Science.gov

Sample records for reference flow injection

  1. Flow characteristics and injectivity behavior of water-soluble polymers: Final report. [144 references

    SciTech Connect

    Martin, F.D.

    1987-04-01

    The objective of this project was to determine the key properties of water-soluble polymers that affect injectivity of polymer solutions used in enhanced recovery processes. The project consisted of performing a thorough literature survey on this subject, followed by laboratory tests to assess various properties of polymer solutions. In the literature survey, laboratory and field projects were reviewed. Information from the literature survey on field projects and from experiments performed as part of this study points out that water quality is very important in the injectivity of polymer solutions. Specifically, if iron is introduced as a corrosion byproduct, the polymers can be crosslinked which can lead to severe plugging when the polymer solution is injected. For some polymers, procedures used for mixing solutions can be important. Higher solution viscosities may be obtained if emulsion polymers are inverted in a very fresh water prior to mixing with a brine water. Filterability and injectivity of some emulsion polymers are better when the polymers are dissolved in a fresher water. As expected, injectivity of xanthan gum polymers was better than for polyacrylamide polymers. For polyacrylamides, adsorption was higher on dolomite than on sandstone, but the adsorption on either media was not affected greatly by anionic charge of the polymers. Injectivity of polymer solutions may be improved by pretreatment with certain solvents or chemicals. After a loss of injectivity caused by plugging from a polymer solution, selected chemicals can provide improvement in injectivity. 155 refs., 30 figs., 27 tabs.

  2. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  3. Miniaturized flow injection analysis system

    DOEpatents

    Folta, J.A.

    1997-07-01

    A chemical analysis technique known as flow injection analysis is described, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38{times}25{times}3 mm, but can be designed for gas analysis and be substantially smaller in construction. 9 figs.

  4. Miniaturized flow injection analysis system

    DOEpatents

    Folta, James A.

    1997-01-01

    A chemical analysis technique known as flow injection analysis, wherein small quantities of chemical reagents and sample are intermixed and reacted within a capillary flow system and the reaction products are detected optically, electrochemically, or by other means. A highly miniaturized version of a flow injection analysis system has been fabricated utilizing microfabrication techniques common to the microelectronics industry. The microflow system uses flow capillaries formed by etching microchannels in a silicon or glass wafer followed by bonding to another wafer, commercially available microvalves bonded directly to the microflow channels, and an optical absorption detector cell formed near the capillary outlet, with light being both delivered and collected with fiber optics. The microflow system is designed mainly for analysis of liquids and currently measures 38.times.25.times.3 mm, but can be designed for gas analysis and be substantially smaller in construction.

  5. Residual ozone determination by flow injection analysis

    SciTech Connect

    Straka, M.R.; Pacey, G.E.; Gordon, G.

    1984-09-01

    It has been proposed that ozone be used to replace free chlorine for the disinfection of drinking water and waste water. For the use of ozone in this capacity, it would be necessary to have a fast accurate and precise method to analyze for the presence of residuals. An automated method for ozone determination based on the indigo reagent method is presented. This method is based on the advantages of flow injection analysis (FIA) techniques. 19 references, 3 tables, 2 figures.

  6. A volumetric flow sensor for automotive injection systems

    NASA Astrophysics Data System (ADS)

    Schmid, U.; Krötz, G.; Schmitt-Landsiedel, D.

    2008-04-01

    For further optimization of the automotive power train of diesel engines, advanced combustion processes require a highly flexible injection system, provided e.g. by the common rail (CR) injection technique. In the past, the feasibility to implement injection nozzle volumetric flow sensors based on the thermo-resistive measurement principle has been demonstrated up to injection pressures of 135 MPa (1350 bar). To evaluate the transient behaviour of the system-integrated flow sensors as well as an injection amount indicator used as a reference method, hydraulic simulations on the system level are performed for a CR injection system. Experimentally determined injection timings were found to be in good agreement with calculated values, especially for the novel sensing element which is directly implemented into the hydraulic system. For the first time pressure oscillations occurring after termination of the injection pulse, predicted theoretically, could be verified directly in the nozzle. In addition, the injected amount of fuel is monitored with the highest resolution ever reported in the literature.

  7. Evaluation of the impact of viscosity, injection volume, and injection flow rate on subcutaneous injection tolerance

    PubMed Central

    Berteau, Cecile; Filipe-Santos, Orchidée; Wang, Tao; Rojas, Humberto E; Granger, Corinne; Schwarzenbach, Florence

    2015-01-01

    Aim The primary objective of this study was to evaluate the impact of fluid injection viscosity in combination with different injection volumes and flow rates on subcutaneous (SC) injection pain tolerance. Methods The study was a single-center, comparative, randomized, crossover, Phase I study in 24 healthy adults. Each participant received six injections in the abdomen area of either a 2 or 3 mL placebo solution, with three different fluid viscosities (1, 8–10, and 15–20 cP) combined with two different injection flow rates (0.02 and 0.3 mL/s). All injections were performed with 50 mL syringes and 27G, 6 mm needles. Perceived injection pain was assessed using a 100 mm visual analog scale (VAS) (0 mm/no pain, 100 mm/extreme pain). The location and depth of the injected fluid was assessed through 2D ultrasound echography images. Results Viscosity levels had significant impact on perceived injection pain (P=0.0003). Specifically, less pain was associated with high viscosity (VAS =12.6 mm) than medium (VAS =16.6 mm) or low (VAS =22.1 mm) viscosities, with a significant difference between high and low viscosities (P=0.0002). Target injection volume of 2 or 3 mL was demonstrated to have no significant impact on perceived injection pain (P=0.89). Slow (0.02 mL/s) or fast (0.30 mL/s) injection rates also showed no significant impact on perceived pain during SC injection (P=0.79). In 92% of injections, the injected fluid was located exclusively in SC tissue whereas the remaining injected fluids were found located in SC and/or intradermal layers. Conclusion The results of this study suggest that solutions of up to 3 mL and up to 15–20 cP injected into the abdomen within 10 seconds are well tolerated without pain. High viscosity injections were shown to be the most tolerated, whereas injection volume and flow rates did not impact perceived pain. PMID:26635489

  8. Reversed flow injection spectrophotometric determination of chlorate.

    PubMed

    Chuesaard, Thanyarat; Wonganan, Tharinee; Wongchanapiboon, Teerapol; Liawruangrath, Saisunee

    2009-09-15

    An interfacing has been developed to connect a spectrophotometer with a personal computer and used as a readout system for development of a simple, rapid and sensitive reversed flow injection (rFI) procedure for chlorate determination. The method is based on the oxidation of indigo carmine by chlorate ions in an acidic solution (dil. HCl) leading to the decrease in absorbance at 610 nm. The decrease in absorbance is directly related to the chlorate concentration present in the sample solutions. Optimum conditions for chlorate were examined. A linear calibration graph over the range of 0.1-0.5 mg L(-1) chlorate was established with the regression equation of Y=104.5X+1.0, r(2)=0.9961 (n=6). The detection limit (3 sigma) of 0.03 mg L(-1), the limit of quantitation (10 sigma) of 0.10 mg L(-1) and the RSD of 3.2% for 0.3 mg L(-1) chlorate (n=11) together with a sample throughput of 92 h(-1) were obtained. The recovery of the added chlorate in spiked water samples was 98.5+/-3.1%. Major interferences for chlorate determination were found to be BrO(3)(-), ClO(2)(-), ClO(-) and IO(3)(-) which were overcome by using SO(3)(2-) (as Na(2)SO(3)) as masking agent. The method has been successfully applied for the determination of chlorate in spiked water samples with the minimum reagent consumption of 14.0 mL h(-1). Good agreement between the proposed rFIA and the reference methods was found verified by Student's t-test at 95% confidence level. PMID:19615529

  9. Automated Protein Assay Using Flow Injection Analysis

    NASA Astrophysics Data System (ADS)

    Wolfe, Carrie A. C.; Oates, Matthew R.; Hage, David S.

    1998-08-01

    The technique of flow injection analysis (FIA) is a common instrumental method used in detecting a variety of chemical and biological agents. This paper describes an undergraduate laboratory that uses FIA to perform a bicinchoninic acid (BCA) colorimetric assay for quantitating protein samples. The method requires less than 2 min per sample injection and gives a response over a broad range of protein concentrations. This method can be used in instrumental analysis labs to illustrate the principles and use of FIA, or as a means for introducing students to common methods employed in the analysis of biological agents.

  10. Flow injection potentiometric determination of pipazethate hydrochloride.

    PubMed

    Abdel-Ghani, N T; Shoukry, A F; el Nashar, R M

    2001-01-01

    New plastic membrane electrodes for pipazethate hydrochloride based on pipazethatium phosphotungstate, pipazethatium phosphomolybdate and a mixture of the two were prepared. The electrodes were fully characterized in terms of composition, life span, pH and temperature and were then applied to the potentiometric determination of the pipazethate ion in its pure state and pharmaceutical preparations under batch and flow injection conditions. The selectivity of the electrodes towards many inorganic cations, sugars and amino acids was also tested. PMID:11205518

  11. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  12. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    NASA Astrophysics Data System (ADS)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  13. Recent advances in flow injection analysis.

    PubMed

    Trojanowicz, Marek; Kołacińska, Kamila

    2016-04-01

    A dynamic development of methodologies of analytical flow injection measurements during four decades since their invention has reinforced the solid position of flow analysis in the arsenal of techniques and instrumentation of contemporary chemical analysis. With the number of published scientific papers exceeding 20 000, and advanced instrumentation available for environmental, food, and pharmaceutical analysis, flow analysis is well established as an extremely vital field of modern flow chemistry, which is developed simultaneously with methods of chemical synthesis carried out under flow conditions. This review work is based on almost 300 original papers published mostly in the last decade, with special emphasis put on presenting novel achievements from the most recent 2-3 years in order to indicate current development trends of this methodology. Besides the evolution of the design of whole measuring systems, and including especially new applications of various detections methods, several aspects of implications of progress in nanotechnology, and miniaturization of measuring systems for application in different field of modern chemical analysis are also discussed. PMID:26906258

  14. Residual aqueous ozone determination by gas diffusion flow injection analysis

    SciTech Connect

    Straka, M.R.; Gordon, G.; Pacey, G.E.

    1985-08-01

    A method for the determination of residual aqueous ozone utilizing the technique of gas diffusion flow injection analysis and the redox reagents potassium indigo trisulfonate and bis(terpyridine)iron(II) is described. The system uses a commercially available gas diffusion cell fitted with a microporous Teflon membrane to significantly reduce or eliminate potential interferences such as chlorine and oxidized forms of manganese. Detection limits of 0.03 mg/L ozone are possible with sensitivities and linear ranges comparable to the manual method. Selectivity is significantly improved and chlorine interference is reduced to 0.008 mg/L of apparent ozone for each part per million of chlorine present while oxidized manganese interference is completely eliminated. This method provides a sample throughput of 65 samples per hour. 30 references, 2 figures, 2 tables.

  15. Theoretical and experimental study of flow through turbine cascades with coolant flow injection

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Hamed, A.

    1975-01-01

    An analytical study is presented which deals with the change in the outlet flow conditions from a turbine blade row due to coolant air injection through slots. The analysis applies to small secondary to primary mass flow ratios, taking into consideration the change in boundary layer development resulting from injection. The effects of injection location, injection flow angle and injected air momentum flux are investigated. The results of the present analysis are compared with the values obtained using the mixing theory method and experimental data from cold flow tests in a turbine cascade tunnel.

  16. Numerical study of subcritical flow with fluid injection

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.

    1990-01-01

    It is suggested that the study of synthetic flows, where controlled experiments can be performed, is useful in understanding turbulent flow structures. The early states of formation of hairpin structures in shear flows and the subsequent evolution of these structures is studied in shear flows and the subsequent evolution of these structures is studied through numerical simulations, by developing full-time dependent three-dimensional flow solution of an initially laminar (subcritical) flow in which injection of fluid through a narrow streamwise slot from the bottom wall of a plate is carried out. Details of the numerical approach and significance of the present findings are reported in this work.

  17. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  18. Downstream influence of swept slot injection in hypersonic turbulent flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. B.

    1977-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection were investigated. The data were compared with that for unswept slots, and it was found that cooling effectiveness and skin friction reductions are not significantly affected by sweeping the slot.

  19. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  20. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  1. Axisymmetric flows from fluid injection into a confined porous medium

    NASA Astrophysics Data System (ADS)

    Guo, Bo; Zheng, Zhong; Celia, Michael A.; Stone, Howard A.

    2016-02-01

    We study the axisymmetric flows generated from fluid injection into a horizontal confined porous medium that is originally saturated with another fluid of different density and viscosity. Neglecting the effects of surface tension and fluid mixing, we use the lubrication approximation to obtain a nonlinear advection-diffusion equation that describes the time evolution of the sharp fluid-fluid interface. The flow behaviors are controlled by two dimensionless groups: M, the viscosity ratio of displaced fluid relative to injected fluid, and Γ, which measures the relative importance of buoyancy and fluid injection. For this axisymmetric geometry, the similarity solution involving R2/T (where R is the dimensionless radial coordinate and T is the dimensionless time) is an exact solution to the nonlinear governing equation for all times. Four analytical expressions are identified as asymptotic approximations (two of which are new solutions): (i) injection-driven flow with the injected fluid being more viscous than the displaced fluid (Γ ≪ 1 and M < 1) where we identify a self-similar solution that indicates a parabolic interface shape; (ii) injection-driven flow with injected and displaced fluids of equal viscosity (Γ ≪ 1 and M = 1), where we find a self-similar solution that predicts a distinct parabolic interface shape; (iii) injection-driven flow with a less viscous injected fluid (Γ ≪ 1 and M > 1) for which there is a rarefaction wave solution, assuming that the Saffman-Taylor instability does not occur at the reservoir scale; and (iv) buoyancy-driven flow (Γ ≫ 1) for which there is a well-known self-similar solution corresponding to gravity currents in an unconfined porous medium [S. Lyle et al. "Axisymmetric gravity currents in a porous medium," J. Fluid Mech. 543, 293-302 (2005)]. The various axisymmetric flows are summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime

  2. Flow in a porous nozzle with massive wall injection

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.

    1973-01-01

    An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.

  3. Flow regimes for fluid injection into a confined porous medium

    SciTech Connect

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governing equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.

  4. Flow regimes for fluid injection into a confined porous medium

    DOE PAGESBeta

    Zheng, Zhong; Guo, Bo; Christov, Ivan C.; Celia, Michael A.; Stone, Howard A.

    2015-02-24

    We report theoretical and numerical studies of the flow behaviour when a fluid is injected into a confined porous medium saturated with another fluid of different density and viscosity. For a two-dimensional configuration with point source injection, a nonlinear convection–diffusion equation is derived to describe the time evolution of the fluid–fluid interface. In the early time period, the fluid motion is mainly driven by the buoyancy force and the governing equation is reduced to a nonlinear diffusion equation with a well-known self-similar solution. In the late time period, the fluid flow is mainly driven by the injection, and the governingmore » equation is approximated by a nonlinear hyperbolic equation that determines the global spreading rate; a shock solution is obtained when the injected fluid is more viscous than the displaced fluid, whereas a rarefaction wave solution is found when the injected fluid is less viscous. In the late time period, we also obtain analytical solutions including the diffusive term associated with the buoyancy effects (for an injected fluid with a viscosity higher than or equal to that of the displaced fluid), which provide the structure of the moving front. Numerical simulations of the convection–diffusion equation are performed; the various analytical solutions are verified as appropriate asymptotic limits, and the transition processes between the individual limits are demonstrated.« less

  5. Determination of Acidity Constants by Gradient Flow-Injection Titration

    ERIC Educational Resources Information Center

    Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.

    2006-01-01

    A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…

  6. Determination of Reaction Stoichiometries by Flow Injection Analysis.

    ERIC Educational Resources Information Center

    Rios, Angel; And Others

    1986-01-01

    Describes a method of flow injection analysis intended for calculation of complex-formation and redox reaction stoichiometries based on a closed-loop configuration. The technique is suitable for use in undergraduate laboratories. Information is provided for equipment, materials, procedures, and sample results. (JM)

  7. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  8. Enhancing resolution of free-flow zone electrophoresis via a simple sheath-flow sample injection.

    PubMed

    Yang, Ying; Kong, Fan-Zhi; Liu, Ji; Li, Jun-Min; Liu, Xiao-Ping; Li, Guo-Qing; Wang, Ju-Fang; Xiao, Hua; Fan, Liu-Yin; Cao, Cheng-Xi; Li, Shan

    2016-07-01

    In this work, a simple and novel sheath-flow sample injection method (SFSIM) is introduced to reduce the band broadening of free-flow zone electrophoresis separation in newly developed self-balance free-flow electrophoresis instrument. A needle injector was placed in the center of the separation inlet, into which the BGE and sample solution were pumped simultaneously. BGE formed sheath flow outside the sample stream, resulting in less band broadening related to hydrodynamics and electrodynamics. Hemoglobin and C-phycocyanin were successfully separated by the proposed method in contrast to the poor separation of free-flow electrophoresis with the traditional injection method without sheath flow. About 3.75 times resolution enhancement could be achieved by sheath-flow sample injection method. PMID:27121853

  9. Flow-injection chemiluminescence determination of chlorinated isocyanuric acids.

    PubMed

    Safavi, Afsaneh; Karimi, Mohammad Ali

    2003-02-01

    A rapid and sensitive flow-injection chemiluminescence method is described for the determination of dichloro- and trichloroisocyanuric acids based on the chemiluminescence produced during their reaction with luminol in alkaline medium. The effects of analytical and flow-injection variables on these chemiluminescence systems and determination of both oxidants are discussed. The optimized method yielded 3sigma detection limits of 8x10(-8) and 5x10(-8) mol L(-1) for the sodium dichloroisocyanurate and trichloroisocyanuric acid, respectively. The optimum conditions were found to be as follows: NaOH, 1x10(-1) mol L(-1); luminol, 5x10(-3) mol L(-1); KI, 2x10(-3) mol L(-1) and flow rate, 3.5 mL min(-1). PMID:12589508

  10. Adaptive Discrete Equation Method for injection of stochastic cavitating flows

    NASA Astrophysics Data System (ADS)

    Geraci, Gianluca; Rodio, Maria Giovanna; Iaccarino, Gianluca; Abgrall, Remi; Congedo, Pietro

    2014-11-01

    This work aims at the improvement of the prediction and of the control of biofuel injection for combustion. In fact, common injector should be optimized according to the specific physical/chemical properties of biofuels. In order to attain this scope, an optimized model for reproducing the injection for several biofuel blends will be considered. The originality of this approach is twofold, i) the use of cavitating two-phase compressible models, known as Baer & Nunziato, in order to reproduce the injection, and ii) the design of a global scheme for directly taking into account experimental measurements uncertainties in the simulation. In particular, stochastic intrusive methods display a high efficiency when dealing with discontinuities in unsteady compressible flows. We have recently formulated a new scheme for simulating stochastic multiphase flows relying on the Discrete Equation Method (DEM) for describing multiphase effects. The set-up of the intrusive stochastic method for multiphase unsteady compressible flows in quasi 1D configuration will be presented. The target test-case is a multiphase unsteady nozzle for injection of biofuels, described by complex thermodynamics models, for which experimental data and associated uncertainties are available.

  11. Theory of Gas Injection: Interaction of Phase Behavior and Flow

    NASA Astrophysics Data System (ADS)

    Dindoruk, B.

    2015-12-01

    The theory of gas injection processes is a central element required to understand how components move and partition in the reservoir as one fluid is displacing another (i.e., gas is displacing oil). There is significant amount of work done in the area of interaction of phase-behavior and flow in multiphase flow conditions. We would like to present how the theory of gas injection is used in the industry to understand/design reservoir processes in various ways. The tools that are developed for the theory of gas injection originates from the fractional flow theory, as the first solution proposed by Buckley-Leveret in 1940's, for water displacing oil in porous media. After 1960's more and more complex/coupled equations were solved using the initial concept(s) developed by Buckley-Leverett, and then Welge et al. and others. However, the systematic use of the fractional flow theory for coupled set of equations that involves phase relationships (EOS) and phase appearance and disappearance was mainly due to the theory developed by Helfferich in early 80's (in petroleum literature) using method of characteristics primarily for gas injection process and later on by the systematic work done by Orr and his co-researchers during the last two decades. In this talk, we will present various cases that use and extend the theory developed by Helfferich and others (Orr et al., Lake et al. etc.). The review of various injection systems reveals that displacement in porous media has commonalities that can be represented with a unified theory for a class of problems originating from the theory of gas injection (which is in a way generalized Buckley-Leverett problem). The outcome of these solutions can be used for (and are not limited to): 1) Benchmark solutions for reservoir simulators (to quantify numerical dispersion, test numerical algorithms) 2) Streamline simulators 3) Design of laboratory experiments and their use (to invert the results) 4) Conceptual learning and to investigate

  12. Flow injection analysis with amperometric detection of naltrexone in pharmaceuticals.

    PubMed

    Fernández-Abedul, M T; Costa-García, A

    1997-09-01

    Flow injection analysis (FIA) with amperometric detection using a carbon paste electrode is applied to the determination of naltrexone. The sample solution was injected into the carrier stream of 0.1 M perchloric acid, being determined by oxidation at +1.0 V vs. Ag/AgCl/sat. KCl using a flow rate of 4 ml min-1. A relative standard deviation of 1.5% was calculated for a concentration level of 10(-5) M (n = 17) without carrying out a carbon paste electrode pretreatment. Calibration curves were found to be linear between 2 x 10(-8) and 10(-5) M (almost three orders of magnitude) and the method has a detection limit of 2 x 10(-8) M. A simple and reproducible procedure is proposed for the determination of naltrexone in pharmaceuticals. The results compared favourably with those obtained by an HPLC-UV method. PMID:9447547

  13. Injection Induced Mixing in Flows Separating From Smooth Surfaces

    NASA Technical Reports Server (NTRS)

    Adamczyk, John J. (Technical Monitor); Wundrow, David W.

    2004-01-01

    An analytic model for predicting the effect of unsteady local surface injection on the flow separating from a streamlined body at angle of attack is proposed. The model uses the premise that separation control results from enhanced mixing along the shear layer that develops between the main stream and the fluid in the underlying recirculation zone. High-Reynolds-number asymptotic methods are used to connect the unsteady surface injection to an instability wave propagating on the separating shear layer and then to the large-scale coherent structures that produce the increased mixing. The results is a tool that can guide the choice of fluid-actuator parameters to maximize flow-control effectiveness and may also facilitate computer-based numerical experiments.

  14. Flow Injection as a Teaching Tool for Gravimetric Analysis

    NASA Astrophysics Data System (ADS)

    Sartini, Raquel P.; Zagatto, Elias A. G.; Oliveira, Cláudio C.

    2000-06-01

    A flow-injection system to carry out gravimetric analysis is presented. Students are faced with an instrumental approach for gravimetric procedures. Crucibles, muffle furnaces, and desiccators are not required. A flowing suspension is established by simultaneously injecting an aqueous sample and a precipitating reagent into two merging carrier streams. The precipitate is accumulated on a minifilter hanging under the plate of an analytical balance and is weighed inside the main stream. Since Archimedes' principle holds, a drying step is not needed. After measurement, the precipitate is dissolved and disposed of. As an application, the determination of phosphate based on precipitation with ammonium and magnesium ions in slightly alkaline medium is chosen. The proposed system is very stable and well suited for demonstration. When applied to analysis of fertilizer extracts with 0.10-1.00% w/v P, it yields precise results (RSD < 0.042) in agreement with an official spectrophotometric method.

  15. Method and apparatus for continuous flow injection extraction analysis

    DOEpatents

    Hartenstein, Steven D.; Siemer, Darryl D.

    1992-01-01

    A method and apparatus for a continuous flow injection batch extraction aysis system is disclosed employing extraction of a component of a first liquid into a second liquid which is a solvent for a component of the first liquid, and is immiscible with the first liquid, and for separating the first liquid from the second liquid subsequent to extraction of the component of the first liquid.

  16. A Homemade Autosampler/Injector Commutator for Flow Injection Analysis

    PubMed Central

    de Figueiredo, Eduardo Costa; de Souza, Leandro Ruela; de Magalhães, Cristiana Schmidt; Wisniewski, Célio

    2006-01-01

    An autosampler/injector commutator for flow injection analysis (FIA) was constructed with electronic components of used equipments. The apparatus is controlled by commercially available multifunctional interface (PCL711B) connected to a personal computer, and the software was written in Visual Basic language. The system was applied to water analysis and it presented satisfactory results. The low cost and simplicity are the principal characteristics of the autosampler/injector commutator. PMID:17671617

  17. Flow Simulation of Solid Rocket Motors. 1; Injection Induced Water-Flow Tests from Porous Media

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Yeh, Y. P.; Smith, A. W.; Heaman, J. P.

    1999-01-01

    Prior to selecting a proper porous material for use in simulating the internal port flow of a solid rocket motor (SRM), in cold-flow testing, the flow emerging from porous materials is experimentally investigated. The injection-flow emerging from a porous matrix always exhibits a lumpy velocity profile that is spatially stable and affects the development of the longitudinal port flow. This flow instability, termed pseudoturbulence, is an inherent signature of the porous matrix and is found to generally increase with the wall porosity and with the injection flow rate. Visualization studies further show that the flow from porous walls made from shaving-type material (sintered stainless-steel) exhibits strong recirculation zones that are conspicuously absent in walls made from nodular or spherical material (sintered bronze). Detailed flow visualization observations and hot-film measurements are reported from tests of injection-flow and a coupled cross-flow from different porous wall materials. Based on the experimental data, discussion is provided on the choice of suitable material for SRM model testing while addressing the consequences and shortcomings from such a test.

  18. Transverse jet injection into a supersonic turbulent cross-flow

    NASA Astrophysics Data System (ADS)

    Rana, Z. A.; Thornber, B.; Drikakis, D.

    2011-04-01

    Jet injection into a supersonic cross-flow is a challenging fluid dynamics problem in the field of aerospace engineering which has applications as part of a rocket thrust vector control system for noise control in cavities and fuel injection in scramjet combustion chambers. Several experimental and theoretical/numerical works have been conducted to explore this flow; however, there is a dearth of literature detailing the instantaneous flow which is vital to improve the efficiency of the mixing of fluids. In this paper, a sonic jet in a Mach 1.6 free-stream is studied using a finite volume Godunov type implicit large eddy simulations technique, which employs fifth-order accurate MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) scheme with modified variable extrapolation and a three-stage second-order strong-stability-preserving Runge-Kutta scheme for temporal advancement. A digital filter based turbulent inflow data generation method is implemented in order to capture the physics of the supersonic turbulent boundary layer. This paper details the averaged and instantaneous flow features including vortex structures downstream of the jet injection, along with the jet penetration, jet mixing, pressure distributions, turbulent kinetic energy, and Reynolds stresses in the downstream flow. It demonstrates that Kelvin-Helmholtz type instabilities in the upper jet shear layer are primarily responsible for mixing of the two fluids. The results are compared to experimental data and recently performed classical large eddy simulations (LES) with the same initial conditions in order to demonstrate the accuracy of the numerical methods and utility of the inflow generation method. Results here show equivalent accuracy for 1/45th of the computational resources used in the classical LES study.

