circuit Fault.

    PubMed

    Xu, Shi-Zhou; Wang, Chun-Jie; Lin, Fang-Li; Li, Shi-Xiang

    2017-10-31

    The multi-device open-circuit fault is a common fault of ANPC (Active Neutral-Point Clamped) three-level inverter and effect the operation stability of the whole system. To improve the operation stability, this paper summarized the main solutions currently firstly and analyzed all the possible states of multi-device open-circuit fault. Secondly, an order-reduction optimal control strategy was proposed under multi-device open-circuit fault to realize fault-tolerant control based on the topology and control requirement of ANPC three-level inverter and operation stability. This control strategy can solve the faults with different operation states, and can works in order-reduction state under specific open-circuit faults with specific combined devices, which sacrifices the control quality to obtain the stability priority control. Finally, the simulation and experiment proved the effectiveness of the proposed strategy.

  17. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.

    PubMed

    Fiume, F; Fiume, G

    2006-01-01

    Research was carried out to evaluate the effectiveness of the biological control of the Botrytis gray mould, caused by Botrytis cinerea Pers., one of the most important fungal diseases of the tomato (Lycopersicon esculentum Mill.). Biological control was performed by using Trichoderma harzianum Rifai, an antagonist that is a naturally occurring fungus found on some plants and in the soil worldwide. Trichoderma spp. are fungi diffused in nearly all agricultural soils and in other environments such as decaying wood. The object of this research is to find control strategies to reduce chemical treatments that cause damage to the environment and increase the pathogen resistance, applying the biological control by using T. harzianum against B. cinerea. A commercial product containing a natural isolate of T. harzianum is trichodex (Makhteshim Chemical Works, LTD). The research was performed in laboratory and in greenhouse. In laboratory, radial growth reduction of B. cinerea, in presence of T. harzianum, was calculated in relation to the growth of the pathogen control, by using a specific formula that measures the percentage of the inhibition of the radial mycelial growth. In greenhouse, starting from the tomato fruit setting, the research was carried out comparing, by a randomized complete block experiment design, replicated four times, the following treatments:1) untreated control; 2) pyrimethanil (400 g/L of a.i.), at 200 cc/hL of c.i. (pyrimidine fungicides); 3) trichodex at 100g/hL (1 kg/ha); 4) trichodex at 200 g/hL (2 kg/ha); 5) trichodex at 400 g/hL (4 kg/ha). Before fruit setting, the plots were all treated against Botrytis gray mould with iprodione 50% (100 g/hL), procymidone 50% (100 g/hL) and switch (Novartis plant protection) at 80 g/hL. In dual culture, the inhibition of B. cinerea radial mycelial growth was 76%. No inhibition halo was observed between B. cinerea and T. harzianum colonies but, after 3 days, the pathogen colony radius resulted no more than 1

  18. The enhancement of clear sky greenhouse effect in HIRS

    NASA Astrophysics Data System (ADS)

    Gastineau, Guillaume; Soden, Brian; Jackson, Darren; O'Dell, Chris; Stephens, Graeme

    2010-05-01

    The High-resolution Infrared Radiation Sounder (HIRS) observations are used to understand the atmospheric response at the top of the atmosphere, induced by the anthropogenic emission of greenhouse gases. The HIRS brightness temperature channels are used to regress the Outgoing Longwave Radiation (OLR), and the greenhouse effect, in clear sky conditions, over the period 1981-2004. Here, we find that since 1981, the OLR remains relatively stable, compared to the greenhouse effect that has significant increased, because of the surface temperature changes. With a multi-model ensemble of coupled model simulations, we show that the greenhouse gases emissions, and the water vapor feedback, account for this observed enhancement of the greenhouse effect. This study further reinforce our confidence that anthropogenic greenhouse gases emission are causing a large part of the recent climate changes.

  19. Design of experiments on 135 cloned poplar trees to map environmental influence in greenhouse.

    PubMed

    Pinto, Rui Climaco; Stenlund, Hans; Hertzberg, Magnus; Lundstedt, Torbjörn; Johansson, Erik; Trygg, Johan

    2011-01-31

    To find and ascertain phenotypic differences, minimal variation between biological replicates is always desired. Variation between the replicates can originate from genetic transformation but also from environmental effects in the greenhouse. Design of experiments (DoE) has been used in field trials for many years and proven its value but is underused within functional genomics including greenhouse experiments. We propose a strategy to estimate the effect of environmental factors with the ultimate goal of minimizing variation between biological replicates, based on DoE. DoE can be analyzed in many ways. We present a graphical solution together with solutions based on classical statistics as well as the newly developed OPLS methodology. In this study, we used DoE to evaluate the influence of plant specific factors (plant size, shoot type, plant quality, and amount of fertilizer) and rotation of plant positions on height and section area of 135 cloned wild type poplar trees grown in the greenhouse. Statistical analysis revealed that plant position was the main contributor to variability among biological replicates and applying a plant rotation scheme could reduce this variation. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Public health implications of smokeless tobacco use as a harm reduction strategy.

    PubMed

    Savitz, David A; Meyer, Roger E; Tanzer, Jason M; Mirvish, Sidney S; Lewin, Freddi

    2006-11-01

    Harm reduction strategies involve promoting a product that has adverse health consequences as a substitute for one that has more severe adverse health consequences. Smokeless tobacco low in nitrosamine content offers potential benefits in reducing smoking prevalence rates. Possible harm arises from the potential for such products to serve as a gateway to more harmful tobacco products, public misinterpretation of "less harmful" as "safe," distraction from the public health goal of tobacco elimination, and ethical issues involved in advising those marketing these harmful products. We offer a research agenda to provide a stronger basis for evaluating the risks and benefits of smokeless tobacco as a means of reducing the adverse health effects of tobacco.

  1. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    NASA Astrophysics Data System (ADS)

    Li, Xueying; Peng, Ying; Zhang, Jing

    2017-03-01

    Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  2. Urban Options Solar Greenhouse Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  3. Reduction of initial shock in decadal predictions using a new initialization strategy

    NASA Astrophysics Data System (ADS)

    He, Yujun; Wang, Bin

    2017-04-01

    Initial shock is a well-known problem occurring in the early years of a decadal prediction when assimilating full-field observations into a coupled model, which directly affects the prediction skill. For the purpose to alleviate this problem, we propose a novel full-field initialization method based on dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar). Different from the available solution strategies including anomaly assimilation and bias correction, it substantially reduces the initial shock through generating more consistent initial conditions for the coupled model, which, along with the model trajectory in one-month windows, best fit the monthly mean analysis data of oceanic temperature and salinity. We evaluate the performance of initialized hindcast experiments according to three proposed indices to measure the intensity of the initial shock. The results indicate that this strategy can obviously reduce the initial shock in decadal predictions by FGOALS-g2 (the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2) compared with the commonly-used nudging full-field initialization for the same model as well as the different full-field initialization strategies for other CMIP5 (the fifth phase of the Coupled Model Intercomparison Project) models whose decadal prediction results are available. It is also comparable to or even better than the anomaly initialization methods. Better hindcasts of global mean surface air temperature anomaly are obtained due to the reduction of initial shock by the new initialization scheme.

  4. Beneficial effect of compost utilization on reducing greenhouse gas emissions in a rice cultivation system through the overall management chain.

    PubMed

    Jeong, Seung Tak; Kim, Gil Won; Hwang, Hyun Young; Kim, Pil Joo; Kim, Sang Yoon

    2018-02-01

    Livestock manure application can stimulate greenhouse gas (GHG) emissions, especially methane (CH 4 ) in rice paddy. The stabilized organic matter (OM) is recommended to suppress CH 4 emission without counting the additional GHG emission during the composting process. To evaluate the effect of compost utilization on the net global warming potential (GWP) of a rice cropping system, the fluxes of GHGs from composting to land application were calculated by a life cycle assessment (LCA) method. The model framework was composed of GHG fluxes from industrial activities and biogenic GHG fluxes from the composting and rice cultivation processes. Fresh manure emitted 30MgCO 2 -eq.ha -1 , 90% and 10% of which were contributed by CH 4 and nitrous oxide (N 2 O) fluxes, respectively, during rice cultivation. Compost utilization decreased net GWP by 25% over that of the fresh manure during the whole process. The composting process increased the GWP of the industrial processes by 35%, but the 60% reduction in CH 4 emissions from the rice paddy mainly influenced the reduction of GWP during the overall process. Therefore, compost application could be a good management strategy to reduce GHG emissions from rice paddy systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Reduction of initial shock in decadal predictions using a new initialization strategy

    NASA Astrophysics Data System (ADS)

    He, Yujun; Wang, Bin; Liu, Mimi; Liu, Li; Yu, Yongqiang; Liu, Juanjuan; Li, Ruizhe; Zhang, Cheng; Xu, Shiming; Huang, Wenyu; Liu, Qun; Wang, Yong; Li, Feifei

    2017-08-01

    A novel full-field initialization strategy based on the dimension-reduced projection four-dimensional variational data assimilation (DRP-4DVar) is proposed to alleviate the well-known initial shock occurring in the early years of decadal predictions. It generates consistent initial conditions, which best fit the monthly mean oceanic analysis data along the coupled model trajectory in 1 month windows. Three indices to measure the initial shock intensity are also proposed. Results indicate that this method does reduce the initial shock in decadal predictions by Flexible Global Ocean-Atmosphere-Land System model, Grid-point version 2 (FGOALS-g2) compared with the three-dimensional variational data assimilation-based nudging full-field initialization for the same model and is comparable to or even better than the different initialization strategies for other fifth phase of the Coupled Model Intercomparison Project (CMIP5) models. Better hindcasts of global mean surface air temperature anomalies can be obtained than in other FGOALS-g2 experiments. Due to the good model response to external forcing and the reduction of initial shock, higher decadal prediction skill is achieved than in other CMIP5 models.