  19. Quantitation of glycerophosphorylcholine by flow injection analysis using immobilized enzymes.

    PubMed

    Mancini, A; Del Rosso, F; Roberti, R; Caligiana, P; Vecchini, A; Binaglia, L

    1996-09-20

    A method for quantitating glycerophosphorylcholine by flow injection analysis is reported in the present paper. Glycerophosphorylcholine phosphodiesterase and choline oxidase, immobilized on controlled porosity glass beads, are packed in a small reactor inserted in a flow injection manifold. When samples containing glycerophosphorylcholine are injected, glycerophosphorylcholine is hydrolyzed into choline and sn-glycerol-3-phosphate. The free choline produced in this reaction is oxidized to betain and hydrogen peroxide. Hydrogen peroxide is detected amperometrically. Quantitation of glycerophosphorylcholine in samples containing choline and phosphorylcholine is obtained inserting ahead of the reactor a small column packed with a mixed bed ion exchange resin. The time needed for each determination does not exceed one minute. The present method, applied to quantitate glycerophosphorylcholine in samples of seminal plasma, gave results comparable with those obtained using the standard enzymatic-spectrophotometric procedure. An alternative procedure, making use of co-immobilized glycerophosphorylcholine phosphodiesterase and glycerol-3-phosphate oxidase for quantitating glycerophosphorylcholine, glycerophosphorylethanolamine and glycerophosphorylserine is also described. PMID:8905629

  20. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    PubMed Central

    Ojeda, Catalina Bosch; Rojas, Fuensanta Sánchez

    2006-01-01

    Optical techniques for chemical analysis are well established and sensors based on these techniques are now attracting considerable attention because of their importance in applications such as environmental monitoring, biomedical sensing, and industrial process control. On the other hand, flow injection analysis (FIA) is advisable for the rapid analysis of microliter volume samples and can be interfaced directly to the chemical process. The FIA has become a widespread automatic analytical method for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, and ease of assembling. In this paper, an overview of flow injection determinations by using optical chemical sensors is provided, and instrumentation, sensor design, and applications are discussed. This work summarizes the most relevant manuscripts from 1980 to date referred to analysis using optical chemical sensors in FIA.

  1. Sonic injection through diamond orifices into a hypersonic flow

    NASA Astrophysics Data System (ADS)

    Fan, Huaiguo

    The objective for the present study was to experimentally characterize the performance of diamond shaped injectors for hypersonic flow applications. First, an extensive literature review was performed. Second, a small scale Mach 5.0 wind tunnel facility was installed. Third, a detailed experimental parametric investigation of sonic injection through a diamond orifice (five incidence angles and three momentum ratios) and a circular injector (three momentum ratios) into the Mach 5.0 freestream was performed. Also, the use of downstream plume vorticity control ramps was investigated. Fourth, a detailed analysis of the experimental data to characterize and model the flow for the present range of conditions was achieved. The experimental techniques include surface oil flow visualization, Mie-Scattering flow visualization, particle image velocimetry (PIV), shadowgraph photograph, and a five-hole mean flow probe. The results show that the diamond injectors have the potential to produce attached shock depending on the incidence angle and jet momentum ratio. For example, the incidence angles less than or equal to 45° at J = 0.43 generated attached interaction shocks. The attached shock produced reduced total pressure loss (drag for scramjet) and eliminated potential hot spots, associated with the upstream flow separation. The jet interaction shock angle increased with jet incidence angle and momentum ratio due to increased penetration and flow disturbances. The plume penetration and cross-sectional area increased with incidence angle and momentum ratio. The increased jet interaction shock angle and strength produced increased total pressure loss, jet interaction force and total normal force. The characteristic kidney bean shaped plume was not discernable from the diamond injectors indicating increased effectiveness for film cooling applications. A vorticity generation ramp increased the penetration of the plume and the plume shape was indicative of higher levels of

  2. Experiment on fuel injection in high-enthalpy flow

    NASA Astrophysics Data System (ADS)

    Tanno, Hideyuki; Komuro, Tomoyuki; Sato, Kazuo; Itoh, Katsuhiro; Ueda, Shuichi

    2001-04-01

    An experiment of inert gas injection into a high enthalpy hypersonic air flow is described. Gaseous helium at room temperature was injected transversely through four (phi) 1.5 mm circular sonic injectors at a spacing of 20 mm, which was located 28 mm downstream from a backward-facing step of 4 mm height. The experiment was carried out in the high enthalpy shock tunnel HIEST under the free stream test condition at Mach number of 6.5 and at the velocity of 4 km/s. The purpose of the experiment was to examine transient behavior of the helium jet mixing with the test air flow. Sequential Schlieren flow visualization with high-speed CCD camera of 1 (mu) sec exposure time have been used. Pitot pressure profile in the helium jet was measured at three stream-wise location. The measurements showed that the helium jet reached to the steady state in less than 2 msec, which was within HIEST test duration.

  3. Novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysis

    SciTech Connect

    Trojanek, A.; Bruckenstein, S.

    1986-04-01

    A gas porous electrode structure that detects volatile electroactive species in a flowing liquid stream is described and evaluated for its utility in flow injection analysis. The electrode is fabricated by depositing a porous gold layer on one side of a porous Teflon membrane. The gold serves as the amperometric electrode which consumes dissolved, volatile species that is transported from the flowing solution through the membrane to the metalized face where it is electrolyzed. Nitrite ion is determined by reaction in the carrier stream to produce nitric oxide and iodine, and both are electroxidized at the gold electrode. The detection limit is 30 pg of nitrite ion. Dissolved, nonvolatile electroactive species do not interfere. 17 references, 3 figures.

  4. Reference Solutions for Benchmark Turbulent Flows in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.

    2016-01-01

    A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.

  5. Effect of injection wells with partially perforated completion on CO2/brine flow distribution and injectivity

    NASA Astrophysics Data System (ADS)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Jung, N. H.

    2014-12-01

    Carbon Capture and Sequestration is a viable technology to reduce the concentration of anthropogenic carbon dioxide emitted into the atmosphere. The success of an injection project requires large amounts of dry supercritical CO2 to be injected into brine saturated aquifers within the subsurface. However, solid salt precipitation causes a reduction of permeability, having adverse effects on well injectivity as well as pressure build-up. This study evaluated the accumulation of precipitated salt, brine flux patterns, and pressure build-up for two well constructions, 1) partially completed with 4 injection intervals and 2) fully completed throughout the thickness of the target formation. This study found that when a partially completed well is implemented, precipitation of solid salt experiences a greater radial extent then a fully completed well. Both well designs showed non-localized salt precipitation in low permeability formations (5 and 50 mD) and localized salt precipitation at high permeability (250 and 500 mD). It was also found that two different brine flux patterns occurred; under low-k conditions the brine flux was primarily outward and parallel to the direction of the CO2 migration and salt precipitation became limited. While under high-k conditions there developed back-flow of the brine to the tail of the plume as the plume experienced greater vertical movement, and the counter-flowing brine sustained the precipitation process amplifying salt precipitation. When this process occurred the permeability reduction factor became orders of magnitude less then when non-localized salt precipitation occurred, and formed an impermeable barrier around the injection well. The formation of this barrier was found to have the effect of increasing the pressure build-up near the well in regions of the reservoir in which it occurred. A sensitivity analysis on the anisotropic/isotropic nature of the reservoir and the value of the critical porosity was also conducted. The

  6. Sensitive flow-injection spectrophotometric analysis of bromopride

    NASA Astrophysics Data System (ADS)

    Lima, Liliane Spazzapam; Weinert, Patrícia Los; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-01

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax = 565 nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63 × 10-7 to 2.90 × 10-5 mol L-1, with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07 × 10-7 and 3.57 × 10-7 mol L-1, respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps.

  7. Simple and clean determination of tetracyclines by flow injection analysis

    NASA Astrophysics Data System (ADS)

    Rodríguez, Michael Pérez; Pezza, Helena Redigolo; Pezza, Leonardo

    2016-01-01

    An environmentally reliable analytical methodology was developed for direct quantification of tetracycline (TC) and oxytetracycline (OTC) using continuous flow injection analysis with spectrophotometric detection. The method is based on the diazo coupling reaction between the tetracyclines and diazotized sulfanilic acid in a basic medium, resulting in the formation of an intense orange azo compound that presents maximum absorption at 434 nm. Experimental design was used to optimize the analytical conditions. The proposed technique was validated over the concentration range of 1 to 40 μg mL- 1, and was successfully applied to samples of commercial veterinary pharmaceuticals. The detection (LOD) and quantification (LOQ) limits were 0.40 and 1.35 μg mL- 1, respectively. The samples were also analyzed by an HPLC method, and the results showed agreement with the proposed technique. The new flow injection method can be immediately used for quality control purposes in the pharmaceutical industry, facilitating monitoring in real time during the production processes of tetracycline formulations for veterinary use.

  8. Sensitive flow-injection spectrophotometric analysis of bromopride.

    PubMed

    Lima, Liliane Spazzapam; Los Weinert, Patrícia; Pezza, Leonardo; Pezza, Helena Redigolo

    2014-12-10

    A flow injection spectrophotometric procedure employing merging zones is proposed for direct bromopride determination in pharmaceutical formulations and biological fluids. The proposed method is based on the reaction between bromopride and p-dimethylaminocinnamaldehyde (p-DAC) in acid medium, in the presence of sodium dodecyl sulfate (SDS), resulting in formation of a violet product (λmax=565nm). Experimental design methodologies were used to optimize the experimental conditions. The Beer-Lambert law was obeyed in a bromopride concentration range of 3.63×10(-7) to 2.90×10(-5)molL(-1), with a correlation coefficient (r) of 0.9999. The limits of detection and quantification were 1.07×10(-7) and 3.57×10(-7)molL(-1), respectively. The proposed method was successfully applied to the determination of bromopride in pharmaceuticals and human urine, and recoveries of the drug from these media were in the ranges 99.6-101.2% and 98.6-102.1%, respectively. This new flow injection procedure does not require any sample pretreatment steps. PMID:24992919

  9. Flow characteristics of spray impingement in PFI injection systems

    NASA Astrophysics Data System (ADS)

    Panão, M. R. O.; Moreira, A. L. N.

    2005-08-01

    The present paper addresses an experimental study of the dynamic exchanges between the impact of an intermittent spray and the liquid film formed over the target, based on detailed phase Doppler anemometry (PDA) measurements of droplet size, velocity and volume flux in the vicinity of the impact. The flow configuration is that of a pulsed injector spraying gasoline onto a flat disc to simulate the port fuel injection (PFI) of an internal combustion engine operating at cold-start conditions. The measurements evidence that the outcome of impact cannot be accurately predicted based on the characteristics of the free spray, but requires precise knowledge of the flow structure, induced by the target. The implications for spray wall interaction modelling are then discussed based on the application of conservation equations to the mass, momentum and energy exchanged between the impinging droplets and the liquid film. The results show that the liquid film starts to form in the vicinity of the stagnation region at early stages of injection and a non-negligible proportion of droplets impinging at outer regions splash after interaction with the film. Film disruption is mainly driven by the intermittent axial momentum of impinging droplets, which enhances the vertical oscillations. The radial momentum imparted to the liquid film at the stagnation region is fed back onto secondary droplets emerging later during the injection cycle at outwards locations, where momentum of impacting droplets is much smaller. As a consequence, although the number of splashed droplets is enhanced by normal momentum, their size and ejection velocity depends more on the radial spread induced onto the liquid film and, hence, on the radial momentum at impact. The analysis further shows that existing spray wall interaction models can be improved if the dynamic exchanges between the impacting spray and the liquid film are accounted.

  10. Holographic interferometry with an injection seeded Nd:YAG laser and two reference beams

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    1989-01-01

    The performance of twin injection seeded Nd:YAG lasers is compared with the performance of an argon-ion laser for recording dual-reference-beam holograms in AGFA 8E56 emulsion. Optical heterodyning is used to measure interference, and the results are expressed in terms of heterodyning signal level and intensity signal-to-noise. The Nd:YAG laser system is to be used for optical inspections of structures for cracks, defects, gas leaks, and structural changes.

  11. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.

    PubMed

    Karuwan, Chanpen; Wisitsoraat, Anurat; Maturos, Thitima; Phokharatkul, Disayut; Sappat, Assawapong; Jaruwongrungsee, Kata; Lomas, Tanom; Tuantranont, Adisorn

    2009-09-15

    A microfabicated flow injection device has been developed for in-channel electrochemical detection (ECD) of a beta-agonist, namely salbutamol. The microfluidic system consists of PDMS (polydimethylsiloxane) microchannel and electrochemical electrodes formed on glass substrate. The carbon nanotube (CNT) on gold layer as working electrode, silver as reference electrode and platinum as auxiliary electrode were deposited on a glass substrate. Silver, platinum, gold and stainless steel catalyst layers were coated by DC-sputtering. CNTs were then grown on the glass substance by thermal chemical vapor deposition (CVD) with gravity effect and water-assisted etching. 100-microm-deep and 500-microm-wide PDMS microchannels fabricated by SU-8 molding and casting were then bonded on glass substrate by oxygen plasma treatment. Flow injection and ECD of salbutamol was performed with the amperometric detection mode for in-channel detection of salbutamol. The influences of flow rate, injection volume, and detection potential on the response of current signal were optimized. Analytical characteristics, such as sensitivity, repeatability and dynamic range have been evaluated. Fast and highly sensitive detection of salbutamol have been achieved. Thus, the proposed combination of the efficient CNT electrode and miniaturized lab-on-a-chip is a powerful platform for beta-agonists detection. PMID:19615498

  12. Three-dimensional computations of cross-flow injection and combustion in a supersonic flow

    NASA Technical Reports Server (NTRS)

    Carpenter, M. H.

    1989-01-01

    A low-storage version of the SPARK3D code which is based on the temporally second-order accurate MacCormack (1969) explicit scheme is used to solve the governing equations for three-dimensional chemically reacting flows with finite-rate chemistry. The code includes a fourth-order compact spatial scheme capable of providing higher order spatial accuracy, and it is used to study two-dimensional linear advection, two-dimensional Euler flow, and three-dimensional viscous flow. Also considered are the injection, mixing, and combustion of hydrogen in a supersonic cross stream.

  13. From continuous flow analysis to programmable Flow Injection techniques. A history and tutorial of emerging methodologies.

    PubMed

    Ruzicka, Jaromir Jarda

    2016-09-01

    Automation of reagent based assays, also known as Flow Analysis, is based on sample processing, in which a sample flows towards and through a detector for monitoring of its components. The Achilles heel of this methodology is that the majority of FA techniques use constant continuous forward flow to transport the sample - an approach which continually consumes reagents and generates chemical waste. Therefore the purpose of this report is to highlight recent developments of flow programming that not only save reagents, but also lead by means of advanced sample processing to selective and sensitive assays based on stop flow measurement. Flow programming combined with a novel approach to data harvesting yields a novel approach to single standard calibration, and avoids interference caused by refractive index. Finally, flow programming is useful for sample preparation, such as rapid, extensive sample dilution. The principles are illustrated by selected references to an available online tutorial http://www.flowinjectiontutorial,com/. PMID:27343609

  14. Qualitative investigation of cryogenic fluid injection into a supersonic flow field

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Boldman, D. R.; Neumann, H. E.; Vlcek, B. L.

    1990-01-01

    The behavior of liquid nitrogen injected into a supersonic nitrogen flow field was investigated using an experimental apparatus in which a Mach 2.7 2D gas nitrogen tunnel is coupled with a high-pressure cryogenic source. Observations were monitored and recorded via a video camera and a motion picture camera. It was found that the penetration of a supersonic flow field by injection of liquid nitrogen is strongly dependent on the flow Mach number, the cryogen injection pressure (Pi/Pc), the injector configuration, and the cryogen temperature. For a 2D gaseous N2, Mach 2.7 tunnel, with cryogen injection Pi/Pc approaching 2, the injected fluid penetration for the 1/8-in. injection port approached one half of the tunnel width at 90-deg injection, and one fourth of the tunnel width at 20-deg injection.

  15. A flow injection flow cytometry system for on-line monitoring of bioreactors.

    PubMed

    Zhao, R; Natarajan, A; Srienc, F

    1999-03-01

    For direct and on-line study of the physiological states of cell cultures, a robust flow injection system has been designed and interfaced with flow cytometry (FI-FCM). The core of the flow injection system includes a microchamber designed for sample processing. The design of this microchamber allows not only an accurate on-line dilution but also on-line cell fixation, staining, and washing. The flow injection part of the system was tested by monitoring the optical density of a growing E.coli culture on-line using a spectrophotometer. The entire growth curve, from lag phase to stationary phase, was obtained with frequent sampling. The performance of the entire FI-FCM system is demonstrated in three applications. The first is the monitoring of green fluorescent protein fluorophore formation kinetics in E.coli by visualizing the fluorescence evolution after protein synthesis is inhibited. The data revealed a subpopulation of cells that do not become fluorescent. In addition, the data show that single-cell fluorescence is distributed over a wide range and that the fluorescent population contains cells that are capable of reaching significantly higher expression levels than that indicated by the population average. The second application is the detailed flow cytometric evaluation of the batch growth dynamics of E.coli expressing Gfp. The collected single-cell data visualize the batch growth phases and it is shown that a state of balanced growth is never reached by the culture. The third application is the determination of distribution of DNA content of a S. cerevisiae population by automatically staining cells using a DNA-specific stain. Reproducibility of the on-line staining reaction shows that the system is not restricted to measuring the native properties of cells; rather, a wider range of cellular components could be monitored after appropriate sample processing. The system is thus particularly useful because it operates automatically without direct operator

  16. Effect of injected polymer thread on turbulence in a pipe flow

    NASA Astrophysics Data System (ADS)

    Usui, Hiromoto; Sano, Yuji

    The effect of polymer threads injected into a shear pipe flow on the properties of the flow were investigated using an experimental setup similar to that described by Usui et al. (1987). The velocity data on the injected threads were obtained separately from the water-phase velocity in the pipe flow. Results showed that polymer threads moved with higher velocity and that both the radial fluctuation and the Reynolds stress of the flow were significantly suppressed, demonstrating that an injection of highly viscoelastic polymer solution into a turbulent pipe flow is an effective method for controlling turbulence.

  17. Remote calorimetric detection of urea via flow injection analysis.

    PubMed

    Gaddes, David E; Demirel, Melik C; Reeves, W Brian; Tadigadapa, Srinivas

    2015-12-01

    The design and development of a calorimetric biosensing system enabling relatively high throughput sample analysis are reported. The calorimetric biosensor system consists of a thin (∼20 μm) micromachined Y-cut quartz crystal resonator (QCR) as a temperature sensor placed in close proximity to a fluidic chamber packed with an immobilized enzyme. Layer by layer enzyme immobilization of urease is demonstrated and its activity as a function of the number of layers, pH, and time has been evaluated. This configuration enables a sensing system where a transducer element is physically separated from the analyte solution of interest and is thereby free from fouling effects typically associated with biochemical reactions occuring on the sensor surface. The performance of this biosensing system is demonstrated by detection of 1-200 mM urea in phosphate buffer via a flow injection analysis (FIA) technique. Miniaturized fluidic systems were used to provide continuous flow through a reaction column. Under this configuration the biosensor has an ultimate resolution of less than 1 mM urea and showed a linear response between 0-50 mM. This work demonstrates a sensing modality in which the sensor itself is not fouled or contaminated by the solution of interest and the enzyme immobilized Kapton® fluidic reaction column can be used as a disposable cartridge. Such a system enables reuse and reliability for long term sampling measurements. Based on this concept a biosensing system is envisioned which can perform rapid measurements to detect biomarkers such as glucose, creatinine, cholesterol, urea and lactate in urine and blood continuously over extended periods of time. PMID:26479269

  18. Flow injection kinetic spectrofluorimetric determination of trace amounts of osmium

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Zhang, Hui; Wang, Yan

    2005-07-01

    A flow injection (FI) kinetic spectrofluorimetric method is described for the determination of osmium(IV) and the possible mechanism of catalytic reaction is discussed. The method is based on the fluorescence enhancing reaction of o-vanillin furfuralhydrazone (OVFH) with potassium bromate, which is catalyzed by Os(IV) in water medium at pH 6.10 and 45 °C. OVFH is newly synthesized and its ionization, IR and elemental analysis are established. Under these experimental conditions, the oxidized product of OVFH has excitation and emission maxima at 337 and 490 nm, respectively. The linear range of this method is 0-600 ng ml -1 with the R.S.D. of 1.2%. The detection limit is 1.0 ng ml -1 of Os(IV). A high analysis rate of 24 samples h -1 is obtained by the FI method. The proposed method is applied successfully to determine Os(IV) in synthetic mixture and mineral samples, and the results are well consistent with the standard values.

  19. Exploratory study of the effects of injection configurations and inlet flow conditions on the characteristics of flow in spherical chambers

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.

    1972-01-01

    Flow visualization studies were conducted to evaluate techniques for injecting simulated-fuel and simulated-propellant gases into a spherical cavity for application to open-cycle gaseous-core nuclear rockets. Preliminary studies were conducted with six simulated-fuel injectors and eight simulated-propellant injection configurations. Additional tests were conducted with the best configuration to determine the effect of weight-flow ratio, gas density ratio, injector location, and flow distribution on the simulated-fuel containment characteristics.

  20. Numerical simulation of injection and mixing in supersonic flow

    NASA Astrophysics Data System (ADS)

    Cox-Stouffer, Susan K.

    A numerical investigation of the performance of two candidate designs for injection into supersonic flow, including a comparison of two renormalized group theory (RNG) based K-epsilon turbulence models with a more conventional K-epsilon model. The chosen designs were an unswept ramp injector with four injection ports and a novel nine-hole injector array. The objectives of the investigation were to provide reliable computational solutions to the flowfields in question using both RNG and standard K-epsilon turbulence models and to compare the solutions to experiment, thereby to judge the relative performance of the turbulence models. A second objective of the investigation was to use the computed data to provide design insights for the nine-hole injector array. This investigation made use of GASP(TM) version 2.2, a commercial computational fluid dynamics code that was augmented by the addition of one RNG-based K-epsilon turbulence model derived by Zhou, et al. and one variant of Zhou's model, which was derived by the author. Mesh sequencing studies were performed to measure solution quality, with the fine mesh for the injector array containing roughly one million grid nodes and the fine mesh for the ramp injector containing more than six million grid nodes. Results of these studies indicated that the injector-array solution was significantly under-resolved in the farfield, though the quality was better in the vicinity of the injector itself. The ramp-injector solution, while not perfectly grid-resolved, showed much better grid convergence in both the nearfield and farfield. Accordingly, comparison with experiment was better for the ramp injector than for the injector array. For both injectors, the differences between solutions generated with RNG-base K-epsilon and standard K-epsilon turbulence models was negligibly small. Despite inadequate grid resolution in the farfield, the computational investigation of the nine-hole injector array did yield several important

  1. Investigation of the three-dimensional turbulent flow downstream of swept slot injection in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Hefner, J. N.; Cary, A. M., Jr.; Bushnell, D. M.

    1974-01-01

    Results of an experimental and numerical investigation of tangential swept slot injection (sweep angles of 22.5 and 45 deg) into a thick turbulent boundary layer at Mach 6 are presented. Film cooling effectiveness, skin friction, and flow structure downstream of the swept slot injection are investigated. The data are compared to that for unswept slots, and it is found that cooling effectiveness and skin-friction reductions are not significantly affected by sweeping the slot. Predictions of cooling effectiveness and skin friction obtained by a numerical finite-difference technique agree reasonably well with experimental surface variables. As in previous supersonic two-dimensional slot research, reduced mixing was found downstream of the slot lip in the present three-dimensional case.

  2. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  3. Liquid core optical fiber total reflection cell as a colorimetric detector for flow injection analysis

    SciTech Connect

    Fujiwara, K.; Fuwa, K.

    1985-05-01

    A hollow fiber (250 ..mu..m i.d.) was used as a colorimetric cell for detecting iodine absorption. To attain total reflection of source light inside the capillary, carbon disulfide was used as a solvent which constitutes the fiber core. A funnel-shaped glass was used for efficiency condensing the light source emission into an aperture of hollow fiber; a low-power tungsten lamp was usable as the light source. With a 5-m cell, 0.1 ..mu..g of I/mL (10 ng of I) can be detected based on the iodine absorption at 540 nm when the solution was injected into the carbon disulfide flow. An automated detection system of iodide ion was also constructed. 11 references, 8 figures.

  4. Selective determination of chlorine dioxide using gas diffusion flow injection analysis

    SciTech Connect

    Hollowell, D.A.; Pacey, G.E.; Gordon, G.

    1985-12-01

    An automated absorbance technique for the determination of aqueous chlorine dioxide has been developed by utilizing gas diffusion flow injection analysis. A gas diffusion membrane is used to separate the donor (sampling) stream from the acceptor (detecting) stream. The absorbance of chlorine dioxide is monitored at 359 nm. The first method uses distilled water as the acceptor stream and gives a detection limit of 0.25 mg/L chlorine dioxide. This system is over 550 times more selective for chlorine dioxide than chlorine. To further minimize chlorine interference, oxalic acid is used in the acceptor stream. The detection limit for this system is 0.45 mg/L chlorine dioxide. This second system is over 5400 times more selective for chlorine dioxide than chlorine. Both methods show excellent selectivity for chlorine dioxide over iron and manganese compounds, as well as other oxychlorinated compounds such as chlorite and perchlorate ions. 18 references, 7 figures, 3 tables.

  5. Flow and transport modeling of liquid radioactive waste injection using data from the Siberian Chemical Plant Injection Site

    NASA Astrophysics Data System (ADS)

    Shestakov, V.; Kuvaev, A.; Lekhov, A.; Pozdniakov, S.; Rybalchenko, A.; Zubkov, A.; Davis, P.; Kalinina, E.

    2002-06-01

    The focus of our investigation was simulating pre-injection and post-injection subsurface conditions at the waste disposal site of liquid radioactive wastes at the Siberian Chemical Complex (SCC). The main environmental and human safety concern posed by this site is related to the potential radionuclide discharge into the nearby Tom River and into the existing public-water-supply well fields located 10-13 km away. Even though (within the site) the two lower injection aquifers are isolated from the upper aquifers by a relatively continuous aquitard, in terms of regional flow they represent one hydrogeologic system that is affected by injection as well as by groundwater withdrawal from the upper aquifers and groundwater discharge into the river. Groundwater flow and transport models were developed to simulate regional flow and waste migration. Even after 1,000 years, none of the simulations indicated that there is any serious potential of high-concentration contamination of water supply wells and the discharge zone. In that time frame, simulation indicated a potential for upward movement of some amounts of contaminants through the heterogeneous sandy-clay aquitard. That is why a conceptual model incorporating heterogeneity of the clay aquitard with the possibility of preferential flow via sandy windows needs to be developed. Additional field characterization of the aquitard properties should be performed along the potential contaminant migration pathways that lead to the groundwater discharge zone.

  6. Complex fluid flow revealed by monitoring CO2 injection in a fluvial formation

    NASA Astrophysics Data System (ADS)

    Lu, Jiemin; Cook, Paul J.; Hosseini, Seyyed A.; Yang, Changbing; Romanak, Katherine D.; Zhang, Tongwei; Freifeld, Barry M.; Smyth, Rebecca C.; Zeng, Hongliu; Hovorka, Susan D.

    2012-03-01

    At Cranfield, Mississippi, United States, a large-scale carbon dioxide (CO2) injection through an injection well (˜3,080 m deep) was continuously monitored using U-tube samplers in two observation wells located 68 and 112 m east of the injector. The Lower Tuscaloosa Formation injection zone, which consists of amalgamated fluvial point-bar and channel-fill deposits, presents an interesting environment for studying fluid flow in heterogeneous formations. Continual fluid sampling was carried out during the first month of CO2 injection. Two subsequent tracer tests using sulfur hexafluoride (SF6) and krypton were conducted at different injection rates to measure flow velocity change. The field observations showed significant heterogeneity of fluid flow and for the first time clearly demonstrated that fluid flow evolved with time and injection rate. It was found the wells were connected through numerous, separate flow pathways. CO2 flowed through an increasing fraction of the reservoir and sweep efficiency improved with time. The field study also first documented in situ component exchange between brine and gas phases during CO2 injection. It was found that CH4 degassed from brine and is enriched along the gas-water contact. Multiple injectate flow fronts with high CH4 concentration arrived at different times and led to gas composition fluctuations in the observation wells. The findings provide valuable insights into heterogeneous multiphase flow in rock formations and show that conventional geological models and static fluid flow simulations are unable to fully describe the heterogeneous and dynamic flow during fluid injection.

  7. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. The external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water ...

  8. DETECTING WATER FLOW BEHIND PIPE IN INJECTION WELLS

    EPA Science Inventory

    Regulations of the Environmental Protection Agency require that an injection well exhibit both internal and external mechanical integrity. he external mechanical integrity consideration is that there is no significant fluid movement into an underground source of drinking water th...

  9. Nonreactive viscous solver for hypersonic flows over recessed cone with injection

    SciTech Connect

    Tai, C.H.; Lee, Y.K.

    1995-01-01

    A nonreactive two-species flow in which the gas is injected from the downstream wall of the recess on a hypersonic sharp cone has been investigated by solving the steady full Navier-Stokes equations. The discretization methods have combined Roe`s scheme and multiblock grids for accurate calculations. The species equation has been included in order to simulate the flowfield by injecting different gases. The flow structure and cooling effect has been investigated at M(sub infinity) = 6.0. The flow structure of the recess has been shown by the perfect gas computational results to be significantly affected by injecting cool species gases. An optimal injection rate for the cooling effect has also been shown to exist on the downstream wall of the cone. The cooling effect of injecting helium has been shown to be better than nitrogen and air for both isothermal and adiabatic wall conditions. 18 refs.

  10. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  11. Fundamental Study on the Segmented Flow Injection - Multiphase Flow Formation Towards Microchip-Based Multi-Ion Sensing

    NASA Astrophysics Data System (ADS)

    Hisamoto, Hideaki; Horiuchi, Takayuki; Hibara, Akihide; Tokeshi, Manabu; Kitamori, Takehiko

    A new fluid flow inside the microchannel was successfully developed. The flow created here involves segmented flow injection of plural organic phases into a microchannel followed by contact with a single aqueous phase to form stable organic-aqueous two-layer flow inside the microchannel. Fundamental study on the developed flow inside the microchannel was performed by monitoring the dye-doped segmented organic phases by thermal lens microscopy (TLM). Excellent repeatability and very small injection volume in developing segmented flow were realized. The new fluid flow created here is expected to allow us multi-ion sensing, which is not easily demonstrated by conventional ion sensor technology using a solvent polymeric membrane, by combining with neutral ionophore-based ion pair extraction using plural numbers of organic phases containing different ionophore molecules.

  12. Determination of arsenic in a nickel alloy by flow injection hydride generation atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Hanna, C. P.; Tyson, J. F.; Offley, S. G.

    1992-08-01

    The development of a method for the direct determination of trace arsenic quantities in nickel alloy digests, by flow injection hydride generation atomic absorption spectrometry, is described. An optimization study of the manifold and chemical parameters produced system performance, in terms of tolerance of the nickel matrix and sensitivity, such that matrix removal and pre-reduction of As(V) to As (III) prior to arsine generation were eliminated. Full recovery of the As(V) signal from a solution containing 5 ng ml -1 in the presence of 60 μg ml -1 nickel was obtained. Validation of the method was achieved by analyzing a British Chemical Standard (BCS) Certified Reference Material (CRM) #346 IN nickel alloy containing arsenic at a concentration of 50 μg g -1. Following dissolution in nitric and hydrofluoric acids by a microwave assisted procedure, the only subsequent preparation required was dilution by the appropriate factor. Up to 60 injections h -1 may be made, with a detection limit of 0.5 ng ml -1 arsenic (250 pg absolute) as As(V) in a 500 μl sample. The peak height characteristic concentration is 0.46 ng ml -1, with a relative standard deviation of 3.5% for a 10 ng ml -1 As(V) standard ( n = 6).

  13. Differentiating organic and conventional sage by chromatographic and mass spectrometry flow-injection fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (UPLC) and flow injection electrospray ionization with ion trap mass spectrometry (FIMS) fingerprints combined with the principal component analysis (PCA) were examined for their potential in differentiating commercial organic and conventional sage samples. The...

  14. FLOW INJECTION ANALYSIS OF TRACE HYDROGEN PEROXIDE USING AN IMMOBILIZED ENZYME REACTOR (JOURNAL VERSION)

    EPA Science Inventory

    Sub-parts per billion (ppb) levels of aqueous hydrogen peroxide have been determined with a flow injection analysis system employing a single bead string reactor composed of horseradish peroxidase covalently bound to an aminated macroporous polymeric absorbent with glutaraldehyde...

  15. On-line flow injection solid sample introduction, leaching and potentiometric determination of fluoride in phosphate rock.

    PubMed

    Sweileh, Jamal A

    2007-01-01

    A flow injection method with on-line solid sample dissolution was developed for the determination of fluoride in phosphate rock. The fluoride was selectively leached (98-102.4 % recovery) from a 50-mg powdered phosphate rock sample with 0.50 M citric acid. Using the zone sampling technique the fluoride in the buffered leachate was determined by injecting 87 muL into the carrier stream using a fluoride ion-selective electrode detector. The sensing element of the electrode was housed in a home-made sleeve-type flow-through cell. On-line solid sample digestion with 0.50 M citric acid at 55 degrees C resulted in minimum dissolution of interfering iron and aluminum ions with improved accuracy and calibration linearity. The incorporation of relatively high level of fluoride in the carrier stream (40 microg mL(-1)) facilitated the determination of high levels of fluoride in phosphate rock (up to 4.1%) with out the need for excessive on-line dilution. The optimized flow system was applied for the determination of fluoride in phosphate rocks samples and a reference material at a rate of nine samples per hour with a relative standard deviation (n=5) of 2.95-4.0 %. Comparison of the proposed flow injection method with the standard method, which involves steam distillation from sulfuric acid solution and manual titration with thorium nitrate, showed no evidence of bias at the 95% confidence level. PMID:17386441

  16. Bubble formation during horizontal gas injection into downward-flowing liquid

    NASA Astrophysics Data System (ADS)

    Bai, Hua; Thomas, Brian G.

    2001-12-01

    Bubble formation during gas injection into turbulent downward-flowing water is studied using high-speed videos and mathematical models. The bubble size is determined during the initial stages of injection and is very important to turbulent multiphase flow in molten-metal processes. The effects of liquid velocity, gas-injection flow rate, injection hole diameter, and gas composition on the initial bubble-formation behavior have been investigated. Specifically, the bubble-shape evolution, contact angles, size, size range, and formation mode are measured. The bubble size is found to increase with increasing gas-injection flow rate and decreasing liquid velocity and is relatively independent of the gas injection hole size and gas composition. Bubble formation occurs in one of four different modes, depending on the liquid velocity and gas flow rate. Uniform-sized spherical bubbles form and detach from the gas injection hole in mode I for a low liquid speed and small gas flow rate. Modes III and IV occur for high-velocity liquid flows, where the injected gas elongates down along the wall and breaks up into uneven-sized bubbles. An analytical two-stage model is developed to predict the average bubble size, based on realistic force balances, and shows good agreement with measurements. Preliminary results of numerical simulations of bubble formation using a volume-of-fluid (VOF) model qualitatively match experimental observations, but more work is needed to reach a quantitative match. The analytical model is then used to estimate the size of the argon bubbles expected in liquid steel in tundish nozzles for conditions typical of continuous casting with a slide gate. The average argon bubble sizes generated in liquid steel are predicted to be larger than air bubbles in water for the same flow conditions. However, the differences lessen with increasing liquid velocity.

  17. Rapid determination of fluoride in potable waters by potentiometric flow injection analysis

    SciTech Connect

    Davey, D.E.; Mulcahy, D.E.; O'Connell, G.R.

    1986-01-01

    A potentiometric flow injection analysis system is described, enabling tap water and other fluoride-bearing matrices of low interferent level to be determined at the rate of 360 samples per hour using an electrode polished with slurried alumina. Important parameters, such as carrier stream composition, sample volume and detector cell design are discussed with respect to their system. Fluoride electrodes regenerated with silver fluoride and silver epoxy are evaluated in flow injection mode, both before and after polishing.

  18. Pulsed-injection method for blood flow velocity measurement in intraarterial digital subtraction angiography.

    PubMed

    Shaw, C G; Plewes, D B

    1986-08-01

    The pulsed-injection method for measuring the velocity of blood flow in intraarterial digital subtraction angiography is described. With this technique, contrast material is injected at a pulsing frequency as high as 15 Hz, so that two or more boluses can be imaged simultaneously. The velocity of flow is determined by measuring the spacing between the boluses and multiplying it by the pulsing frequency. Results of tests with phantoms correlate well with flow measurements obtained with a graduated cylinder for velocities ranging from 8 to 60 cm/sec. The potential of the method for time-dependent velocity measurement has been demonstrated with simulated pulsatile flows. PMID:3523598

  19. Determination of calcium, magnesium and strontium in soils by flow injection flame atomic absorption spectrometry.

    PubMed

    Arslan, Z; Tyson, J F

    1999-12-01

    Several procedures for the determination of Ca, Mg and Sr in soils have been compared on the basis of the accuracy of analysis of two NIST reference materials (Montana Soils SRM 2710 and SRM 2711). Samples were dissolved in a mixture of hydrofluoric and nitric acids in sealed vessels in a microwave oven and in teflon beakers on a hot plate. The digests obtained from both dissolution methods were evaporated to dryness in an attempt to remove silicon. Boric acid was added to prevent the precipitation of the lanthanum releasing agent (as lanthanum fluoride) and potassium was added as an ionization buffer. Determinations were made by flame atomic absorption spectrometry with both the nitrous oxide-acetylene flame and the air-acetylene flame, with calibration either by standard additions or against external standards matrix matched with respect to nitric acid, boric acid, lanthanum and potassium. The silicon remaining in the solution was also determined by external calibration. A single-line flow injection manifold was used to overcome any problems due to the presence of high dissolved solids. A volume of 300 mul was injected into a water carrier stream flowing at 8 ml min(-1). To determine Ca in the air-acetylene flame, it was necessary to remove silicon. Magnesium was determined in either flame without complete removal of the silicon, however, for the determination of Sr, it was necessary to remove the silicon and use the nitrous oxide-acetylene flame. The indicative value for Sr in SRM 2710 was too low: the value determined was 360+/-30 mug g(-1). PMID:18967785

  20. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    NASA Astrophysics Data System (ADS)

    Mustafa, Ibrahim

    1998-12-01

    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  1. The aerodynamic effects of wheelspace coolant injection into the mainstream flow of a high pressure gas turbine

    NASA Astrophysics Data System (ADS)

    McLean, Christopher Elliot

    Modern gas turbine engines operate with mainstream gas temperatures exceeding 1450°C in the high-pressure turbine stage. Unlike turbine blades, rotor disks and other internal components are not designed to withstand the extreme temperatures found in mainstream flow. In modern gas turbines, cooling air is pumped into the wheelspace cavities to prevent mainstream gas ingestion and then exits through a seal between the rotor and the nozzle guide vane (NGV) thereby mixing with the mainstream flow. The primary purpose for the wheelspace cooling air is the cooling of the turbine wheelspace. However, secondary effects arise from the mixing of the spent cooling air with the mainstream flow. The exiting cooling air is mixed with the hot mainstream flow effecting the aerodynamic and performance characteristics of the turbine stage. The physics underlying this mixing process and its effects on stage performance are not yet fully understood. The relative aerodynamic and performance effects associated with rotor - NGV gap coolant injections were investigated in the Axial Flow Turbine Research Facility (AFTRF) of the Center for Gas Turbines and Power of The Pennsylvania State University. This study quantifies the secondary effects of the coolant injection on the aerodynamic and performance character of the turbines main stream flow for root injection, radial cooling, and impingement cooling. Measurement and analysis of the cooling effects were performed in both stationary and rotational frames of reference. The AFTRF is unique in its ability to perform long duration cooling measurements in the stationary and rotating frames. The effects of wheelspace coolant mixing with the mainstream flow on total-to-total efficiency, energy transport, three dimensional velocity field, and loading coefficient were investigated. Overall, it was found that a small quantity (1%) of cooling air can have significant effects on the performance character and exit conditions of the high pressure stage

  2. Insights into Cold Water Injection Stimulation Effects through Analytical Solutions to Flow and Heat Transport

    SciTech Connect

    M.A. Plummer

    2013-09-01

    Wells in traditional hydrothermal reservoirs are used to extract heat and to dispose of cooled water. In the first case, high productivity (the ratio of production flow rate to the pressure differential required to produce that rate) to is preferred in order to maximize power generation, while minimizing the parasitic energy loss of pumping. In the second case, high injectivity (the ratio of injection flow rate to the pressure differential required to produce that rate) is preferred, in order to reduce pumping costs. In order to improve productivity or injectivity, cold water is sometimes injected into the reservoir in an attempt to cool and contract the surrounding rock matrix and thereby induce dilation and/or extension of existing fractures or to generate new fractures. Though the increases in permeability associated with these changes are likely localized, by improving connectivity to more extensive high-permeability fractures they can at least temporarily provide substantially improved productivity or injectivity.

  3. Flow visualization of lateral jet injection into swirling crossflow

    NASA Technical Reports Server (NTRS)

    Ferrell, G. B.; Aoki, K.; Lilley, D. G.

    1985-01-01

    Flow visualization experiments have been conducted to characterize the time-mean flowfield of a deflected turbulent jet in a confining cylindrical crossflow. Jet-to-crossflow velocity ratios of 2, 4, and 6 were investigated, under crossflow inlet swirler vane angles of 0 (swirler removed), 45 and 70 degrees. Smoke, neutrally-buoyant helium-filled soap bubbles, and multi-spark flow visualization were employed to highlight interesting features of the deflected jet, as well as the trajectory and spread pattern of the jet. Gross flowfield characterization was obtained for a range of lateral jet-to-crossflow velocity ratios and a range of inlet swirl strengths in the main flow. The flow visualization results agree well with the measurements obtained elsewhere with the six-orientation single hot-wire method.

  4. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  5. Flow regime analysis for fluid injection into a confined aquifer: implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Guo, B.; Zheng, Z.; Celia, M. A.; Stone, H.

    2015-12-01

    Carbon dioxide injection into a confined saline aquifer may be modeled as an axisymmetric two-phase flow problem. Assuming the two fluids segregate in the vertical direction due to strong buoyancy, and neglecting capillary pressure and miscibility, the lubrication approximation leads to a nonlinear advection-diffusion equation that describes the evolution of the sharp fluid-fluid interface. The flow behaviors in the system are controlled by two dimensionless groups: M, the viscosity ratio of the displaced fluid relative to injected fluid, and Γ , the gravity number, which represents the relative importance of buoyancy and fluid injection. Four different analytical solutions can be derived as the asymptotic approximations, representing specific values of the parameter pairs. The four solutions correspond to: (1) Γ << 1, M <1; (2) Γ << 1, M =1; (3) Γ << 1, M >1; and (4) Γ >> 1, any M values. The first two of these solutions are new, while the third corresponds to the solution of Nordbotten and Celia (2006) for confined injections and the fourth corresponds to the solution of (Lyle et al., 2005) for gravity currents in an unconfined aquifer. Overall, the various axisymmetric flows can be summarized in a Γ-M regime diagram with five distinct dynamic behaviors including the four asymptotic regimes and an intermediate regime (Fig. 1). Data from a number of CO2 injection sites around the world can be used to compute the two dimensionless groups Γ and M associated with each injection. When plotted on the regime diagram, these values show the flow behavior for each injection and how the values vary from site to site. For all the CO2 injections, M is always larger than 1, while Γ can range from 0.01 up to 100. The pairs of (Γ, M) with lower Γ values correspond to solution (3), while the ones with higher Γ values can move up to the intermediate regime and the flow regime for solution (4). The higher values of Γ correspond to pilot-scale injections with low

  6. Automated enzymatic assays in a renewable fashion using the multisyringe flow injection scheme with soluble enzymes.

    PubMed

    Pizà, Nicolau; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2004-02-01

    In this paper, a novel flowing stream scheme based upon the multisyringe flow injection (MSFI) technique is presented as a powerful tool to perform automated enzymatic assays. The exploitation of enzymes in homogeneous phase circumvents typical drawbacks associated with the commonly used packed-bead or open tubular permanent columns, namely, malfunctions of the reactor, carryover effects, flow resistance, loss of binding sites, large reagent consumption, and use of harmful organic solvents during immobilization procedures. The proposed MSFI system is able to handle minute volumes of soluble enzymes and accommodate reactions with divergent kinetic and pH demands, as demonstrated via the indirect chemiluminescence determination of trace levels of glucose. The procedure is based on the on-line glucose oxidase-catalyzed oxidation of beta-glucose in homogeneous phase to beta-glucono-delta-lactone and hydrogen peroxide. Subsequently, the generated oxidant merges downstream with an alkaline slug of 3-aminopthalhydrazide and a metal-catalyst zone (viz., Co(II)) at a total flow rate as high as 72 mL/min aiming to warrant maximum light collection from the fast CL reaction. Under optimum conditions for both sequentially occurring reactions, a glucose concentration as low as 90 microg/L may be easily detected at a 1000-fold photomultiplier gain. A second-order polynomial regression equation of light emission versus substrate concentration is found over the range 90 microg/L-2.7 mg/L glucose, although a maximum concentration of 180 mg/L may be determined by suitable gain selection without requiring manifold reconfiguration. An injection throughput of 20 h(-1), a repeatability better than 2.5% at the 1 mg/L level, and a 3sigma detection limit of 72 microg/L are the analytical features of the designed analyzer. The proposed approach was applied to the analysis of ultralow glucose content soft drinks as well as fruit juices suitable for diabetic consumers. The accuracy was

  7. An Ion-Selective Electrode/Flow-Injection Analysis Experiment: Determination of Potassium in Serum.

    ERIC Educational Resources Information Center

    Meyerhoff, Mark E.; Kovach, Paul M.

    1983-01-01

    Describes a low-cost, senior-level, instrumental analysis experiment in which a home-made potassium tubular flow-through electrode is constructed and incorporated into a flow injection analysis system (FIA). Also describes experiments for evaluating the electrode's response properties, examining basic FIA concepts, and determining potassium in…

  8. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  9. Investigation on the Achievable Flow Length in Injection Moulding of Polymeric Materials with Dynamic Mould Tempering

    PubMed Central

    Drummer, Dietmar

    2013-01-01

    A variety of parts in microsystems technology are manufactured by injection moulding of polymeric materials. In Particular the high cooling velocity affects negatively the process and the resulting part properties. The scope of this paper is to investigate the influence on the reachable flow length in injection moulding of different polymeric materials. The results indicate that the mould temperature has less impact on the achievable flow length of the polymer melt as the injection pressure. A higher mould temperature leads only to a slight increase in flow length. In addition, a transcending of the glass or the crystallization temperature of polymeric materials with the mould temperature shows no effect on the achievable flow length of the material. PMID:23970840

  10. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  11. Numerical analysis for the multi-phase flow of pulverized coal injection inside blast furnace tuyere

    SciTech Connect

    Chen, C.W.

    2005-09-01

    The pulverized coal injection (PCI) system was modified from single lance injection into double lance injection at No. 3 Blast Furnace of CSC. It is beneficial to reduce the cost of coke. However, the injected coal was found very close to the inner wall of the tuyere during the operation, such as to cause the possibility of erosion for the tuyere. In this study a three-dimensional mathematical model has been developed based on a computational fluid dynamics software PHOENICS to simulate the fluid flow phenomena inside blast furnace tuyere. The model was capable of handling steady-state, three-dimensional multi-phase flow of pulverized coal injection. The model was applied to simulate the flow patterns of the injection coal inside the tuyere with two kinds of lance design for the PCI system. The distribution of injection coal was simulated such as to estimate the possibility of erosion for the tuyere. The calculated results agreed with the operating experience of CSC plant and the optimum design of double lance was suggested. The model was also applied to simulate the oxygen concentration distribution with these different oxygen enrichments for the coal/oxygen lance system. The calculated results agreed with the experimental measurement. These test results demonstrate that the model is both reasonably reliable and efficient.

  12. Determination of nitrate and nitrite in freshwaters using flow-injection with luminol chemiluminescence detection.

    PubMed

    Yaqoob, Mohammad; Folgado Biot, Beatriz; Nabi, Abdul; Worsfold, Paul J

    2012-01-01

    A simple and sensitive flow-injection (FI) method for the determination of nitrate and nitrite in natural waters, based on luminol chemiluminescence (CL) detection, is reported. Nitrate was reduced online to nitrite via a copperized cadmium (Cu-Cd) column and then reacted with acidic hydrogen peroxide to form peroxynitrous acid. CL emission was observed from the oxidation of luminol in an alkaline medium in the presence of the peroxynitrite anion. The limits of detection (S:N = 3) were 0.02 and 0.01 µg N/L, with sample throughputs of 40 and 90 /h for nitrate and nitrite, respectively. Calibration graphs were linear over the range 0.02-50 and 0.01-50 µg N/L [R2  = 0.9984 (n = 8) and R2  = 0.9965 (n = 7)] for nitrate and nitrite, respectively, with relative standard deviations (RSDs; n = 3) in the range 1.8-4.6%. The key chemical and physical variables (reagent concentrations, buffer pH, flow rates, sample volume, Cu-Cd reductor column length) were optimized and potential interferences investigated. The effect of cations [Ca(II), Mg(II), Co(II), Fe(II) and Cu(II)] was masked online with EDTA. Common anions (PO4(3-) , SO4(2-) and HCO3-) did not interfere at their maximum admissible concentrations in freshwaters. The effect of salinity on the luminol CL reaction with and without nitrate and nitrite (2 and 0.5 µg N/L, respectively) was also investigated. The method was successfully applied to freshwaters and the results obtained were in good agreement with those obtained by an automated segmented flow analyser reference method. PMID:23044772

  13. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  14. Drag reduction caused by the injection of polymer thread into a turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Usui, Hiromoto; Maeguchi, Katsuhiro; Sano, Yuji

    1988-09-01

    Drag reduction caused by the injection of concentrated polymer solutions into a turbulent pipe flow was studied. Measurements were made of the radial distribution of fluctuating velocities by means of video image analysis. The results showed that a higher velocity was observed for injected polymer threads and both the radial fluctuation and the Reynolds stress were significantly suppressed. It was suggested that the wall turbulence structure might be controlled by suppressing the large scale turbulent motion in the turbulent core region.

  15. New simultaneous catalytic determination of thiocyanate and iodide by flow injection analysis

    SciTech Connect

    Tanaka, A.; Miyazaki, M.; Deguchi, T.

    1985-01-01

    Flow injection analysis (FIA) with a double injection technique was applied to catalytic determination of thiocyanate and iodide in the redox reaction between cerium(IV) and arsenic(III). Selective inactivation of the catalytic activity of thiocyanate was investigated. Amounts of only iodide and amounts of both thiocyanate and iodide were simultaneously determined by the FIA. Detection limits of the method were 0.2 ppM SCN/sup -/ and 0.1 ppM I/sup -/.

  16. Pre- and post-injection flow characterization in a heavy-duty diesel engine using high-speed PIV

    NASA Astrophysics Data System (ADS)

    Zegers, R. P. C.; Luijten, C. C. M.; Dam, N. J.; de Goey, L. P. H.

    2012-09-01

    High-speed particle image velocimetry (HS-PIV) using hollow microspheres has been applied to characterize the flow in a heavy-duty diesel engine during and after fuel injection. The injection timings were varied in the range representing those used in premixed charge compression ignition (PCCI) regimes, and multiple injections have been applied to investigate their influence on the flow inside the combustion chamber. By injecting into pure nitrogen, combustion is avoided and the flow can be studied long after injection. The results show a sudden change of air motion at the start of injection as a result of the air entrainment at the core of the spray. Furthermore, as expected, spray injection causes a considerable increase in the cycle-to-cycle fluctuations of the flow pattern, the more so for longer injection durations.

  17. Phase Change Effects on Immiscible Flow Displacements in Radial Injection

    NASA Astrophysics Data System (ADS)

    Ahmadlouydarab, Majid; Azaiez, Jalel; Chen, Zhangxin

    2014-11-01

    We report a systematic simulation of immiscible fluid-fluid displacements in radial injection in the presence of phase change. Due to the presence of two fluid-fluid interfaces in the system, a special treatment has been adopted. To track the leading interface position, two highly accurate methods including Level Set and Immersed Interface Method were used, while for locating the trailing interface an energy equation was adopted assuming the existence of a constant thin condensate layer. Dimensional analysis led to three important dimensionless groups including capillary number (Ca), Jacob number (Ja) and viscosity ratios (M) of the three fluids. Simulation results indicate significant influences of these parameters on the development of the instability and the interfacial morphology of fingers. Increasing Ca or M tends to amplify the interfacial instability, fingertip splitting, and results in longer fingers. In contrast, increasing Ja has stabilizing effects due to an increase of the thickness of the condensate layer. On the other hand at lower viscosity ratios as well as lower Ca, because of compensation effects of the phase change, both leading and trailing interfaces are found to be less unstable. Moreover accumulated condensate and oil saturation depletion curves show increasing and decreasing trends, respectively, when the Ca increases. Although viscosity ratio and Ja have similar effects on the accumulated condensate, they do not show any effect on the oil depletion saturation.

  18. An automatic system for acidity determination based on sequential injection titration and the monosegmented flow approach.

    PubMed

    Kozak, Joanna; Wójtowicz, Marzena; Gawenda, Nadzieja; Kościelniak, Paweł

    2011-06-15

    An automatic sequential injection system, combining monosegmented flow analysis, sequential injection analysis and sequential injection titration is proposed for acidity determination. The system enables controllable sample dilution and generation of standards of required concentration in a monosegmented sequential injection manner, sequential injection titration of the prepared solutions, data collecting, and handling. It has been tested on spectrophotometric determination of acetic, citric and phosphoric acids with sodium hydroxide used as a titrant and phenolphthalein or thymolphthalein (in the case of phosphoric acid determination) as indicators. Accuracy better than |4.4|% (RE) and repeatability better than 2.9% (RSD) have been obtained. It has been applied to the determination of total acidity in vinegars and various soft drinks. The system provides low sample (less than 0.3 mL) consumption. On average, analysis of a sample takes several minutes. PMID:21641455

  19. Magnetized plasma flow injection into tokamak and high-beta compact torus plasmas

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroyuki; Komoriya, Yuuki; Tazawa, Hiroyasu; Asai, Tomohiko; Takahashi, Tsutomu; Steinhauer, Loren; Itagaki, Hirotomo; Onchi, Takumi; Hirose, Akira

    2010-11-01

    As an application of a magnetized coaxial plasma gun (MCPG), magnetic helicity injection via injection of a highly elongated compact torus (magnetized plasma flow: MPF) has been conducted on both tokamak and field-reversed configuration (FRC) plasmas. The injected plasmoid has significant amounts of helicity and particle contents and has been proposed as a fueling and a current drive method for various torus systems. In the FRC, MPF is expected to generate partially spherical tokamak like FRC equilibrium by injecting a significant amount of magnetic helicity. As a circumstantial evidence of the modified equilibrium, suppressed rotational instability with toroidal mode number n = 2. MPF injection experiments have also been applied to the STOR-M tokamak as a start-up and current drive method. Differences in the responses of targets especially relation with beta value and the self-organization feature will be studied.