  6. Regional-scale carbon and greenhouse gas dynamics of organic matter amendments on grassland soils

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Silver, W. L.

    2017-12-01

    While progress is being made toward emissions reductions, achieving the international warming target of no more than 2 °C by 2100 will require active removal of carbon dioxide from the atmosphere. This research explores the potential for grassland ecosystems to sequester soil carbon (C) and mitigate climate change over time. We parameterized a site-level biogeochemical model (DayCent) to predict the effect of compost applications on grassland net primary productivity, greenhouse gas emissions, and soil C storage and loss. We compare the results of the DayCent model from seven grassland regions across a broad climate gradient in CA. We also modeled the impact of climate change under a high emissions scenario (RCP 8.5) and reduced emissions scenario (RCP 4.5). Model results show that a single application of compost leads to a large net increase in soil C over several decades across all sites. Maximum soil C sequestration relative to control simulations occurred approximately 15 years after a ¼ inch compost was applied to the land, resulting in a maximum net C drawdown of approximately 6.6 Mg C/ha (Mendocino) by 2030 and a continued climate benefit from enhanced C storage through the end of the century. Compost application resulted in enhanced soil C in both climate scenarios, but the reduced emissions climate scenario resulted in greater net C storage than the high emissions scenario by 2100. This points to a virtuous cycle of simultaneous emissions reductions leading to enhanced climate change mitigation potential from land management strategies.

  7. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    PubMed

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  8. Mechanisms of impact of greenhouse gases on the Earth's ozone layer in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Zadorozhny, Alexander; Dyominov, Igor

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the atmosphere including aerosol physics is used to examine the impact of the greenhouse gases CO2, CH4, and N2O on the future long-term changes of the Earth's ozone layer, in particular on its expected recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circu-lation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the North to South Poles, as well as distribution of sulphate aerosol particles and polar strato-spheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abun-dance of the greenhouse gases on the long-term changes of the Earth's ozone layer in the Polar Regions, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2, essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weak-ness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification be-gins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard

  9. Design Strategy of Multi-electron Transfer Catalysts Based on a Bioinformatic Analysis of Oxygen Evolution and Reduction Enzymes.

    PubMed

    Ooka, Hideshi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2018-05-14

    Understanding the design strategy of photosynthetic and respiratory enzymes is important to develop efficient artificial catalysts for oxygen evolution and reduction reactions. Here, based on a bioinformatic analysis of cyanobacterial oxygen evolution and reduction enzymes (photosystem II: PS II and cytochrome c oxidase: COX, respectively), the gene encoding the catalytic D1 subunit of PS II was found to be expressed individually across 38 phylogenetically diverse strains, which is in contrast to the operon structure of the genes encoding major COX subunits. Selective synthesis of the D1 subunit minimizes the repair cost of PS II, which allows compensation for its instability by lowering the turnover number required to generate a net positive energy yield. The different bioenergetics observed between PS II and COX suggest that in addition to the catalytic activity rationalized by the Sabatier principle, stability factors have also provided a major influence on the design strategy of biological multi-electron transfer enzymes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Positional effects of second-sphere amide pendants on electrochemical CO 2 reduction catalyzed by iron porphyrins

    DOE PAGES

    Nichols, Eva M.; Derrick, Jeffrey S.; Nistanaki, Sepand K.; ...

    2018-01-01

    The development of catalysts for electrochemical reduction of carbon dioxide offers an attractive approach to transforming this greenhouse gas into value-added carbon products with sustainable energy input.

  11. Ibrutinib-associated bleeding: pathogenesis, management and risk reduction strategies.

    PubMed

    Shatzel, J J; Olson, S R; Tao, D L; McCarty, O J T; Danilov, A V; DeLoughery, T G

    2017-05-01

    Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (Btk) that has proven to be an effective therapeutic agent for multiple B-cell-mediated lymphoproliferative disorders. Ibrutinib, however, carries an increased bleeding risk compared with standard chemotherapy. Bleeding events range from minor mucocutaneous bleeding to life-threatening hemorrhage, due in large part to the effects of ibrutinib on several distinct platelet signaling pathways. There is currently a minimal amount of data to guide clinicians regarding the use of ibrutinib in patients at high risk of bleeding or on anticoagulant or antiplatelet therapy. In addition, the potential cardiovascular protective effects of ibrutinib monotherapy in patients at risk of vascular disease are unknown. Patients should be cautioned against using non-steroidal anti-inflammatory drugs, fish oils, vitamin E and aspirin-containing products, and consider replacing ibrutinib with a different agent if dual antiplatelet therapy is indicated. Patients should not take vitamin K antagonists concurrently with ibrutinib; direct oral anticoagulants should be used if extended anticoagulation is strongly indicated. In this review, we describe the pathophysiology of ibrutinib-mediated bleeding and suggest risk reduction strategies for common clinical scenarios associated with ibrutinib. © 2017 International Society on Thrombosis and Haemostasis.

  12. Greenhouse intelligent control system based on microcontroller

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-04-01

    As one of the hallmarks of agricultural modernization, intelligent greenhouse has the advantages of high yield, excellent quality, no pollution and continuous planting. Taking AT89S52 microcontroller as the main controller, the greenhouse intelligent control system uses soil moisture sensor, temperature and humidity sensors, light intensity sensor and CO2 concentration sensor to collect measurements and display them on the 12864 LCD screen real-time. Meantime, climate parameter values can be manually set online. The collected measured values are compared with the set standard values, and then the lighting, ventilation fans, warming lamps, water pumps and other facilities automatically start to adjust the climate such as light intensity, CO2 concentration, temperature, air humidity and soil moisture of the greenhouse parameter. So, the state of the environment in the greenhouse Stabilizes and the crop grows in a suitable environment.

  13. Greenhouse Gas Mitigation Options Database and Tool - Data ...

    EPA Pesticide Factsheets

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop

  14. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Niedermann, Silvana; Hu, Wenyou; Chen, Yong

    2016-09-01

    To provide growing population with sufficient food, greenhouse vegetable production has expanded rapidly in recent years in China and sustainability of its farming practices is a major concern. Therefore, this study assessed the sustainability of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China based on selected indicators. The empirical data were collected through a survey of 91 farm households from six typical greenhouse vegetable production bases and analysis of environmental material samples. The results showed that heavy fertilization in greenhouse vegetable bases of China resulted in an accumulation of N, P, Cd, Cu, Pb, and Zn in soil, nutrient eutrophication in irrigation water, and high Cd in some leaf vegetables cultivated in acidic soil. Economic factors including decreased crop yield in conventional farming bases, limited and site-dependent farmers' income, and lack of complete implementation of subsidy policies contributed a lot to adoption of heavy fertilization by farmers. Also, socio-institutional factors such as lack of unified management of agricultural supplies in the bases operated in cooperative and small family business models and low agricultural extension service efficiency intensified the unreasonable fertilization. The selection of cultivated vegetables was mainly based on farmers' own experience rather than site-dependent soil conditions. Thus, for sustainable development of greenhouse vegetable production systems in China, there are two key aspects. First, it is imperative to reduce environmental pollution and subsequent health risks through integrated nutrient management and the planting strategy of selected low metal accumulation vegetable species especially in acidic soil. Second, a conversion of cooperative and small family business models of greenhouse vegetable bases to enterprises should be extensively advocated in future for the unified agricultural supplies

  15. Accounting for Greenhouse Gas Emissions from Reservoirs

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  16. Improving Empirical Approaches to Estimating Local Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Blackhurst, M.; Azevedo, I. L.; Lattanzi, A.

    2016-12-01

    Evidence increasingly indicates our changing climate will have significant global impacts on public health, economies, and ecosystems. As a result, local governments have become increasingly interested in climate change mitigation. In the U.S., cities and counties representing nearly 15% of the domestic population plan to reduce 300 million metric tons of greenhouse gases over the next 40 years (or approximately 1 ton per capita). Local governments estimate greenhouse gas emissions to establish greenhouse gas mitigation goals and select supporting mitigation measures. However, current practices produce greenhouse gas estimates - also known as a "greenhouse gas inventory " - of empirical quality often insufficient for robust mitigation decision making. Namely, current mitigation planning uses sporadic, annual, and deterministic estimates disaggregated by broad end use sector, obscuring sources of emissions uncertainty, variability, and exogeneity that influence mitigation opportunities. As part of AGU's Thriving Earth Exchange, Ari Lattanzi of City of Pittsburgh, PA recently partnered with Dr. Inez Lima Azevedo (Carnegie Mellon University) and Dr. Michael Blackhurst (University of Pittsburgh) to improve the empirical approach to characterizing Pittsburgh's greenhouse gas emissions. The project will produce first-order estimates of the underlying sources of uncertainty, variability, and exogeneity influencing Pittsburgh's greenhouse gases and discuss implications of mitigation decision making. The results of the project will enable local governments to collect more robust greenhouse gas inventories to better support their mitigation goals and improve measurement and verification efforts.

  17. Low simulated radiation limit for runaway greenhouse climates

    NASA Astrophysics Data System (ADS)

    Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David

    2013-08-01

    The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.

  18. Developing Water Resource Security in a Greenhouse Gas Constrained Context - A Case Study in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; Aghakouchak, A.; Samuelsen, S.

    2015-12-01

    The onset of drought conditions in regions such as California due to shortfalls in precipitation has brought refreshed attention to the vulnerability of our water supply paradigm to changes in climate patterns. In the face of a changing climate which can exacerbate drought conditions in already dry areas, building resiliency into our water supply infrastructure requires some decoupling of water supply availability from climate behavior through conservation, efficiency, and alternative water supply measures such as desalination and water reuse. The installation of these measures requires varying degrees of direct energy inputs and/or impacts the energy usage of the water supply infrastructure (conveyance, treatment, distribution, wastewater treatment). These impacts have implications for greenhouse gas emissions from direct fuel usage or impacts on the emissions from the electric grid. At the scale that these measures may need to be deployed to secure water supply availability, especially under climate change impacted hydrology, they can potentially pose obstacles for meeting greenhouse gas emissions reduction and renewable utilization goals. Therefore, the portfolio of these measures must be such that detrimental impacts on greenhouse gas emissions are minimized. This study combines climate data with a water reservoir network model and an electric grid dispatch model for the water-energy system of California to evaluate 1) the different pathways and scale of alternative water resource measures needed to secure water supply availability and 2) the impacts of following these pathways on the ability to meet greenhouse gas and renewable utilization goals. It was discovered that depending on the water supply measure portfolio implemented, impacts on greenhouse gas emissions and renewable utilization can either be beneficial or detrimental, and optimizing the portfolio is more important under climate change conditions due to the scale of measures required.

  19. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages.

    PubMed

    Cluff, MacDonald; Steyn, Hannes; Charimba, George; Bothma, Carina; Hugo, Celia J; Hugo, Arno

    2016-09-01

    The reduction of sodium in processed meat products is synonymous with the use of salt replacers. Rarely has there been an assessment of the use of intermediate salt levels as a sodium reduction strategy in itself. In this study, 1 and 1.5% salt levels were compared with 0 and 2% controls in fresh pork sausages for effects on chemical, microbial, sensory and technological stability. Although significant (P < 0.001 to P < 0.01) differences were found between the 0 and 2% controls, no significant differences could be detected between the 2, 1.5 and 1% added NaCl treatments for the following: total bacteria counts on days 3, 6 and 9; TBARS of pork sausages stored at 4 °C on days 6 and 9 and stored at -18 °C on days 90 and 180; taste, texture and overall liking during sensory evaluation; and % cooking loss, % total loss and % refrigeration loss. Consumers were able to differentiate between the 2 and 1% added NaCl treatments in terms of saltiness. This study indicated that salt reduction to intermediate levels can be considered a sodium reduction strategy in itself but that further research with regards to product safety is needed. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Animal health and greenhouse gas intensity: the paradox of periparturient parasitism.

    PubMed

    Houdijk, J G M; Tolkamp, B J; Rooke, J A; Hutchings, M R

    2017-09-01

    Here we provide the first known direct measurements of pathogen challenge impacts on greenhouse gas production, yield and intensity. Twin-rearing ewes were ad libitum fed pelleted lucerne from day -32 to 36 (day 0 is parturition), and repeatedly infected with 10,000 Teladorsagia circumcincta infective larvae (n=16), or sham-dosed with water (n=16). A third group of 16 ewes were fed at 80% of uninfected ewes' feed intake during lactation. Methane emissions were measured in respiration chambers (day 30-36) whilst total tract apparent nutrient digestibility around day 28 informed calculated manure methane and nitrous oxide emissions estimates. Periparturient parasitism reduced feed intake (-9%) and litter weight gain (-7%) and doubled maternal body weight loss. Parasitism reduced daily enteric methane production by 10%, did not affect the methane yield per unit of dry matter intake but increased the yield per unit of digestible organic matter intake by 14%. Parasitism did not affect the daily calculated manure methane and nitrous oxide production, but increased the manure methane and nitrous oxide yields per unit of dry matter intake by 16% and 4%, respectively, and per unit of digestible organic matter intake by 46% and 31%, respectively. Accounting for increased lucerne input for delayed weaning and maternal body weight loss compensation, parasitism increased the calculated greenhouse gas intensity per kg of lamb weight gain for enteric methane (+11%), manure methane (+32%) and nitrous oxide (+30%). Supplemented with the global warming potential associated with production of pelleted lucerne, we demonstrated that parasitism increased calculated global warming potential per kg of lamb weight gain by 16%, which was similar to the measured impact of parasitism on the feed conversion ratio. Thus, arising from a pathogen-induced feed efficiency reduction and modified greenhouse gas emissions, we demonstrated that ovine periparturient parasitism increases greenhouse gas

  1. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laughlin, Michael; Owens, Russell J.

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  2. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment

    PubMed Central

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  3. Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment.

    PubMed

    Nie, Yunpeng; Chen, Hongsong; Ding, Yali; Yang, Jing; Wang, Kelin

    2017-01-01

    For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species ( Cyclobalanopsis glauca, Delavaya toxocarpa , and Acer cinnamomifolium ) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ 13 C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca , percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium , percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D

  4. Extending cassava root shelf life via reduction of reactive oxygen species production.

    PubMed

    Zidenga, Tawanda; Leyva-Guerrero, Elisa; Moon, Hangsik; Siritunga, Dimuth; Sayre, Richard

    2012-08-01

    One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration.

  5. Multiagency Initiative to Provide Greenhouse Gas Information

    NASA Astrophysics Data System (ADS)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  6. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    production to be reduced, or if other process synergies are available. If biofuels policy in the EU remains contingent on favourable environmental performance then the multi-scale nature of bioenergy supply chains presents a genuine challenge. Lignocellulosic ethanol holds promise for emission reductions, but maximising greenhouse gas savings will not only require efficient supply chain design but also a better understanding of the spatial and temporal factors which affect overall performance. PMID:19682352

  7. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    PubMed

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  8. Diagnosing Crime and Diagnosing Disease: Bias Reduction Strategies in the Forensic and Clinical Sciences.

    PubMed

    Lockhart, Joseph J; Satya-Murti, Saty

    2017-11-01

    Cognitive effort is an essential part of both forensic and clinical decision-making. Errors occur in both fields because the cognitive process is complex and prone to bias. We performed a selective review of full-text English language literature on cognitive bias leading to diagnostic and forensic errors. Earlier work (1970-2000) concentrated on classifying and raising bias awareness. Recently (2000-2016), the emphasis has shifted toward strategies for "debiasing." While the forensic sciences have focused on the control of misleading contextual cues, clinical debiasing efforts have relied on checklists and hypothetical scenarios. No single generally applicable and effective bias reduction strategy has emerged so far. Generalized attempts at bias elimination have not been particularly successful. It is time to shift focus to the study of errors within specific domains, and how to best communicate uncertainty in order to improve decision making on the part of both the expert and the trier-of-fact. © 2017 American Academy of Forensic Sciences.

  9. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition

    PubMed Central

    Arnieri, Fabrizio; Caprio, Enrico; Nervo, Beatrice; Pelissetti, Simone; Palestrini, Claudia; Roslin, Tomas; Rolando, Antonio

    2017-01-01

    Cattle farming is a major source of greenhouse gases (GHGs). Recent research suggests that GHG fluxes from dung pats could be affected by biotic interactions involving dung beetles. Whether and how these effects vary among beetle species and with assemblage composition is yet to be established. To examine the link between GHGs and different dung beetle species assemblages, we used a closed chamber system to measure fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from cattle dung pats. Targeting a total of four dung beetle species (a pat-dwelling species, a roller of dung balls, a large and a small tunnelling species), we ran six experimental treatments (four monospecific and two mixed) and two controls (one with dung but without beetles, and one with neither dung nor beetles). In this setting, the overall presence of beetles significantly affected the gas fluxes, but different species contributed unequally to GHG emissions. When compared to the control with dung, we detected an overall reduction in the total cumulative CO2 flux from all treatments with beetles and a reduction in N2O flux from the treatments with the three most abundant dung beetle species. These reductions can be seen as beneficial ecosystem services. Nonetheless, we also observed a disservice provided by the large tunneler, Copris lunaris, which significantly increased the CH4 flux–an effect potentially traceable to the species’ nesting strategy involving the construction of large brood balls. When fluxes were summed into CO2-equivalents across individual GHG compounds, dung with beetles proved to emit less GHGs than did beetle-free dung, with the mix of the three most abundant species providing the highest reduction (-32%). As the mix of multiple species proved the most effective in reducing CO2-equivalents, the conservation of diverse assemblages of dung beetles emerges as a priority in agro-pastoral ecosystems. PMID:28700590

  10. Using Cool Roofs to Reduce Energy Use, Greenhouse Gas Emissions, and Urban Heat-island Effects: Findings from an India Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Xu, Tengfang; Taha, Haider

    cooling energy in India. Meteorological simulations in this study indicated that a reduction of 2C in air temperature in the Hyderabad area would be likely if a combination of increased surface albedo and vegetative cover are used as urban heat-island control strategies. In addition, air-temperature reductions on the order of 2.5-3.5C could be achieved if moderate and aggressive heat-island mitigation measures are adopted, respectively. A large-scale deployment of mitigation measures can bring additional indirect benefit to the urban area. For example, cooling outside air can improve the efficiency of cooling systems, reduce smog and greenhouse gas (GHG) emissions, and indirectly reduce pollution from power plants - all improving environmental health quality. This study has demonstrated the effectiveness of cool-roof technology as one of the urban heat-island control strategies for the Indian industrial and scientific communities and has provided an estimate of the national energy savings potential of cool roofs in India. These outcomes can be used for developing cool-roof building standards and related policies in India. Additional field studies, built upon the successes and lessons learned from this project, may be helpful to further confirm the scale of potential energy savings from the application of cooler roofs in various regions of India. In the future, a more rigorous meteorological simulation using urbanized (meso-urban) meteorological models should be conducted, which may produce a more accurate estimate of the air-temperature reductions for the entire urban area.« less

  11. Achieving dietary recommendations and reducing greenhouse gas emissions: modelling diets to minimise the change from current intakes.