  20. Numerical Simulation of the Flow Behavior and Breakthrough Phenomenon in Co-Injection Molding

    NASA Astrophysics Data System (ADS)

    Ilinca, Florin; Hétu, Jean-François

    2007-05-01

    A study of the flow behavior during sequential co-injection molding is shown using a three-dimensional finite element flow analysis code. Solutions of the non-Newtonian, non-isothermal melt flow are obtained by solving the momentum, continuity and energy equations. Two additional transport equations are solved for tracking polymer/air and skin/core polymers interfaces. The co-injection model is integrated into the NRC's 3D injection molding software. Solutions are shown for the filling of a spiral-flow mould for which experimental measurements are available. The numerical approach predicts the core advance stage during which the core flow front catches up on the skin flow front and the core expansion phase when the flow fronts of core and skin materials advance together without breakthrough. The breakthrough phenomenon is also predicted. The predicted flow front behavior is compared to the experimental observations for various skin/core melt temperature and skin/core viscosity ratio. Simulation results are in good agreement with experimental data and indicate correctly the trends in solution change when processing parameters are changing.

  1. EPA flow reference method testing and analysis: Findings report. Appendices

    SciTech Connect

    1999-06-01

    In the summer of 1997, the US Environmental Protection Agency (EPA) conducted a series of week-long field tests at three electric utility sites to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The findings from that study are presented in document EPA/430-R-99-009a (NTIS Order Number PB99-150286). This document contains 10 appendices for that report.

  2. Enhancement of critical heat flux in tubes using staged tangential flow injection: (Progress report)

    SciTech Connect

    Dhir, V.K.

    1987-01-01

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  3. Enhancement of critical heat flux in tubes using staged tangential flow injection

    NASA Astrophysics Data System (ADS)

    Dhir, V. K.

    Experimental studies of the enhancement in single and two phase heat transfer from tubes subjected to tangential flow injection have been continuing. Investigations using water as the test liquid have been focused on: single phase heat transfer coefficients; two phase heat transfer coefficients under subcooled boiling conditions; subcooled critical heat fluxes; and modeling of the enhancement under swirl flow conditions. With tangential injection up to four fold increase in the average heat transfer coefficient has been observed. During subcooled boiling the enhancement is relatively small. However swirl induced centripetal force increases vapor escape velocity and as a result higher critical heat fluxes can be accommodated. In the range of flow parameters studied up to 40% enhancement in critical heat flux has been observed with single stage injection. This enhancement is slightly less than that obtained with Freon-113. The mechanistic reasons for this observation are currently being investigated.

  4. High-throughput pesticide residue quantitative analysis achieved by tandem mass spectrometry with automated flow injection.

    PubMed

    Nanita, Sergio C; Pentz, Anne M; Bramble, Frederick Q

    2009-04-15

    The use of automated flow injection with MS/MS detection for fast quantitation of agrochemicals in food and water samples was demonstrated in this study. Active ingredients from the sulfonylurea herbicide and carbamate insecticide classes were selected as model systems. Samples were prepared using typical procedures from residue methods, placed in an autosampler, and injected directly into a triple quadrupole instrument without chromatographic separation. The technique allows data acquisition in 15 s per injection, with samples being injected every 65 s, representing a significant improvement from the 15-30 min needed in typical HPLC/MS/MS methods. The availability of HPLC systems is an advantage since they can be used in flow-injection mode (bypassing the column compartment). Adequate accuracy, linearity, and precision (R(2) > 0.99 and RSD < 20%) were obtained using external standards prepared in each control matrix. The limit of quantitation (LOQ) achieved for all analytes was 0.01 mg/kg in food samples and 0.1 ng/mL in water; while limits of detection (LOD) were estimated to be about 0.003 mg/kg and 0.03 ng/mL in food and water, respectively. The advantages and limitations of flow injection MS/MS for ultratrace-level quantitative analysis in complex matrixes are discussed. PMID:19296591

  5. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  6. Characteristics of heat exchange in the region of injection into a supersonic high-temperature flow

    NASA Technical Reports Server (NTRS)

    Bakirov, F. G.; Shaykhutdinov, Z. G.

    1985-01-01

    An experimental investigation of the local heat transfer coefficient distribution during gas injection into the supersonic-flow portion of a Laval nozzle is discussed. The controlling dimensionless parameters of the investigated process are presented in terms of a generalized relation for the maximum value of the heat transfer coefficient in the nozzle cross section behind the injection hole. Data on the heat transfer coefficient variation along the nozzle length as a function of gas injection rate are also presented, along with the heat transfer coefficient distribution over a cross section of the nozzle.

  7. Development of a tubular periodate electrode for flow-injection determination of glycerol.

    PubMed

    Conceiçäo, M; Montenegro, B S; Costa Lima, J L; Mattos, I L; Neto, G O; Gomes Neto, J A; Zagatto, E A

    1993-10-01

    Periodate electrodes without inner reference solution based on tetraoctylammonium periodate plus solvent mediator (dibutyl phthalate or 2-nitrophenyl octylether) were constructed. Linear dynamic range, practical detection limit, slope, stability, selectivity coefficients, pH dependence, response time and lifetime were evaluated. A tubular version was further developed and coupled to a flow-injection system for glycerol determination in samples relevant to the industrial production of soaps, detergents and similar. The method involves glycerol oxidation by periodate with potentiometric evaluation of its consumption. The influence of oxidizing agent concentration (10(-5)-10(-2)M NalO(4)), ionic strength (0.0-1.0M Na(2)SO(4)) and mean resident time were investigated and the feasibility of using a single-fine manifold was discussed. The proposed system handles about 40 samples/hr, is very stable and suitable to industrial control. Results within the 1000 and 5000 mg/l range glycerol are precise (r.s.d. <0.005) and in fair agreement with conventional procedures. Baseline drift or noise is not observed and a thermostat water bath is not required. A noteworthy feature is the almost linear relationship between glycerol concentration and recorded peak height which is a consequence of combined effects of reaction kinetics and electrode Nernstian response. PMID:18965821

  8. The determination of trace lead in Chinese medicinal herbs by flow injection analysis in polyethyleneglycol medium

    NASA Astrophysics Data System (ADS)

    Gong, Aiqin; Zhu, Xiashi; Huang, Xiaoyan; Zhang, Yaqin

    2008-01-01

    In this work, a new flow injection analysis (FIA) for the determination of Pb 2+ in Chinese medicinal herbs was developed. In the buffer solution of borax-NaOH (pH 10.5), Pb 2+ reacted with 2-[(5-bromo-2-pyridyl)-azo]-5-(diethyl-amino)phenol (5-Br-PADAP) to form a complex. The experimental results showed that the sensitivity was enhanced in the presence of polyethyleneglycol-800 (PG-800). The main factors affecting the determination were investigated in detail. Under the optimum conditions, the linear range and detection limit is 0.0-0.3 μg/mL and 1.5 ng/mL (correlation coefficient r = 0.9996), respectively. The linear regression equation is A = -0.005 + 0.60 c (μg/mL). The sample throughout is 10 h -1. Foreign substrates effects were also investigated. The proposed method has been successfully applied to the determination of lead in reference material, goldthread and lepidium seed.

  9. Flow-injection spectrophotometric determination of novalgin in pharmaceuticals using micellar medium.

    PubMed

    Weinert, Patrícia Los; Fernandes, João Roberto; Pezza, Leonardo; Pezza, Helena Redigolo

    2007-12-01

    A sensitive flow-injection (FI) procedure with spectrophotometric detection in a micellar medium is proposed for the determination of novalgin. The method is based on the instantaneous formation of a red-orange product (lambda(max) = 510 nm) after the reaction between novalgin and p-dimethylaminocinnamaldehyde (p-DAC) in a dilute acid medium. The sensitivity of this reaction was increased by a factor of 5.6 in the presence of sodium dodecyl sulfate (SDS). Experimental design methodologies were used to optimize the chemical and FI variables. The calibration curve was linear in the range of 1.45 x 10(-6) to 2.90 x 10(-5) mol L(-1) with an excellent correlation coefficient (r = 0.9999). The detection limit was 1.31 x 10(-7) mol L(-1) (n = 20, RSD = 2.0%). No interferences were observed from the common excipients. The results obtained by the proposed method were favorably compared with those given by the iodometric reference method at 95% confidence level. PMID:18071223

  10. Single-Channel Flow Injection Spectrophotometric Determination of Nickel Using Furildioxime in Micellar Solution

    PubMed Central

    Memon, Najma; Memon, Saima; Solangi, Amber R.; Soomro, Rubina; Soomro, Rabel

    2012-01-01

    A very simple, selective, and fast flow injection spectrophotometeric method is developed for determination of nickel using furildioxime as complexing agent. Micellar solution of brij-35 is employed to solubilize the sparingly soluble complex of Ni-furildioxime in buffered aqueous system (pH-9.00). Under optimized conditions, absorbance is linear from 0.02 to 10 μg mL−1 using 500 μL sample volume and from 10 to 30 μg mL−1 using 50 μL sample volume of nickel at 480 nm, with R2 = 0.9971 and 0.9916, respectively. The molar absorption coefficient and Sandell's sensitivity were 6.0 × 103 L mol−1 cm−1 and 0.01 ng cm−2, respectively. The sample throughput of the method is 120 samples per hour with RSD of 0.01–0.2% for 0.02 to 10 μg mL−1 nickel (n = 5), indicating that the method is highly precise and reproducible. Interference from cobalt is removed by Nitroso R-salt-modified XAD-16. The developed method is validated by analysing certified reference materials and is applied to assess nickel content of commercially available cigarettes. PMID:22654605

  11. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  12. Study of nitrogen flowing afterglow with mercury vapor injection

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Krčma, F.

    2014-10-01

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems - the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254 nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 3P1), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N2(A ^3 Σ ^+_u) metastables to mercury atoms. However, the N2(A ^3 Σ ^+_u) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N2(A ^3 Σ ^+_u) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10-6 was determined from the experimental data. Also sensitivity analysis was applied for the analysis of kinetic model in order to

  13. Study of nitrogen flowing afterglow with mercury vapor injection

    SciTech Connect

    Mazánková, V. Krčma, F.; Trunec, D.

    2014-10-21

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems – the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254 nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 {sup 3}P{sub 1}), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables to mercury atoms. However, the N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10{sup −6} was determined from the experimental data. Also

  14. Modeling and flow analysis of pure nylon polymer for injection molding process

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  15. Analysis of the injection of a heated turbulent jet into a cross flow

    NASA Technical Reports Server (NTRS)

    Campbell, J. F.; Schetz, J. A.

    1973-01-01

    The development of a theoretical model is investigated of the incompressible jet injection process. The discharge of a turbulent jet into a cross flow was mathematically modeled by using an integral method which accounts for natural fluid mechanisms such as turbulence, entrainment, buoyancy, and heat transfer. The analytical results are supported by experimental data and demonstrate the usefulness of the theory for estimating the trajectory and flow properties of the jet for a variety of injection conditions. The capability of predicting jet flow properties, as well as two- and three-dimensional jet paths, was enhanced by obtaining the jet cross-sectional area during the solution of the conservation equations. Realistic estimates of temperature in the jet fluid were acquired by accounting for heat losses in the jet flow due to forced convection and to entrainment of free-stream fluid into the jet.

  16. An oil flow study of the reference Shuttle-C configuration

    NASA Technical Reports Server (NTRS)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    An oil flow study of the reference Shuttle-C configuration is presented. The Shuttle-C vehicle was a proposed shuttle derived vehicle where the orbiter was to be replaced by an unmanned cargo carrier element. Oil flows are shown for the range of Mach numbers from Mach 1.10 to 3.48 at various angles-of-attack and roll angles. The major flow field phenomena over the Shuttle-C reference configuration are shown in these oil flows. Using the oil flows, a qualitative understanding of the flow around the vehicle can be determined, aiding the quantitative definition of aerodynamic data from theoretical analyses and test results. The oil flows presented in this study were obtained from configurations tested in the NASA Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel from October 1988 through February 1989.

  17. New once-a-month injectable contraceptives, with particular reference to Cyclofem/Cyclo-Provera.

    PubMed

    Hall, P E

    1998-08-01

    Once-a-month injectable contraceptives containing a progestogen and an estrogen have been developed that disrupt vaginal bleeding patterns less than the widely used progestogen-only preparations. Pharmacokinetic studies were undertaken of dosages and ratios of the progestogens and the respective estrogens. In Phase III clinical trials, annual pregnancy rates were below 0.4% for Mesigyna (norethisterone enanthate/estradiol valerate, Schering AG, Berlin, Germany) and below 0.2% for Cyclofem (MPA/E2C) (medroxyprogesterone acetate/estradiol cypionate, Aplicaciones Farmaceuticas, SA, Mexico and PT Tunggal, Indonesia). More than two-thirds of women had predictable, regular cycles, and discontinuation due to bleeding-related problems occurred less than half as often as with progestogen-only injectables. With MPA/E2C, return to fertility is similar to that observed with other hormonal or intrauterine methods, and both products have little effect on lipids or hemostasis. Introductory trials of MPA/E2C in 12000 women with 100000 woman-months of experience confirmed the high efficacy of the product in routine use. The use of MPA/E2C in a non-reusable injection device, Uniject (Becton Dickinson, Franklin Lakes, NJ) is discussed. Once-a-month hormonal contraceptives have been shown to provide a safe contraceptive option for all women and an alternative for women who wish to use injectable formulations that cause less disruption in vaginal bleeding and minimal side effects. PMID:9806239

  18. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  19. Experimental Study of Gas Injection Effect as a Secondary Phase on Flow Induced Rotary Hub

    NASA Astrophysics Data System (ADS)

    Nouri, N. M.; Sarreshtehdari, A.; Maghsoudi, E.

    Rotational velocity changes, via shear stress modification, due to air bubbles injection in a rotary device experimentally investigated. Air bubbles injected to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses. Increasing air void fraction lead to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress decreased as bubbles were injected in the all range of Re changing from 60378 to 61238 and also by increasing air void fraction from 1.22 to 3.06%. Skin friction reduction more than 80% achieved in this study as maximum measured volume of air fraction injected to fluid flow. Remarkable obtained skin friction reduction in this special case indicates the possibility of drag reduction by injection of low amount of air on rotary parts in liquid phase (e.g., water) while this effect is unfavorable in cases where shear stress is a useful phenomena (e.g., mixing).

  20. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  1. Determination of Nitrogen by Flow Injection Analysis in Environmental and Wastewaters

    SciTech Connect

    Straw, K.A.

    1999-03-01

    In summary, three generations of Lachat FIA systems have been used in the laboratory over a period of 13 yrs, running, in addition to the 4 N methods, Cr{sup +6}, SiO{sub 2}, Fluoride by ISE. Overall flow injection systems have been versatile and reliable and a good choice in the lab for analyzing a wide variety of samples quickly.

  2. Staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess.

    PubMed

    Zeng, Hao; Zhang, Yupeng; Shen, Xiongjie; Luo, Chengke; Xu, Zhengquan; Liu, Zheng; Liu, Xiangyang; Wang, Xiyang

    2015-01-01

    The study was to investigate the feasibility and effectiveness of posterior-only approach combining with puncture drainage under CT-guide in staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess. We retrospectively analyzed 15 patients (came from 72 cases with thoracic and lumbar spinal tuberculosis) with flow injection abscesses underwent surgery from January 2007 to February 2009, and evaluated the American Spinal Injury Association (ASIA) scoring system of nerve function, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), abscess absorption time and the Oswestry Disability Index (ODI), preoperatively and postoperatively. 15 patients were followed up for 13-37 months, no recurrence of tuberculosis, no fixation loosening and neurologic symptoms aggravated. The flow injection abscesses are absorbed within 3-6 months postoperative operation. In final follow-up, ESR went down to 5.2±2.1 mm/h from preoperative 79.6±14.8 mm/h, CRP decreased from preoperative 49.3±7.5 mg/L to 1.8±0.7 mg/L, ODI changed from 75.13±20.15 to 16.72±8.62, all of them changed significantly (P<0.05). In conclusions, one-stage posterior debridement, interbody fusion, pedicle screw fixation and two-stage CT-guided interventional therapy were safe and effective in treatment of the thoracic and lumbar spinal tuberculosis with flow injection abscess. PMID:26770442

  3. DETERMINATION OF PH BY FLOW INJECTION ANALYSIS AND BY FIBER OPTRODE ANALYSIS

    EPA Science Inventory

    Two new procedures for measuring pH have been developed. The first measures pH colorimetrically using a proprietary indicator dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber optic chemical sensor (FOCS) specifically developed for pH ...

  4. Detection of Catechol by Potentiometric-Flow Injection Analysis in the Presence of Interferents

    ERIC Educational Resources Information Center

    Lunsford, Suzanne K.; Widera, Justyna; Zhang, Hong

    2007-01-01

    This article describes an undergraduate analytical chemistry experiment developed to teach instrumental lab skills while incorporating common interferents encountered in the real-world analysis of catechol. The lab technique incorporates potentiometric-flow injection analysis on a dibenzo-18-crown-6 dual platinum electrode to detect catechol in…

  5. Differentiating organic from conventional peppermints using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...

  6. FLUOROMETRIC FLOW INJECTION DETERMINATION OF AQUEOUS PEROXIDES AT NANOMOLAR LEVEL USING MEMBRANE REACTORS

    EPA Science Inventory

    A flow injection system based on the p-hydroxphenylacetate-peroxide-peroxidase reaction allows the simultaneous determination of H2O2 and CH3HO2 at 50 samples/h with an LOD of 0.1 microgram/L (3 nM) H2O2. A pressurized porous PTFE membrane reactor introduces the enzyme and the pH...

  7. Staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess

    PubMed Central

    Zeng, Hao; Zhang, Yupeng; Shen, Xiongjie; Luo, Chengke; Xu, Zhengquan; Liu, Zheng; Liu, Xiangyang; Wang, Xiyang

    2015-01-01

    The study was to investigate the feasibility and effectiveness of posterior-only approach combining with puncture drainage under CT-guide in staged treatment of thoracic and lumbar spinal tuberculosis with flow injection abscess. We retrospectively analyzed 15 patients (came from 72 cases with thoracic and lumbar spinal tuberculosis) with flow injection abscesses underwent surgery from January 2007 to February 2009, and evaluated the American Spinal Injury Association (ASIA) scoring system of nerve function, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), abscess absorption time and the Oswestry Disability Index (ODI), preoperatively and postoperatively. 15 patients were followed up for 13-37 months, no recurrence of tuberculosis, no fixation loosening and neurologic symptoms aggravated. The flow injection abscesses are absorbed within 3-6 months postoperative operation. In final follow-up, ESR went down to 5.2±2.1 mm/h from preoperative 79.6±14.8 mm/h, CRP decreased from preoperative 49.3±7.5 mg/L to 1.8±0.7 mg/L, ODI changed from 75.13±20.15 to 16.72±8.62, all of them changed significantly (P<0.05). In conclusions, one-stage posterior debridement, interbody fusion, pedicle screw fixation and two-stage CT-guided interventional therapy were safe and effective in treatment of the thoracic and lumbar spinal tuberculosis with flow injection abscess. PMID:26770442

  8. Assessing cement injection behaviour in cancellous bone: an in vitro study using flow models.

    PubMed

    Bou-Francis, Antony; López, Alejandro; Persson, Cecilia; Hall, Richard M; Kapur, Nikil

    2014-10-01

    Understanding the cement injection behaviour during vertebroplasty and accurately predicting the cement placement within the vertebral body is extremely challenging. As there is no standardized methodology, we propose a novel method using reproducible and pathologically representative flow models to study the influence of cement properties on injection behaviour. The models, confined between an upper glass window and a lower aluminium plate, were filled with bone marrow substitute and then injected (4, 6 and 8 min after cement mixing) with commercially available bone cements (SimplexP, Opacity+, OsteopalV and Parallax) at a constant flow rate (3 mL/min). A load cell was used to measure the force applied on the syringe plunger and calculate the peak pressure. A camera was used to monitor the cement flow during injection and calculate the following parameters when the cement had reached the boundary of the models: the time to reach the boundary, the filled area and the roundness. The peak pressure was comparable to that reported during clinical vertebroplasty and showed a similar increase with injection time. The study highlighted the influence of cement formulations and model structure on the injection behaviour and showed that cements with similar composition/particle size had similar flow behaviour, while the introduction of defects reduced the time to reach the boundary, the filled area and the roundness. The proposed method provides a novel tool for quick, robust differentiation between various cement formulations through the visualization and quantitative analysis of the cement spreading at various time intervals. PMID:24913614

  9. On spurious water flow during numerical simulation of steam injection into water-saturated soil.

    PubMed

    Gudbjerg, J; Trötschler, O; Färber, A; Sonnenborg, T O; Jensen, K H

    2004-12-01

    Numerical simulation of steam injection into a water-saturated porous medium may be hindered by unphysical behavior causing the model to slow down. We show how spurious water flow may arise on the boundary between a steam zone and a saturated zone, giving rise to dramatic pressure drops. This is caused by the discretization of the temperature gradient coupled with the direct relation between pressure and temperature in the steam zone. The problem may be a severe limitation to numerical modeling. A solution is presented where the spurious water flow is blocked and this widely enhances the performance of the model. This new method is applied to a previously reported example exhibiting numerical problems. Furthermore, it is applied to the simulation of 2-D sandbox experiments where LNAPL is remediated from a smearing zone by steam injection. These experiments would have been difficult to analyze numerically without the adjustment to prevent spurious flow. PMID:15610904

  10. Design and fabrication of a low-cost flow-through cell for the determination of acetaminophen in pharmaceutical formulations by flow injection cyclic voltammetry.

    PubMed

    Masawat, Prinya; Liawruangrath, Saisunee; Vaneesorn, Yuthsak; Liawruangrath, Boonsom

    2002-12-01

    A low-cost electrochemical flow-through cell is designed and fabricated to use in conjunction with a flow injection (FI) system. This detector cell used a centrosymmetric radial flow thin-layer geometry with a stainless steel auxiliary electrode and a reference electrode (Ag/AgCl) without a salt bridge. The 5H pencil lead electrode used as a working electrode in the home-made cell is an extremely inexpensive electrode which performs as well as the expensive commercial glassy carbon electrode. Optimum conditions for determining acetaminophen using the proposed FI manifold was investigated. Appropriate volume of sample and/or standard solution containing acetaminophen in pH 2.2 Mcllvaine buffer solution was injected into the proposed FI system and mixed with the flowing stream of supporting electrolyte (pH 2.2 Mcllvaine buffer solution) at an optimum flow rate of 1 mlmin(-1). The cyclic voltammograms were recorded over the potential range from -0.5 to +2.0 V with a scan rate of 40 mVs(-1). Linear calibration curve over the range of 0.1-5 mM acetaminophen was established with the regression equation Y=3.68X+1.0157 (r(2)=0.9964). The recommended method has been applied to the determination of acetaminophen in 8 commercial pharmaceutical preparations. The percentage recoveries of the spiked acetaminophen in four tablet samples were ranging from 103 to 112 with the relative standard deviation in the range of 0.1-1.3%. PMID:18968860

  11. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  12. Flow-induced birefringence: the hidden PSF killer in high performance injection-molded plastic optics

    NASA Astrophysics Data System (ADS)

    Chidley, Matthew D.; Tkaczyk, Tomasz; Kester, Robert; Descour, Michael R.

    2006-02-01

    A 7-mm OD, NA = 1 water immersion injection-molded plastic endoscope objective has been fabricated for a laser scanning fiber confocal reflectance microscope (FCRM) system specifically designed for in vivo detection of cervical and oral pre-cancers. Injection-molded optics was selected for the ability to incorporate aspheric surfaces into the optical design and its high volume capabilities. Our goal is high performance disposable endoscope probes. This objective has been built and tested as a stand-alone optical system, a Strehl ratio greater than 0.6 has been obtained. One of the limiting factors of optical performance is believed to be flow-induced birefringence. We have investigated different configurations for birefringence visualization and believe the circular polariscope is most useful for inspection of injection-molded plastic optics. In an effort to decrease birefringence effects, two experiments were conducted. They included: (1) annealing of the optics after fabrication and (2) modifying the injection molding prameters (packing pressures, injection rates, and hold time). While the second technique showed improvement, the annealing process could not improve quality without physically warping the lenses. Therefore, to effectively reduce flow-induced birefringence, molding conditions have to be carefully selected. These parameters are strongly connected to the physical part geometry. Both optical design and fabrication technology have to be considered together to deliver low birefringence while maintaining the required manufacturing tolerances. In this paper we present some of our current results that illustrate how flow-induced birefringence can degrade high performance injection-molded plastic optical systems.

  13. Flow dynamics of multi-lateral jets injection into a round pipe flow

    NASA Astrophysics Data System (ADS)

    Thong, Chia X.; Kalt, Peter A. M.; Dally, Bassam B.; Birzer, Cristian H.

    2015-01-01

    Controlling the mixing field of turbulent jets is an important approach in optimizing practical combustion systems. The use of multi-lateral jets upstream from the nozzle exit to control mixing fields is one particular method. Existing studies have investigated jets into a confined cross-flow (JICCF) for dilution mixing, but there is a paucity of data available on the fundamentals for turbulent mixing capabilities of JICCF. The current study investigates the flow structures and Primary Reynolds number mixing characteristics within a round pipe flow modified by four equi-spaced, lateral side injectors. Experiments are conducted in a primary water jet flow that is modified with smaller jets located one central (axial) jet diameter upstream of the nozzle exit. Flow structures and mixing within the nozzle are non-intrusively characterized using simultaneous planar optical techniques. Planar laser-induced fluorescence is used to measure the scalar mixing of the side and axial jet streams, and particle imaging velocimetry is used to measure the planar velocities. Several cases are investigated with variable primary flow to explore the influence of cross-flow velocity on the induced mixing structures within the nozzle. By varying the momentum ratio, three characteristic flow modes are identified within the primary flow, namely streaming mode, impinging mode, and backflow mode. The impact of these modes on the flow and scalar fields is presented and discussed.

  14. The determination of busulphan in dissolution samples by flow injection analysis.

    PubMed

    Dow, A D; Finlay, G; Bloomfield, M S

    1999-03-01

    A robust colourimetric flow injection analysis (FIA) procedure is described for the determination of busulphan in dissolution samples of a 2 mg tablet formulation. The sample solution is injected directly into a reagent stream containing 4-(4-nitrobenzyl)pyridine/potassium hydrogen phthalate. An on-line heating stage allows the formation of a coloured pyrridinium salt species, which following stabilisation is detected spectrophotometrically at 570 nm. The method has been fully validated and is linear over the concentration range 0.004-0.024 mg of busulphan ml(-1). The method can also been applied to uniformity of content and bulk assay testing. PMID:10704121

  15. Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1976-01-01

    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.

  16. Using regional flow classes as references to analyse flow regime anomalies across a set of regulated Canadian rivers

    NASA Astrophysics Data System (ADS)

    McLaughlin, Fraser; Lapointe, Michel; Bourque, Guillaume; Boisclair, Daniel

    2014-11-01

    It is well established that a river's natural flow regime is a key determinant of ecological integrity and that dam regulated-flow releases can be detrimental to biotic communities and even affect river ecosystem structure (e.g. Poff and Zimmerman, 2010). Regional flow classes, groups of rivers that share similar natural flow regimes (called ‘river types' by Poff and Zimmerman (2010)) and to which regional fish communities are ‘adapted', have been proposed as units of analysis to identify significant damming related flow alteration (e.g. Poff, 1996; Poff and Zimmerman, 2010; McManamay et al., 2012a). Specifically, the natural range of flow behaviour within regional classes can be used to identify clearly anomalous flow features in rivers regulated by dams. Through ordination analysis on 70 ecologically important flow indices, we isolated five distinctive regional groupings of natural flow regimes among the 96 unregulated rivers located in study regions of South Eastern and South Western Canada, selected based on watershed characteristics as possible references for the 13 hydro-regulated, NSERC-HydroNet study rivers in British Columbia, Alberta, Ontario, Quebec and New Brunswick. The distinguishing characteristics of natural flow regimes within each flow class are explored through visualization in principal component space. The 16 regulated HydroNet sites were assigned to appropriate regional flow classes through discriminant function analysis based on shared geographic location and watershed characteristics. Anomalous flow features in the regulated rivers are then characterized by type and strength, based on identification of flow indices that are significantly different from observed natural variability in the relevant regional class. The magnitude distributions and the main axes of variability in index anomalies are analysed, across regions and regulation types (storage, peaking and run-of-the-river (RoR)). We also discuss the potential biological

  17. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha = 0 degrees. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C (sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  18. Spike-Nosed Bodies and Forward Injected Jets in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Washington, C.; Blankson, I. M.; Shvets, A. I.

    2002-01-01

    The paper contains new numerical simulation and experimental test results of blunt body drag reduction using thin spikes mounted in front of a body and one- or two-phase jets injected against a supersonic flow. Numerical simulations utilizing the NASA CFL3D code were conducted at the Hampton University Fluid Mechanics and Acoustics Laboratory (FM&AL) and experimental tests were conducted using the facilities of the IM/MSU Aeromechanics and Gas Dynamics Laboratory. Previous results were presented at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Those results were based on some experimental and numerical simulation tests for supersonic flow around spike-nosed or shell-nosed bodies, and numerical simulations were conducted only for a single spike-nosed or shell-nosed body at zero attack angle, alpha=0. In this paper, experimental test results of gas, liquid and solid particle jet injection against a supersonic flow are presented. In addition, numerical simulation results for supersonic flow around a multiple spike-nosed body with non-zero attack angles and with a gas and solid particle forward jet injection are included. Aerodynamic coefficients: drag, C(sub D), lift, C(sub L), and longitudinal momentum, M(sub z), obtained by numerical simulation and experimental tests are compared and show good agreement.

  19. Flow injection catalase activity measurement based on gold nanoparticles/carbon nanotubes modified glassy carbon electrode.

    PubMed

    El Nashar, Rasha Mohamed

    2012-07-15

    Amperometric flow injection method of hydrogen peroxide analysis was developed based on catalase enzyme (CAT) immobilization on a glassy carbon electrode (GC) modified with electrochemically deposited gold nanoparticles on a multiwalled carbon nanotubes/chitosan film. The resulting biosensor was applied to detect hydrogen peroxide with a linear response range 1.0×10(-7)-2.5×10(-3)M with a correlation coefficient 0.998 and response time less than 10s. The optimum conditions of film deposition such as potential applied, deposition time and pH were tested and the flow injection conditions were optimized to be: flow rate of 3ml/min, sample volume 75μl and saline phosphate buffer of pH 6.89. Catalase enzyme activity was successfully determined in liver homogenate samples of rats, raised under controlled dietary plan, using a flow injection analysis system involving the developed biosensor simultaneously with spectrophotometric detection, which is the common method of enzymatic assay. PMID:22817944

  20. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  1. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Ciancone, M. L.

    1985-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configutations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  2. Flow visualization study of the effect of injection hole geometry on an inclined jet in crossflow

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ciancone, Michael L.

    1987-01-01

    A flow visualization was studied by using neutrally buoyant, helium-filled soap bubbles, to determine the effect of injection hole geometry on the trajectory of an air jet in a crossflow and to investigate the mechanisms involved in jet deflection. Experimental variables were the blowing rate, and the injection hole geometry cusp facing upstream (CUS), cusp facing downstream (CDS), round, swirl passage, and oblong. It is indicated that jet deflection is governed by both the pressure drag forces and the entrainment of free-stream fluid into the jet flow. For injection hole geometries with similar cross-sectional areas and similar mass flow rates, the jet configuration with the larger aspect ratio experienced a greater deflection. Entrainment arises from lateral shearing forces on the sides of the jet, which set up a dual vortex motion within the jet and thereby cause some of the main-stream fluid momentum to be swept into the jet flow. This additional momentum forces the jet nearer the surface. Of the jet configurations, the oblong, CDS, and CUS configurations exhibited the largest deflections. The results correlate well with film cooling effectiveness data, which suggests a need to determine the jet exit configuration of optimum aspect ratio to provide maximum film cooling effectiveness.

  3. Development of a flow-injection analysis system with fluorescence detection for gatifloxacin determination in organized medium.

    PubMed

    Lima Vaz, Monica F; de Oliveira, João Vitor F; Cassella, Ricardo J; Pacheco, Wagner F

    2015-05-01

    This work reports the development and optimization of a flow injection analysis system with fluorescence detection (FIA-FLUO) for gatifloxacin (GFX) determination in organized medium. The analytical system was based on the enhanced fluorescence of gatifloxacin in micellar medium containing sodium dodecyl sulfate (SDS) at pH 6.0. The influence of physical (carrier flow rate, sample volume and volume of reaction coil) and chemical (pH, concentration of buffer and concentration of SDS) parameters that could affect the performance of the FIA system was evaluated in order to reach optimum conditions in terms of sensitivity and analytical throughput. Under optimized conditions, the FIA-FLUO system allowed the injection of 40 samples per hour with a limit of quantification of 72 µg/L and a RSD of 3.5% at 0.20 mg/L. Real samples of commercial pharmaceutical formulations containing GFX were analyzed, and no statistical difference was observed between the results obtained using the developed system and those obtained using the reference method based on high-performance liquid chromatography with UV detection. PMID:25060163

  4. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    PubMed

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. PMID:27401813

  5. Flow visualization of discrete-hole film cooling with spanwise injection over a cylinder

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1979-01-01

    Insight into the fluid mechanics encountered when film air from a single row of holes is injected over a cylinder in a mainstream at conditions simulating a film cooled, turbulent-vane leading edge was investigated. Smoke was added to the cooling air to visualize its flow path. Film was injected in the spanwise direction at angles of 30 deg and 45 deg to the surface; at angular locations of 15 deg, 30 deg, 45 deg, and 60 deg from the stagnation line; and at various blowing ratios. The observations were related to the measured heat transfer data of others. The results indicate that, in addition to the expected growth in film thickness and the greater penetration of the boundary layer with increasing blowing ration, there was an absence of spanwise spreading and only a small spanwise deflection of the injected film.

  6. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer.

    PubMed

    Nozaki, O; Kawamoto, H

    2000-01-01

    A novel flow cell reactor was developed for micro-flow injection determination of hydrogen peroxide (H(2)O(2)) using horseradish peroxide (HRP)-catalysed luminol chemiluminescence. The newly developed flow cell reactor for a chemiluminometer allowed mixing of the chemiluminescent reagents in front of a photomultiplier for maximum detection of the emitted light. The rapid mixing allowed a decrease in the flow rate of the pump to 0.1-0.01 mL/min, resulting in increased sensitivity of detection of light. The flow cell reactor was made by packing HRP-immobilized gels into a flow cell (Teflon tube; 6 cm x 0.98 mm i.d.) located in the cell holder of a chemiluminometer (flow-through type). The HRP-immobilized gels were made by immobilizing HRP onto the Chitopearl gel by the periodate method. H(2)O(2) specimens (50 microL) were injected into a stream of water delivered at a flow rate of 0.1 mL/min and mixed with a luminol solution (0.56 mmol/L in Tricine buffer, pH 9.2) delivered at 0.1 mL/min in the flow cell reactor. Within-run reproducibility of the assay of H(2)O(2) was 2.4% (4.85 micromol/L; flow rate 0.1 mL/min, injection interval 10 min). The reproducibility of the H(2)O(2) assay was influenced by the flow rates and the injection intervals of the H(2)O(2) specimens. As the flow rates decreased, both the light intensity and the light duration increased. Optimal light intensity was obtained at a luminol concentration of 3-8 mmol/L, but 0.56 mmol/L was sufficient for assay of H(2)O(2) in clinical specimens. At a luminol concentration of 0.56 mmol/L, the regression equation of the standard curve for H(2)O(2) (0-9.7 micromol/L) was Y = 27.5 X(2) + 394 X + 58.9 (Y = light intensity; X = concentration of H(2)O(2)) and the detection limit of H(2)O(2) was 0.2 micromol/L. This method was used to assay glucose (2.7-16.7 mmol/L) based on a glucose oxidase (20 U/mL, pH 7.4) reaction. The standard curve for glucose was Y = 167 X(2) - 351 X + 1484 (Y = light intensity; X = glucose

  7. Piezoelectric detection of ion pairs between sulphonate and catecholamines for flow injection analysis of pharmaceutical preparations.

    PubMed

    Mo, Z; Long, X; Zhang, M

    1999-03-01

    Fundamentals of ion-pair flow injection with piezoelectric detection were investigated experimentally and theoretically for the adsorption of dodecyl phenylsulfonate and interfacial ion-pair formation with epinephrine and l-dopa on silver electrode of quartz crystal microbalance. The influences of sulfonate concentration and operating parameters on the frequency response were demonstrated and provided the possibility for the discriminating determination of mixtures. The selected system of ion-pair flow injection with piezoelectric detection was applied to the determination of epinephrine and l-dopa. Calibration curves were linear in ranges 4.00-850 and 3.50-730 mug ml(-1), with detection limits of 1.22 and 1.05 mug ml(-1) and sampling frequencies of 120 samples h(-1), for epinephrine and l-dopa, respectively. The method has been satisfactorily applied to the determination of catecholamines in pharmaceutical preparations. PMID:18967504

  8. Curing rate and flowing properties of silicone rubber at injection molding

    SciTech Connect

    Yoshino, M.; Nakamura, T. )

    1992-04-01

    Generally, silicone rubbers are mold-cured after mixing the rubber and peroxide curing agent with a two-roll mill or a kneader. Typically this is done at pressures of 5 MPa to 10 MPa and at temperatures between 120 to 200 C. Compression molding, transfer molding and injection molding are common molding ways for silicone rubbers. Recently, injection molding techniques are developing rapidly that have the advantages of molding automatically with high cycle mechanisms. To reduce the molding time and to make a precision part, both the flowing and curing properties of a particular rubber compound will be important. In this article, correlations between the curing and the flowing properties of silicone rubber are investigated by using the Rheovulkameter device.

  9. "Reagentless" flow injection determination of ammonia and urea using membrane separation and solid phase basification

    NASA Technical Reports Server (NTRS)

    Akse, J. R.; Thompson, J. O.; Sauer, R. L.; Atwater, J. E.

    1998-01-01

    Flow injection analysis instrumentation and methodology for the determination of ammonia and ammonium ions in an aqueous solution are described. Using in-line solid phase basification beds containing crystalline media. the speciation of ammoniacal nitrogen is shifted toward the un-ionized form. which diffuses in the gas phase across a hydrophobic microporous hollow fiber membrane into a pure-water-containing analytical stream. The two streams flow in a countercurrent configuration on opposite sides of the membrane. The neutral pH of the analytical stream promotes the formation of ammonium cations, which are detected using specific conductance. The methodology provides a lower limit of detection of 10 microgram/L and a dynamic concentration range spanning three orders of magnitude using a 315-microliters sample injection volume. Using immobilized urease to enzymatically promote the hydrolysis of urea to produce ammonia and carbon dioxide, the technique has been extended to the determination of urea.

  10. Preparation, characterization, and application of an enzyme-immobilized magnetic microreactor for flow injection analysis.

    PubMed

    Nomura, Akira; Shin, Shigemitsu; Mehdi, Othman Oulad; Kauffmann, Jean-Michel

    2004-09-15

    Enzyme-immobilized magnetic microparticles (EMMP) have been prepared for use as a microreactor in flow injection analysis (FI). The microparticles were directly injected into the FI system. Their retention occurred within the flow line by small permanent magnets located near the detector. The analytical utility of this concept was illustrated by the assay of glucose using glucose oxidase (GOx), immobilized microparticles, and amperometric detection of liberated hydrogen peroxide. The microparticles were derived from silica gel (nominal pore diameter, 15-80 nm) by impregnation with a citric acid/ethanol solution and a ferric nitrate/ethanol solution and then by calcination in a nitrogen atmosphere to produce ferrimagnetic fine particles of spinel-type iron oxide (gamma-Fe(2)O(3)) inside the pore. They were characterized by X-ray diffraction. The calibration curve of the glucose sample (2 microL injected) was linear between 2.5 x 10(-6) and 5 x 10(-4) mol/L (R = 0.9995), and the detection limit was 1.0 x 10(-6) mol/L or 0.36 ng of injected glucose (S/N = 3). The repeatability for a 5 x 10(-4) mol/L glucose solution was RSD = 1.5% (n = 6). Application to the assay of glucose in a fermentation broth is illustrated. The GOx MMP were stable and active for more than eight months when kept at 10 degrees C. PMID:15362912

  11. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Murphy, James; Jones, Phil; Hill, Steve J.

    1996-12-01

    A simple and accurate method has been developed for the determination of total mercury in environmental and biological samples. The method utilises an off-line microwave digestion stage followed by analysis using a flow injection system with detection by cold vapour atomic absorption spectrometry. The method has been validated using two certified reference materials (DORM-1 dogfish and MESS-2 estuarine sediment) and the results agreed well with the certified values. A detection limit of 0.2 ng g -1 Hg was obtained and no significant interference was observed. The method was finally applied to the determination of mercury in river sediments and canned tuna fish, and gave results in the range 0.1-3.0 mg kg -1.

  12. Intralesional bleomycin injection in management of low flow vascular malformations in children.

    PubMed

    Mohan, Anita T; Adams, Saleigh; Adams, Kevin; Hudson, Donald A

    2015-04-01

    Low flow vascular malformations are challenging to manage, particularly with their propensity to grow, and can lead to severe disfigurement and dysfunction. Traditional surgical excision is fraught with tedious dissection and complications, particularly in the head and neck region. Trends toward less invasive techniques, such as intralesional sclerotherapy, are proving to be successful independent treatments or adjuncts in management in low flow vascular malformations. This study was a retrospective case note review, over an 8-year period, reporting the outcomes of 32 children (mean = 5.8 years, range = 5 months-11.5 years) with radiologically confirmed low flow vascular malformations, treated with serial intralesional bleomycin injection (IBI) therapy. Patient demographics, lesion characteristics, imaging findings, treatment course, radiological and clinical response to treatment were recorded. An overall 91% (n = 29) response rate was achieved, with 28% obtaining complete resolution for low flow vascular malformations. Lesions were sub-categorized into venous malformation, including mixed venous-capillary (n = 27) or lymphatic malformation (LM) (n = 5). Twenty-seven of 32 children experienced no complications. Local complications included superficial skin infection (n = 2), skin necrosis (n = 1), hyperpigmentation, and minor contour deformity. There was no recurrence and no systemic side-effects to bleomycin. Mean follow-up was 38 months (range = 6-95 months). In conclusion, serial intralesional bleomycin injections can be effective and also safe in a paediatric population for the successful management of symptomatic or disfiguring low flow vascular malformations. PMID:25204206

  13. Non-linear flow transients in fractured rock masses - the 1995 injection experiment in Soultz

    SciTech Connect

    Kohl, T.; Jung, R.; Hopkirk, R.J.; Rybach, L.

    1996-01-24

    In July 1995 in the course of the Hot Dry Rock (HDR) site investigation studies in Soultz s.F. (France) multi rate hydraulic injection tests were conducted in the borehole GPK2. The downhole pressure records obtained from the lowermost depth domain between 3211 m and 3876 m demonstrate non-laminar hydraulic behavior. Such behavior was also observed earlier during a similar set of flow step tests in the GPKl borehole Soultz. Like the analysis of these earlier data sets, it could be shown that the pressure records from July 1995 are corresponding to empirical flow laws established for non-laminar hydraulic regimes. In this study a numerical model is described which is being developed for the analysis of non-laminar flow in fractures. Similar models have already been applied to production and injection tests at GPK1. The results show that the observed transient pressure record is well predicted by such a non-linear flow law. Conventional laminar flow models cannot reproduce these curves. An evaluation of the parameters resulting from both, steady state and transient analysis leads to assumptions on the geometry of the main fracture system. Our calculations show that surface areas above 0.05 km² and apertures in the order of 0.4 mm results in an excellent fit of the data.

  14. Free flow isotachophoresis in an injection moulded miniaturised separation chamber with integrated electrodes.

    PubMed

    Stone, Victoria N; Baldock, Sara J; Croasdell, Laura A; Dillon, Leonard A; Fielden, Peter R; Goddard, Nick J; Thomas, C L Paul; Treves Brown, Bernard J

    2007-07-01

    An injection moulded free flow isotachophoresis (FFITP) microdevice with integrated carbon fibre loaded electrodes with a separation chamber of 36.4mm wide, 28.7 mm long and 100 microm deep is presented. The microdevice was completely fabricated by injection moulding in carbon fibre loaded polystyrene for the electrodes and crystal polystyrene for the remainder of the chip and was bonded together using ultrasonic welding. Two injection moulded electrode designs were compared, one with the electrode surface level with the separation chamber and one with a recessed electrode. Separations of two anionic dyes, 0.2mM each of amaranth and acid green and separations of 0.2mM each of amaranth, bromophenol blue and glutamate were performed on the microdevice. Flow rates of 1.25 ml min(-1) for the leading and terminating electrolytes were used and a flow rate of 0.63 ml min(-1) for the sample. Electric fields of up to 370 V cm(-1) were applied across the separation chamber. Joule heating was not found to be significant although out-gassing was observed at drive currents greater than 3 mA. PMID:17229431

  15. An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.

    PubMed

    K, Manasa; Channappayya, Sumohana S

    2016-06-01

    We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index. PMID:27093720

  16. Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity

    NASA Astrophysics Data System (ADS)

    Colcord, Ben James

    Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.

  17. MICROSCALE FLOW INJECTION AND MICROBORE HIGH-PERFORMANCE LIQUID CHROMATORGRAPHY COUPLED WITH INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY VIA A HIGH-EFFICIENCY NEBULIZER

    EPA Science Inventory

    A high-effeciency nebulizer has been used for coupling microscale flow injection and microbore high-performance liquid chromatography with inductively coupled plasma mass spectrometry (ICPMS). The microscale flow injection system was configured to minimize band broadening between...

  18. Automated determination of nitrate plus nitrite in aqueous samples with flow injection analysis using vanadium (III) chloride as reductant.

    PubMed

    Wang, Shu; Lin, Kunning; Chen, Nengwang; Yuan, Dongxing; Ma, Jian

    2016-01-01

    Determination of nitrate in aqueous samples is an important analytical objective for environmental monitoring and assessment. Here we report the first automatic flow injection analysis (FIA) of nitrate (plus nitrite) using VCl3 as reductant instead of the well-known but toxic cadmium column for reducing nitrate to nitrite. The reduced nitrate plus the nitrite originally present in the sample react with the Griess reagent (sulfanilamide and N-1-naphthylethylenediamine dihydrochloride) under acidic condition. The resulting pink azo dye can be detected at 540 nm. The Griess reagent and VCl3 are used as a single mixed reagent solution to simplify the system. The various parameters of the FIA procedure including reagent composition, temperature, volume of the injection loop, and flow rate were carefully investigated and optimized via univariate experimental design. Under the optimized conditions, the linear range and detection limit of this method are 0-100 µM (R(2)=0.9995) and 0.1 µM, respectively. The targeted analytical range can be easily extended to higher concentrations by selecting alternative detection wavelengths or increasing flow rate. The FIA system provides a sample throughput of 20 h(-1), which is much higher than that of previously reported manual methods based on the same chemistry. National reference solutions and different kinds of aqueous samples were analyzed with our method as well as the cadmium column reduction method. The results from our method agree well with both the certified value and the results from the cadmium column reduction method (no significant difference with P=0.95). The spiked recovery varies from 89% to 108% for samples with different matrices, showing insignificant matrix interference in this method. PMID:26695325

  19. Hybrid LES/RANS Simulation of Transverse Sonic Injection into a Mach 2 Flow

    NASA Technical Reports Server (NTRS)

    Boles, John A.; Edwards, Jack R.; Baurle, Robert A.

    2008-01-01

    A computational study of transverse sonic injection of air and helium into a Mach 1.98 cross-flow is presented. A hybrid large-eddy simulation / Reynolds-averaged Navier-Stokes (LES/RANS) turbulence model is used, with the two-equation Menter baseline (Menter-BSL) closure for the RANS part of the flow and a Smagorinsky-type model for the LES part of the flow. A time-dependent blending function, dependent on modeled turbulence variables, is used to shift the closure from RANS to LES. Turbulent structures are initiated and sustained through the use of a recycling / rescaling technique. Two higher-order discretizations, the Piecewise Parabolic Method (PPM) of Colella and Woodward, and the SONIC-A ENO scheme of Suresh and Huyhn are used in the study. The results using the hybrid model show reasonably good agreement with time-averaged Mie scattering data and with experimental surface pressure distributions, even though the penetration of the jet into the cross-flow is slightly over-predicted. The LES/RANS results are used to examine the validity of commonly-used assumptions of constant Schmidt and Prandtl numbers in the intense mixing zone downstream of the injection location.

  20. Effect of Transpiration Injection on Skin Friction in an Internal Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roe, L. A.

    1996-01-01

    An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.

  1. Approximate solutions for Forchheimer flow during water injection and water production in an unconfined aquifer

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Moutsopoulos, Konstantinos N.

    2016-07-01

    Understanding the hydraulics around injection and production wells in unconfined aquifers associated with rainwater and reclaimed water aquifer storage schemes is an issue of increasing importance. Much work has been done previously to understand the mathematics associated with Darcy's law in this context. However, groundwater flow velocities around injection and production wells are likely to be sufficiently large such as to induce significant non-Darcy effects. This article presents a mathematical analysis to look at Forchheimer's equation in the context of water injection and water production in unconfined aquifers. Three different approximate solutions are derived using quasi-steady-state assumptions and the method of matched asymptotic expansion. The resulting approximate solutions are shown to be accurate for a wide range of practical scenarios by comparison with a finite difference solution to the full problem of concern. The approximate solutions have led to an improved understanding of the flow dynamics. They can also be used as verification tools for future numerical models in this context.

  2. Evolution of Bubbles through Gas Injection from a Micro-Tube into Liquid Cross-Flow

    NASA Astrophysics Data System (ADS)

    Ghaemi, Sina; Rahimi, Payam; Nobes, David

    2008-11-01

    Generation of small-size bubbles is of importance in many processes such as chemical, medical and food industries. The most common method of bubble generation is injection of gas from an orifice into the liquid phase. In spite of simplicity of this method, appropriate conditions should exist to avoid bubble growth and obtain required small-size bubbles. Thorough understanding of the bubble formation and growth can reveal the required conditions and ensure detachment of the bubbles from the orifice with desired timing to control their size. In this work, evolution of bubbles from a micro-size gas injection tube into liquid cross-flow is investigated. Special attention has been devoted to optimize the conditions to generate micro-size bubbles. Specifically, the influence of gas injection tube size and location, gas and liquid Reynolds numbers and the geometry of the mixing chamber on the bubbles evolution is studied. High-speed shadowgraphy technique is applied to investigate bubbles size and shape. A Particle Tracking Velocimetry algorithm is also applied to calculate bubbles velocity. The velocity field of the liquid flow surrounding the bubbles is also characterized using a Mirco-Stereo-Particle Image Velocimetry technique.

  3. Detecting total toxicity in water using a mediated biosensor system with flow injection.

    PubMed

    Yong, Daming; Liu, Changyu; Zhu, Chengzhou; Yu, Dengbin; Liu, Ling; Zhai, Junfeng; Dong, Shaojun

    2015-11-01

    A novel total toxicity detection method based on a mediated biosensor system with flow injection (MB-FI) was developed to rapidly and reliably detect respiration inhibitors (i.e., As2O3, KCN, salicylic acid (SA), 2,4-dintirophenol (DNP)) in water. The mediated biosensor toxicity assessment using microorganisms immobilized in calcium alginate filaments can greatly simplify the testing process and save time. In the MB-FI system, ferricyanide together with a respiration inhibitor was injected into the bioreactor, inhibiting the respiration of the immobilized microorganisms. The degree of inhibition was measured by determining the ferrocyanide generated in the effluent, expressed as the 50% inhibition concentration (IC50). The IC50 values for the four respiration inhibitors obtained using this method were comparable to those obtained using the classic method, confirming that this approach is an alternative alert method. More importantly, this constructed biosensor system with flow injection will facilitate the application and commercialization of this toxicity monitoring technology. PMID:26071865

  4. Effects of yaw on low angle injection into a supersonic flow

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Schetz, J. A.; Fuller, E. J.

    1991-01-01

    This paper presents the results of a study of transverse gas injection into supersonic/hypersonic streams with low downstream transverse angles in addition to yaw angles varying from zero to approximately 30 deg. The primary data are concentration measurements, with nanoshadowgraphs and oil flow visualization pictures also included. Two sets of experiments were performed. The first set studied the effects of yaw angle, specifically beta = 15 and 28 deg, on a helium injector with a 30-deg transverse angle in a Mach 3 freestream. Axial measurement stations were x/d = 30, 50, and 100. It was found that, as beta was increased, the maximum concentration mixing rate did not vary, but the jet core penetration decreased more at beta = 15 deg than at beta = 28 deg. A shearing effect between the portion of the jet in the boundary layer and the portion in the freestream increased the area of a typical constant concentration contour. The second set of experiments, conducted at NASA Langley, studied the effect of yawed injection at a transverse angle of 15 deg in a Mach 6 flow. Axial stations of x/d = 20, 40, 60, and 80 were used. A yaw angle of beta = 15 deg was found to decrease both the jet core mixing rate and penetration. The primary benefit of yaw was to increase lateral spreading. For similar injection conditions, the results show less near-field mixing at Mach 6 than Mach 3, but a faster mixing rate in the far-field at Mach 6.

  5. Impurity Ion Temperature and Flow Dynamics During Local Helicity Injection on the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Fonck, R. J.