    PubMed

    Horgan, Graham W; Perrin, Amandine; Whybrow, Stephen; Macdiarmid, Jennie I

    2016-04-07

    Average population dietary intakes do not reflect the wide diversity of dietary patterns across the population. It is recognised that most people in the UK do not meet dietary recommendations and have diets with a high environmental impact, but changing dietary habits has proved very difficult. The purpose of this study was to investigate the diversity in dietary changes needed to achieve a healthy diet and a healthy diet with lower greenhouse gas emissions (GHGE) (referred to as a sustainable diet) by taking into account each individual's current diet and then minimising the changes they need to make. Linear programming was used to construct two new diets for each adult in the UK National Diet and Nutrition Survey (n = 1491) by minimising the changes to their current intake. Stepwise changes were applied until (i) dietary recommendations were achieved and (ii) dietary recommendations and a GHGE target were met. First, gradual changes (≤50%) were made to the amount of any foods currently eaten. Second, new foods were added to the diet. Third, greater reductions (≤75%) were made to the amount of any food currently eaten and finally, foods were removed from the diet. One person out of 1491 in the sample met all the dietary requirements based on their reported dietary intake. Only 7.5 and 4.6 % of people achieved a healthy diet and a sustainable diet, respectively, by changing the amount of any food they currently ate by up to 50 %. The majority required changes to the amount of each food eaten plus the addition of new foods. Fewer than 5 % had to remove foods they ate to meet recommendations. Sodium proved the most difficult nutrient recommendation to meet. The healthy diets and sustainable diets produced a 15 and 27 % reduction in greenhouse gas emissions respectively. Since healthy diets alone do not produce substantial reductions in greenhouse gas emissions, dietary guidelines need to include recommendations for environmental sustainability. Minimising the

  12. Beyond Hammers and Nails: Mitigating and Verifying Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Gurney, Kevin Robert

    2013-05-01

    One of the biggest challenges to future international agreements on climate change is an independent, science-driven method of verifying reductions in greenhouse gas emissions (GHG) [Niederberger and Kimble, 2011]. The scientific community has thus far emphasized atmospheric measurements to assess changes in emissions. An alternative is direct measurement or estimation of fluxes at the source. Given the many challenges facing the approach that uses "top-down" atmospheric measurements and recent advances in "bottom-up" estimation methods, I challenge the current doctrine, which has the atmospheric measurement approach "validating" bottom-up, "good-faith" emissions estimation [Balter, 2012] or which holds that the use of bottom-up estimation is like "dieting without weighing oneself" [Nisbet and Weiss, 2010].

  13. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  14. Soil pH management without lime, a strategy to reduce greenhouse gas emissions from cultivated soils

    NASA Astrophysics Data System (ADS)

    Nadeem, Shahid; Bakken, Lars; Reent Köster, Jan; Tore Mørkved, Pål; Simon, Nina; Dörsch, Peter

    2015-04-01

    For decades, agricultural scientists have searched for methods to reduce the climate forcing of food production by increasing carbon sequestration in the soil and reducing the emissions of nitrous oxide (N2O). The outcome of this research is depressingly meagre and the two targets appear incompatible: efforts to increase carbon sequestration appear to enhance the emissions of N2O. Currently there is a need to find alternative management strategies which may effectively reduce both the CO2 and N2O footprints of food production. Soil pH is a master variable in soil productivity and plays an important role in controlling the chemical and biological activity in soil. Recent investigations of the physiology of denitrification have provided compelling evidence that the emission of N2O declines with increasing pH within the range 5-7. Thus, by managing the soil pH at a near neutral level appears to be a feasible way to reduce N2O emissions. Such pH management has been a target in conventional agriculture for a long time, since a near-neutral pH is optimal for a majority of cultivated plants. The traditional way to counteract acidification of agricultural soils is to apply lime, which inevitably leads to emission of CO2. An alternative way to increase the soil pH is the use of mafic rock powders, which have been shown to counteract soil acidification, albeit with a slower reaction than lime. Here we report a newly established field trail in Norway, in which we compare the effects of lime and different mafic mineral and rock powders (olivine, different types of plagioclase) on CO2 and N2O emissions under natural agricultural conditions. Soil pH is measured on a monthly basis from all treatment plots. Greenhouse gas (GHG) emission measurements are carried out on a weekly basis using static chambers and an autonomous robot using fast box technique. Field results from the first winter (fallow) show immediate effect of lime on soil pH, and slower effects of the mafic rocks. The

  15. Impact of intermittent aerations on leachate quality and greenhouse gas reduction in the aerobic-anaerobic landfill method.

    PubMed

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-09-01

    The aerobic-anaerobic landfill method (AALM) is a novel approach in solid waste management that could shorten the landfill post-closure period and minimize the environmental loads. In this study, the aerobic-anaerobic landfill method was evaluated by using intermittent aeration. In addition, the nitrification-denitrification process was assessed as a means of reducing the emission of greenhouse gases (GHGs) and improving the leachate quality during the degradation of the organic solid waste. The leachate quality and the gas composition in each of the reactors were measured during the experimental period (408days). The aeration process entailed the injection of air into plexiglass cylinders (200cm height×10 cm diameter), filled with fresh organic solid waste collected from a composting plant. Different aeration routines were applied, namely, continuous aeration (aerobic reactor A), aeration for three days/week (aerobic-anaerobic reactor B), aeration for 6h/day (aerobic-anaerobic reactor C), and no aeration (non-aerated reactor D). It was found that aerobic reactor A produced the best results in terms of reduction of GHGs and improvement of the leachate quality. The aerobic-anaerobic reactor C was found to be more effective than reactor B in respect of both the emission of GHGs and the leachate quality; moreover, compared with aerobic reactor A, energy costs were reduced by operating this reactor. The transition period phenomenon was investigated during an intensive seven-day experiment conducted on the discharged leachate obtained from aerobic-anaerobic reactors B and C. The experiment concerned the differences in the composition of the gas during the aeration and the non-aeration periods. It was found that the transition period between the aeration and non-aeration cycles, which followed the simultaneous nitrification-denitrification had a considerable effect on the leachate quality of both the reactors. The results indicated that AALM has the potential to reduce

  16. Global warming potential and greenhouse gas intensity in rice agriculture driven by high yields and nitrogen use efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxu; Xu, Xin; Liu, Yinglie; Wang, Jinyang; Xiong, Zhengqin

    2016-05-01

    Our understanding of how global warming potential (GWP) and greenhouse gas intensity (GHGI) is affected by management practices aimed at food security with respect to rice agriculture remains limited. In the present study, a field experiment was conducted in China to evaluate the effects of integrated soil-crop system management (ISSM) on GWP and GHGI after accounting for carbon dioxide (CO2) equivalent emissions from all sources, including methane (CH4) and nitrous oxide (N2O) emissions, agrochemical inputs and farm operations and sinks (i.e., soil organic carbon sequestration). The ISSM mainly consisted of different nitrogen (N) fertilization rates and split, manure, Zn and Na2SiO3 fertilization and planting density for the improvement of rice yield and agronomic nitrogen use efficiency (NUE). Four ISSM scenarios consisting of different chemical N rates relative to the local farmers' practice (FP) rate were carried out, namely, ISSM-N1 (25 % reduction), ISSM-N2 (10 % reduction), ISSM-N3 (FP rate) and ISSM-N4 (25 % increase). The results showed that compared with the FP, the four ISSM scenarios significantly increased the rice yields by 10, 16, 28 and 41 % and the agronomic NUE by 75, 67, 35 and 40 %, respectively. In addition, compared with the FP, the ISSM-N1 and ISSM-N2 scenarios significantly reduced the GHGI by 14 and 18 %, respectively, despite similar GWPs. The ISSM-N3 and ISSM-N4 scenarios remarkably increased the GWP and GHGI by an average of 69 and 39 %, respectively. In conclusion, the ISSM strategies are promising for both food security and environmental protection, and the ISSM scenario of ISSM-N2 is the optimal strategy to realize high yields and high NUE together with low environmental impacts for this agricultural rice field.

  17. Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review

    NASA Astrophysics Data System (ADS)

    Shamshiri, Redmond Ramin; Jones, James W.; Thorp, Kelly R.; Ahmad, Desa; Man, Hasfalina Che; Taheri, Sima

    2018-04-01

    Greenhouse technology is a flexible solution for sustainable year-round cultivation of Tomato (Lycopersicon esculentum Mill), particularly in regions with adverse climate conditions or limited land and resources. Accurate knowledge about plant requirements at different growth stages, and under various light conditions, can contribute to the design of adaptive control strategies for a more cost-effective and competitive production. In this context, different scientific publications have recommended different values of microclimate parameters at different tomato growth stages. This paper provides a detailed summary of optimal, marginal and failure air and root-zone temperatures, relative humidity and vapour pressure deficit for successful greenhouse cultivation of tomato. Graphical representations of the membership function model to define the optimality degrees of these three parameters are included with a view to determining how close the greenhouse microclimate is to the optimal condition. Several production constraints have also been discussed to highlight the short and long-term effects of adverse microclimate conditions on the quality and yield of tomato, which are associated with interactions between suboptimal parameters, greenhouse environment and growth responses.

  18. THE GREENHOUSE EFFECT OF THE ARCTIC ATMOSPHERE.

    DTIC Science & Technology

    Some of this absorbed heat is radiated back to the earth’s surface. This process is generally called the ’ greenhouse effect ’ of the atmosphere...of the terrestrial radiation escapes through the atmosphere. The values for two equations representing the ’ greenhouse effect ’ are discussed. Both

  19. Transportation's role in reducing U.S. greenhouse gas emissions, volume 1 and volume 2 : report to Congress, U.S. Department of Transportation

    DOT National Transportation Integrated Search

    2010-04-01

    This study evaluates potentially viable strategies to reduce transportation : greenhouse gas (GHG) emissions. The study was mandated by the Energy : Independence and Security Act (P.L. 110-140, December 2007). The Act directed : the U.S. Department o...

  20. Waste-to-energy sector and the mitigation of greenhouse gas emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fotis, S.C.; Sussman, D.

    The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in themore » United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.« less

  1. AIDS risk reduction strategies among United States and Swedish heterosexual university students.

    PubMed

    Weinberg, M S; Lottes, I L; Aveline, D

    1998-08-01

    Attitudes toward sex and condoms in the U.S. are more negative and less monolithic than in Sweden. We investigated the possible effect of this on AIDS prevention strategies by comparing women and men who were heterosexual university students in the two countries (Sweden: n = 570; U.S.: n = 407). Using self-administered questionnaires, subjects were asked about their sexual activities, safer sex practices, numbers of partners, and condom use. American students took a more multifaceted approach to safer sex--combining changes in sexual activities, reductions in casual sex, and increased condom use with both steady and nonsteady partners. Swedish students took a more singular approach--consistently using condoms with nonsteady partners. It is suggested that the difference in Swedish practices results from fundamental differences in sexual attitudes between the countries.

  2. 13. Greenhouse, east elevation. The boardandbatten wall covers an opening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Greenhouse, east elevation. The board-and-batten wall covers an opening that was originally fitted with windows which allowed sunlight into the greenhouse. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  3. Planning Faculty Reduction.

    ERIC Educational Resources Information Center

    Rose, Homer C., Jr.; Hample, Stephen R.

    1982-01-01

    Considerations that can help colleges and universities develop institutionally specific strategies for planning faculty reductions are addressed. It is suggested that an institution can provide a fair and workable reduction plan if it: thoroughly explores alternatives to faculty layoffs; develops explicit standards and procedures for reduction…

  4. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  5. Micrometeorites in the Post-lunar Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Maurette, Michel

    On the Earth, an astonishing balance between the absorption and scattering of solar radiation by the early Earth produced the remarkable benign greenhouse effect favourable to the origin and evolution of life. Indeed, the first constraint on any scenario is that the early oceans were not boiling or freezing! It is generally considered that the temperature has to be sufficiently high to prevent freezing at a time when the solar luminosity was smaller than today. But it has to be kept sufficiently low by some mysterious feedback effect, in order to protect the Earth from a runaway greenhouse effect, which led to a surface temperature of about 450 °C on Venus. In fact, the long-lasting micrometeorite thermospheric volcanism effective after the Moon-forming impact, should have ruled the post-lunar greenhouse effect that was critical for the birth of life. Indeed, this impact eradicated at once all atmospheric ingredients of the pre-lunar greenhouse effect at a time when the young Earth was already almost fully outgassed. Subsequently, micrometeorites released simultaneously greenhouse gases for heating and smoke particles for cooling. These micrometeorite ashes resided temporarily within a kind of giant thermospheric cocoon, which might have functioned as a self-regulating IR heater during the period of low solar luminosity. Indeed, it was simultaneously heated up from the inside through the aerodynamical braking of micrometeorites.

  6. [Greenhouse gardeners and sickness absence. A questionnaire study among greenhouse gardeners in Aarhus region].

    PubMed

    Pallesen, Ellen; Nielsen, Claus Vinther; Drews, Birgit Mammen

    2007-02-26

    The aim of the study was to examine sickness absence and risk factors for sickness absence in a population of greenhouse gardeners in the county of Arhus. The study was cross sectional and based on data from questionnaires sent to all employees and greenhouse gardens in the county. Greenhouse gardeners had an average of four days of sickness absence a year. Self-rated health was poorer than average of the Danish population in general. Female gender, age below 40 years, troublesome relationships to family and friends, "poor" physical working environment and job insecurity were all predictors for increased risk of sickness absence lasting more than two weeks a year. Sickness absence was low compared to the average of the Danish labour market. Considering poorer self-rated health and frequent occurrence of some of the above-mentioned predictors for increased risk of sickness absence--female gender, age below 40 years and for women, high exposure to "poor" physical working environment--an average sickness absence of only four days was a puzzle. The data from the study were not sufficient to explain this paradox. It might be due to compensating factors at work or at a personal level. It might be due to information bias, as sickness absence could be underestimated, but agreement between reported sickness absence from employees and greenhouse gardens diminished that probability. It might have been a consequence of selection bias, the "healthy workers'" effect. Employees with considerable sickness absence might have been dismissed for long-term absence or might have quit the job because they were not able to cope with it.

  7. Quantifying the effects of promoting smokeless tobacco as a harm reduction strategy in the USA.

    PubMed

    Mejia, Adrienne B; Ling, Pamela M; Glantz, Stanton A

    2010-08-01

    Snus (a form of smokeless tobacco) is less dangerous than cigarettes. Some health professionals argue that snus should be promoted as a component of a harm reduction strategy, while others oppose this approach. Major US tobacco companies (RJ Reynolds and Philip Morris) are marketing snus products as cigarette brand line extensions. The population effects of smokeless tobacco promotion will depend on the combined effects of changes in individual risk with population changes in tobacco use patterns. To quantitatively evaluate the health impact of smokeless tobacco promotion as part of a harm reduction strategy in the US. A Monte Carlo simulation of a decision tree model of tobacco initiation and use was used to estimate the health effects associated with five different patterns of increased smokeless tobacco use. With cigarette smoking having a health effect of 100, the base case scenario (based on current US prevalence rates) yields a total health effect of 24.2 (5% to 95% interval 21.7 to 26.5) and the aggressive smokeless promotion (less cigarette use and increased smokeless, health-concerned smokers switching to snus, smokers in smokefree environments switching to snus) was associated with a health effect of 30.4 (5% to 95% interval 25.9 to 35.2). The anticipated health effects for additional scenarios with lower rates of smokeless uptake also overlapped with the base case. Promoting smokeless tobacco as a safer alternative to cigarettes is unlikely to result in substantial health benefits at a population level.

  8. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    NASA Astrophysics Data System (ADS)

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    structures of the local flows and their impact on emissions; nevertheless, these mesoscale systems are developed within the scope of a synoptic circulation, which also affects both the breeze development and the pollutant transport. In order to take the relationship between the different atmospheric scales into account, we used the CAMx photochemical model coupled with the MM5 meteorological model, both configured with a system of nested grids. The study domain covers an area of 28224 km2, with 2 km horizontal resolution and 18 vertical layers up to a height of 5 km with high resolution in the levels close to the ground. This paper assesses the impact over the hourly and 8-hourly maximum daily ozone concentrations of four reduction strategies in an area with complex terrain: (i) 25% reduction in VOC and NOx from industry and traffic, (ii) 50% reduction in NOx and VOC from the industry, (iii) 50% reduction in NOx and VOC from traffic, and (iv) 100% reduction in NOx and VOC from the petrochemical plant and the refinery. The study area has large industrial sources, such as a petroleum refinery, a petrochemical plant, several chemical complexes and co-generation power plants, among others. The study area includes the cities of Huelva (148,000 inhabitants), Seville (699,760 inhabitants) and Cadiz (127,200 inhabitants). The analyses presented in this work provide an assessment of the effectiveness of several strategies to reduce ozone pollution in different meteorological scenarios.

  9. [Analyzing the factors of influencing the musculoskeletal disorders of greenhouse vegetable farmers].