    2013-10-01

    Anomalous energetic thermal and non-thermal minority ion distributions are observed during local helicity injection current startup. Energetic ions in significant numbers can transfer a large amount of power to plasma electrons during helicity injection, which can alter the helicity balance and consequent plasma startup via reduced resistive dissipation. Multi-spatial point spectra from a 1 m F/8.6 Czerny-Turner polychromator are recorded by an intensified high-speed camera with a time resolution of 500 μs. Te remains low during helicity injection, wherein the plasma experiences large magnetic fluctuations and strong reconnection activity near the injection region. Partially ionized low-Z impurities (CIII, NIII, and OIII) exist in the core plasma region, which allows core Ti measurements. Strong impurity ion heating (Ti ~ 1 . 2 keV, Te ~ 0 . 1 keV) correlates with n = 1 MHD activity. High frequency magnetic fluctuations are indicated at frequencies close to the impurity ion cyclotron frequencies and may act as the source of energy for the ions. These observations motivate the deployment of a neutral particle analyzer to measure the working gas ion distributions in these plasmas. In addition, a high-throughput polychromator with 2 μs resolution is being installed to more directly correlate the observed impurity ion heating and flows with MHD and reconnection activity. Work supported by US DOE Grant DE-FG02-96ER54375.

  6. National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.

    2003-01-01

    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.

  7. Friction Drag Reduction of External Flows with Bubble and Gas Injection

    NASA Astrophysics Data System (ADS)

    Ceccio, Steven L.

    2010-01-01

    The lubrication of external liquid flow with a bubbly mixture or gas layer has been the goal of engineers for many years, and this article presents the underlying principles and recent advances of this technology. It reviews the use of partial and supercavities for drag reduction of axisymmetric objects moving within a liquid. Partial cavity flows can also be used to reduce the friction drag on the nominally two-dimensional portions of a horizontal surface, and the basic flow features of two-dimensional cavities are presented. Injection of gas can lead to the creation of a bubbly mixture near the flow surface that can significantly modify the flow within the turbulent boundary layer, and there have been significant advances in the understanding of the underlying physical process of drag reduction. Moreover, with sufficient gas flux, the bubbles flowing beneath a solid surface can coalesce to form a thin drag-reducing air layer. The current applications of these techniques to underwater vehicles and surface ships are discussed.

  8. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  9. Flow and dynamo measurements during the coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  10. Determination of Hypochlorite in Bleaching Products with Flower Extracts to Demonstrate the Principles of Flow Injection Analysis

    ERIC Educational Resources Information Center

    Ramos, Luiz Antonio; Prieto, Katia Roberta; Carvalheiro, Eder Tadeu Gomes; Carvalheiro, Carla Cristina Schmitt

    2005-01-01

    The use of crude flower extracts to the principle of analytical chemistry automation, with the flow injection analysis (FIA) procedure developed to determine hypochlorite in household bleaching products was performed. The FIA comprises a group of techniques based on injection of a liquid sample into a moving, nonsegmented carrier stream of a…

  11. Experimental study of the swirl motion in direct injection diesel engines under steady state flow conditions (by LDA)

    SciTech Connect

    Snauwaert, P.; Sierens, R.

    1986-01-01

    A detailed three-dimensional study of the mean flow and the turbulence inside the liner of a direct injection diesel engine under steady state flow conditions has been carried out by laser doppler anemometer measurements. The influence of the valve lift, the port orientation (using a cylinder head with variable direction of the inlet channel) and the mass flow on flow characteristics (kinetic energy distributions, momentum flux, swirl parameters) has been analysed. These flow characteristics have been used to analyse the relation between the real flow pattern and swirl parameters as measured by the flow rectifier method and the paddle wheel anemometer.

  12. A biological tool to assess flow connectivity in reference temporary streams from the Mediterranean Basin.

    PubMed

    Cid, N; Verkaik, I; García-Roger, E M; Rieradevall, M; Bonada, N; Sánchez-Montoya, M M; Gómez, R; Suárez, M L; Vidal-Abarca, M R; Demartini, D; Buffagni, A; Erba, S; Karaouzas, I; Skoulikidis, N; Prat, N

    2016-01-01

    Many streams in the Mediterranean Basin have temporary flow regimes. While timing for seasonal drought is predictable, they undergo strong inter-annual variability in flow intensity. This high hydrological variability and associated ecological responses challenge the ecological status assessment of temporary streams, particularly when setting reference conditions. This study examined the effects of flow connectivity in aquatic macroinvertebrates from seven reference temporary streams across the Mediterranean Basin where hydrological variability and flow conditions are well studied. We tested for the effect of flow cessation on two streamflow indices and on community composition, and, by performing random forest and classification tree analyses we identified important biological predictors for classifying the aquatic state either as flowing or disconnected pools. Flow cessation was critical for one of the streamflow indices studied and for community composition. Macroinvertebrate families found to be important for classifying the aquatic state were Hydrophilidae, Simuliidae, Hydropsychidae, Planorbiidae, Heptageniidae and Gerridae. For biological traits, trait categories associated to feeding habits, food, locomotion and substrate relation were the most important and provided more accurate predictions compared to taxonomy. A combination of selected metrics and associated thresholds based on the most important biological predictors (i.e. Bio-AS Tool) were proposed in order to assess the aquatic state in reference temporary streams, especially in the absence of hydrological data. Although further development is needed, the tool can be of particular interest for monitoring, restoration, and conservation purposes, representing an important step towards an adequate management of temporary rivers not only in the Mediterranean Basin but also in other regions vulnerable to the effects of climate change. PMID:26209067

  13. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates.

    PubMed

    Safavi, Afsaneh; Karimi, Mohammad Ali

    2002-10-16

    A rapid and sensitive flow injection chemiluminescence (CL) method is described for the determination of hydrazine based on the CL generated during its reaction with either sodium dichloroisocyanurate (SDCC) or trichloroisocyanuric acid (TCCA) in alkaline medium. The emission intensity is greatly enhanced if dichlorofluorescein (DCF) as sensitizer is present in the reaction medium. The presence of citrate prevents the precipitation of some cations in the reaction medium and also causes an enhancement in emission intensity. The effect of analytical and flow injection variables on these CL systems and determination of hydrazine are discussed. The optimum parameters for the determination of hydrazine were studied and were found to be the following: SDCC and TCCA both 1x10(-3) M; NaOH, 2x10(-1) M; DCF, 5x10(-6) M; citrate, 1x10(-3) M and flow rate, 3.8 ml min(-1). The optimized method yielded 3sigma detection limits of 2x10(-7) and 3x10(-7) M for hydrazine with SDCC and TCCA oxidants, respectively. The method is simple, fast, sensitive, and precise and was applied to the determination of hydrazine in water samples. PMID:18968808

  14. The effect of air injection on the parameters of swirling flow in a Turbine-99 draft tube model

    NASA Astrophysics Data System (ADS)

    Skripkin, S. G.; Kuibin, P. A.; Shtork, S. I.

    2015-07-01

    Results of experimental modeling of a swirling flow in a Turbine-99 draft tube prototype are presented. The influence of gas phase injection into the flow has been studied. Experiments were performed on a closed hydrodynamic setup containing a working stage with the Turbine-99 draft tube geometry. It is established that the gas content affects the flow structure. Gas injection leads to a change in the frequency of precession of the vortex core formed in the draft tube cone, which is not related to an increase in the gas-liquid mixture flow rate.

  15. Simple flow injection colorimetric system for determination of paraquat in natural water.

    PubMed

    Chuntib, Prakit; Jakmunee, Jaroon

    2015-11-01

    A simple and low cost flow injection colorimetric system has been developed for determination of paraquat in natural water. The developed method is based on the reduction of paraquat by using sodium dithionite as a reducing agent in an alkaline medium to produce a blue free radical ion that can be detected by a simple light emitting diode-light dependent resistor (LED-LDR) colorimeter. The standard or sample solution was injected via a set of 3-way solenoid valves into a water carrier stream and flowed to merge with reagent to generate a colored product which is proportional to the concentration of paraquat ion in the solution. Under the optimum condition of the system, i.e., mixing coil length 30 cm, flow rate 2.0 mL min(-1), sample volume 100 μL, concentrations of dithionite 0.1% (w/v) and sodium hydroxide 0.06 mol L(-1), a linear calibration graph in the range of 0.2-10.0 mg L(-1) with a correlation coefficient of 0.9996, and a limit of detection of 0.15 mg L(-1) were achieved. Relative standard deviation for 9 replicate injections of 1 mg L(-1) paraquat is 3.7%. A sample throughput of 40 injections h(-1) was achieved. The limit of detection can be improved by off-line preconcentration of paraquat employing a column packed with Dowex 50WX8-100 (H) cation exchange resin and eluted with 10% (w/v) ammonium chloride in ammonium buffer solution pH 10. The eluting solution was then injected into the FI system for paraquat determination. The proposed system did not suffer from interferences of some possible ions in natural water and other herbicides. Recoveries obtained by spiking 0.5 and 5.0 mg L(-1) paraquat standard into water samples were in the range of 104-110% and 101-105%, respectively. The developed system can be conveniently applied for screening of paraquat contaminated in natural water. PMID:26452844

  16. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.

    PubMed

    Allahham, Ayman; Stewart, Peter; Marriott, Jennifer; Mainwaring, David E

    2004-02-11

    A micro-capillary rheometer consisted of a fine needle with an internal diameter of 347 microm attached to a 1 ml removable-needle syringe within an Instron device that operated in compression mode to provide various crosshead speeds ranging from 150 to 950 mm min(-1) covering typical clinical injection rates, and that determined the resulting force on the plunger. The crosshead speed and the resulting force were used to calculate the shear rate and the shear stress respectively. These were used in standard capillary flow expressions together with an independent measurement of the wall frictional force and allowed the viscosity of parenteral Newtonian solutions and non-Newtonian suspensions to be measured quantitatively and their rheological behaviour in needles of clinical dimensions to be established. Commercial pharmaceutical parenteral formulations consisting of three oil-based solutions and three aqueous suspensions were chosen for this study. The net injection forces were also obtained and it was shown that both the oil-based solutions and the aqueous suspensions covered similar ranges. The viscosities for the parenteral solutions were determined from the slope of the linear regression (R(2)>0.97) between shear stress and shear rate and ranged between 0.029 and 0.060 Pas. For the aqueous suspensions examined, viscosities decreased from low shear rate to high shear rate, following a power-law model and indicating a pseudo plastic behaviour. Standardisation of the micro-capillary rheometer with Newtonian silicone oils calibrated with a Rheometrics Fluids Spectrometer showed viscosity values consistent between the rotational flow measurements and capillary flow measurements which were within 5% and showed very high degrees of reproducibility between replicate samples. This degree of reproducibility allowed differences in the contribution of the wall frictional force to the required plunger force for both the oil-based and aqueous parenteral formulations to be

  17. Determination of gallic acid with rhodanine by reverse flow injection analysis using simplex optimization.

    PubMed

    Phakthong, Wilaiwan; Liawruangrath, Boonsom; Liawruangrath, Saisunee

    2014-12-01

    A reversed flow injection (rFI) system was designed and constructed for gallic acid determination. Gallic acid was determined based on the formation of chromogen between gallic acid and rhodanine, resulting in a colored product with a λmax at 520 nm. The optimum conditions for determining gallic acid were also investigated. Optimizations of the experimental conditions were carried out based on the so-call univariate method. The conditions obtained were 0.6% (w/v) rhodanine, 70% (v/v) ethanol, 0.9 mol L(-1) NaOH, 2.0 mL min(-1) flow rate, 75 μL injection loop and 600 cm mixing tubing length, respectively. Comparative optimizations of the experimental conditions were also carried out by multivariate or simplex optimization method. The conditions obtained were 1.2% (w/v) rhodanine, 70% (v/v) ethanol, 1.2 mol L(-1) NaOH, flow rate 2.5 mL min(-1), 75 μL injection loop and 600 cm mixing tubing length, respectively. It was found that the optimum conditions obtained by the former optimization method were mostly similar to those obtained by the latter method. The linear relationship between peak height and the concentration of gallic acid was obtained over the range of 0.1-35.0 mg L(-1) with the detection limit 0.081 mg L(-1). The relative standard deviations were found to be in the ranges 0.46-1.96% for 1, 10, 30 mg L(-1) of gallic acid (n=11). The method has the advantages of simplicity extremely high selectivity and high precision. The proposed method was successfully applied to the determination of gallic acid in longan samples without interferent effects from other common phenolic compounds that might be present in the longan samples collected in northern Thailand. PMID:25159449

  18. Effect of Cavity Injection on Wall Drag in a Supersonic Flow with Reflecting Shocks

    NASA Technical Reports Server (NTRS)

    Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roer, L. A.

    1996-01-01

    The wall drag test tunnel at NASA Langley Research Center was used to evaluate simulated scramjet fuel injection into a wall cavity. In this tunnel, one wall consists of interchangeable aluminum plates attached to an air bearing suspension system. The plates were equipped with load cells to measure drag forces and static taps to determine pressure distributions. The plates were exposed to a Mach 2 air stream at a total pressure of 115 psia (793 kPa). This flow field contained a train of weak unsteady, reflecting shock waves that were produced in the nozzle assembly located upstream of the test section.

  19. Flow-injection extraction-spectrophotometric determination of bromhexine with orange IV.

    PubMed

    Pérez-Ruiz, T; Martínez-Lozano, C; Sanz, A; Mondéjar, S

    1995-08-01

    An automatic flow-injection photometric method for the determination of bromhexine is proposed. The drug was determined by formation of an ion-pair with orange IV, extraction into 1,2-dichloroethane and measurement of the absorbance at 412 nm of the organic phase. A linear calibration graph was obtained at concentrations of 5 x 10(-6)-1.6 x 10(-4) M of bromhexine. Up to 40 samples h-1 can be processed with an RSD of 0.32-0.88%. The method was applied to the determination of bromhexine in blood serum and a pharmaceutical preparation. PMID:8573634

  20. Trace determination of aqueous sulfite, sulfide, and methanethiol by fluorometric flow injection analysis

    SciTech Connect

    Dasgupta, P.K.; Yang, H.C.

    1986-11-01

    Preservation of sulfite, sulfide, and methanethiol in buffered formaldehyde and oxaldihydroxamic acid stabilizers has been studied. Flow injection analysis procedures that involve T mixing or membrane-based reagent introduction have been developed for the fast (24 samples/h) analysis of these anions based upon the reaction with N-acridinylmaleimide in a water-N,N-dimethylformamide medium to form a fluorescent product. Detection limits are 0.04, 0.60, and 0.80 ..mu..M, respectively, for the three sulfur species; differential analysis is possible.

  1. Investigation of a chemiluminescent system for the determination of ammonia by flow-injection analysis

    SciTech Connect

    Kraus, P.R.; Crouch, S.R.

    1987-01-01

    A novel system for the determination of ammonia based on the chemiluminescent reaction between hypochlorite and luminol is presented. The technique of flow injection analysis was employed to automate the system. Ammonia reacts with hypochlorite to form monochloramine in basic solution which decreases the observed chemiluminescence intensity. Several interferents are identified, and the reasons why they interfere are discussed. The effects of interferents are minimized through the use of a double-tube dialyzer where the ammonia is diffused across the dialyzer membrane into a recipient stream of hydrochloric acid.

  2. Flow Injection Potentiometric Assay of Hexoprenaline in Its Pure State, Pharmaceutical Preparations, and Biological Samples

    PubMed Central

    El-Nashar, Rasha M.

    2008-01-01

    Different hexoprenaline (Hx2SO4) conventional and coated wire electrodes were constructed and evaluated. Membranes were based on hexoprenalinium phosphotungstate (Hx-PTA) and hexporenalinium phosphomolybdate (Hx-PMA). The electrodes were fully characterized in terms of their composition, response time, life span, pH, and temperature and then were applied to the potentiometric determination of the hexoprenalinium ion in its pure state, pharmaceutical preparations, and biological samples, urine and plasma, under batch and flow injection conditions. The selectivity of the electrodes towards many inorganic cations, sugars, amino acids, and some other brochodilatures of close chemical composition was also tested. PMID:18483573

  3. Large Eddy Simulation of a Cavitating Multiphase Flow for Liquid Injection

    NASA Astrophysics Data System (ADS)

    Cailloux, M.; Helie, J.; Reveillon, J.; Demoulin, F. X.

    2015-12-01

    This paper presents a numerical method for modelling a compressible multiphase flow that involves phase transition between liquid and vapour in the context of gasoline injection. A discontinuous compressible two fluid mixture based on the Volume of Fluid (VOF) implementation is employed to represent the phases of liquid, vapour and air. The mass transfer between phases is modelled by standard models such as Kunz or Schnerr-Sauer but including the presence of air in the gas phase. Turbulence is modelled using a Large Eddy Simulation (LES) approach to catch instationnarities and coherent structures. Eventually the modelling approach matches favourably experimental data concerning the effect of cavitation on atomisation process.

  4. Small Volume Flow Probe for Automated Direct-Injection NMR Analysis: Design and Performance

    NASA Astrophysics Data System (ADS)

    Haner, Ronald L.; Llanos, William; Mueller, Luciano

    2000-03-01

    A detailed characterization of an NMR flow probe for use in direct-injection sample analysis is presented. A 600-MHz, indirect detection NMR flow probe with a 120-μl active volume is evaluated in two configurations: first as a stand-alone small volume probe for the analysis of static, nonflowing solutions, and second as a component in an integrated liquids-handling system used for high-throughput NMR analysis. In the stand-alone mode, 1H lineshape, sensitivity, radiofrequency (RF) homogeneity, and heat transfer characteristics are measured and compared to conventional-format NMR probes of related design. Commonly used descriptive terminology for the hardware, sample regions, and RF coils are reviewed or defined, and test procedures developed for flow probes are described. The flow probe displayed general performance that is competitive with standard probes. Key advantages of the flow probe include high molar sensitivity, ease of use in an automation setup, and superior reproducibility of magnetic field homogeneity which enables the practical implementation of 1D T2-edited analysis of protein-ligand interactions.

  5. Flow structures of gaseous jets injected into water for underwater propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Jia-Ning; Wang, Ning-Fei; Shyy, Wei

    2011-08-01

    Gaseous jets injected into water are typically found in underwater propulsion, and the flow is essentially unsteady and turbulent. Additionally, the high water-to-gas density ratio can result in complicated flow structures; hence measuring the flow structures numerically and experimentally remains a challenge. To investigate the performance of the underwater propulsion, this paper uses detailed Navier-Stokes flow computations to elucidate the gas-water interactions under the framework of the volume of fluid (VOF) model. Furthermore, these computations take the fluid compressibility, viscosity, and energy transfer into consideration. This paper compares the numerical results and experimental data, showing that phenomena including expansion, bulge, necking/breaking, and back-attack are highlighted in the jet process. The resulting analysis indicates that the pressure difference on the rear and front surfaces of the propulsion system can generate an additional thrust. The strong and oscillatory thrust of the underwater propulsion system is caused by the intermittent pulses of the back pressure and the nozzle exit pressure. As a result, the total thrust in underwater propulsion is not only determined by the nozzle geometry but also by the flow structures and associated pressure distributions.

  6. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Mansfeld, Dmitry; Golubev, Sergey; Viktorov, Mikhail; Vodopyanov, Alexander; Yushkov, George

    2015-11-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013cm-3 to 1015cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge and injected into open magnetic trap across magnetic field lines. The filling of the arched magnetic trap with plasma and further magnetic field lines break by dense plasma flow was accompanied by pulsed electromagnetic emission at electron cyclotron frequency range, which can generated by electrons in the place of intensive deceleration of plasma flow in magnetic field. Grant of Ministry of Education 14.Z50.31.0007.

  7. Flow injection potentiometric system for the simultaneous determination of inositol phosphates and phosphate: phosphorus nutritional evaluation on seeds and grains.

    PubMed

    Parra, Aleix; Ramon, Meritxell; Alonso, Julián; Lemos, Sherlan G; Vieira, Edivan C; Nogueira, Ana R A

    2005-10-01

    A simple flow injection potentiometric (FIP) system, which uses a tubular cobalt electrode, has been developed for phosphorus nutritional evaluation of seeds and grains. Inorganic phosphorus, P(i), is determined using a 1 x 10(-2) mol.L(-1) potassium phthalate buffer solution adjusted at pH 4. A sensitivity of 47 mV/decade and an operating range from 10 to 1000 mg.L(-1) (1 x 10(-4)-1 x 10(-2) M) of dihydrogen phosphate are obtained. The inositol phosphates amount, which is referred to the organic phosphorus, P(org), is directly determined from extracts using a 1 x 10(-2) mol.L(-1) Tris-HCl buffer solution adjusted at pH 8. A sensitivity of 127 mV/decade and an operating range of 10-1000 mg.L(-1) (2.5 x 10(-4)-5 x 10(-3) M) of P(org) (expressed as inositol hexakisphosphoric acid monocalcium) are achieved. Some samples of seed and grain are analyzed by an ICP-OES and a spectrophotometric method to compare results to the developed flow system; no significant differences at the 95% confidence level are observed using a paired t test. Other samples such as animal nursing feed, soybean meal, and corn are also analyzed with the proposed FIP system, showing a good correlation to the ICP-OES values. PMID:16190610

  8. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  9. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    PubMed

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  10. Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device.

    PubMed

    Prest, Jeff E; Baldock, Sara J; Fielden, Peter R; Goddard, Nicholas J; Goodacre, Royston; O'Connor, Richard; Treves Brown, Bernard J

    2012-08-15

    A new design of miniaturised free flow electrophoresis device has been produced. The design contains a separation chamber that is 45 mm long by 31.7 mm wide with a depth of 50 μm and has nine inlet and nine outlet holes to allow for fraction collection. The devices were formed of polystyrene with carbon fibre loaded polystyrene drive electrodes and produced using injection moulding. This means that the devices are low cost and can potentially be mass produced. The devices were used for free flow isotachophoresis (FFITP), a technique that can be used for focussing and concentrating analytes contained within complex sample matrices. The operation of the devices was demonstrated by performing separations of dyes and bacterial samples. Analysis of the output from FFITP separations of samples containing the bacterium Erwinia herbicola, a biological pathogen, by cell culturing and counting showed that fractionation of the output was achieved. PMID:22819202

  11. Flow injection analysis spectrophotometric speciation of iron in rain, fog, dust and soil samples

    NASA Astrophysics Data System (ADS)

    Aggarwal, S. G.

    2003-05-01

    A new attempt for the flow injection analysis (FIA) spectrophotometric speciation of iron in various enviromnental samples is described. The method is based on conventional iron-thiocyanate colour reaction. In this work, oxidation of Fe(II) into Fe(III) is carried out with HNO3 solution in the flowing stream and total iron present in the sample is measured. Whereas, Fe(III) is measured with a mixed solution of HCl+H2SO4. The presence of cationic (CPC) and non-ionic (TX-100) surfactants remarkably enhances the sensitivity (≈3 fold) of the automated conventional method and make the method applicable for the speciation of iron in real samples (rain, fog) containing the metal in lower ppb levels.

  12. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  13. Effect of Trailing Edge Flow Injection on Fan Noise and Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Fite, E. Brian; Woodward, Richard P.; Podboy, Gary G.

    2006-01-01

    An experimental investigation using trailing edge blowing for reducing fan rotor/guide vane wake interaction noise was completed in the NASA Glenn 9- by 15-foot Low Speed Wind Tunnel. Data were acquired to measure noise, aerodynamic performance, and flow features for a 22" tip diameter fan representative of modern turbofan technology. The fan was designed to use trailing edge blowing to reduce the fan blade wake momentum deficit. The test objective was to quantify noise reductions, measure impacts on fan aerodynamic performance, and document the flow field using hot-film anemometry. Measurements concentrated on approach, cutback, and takeoff rotational speeds as those are the primary conditions of acoustic interest. Data are presented for a 2% (relative to overall fan flow) trailing edge injection rate and show a 2 dB reduction in Overall Sound Power Level (OAPWL) at all fan test speeds. The reduction in broadband noise is nearly constant and is approximately 1.5 dB up to 20 kHz at all fan speeds. Measurements of tone noise show significant variation, as evidenced by reductions of up to 6 dB in the 2 BPF tone at 6700 rpm.: and increases of nearly 2 dB for the 4 BPF tone at approach speed. Aerodynamic performance measurements show the fan with 2 % injection has an overall efficiency that is comparable to the baseline fan and operates, as intended, with nearly the same pressure ratio and mass flow parameters. Hot-film measurements obtained at the approach operating condition indicate that mean blade wake filling in the tip region was not as significant as expected. This suggests that additional acoustic benefits could be realized if the trailing edge blowing could be modified to provide better filling of the wake momentum deficit. Nevertheless, the hot-film measurements indicate that the trailing edge blowing provided significant reductions in blade wake turbulence. Overall, these results indicate that further work may be required to fully understand the proper

  14. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis.

    PubMed

    Vandeput, Marie; Parsajoo, Cobra; Vanheuverzwijn, Jérôme; Patris, Stéphanie; Yardim, Yavuz; le Jeune, Alexandre; Sarakbi, Ahmad; Mertens, Dominique; Kauffmann, Jean-Michel

    2015-01-01

    A commercially available thin-layer flow-through amperometric detector, with the sensing block customized in an original design, was applied to the screening of drug compounds known as acetylcholinesterase (AChE) inhibitors. AChE from electric eel was covalently immobilized onto a cysteamine modified gold disk adjacent to a silver disk working electrode. On-line studies were performed by flow injection analysis (FIA) in PBS buffer pH 7.4. Seven commercially available AChE inhibitors used in the medical field, namely neostigmine, eserine, tacrine, donepezil, rivastigmine, pyridostigmine and galantamine as well as two natural compounds, quercetin and berberine, were investigated. The same trend of inhibitory potency as described in the literature was observed. Of particular interest and in addition to the determination of the IC50 values, this flow-through system allowed the study of both, the stability of the enzyme-inhibitor complex and the kinetic of the enzyme activity recovery. PMID:25459923

  15. Development of a fully automated Flow Injection analyzer implementing bioluminescent biosensors for water toxicity assessment.

    PubMed

    Komaitis, Efstratios; Vasiliou, Efstathios; Kremmydas, Gerasimos; Georgakopoulos, Dimitrios G; Georgiou, Constantinos

    2010-01-01

    This paper describes the development of an automated Flow Injection analyzer for water toxicity assessment. The analyzer is validated by assessing the toxicity of heavy metal (Pb(2+), Hg(2+) and Cu(2+)) solutions. One hundred μL of a Vibrio fischeri suspension are injected in a carrier solution containing different heavy metal concentrations. Biosensor cells are mixed with the toxic carrier solution in the mixing coil on the way to the detector. Response registered is % inhibition of biosensor bioluminescence due to heavy metal toxicity in comparison to that resulting by injecting the Vibrio fischeri suspension in deionised water. Carrier solutions of mercury showed higher toxicity than the other heavy metals, whereas all metals show concentration related levels of toxicity. The biosensor's response to carrier solutions of different pHs was tested. Vibrio fischeri's bioluminescence is promoted in the pH 5-10 range. Experiments indicate that the whole cell biosensor, as applied in the automated fluidic system, responds to various toxic solutions. PMID:22163592

  16. Implementation and characterization of flow injection in dissolution dynamic nuclear polarization NMR spectroscopy.

    PubMed

    Chen, Hsueh-Ying; Hilty, Christian

    2015-08-24

    The use of dissolution dynamic nuclear polarization (D-DNP) offers substantially increased signals in liquid-state NMR spectroscopy. A challenge in realizing this potential lies in the transfer of the hyperpolarized sample to the NMR detector without loss of hyperpolarization. Here, the use of a flow injection method using high-pressure liquid leads to improved performance compared to the more common gas-driven injection, by suppressing residual fluid motions during the NMR experiment while still achieving a short injection time. Apparent diffusion coefficients are determined from pulsed field gradient echo measurements, and are shown to fall below 1.5 times the value of a static sample within 0.8 s. Due to the single-scan nature of D-DNP, pulsed field gradients are often the only choice for coherence selection or encoding, but their application requires stationary fluid. Sample delivery driven by a high-pressure liquid will improve the applicability of these types of D-DNP advanced experiments. PMID:26139513

  17. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  18. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm‑3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm‑3 to 1015 cm‑3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the

  19. Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system

    NASA Astrophysics Data System (ADS)

    Ribert, G.; Taieb, D.; Petit, X.; Lartigue, G.; Domingo, P.