    PubMed

    Dong, Hong-yun; Li, Hong-jun; Yu, Su-fang

    2012-03-01

    To study the prevalence of musculoskeletal disorders (MSDs) among greenhouse vegetable farmers and to explore the risk factors of MSDs. A household questionnaire survey was conducted to investigate 203 greenhouse vegetable farmers and 127 non-greenhouse vegetable farmers in February, 2011. The one-year prevalence rates of MSDs were 70.0% and 33.9% among greenhouse vegetable farmers and non-greenhouse vegetable farmers, respectively. The three main positions of MSDs in greenhouse farmers were low back, knee (s) and shoulder (s). Age, working years, body weight and usage of rolling machine were statistically associated with MSDs of greenhouse farmers, ORadj values were 1.17, 1.82, 1.08 and 0.07, respectively. The prevalence of MSDs is high in greenhouse workers. Low back pain, knee (s), and shoulder (s) disorders are the main disorders. Age, working years, body weight and usage of rolling machine are main risk factors for the development of MSDs in greenhouse farmers.

  10. Multi-purpose greenhouse of changeable geometry (MGCG)

    NASA Astrophysics Data System (ADS)

    Kordium, V.; Kornejchuk, A.

    In the frames of scientific program of National Cosmic Agency of Ukraine the multipurpose greenhouse is being developed. It is destined for the performance of biological and biotechnological experiments as well as for planting of fast growing vegetable cultures for crew ration enrichment and positive psychological influence under the conditions of long-term flight in the international space station or in other cosmic flying objects. Main principle of greenhouse arrangement is the existence of unified modules. Their sets and combinations permit to form executively different space greenhouse configurations. The minimal structural greenhouse unit suitable either for construction of total configuration or for autonomous functioning, is a carrying composite platform (CCP). The experimental vegetative module (EVM) and the module, supporting microclimate needed inside EVM, are launched to CCP. The amount of these modules and their configuration depend on quantity and complexity of tasks to be solved as well as on duration of their performance. These modules form the experimental block. Four modules of much larger sizes, which form experimentally technological block, are used for further studies of objectives approved in the experimental block. The technologies developed for growing plants are used in the third, technological block, which is a one large vegetative module. All three greenhouse blocks can be changed in their sizes in three dimensions, and function either in a complete greenhouse structure, or autonomously. The control is performed from a board computer, or, if necessary, it is governed with automation devices placed on a front panel of blocks. All three blocks are pulled out along the directing base into the station passage, and this makes free access to the base modules, convenient work with them, and à good survey.

  11. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  12. What the American Public Really Thinks About Climate Change: New Evidence on Amelioration Strategies

    NASA Astrophysics Data System (ADS)

    Krosnick, J. A.

    2007-12-01

    On Capital Hill, a great deal of effort is being devoted to crafting legislation to reduce greenhouse gas emissions in coming years. These legislative efforts are pursuing many different reduction strategies. But to date, the American public has not been asked to evaluate these various policies to weigh in on which they favor and which they oppose. Without such evidence, it may be difficult for policy-makers to prevent a situation where a piece of legislation passes in Congress but is later met by strong public resistance, as occurred twice on immigration recently, leading to the death of the bills. Professor Krosnick has been conducting surveys since 1995 exploring how Americans think about climate change and what policy solutions they prefer. This talk will present some of Professor Krosnick's most recent evidence.

  13. Effectiveness of insecticide-treated and non-treated trap plants for the management of Frankliniella occidentalis (Thysanoptera: Thripidae) in greenhouse ornamentals.

    PubMed

    Buitenhuis, Rosemarije; Shipp, J Les; Jandricic, Sarah; Murphy, Graeme; Short, Mike

    2007-09-01

    The effectiveness of trap cropping as an integrated control strategy against western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), was explored in potted chrysanthemum, Dendranthema grandiflora (Tzvelev), greenhouse crops. The efficacy of flowering chrysanthemum trap plants, either treated with the insecticide spinosad or untreated, to regulate F. occidentalis populations was tested at different spatial scales (small cage, large cage and commercial greenhouse) and for different time periods (1 or 4 weeks). It was demonstrated that flowering chrysanthemums as trap plants lower the number of adult F. occidentalis in a vegetative chrysanthemum crop and, as a result, reduce crop damage. In the 4 week large-cage trial and the commercial trial, significant differences between the control and the trap plant treatments started to appear in the third week of the experiment. Larvae were only significantly reduced by the presence of trap plants in the 1 week small-cage trials. There were no significant differences between treatments with spinosad-treated and untreated trap plants in the number of F. occidentalis on the crop. This suggests that there was minimal movement of adult F. occidentalis back and forth between the trap plants and the crop to feed and oviposit. It is concluded that the trap plant strategy is a useful tool for integrated pest management against F. occidentalis in greenhouses. 2007 Crown in the right of Canada

  14. Boiler Briquette Coal versus Raw Coal: Part II-Energy, Greenhouse Gas, and Air Quality Implications.

    PubMed

    Zhang, Junfeng; Ge, Su; Bai, Zhipeng

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO 2 emission, a 17% reduction in CO emission, a 63% reduction in SO 2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM 2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM 10 . These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM 10 mass emission and a 9-16% increase in fuel cost.

  15. Boiler briquette coal versus raw coal: Part II--Energy, greenhouse gas, and air quality implications.

    PubMed

    Zhang, J; Ge, S; Bai, Z

    2001-04-01

    The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost.

  16. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    PubMed

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  17. The greenhouse gas and energy balance of different treatment concepts for bio-waste.

    PubMed

    Ortner, Maria E; Müller, Wolfgang; Bockreis, Anke

    2013-10-01

    The greenhouse gas (GHG) and energy performance of bio-waste treatment plants been investigated for three characteristic bio-waste treatment concepts: composting; biological drying for the production of biomass fuel fractions; and anaerobic digestion. Compared with other studies about the environmental impacts of bio-waste management, this study focused on the direct comparison of the latest process concepts and state-of-the-art emission control measures. To enable a comparison, the mass balance and products were modelled for all process concepts assuming the same bio-waste amounts and properties. In addition, the value of compost as a soil improver was included in the evaluation, using straw as a reference system. This aspect has rarely been accounted for in other studies. The study is based on data from operational facilities combined with literature data. The results show that all three concepts contribute to a reduction of GHG emissions and show a positive balance for cumulated energy demand. However, in contrast to other studies, the advantage of anaerobic digestion compared with composting is smaller as a result of accounting for the soil improving properties of compost. Still, anaerobic digestion is the environmentally superior solution. The results are intended to inform decision makers about the relevant aspects of bio-waste treatment regarding the environmental impacts of different bio-waste management strategies.

  18. Greenhouse gas emissions and the Australian diet--comparing dietary recommendations with average intakes.

    PubMed

    Hendrie, Gilly A; Ridoutt, Brad G; Wiedmann, Thomas O; Noakes, Manny

    2014-01-08

    Nutrition guidelines now consider the environmental impact of food choices as well as maintaining health. In Australia there is insufficient data quantifying the environmental impact of diets, limiting our ability to make evidence-based recommendations. This paper used an environmentally extended input-output model of the economy to estimate greenhouse gas emissions (GHGe) for different food sectors. These data were augmented with food intake estimates from the 1995 Australian National Nutrition Survey. The GHGe of the average Australian diet was 14.5 kg carbon dioxide equivalents (CO2e) per person per day. The recommended dietary patterns in the Australian Dietary Guidelines are nutrient rich and have the lowest GHGe (~25% lower than the average diet). Food groups that made the greatest contribution to diet-related GHGe were red meat (8.0 kg CO2e per person per day) and energy-dense, nutrient poor "non-core" foods (3.9 kg CO2e). Non-core foods accounted for 27% of the diet-related emissions. A reduction in non-core foods and consuming the recommended serves of core foods are strategies which may achieve benefits for population health and the environment. These data will enable comparisons between changes in dietary intake and GHGe over time, and provide a reference point for diets which meet population nutrient requirements and have the lowest GHGe.

  19. Greenhouse Gas Emissions and the Australian Diet—Comparing Dietary Recommendations with Average Intakes

    PubMed Central

    Hendrie, Gilly A.; Ridoutt, Brad G.; Wiedmann, Thomas O.; Noakes, Manny

    2014-01-01

    Nutrition guidelines now consider the environmental impact of food choices as well as maintaining health. In Australia there is insufficient data quantifying the environmental impact of diets, limiting our ability to make evidence-based recommendations. This paper used an environmentally extended input-output model of the economy to estimate greenhouse gas emissions (GHGe) for different food sectors. These data were augmented with food intake estimates from the 1995 Australian National Nutrition Survey. The GHGe of the average Australian diet was 14.5 kg carbon dioxide equivalents (CO2e) per person per day. The recommended dietary patterns in the Australian Dietary Guidelines are nutrient rich and have the lowest GHGe (~25% lower than the average diet). Food groups that made the greatest contribution to diet-related GHGe were red meat (8.0 kg CO2e per person per day) and energy-dense, nutrient poor “non-core” foods (3.9 kg CO2e). Non-core foods accounted for 27% of the diet-related emissions. A reduction in non-core foods and consuming the recommended serves of core foods are strategies which may achieve benefits for population health and the environment. These data will enable comparisons between changes in dietary intake and GHGe over time, and provide a reference point for diets which meet population nutrient requirements and have the lowest GHGe. PMID:24406846

  20. Greenhouse gases and greenhouse effect

    NASA Astrophysics Data System (ADS)

    Chilingar, G. V.; Sorokhtin, O. G.; Khilyuk, L.; Gorfunkel, M. V.