    2013-03-01

    To address physical modeling of supercritical multicomponent fluid flows, ideal-gas law must be changed to real-gas equation of state (EoS), thermodynamic and transport properties have to incorporate dense fluid corrections, and turbulence modeling has to be reconsidered compared to classical approaches. Real-gas thermodynamic is presently investigated with validation by NIST (National Institute of Standards and Technology) data. Two major issues of Liquid Rocket Engines (LRE) are also presented. The first one is the supercritical fluid flow inside small cooling channels. In a context of LRE, a strong heat flux coming from the combustion chamber (locally Φ ≈ 80 MW/m2) may lead to very steep density gradients close to the wall. These gradients have to be thermodynamically and numerically captured to properly reproduce in the simulation the mechanism of heat transfer from the wall to the fluid. This is done with a shock-capturing weighted essentially nonoscillatory (WENO) numerical discretization scheme. The second issue is a supercritical fluid injection following experimental conditions [1] in which a trans- or supercritical nitrogen is injected into warm nitrogen. The two-dimensional results show vortex structures with high fluid density detaching from the main jet and persisting in the low-speed region with low fluid density.

  20. Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody.

    PubMed

    Surugiu, L; Svitel, J; Ye, L; Haupt, K; Danielsson, B

    2001-09-01

    A flow injection competitive assay analogous to enzyme immunoassays has been developed using a molecularly imprinted polymer instead of the antibody. A glass capillary was modified by covalently attaching an imprinted polymer to the inner capillary wall. The herbicide 2,4-dichlorophenoxyacetic acid was used as a model analyte. The analyte was labeled with tobacco peroxidase, and chemiluminescence was used for detection in combination with a photomultiplier tube or a CCD camera. In a competitive mode, the analyte-peroxidase conjugate was passed together with the free analyte through the polymer-coated capillary mounted in a flow system. After a washing step, the chemiluminescent substrate was injected and the bound fraction of the conjugate was quantified by measuring the intensity of the emitted light. Calibration curves corresponding to analyte concentrations ranging from 0.5 ng mL(-1) to 50 microg mL(-1) (2.25 nM-225 microM) were obtained. A lowered detection limit by 2 orders of magnitude was obtained when detection was done in discontinuous mode and the chemiluminescence light was conducted inside the photomultiplier tube by an optical fiber bundle, thus yielding a dynamic range of 5 pg mL(-1)-100 ng mL(-1) (22.5 pM-450 nM). PMID:11569836

  1. Flow injection method for the determination of silver concentration in drinking water for spacecrafts.

    PubMed

    Bruzzoniti, Maria Concetta; Kobylinska, Dorota Korte; Franko, Mladen; Sarzanini, Corrado

    2010-04-14

    A flow injection method has been developed for determination of silver. The method is based on a reduction reaction with sodium borohydride which leads to the formation of a colloidal species which is monitored at a wavelength of 390 nm. The reaction variables flow rate, sodium borohydride concentration and pH, which affect sensitivity, were investigated and their effects were established using a two-levels, three-factor experimental design. Further optimization of manifold variables (reaction coil and injection volume) allowed us to determine silver in the range 0.050-5.0 mg L(-1) with a minimum detectable concentration of 0.050 mg L(-1). Silver is added, as biocide, to drinking water for spacecrafts. The chemical species of silver, present in this kind of sample, were characterized by a procedure based on the selective retention of Ag(+) onto a 2.2.2. cryptand based substrate followed by determination of the non-bound and bound (after elution) Ag(+) by the FIA method. The method optimized was applied to a drinking water sample provided for the launch with the Automated Transfer Vehicle (ATV) module Jule Verne to the International Space Station (March 9, 2008). PMID:20381692

  2. Influence of Mold Surface Treatments on Flow of Polymer in Injection Moulding. Application to Weldlines

    NASA Astrophysics Data System (ADS)

    Chailly, M.; Charmeau, J.-Y.; Bereaux, Y.; Monasse, B.

    2007-04-01

    Due to increasing expectations from the market, the aspect of molded parts has to be improved constantly. Some of the defects observed on these parts such as weldlines are related to the filling stage. To limit this, we investigated the influence on weldlines using various surface deposits on the mold surface, mainly PVD and PACVD deposits : Chromium nitride (CrN), Titanium nitride (TiN), Diamond like Carbon (DLC), Chromium and polished steel (PG) on an instrumented plate mold. Injection campaign was led on three polymers which differ in terms of nature (amorphous, semi-crystalline, copolymers). We studied the evolution of the dimensions of weldlines appearing on the plate using the same injection parameters for a given polymer, but with various deposits and thicknesses. Another aspect that had been investigated is the morphology of the weldline through the thickness of the part, depending on polymer nature. Adhesion of polymer at the flow front with the mold surface proved to change. The modification of the initial contact in the filling stage and thus the thermal resistance at the mold implied a change in the process, increasing or reducing the pressure loss in the flow and differential shrinkage in the final part. The induced impact on dimensions of the weldlines allowed to distinguish which surface treatments were able to reduce the defect. A complementary study was led on both polymers in molten state and deposits in terms of wetting using a sessile drop method to confirm the adhesion at the polymer/mold interface. This study proved the influence of the use of surface treatments has clearly an impact on the filling stage of the injection molding process, and it is necessary to get a better knowledge of the interactions between physical adhesion, tribology of polymer/mold contact, and thermal properties of the coatings and their impact on solidification of the polymer.

  3. Fast extraction and dilution flow injection mass spectrometry method for quantitative chemical residue screening in food.

    PubMed

    Nanita, Sergio C; Stry, James J; Pentz, Anne M; McClory, Joseph P; May, John H

    2011-07-27

    A prototype multiresidue method based on fast extraction and dilution of samples followed by flow injection mass spectrometric analysis is proposed here for high-throughput chemical screening in complex matrices. The method was tested for sulfonylurea herbicides (triflusulfuron methyl, azimsulfuron, chlorimuron ethyl, sulfometuron methyl, chlorsulfuron, and flupyrsulfuron methyl), carbamate insecticides (oxamyl and methomyl), pyrimidine carboxylic acid herbicides (aminocyclopyrachlor and aminocyclopyrachlor methyl), and anthranilic diamide insecticides (chlorantraniliprole and cyantraniliprole). Lemon and pecan were used as representative high-water and low-water content matrices, respectively, and a sample extraction procedure was designed for each commodity type. Matrix-matched external standards were used for calibration, yielding linear responses with correlation coefficients (r) consistently >0.99. The limits of detection (LOD) were estimated to be between 0.01 and 0.03 mg/kg for all analytes, allowing execution of recovery tests with samples fortified at ≥0.05 mg/kg. Average analyte recoveries obtained during method validation for lemon and pecan ranged from 75 to 118% with standard deviations between 3 and 21%. Representative food processed fractions were also tested, that is, soybean oil and corn meal, yielding individual analyte average recoveries ranging from 62 to 114% with standard deviations between 4 and 18%. An intralaboratory blind test was also performed; the method excelled with 0 false positives and 0 false negatives in 240 residue measurements (20 samples × 12 analytes). The daily throughput of the fast extraction and dilution (FED) procedure is estimated at 72 samples/chemist, whereas the flow injection mass spectrometry (FI-MS) throughput could be as high as 4.3 sample injections/min, making very efficient use of mass spectrometers with negligible instrumental analysis time compared to the sample homogenization, preparation, and data

  4. Seismic monitoring of the June, 1988 Salton Sea Scientific Drilling Program flow/injection test

    SciTech Connect

    Jarpe, S.P.; Kasameyer, P.W.; Hutchings, L.J.; Hauk, T.F.

    1988-10-04

    The purpose of the seismic monitoring project was to characterize in detail the micro-seismic activity related to the Salton Sea Scientific Drilling Program (SSSDP) flow-injection test in the Salton Sea Geothermal Field. Our goal was to determine if any sources of seismic energy related to the test were observable at the surface. We deployed our recording stations so that we could detect and locate both impulsive microearthquakes and continuous seismic noise energy. Our network, which was sensitive enough to be triggered by magnitude 0.0 or larger events, found no impulsive microearthquakes in the vicinity of the flow test in the 8 month period before the test and only one event during the flow test. This event has provided the opportunity to compare the detection and location capabilities of small networks and arrays in a geothermal environment. At present, we are carefully scanning all of the data that we collected during the flow test for evidence of anomalous seismic noise sources and for impulsive events smaller than the network detection threshold (magnitude 0.0). 8 refs., 4 figs.

  5. Study of junction flows in louvered fin round tube heat exchangers using the dye injection technique

    SciTech Connect

    Huisseune, H.; Willockx, A.; De Paepe, M.; T'Joen, C.; De Jaeger, P.

    2010-11-15

    Detailed studies of junction flows in heat exchangers with an interrupted fin design are rare. However, understanding these flow structures is important for design and optimization purposes, because the thermal hydraulic performance of heat exchangers is strongly related to the flow behaviour. In this study flow visualization experiments were performed in six scaled-up models of a louvered fin round tube heat exchanger. The models have three tube rows in a staggered layout and differ only in their fin spacing and louver angle. A water tunnel was designed and built and the flow visualizations were carried out using dye injection. At low Reynolds numbers the streakline follows the tube contours, while at higher Reynolds numbers a horseshoe vortex is developed ahead of the tubes. The two resulting streamwise vortex legs are destroyed by the downstream louvers (i.e. downstream the turnaround louver), especially at higher Reynolds numbers, smaller fin pitches and larger louver angles. Increasing the fin spacing results in a larger and stronger horseshoe vortex. This illustrates that a reduction of the fin spacing results in a dissipation of vortical motion by mechanical blockage and skin friction. Furthermore it was observed that the vortex strength and number of vortices in the second tube row is larger than in the first tube row. This is due to the thicker boundary layer in the second tube row, and the flow deflection, which is typical for louvered fin heat exchangers. Visualizations at the tube-louver junction showed that in the transition part between the angled louver and the flat landing a vortex is present underneath the louver surface which propagates towards the angled louver. (author)

  6. Flow injection potentiometric determination of bismuth(III) in anti-acid formulations.

    PubMed

    Teixeira, M F; Fatibello-Filho, O

    2001-06-19

    A flow injection potentiometric procedure is proposed for determining bismuth(III) in anti-acid formulations. In this work, a tubular electrode coated with an ion-pair formed between [Bi(EDTA)](-) and tricaprylylmethylammonium cation (Aliquat 336) in a poly(vinylchloride) (PVC) was constructed and used in a single channel flow injection system. The effect of membrane composition, pH and flow injection parameter over the Bi(III) tubular electrode response (slope (mV/decade)) was initially evaluated in quintuplicate in 0.5 mol l(-1) EDTA solution as carrier. The best response (-59.6+/-0.9 mV/decade) was attained with the 5% m/m ion-pair; 65% m/m o-nitrophenyl octyl ether (o-NPOE) and 30% m/m PVC in pH 6-9. The electrode showed a linear response to E (mV) versus log [Bi(EDTA)](-) in the bismuth(III) concentration range from 2.0x10(-5) to 1.0x10(-2) mol l(-1) and a useful lifetime of at least 5 months (more than 1000 determinations for each polymeric membrane). The detection limit was 1.2x10(-5) mol l(-1) and the R.S.D. was less than 2.0% for a solution containing 5.0x10(-4) mol l(-1) bismuth(III) (n=10). Several species such as Cd(II), Mn(II), Ni(II), Zn(II), Co(II), Cu(II), Mg(II), Cr(III) and Al(III) at 1.0x10(-3) mol l(-1) concentration in 0.5 mol l(-1) EDTA solution did not cause any interference. The frequency rate was 90 determinations per hour and the results obtained for bismuth(III) in anti-acid formulations using this flow procedure and those obtained using a spectrophotometric procedure are in agreement at the 95% confidence level. PMID:11397573

  7. Evaluation of Flow-Injection Tandem Mass Spectrometry for Rapid and High-Throughput Quantitative Determination of B-Vitamins in Nutritional Supplements

    SciTech Connect

    Bhandari, Deepak; Van Berkel, Gary J

    2012-01-01

    The use of flow-injection electrospray ionization tandem mass spectrometry for rapid and high-throughput mass spectral analysis of selected B-vitamins, viz. B1, B2, B3, B5, and B6, in nutritional formulations was demonstrated. A simple and rapid (~5 min) in-tube sample preparation was performed by adding extraction solvent to a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Automated flow injection introduced 1 L of the extracts directly into the mass spectrometer ion source without chromatographic separation. Sample-to-sample analysis time was 60 s representing significant improvement over conventional liquid chromatography approaches which typically require 25-45 min, and often require more significant sample preparation procedures. Quantitative capabilities of the flow-injection analysis were tested using the method of standard additions and NIST standard reference material (SRM 3280) multivitamin/multielement tablets. The quantity determined for each B-vitamin in SRM 3280 was within the statistical range provided for the respective certified values. The same sample preparation and analysis approach was also applied to two different commercial vitamin supplement tablets and proved to be successful in the quantification of the selected B-vitamins as evidenced by an agreement with the labels values and the results obtained using isotope dilution liquid chromatography/mass spectrometry.

  8. Rapid Quantitation of Ascorbic and Folic Acids in SRM 3280 Multivitamin/Multielement Tablets using Flow-Injection Tandem Mass Spectrometry

    SciTech Connect

    Bhandari, Deepak; Kertesz, Vilmos; Van Berkel, Gary J

    2013-01-01

    RATIONALE: Ascorbic acid (AA) and folic acid (FA) are water-soluble vitamins and are usually fortified in food and dietary supplements. For the safety of human health, proper intake of these vitamins is recommended. Improvement in the analysis time required for the quantitative determination of these vitamins in food and nutritional formulations is desired. METHODS: A simple and fast (~5 min) in-tube sample preparation was performed, independently for FA and AA, by mixing extraction solvent with a powdered sample aliquot followed by agitation, centrifugation, and filtration to recover an extract for analysis. Quantitative detection was achieved by flow-injection (1 L injection volume) electrospray ionization tandem mass spectrometry (ESI-MS/MS) in negative ion mode using the method of standard addition. RESULTS: Method of standard addition was employed for the quantitative estimation of each vitamin in a sample extract. At least 2 spiked and 1 non-spiked sample extract were injected in triplicate for each quantitative analysis. Given an injection-to-injection interval of approximately 2 min, about 18 min was required to complete the quantitative estimation of each vitamin. The concentration values obtained for the respective vitamins in the standard reference material (SRM) 3280 using this approach were within the statistical range of the certified values provided in the NIST Certificate of Analysis. The estimated limit of detections of FA and AA were 13 and 5.9 ng/g, respectively. CONCLUSIONS: Flow-injection ESI-MS/MS was successfully applied for the rapid quantitation of FA and AA in SRM 3280 multivitamin/multielement tablets.

  9. Effects of fuel injection on mixing and upstream interactions in supersonic flow

    NASA Astrophysics Data System (ADS)

    Tu, Qiuya

    Scramjet engine performance has been studied experimentally and computationally almost under steady-state conditions. Transients of the airflow and fueling in the scramjet's isolator or combustor create important fluid-dynamic/ combustion interactions. Spark schlieren photography was employed to study the effects of pressure rise in the combustion chamber on the isolator flow at three conditions with isolator entrance Mach number of 1.6, 1.9 and 2.5, covering the range of dual-mode combustion and transition to full scramjet operation. Heat release through combustion in the model scramjet was simulated by incrementally blocking the flow exit until upstream-interaction was induced and a shock train formed in the isolator. Theoretical predictions of the pressure rise in the isolator under separated flow conditions were calculated, which agreed well with the experimental data. The prediction is sensitive to the accurate modeling of the isolator inlet conditions and the correct selection of wall friction coefficient. Gaseous helium and argon have been transversely injected into a Mach 1.6 airflow simulating a light and a heavy fuel injection behind a thin triangular pylon placed upstream, in the isolator, which has a negligible impact on pressure losses. Planar laser-induced fluorescence (PLIF) was used to observe the penetration and mixing in the test section at three cross-sections including the recirculation region and beyond. Results were compared to the no-pylon cases, which showed the presence of the pylon resulted in improving both penetration and spreading of the jet. Simulation for shock wave/ boundary-layer interaction was conducted in Fluent for case of M=1.9 at 60% blockage by using k-ε RNG model with two different near wall treatments. In both cases, the shock ran out of isolator before the computation converged, this is different from experimental results. Proper actual wall friction force may have a very important effect on the computation, which needs

  10. Transverse injection into Mach 2 flow behind a rearward-facing step - A 3-D, compressible flow test case for hypersonic combustor CFD validation

    SciTech Connect

    Mcdaniel, J.C.; Fletcher, D.G.; Hartfield, R.J.; Hollo, S.D. NASA, Ames Research Center, Moffett Field, CA )

    1991-12-01

    A spatially-complete data set of the important primitive flow variables is presented for the complex, nonreacting, 3D unit combustor flow field employing transverse injection into a Mach 2 flow behind a rearward-facing step. A unique wind tunnel facility providing the capability for iodine seeding was built specifically for these measurements. Two optical techniques based on laser-induced-iodine fluorescence were developed and utilized for nonintrusive, in situ flow field measurements. LDA provided both mean and fluctuating velocity component measurements. A thermographic phosphor wall temperature measurement technique was developed and employed. Data from the 2D flow over a rearward-facing step and the complex 3D mixing flow with injection are reported. 25 refs.

  11. The measurement of skin lymph flow by isotope clearance--reliability, reproducibility, injection dynamics, and the effect of massage

    SciTech Connect

    Mortimer, P.S.; Simmonds, R.; Rezvani, M.; Robbins, M.; Hopewell, J.W.; Ryan, T.J. )

    1990-12-01

    The measurement of skin lymph flow was investigated using an isotope clearance technique (ICT). Multiple lymph flow determinations were undertaken in the skin of anaesthetized large white pigs to test for reproducibility, ascertain the most suitable tracer, study the influence of injection dynamics, and observe the effect of massage as a stimulus to lymph flow. Blood clearance of tracer was also investigated. Results demonstrated that lymphatic clearance is a monoexponential function with good reproducibility under controlled laboratory conditions. 99mTc-colloid (TCK17 Cis) compared favorably with 131I-human serum albumin as a tracer and both performed better than colloid gold (198Au). Lymph flow was significantly faster in one pig than in the other. No difference existed between left and right sides or between caudal and rostral sites on each flank, but clearance was significantly slower in thigh than flank skin. Sub-epidermal injections cleared faster and more consistently than either deep or subcutaneous injections. Neither injection volume nor needle tract backflow of tracer influenced results, but local massage significantly enhanced clearance. Escape of 99mTc-colloid by the blood was negligible. These results indicate that skin lymph flow can be reliably measured when conditions are controlled. Extrinsic factors such as massage strongly influence lymph flow. Greater sensitivity in detecting degrees of lymphatic insufficiency may be achieved if a standardized stimulus to lymph flow is administered during isotope clearance measurement.

  12. Flow injection analysis of cholic acids in pharmaceutical preparations using a polymeric membrane ISE as detector.

    PubMed

    Arias De Fuentes, O; Campanella, L; Crescentini, G; Falcioni, A; Sammartino, M P; Tomassetti, M

    2000-08-01

    The results reported in this paper regard the setting up of a polymeric membrane ISE that is selective for cholic acids (CA) and able to work in a flow system, especially in flow injection analysis (FIA), based on the exchanger (tetrakisdecylammoniumcholate, TDACh), which has proved effective, is of very simple but suitable structure and is above all easy to synthesise starting from commercially available chemicals. A complete analytical characterisation of the sensor was performed working both in batch conditions and in FIA, using in the latter case a 'wall jet' type of flow cell. The response toward different bile acid sodium salts such as the CA, deoxycholic (DCA), chenodeoxycholic (CDCA), ursodeoxycholic (UDCA), taurocholic (TCA) sodium salts was checked. The application to the analysis of different commercial drugs by FIA was also performed to determine the UDCA or CDCA acid content of several pharmaceutical formulations. Lastly, a preliminary study is presented concerning the use of the investigated electrochemical sensor as high performance liquid chromatography (HPLC) detector. PMID:10898158

  13. Jet formation in GRBs: a semi-analytic model of MHD flow in Kerr geometry with realistic plasma injection

    SciTech Connect

    Globus, Noemie; Levinson, Amir

    2014-11-20

    We construct a semi-analytic model for magnetohydrodynamic (MHD) flows in Kerr geometry that incorporates energy loading via neutrino annihilation on magnetic field lines threading the horizon. We compute the structure of the double-flow established in the magnetisphere for a wide range of energy injection rates and identify the different operation regimes. At low injection rates, the outflow is powered by the spinning black hole via the Blandford-Znajek mechanism, whereas at high injection rates, it is driven by the pressure of the plasma deposited on magnetic field lines. In the intermediate regime, both processes contribute to the outflow formation. The parameter that quantifies the load is the ratio of the net power injected below the stagnation radius and the maximum power that can be extracted magnetically from the black hole.

  14. Quantitative Flow Cytometry Measurements in Antibodies Bound per Cell Based on a CD4 Reference.

    PubMed

    Wang, Lili; Degheidy, Heba; Abbasi, Fatima; Mostowski, Howard; Marti, Gerald; Bauer, Steven; Hoffman, Robert A; Gaigalas, Adolfas K

    2016-01-01

    Multicolor flow cytometer assays with fluorescently labeled antibodies are routinely used in clinical laboratories to measure the cell number of specific immunophenotypes and to estimate expression levels of specific receptors/antigens either on the cell surface or intracellularly. The cell number and specific receptors/antigens serve as biomarkers for pathological conditions at various stages of a disease. Existing methods and cell reference materials for quantitative expression measurements have not yet produced results that are of wide clinical interest or are instrument-independent across all fluorescence channels. This unit details a procedure for quantifying surface and intracellular biomarkers by calibrating the output of a multicolor flow cytometer in units of antibody bound per cell (ABC). The procedure includes (1) quality control of the flow cytometer, (2) fluorescence intensity calibration using hard dyed microspheres assigned with fluorescence intensity values, (3) compensation for fluorescence spillover between adjacent fluorescence channels, and (4) application of a biological reference calibrator to establish an ABC scale. The unit also points out current efforts for quantifying biomarkers in a manner that is independent of instrument platforms and reagent differences. PMID:26742654

  15. Flow injection-chemiluminescence determination of phenol using potassium permanganate and formaldehyde system

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Mu, Xuemin; Yang, Jinghe; Shi, Wenbo; Zheng, Yongcun

    2007-01-01

    It is found that phenol can react with potassium permanganate in the acidic medium and produce chemiluminescence, which is greatly enhanced by formaldehyde. The optimum conditions for this chemiluminescent reaction are in detail studied using a flow injection system. The experiments indicate that under optimum conditions, the chemiluminescence intensity is linearly related to the concentration of phenol in the range 5.0 × 10 -9 to 1.0 × 10 -6 g mL -1 with a detection limit (3 σ) of 3 × 10 -9 g mL -1. The relative standard deviation is 1.2% for 4.0 × 10 -7 g mL -1 phenol solution in 11 repeated measurements. This method has the advantages of simple operation, fast response and high sensitivity. The method is successfully applied to the determination of phenol in the waste water.

  16. A flow injection sampling resonance light scattering system for total protein determination in human serum

    NASA Astrophysics Data System (ADS)

    Dong, Lijun; Li, Ying; Zhang, Yaheng; Chen, Xingguo; Hu, Zhide

    2007-04-01

    A novel flow injection method with resonance light scattering detection was developed for the determination of total protein concentrations. This method is based on the enhancement of RLS signals from Methyl Blue (MB) by protein. The enhanced RLS intensities at 333 nm, in a pH 4.1 acidic aqueous solution, were proportional to the protein concentration over the range 2.0-37.3 and 1.0-36.0 μg ml -1 for human serum albumin (HSA) and bovine serum albumin (BSA), respectively. The corresponding limits of detection (3 σ) of 45 ng ml -1 for HSA and 80 ng ml -1 for BSA were attained. The method was successfully applied to the quantification of total proteins in human serum samples, the maximum relative error is less than 1% and the recovery is between 98% and 102%. The sample throughput was 60 h -1.

  17. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    PubMed Central

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-01

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899

  18. Control of microbial activity by flow injection analysis during high cell density cultivation of Escherichia coli.

    PubMed

    Ding, T; Bilitewski, U; Schmid, R D; Korz, D J; Sanders, E A

    1993-01-01

    The application of an automated flow injection analysis (FIA) system for on-line determination of microbial activity, during high cell density cultivations of Escherichia coli is reported. Based on a bioelectrochemical principle, the FIA method used a redox mediator (potassium hexacyanoferrate(III)) to facilitate electron transfer from the microorganisms to an electrochemical detector. Assays were carried out using a new sampling device which provided aseptic operation by use of a valve and chemical sterilisation. No sample dilution or pretreatment was necessary for biomass concentrations up to approx. 40 g l-1. The sample volume was 0.5 ml and the overall analysis time was 5 min. FIA signals were found to correlate well with the oxygen uptake rate (OUR). Changes in metabolic activity due to low substrate levels or high inhibitor concentrations in the cultivation medium became obvious from the FIA signals. PMID:7763463

  19. Chemiluminescence determination of potassium bromate in flour based on flow injection analysis.

    PubMed

    Yan, Zhengyu; Zhang, Zhengwei; Yu, Yan; Liu, Zhen; Chen, Jianqiu

    2016-01-01

    A novel and highly sensitive flow-injection chemiluminescence method for the determination of potassium bromate (KBrO3) has been developed. This method is based on the luminescence properties of the KBrO3-Na2SO3-quinine sulfate system in acid medium. Optimized experimental conditions and a possible mechanism were investigated. The relative chemiluminescence intensity responded linearly to the concentration of KBrO3 in the range of 7.054 × 10(-6)-1.008 × 10(-4) mol/L with a detection limit of 2.116 × 10(-6) mol/L. The relative standard deviation (RSD) at 5.0 × 10(-5) mol/L KBrO3 (n = 12) was 2.3%. The proposed method was applied successfully to the determination of KBrO3 in flour. PMID:26212936

  20. Flow Injection Analysis of 5-(Hydroxymethyl)-2-furaldehyde in Honey by a Modified Winkler Method.

    PubMed

    Castoldi, Karine; Milani, Maria Izabel; Rossini, Eduardo L; Pezza, Leonardo; Pezza, Helena R

    2016-01-01

    One of the quality indicators for honey is 5-(hydroxymethyl)-2-furaldehyde (HMF), which is formed during the heating or aging of honey. The International Honey Commission recommends three methods for the determination of HMF in honey: the Winkler method, the White method, and determination by HPLC. The Winkler method uses the carcinogenic substance p-toluidine, which is not in accordance with the principles of Green Chemistry. The present work describes the determination of HMF in honey by flow injection analysis (FIA) using a modified Winkler method, replacing p-toluidine with p-aminobenzoic acid. The linear range was 1.00 to 40.0 mg L(-1), the limit of detection (LOD) was 0.43 mg L(-1), and the limit of quantification (LOQ) was 1.32 mg L(-1). The method is an efficient and environmentally friendly technique for the analysis of HMF in honey. PMID:27063713

  1. Determination of hydrogen peroxide by flow injection analysis with aryl oxalate-sulforhodamine 101 chemiluminescence

    SciTech Connect

    Katayama, M.; Takeuchi, H.; Tanigchi, H. )

    1991-06-01

    A flow injection analysis (FIA) method for the determination of hydrogen peroxide by aryl oxalate chemiluminescence detection was studied. The analyte was detected by using sulforhodamine 101 as a new fluorophore and bis (4-nitro-2-(3,6,9-trioxadecyloxycarbonyl)phenyl)oxalate (TDPO) in imidazole buffer (pH 7.0)-acetonitrile. The detection limit was 3.0 {times} 10{sup {minus}9}M. The relative standard deviation (n=6) for 1.0 {times} 10{sup {minus}6} M hydrogen peroxide was 2.8%. This FIA method was shown to be 20 to 2,500 times more sensitive than the previous FIA method with aryl oxalate chemiluminescence.

  2. Flow-injection fluorimetric determination of vitamin K(1) based on a photochemical reaction.

    PubMed

    Pérez-Ruiz, T; Martínez-Lozano, C; Tomás, V; Martín, J

    1999-08-23

    The sensitizing effect of vitamin K(1) on the photo-oxidation of glucose has been used for the determination of the vitamin. The hydrogen peroxide formed in the photochemical reaction reacts with Fe(II) to yield hydroxylradical and this radical is scavenged by benzoic acid to form the fluorescent hydroxybenzoic acids, which are analysed by fluorescence detection. This analytical scheme was adapted to a flow-injection system, which permits the determination of vitamin K(1) between 1x10(-6) and 1x10(-4) M with a throughput of 20 samples h(-1) and relative standard deviation between 0.2 and 1%. The applicability of the method was demonstrated by determining vitamin K(1) in pharmaceutical preparations and vegetables. PMID:18967693

  3. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    PubMed

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-01

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899

  4. Automatic microdistillation flow-injection system for the spectrophotometric determination of fluoride.

    PubMed

    Shimada, Katsuhisa; Shimoda, Tetsuro; Kokusen, Hisao; Nakano, Shigenori

    2005-03-31

    An automatic flow-injection (FI) system including on-line separation by microdistillation and spectrophotometric detection has been developed for the determination of trace amounts of fluoride. This ion was separated from sample matrix by distillation in the presence of sulfuric and phosphoric acids, and was subsequently determined with spectrophotometry based on the mixed-ligand complex of lanthanum(III)-fluoride-alizarin complexone. The proposed FI system has high sampling frequency (20 samplesh(-1)), small sample size (600 microl) and the dynamic range of 0.05-15 mgl(-1) with relative standard deviations of below 1.2%. Interfering ions such as aluminum(III) and iron(III) was effectively eliminated. The method was successfully applied to the determination of fluoride in industrial drainage after water treatment. PMID:18969965

  5. A direct numerical simulation of turbulent channel flow with injection and suction

    NASA Astrophysics Data System (ADS)

    Sumitani, Yasushi; Kasagi, Nobuhide

    1993-07-01

    A direct numerical simulation (DNS) of the fully developed turbulent channel flow with uniform wall injection and suction was carried out. The Reynolds number, which was based on the channel half width and the friction velocity averaged on the two walls, was set to be 150, while the Prandtl number was 0.71. The isothermal boundary condition was imposed at the walls. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on about 1.6 x lO exp 6 grid points by using a spectral method. The statistics obtained include the mean velocity and temperature, Reynolds stresses, and turbulent heat fluxes. Each term in the budget equations of the second-order velocity and temperature correlations and of their destruction rates was also calculated. It is found that the injection decreases the friction coefficient, but tends to stimulate the near-wall turbulence activity so that the Reynolds stresses and turbulent heat fluxes are increased, while the suction influences inversely.

  6. Determination of ammonia in beers by pervaporation flow injection analysis and spectrophotometric detection.

    PubMed

    Wang, Lijuan; Cardwell, Terence J; Cattrall, Robert W; Luque de Castro, Maria D; Kolev, Spas D

    2003-08-29

    A pervaporation flow injection (PFI) method is described for the determination of ammonia in beers. After injecting the sample into a NaOH donor solution, ammonia and other volatiles are transferred in the pervaporation unit from the donor stream to an acceptor stream containing sodium salicylate and nitroprusside, which subsequently mixes with alkaline sodium dichloroisocyanurate to allow the classical Berthelot reaction to take place. The blue-coloured complex formed is monitored spectrophotometrically at 655 nm. A linear calibration curve with a range of 0.1-40 mg l(-1) was obtained. The method has a detection limit of 0.05 mg l(-1) and is capable of a sampling frequency of 11 h(-1) at 4 mg l(-1) ammonia. It was applied successfully to the determination of ammonia in synthetic samples and unfiltered lager beers. The advantages of the present method over the ammonia ion-selective electrode method and the PFI system based on mixed indicator detection are discussed. PMID:18969154

  7. On the existence of solutions of an equation arising in the theory of laminar flow in a uniformly porous channel with injection

    NASA Technical Reports Server (NTRS)

    Shih, K. G.

    1986-01-01

    The existence of concave solutions of Berman's equation which describes the laminar flow in channels with injection through porous walls is established. It was found that the (unique) concave solutions exist for all injection Reynolds number R < 0.

  8. Design of a flow injection method for chlorophyll determination in in vitro plants.

    PubMed

    López, Juan Manuel; Lucena, Rosa Elena; Marcó P, Lué Merú; Mogollón, Norca; Rivas, Ricardo; Anzalone G, Alvaro

    2004-12-15

    A flow injection (FIA) method was designed for the determination of chlorophylls a and b in small in vitro Dieffenbachia maculata "Sublime" plants. In the first step, the pigments from spinach leaves were separated, purified by solvent extraction and freeze-dried, to obtain standards for the FIA optimization. The sample extraction procedure was optimized. Four solvents were tested: diethyl ether, methanol, acetone and ethanol. The ethanol 96% was the optimal solvent for FIA purposes. It allows to the efficient extraction of the pigments and water can be used as carrier. The best FIA conditions found for the quasi-simultaneous quantification of chlorophylls a and b were a flow rate of 10.84mLmin(-1), a sample injection volume of 1.45mL and a reactor length of 63cm. The detection was performed with the automatic wavelength scanning Cintra 10e spectrometer, at 649 and 665nm. The results obtained by the FIA method were compared to those obtained by the Arnon method. A deviation less than 5% was found between results for both methods. The concentration (mgg(-1)) of chlorophylls a and b during three periods of the plants (in vitro, acclimatization, and adult) was determined to evaluate the whole in vitro procedure. It was found an increment of both pigment concentrations since the in vitro step till the adult stage, while the chlorophylls a to b ratio decreases. The designed method is suitable especially for the determination of the pigments at low concentrations in small samples with appropriate analytical quality. PMID:18969746

  9. Simple in-house flow-injection capillary electrophoresis with capacitively coupled contactless conductivity method for the determination of colistin.

    PubMed

    Chaisuwan, Patcharin; Moonta, Thararat; Sangcakul, Areeporn; Nacapricha, Duangjai; Wilairat, Prapin; Uraisin, Kanchana

    2015-03-01

    An in-house flow-injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2-morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow-injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r(2) ) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time. PMID:25641810

  10. [Determination of trace mercury in wastewater by a flow injection analysis composed of immobilized ionic liquid enrichment and colorimetric detection].

    PubMed

    Zhang, Jun; Mao, Li-li; Yang, Gui-peng; Gao, Xian-chi; Tang, Xu-li

    2010-07-01

    Amberlite XAD-7 resin was modified by room temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate, [C6 mim]PF6) coating through a maceration method, gaining a new sort of hydrophobic adsorbent for the solid phase extraction mini-column. Trace inorganic mercury in wastewater samples was preconcentrated and determined by flow injection online mini-column sampling coupled with spectrophotometric determination. In acid medium, dithizone was employed as chelator with cetyltrimethylammonium bromide (CTMAB) to form a red neutral mercury-dithizone complex, which could be extracted quantificationally by solid phase extraction technique on the mini-column. Under the optimized conditions, the linearity and the detection limit of the proposed method were found to be 0.35 to 50.0 microg x L(-1) Hg2+ and 0.067 microg x L(-1) Hg2+, respectively. The enrichment factor of 25 times could be achieved with a 50 mL sampling volume and the developed procedure was successfully applied for the determination of mercury in the certified reference material (GSBZ50016-90) and the spiked dock wastewater samples with the recovery of 99%-103%. PMID:20828014

  11. Multivariate optimization of mercury determination by flow injection-cold vapor generation-inductively coupled plasma optical emission spectrometry.

    PubMed

    dos Santos, Vanessa Cristina Gonçalves; Grassi, Marco Tadeu; de Campos, Mônica Soares; Peralta-Zamora, Patricio Guillermo; Abate, Gilberto

    2012-10-01

    In this work a procedure for mercury determination by Flow Injection-Cold Vapor Generation-Inductively Coupled Plasma Optical Emission Spectrometry (FI-CVG-ICP OES) has been developed. The system uses a small homemade glass separator constructed to drive the Hg vapor to the plasma. An evolutionary operation factorial design was used to evaluate the optimal experimental conditions for mercury vapor generation, aiming at the low consumption of reagents, the improvement of the analytical signal and consequently greater sensitivity. The procedure allowed the determination of mercury and showed excellent linearity for the concentration range from 0.50 μg L(-1) to 100.0 μg L(-1), with Limits of Detection (LOD) and Quantification (LOQ) of 0.11 μg L(-1) and 0.36 μg L(-1), respectively, and a sampling rate of 36 analyses per hour. The optimized procedure showed good accuracy and precision, and the method was validated by the analysis of two certified reference materials: Buffalo River Sediment (NIST 2704) and human hair (IAEA 085). A good agreement with the certified values was achieved, with recovery values of 99% and 98% and relative standard deviation close to 2%. PMID:22870503

  12. CFD Validation of Gas Injection in Flowing Mercury over Vertical Smooth and Grooved Wall

    SciTech Connect

    Abdou, Ashraf A; Wendel, Mark W; Felde, David K; Riemer, Bernie

    2009-01-01

    The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL).The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) can be used as a diagnostic tool to see inside the liquid mercury and guide the experimental efforts. In this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over smooth, vertically grooved and horizontally grooved walls are carried out with the commercially available CFD code Fluent-12 from ANSYS. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. V-shaped vertical and horizontal grooves with 0.5 mm pitch and about 0.7 mm depth were machined in the transparent wall of acrylic test sections. Flow visualization data of helium gas coverage through transparent test sections is obtained with a high-speed camera at the ORNL target test facility (TTF). The helium gas mass flow rate is 8 mg/min and introduced through a 0.5 mm diameter port. The local mercury velocity is 0.9 m/s. In this paper, the helium gas flow rate and the local mercury velocity are kept constant for the three cases. Time integration of predicted helium gas volume fraction over time is done to evaluate the gas coverage and calculate the average thickness of the helium gas layer. The predicted time-integrated gas coverage over vertically grooved and horizontally grooved test sections is better than over a smooth wall. The

  13. Magnetohydrodynamic stagnation point flow and heat transfer in a nanofluid towards a stretching sheet with suction/injection

    NASA Astrophysics Data System (ADS)

    Zaimi, Khairy; Bakar, Nor Ashikin Abu

    2015-05-01

    This paper deals with the magnetohydrodynamic (MHD) stagnation point flow and heat transfer towards a permeable stretching sheet in a nanofluid. By using a similarity transformation, the governing equations of fluid flow are reduced into ordinary differential equation, which are then solved numerically using a shooting method. The effects of suction/injection parameter on the velocity, temperature and concentration profiles and heat transfer characteristics are obtained and graphically presented. It is found that skin friction coefficient and the local Nusselt number increase with suction, while it acts in opposite manner with injection.

  14. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  15. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    PubMed

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions. PMID:24783570

  16. Effects of small scale energy injection on large scales in turbulent reaction flows

    NASA Astrophysics Data System (ADS)

    Xuan, Yuan

    2014-11-01

    Turbulence causes the generation of eddies of various length scales. In turbulent non-reacting flows, most of the kinetic energy is contained in large scale turbulent structures and dissipated at small scales. This energy cascade process from large scales to small scales provides the foundation of a lot of turbulence models, especially for Large Eddy Simulations. However, in turbulent reacting flows, chemical energy is converted locally to heat and therefore deploys energy at the smallest scales. As such, effects of small scale energy injection due to combustion on large scale turbulent motion may become important. These effects are investigated in the case of auto-ignition under homogeneous isotropic turbulence. Impact of small scale heat release is examined by comparing various turbulent statistics (e.g. energy spectrum, two-point correlation functions, and structure functions) in the reacting case to the non-reacting case. Emphasis is placed on the identification of the most relevant turbulent quantities in reflecting such small-large scale interactions.

  17. Flow-Injection Preconcentration of Chloramphenicol Using Molecularly Imprinted Polymer for HPLC Determination in Environmental Samples

    PubMed Central

    Kowalski, Damian; Poboży, Ewa; Trojanowicz, Marek

    2011-01-01

    The residue of antibiotic chloramphenicol (CAP) is important issue for food quality control and also for the environmental monitoring. It is banned for use in food-producing animals and has very limited use in human medicine, because of its severe impact on human health. Determination of trace level of CAP in environmental samples requires a very sensitive analytical method and efficient preconcentration procedure. CAP can be efficiently preconcentrated in flow-injection system using flow-through reactor packed with molecularly imprinted polymer (MIP), but determination of CAP in eluate from MIP requires the application of chromatographic separation, which was made in reversed-phase HPLC system with UV detection. In optimized conditions the limit of detection for 100 mL sample in HPLC with offline preconcentration on MIP was evaluated as 0.66 mg/L. In hyphenated FIA-HPLC system with zone sampling the LOD for developed method was evaluated as 15 ng/L, which indicates the possibility of using it for analysis of environmental samples. PMID:21584273

  18. Simultaneous injection effective mixing flow analysis of urinary albumin using dye-binding reaction.

    PubMed

    Ratanawimarnwong, Nuanlaor; Ponhong, Kraingkrai; Teshima, Norio; Nacapricha, Duangjai; Grudpan, Kate; Sakai, Tadao; Motomizu, Shoji

    2012-07-15

    A new four-channel simultaneous injection effective mixing flow analysis (SIEMA) system has been assembled for the determination of urinary albumin. The SIEMA system consisted of a syringe pump, two 5-way cross connectors, four holding coils, five 3-way solenoid valves, a 50-cm long mixing coil and a spectrophotometer. Tetrabromophenol blue anion (TBPB) in Triton X-100 micelle reacted with albumin at pH 3.2 to form a blue ion complex with a λ(max) 625nm. TBPB, Triton X-100, acetate buffer and albumin standard solutions were aspirated into four individual holding coils by a syringe pump and then the aspirated zones were simultaneously pushed in the reverse direction to the detector flow cell. Baseline drift, due to adsorption of TBPB-albumin complex on the wall of the hydrophobic PTFE tubing, was minimized by aspiration of Triton X-100 and acetate buffer solutions between samples. The calibration graph was linear in the range of 10-50μg/mL and the detection limit for albumin (3σ) was 0.53μg/mL. The RSD (n=11) at 30μg/mL was 1.35%. The sample throughput was 37/h. With a 10-fold dilution, interference from urine matrix was removed. The proposed method has advantages in terms of simple automation operation and short analysis time. PMID:22817927

  19. Flow injection chemiluminescence determination of sudan I in hot chilli sauce.

    PubMed

    Liu, Yanhong; Song, Zhenghua; Dong, Faxin; Zhang, Lin

    2007-02-01

    A chemiluminescence method based on the luminol-H2O2 system with flow injection technology was proposed for the determination of sudan I in hot chilli sauce. It was found that sudan I could enhance chemiluminescence intensity generated from the luminol-H2O2 system. The increment of chemiluminescence intensity was proportional to the concentration of sudan I, giving a calibration graph linear over the concentration from 10 pg mL-1 to 7 ng mL-1 (R 2 = 0.9980) with the detection limit of 3 pg mL-1 (3sigma) and the quantification limit of 7.5 pg mL-1. At a flow rate of 2.0 mL min-1, one analysis cycle, including sampling and washing, could be accomplished in 60 s with a relative standard deviation of <5.0%. The method has been applied successfully to the determination of sudan I in Pixian douban, Golden Mark guilin chilli sauce, and Golden Mark satay sauce, and the recovery was 90.6-110.0%. PMID:17263450

  20. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample. PMID:22165025

  1. Numerical simulation of internal and near-nozzle flow of a gasoline direct injection fuel injector

    NASA Astrophysics Data System (ADS)

    Saha, Kaushik; Som, Sibendu; Battistoni, Michele; Li, Yanheng; Quan, Shaoping; Senecal, Peter Kelly

    2015-12-01

    A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multi-hole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from, the Engine Combustion Network (ECN). Simulations have been carried out for the fixed needle lift. Effects of turbulence, compressibility and, non-condensable gases have been considered in this work. Standard k—ɛ turbulence model has been used to model the turbulence. Homogeneous Relaxation Model (HRM) coupled with Volume of Fluid (VOF) approach has been utilized to capture the phase change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine non-flashing and evaporative, non-flashing and non-evaporative, and flashing conditions. Inside the nozzle holes mild cavitation-like and in the near-nozzle region flash boiling phenomena have been predicted in this study when liquid fuel is subjected to superheated ambiance. Noticeable hole to hole variation has been also observed in terms of mass flow rates for all the holes under both flashing and non-flashing conditions.

  2. A microfluidic device with integrated fluorimetric detection for flow injection analysis.

    PubMed

    Fonseca, Alexandre; Raimundo, Ivo M; Rohwedder, Jarbas J R; Lima, Renato S; Araújo, Mário C Ugulino

    2010-01-01

    This work describes the development of flow analysis microsystems with integrated fluorimetric detection cells. Channels (width of 300-540 microm and depth of 200-590 microm) were manufactured by deep-UV lithography in urethane-acrylate (UA) resin. Plastic optical fibers (diameter of 250 microm) were coupled to a 2.0-mm-long detection channel in order to guide the excitation radiation from an LED (470 nm) and collect the emitted radiation at a right angle towards a photomultiplier. A single-line miniaturized system, with a total internal volume of 10.4 microL, was evaluated by means of standard fluorescein solutions (0.53-2.66 micromol L(-1), pH 8.5). The analytical signals presented a linear relationship in the concentration range studied, with a relative standard deviation of 1.9% (n = 5), providing a detection limit of 0.37 micromol L(-1) and an analytical frequency of 60 samples/h, using a flow rate of 60 microL min(-1). Optical microscopy images and videos acquired in real time for the hydrodynamic injection of 130 and 320 nL of sample solutions indicated the good performance of the proposed sampling strategy. Another microsystem with a total internal volume of 38 microL was developed, incorporating a confluence point for two solutions. This device was applied to the determination of the total concentration of Ca(2+) and Mg(2+) in commercial mineral waters using the calcein method. Microscopy images and videos demonstrated the mixing efficiency of the solutions in the microchannels. A linear relationship was observed for the analytical signal in the Ca(2+) concentration range from 25 to 125 micromol L(-1), with relative standard deviations of 3.5%. The analysis of mineral waters with the proposed system provided results that did not differ significantly from those obtained by the EDTA titration method at a confidence level of 95%. These results demonstrate the viability of developing micro flow injection systems with an integrated fluorimetric detection cell

  3. Reference values of fetal erythrocytes in maternal blood during pregnancy established using flow cytometry.

    PubMed

    de Wit, Harry; Nabbe, Karin C A M; Kooren, Jurgen A; Adriaansen, Henk J; Roelandse-Koop, Elianne A; Schuitemaker, Joost H N; Hoffmann, Johannes J M L

    2011-10-01

    The aim of our study was to assess the fetal RBC count in maternal blood during uncomplicated pregnancies from 26 weeks onward. We used a flow cytometric method specifically designed for use in a routine hematology analyzer. Pregnant women were recruited through midwives. The participating laboratories used the FMH QuikQuant method (Trillium Diagnostics, Brewer, ME) in a CELL-DYN Sapphire hematology analyzer (Abbott Diagnostics, Santa Clara, CA). The method is based on a monoclonal antibody to hemoglobin F. Flow cytometric data were analyzed by 2 independent observers. The 95th percentile reference range was estimated according to Clinical and Laboratory Standards Institute guidelines. A total of 236 samples were statistically analyzed. Gestational ages ranged from 21.6 to 41 weeks (mean, 32.0 weeks), and the fetal RBC count in maternal blood ranged from 0.00% to 0.50% (median, 0.025%). The fetal RBC count in maternal blood shows no correlation with gestational age. The established reference range during normal pregnancy is less than 0.125%. PMID:21917687

  4. Flow-injection chemiluminescence method to detect a β2 adrenergic agonist.

    PubMed

    Zhang, Guangbin; Tang, Yuhai; Shang, Jian; Wang, Zhongcheng; Yu, Hua; Du, Wei; Fu, Qiang

    2015-02-01

    A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide-luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide-luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from 'Y2 ' to the flow cell. The linear ranges and limit of detection were 10-100 and 5 ng/mL for isoprenaline hydrochloride, 20-100 and 5 ng/mL for salbutamol sulfate, 8-200 and 1 ng/mL for terbutaline sulfate, 20-100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8-98.5%. The possible CL reaction mechanism of potassium ferricyanide-luminol-β2 adrenergic agonist was discussed from the UV/vis spectra. PMID:24830367

  5. Automated on-line renewable solid-phase extraction-liquid chromatography exploiting multisyringe flow injection-bead injection lab-on-valve analysis.

    PubMed

    Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2006-04-15

    In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems. PMID:16615800

  6. Flow structure and skin friction in the vicinity of a streamwise-angled injection hole fed by a short pipe

    NASA Astrophysics Data System (ADS)

    Peterson, Sean D.; Plesniak, Michael W.

    2007-10-01

    The velocity field and skin friction distribution around a row of five jets issuing into a crossflow from short ( L/ D ≃ 1) pipes inclined by 35° with respect to the streamwise direction, (i.e., “short holes”) are presented for two different jet supply flow directions. Velocity was measured using PIV, while the skin friction was measured with oil-film interferometry. The flow features are compared with previously published data for jets issuing through holes oriented normal to the crossflow and with numerical simulations of similar geometries. The distinguishing features of the flow field include a reduced recirculation region in comparison to the 90° case and markedly different in-hole flow physics. The jetting process caused by in-hole separations force the bulk of the jet fluid to issue from the leading half of the streamwise-angled injection hole, as previously reported by Brundage et al. (Tech Rep ASME 99-GT-35, 1999) and predicted by Walters and Leylek (ASME J Turbomach 122:101-112, 2000). The flow structure impacts the skin friction distribution around the holes, resulting in higher near-hole shear stress for a counter-flow supply plenum (jet fluid supplied by a high speed plenum flowing opposite to the free stream direction). In contrast, the counter-flow supply plenum was previously found to have the lowest near-hole wall shear stress for normal injection holes (Peterson and Plesniak in Exp Fluids 37:497-503, 2004b). Streamwise-angled injection generally reduces the near-hole skin friction due to the reduced jet trajectory resulting from the lower wall-normal jet momentum. Far downstream, the skin friction distributions are similar for the two injection angle cases.

  7. Magnetic Reconnection and Ion Flows During Point-Source DC Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Bongard, M. W.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A passive ion temperature polychromator has been deployed on Pegasus to study power balance and non-thermal ion distributions that arise during point source helicity injection. Spectra are recorded from a 1 m F/8.6 Czerny-Turner polychromator whose output is recorded by an intensified high-speed camera. During helicity injection, stochastic magnetic fields keep Te low and thus low ionization impurities penetrate to the core. Under these conditions, high core ion temperatures are measured (Ti 1.2 keV, Te 0.1 keV) using spectral lines from CIII, NIII, and BIV. This rapid ion heating is seen to coincide with internal MHD activity. The ion temperature closely follows the injection bias voltage, indicating that power from the guns is strongly coupled to the ions through this MHD activity. Bi-directional toroidal ion flows of ˜60 km/s have been observed on the BIV line during helicity injection when looking near the front of the injectors. The flow is on the order of the Alfv'en velocity, as predicted by Sweet-Parker reconnection, and is indicative of magnetic reconnection occurring near the injectors. When looking away from the helicity injectors, the bi-directional flow appears to be replaced by strong toroidal rotation, suggesting that ion acceleration during helicity injection is asymmetric and 3D in nature.

  8. Numerical Solution for the Effect of Suction or Injection on Flow of Nanofluids Past a Stretching Sheet

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.

    2016-06-01

    The flow of nanofluids past a stretching sheet has attracted much attention owing to its wide applications in industry and engineering. Numerical solution has been discussed in this article for studying the effect of suction (or injection) on flow of nanofluids past a stretching sheet. The numerical results carried out using Chebyshev collocation method (ChCM). Useful results for temperature profile, concentration profile, reduced Nusselt number, and reduced Sherwood number are discussed in tabular and graphical forms. It was also demonstrated that both temperature and concentration profiles decrease by an increase from injection to suction. Moreover, the numerical results show that the temperature profiles decrease at high values of Prandtl number Pr. Finally, the present results showed that the reduced Nusselt number is a decreasing function, whereas the reduced Sherwood number is an increasing function at fixed values of Prandtl number Pr, Lewis number Le and suction (or injection) parameter s for variation of Brownian motion parameter Nb, and thermophoresis parameter Nt.

  9. Thrust vectoring effects of a transverse gas injection into a supersonic cross flow of an axisymmetric convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Zmijanovic, V.; Lago, V.; Leger, L.; Depussay, E.; Sellam, M.; Chpoun, A.

    2013-03-01

    The transverse gas injection into the main supersonic flow of an axisymmetric convergent-divergent (C-D) propulsive nozzle is investigated for the fluidic thrust vectoring (FTV) possibilities as the segment part of the CNES "Perseus" project. Truncated ideal contour and conical C-D nozzles with different position and angle of the secondary circular injection port are selected as test models in the current numerical and experimental study. Analytical approach revealed parameters which affect the FTV efficiency, these criterions are further numerically explored and results data of the conical nozzle test cases are compared and coupled with the ones from experiments. It is found that upstream inclined injection has positive effect on vectoring capabilities and that with moderate secondary to primary mass-flow ratios, ranging around 5%, pertinent vector side force is possible to be achieved.

  10. Comparison of Flow Injection MS, NMR, and DNA Sequencing: Methods for Identification and Authentication of Black Cohosh (Actaea racemosa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow injection mass spectrometry (FIMS) and proton nuclear magnetic resonance spectrometry (1H-NMR), two metabolic fingerprinting methods, and DNA sequencing were used to identify and authenticate Actaea species. Initially, samples of Actaea racemosa L. from a single source were distinguished from ...