    2009-09-01

    Conventional theory of global warming states that heating of atmosphere occurs as a result of accumulation of CO2 and CH4 in atmosphere. The writers show that rising concentration of CO2 should result in the cooling of climate. The methane accumulation has no essential effect on the Earth’s climate. Even significant releases of the anthropogenic carbon dioxide into the atmosphere do not change average parameters of the Earth’s heat regime and the atmospheric greenhouse effect. Moreover, CO2 concentration increase in the atmosphere results in rising agricultural productivity and improves the conditions for reforestation. Thus, accumulation of small additional amounts of carbon dioxide and methane in the atmosphere as a result of anthropogenic activities has practically no effect on the Earth’s climate.

  1. What are we missing? Scope 3 greenhouse gas emissions accounting in the metals and minerals industry

    NASA Astrophysics Data System (ADS)

    Greene, Suzanne E.

    2018-05-01

    Metal and mineral companies have significant greenhouse gas emissions in their upstream and downstream value chains due to outsourced extraction, beneficiation and transportation activities, depending on a firm's business model. While many companies move towards more transparent reporting of corporate greenhouse gas emissions, value chain emissions remain difficult to capture, particularly in the global supply chain. Incomplete reports make it difficult for companies to track emissions reductions goals or implement sustainable supply chain improvements, especially for commodity products that form the base of many other sector's value chains. Using voluntarily-reported CDP data, this paper sheds light on hotspots in value chain emissions for individual metal and mineral companies, and for the sector as a whole. The state of value chain emissions reporting for the industry is discussed in general, with a focus on where emissions could potentially be underestimated and how estimates could be improved.

  2. Using a wood stove to heat greenhouses

    Treesearch

    Gloria Whitefeather-Spears

    2009-01-01

    The Red Lake Tribal Forestry Greenhouse in Red Lake, MN, utilizes four types of outdoor furnaces for heating through the fall, winter, and spring. The WoodMaster® is a highly efficient, wood-fired furnace that provides forced-air heat to the greenhouse. The HeatmorTM furnace is an economical wood-fired alternative that can provide lower...

  3. Accounting For Greenhouse Gas Emissions From Flooded Lands

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  4. Benefits of sustainable waste management in the vegetable greenhouse industry.

    PubMed

    Cheuk, William; Lo, Kwang Victor; Branion, Richard M R; Fraser, Bud

    2003-11-01

    This study investigated the benefits of an on-site sustainable solid waste treatment and utilization system for the greenhouse industry. The composts made from greenhouse wastes were tested and found to contain high nutrient values and good physical properties, and could be used as high quality growing media. The finished composts were tested in a greenhouse against the conventional growth media (sawdust) and resulted in a 10% yield increase by using the compost. An economic analysis was conducted to show the economic benefits of on-site composting for a greenhouse operation. Based on a four-hectare tomato or pepper greenhouse, and amortizing the capital equipment over five years, the net annual cost of composting represents a savings of dollars 8,000 annually.

  5. Empirical Quantification of the Runaway Greenhouse Limit on Earth

    NASA Astrophysics Data System (ADS)

    Goldblatt, C.; Dewey, M. C.

    2015-12-01

    There have been many modeling studies of the runaway greenhouse effect and the conditions required to produce one on an Earth-like planet, however these models have not been verified with empirical evidence. It has been suggested that the Earth's tropics may be near a state of localized runaway greenhouse, meaning the surface temperature and atmospheric composition in those areas could cause runaway greenhouse, were it not for the tempering effects of meridional heat transport and circulation (Pierrehumbert, 1995). Using the assumption that some areas of the Earth's tropics may be under these conditions, this study uses measurements of the atmospheric properties, surface properties, and radiation budgets of these areas to quantify a radiation limit for runaway greenhouse on Earth, by analyzing the dependence of outgoing longwave radiation (OLR) at the top of the atmosphere on surface temperature and total column water vapour. An upper limit on OLR for clear-sky conditions was found between 289.8 W/m2 and 292.2 W/m2, which occurred at surface temperatures near 300K. For surface temperatures above this threshold, total column water vapour increased, but OLR initially decreased and then remained relatively constant, between 273.6 W/m2 and 279.7 W/m2. These limits are in good agreement with recent modeling results (Goldblatt et al., 2013), supporting the idea that some of the Earth's tropics may be in localized runaway greenhouse, and that radiation limits for runaway greenhouse on Earth can be empirically derived. This research was done as part of Maura Dewey's undergraduate honours thesis at the University of Victoria. Refs: Robert T. Pierrehumbert. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Sciences, 52(10):1784-1806, 1995. Colin Goldblatt, Tyler D. Robinson, Kevin J. Zahnle, and David Crisp. Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience, 6:661-667, 2013.

  6. Using surveillance data to inform a SUID reduction strategy in Massachusetts.

    PubMed

    Treadway, Nicole J; Diop, Hafsatou; Lu, Emily; Nelson, Kerrie; Hackman, Holly; Howland, Jonathan

    2014-12-01

    infrastructure and the large proportion of pregnant/postpartum women in Massachusetts that are enrolled in WIC, a WIC-based safe sleep intervention may be an effective SUID reduction strategy with potential national application.

  7. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    increased emissions unless we improve production efficiencies and management. Developing countries currently account for about three-quarters of direct emissions and are expected to be the most rapidly growing emission sources in the future (FAO 2011). Reducing agricultural emissions and increasing carbon sequestration in the soil and biomass has the potential to reduce agriculture's contribution to climate change by 5.5-6.0 gigatons (Gt) of carbon dioxide equivalent (CO2eq)/year. Economic potentials, which take into account costs of implementation, range from 1.5 to 4.3 GT CO2eq/year, depending on marginal abatement costs assumed and financial resources committed, with most of this potential in developing countries (Smith et al 2007). The opportunity for mitigation in agriculture is thus significant, and, if realized, would contribute to making this sector carbon neutral. Yet it is only through a robust and shared understanding of how much carbon can be stored or how much CO2 is reduced from mitigation practices that informed decisions can be made about how to identify, implement, and balance a suite of mitigation practices as diverse as enhancing soil organic matter, increasing the digestibility of feed for cattle, and increasing the efficiency of nitrogen fertilizer applications. Only by selecting a portfolio of options adapted to regional characteristics and goals can mitigation needs be best matched to also serve rural development goals, including food security and increased resilience to climate change. Expansion of agricultural land also remains a major contributor of greenhouse gases, with deforestation, largely linked to clearing of land for cultivation or pasture, generating 80% of emissions from developing countries (Hosonuma et al 2012). There are clear opportunities for these countries to address mitigation strategies from the forest and agriculture sector, recognizing that agriculture plays a large role in economic and development potential. In this context

  8. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    PubMed Central

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  9. 5. Greenhouse and storeroom, west elevation. Portions of the storeroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Greenhouse and storeroom, west elevation. Portions of the storeroom might predate the greenhouse construction (1760-1761), however the two structures were not linked until late in the eighteenth century or early in the nineteenth century. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  10. Energy Efficiency Programs in K-12 Schools: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs. Local Government Climate and Energy Strategy Series

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2011

    2011-01-01

    Saving energy through energy efficiency improvements can cost less than generating, transmitting, and distributing energy from power plants, and provides multiple economic and environmental benefits. Local governments can promote energy efficiency in their jurisdictions by developing and implementing strategies that improve the efficiency of…

  11. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity emission...

  12. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity emission...

  13. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity emission...

  14. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity emission...

  15. 10 CFR 300.12 - Acceptance of reports and registration of entity emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Acceptance of reports and registration of entity emission reductions. 300.12 Section 300.12 Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.12 Acceptance of reports and registration of entity emission...

  16. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  17. Early detection strategy and mortality reduction in severe sepsis.

    PubMed

    Westphal, Glauco Adrieno; Feijó, Janaína; Andrade, Patrícia Silva de; Trindade, Louise; Suchard, Cezar; Monteiro, Márcio Andrei Gil; Martins, Sheila Fonseca; Nunes, Fernanda; Caldeira Filho, Milton

    2009-06-01

    To evaluate the impact of implementing an institutional policy for detection of severe sepsis and septic shock. Study before (stage I), after (stage II) with prospective data collection in a 195 bed public hospital.. Stage I: Patients with severe sepsis or septic shock were included consecutively over 15 months and treated according to the Surviving Sepsis Campaign guidelines. Stage II: In the 10 subsequent months, patients with severe sepsis or septic shock were enrolled based on an active search for signs suggesting infection (SSI) in hospitalized patients. The two stages were compared for demographic variables, time needed for recognition of at least two signs suggesting infection (SSI-Δt), compliance to the bundles of 6 and 24 hours and mortality. We identified 124 patients with severe sepsis or septic shock, 68 in stage I and 56 in stage II. The demographic variables were similar in both stages. The Δt-SSI was 34 ± 54 hours in stage I and 7 ± 8.4 hours in stage II (p <0.001). There was no difference in compliance to the bundles. In parallel there was significant reduction of mortality rates at 28 days (54.4% versus 30%, p <0.02) and hospital (67.6% versus 41%, p <0.003). The strategy used helped to identify early risk of sepsis and resulted in decreased mortality associated with severe sepsis and septic shock.

  18. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, Majid, E-mail: majid_qau86@yahoo.com; Department of Forestry and Wildlife Management, University of Haripur, Hattar Road, Khyber Pakhtunkhwa, Haripur 22620; Zaidi, Syed Mujtaba Hasnian

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, andmore » 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy

  19. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  20. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  1. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  2. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    PubMed

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  3. Net global warming potential and greenhouse gas intensity

    USDA-ARS?s Scientific Manuscript database

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  4. Workplace concentrations and exposure assessment of monoterpenes in rosemary- and lavender-growing greenhouses.

    PubMed

    Tani, Akira; Nozoe, Susumu

    2012-01-01

    Monoterpenes can positively or negatively affect human health depending on their concentrations. To assess the atmospheric risk for greenhouse workers, monoterpene concentrations and personal exposure in herb-growing greenhouses were measured. Monoterpene concentrations in a commercial greenhouse, where rosemary (Rosmarinus officinalis L.) and lavender (Lavandula angustifolia L.) were grown in pots, were measured every 4 hours on 11 days spread across a year. In a small experimental greenhouse, typical horticultural tasks were conducted to determine the factors increasing monoterpene concentrations. Concentrations of α-pinene, camphene, β-pinene, limonene and cineole in the farmer's greenhouse were higher in winter than in summer because of longer ventilation periods of the greenhouse in summer. Further, the concentrations of these compounds were high (but <2 parts per billion in volume [ppbv]) when horticultural tasks were conducted inside the greenhouse. In a small experimental greenhouse, moving pots and cutting shoots increased ambient monoterpene concentrations to 10 ppbv. Spraying water also increased monoterpene concentrations but to a lesser extent. When performing tasks, greenhouse workers were exposed to monoterpene concentrations 2-3 times higher than the concentration in the ambient greenhouse air. Our measurement results reveal that monoterpene emissions are stimulated by horticultural tasks, even by spraying water. Our calculation result suggests that if ventilation is limited, the concentrations can reach levels high enough to cause sensory irritation in greenhouse workers. Greenhouse workers should be cautious when performing tasks for hours in tightly closed herb-growing greenhouses.

  5. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  6. Landslide risk reduction strategies: an inventory for the Global South

    NASA Astrophysics Data System (ADS)

    Maes, Jan; Kervyn, Matthieu; Vranken, Liesbet; Dewitte, Olivier; Vanmaercke, Matthias; Mertens, Kewan; Jacobs, Liesbet; Poesen, Jean

    2015-04-01

    Landslides constitute a serious problem globally. Moreover, landslide impact remains underestimated especially in the Global South. It is precisely there where the largest impact is experienced. An overview of measures taken to reduce risk of landslides in the Global South is however still lacking. Because in many countries of the Global South disaster risk reduction (DRR) is at an emerging stage, it is crucial to monitor the ongoing efforts (e.g. discussions on the Post-2015 Framework for DRR). The first objective of this study is to make an inventory of techniques and strategies that are applied to reduce risk from landslides in tropical countries. The second objective is to investigate what are the main bottlenecks for implementation of DRR strategies. In order to achieve these objectives, a review of both scientific and grey literature was conducted, supplemented with expert knowledge. The compilation of recommended and implemented DRR measures from landslide-prone tropical countries is based on an adapted classification proposed by the SafeLand project. According to Vaciago (2013), landslide risk can be reduced by either reducing the hazard, the vulnerability, the number or value of elements at risk or by sharing the residual risk. In addition, these measures can be combined with education and/or awareness raising and are influenced by governance structures and cultural beliefs. Global landslide datasets have been used to identify landslide-prone countries, augmented with region-specific datasets. Countries located in the tropics were selected in order to include landslide-prone countries with a different Human Development Index (HDI) but with a similar climate. Preliminary results support the statement made by Anderson (2013) that although the importance of shifting from post-disaster emergency actions to pre-disaster mitigation is acknowledged, in practice this paradigm shift seems rather limited. It is expected that this is especially the case in countries

  7. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... 3090- 00XX; Supplier Greenhouse Gas Emissions Inventory Pilot, by any of the following methods...

  8. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    NASA Astrophysics Data System (ADS)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  9. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    NASA Astrophysics Data System (ADS)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  10. Global climate change and children's health: threats and strategies for prevention.

    PubMed

    Sheffield, Perry E; Landrigan, Philip J

    2011-03-01

    Global climate change will have multiple effects on human health. Vulnerable populations-children, the elderly, and the poor-will be disproportionately affected. We reviewed projected impacts of climate change on children's health, the pathways involved in these effects, and prevention strategies. We assessed primary studies, review articles, and organizational reports. Climate change is increasing the global burden of disease and in the year 2000 was responsible for > 150,000 deaths worldwide. Of this disease burden, 88% fell upon children. Documented health effects include changing ranges of vector-borne diseases such as malaria and dengue; increased diarrheal and respiratory disease; increased morbidity and mortality from extreme weather; changed exposures to toxic chemicals; worsened poverty; food and physical insecurity; and threats to human habitation. Heat-related health effects for which research is emerging include diminished school performance, increased rates of pregnancy complications, and renal effects. Stark variation in these outcomes is evident by geographic region and socioeconomic status, and these impacts will exacerbate health disparities. Prevention strategies to reduce health impacts of climate change include reduction of greenhouse gas emissions and adaptation through multiple public health interventions. Further quantification of the effects of climate change on children's health is needed globally and also at regional and local levels through enhanced monitoring of children's environmental health and by tracking selected indicators. Climate change preparedness strategies need to be incorporated into public health programs.

  11. The Extension-Reduction Strategy: Activating Prior Knowledge

    ERIC Educational Resources Information Center

    Sloyer, Cliff W.

    2004-01-01

    A mathematical problem is solved using the extension-reduction or build it up-tear it down tactic. This technique is implemented in reviving students' earlier knowledge to enable them to apply this knowledge to solving new problems.

  12. 10. Detail view, greenhouse, south wall. These groundlevel openings were ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view, greenhouse, south wall. These ground-level openings were part of the original heating system used to warm the greenhouse. The openings were likely related to the flues, while a larger opening to the west (not in photograph) contained an exterior-fed iron stove. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  13. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  14. Non-CO2 Greenhouse Gases: International Emissions and Projections

    EPA Pesticide Factsheets

    EPA August 2011 report on global non-CO2 emissions projections (1990-2030) for emissions of non-CO2 greenhouse gases (methane, nitrous oxide, and fluorinated greenhouse gases) from more than twenty emissions sources.

  15. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most ofmore » which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas

  16. Development of salt production technology using prism greenhouse method

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Jaziri, A. A.; Prihanto, A. A.; Arisandi, D. M.; Kurniawan, A.

    2018-01-01

    The main problem of salt production in Indonesia is low productivity and quality because the technology used commonly by Indonesian salt farmers is traditional method. This research aims to increase production of salt by using the prism greenhouse method. The prism greenhouse method is a salt production system with a combination of several salt production technologies, including geomembrane, threaded filter, and prism greenhouse technology. This research method used descriptive method. The results of this study were the productivity increased threefold, and the quality of salt produced also increased in terms of the content of NaCl from 85% to 95%. In addition, salt production with the prism greenhouse method has several advantages, such as faster harvest time, weather resistance, easy to use, and higher profit than traditional methods.

  17. Implementing Liberia's poverty reduction strategy: An assessment of emergency and essential surgical care.

    PubMed

    Sherman, Lawrence; Clement, Peter T; Cherian, Meena N; Ndayimirije, Nestor; Noel, Luc; Dahn, Bernice; Gwenigale, Walter T; Kushner, Adam L

    2011-01-01

    To document infrastructure, personnel, procedures performed, and supplies and equipment available at all county hospitals in Liberia using the World Health Organization Tool for Situational Analysis of Emergency and Essential Surgical Care. Survey of county hospitals using the World Health Organization Tool for Situational Analysis of Emergency and Essential Surgical Care. Sixteen county hospitals in Liberia. Infrastructure, personnel, procedures performed, and supplies and equipment available. Uniformly, gross deficiencies in infrastructure, personnel, and supplies and equipment were identified. The World Health Organization Tool for Situational Analysis of Emergency and Essential Surgical Care was useful in identifying baseline emergency and surgical conditions for evidenced-based planning. To achieve the Poverty Reduction Strategy and delivery of the Basic Package of Health and Social Welfare Services, additional resources and manpower are needed to improve surgical and anesthetic care.

  18. Radiation dose-reduction strategies in thoracic CT.

    PubMed

    Moser, J B; Sheard, S L; Edyvean, S; Vlahos, I

    2017-05-01

    Modern computed tomography (CT) machines have the capability to perform thoracic CT for a range of clinical indications at increasingly low radiation doses. This article reviews several factors, both technical and patient-related, that can affect radiation dose and discusses current dose-reduction methods relevant to thoracic imaging through a review of current techniques in CT acquisition and image reconstruction. The fine balance between low radiation dose and high image quality is considered throughout, with an emphasis on obtaining diagnostic quality imaging at the lowest achievable radiation dose. The risks of excessive radiation dose reduction are also considered. Inappropriately low dose may result in suboptimal or non-diagnostic imaging that may reduce diagnostic confidence, impair diagnosis, or result in repeat examinations incurring incremental ionising radiation exposure. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...

  20. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons...