Science.gov

Sample records for reference plasma proteome

  1. Plasma Proteome Response to Severe Burn Injury Revealed by 18O-Labeled “Universal” Reference-based Quantitative Proteomics

    PubMed Central

    Qian, Wei-Jun; Petritis, Brianne O.; Kaushal, Amit; Finnerty, Celeste C; Jeschke, Marc G; Monroe, Matthew E.; Moore, Ronald J.; Schepmoes, Athena A.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Herndon, David N.; Camp, David G.; Smith, Richard D.

    2010-01-01

    A burn injury represents one of the most severe forms of human trauma and is responsible for significant mortality worldwide. Here, we present the first quantitative proteomics investigation of the blood plasma proteome response to severe burn injury by comparing the plasma protein concentrations of 10 healthy control subjects with those of 15 severe burn patients at two time-points following the injury. The overall analytical strategy for this work integrated immunoaffinity depletion of the 12 most abundant plasma proteins with cysteinyl-peptide enrichment-based fractionation prior to LC-MS analyses of individual patient samples. Incorporation of an 18O-labeled “universal” reference among the sample sets enabled precise relative quantification across samples. In total, 313 plasma proteins confidently identified with two or more unique peptides were quantified. Following statistical analysis, 110 proteins exhibited significant abundance changes in response to the burn injury. The observed changes in protein concentrations suggest significant inflammatory and hypermetabolic response to the injury, which is supported by the fact that many of the identified proteins are associated with acute phase response signaling, the complement system, and coagulation system pathways. The regulation of ~35 proteins observed in this study is in agreement with previous results reported for inflammatory or burn response, but approximately 50 potentially novel proteins previously not known to be associated with burn response or inflammation are also found. Elucidating proteins involved in the response to severe burn injury may reveal novel targets for therapeutic interventions, as well as potential predictive biomarkers for patient outcomes such as multiple organ failure. PMID:20698492

  2. Immunoassay and antibody microarray analysis of the HUPO Plasma Proteome Project reference specimens: Systematic variation between sample types and calibration of mass spectrometry data

    SciTech Connect

    Haab, Brian B.; Geierstanger, Bernhard H.; Michailidis, George; Vitzthum, Frank; Forrester, Sara; Okon, Ryan; Saviranta, Petri; Brinker, Achim; Sorette, Martin; Perlee, Lorah; Suresh, Shubha; Drwal, Garry; Adkins, Joshua N.; Omenn, Gilbert S.

    2005-08-01

    Four different immunoassay and antibody microarray methods performed at four different sites were used to measure the levels of a broad range of proteins (N = 323 assays; 39, 88, 168, and 28 assays at the respective sites; 237 unique analytes) in the human serum and plasma reference specimens distributed by the Plasma Proteome Project (PPP) of the HUPO. The methods provided a means to (1) assess the level of systematic variation in protein abundances associated with blood preparation methods (serum, citrate-anticoagulated-plasma, EDTA-anticoagulated-plasma, or heparin-anticoagulated-plasma) and (2) evaluate the dependence on concentration of MS-based protein identifications from data sets using the HUPO specimens. Some proteins, particularly cytokines, had highly variable concentrations between the different sample preparations, suggesting specific effects of certain anticoagulants on the stability or availability of these proteins. The linkage of antibody-based measurements from 66 different analytes with the combined MS/MS data from 18 different laboratories showed that protein detection and the quality of MS data increased with analyte concentration. The conclusions from these initial analyses are that the optimal blood preparation method is variable between analytes and that the discovery of blood proteins by MS can be extended to concentrations below the ng/mL range under certain circumstances. Continued developments in antibody-based methods will further advance the scientific goals of the PPP.

  3. Medicinal chemistry meets proteomics: fractionation of the human plasma proteome.

    PubMed

    Kovàcs, A; Guttman, A

    2013-01-01

    Human plasma and its fractions/derivatives are frequently used materials in biomedicine as it contains thousands and thousands of proteins representing the majority of human proteome. Several important methods were developed in the past for the fractionation of this important biological fluid and its use for medicinal purposes. One of the greatest challenges is the very large dynamic range of plasma proteins ranging up to 10-12 orders of magnitude. Early attempts were mainly based on methods such as salting out or cold ethanol precipitation, as well as chromatography utilizing affinity, size exclusion, ion exchange and hydrophobic interaction techniques. More recently, fractionation applications started with the depletion of the high abundant plasma components, such as serum albumin and immunoglobulins, before isolating lower abundant proteins of interest. Plasma volumes were utilized from the milliliter scale for diagnostic applications to hundreds of liters for industrial scale plasma fractionation (e.g., medicinal product manufacturing). In this paper we review this important part of medicinal chemistry, highlighting the traditional methods along with some of their variations as well as the most significant recent achievements of the field. PMID:23244521

  4. Mining the plasma proteome for cancer biomarkers.

    PubMed

    Hanash, Samir M; Pitteri, Sharon J; Faca, Vitor M

    2008-04-01

    Systematic searches for plasma proteins that are biological indicators, or biomarkers, for cancer are underway. The difficulties caused by the complexity of biological-fluid proteomes and tissue proteomes (which contribute proteins to plasma) and by the extensive heterogeneity among diseases, subjects and levels of sample procurement are gradually being overcome. This is being achieved through rigorous experimental design and in-depth quantitative studies. The expected outcome is the development of panels of biomarkers that will allow early detection of cancer and prediction of the probable response to therapy. Achieving these objectives requires high-quality specimens with well-matched controls, reagent resources, and an efficient process to confirm discoveries through independent validation studies. PMID:18385731

  5. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome.

    PubMed

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno; Stensballe, Allan

    2015-12-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized. We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing proteomic methods to investigate the proteome of healthy porcine synovial fluid (Bennike et al., 2014 [1]). We included an evaluation of different proteolytic sample preparation techniques, and an analysis of posttranslational modifications with a focus on glycosylation. We used pig (Sus Scrofa) as a model organism, as the porcine immune system is highly similar to human and the pig genome is sequenced. Furthermore, porcine model systems are commonly used large animal models to study several human diseases. In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935. PMID:26543887

  6. Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    PubMed Central

    Bennike, Tue Bjerg; Barnaby, Omar; Steen, Hanno; Stensballe, Allan

    2015-01-01

    Synovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized. We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing proteomic methods to investigate the proteome of healthy porcine synovial fluid (Bennike et al., 2014 [1]). We included an evaluation of different proteolytic sample preparation techniques, and an analysis of posttranslational modifications with a focus on glycosylation. We used pig (Sus Scrofa) as a model organism, as the porcine immune system is highly similar to human and the pig genome is sequenced. Furthermore, porcine model systems are commonly used large animal models to study several human diseases. In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD000935. PMID:26543887

  7. Characterization of the human blood plasma proteome

    SciTech Connect

    Shen, Yufeng; Kim, Jeongkwon; Strittmatter, Eric F.; Jacobs, Jon M.; Camp, David G.; Fang, Ruihua; Tolic, Nikola; Moore, Ronald J.; Smith, Richard D.

    2005-10-15

    We describe methods for broad characterization of the human plasma proteome. The combination of stepwise IgG and albumin protein depletion by affinity chromatography and ultrahigh-efficiency capillary liquid chromatography separations coupled to ion trap-tandem mass spectrometry enabled identification of 2392 proteins from a single plasma sample with an estimated confidence level of >94%, and an additional 2198 proteins with an estimated confidence level of 80%. The relative abundances of the identified proteins span a range of over eight orders of magnitude in concentration (<30 pg/mL to {approx}30 mg/mL), facilitated by the attomole-level sensitivity of the analysis methods. More than 80% of the observed proteins demonstrate interactions with IgG and/or albumin. The results from this study provide a basis for a wide range of plasma proteomics studies, including broad quantitation of relative abundances in comparative studies for the identification of novel protein disease markers, as well as further studies of protein-protein interactions.

  8. A Proteomic Study of the HUPO Plasma Proteome Project's Pilot Samples using an Accurate Mass and Time Tag Strategy

    SciTech Connect

    Adkins, Joshua N.; Monroe, Matthew E.; Auberry, Kenneth J.; Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Vitzthum, Frank; Rodland, Karin D.; Zangar, Richard C.; Smith, Richard D.; Pounds, Joel G.

    2005-08-01

    Characterization of the human blood plasma proteome is critical to the discovery of routinely useful clinical biomarkers. We used an Accurate Mass and Time (AMT) tag strategy with high-resolution mass accuracy capillary liquid chromatography Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry (cLC-FTICR MS) to perform a global proteomic analysis of pilot study samples as part of the HUPO Plasma Proteome Project. HUPO reference serum and citrated plasma samples from African Americans, Asian Americans, and Caucasian Americans were analyzed, in addition to a Pacific Northwest National Laboratory reference serum and plasma. The AMT tag strategy allowed us to leverage two previously published “shotgun” proteomics experiments to perform global analyses on these samples in triplicate in less than 4 days total analysis time. A total of 722 (22% with multiple peptide identifications) International Protein Index (IPI) redundant proteins, or 377 protein families by ProteinProphet, were identified over the 6 individual HUPO serum and plasma samples. The samples yielded a similar number of identified redundant proteins in the plasma samples (average 446 +/-23) as found in the serum samples (average 440+/-20). These proteins were identified by an average of 956+/-35 unique peptides in plasma and 930+/-11 unique peptides in serum. In addition to this high-throughput analysis, the AMT tag approach was used with a Z-score normalization to compare relative protein abundances. This analysis highlighted both known differences in serum and citrated plasma such as fibrinogens, and reproducible differences in peptide abundances from proteins such as soluble activin receptor-like kinase 7b and glycoprotein m6b. The AMT tag strategy not only improved our sample throughput, and provided a basis for estimated quantitation.

  9. Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that cause inflammation and sickness through genetic and proteomic activation. The objective of our study was to identify the proteomic changes in plasma associated with inflammation induced by LPS treatment. Five-week-old ...

  10. Human protein reference database as a discovery resource for proteomics

    PubMed Central

    Peri, Suraj; Navarro, J. Daniel; Kristiansen, Troels Z.; Amanchy, Ramars; Surendranath, Vineeth; Muthusamy, Babylakshmi; Gandhi, T. K. B.; Chandrika, K. N.; Deshpande, Nandan; Suresh, Shubha; Rashmi, B. P.; Shanker, K.; Padma, N.; Niranjan, Vidya; Harsha, H. C.; Talreja, Naveen; Vrushabendra, B. M.; Ramya, M. A.; Yatish, A. J.; Joy, Mary; Shivashankar, H. N.; Kavitha, M. P.; Menezes, Minal; Choudhury, Dipanwita Roy; Ghosh, Neelanjana; Saravana, R.; Chandran, Sreenath; Mohan, Sujatha; Jonnalagadda, Chandra Kiran; Prasad, C. K.; Kumar-Sinha, Chandan; Deshpande, Krishna S.; Pandey, Akhilesh

    2004-01-01

    The rapid pace at which genomic and proteomic data is being generated necessitates the development of tools and resources for managing data that allow integration of information from disparate sources. The Human Protein Reference Database (http://www.hprd.org) is a web-based resource based on open source technologies for protein information about several aspects of human proteins including protein–protein interactions, post-translational modifications, enzyme–substrate relationships and disease associations. This information was derived manually by a critical reading of the published literature by expert biologists and through bioinformatics analyses of the protein sequence. This database will assist in biomedical discoveries by serving as a resource of genomic and proteomic information and providing an integrated view of sequence, structure, function and protein networks in health and disease. PMID:14681466

  11. Plasma Proteome Profiling to Assess Human Health and Disease.

    PubMed

    Geyer, Philipp E; Kulak, Nils A; Pichler, Garwin; Holdt, Lesca M; Teupser, Daniel; Mann, Matthias

    2016-03-23

    Proteins in the circulatory system mirror an individual's physiology. In daily clinical practice, protein levels are generally determined using single-protein immunoassays. High-throughput, quantitative analysis using mass-spectrometry-based proteomics of blood, plasma, and serum would be advantageous but is challenging because of the high dynamic range of protein abundances. Here, we introduce a rapid and robust "plasma proteome profiling" pipeline. This single-run shotgun proteomic workflow does not require protein depletion and enables quantitative analysis of hundreds of plasma proteomes from 1 μl single finger pricks with 20 min gradients. The apolipoprotein family, inflammatory markers such as C-reactive protein, gender-related proteins, and >40 FDA-approved biomarkers are reproducibly quantified (CV <20% with label-free quantification). Furthermore, we functionally interpret a 1,000-protein, quantitative plasma proteome obtained by simple peptide pre-fractionation. Plasma proteome profiling delivers an informative portrait of a person's health state, and we envision its large-scale use in biomedicine. PMID:27135364

  12. High Dynamic Range Characterization of the Trauma Patient Plasma Proteome

    SciTech Connect

    Liu, Tao; Qian, Weijun; Gritsenko, Marina A.; Xiao, Wenzhong; Moldawer, Lyle L.; Kaushal, Amit; Monroe, Matthew E.; Varnum, Susan M.; Moore, Ronald J.; Purvine, Samuel O.; Maier, Ronald V.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2006-06-08

    While human plasma represents an attractive sample for disease biomarker discovery, the extreme complexity and large dynamic range in protein concentrations present significant challenges for characterization, candidate biomarker discovery, and validation. Herein, we describe a strategy that combines immunoaffinity subtraction and chemical fractionation based on cysteinyl peptide and N-glycopeptide captures with 2D-LC-MS/MS to increase the dynamic range of analysis for plasma. Application of this ''divide-and-conquer'' strategy to trauma patient plasma significantly improved the overall dynamic range of detection and resulted in confident identification of 22,267 unique peptides from four different peptide populations (cysteinyl peptides, non-cysteinyl peptides, N-glycopeptides, and non-glycopeptides) that covered 3654 nonredundant proteins. Numerous low-abundance proteins were identified, exemplified by 78 ''classic'' cytokines and cytokine receptors and by 136 human cell differentiation molecules. Additionally, a total of 2910 different N-glycopeptides that correspond to 662 N-glycoproteins and 1553 N-glycosylation sites were identified. A panel of the proteins identified in this study is known to be involved in inflammation and immune responses. This study established an extensive reference protein database for trauma patients, which provides a foundation for future high-throughput quantitative plasma proteomic studies designed to elucidate the mechanisms that underlie systemic inflammatory responses.

  13. Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD.

    PubMed

    Li, Ling; Bebek, Gurkan; Previs, Stephen F; Smith, Jonathan D; Sadygov, Rovshan G; McCullough, Arthur J; Willard, Belinda; Kasumov, Takhar

    2016-09-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with an increased risk of cardiovascular disease. Because the liver is the major source of circulatory proteins, it is not surprising that hepatic disease could lead to alterations in the plasma proteome, which are therein implicated in atherosclerosis. The current study used low-density lipoprotein receptor-deficient (LDLR(-/-)) mice to examine the impact of Western diet (WD)-induced NAFLD on plasma proteome homeostasis. Using a (2)H2O-metabolic labeling method, we found that a WD led to a proinflammatory distribution of circulatory proteins analyzed in apoB-depleted plasma, which was attributed to an increased production. The fractional turnover rates of short-lived proteins that are implicated in stress-response, lipid metabolism, and transport functions were significantly increased with WD (P < 0.05). Pathway analyses revealed that alterations in plasma proteome dynamics were related to the suppression of hepatic PPARα, which was confirmed based on reduced gene and protein expression of PPARα in mice fed a WD. These changes were associated with ∼4-fold increase (P < 0.0001) in the proinflammatory property of apoB-depleted plasma. In conclusion, the proteome dynamics method reveals proinflammatory remodeling of the plasma proteome relevant to liver disease. The approach used herein may provide a useful metric of in vivo liver function and better enable studies of novel therapies surrounding NAFLD and other diseases. PMID:27439437

  14. Extensive dataset of boar seminal plasma proteome displaying putative reproductive functions of identified proteins.

    PubMed

    Perez-Patiño, Cristina; Barranco, Isabel; Parrilla, Inmaculada; Martinez, Emilio A; Rodriguez-Martinez, Heriberto; Roca, Jordi

    2016-09-01

    A complete proteomic profile of seminal plasma (SP) remains challenging, particularly in porcine. The data reports on the analysis of boar SP-proteins by using a combination of SEC, 1-D SDS PAGE and NanoLC-ESI-MS/MS from 33 pooled SP-samples (11 boars, 3 ejaculates/boar). A complete dataset of the 536 SP-proteins identified and validated with confidence ≥95% (Unused Score >1.3) and a false discovery rate (FDR) ≤1%, is provided. In addition, the relative abundance of 432 of them is also shown. Gene ontology annotation of the complete SP-proteome complemented by an extensive description of the putative reproductive role of SP-proteins, providing a valuable source for a better understanding of SP role in the reproductive success. This data article refers to the article entitled "Characterization of the porcine seminal plasma proteome comparing ejaculate portions" (Perez-Patiño et al., 2016) [1]. PMID:27583342

  15. A reference map of the Arabidopsis thaliana mature pollen proteome

    SciTech Connect

    Noir, Sandra; Braeutigam, Anne; Colby, Thomas; Schmidt, Juergen; Panstruga, Ralph . E-mail: panstrug@mpiz-koeln.mpg.de

    2005-12-02

    The male gametophyte (or pollen) plays an obligatory role during sexual reproduction of higher plants. The extremely reduced complexity of this organ renders pollen a valuable experimental system for studying fundamental aspects of plant biology such as cell fate determination, cell-cell interactions, cell polarity, and tip-growth. Here, we present the first reference map of the mature pollen proteome of the dicotyledonous model plant species, Arabidopsis thaliana. Based on two-dimensional gel electrophoresis, matrix-assisted laser desorption/ionization time-of-flight, and electrospray quadrupole time-of-flight mass spectrometry, we reproducibly identified 121 different proteins in 145 individual spots. The presence, subcellular localization, and functional classification of the identified proteins are discussed in relation to the pollen transcriptome and the full protein complement encoded by the nuclear Arabidopsis genome.

  16. Comparative plasma proteome analysis of lymphoma-bearing SJL mice.

    PubMed

    Bhat, Vadiraja B; Choi, Man Ho; Wishnok, John S; Tannenbaum, Steven R

    2005-01-01

    In SJL mice, growth of RcsX lymphoma cells induces an inflammatory response by stimulating V(beta)16+ T cells. During inflammation, various serum protein levels can increase (e.g., acute phase reactants) or decrease (e.g., albumin), and most of these altered proteins are thus potential biomarkers. Although blood plasma is a valuable and promising sample for biomarker discovery for diseases or for novel drug targets, its proteome is complex. To address this, we have focused on a comprehensive comparison of the plasma proteomes from normal and RcsX-tumor-bearing SJL mice using the 1D-Gel-LC-MS/MS method after removing albumin and immunoglobulins. This analysis resulted in the identification of a total of 1079 nonredundant mouse plasma proteins; more than 480 in normal and 790 in RcsX-tumor-bearing SJL mouse plasma. Of these, only 191 proteins were found in common. The molecular weights ranged from 2 to 876 kDa, covering the pI values between 4.22 and 12.09, and included proteins with predicted transmembrane domains. By comparing the plasma proteomic profile of normal and RcsX-tumor-bearing SJL mice, we found significant changes in the levels of many proteins in RcsX-tumor-bearing mouse plasma. Most of the up-regulated proteins were identified as acute-phase proteins (APPs). Also, several unique proteins i.e., haptoglobin, proteosome subunits, fetuin-B, 14-3-3 zeta, MAGE-B4 antigen, etc, were found only in the tumor-bearing mouse plasma; either secreted, shed by membrane vesicles, or externalized due to cell death. These results affirm the effectiveness of this approach for protein identification from small samples, and for comparative proteomics in potential animal models of human disorders. PMID:16212437

  17. Statistical Analysis of Variation in the Human Plasma Proteome

    DOE PAGESBeta

    Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; Walsworth, Vicki L.; Turteltaub, Kenneth W.; McCutchen-Maloney, Sandra L.; Chromy, Brett A.

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less

  18. Statistical analysis of variation in the human plasma proteome.

    PubMed

    Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery. PMID:20130815

  19. Beware of moving targets: reference proteome content fluctuates substantially over the years.

    PubMed

    Sirota, Fernanda L; Batagov, Arsen; Schneider, Georg; Eisenhaber, Birgit; Eisenhaber, Frank; Maurer-Stroh, Sebastian

    2012-12-01

    Reference proteomes are generated by increasingly sophisticated annotation pipelines as part of regular genome build releases; yet, the corresponding changes in reference proteomes' content are dramatic. In the history of the NCBI-curated human proteome, the total number of entries has remained roughly constant but approximately half of the proteins from the 2003 build 33 are no longer represented by entries in current releases, while about the same number of new proteins have been added (for sequence identity thresholds 50-90%). Although mostly hypothetical proteins are affected, there are also spectacular cases of entry removal/addition of well studied proteins. The changes between the 2003 and recent human proteomes are in a similar order of magnitude as the differences between recent human and chimpanzee proteome releases. As an application example, we show that the proteome fluctuations affect the interpretation (about 74% of hits) of organelle-specific mass-spectrometry data. Although proteome quality tends to improve with more recent releases as, for example, the fraction of proteins with functional annotation has increased over time, existing evidence implies that, apparently, the proteome content still remains incomplete, not just pertaining to isoforms/sequence variants but also to proteins and their families that are clearly distinct. PMID:22867629

  20. Remote Ischemic Preconditioning (RIPC) Modifies Plasma Proteome in Humans

    PubMed Central

    Hepponstall, Michele; Ignjatovic, Vera; Binos, Steve; Monagle, Paul; Jones, Bryn; Cheung, Michael H. H.; d’Udekem, Yves; Konstantinov, Igor E.

    2012-01-01

    Remote Ischemic Preconditioning (RIPC) induced by brief episodes of ischemia of the limb protects against multi-organ damage by ischemia-reperfusion (IR). Although it has been demonstrated that RIPC affects gene expression, the proteomic response to RIPC has not been determined. This study aimed to examine RIPC induced changes in the plasma proteome. Five healthy adult volunteers had 4 cycles of 5 min ischemia alternating with 5 min reperfusion of the forearm. Blood samples were taken from the ipsilateral arm prior to first ischaemia, immediately after each episode of ischemia as well as, at 15 min and 24 h after the last episode of ischemia. Plasma samples from five individuals were analysed using two complementary techniques. Individual samples were analysed using 2Dimensional Difference in gel electrophoresis (2D DIGE) and mass spectrometry (MS). Pooled samples for each of the time-points underwent trypsin digestion and peptides generated were analysed in triplicate using Liquid Chromatography and MS (LC-MS). Six proteins changed in response to RIPC using 2D DIGE analysis, while 48 proteins were found to be differentially regulated using LC-MS. The proteins of interest were involved in acute phase response signalling, and physiological molecular and cellular functions. The RIPC stimulus modifies the plasma protein content in blood taken from the ischemic arm in a cumulative fashion and evokes a proteomic response in peripheral blood. PMID:23139772

  1. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size

    SciTech Connect

    Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong Seo; Qian, Weijun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.; Pounds, Joel G.; Liu, Tao

    2011-12-01

    In biofluids (e.g., blood plasma) nanoparticles are readily embedded in layers of proteins that can affect their biological activity and biocompatibility. Herein, we report a study on the interactions between human plasma proteins and nanoparticles with a controlled systematic variation of properties using stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) based quantitative proteomics. Novel protocol has been developed to simplify the isolation of nanoparticle bound proteins and improve the reproducibility. Plasma proteins associated with polystyrene nanoparticles with three different surface chemistries and two sizes as well as for four different exposure times (for a total of 24 different samples) were identified and quantified by LC-MS analysis. Quantitative comparison of relative protein abundances were achieved by spiking an 18 O-labeled 'universal reference' into each individually processed unlabeled sample as an internal standard, enabling simultaneous application of both label-free and isotopic labeling quantitation across the sample set. Clustering analysis of the quantitative proteomics data resulted in distinctive pattern that classifies the nanoparticles based on their surface properties and size. In addition, data on the temporal study indicated that the stable protein 'corona' that was isolated for the quantitative analysis appeared to be formed in less than 5 minutes. The comprehensive results obtained herein using quantitative proteomics have potential implications towards predicting nanoparticle biocompatibility.

  2. Utilizing human blood plasma for proteomic biomarker discovery

    SciTech Connect

    Jacobs, Jon M.; Adkins, Joshua N.; Qian, Weijun; Liu, Tao; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2005-08-01

    Application of proteomic biomarker discovery efforts towards human plasma entails both incredible clinical potential as well as significant challenges to overcome the intrinsic characteristics of plasma. The dynamic range of proteins within plasma, coupled with the likely presence of potential biomarkers in the more difficult to detect lower abundance range has driven the development of various methodologies and strategies to maximize the possible detective dynamic range within this biofluid. Discussed is the array of the available approaches currently used by our laboratory and others to utilized human plasma as a viable medium for biomarker discovery efforts. Various separation, depletion, enrichment, and quantitative efforts have resulted in a measurable improvement in the detectability of the low abundance fraction of proteins but more advances are needed to bridge the gap between the current range of detection and what remains unobservable to fully maximize the potential of this sample.

  3. Cardiovascular-related proteins identified in human plasma by the HUPO Plasma Proteome Project pilot phase.

    PubMed

    Berhane, Beniam T; Zong, Chenggong; Liem, David A; Huang, Aaron; Le, Steven; Edmondson, Ricky D; Jones, Richard C; Qiao, Xin; Whitelegge, Julian P; Ping, Peipei; Vondriska, Thomas M

    2005-08-01

    Proteomic profiling of accessible bodily fluids, such as plasma, has the potential to accelerate biomarker/biosignature development for human diseases. The HUPO Plasma Proteome Project pilot phase examined human plasma with distinct proteomic approaches across multiple laboratories worldwide. Through this effort, we confidently identified 3020 proteins, each requiring a minimum of two high-scoring MS/MS spectra. A critical step subsequent to protein identification is functional annotation, in particular with regard to organ systems and disease. Performing exhaustive literature searches, we have manually annotated a subset of these 3020 proteins that have cardiovascular-related functions on the basis of an existing body of published information. These cardiovascular-related proteins can be organized into eight groups: markers of inflammation and/or cardiovascular disease, vascular and coagulation, signaling, growth and differentiation, cytoskeletal, transcription factors, channels/receptors and heart failure and remodeling. In addition, analysis of the peptide per protein ratio for MS/MS identification reveals group-specific trends. These findings serve as a resource to interrogate the functions of plasma proteins, and moreover, the list of cardiovascular-related proteins in plasma constitutes a baseline proteomic blueprint for the future development of biosignatures for diseases such as myocardial ischemia and atherosclerosis. PMID:16052623

  4. Study of the human plasma proteome of rheumatoid arthritis.

    PubMed

    Zheng, Xiaoyang; Wu, Shiaw-Lin; Hincapie, Marina; Hancock, William S

    2009-04-17

    In this study, we report a combined proteomic and peptidomic analysis of human plasma from patients with rheumatoid arthritis (RA) and controls. We used molecular weight cut-off filters (MWCO: 10kDa) to enrich low-molecular-weight (LMW) peptides from human plasma. The peptide fraction was analyzed without trypsin digestion by capillary reversed-phase high-performance liquid chromatography (HPLC) coupled to a linear ion trap-FT-MS system, which identified 771 unique peptides in the peptidome study (from 145 protein progenitors). An anti-albumin/anti-IgG column was used to remove albumin and immunoglobulin G (IgG) from the human plasma. After that, the albumin/IgG-depleted sample was fractionated into a bound fraction and an unbound fraction on a multi-lectin affinity column (M-LAC). LC-MS analysis of the corresponding tryptic digests identified 308 proteins using the M-LAC approach. Relative differences in the following protein classifications were observed in the RA human plasma samples compared with controls: structural proteins, immuno-related proteins, protease inhibitors, coagulation proteins, transport proteins and apolipoproteins. While some of these proteins/peptides have been previously reported to be associated with RA disease such as calgranulin A, B, C and C-reactive protein, several others were newly identified (such as thymosin beta4, actin, tubulin, and vimentin), which may further the understanding of the disease pathogenesis. Moreover, we have found that the peptidomic and glycoproteomic approaches were complementary and allow a more complete picture of the human plasma proteome which can be valuable in studies of disease etiology. PMID:19215933

  5. Mass spectrometry-based plasma proteomics: state of the art and future outlook.

    PubMed

    Pernemalm, Maria; Lehtiö, Janne

    2014-08-01

    Mass spectrometry-based plasma proteomics is a field where intense research has been performed during the last decade. Being closely linked to biomarker discovery, the field has received a fair amount of criticism, mostly due to the low number of novel biomarkers reaching the clinic. However, plasma proteomics is under gradual development with improvements on fractionation methods, mass spectrometry instrumentation and analytical approaches. These recent developments have contributed to the revival of plasma proteomics. The goal of this review is to summarize these advances, focusing in particular on fractionation methods, both for targeted and global mass spectrometry-based plasma analysis. PMID:24661227

  6. Seminal plasma proteome of electroejaculated Bos indicus bulls.

    PubMed

    Rego, J P A; Crisp, J M; Moura, A A; Nouwens, A S; Li, Y; Venus, B; Corbet, N J; Corbet, D H; Burns, B M; Boe-Hansen, G B; McGowan, M R

    2014-07-01

    The present study describes the seminal plasma proteome of Bos indicus bulls. Fifty-six, 24-month old Australian Brahman sires were evaluated and subjected to electroejaculation. Seminal plasma proteins were separated by 2-D SDS-PAGE and identified by mass spectrometry. The percentage of progressively motile and morphologically normal sperm of the bulls were 70.4 ± 2.3 and 64 ± 3.2%, respectively. A total of 108 spots were identified in the 2-D maps, corresponding to 46 proteins. Binder of sperm proteins accounted for 55.8% of all spots detected in the maps and spermadhesins comprised the second most abundant constituents. Other proteins of the Bos indicus seminal plasma include clusterin, albumin, transferrin, metalloproteinase inhibitor 2, osteopontin, epididymal secretory protein E1, apolipoprotein A-1, heat shock 70 kDa protein, glutathione peroxidase 3, cathelicidins, alpha-enolase, tripeptidyl-peptidase 1, zinc-alpha-2-glycoprotein, plasma serine protease inhibitor, beta 2-microglobulin, proteasome subunit beta type-4, actin, cathepsins, nucleobinding-1, protein S100-A9, hemoglobin subunit alpha, cadherin-1, angiogenin-1, fibrinogen alpha and beta chain, ephirin-A1, protein DJ-1, serpin A3-7, alpha-2-macroglobulin, annexin A1, complement factor B, polymeric immunoglobulin receptor, seminal ribonuclease, ribonuclease-4, prostaglandin-H2 d-isomerase, platelet-activating factor acetylhydrolase, and phosphoglycerate kinase 1. In conclusion, this work uniquely portrays the Bos indicus seminal fluid proteome, based on samples from a large set of animals representing the Brahman cattle of the tropical Northern Australia. Based on putative biochemical attributes, seminal proteins act during sperm maturation, protection, capacitation and fertilization. PMID:24889044

  7. Establishing a leaf proteome reference map for Ginkgo biloba provides insight into potential ethnobotanical uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although ginkgo (Maidenhair tree, Ginkgo biloba L.) is an ancient medicinal and ornamental tree, there has not previously been any systematic proteomic study of the leaves. Herein we describe results from the initial study identifying abundant ginkgo leaf proteins and present a gel reference map. Pr...

  8. Proteome Analysis of the Plasma Membrane of Mycobacterium Tuberculosis

    PubMed Central

    Arora, Shalini; Kosalai, K.; Namane, Abdelkader; Pym, Alex S.; Cole, Stewart T.

    2002-01-01

    The plasma membrane of Mycobacterium tuberculosis is likely to contain proteins that could serve as novel drug targets, diagnostic probes or even components of a vaccine against tuberculosis. With this in mind, we have undertaken proteome analysis of the membrane of M. tuberculosis H37Rv. Isolated membrane vesicles were extracted with either a detergent (Triton X114) or an alkaline buffer (carbonate) following two of the protocols recommended for membrane protein enrichment. Proteins were resolved by 2D-GE using immobilized pH gradient (IPG) strips, and identified by peptide mass mapping utilizing the M. tuberculosis genome database. The two extraction procedures yielded patterns with minimal overlap. Only two proteins, both HSPs, showed a common presence. MALDI–MS analysis of 61 spots led to the identification of 32 proteins, 17 of which were new to the M. tuberculosis proteome database. We classified 19 of the identified proteins as ‘membrane-associated’; 14 of these were further classified as ‘membrane-bound’, three of which were lipoproteins. The remaining proteins included four heat-shock proteins and several enzymes involved in energy or lipid metabolism. Extraction with Triton X114 was found to be more effective than carbonate for detecting ‘putative’ M. tuberculosis membrane proteins. The protocol was also found to be suitable for comparing BCG and M. tuberculosis membranes, identifying ESAT-6 as being expressed selectively in M. tuberculosis. While this study demonstrates for the first time some of the membrane proteins of M. tuberculosis, it also underscores the problems associated with proteomic analysis of a complex membrane such as that of a mycobacterium. PMID:18629250

  9. Plasma chemistry references values in psittaciformes.

    PubMed

    Lumeij, J T; Overduin, L M

    1990-04-01

    Reference values for 17 plasma chemical variables in African greys. Amazons, cockatoos and macaws were established for use in avian clinical practice. The inner limits are given for the percentiles P(2.5) and P(97.5) with a probability of 90%. The following variables were studied: urea, creatinine, uric acid, urea/uric acid ratio, osmolality, sodium, potassium, calcium, glucose, aspartate aminotransferase, alanine aminotransferase, gamma glutamyltransferase, lactate dehydrogenase, creatine kinase, bile acids, total protein, albumin/globulin ratio. Differences between methods used and values found in this study and those reported previously are discussed. PMID:18679934

  10. Characterization of human plasma proteome dynamics using deuterium oxide

    PubMed Central

    Wang, Ding; Liem, David A; Lau, Edward; Ng, Dominic CM; Bleakley, Brian J; Cadeiras, Martin; Deng, Mario C; Lam, Maggie PY; Ping, Peipei

    2016-01-01

    Purpose High-throughput quantification of human protein turnover via in vivo administration of deuterium oxide (2H2O) is a powerful new approach to examine potential disease mechanisms. Its immediate clinical translation is contingent upon characterizations of the safety and hemodynamic effects of in vivo administration of 2H2O to human subjects. Experimental design We recruited 10 healthy human subjects with a broad demographic variety to evaluate the safety, feasibility, efficacy, and reproducibility of 2H2O intake for studying protein dynamics. We designed a protocol where each subject orally consumed weight-adjusted doses of 70% 2H2O daily for 14 days to enrich body water and proteins with deuterium. Plasma proteome dynamics was measured using a high-resolution MS method we recently developed. Results This protocol was successfully applied in 10 human subjects to characterize the endogenous turnover rates of 542 human plasma proteins, the largest such human dataset to-date. Throughout the study, we did not detect physiological effects or signs of discomfort from 2H2O consumption. Conclusions and clinical relevance Our investigation supports the utility of a 2H2O intake protocol that is safe, accessible, and effective for clinical investigations of large-scale human protein turnover dynamics. This workflow shows promising clinical translational value for examining plasma protein dynamics in human diseases. PMID:24946186

  11. Proteomic Changes in Chicken Plasma Induced by Salmonella typhimurium Lipopolysaccharides

    PubMed Central

    Packialakshmi, Balamurugan; Liyanage, Rohana; Lay, Jackson O.; Makkar, Sarbjeet K.; Rath, Narayan C.

    2016-01-01

    Lipopolysaccharides (LPS) are cell wall components of Gram-negative bacteria that produce inflammation and sickness in higher animals. The objective was to identify plasma proteomic changes in an avian model of inflammation. Chickens were treated with either saline or LPS, and blood was collected at 24 hours postinjection. The pooled plasma samples were depleted of high-abundant proteins and analyzed by matrix-assisted laser desorption ionization (MALDI)-time-of-flight mass spectrometry and liquid chromatography–tandem mass spectrometry (LC–MS/MS). MALDI analyses showed an increase in fibrinogen beta-derived peptide and a decrease in apolipoprotein-AII-derived peptide in LPS samples. Label-free quantitation of LC–MS/MS spectra revealed an increase in the levels of α1-acid glycoprotein, a chemokine CCLI10, and cathelicidin-2, but a decrease in an interferon-stimulated gene-12-2 protein in the LPS group. These differentially expressed proteins are associated with immunomodulation, cytokine changes, and defense mechanisms, which may be useful as candidate biomarkers of infection and inflammation. PMID:27053921

  12. Plasma proteome changes associated with refractory cytopenia with multilineage dysplasia

    PubMed Central

    2011-01-01

    Background Refractory cytopenia with multilineage dysplasia (RCMD) is a subgroup of myelodysplastic syndrome (MDS), which belongs to oncohematological diseases, occurring particularly in elderly patients, and represents a heterogeneous group of bone marrow diseases. The goal of this study was to look for plasma proteins that changed quantitatively or qualitatively in RCMD patients. Results A total of 46 plasma samples were depleted, proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Sixty-one unique, significantly (p < 0.05, ANOVA) different spots were found; proteins in 59 spots were successfully identified and corresponded to 57 different proteins. Protein fragmentation was observed in several proteins: complement C4-A, complement C4-B, inter-alpha-trypsin inhibitor heavy chain H4, and endorepellin. Conclusions This study describes proteins, which change quantitatively or qualitatively in RCMD patients, and represents the first report on significant alterations in C4-A and C4-B complement proteins and ITIH4 fragments in patients with MDS-RCMD. PMID:21975265

  13. The analysis of Neisseria meningitidis proteomes: Reference maps and their applications.

    PubMed

    Bernardini, Giulia; Braconi, Daniela; Santucci, Annalisa

    2007-08-01

    Neisseria meningitidis is an encapsulated Gram-negative bacterium responsible for significant morbidity and mortality worldwide. The availability of meningococcal genome sequences in combination with the rapid growth of proteomic techniques and other high-throughput methods, provided new approaches to the analysis of bacterial system biology. This review considers the meningococcal reference maps so far published as a starting point aimed to elucidate bacterial physiology and pathogenicity, paying particular attention to proteins with potential vaccine and diagnostic applications. PMID:17628027

  14. Reference map and comparative proteomic analysis of Neisseria gonorrhoeae displaying high resistance against spectinomycin.

    PubMed

    Nabu, Sunanta; Lawung, Ratana; Isarankura-Na-Ayudhya, Patcharee; Isarankura-Na-Ayudhya, Chartchalerm; Roytrakul, Sittiruk; Prachayasittikul, Virapong

    2014-03-01

    A proteome reference map of Neisseria gonorrhoeae was successfully established using two-dimensional gel electrophoresis in conjunction with matrix-assisted laser desorption ionization-time of flight mass spectrometry. This map was further applied to compare protein expression profiles of high-level spectinomycin-resistant (clinical isolate) and -susceptible (reference strain) N. gonorrhoeae following treatment with subminimal inhibitory concentrations (subMICs) of spectinomycin. Approximately 200 protein spots were visualized by Coomassie brilliant blue G-250 staining and 66 spots representing 58 unique proteins were subsequently identified. Most of the identified proteins were analysed as cytoplasmic proteins and belonged to the class of energy metabolism. Comparative proteomic analysis of whole protein expression of susceptible and resistant gonococci showed up to 96% similarity while eight proteins were found to be differentially expressed in the resistant strain. In the presence of subMICs of spectinomycin, it was found that 50S ribosomal protein L7/L12, an essential component for ribosomal translocation, was upregulated in both strains, ranging from 1.5- to 3.5-fold, suggesting compensatory mechanisms of N. gonorrhoeae in response to antibiotic that inhibits protein synthesis. Moreover, the differential expression of proteins involved in energy metabolism, amino acid biosynthesis, and the cell envelope was noticeably detected, indicating significant cellular responses and adaptation against antibiotic stress. Such knowledge provides valuable data, not only fundamental proteomic data, but also knowledge of the mode of action of antibiotic and secondary target proteins implicated in adaptation and compensatory mechanisms. PMID:24567501

  15. 18O-Labeled Proteome Reference as Global Internal Standards for Targeted Quantification by Selected Reaction Monitoring-Mass Spectrometry

    SciTech Connect

    Kim, Jong Seo; Fillmore, Thomas L.; Liu, Tao; Robinson, Errol W.; Hossain, Mahmud; Champion, Boyd L.; Moore, Ronald J.; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2011-10-11

    Selected reaction monitoring-mass spectrometry (SRM-MS) is an emerging technology for high throughput targeted protein quantification and verification in biological and biomarker discovery studies; however, the cost associated with the use of stable isotope labeled synthetic peptides as internal standards is prohibitive for quantitatively screening large numbers of candidate proteins as often required in the pre-verification phase of biomarker discovery. Herein we present the proof-of-concept experiments of using an 18O-labeled 'universal' reference as comprehensive internal standards for quantitative SRM-MS analysis. With an 18O-labeled whole proteome sample as reference, every peptide of interest will have its own corresponding heavy isotope labeled internal standard, thus providing an ideal approach for quantitative screening of a large number of candidates using SRM-MS. Our results showed that the 18O incorporation efficiency using a recently improved protocol was >99.5% for most peptides investigated, a level comparable to 13C/15N labeled synthetic peptides in terms of heavy isotope incorporation. The accuracy, reproducibility, and linear dynamic range of quantification were further assessed based on known ratios of standard proteins spiked into mouse plasma with an 18O-labeled mouse plasma reference. A dynamic range of four orders of magnitude in relative concentration was obtained with high reproducibility (i.e., coefficient of variance <10%) based on the 16O/18O peak area ratios. Absolute and relative quantification of C-reactive protein and prostate-specific antigen were demonstrated by coupling an 18O-labeled reference with standard additions of protein standards. Collectively, our results demonstrated that the use of 18O-labeled reference provides a convenient and effective strategy for quantitative SRM screening of large number of candidate proteins.

  16. Proteomic changes in plasma of broiler chickens with femoral head necrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Femoral head necrosis (FHN) is a skeletal problem in broiler chickens where the proximal femoral head cartilage shows susceptibility to separation from its growth plate. The FHN selected birds showed higher bodyweights and reduced plasma cholesterol. The proteomic differences in the plasma of health...

  17. Dietary zinc depletion and repletion affects plasma proteins: an analysis of the plasma proteome

    PubMed Central

    Wickwire, Kathie; Ho, Emily; Chung, Carolyn S.; King, Janet

    2014-01-01

    Zinc (Zn) deficiency is a problem worldwide. Current methods for assessing Zn status are limited to measuring plasma or serum Zn within populations suspected of deficiency. Despite the high prevalence of Zn deficiency in the human population there are no methods currently available for sensitively assessing Zn status among individuals. The purpose of this research was to utilize a proteomic approach using two-dimensional gel electrophoresis (2DE) and mass spectrometry to identify protein biomarkers that were sensitive to changes in dietary Zn levels in humans. Proteomic analysis was performed in human plasma samples (n = 6) obtained from healthy adult male subjects that completed a dietary Zn depletion/repletion protocol, current dietary zinc intake has a greater effect on fractional zinc absorption than does longer term zinc consumption in healthy adult men. Chung et al. (Am J Clin Nutr 87 (5):1224–1229, 2008). After a 13 day Zn acclimatization period where subjects consumed a Zn-adequate diet, the male subjects consumed a marginal Zn-depleted diet for 42 days followed by consumption of a Zn-repleted diet for 28 days. The samples at baseline, end of depletion and end of repletion were pre-fractionated through immuno-affinity columns to remove 14 highly abundant proteins, and each fraction separated by 2DE. Following staining by colloidal Coomassie blue and densitometric analysis, three proteins were identified by mass spectrometry as affected by changes in dietary Zn. Fibrin β and chain E, fragment double D were observed in the plasma protein fraction that remained bound to the immuno-affinity column. An unnamed protein that was related to immunoglobulins was observed in the immunode-pleted plasma fraction. Fibrin β increased two-fold following the Zn depletion period and decreased to baseline values following the Zn repletion period; this protein may serve as a viable biomarker for Zn status in the future. PMID:23255060

  18. Mining the plasma proteome for disease applications across seven logs of protein abundance.

    PubMed

    Zhang, Q; Faca, V; Hanash, S

    2011-01-01

    The current state of proteomics technologies has sufficiently advanced to allow in-depth quantitative analysis of the plasma proteome and development of a related knowledge base. Here we review approaches that have been applied to increase depth of analysis by mass spectrometry given the substantial complexity of plasma and the vast dynamic range of protein abundance. Fractionation strategies resulting in reduced complexity of individual fractions followed by mass spectrometry analysis of digests from individual fractions has allowed well in excess of 1000 proteins to be identified and quantified with high confidence that span more than seven logs of protein abundance. Such depth of analysis has contributed to elucidation of plasma proteome variation in health and of protein changes associated with disease states. PMID:21062094

  19. Age- and sex-associated plasma proteomic changes in growth hormone receptor gene-disrupted mice.

    PubMed

    Ding, Juan; Berryman, Darlene E; Jara, Adam; Kopchick, John J

    2012-08-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice are dwarf, insulin sensitive, and long lived despite being obese. In order to identify characteristics associated with their increased longevity, we studied age-related plasma proteomic changes in these mice. Male and female GHR-/- mice and their littermate controls were followed longitudinally at 8, 16, and 24 months of ages for plasma proteomic analysis. Relative to control littermates, GHR-/- mice had increased levels of apolipoprotein A-4 and retinol-binding protein-4 and decreased levels of apolipoprotein E, haptoglobin, and mannose-binding protein-C. Female GHR-/- mice showed decreased inflammatory cytokines including interleukin-1β and monocyte chemotactic protein-1. Additionally, sex differences were found in specific isoforms of apolipoprotein E, RBP-4, haptoglobin, albumin, and hemoglobin subunit beta. In conclusion, we find plasma proteomic changes in GHR-/- mice that favor a longer life span as well as sex differences indicative of an improved health span in female mice. PMID:22156438

  20. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis)

    PubMed Central

    Hecht, Alexander M.; Braun, Beate C.; Krause, Eberhard; Voigt, Christian C.; Greenwood, Alex D.; Czirják, Gábor Á.

    2015-01-01

    Hibernation is a physiological adaptation to overcome extreme environmental conditions. It is characterized by prolonged periods of torpor interrupted by temporary arousals during winter. During torpor, body functions are suppressed and restored rapidly to almost pre-hibernation levels during arousal. Although molecular studies have been performed on hibernating rodents and bears, it is unclear how generalizable the results are among hibernating species with different physiology such as bats. As targeted blood proteomic analysis are lacking in small hibernators, we investigated the general plasma proteomic profile of European Myotis myotis and hibernation associated changes between torpid and active individuals by two-dimensional gel electrophoresis. Results revealed an alternation of proteins involved in transport, fuel switching, innate immunity and blood coagulation between the two physiological states. The results suggest that metabolic changes during hibernation are associated with plasma proteomic changes. Further characterization of the proteomic plasma profile identified transport proteins, coagulation proteins and complement factors and detected a high abundance of alpha-fetoprotein. We were able to establish for the first time a basic myotid bat plasma proteomic profile and further demonstrated a modulated protein expression during torpor in Myotis myotis, indicating both novel physiological pathways in bats in general, and during hibernation in particular. PMID:26586174

  1. Establishing a leaf proteome reference map for Ginkgo biloba provides insight into potential ethnobotanical uses.

    PubMed

    Uvackova, Lubica; Ondruskova, Emilia; Danchenko, Maksym; Skultety, Ludovit; Miernyk, Ján A; Hrubík, Pavel; Hajduch, Martin

    2014-11-26

    Although ginkgo (Maidenhair tree, Ginkgo biloba L.) is an ancient medicinal and ornamental tree, there has not previously been any systematic proteomic study of the leaves. Herein we describe results from the initial study identifying abundant ginkgo leaf proteins and present a gel reference map. Proteins were isolated from fully developed mature leaves in biological triplicate and analyzed by two-dimensional electrophoresis plus tandem mass spectrometry. Using this approach, we were able to reproducibly quantify 190 abundant protein spots, from which 157 proteins were identified. Most of identified proteins are associated with the energy and protein destination/storage categories. The reference map provides a basis for understanding the accumulation of flavonoids and other phenolic compounds in mature leaves (e.g., identification of chalcone synthase, the first committed enzyme in flavonoid biosynthesis). We additionally detected several proteins of as yet unknown function. These proteins comprise a pool of potential targets that might be useful in nontraditional medical applications. PMID:25365400

  2. Proteome analysis of human plasma and amniotic fluid by Off-Gel isoelectric focusing followed by nano-LC-MS/MS.

    PubMed

    Michel, Philippe E; Crettaz, David; Morier, Patrick; Heller, Manfred; Gallot, Denis; Tissot, Jean-Daniel; Reymond, Frédéric; Rossier, Joel S

    2006-03-01

    This paper presents a comparative proteomic analysis of human maternal plasma and amniotic fluid (AF) samples from the same patient at term of pregnancy in order to find specific AF proteins as markers of premature rupture of membranes, a complication frequently observed during pregnancy. Maternal plasma and the corresponding AF were immunodepleted in order to remove the six most abundant proteins before the systematic analysis of their protein composition. The protein samples were then fractionated by IEF Off-Gel electrophoresis (OGE), digested and analyzed with nano-LC-MS/MS separation, revealing a total of 73 and 69 proteins identified in maternal plasma and AF samples, respectively. The proteins identified in AF have been compared to those identified in the mother plasma as well as to the reference human plasma protein list reported by Anderson et al. (Mol. Cell. Proteomics 2004, 3, 311-326). This comparison showed that 26 proteins were exclusively present in AF and not in plasma among which 10 have already been described to be placenta or pregnancy specific. As a further validation of the method, plasma proteins fractionated by OGE and analysed by nano-LC-MS/MS have been compared to the Swiss 2-D PAGE reference map by reconstructing a map that matches 2-D gel and OGE experimental data. This representation shows that 36 of 49 reference proteins could be identified in both data sets, and that isoform shifts in pI are well conserved in the OGE data sets. PMID:16470776

  3. The State of the Human Proteome in 2013 as viewed through PeptideAtlas: Comparing the Kidney, Urine, and Plasma Proteomes for the Biology and Disease-driven Human Proteome Project

    PubMed Central

    Farrah, Terry; Deutsch, Eric W.; Omenn, Gilbert S.; Sun, Zhi; Watts, Julian D.; Yamamoto, Tadashi; Shteynberg, David; Harris, Micheleen M.; Moritz, Robert L.

    2014-01-01

    The kidney, urine, and plasma proteomes are intimately related: proteins and metabolic waste products are filtered from the plasma by the kidney and excreted via the urine, while kidney proteins may be secreted into the circulation or released into the urine. Shotgun proteomics datasets derived from human kidney, urine, and plasma samples were collated and processed using a uniform software pipeline, and relative protein abundances were estimated by spectral counting. The resulting PeptideAtlas builds yielded 4005, 2491, and 3553 nonredundant proteins at 1% FDR for the kidney, urine, and plasma proteomes, respectively—for kidney and plasma, the largest high-confidence protein sets to date. The same pipeline applied to all available human data yielded a 2013 Human PeptideAtlas build containing 12,644 nonredundant proteins and at least one peptide for each of ~14,000 Swiss-Prot entries, an increase over 2012 of ~7.5% of the predicted human proteome. We demonstrate that abundances are correlated between plasma and urine, examine the most abundant urine proteins not derived from either plasma or kidney, and consider the biomarker potential of proteins associated with renal decline. This analysis forms part of the Biology and Disease-driven Human Proteome Project (B/D-HPP) and a contribution to the Chromosome-centric Human Proteome Project (C-HPP) special issue. PMID:24261998

  4. Lymph is not a Plasma Ultrafiltrate: A Proteomic Analysis of Injured Patients

    PubMed Central

    Moore, Ernest E.; Wohlauer, Max; Banerjee, Anirban; Silliman, Christopher C; Hansen, Kirk C.

    2014-01-01

    Studies on animal models have documented a role for the water soluble protein fraction of mesenteric lymph as a conduit from hemorrhagic shock to acute lung injury and post-injury multiple organ failure. We hypothesize that mesenteric lymph is not an ultrafiltrate of plasma and contains specific protein mediators that may predispose patients to ALI/MOF. Mesenteric lymph and plasma were collected from critically ill or injured patients and from nine patients with lymphatic injuries, during semi-elective spine reconstruction, or immediately before organ donation. Proteomic analyses were performed through immuno-affinity depletion of the 14 most abundant plasma proteins, and GeLC-MS analyses. Overall, 548 proteins were identified in the patients undergoing semi-elective surgery, of which 155 were uniquely present in the lymph. In addition, the post-shock plasma proteome was characterized by peculiar features, suggesting that only a partial overlap exists between the plasma and mesenteric lymph from trauma patients. Differential proteins between the matched plasma and mesenteric lymph from trauma patients could be related to, coagulopathy and hypercoagulability, cell lysis, pro-inflammatory responses and immune system activation, extracellular matrix remodeling, lymph-specific immunomodulation and vascular hypoactivity/neoangiogenesis, and energy/redox metabolic adaptation to trauma. In conclusion, the proteome of mesenteric lymph is biologically different (in qualitative and quantitative terms) than that of a mere plasma ultrafiltrate. PMID:25243428

  5. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  6. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics.

    PubMed

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  7. Role of curcuminoids in ameliorating oxidative modification in β-thalassemia/Hb E plasma proteome.

    PubMed

    Weeraphan, Churat; Srisomsap, Chantragan; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Hatairaktham, Suneerat; Charoensakdi, Ratiya; Panichkul, Narumol; Siritanaratkul, Noppadol; Fucharoen, Suthat; Svasti, Jisnuson; Kalpravidh, Ruchaneekorn W

    2013-03-01

    Thalassemic patients often exhibit high levels of oxidative stress and iron overload, which can lead to hazardous complications. Curcuminoids, extracted from the spice turmeric, are known to have antioxidant and iron-chelating properties and have been proposed as a potential upstream therapy of thalassemia. Here we have applied proteomic techniques to study the protein profile and oxidative damage in the plasma of β-thalassemia/Hb E patients before and after treatment with curcuminoids. In this study, 10 β-thalassemia/Hb E patients were treated with 500 mg curcuminoids daily for 12 months. The plasma protein profile and protein carbonyl content were determined at baseline, 6 and 12 months using two-dimensional fluorescence difference gel electrophoresis and carbonyl immunoblotting, respectively. Other hematological, clinical, and biochemical parameters were also analyzed. Twenty-six spots, identified as coagulation factors and proteins involved in iron homeostasis, showed significantly decreased intensity in thalassemic plasma, compared to those of normal subjects. Treatment with curcuminoids up-regulated the plasma levels of these proteins and reduced their oxidative damage. Serum non-transferrin bound iron, platelet factor-3 like activity, oxidative stress parameters and antioxidant enzymes were also improved after curcuminoids treatment. This study is the first proteomic study of plasma in the thalassemic state and also shows the ameliorating role of curcuminoids towards oxidative stress and iron overload in the plasma proteome. PMID:22818714

  8. Plasma proteome changes in cardiovascular disease patients: novel isoforms of apolipoprotein A1

    PubMed Central

    2011-01-01

    Background The aim of this proteomic study was to look for changes taking place in plasma proteomes of patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP), and stable angina pectoris (SAP). Methods Depleted plasma proteins were separated by 2D SDS-PAGE (pI 4-7), and proteomes were compared using Progenesis SameSpots statistical software. Proteins were identified by nanoLC-MS/MS. Proteins were quantified using commercial kits. Apolipoprotein A1 was studied using 1D and 2D SDS-PAGE, together with western blotting. Results Reciprocal comparison revealed 46 unique, significantly different spots; proteins in 34 spots were successfully identified and corresponded to 38 different proteins. Discrete comparisons of patient groups showed 45, 41, and 8 significantly different spots when AMI, UAP, and SAP were compared with the control group. On the basis of our proteomic data, plasma levels of two of them, alpha-1 microglobulin and vitamin D-binding protein, were determined. The data, however, failed to prove the proteins to be suitable markers or risk factors in the studied groups. The plasma level and isoform representation of apolipoprotein A1 were also estimated. Using 1D and 2D SDS-PAGE, together with western blotting, we observed extra high-molecular weight apolipoprotein A1 fractions presented only in the patient groups, indicating that the novel high-molecular weight isoforms of apolipoprotein A1 may be potential new markers or possible risk factors of cardiovascular disease. Conclusion The reported data show plasma proteome changes in patients with AMI, UAP, and SAP. We propose some apolipoprotein A1 fractions as a possible new disease-associated marker of cardiovascular disorders. PMID:21631938

  9. Plasma proteome coverage is increased by unique peptide recovery from sodium deoxycholate precipitate.

    PubMed

    Serra, Aida; Zhu, Hongbin; Gallart-Palau, Xavier; Park, Jung Eun; Ho, Hee Haw; Tam, James P; Sze, Siu Kwan

    2016-03-01

    The ionic detergent sodium deoxycholate (SDC) is compatible with in-solution tryptic digestion and LC-MS/MS-based shotgun proteomics by virtue of being easy to separate from the peptide products via precipitation in acidic buffers. However, it remains unclear whether unique human peptides co-precipitate with SDC during acid treatment of complex biological samples. In this study, we demonstrate for the first time that a large quantity of unique peptides in human blood plasma can be co-precipitated with SDC using an optimized sample preparation method prior to shotgun proteomic analysis. We show that the plasma peptides co-precipitated with SDC can be successfully recovered using a sequential re-solubilization and precipitation procedure, and that this approach is particularly efficient at the extraction of long peptides. Recovery of peptides from the SDC pellet dramatically increased overall proteome coverage (>60 %), thereby improving the identification of low-abundance proteins and enhancing the identification of protein components of membrane-bound organelles. In addition, when we analyzed the physiochemical properties of the co-precipitated peptides, we observed that SDC-based sample preparation improved the identification of mildly hydrophilic/hydrophobic proteins that would otherwise be lost upon discarding the pellet. These data demonstrate that the optimized SDC protocol is superior to sodium dodecyl sulfate (SDS)/urea treatment for identifying plasma biomarkers by shotgun proteomics. PMID:26804737

  10. Proteomic profile of saliva and plasma from women with impalpable breast lesions

    PubMed Central

    Delmonico, Lucas; Bravo, Maryah; Silvestre, Rafaele Tavares; Ornellas, Maria Helena Faria; De Azevedo, Carolina Maria; Alves, Gilda

    2016-01-01

    The present study evaluated the proteomic profile of saliva and plasma from women with impalpable breast lesions using nano-liquid chromatography-quadrupole-time-of-flight (nLC-Q-TOF) technology. Plasma and saliva from patients with fibroadenoma (n=10), infiltrating ductal carcinoma (n=10) and healthy control groups (n=8) were assessed by combinations of inter/intra-group analyses, revealing significant quantitative and qualitative differences. The major differentially-expressed proteins in the saliva of patients compared with the controls were α2-macroglobulin and ceruloplasmin, but the proteins that met the minimum fold-change and P-value cut-offs were leukocyte elastase inhibitor and α-enolase, and deleted in malignant brain tumors 1. Concerning plasma, α-2-macroglobulin and ceruplasmin were upregulated, while other proteins such as haptoglobin, hemopexin and vitamin D-binding protein were downregulated compared with the control. The changes in immune, molecular transport and signaling pathways were the most representative in the proteomic profile of the saliva and plasma. This is the first study to describe the proteome of saliva and plasma from the same women with impalpable breast lesions. PMID:27602154

  11. Proteomic profile of seminal plasma in adolescents and adults with treated and untreated varicocele

    PubMed Central

    Camargo, Mariana; Intasqui, Paula; Bertolla, Ricardo Pimenta

    2016-01-01

    Varicocele, the most important treatable cause of male infertility, is present in 15% of adult males, 35% of men with primary infertility, and 80% of men with secondary infertility. On the other hand, 80% of these men will not present infertility. Therefore, there is a need to differentiate a varicocele that is exerting a deleterious effect that is treatable from a “silent” varicocele. Despite the growing evidence of the cellular effects of varicocele, its underlying molecular mechanisms are still eluding. Proteomics has become a promising area to determine the reproductive biology of semen as well as to improve diagnosis of male infertility. This review aims to discuss the state-of-art in seminal plasma proteomics in patients with varicocele to discuss the challenges in undertaking these studies, as well as the future outlook derived from the growing body of evidence on the seminal proteome. PMID:26643563

  12. Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an 18O-Labeled “Universal” Reference Sample

    PubMed Central

    Qian, Wei-Jun; Liu, Tao; Petyuk, Vladislav A.; Gritsenko, Marina A.; Petritis, Brianne O.; Polpitiya, Ashoka D.; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C.; Jeschke, Marc G.; Jaitly, Navdeep; Monroe, Matthew E.; Moore, Ronald J.; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Herndon, David N.; Camp, David G.; Smith, Richard D.

    2009-01-01

    The quantitative comparison of protein abundances across a large number of biological or patient samples represents an important proteomics challenge that needs to be addressed for proteomics discovery applications. Herein, we describe a strategy that incorporates a stable isotope 18O-labeled ″universal″ reference sample as a comprehensive set of internal standards for analyzing large sample sets quantitatively. As a pooled sample, the 18O-labeled ″universal″ reference sample is spiked into each individually processed unlabeled biological sample and the peptide/protein abundances are quantified based on 16O/18O isotopic peptide pair abundance ratios that compare each unlabeled sample to the identical reference sample. This approach also allows for the direct application of label-free quantitation across the sample set simultaneously along with the labeling-approach (i.e., dual-quantitation) since each biological sample is unlabeled except for the labeled reference sample that is used as internal standards. The effectiveness of this approach for large-scale quantitative proteomics is demonstrated by its application to a set of 18 plasma samples from severe burn patients. When immunoaffinity depletion and cysteinyl-peptide enrichment-based fractionation with high resolution LC-MS measurements were combined, a total of 312 plasma proteins were confidently identified and quantified with a minimum of two unique peptides per protein. The isotope labeling data was directly compared with the label-free 16O-MS intensity data extracted from the same data sets. The results showed that the 18O reference-based labeling approach had significantly better quantitative precision compared to the label-free approach. The relative abundance differences determined by the two approaches also displayed strong correlation, illustrating the complementary nature of the two quantitative methods. The simplicity of including the 18O-reference for accurate quantitation makes this

  13. Proteomics of boar seminal plasma - current studies and possibility of their application in biotechnology of animal reproduction.

    PubMed

    Strzeżek, Jerzy; Wysocki, Paweł; Kordan, Władysław; Kuklińska, Magdalena; Mogielnicka, Marzena; Soliwoda, Daniel; Fraser, Leyland

    2005-11-01

    Proteomics is critical to identify the properties and functions of proteins involved in the mechanism regulating the male reproductive tract function. This approach is important in male fertility assessment and clinical diagnosis of the physiological state of individual reproductive organs. Proteomics also provides a tool to understand the interactions of seminal plasma proteins with spermatozoa, which could provide a useful model for studying ligand-cell interaction occurring at the sperm cell surface. This review covers a selection of advances in the realm of functional proteomics of boar seminal plasma proteins and is focused on some fundamental proteomic technologies. Also, this review explores key themes in proteomics and their application in animal reproductive techniques. PMID:16372045

  14. Automated Sample Preparation Platform for Mass Spectrometry-Based Plasma Proteomics and Biomarker Discovery

    PubMed Central

    Guryča, Vilém; Roeder, Daniel; Piraino, Paolo; Lamerz, Jens; Ducret, Axel; Langen, Hanno; Cutler, Paul

    2014-01-01

    The identification of novel biomarkers from human plasma remains a critical need in order to develop and monitor drug therapies for nearly all disease areas. The discovery of novel plasma biomarkers is, however, significantly hampered by the complexity and dynamic range of proteins within plasma, as well as the inherent variability in composition from patient to patient. In addition, it is widely accepted that most soluble plasma biomarkers for diseases such as cancer will be represented by tissue leakage products, circulating in plasma at low levels. It is therefore necessary to find approaches with the prerequisite level of sensitivity in such a complex biological matrix. Strategies for fractionating the plasma proteome have been suggested, but improvements in sensitivity are often negated by the resultant process variability. Here we describe an approach using multidimensional chromatography and on-line protein derivatization, which allows for higher sensitivity, whilst minimizing the process variability. In order to evaluate this automated process fully, we demonstrate three levels of processing and compare sensitivity, throughput and reproducibility. We demonstrate that high sensitivity analysis of the human plasma proteome is possible down to the low ng/mL or even high pg/mL level with a high degree of technical reproducibility. PMID:24833342

  15. Proteomic characterization of novel serum amyloid P component variants from human plasma and urine.

    PubMed

    Kiernan, Urban A; Nedelkov, Dobrin; Tubbs, Kemmons A; Niederkofler, Eric E; Nelson, Randball W

    2004-06-01

    Serum amyloid P component (SAP) is a human plasma protein that has been widely studied for its influence on amyloid plaque formation and stabilization. SAP was characterized directly from human plasma and urine samples via novel affinity mass spectrometry-based proteomic technology that is able to readily discriminate between mass-altered protein variants. These analyses were able to identify several variants of SAP that have not been previously reported. These variants include microheterogeneity of the glycan structure, from the loss of one or both terminal sialic acid residues, as well as the loss of the C-terminal valine residue. Moreover, the analysis of urine allowed for the consistent identification of serum amyloid P component as a normal constituent of the urine proteome. PMID:15174148

  16. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  17. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models.

    PubMed

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J; Lockwood, William W; Faça, Vitor M; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F; Sage, Julien; Dinulescu, Daniela M; Kucherlapati, Raju; Depinho, Ronald A; Kemp, Christopher J; Varmus, Harold E; Hanash, Samir M

    2011-09-13

    We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  18. A two-dimenstional proteome reference map of the aflatoxigenic fungus Aspergillus flavus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The description of A. flavus proteome provides insight into its basic biology and a basis for its future proteomic investigations. Aspergillus flavus is a widely distributed fungal pathogen that infects important agricultural commodities (maize, tree nuts, etc.) and contaminates them with aflatoxin...

  19. Proteomic and cytokine plasma biomarkers for predicting progression from colorectal adenoma to carcinoma in human patients.

    PubMed

    Choi, Jung-Won; Liu, Hao; Shin, Dong Hoon; Yu, Gyeong Im; Hwang, Jae Seok; Kim, Eun Soo; Yun, Jong Won

    2013-08-01

    In the present study, we screened proteomic and cytokine biomarkers between patients with adenomatous polyps and colorectal cancer (CRC) in order to improve our understanding of the molecular mechanisms behind turmorigenesis and tumor progression in CRC. To this end, we performed comparative proteomic analysis of plasma proteins using a combination of 2DE and MS as well as profiled differentially regulated cytokines and chemokines by multiplex bead analysis. Proteomic analysis identified 11 upregulated and 13 downregulated plasma proteins showing significantly different regulation patterns with diagnostic potential for predicting progression from adenoma to carcinoma. Some of these proteins have not previously been implicated in CRC, including upregulated leucine-rich α-2-glycoprotein, hemoglobin subunit β, Ig α-2 chain C region, and complement factor B as well as downregulated afamin, zinc-α-2-glycoprotein, vitronectin, and α-1-antichymotrypsin. In addition, plasma levels of three cytokines/chemokines, including interleukin-8, interferon gamma-induced protein 10, and tumor necrosis factor α, were remarkably elevated in patients with CRC compared to those with adenomatous polyps. Although further clinical validation is required, these proteins and cytokines can be established as novel biomarkers for CRC and/or its progression from colon adenoma. PMID:23606366

  20. Proteomic Biomarker Discovery in 1000 Human Plasma Samples with Mass Spectrometry.

    PubMed

    Cominetti, Ornella; Núñez Galindo, Antonio; Corthésy, John; Oller Moreno, Sergio; Irincheeva, Irina; Valsesia, Armand; Astrup, Arne; Saris, Wim H M; Hager, Jörg; Kussmann, Martin; Dayon, Loïc

    2016-02-01

    The overall impact of proteomics on clinical research and its translation has lagged behind expectations. One recognized caveat is the limited size (subject numbers) of (pre)clinical studies performed at the discovery stage, the findings of which fail to be replicated in larger verification/validation trials. Compromised study designs and insufficient statistical power are consequences of the to-date still limited capacity of mass spectrometry (MS)-based workflows to handle large numbers of samples in a realistic time frame, while delivering comprehensive proteome coverages. We developed a highly automated proteomic biomarker discovery workflow. Herein, we have applied this approach to analyze 1000 plasma samples from the multicentered human dietary intervention study "DiOGenes". Study design, sample randomization, tracking, and logistics were the foundations of our large-scale study. We checked the quality of the MS data and provided descriptive statistics. The data set was interrogated for proteins with most stable expression levels in that set of plasma samples. We evaluated standard clinical variables that typically impact forthcoming results and assessed body mass index-associated and gender-specific proteins at two time points. We demonstrate that analyzing a large number of human plasma samples for biomarker discovery with MS using isobaric tagging is feasible, providing robust and consistent biological results. PMID:26620284

  1. Proteome reference map of Lactobacillus acidophilus NCFM and quantitative proteomics towards understanding the prebiotic action of lactitol.

    PubMed

    Majumder, Avishek; Sultan, Abida; Jersie-Christensen, Rosa R; Ejby, Morten; Schmidt, Bjarne Gregers; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2011-09-01

    Lactobacillus acidophilus NCFM is a probiotic bacterium adapted to survive in the gastrointestinal tract and with potential health benefits to the host. Lactitol is a synthetic sugar alcohol used as a sugar replacement in low calorie foods and selectively stimulating growth of L. acidophilus NCFM. In the present study the whole-cell extract proteome of L. acidophilus NCFM grown on glucose until late exponential phase was resolved by 2-DE (pH 3-7). A total of 275 unique proteins assigned to various physiological processes were identified from 650 spots. Differential 2-DE (DIGE) (pH 4-7) of L. acidophilus NCFM grown on glucose and lactitol, revealed 68 spots with modified relative intensity. Thirty-two unique proteins were identified in 41 of these spots changing 1.6-12.7-fold in relative abundance by adaptation of L. acidophilus NCFM to growth on lactitol. These proteins included β-galactosidase small subunit, galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose-4-epimerase, which all are potentially involved in lactitol metabolism. This first comprehensive proteome analysis of L. acidophilus NCFM provides insights into protein abundance changes elicited by the prebiotic lactitol. PMID:21751373

  2. Exploring the Human Plasma Proteome for Humoral Mediators of Remote Ischemic Preconditioning - A Word of Caution

    PubMed Central

    Helgeland, Erik; Breivik, Lars Ertesvåg; Vaudel, Marc; Svendsen, Øyvind Sverre; Garberg, Hilde; Nordrehaug, Jan Erik; Berven, Frode Steingrimsen; Jonassen, Anne Kristine

    2014-01-01

    Despite major advances in early revascularization techniques, cardiovascular diseases are still the leading cause of death worldwide, and myocardial infarctions contribute heavily to this. Over the past decades, it has become apparent that reperfusion of blood to a previously ischemic area of the heart causes damage in and of itself, and that this ischemia reperfusion induced injury can be reduced by up to 50% by mechanical manipulation of the blood flow to the heart. The recent discovery of remote ischemic preconditioning (RIPC) provides a non-invasive approach of inducing this cardioprotection at a distance. Finding its endogenous mediators and their operative mode is an important step toward increasing the ischemic tolerance. The release of humoral factor(s) upon RIPC was recently demonstrated and several candidate proteins were published as possible mediators of the cardioprotection. Before clinical applicability, these potential biomarkers and their efficiency must be validated, a task made challenging by the large heterogeneity in reported data and results. Here, in an attempt to reproduce and provide more experimental data on these mediators, we conducted an unbiased in-depth analysis of the human plasma proteome before and after RIPC. From the 68 protein markers reported in the literature, only 28 could be mapped to manually reviewed (Swiss-Prot) protein sequences. 23 of them were monitored in our untargeted experiment. However, their significant regulation could not be reproducibly estimated. In fact, among the 394 plasma proteins we accurately quantified, no significant regulation could be confidently and reproducibly assessed. This indicates that it is difficult to both monitor and reproduce published data from experiments exploring for RIPC induced plasma proteomic regulations, and suggests that further work should be directed towards small humoral factors. To simplify this task, we made our proteomic dataset available via ProteomeXchange, where

  3. Plasma Proteome Biomarkers of Inflammation in School Aged Children in Nepal

    PubMed Central

    Lee, Sun Eun; West, Keith P.; Cole, Robert N.; Schulze, Kerry J.; Christian, Parul; Wu, Lee Shu-Fune; Yager, James D.; Groopman, John; Ruczinski, Ingo

    2015-01-01

    Inflammation is a condition stemming from complex host defense and tissue repair mechanisms, often simply characterized by plasma levels of a single acute reactant. We attempted to identify candidate biomarkers of systemic inflammation within the plasma proteome. We applied quantitative proteomics using isobaric mass tags (iTRAQ) tandem mass spectrometry to quantify proteins in plasma of 500 Nepalese children 6–8 years of age. We evaluated those that co-vary with inflammation, indexed by α-1-acid glycoprotein (AGP), a conventional biomarker of inflammation in population studies. Among 982 proteins quantified in >10% of samples, 99 were strongly associated with AGP at a family-wise error rate of 0.1%. Magnitude and significance of association varied more among proteins positively (n = 41) than negatively associated (n = 58) with AGP. The former included known positive acute phase proteins including C-reactive protein, serum amyloid A, complement components, protease inhibitors, transport proteins with anti-oxidative activity, and numerous unexpected intracellular signaling molecules. Negatively associated proteins exhibited distinct differences in abundance between secretory hepatic proteins involved in transporting or binding lipids, micronutrients (vitamin A and calcium), growth factors and sex hormones, and proteins of largely extra-hepatic origin involved in the formation and metabolic regulation of extracellular matrix. With the same analytical approach and the significance threshold, seventy-two out of the 99 proteins were commonly associated with CRP, an established biomarker of inflammation, suggesting the validity of the identified proteins. Our findings have revealed a vast plasma proteome within a free-living population of children that comprise functional biomarkers of homeostatic and induced host defense, nutrient metabolism and tissue repair, representing a set of plasma proteins that may be used to assess dynamics and extent of inflammation for

  4. Human Seminal Plasma Proteome Study: A Search for Male Infertility Biomarkers

    PubMed Central

    Davalieva, K; Kiprijanovska, S; Noveski, P; Plaseski, T; Kocevska, B; Plaseska-Karanfilska, D

    2012-01-01

    Seminal plasma is a potential source of biomarkers for many disorders of the male reproductive system including male infertility. Knowledge of the peptide and protein components of seminal fluid is accumulating especially with the appearance of high-throughput MS-based techniques. Of special interest in the field of male infertility biomarkers, is the identification and characterization of differentially expressed proteins in seminal plasma of men with normal and impaired spermatogenesis. However, the data obtained until now is still quite heterogeneous and with small percentage of overlap between independent studies. Extensive comparative analysis of seminal plasma proteome is still needed in order to establish a potential link between seminal plasma proteins and male infertility. PMID:24052741

  5. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Camp, David G.; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Smith, Richard D.

    2005-02-05

    There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 1563 distinct plasma proteins were confidently identified with 26 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators, and thus constitute potential biomarkers for inflammatory response.

  6. Diving into the rat plasma proteome to get to the bottom of decompression sickness.

    PubMed

    Eftedal, Ingrid

    2016-07-01

    Decompression sickness (DCS) is the collective term for an array of signs and symptoms triggered by ambient pressure reduction. It is of particular concern to divers as they decompress on ascend from depth to sea surface, but despite a long history of studies the determinants of DCS risk are incompletely understood and there are no validated biomarkers. In this issue of Proteomics Clinical Applications, Lautridou et al. [8] report on their search for DCS biomarkers in rats exposed to simulated diving. By comparing the plasma proteomes from animals showing neurological symptoms to those emerging from dives unaffected, they identified several high-abundance proteins not previously associated with DCS. The most significant finding was a near depletion of thyroxine- and vitamin A transporter transthyretin in symptomatic rats. In addition to their potential role as diagnostic biomarkers, the proteins identified in Lautridou's study may offer new pieces in the yet incomplete puzzle of DCS etiology. PMID:27196271

  7. Quantitative analysis of plasma membrane proteome using two-dimensional difference gel electrophoresis.

    PubMed

    Tang, Wenqiang

    2012-01-01

    The plasma membrane (PM) controls cell's exchange of both material and information with the outside environment, and PM-associated proteins play key roles in cellular regulation. Numerous cell surface receptors allow cells to perceive and respond to various signals from neighbor cells, pathogens, or the environment; large numbers of transporter and channel proteins control material uptake or release. Quantitative proteomic analysis of PM-associated proteins can identify key proteins involved in signal transduction and cellular regulation. Here, we describe a protocol for quantitative proteomic analysis of PM proteins using two-dimensional difference gel electrophoresis. The protocol has been successfully employed to identify new components of the brassinosteroid signaling pathway, and should also be applicable to the studies of other plant signal transduction pathways and regulatory mechanisms. PMID:22576086

  8. Evaluating the effects of preanalytical variables on the stability of the human plasma proteome

    PubMed Central

    Hassis, Maria E.; Niles, Richard K.; Braten, Miles N.; Albertolle, Matthew E.; Witkowska, H. Ewa; Hubel, Carl A.; Fisher, Susan J.; Williams, Katherine E.

    2015-01-01

    High quality clinical biospecimens are vital for biomarker discovery, verification, and validation. Variations in blood processing and handling can affect protein abundances and assay reliability. Using an untargeted LC-MS approach, we systematically measured the impact of preanalytical variables on the plasma proteome. Time prior to processing was the only variable that affected the plasma protein levels. LC-MS quantification showed that preprocessing times <6 h had minimal effects on the immunodepleted plasma proteome, but by 4 days significant changes were apparent. Elevated levels of many proteins were observed, suggesting that in addition to proteolytic degradation during the preanalytical phase, changes in protein structure are also important considerations for protocols using antibody depletion. As to processing variables, a comparison of single- vs double-spun plasma showed minimal differences. After processing, the impact ≤3 freeze–thaw cycles was negligible regardless of whether freshly collected samples were processed in short succession or the cycles occurred during 14–17 years of frozen storage (−80 °C). Thus, clinical workflows that necessitate modest delays in blood processing times or employ different centrifugation steps can yield valuable samples for biomarker discovery and verification studies. PMID:25769420

  9. An Insight into the Changes in Human Plasma Proteome on Adaptation to Hypobaric Hypoxia

    PubMed Central

    Ahmad, Yasmin; Sharma, Narendra K.; Garg, Iti; Ahmad, Mohammad Faiz; Sharma, Manish; Bhargava, Kalpana

    2013-01-01

    Adaptation to hypobaric hypoxia is required by animals and human in several physiological and pathological situations. Hypobaric hypoxia is a pathophysiological condition triggering redox status disturbances of cell organization leading, via oxidative stress, to proteins, lipids, and DNA damage. Identifying the molecular variables playing key roles in this process would be of paramount importance to shed light on the mechanisms known to counteract the negative effects of oxygen lack. To obtain a molecular signature, changes in the plasma proteome were studied by using proteomic approach. To enrich the low-abundance proteins in human plasma, two highly abundant proteins, albumin and IgG, were first removed. By comparing the plasma proteins of high altitude natives with those of a normal control group, several proteins with a significant alteration were found. The up-regulated proteins were identified as vitamin D-binding protein, hemopexin, alpha-1–antitrypsin, haptoglobin β-chain, apolipoprotein A1, transthyretin and hemoglobin beta chain. The down-regulated proteins were transferrin, complement C3, serum amyloid, complement component 4A and plasma retinol binding protein. Among these proteins, the alterations of transthyretin and transferrin were further confirmed by ELISA and Western blotting analysis. Since all the up- and down- regulated proteins identified above are well-known inflammation inhibitors and play a positive anti-inflammatory role, these results show that there is some adaptive mechanism that sustains the inflammation balance in high altitude natives exposed to hypobaric hypoxia. PMID:23844025

  10. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    PubMed

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. PMID:26248320

  11. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human

    PubMed Central

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  12. Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human.

    PubMed

    Li, Caixia; Tan, Xing Fei; Lim, Teck Kwang; Lin, Qingsong; Gong, Zhiyuan

    2016-01-01

    Omic approaches have been increasingly used in the zebrafish model for holistic understanding of molecular events and mechanisms of tissue functions. However, plasma is rarely used for omic profiling because of the technical challenges in collecting sufficient blood. In this study, we employed two mass spectrometric (MS) approaches for a comprehensive characterization of zebrafish plasma proteome, i.e. conventional shotgun liquid chromatography-tandem mass spectrometry (LC-MS/MS) for an overview study and quantitative SWATH (Sequential Window Acquisition of all THeoretical fragment-ion spectra) for comparison between genders. 959 proteins were identified in the shotgun profiling with estimated concentrations spanning almost five orders of magnitudes. Other than the presence of a few highly abundant female egg yolk precursor proteins (vitellogenins), the proteomic profiles of male and female plasmas were very similar in both number and abundance and there were basically no other highly gender-biased proteins. The types of plasma proteins based on IPA (Ingenuity Pathway Analysis) classification and tissue sources of production were also very similar. Furthermore, the zebrafish plasma proteome shares significant similarities with human plasma proteome, in particular in top abundant proteins including apolipoproteins and complements. Thus, the current study provided a valuable dataset for future evaluation of plasma proteins in zebrafish. PMID:27071722

  13. Protein alterations associated with pancreatic cancer and chronic pancreatitis found in human plasma using global quantitative proteomics profiling

    PubMed Central

    Pan, Sheng; Chen, Ru; Crispin, David A.; May, Damon; Stevens, Tyler; McIntosh, Martin; Bronner, Mary P.; Ziogas, Argyrios; Anton-Culver, Hoda; Brentnall, Teresa A.

    2011-01-01

    Pancreatic cancer is a lethal disease that is difficult to diagnose at early stages when curable treatments are effective. Biomarkers that can improve current pancreatic cancer detection would have great value in improving patient management and survival rate. A large scale quantitative proteomics study was performed to search for the plasma protein alterations associated with pancreatic cancer. The enormous complexity of the plasma proteome and the vast dynamic range of protein concentration therein present major challenges for quantitative global profiling of plasma. To address these challenges, multi-dimensional fractionation at both protein and peptide levels was applied to enhance the depth of proteomics analysis. Employing stringent criteria, more than thirteen hundred proteins total were identified in plasma across 8-orders of magnitude in protein concentration. Differential proteins associated with pancreatic cancer were identified, and their relationship with the proteome of pancreatic tissue and pancreatic juice from our previous studies was discussed. A subgroup of differentially expressed proteins was selected for biomarker testing using an independent cohort of plasma and serum samples from well-diagnosed patients with pancreatic cancer, chronic pancreatitis and non-pancreatic disease controls. Using ELISA methodology, the performance of each of these protein candidates was benchmarked against CA19-9, the current gold standard for a pancreatic cancer blood test. A composite marker of TIMP1 and ICAM1 demonstrate significantly better performance than CA19-9 in distinguishing pancreatic cancer from the non-pancreatic disease controls and chronic pancreatitis controls. In addition, protein AZGP1 was identified as a biomarker candidate for chronic pancreatitis. The discovery and technical challenges associated with plasma-based quantitative proteomics are discussed and may benefit the development of plasma proteomics technology in general. The protein

  14. Plasma Proteomics Biomarkers in Alzheimer's Disease: Latest Advances and Challenges.

    PubMed

    Perneczky, Robert; Guo, Liang-Hao

    2016-01-01

    The recent paradigm shift towards a more biologically oriented definition of Alzheimer's disease (AD) in clinical settings increases the need for sensitive biomarkers that can be applied in population-based settings. Blood plasma is easily accessible and contains a large number of proteins related to cerebral processes. It is therefore an ideal candidate for AD biomarker discovery. The present chapter provides an overview of the current research landscape in relation to blood-based AD biomarkers. Both clinical and methodological issues are covered. A brief summary is given on two relevant laboratory techniques to ascertain blood biomarker changes due to AD; methodological and clinical challenges in the field are also discussed. PMID:26235089

  15. Discovery of Lung Cancer Biomarkers by Profiling the Plasma Proteome with Monoclonal Antibody Libraries*

    PubMed Central

    Guergova-Kuras, Mariana; Kurucz, István; Hempel, William; Tardieu, Nadège; Kádas, János; Malderez-Bloes, Carole; Jullien, Anne; Kieffer, Yann; Hincapie, Marina; Guttman, András; Csánky, Eszter; Dezső, Balázs; Karger, Barry L.; Takács, László

    2011-01-01

    A challenge in the treatment of lung cancer is the lack of early diagnostics. Here, we describe the application of monoclonal antibody proteomics for discovery of a panel of biomarkers for early detection (stage I) of non-small cell lung cancer (NSCLC). We produced large monoclonal antibody libraries directed against the natural form of protein antigens present in the plasma of NSCLC patients. Plasma biomarkers associated with the presence of lung cancer were detected via high throughput ELISA. Differential profiling of plasma proteomes of four clinical cohorts, totaling 301 patients with lung cancer and 235 healthy controls, identified 13 lung cancer-associated (p < 0.05) monoclonal antibodies. The monoclonal antibodies recognize five different cognate proteins identified using immunoprecipitation followed by mass spectrometry. Four of the five antigens were present in non-small cell lung cancer cells in situ. The approach is capable of generating independent antibodies against different epitopes of the same proteins, allowing fast translation to multiplexed sandwich assays. Based on these results, we have verified in two independent clinical collections a panel of five biomarkers for classifying patient disease status with a diagnostics performance of 77% sensitivity and 87% specificity. Combining CYFRA, an established cancer marker, with the panel resulted in a performance of 83% sensitivity at 95% specificity for stage I NSCLC. PMID:21947365

  16. Discovery of lung cancer biomarkers by profiling the plasma proteome with monoclonal antibody libraries.

    PubMed

    Guergova-Kuras, Mariana; Kurucz, István; Hempel, William; Tardieu, Nadège; Kádas, János; Malderez-Bloes, Carole; Jullien, Anne; Kieffer, Yann; Hincapie, Marina; Guttman, András; Csánky, Eszter; Dezso, Balázs; Karger, Barry L; Takács, László

    2011-12-01

    A challenge in the treatment of lung cancer is the lack of early diagnostics. Here, we describe the application of monoclonal antibody proteomics for discovery of a panel of biomarkers for early detection (stage I) of non-small cell lung cancer (NSCLC). We produced large monoclonal antibody libraries directed against the natural form of protein antigens present in the plasma of NSCLC patients. Plasma biomarkers associated with the presence of lung cancer were detected via high throughput ELISA. Differential profiling of plasma proteomes of four clinical cohorts, totaling 301 patients with lung cancer and 235 healthy controls, identified 13 lung cancer-associated (p < 0.05) monoclonal antibodies. The monoclonal antibodies recognize five different cognate proteins identified using immunoprecipitation followed by mass spectrometry. Four of the five antigens were present in non-small cell lung cancer cells in situ. The approach is capable of generating independent antibodies against different epitopes of the same proteins, allowing fast translation to multiplexed sandwich assays. Based on these results, we have verified in two independent clinical collections a panel of five biomarkers for classifying patient disease status with a diagnostics performance of 77% sensitivity and 87% specificity. Combining CYFRA, an established cancer marker, with the panel resulted in a performance of 83% sensitivity at 95% specificity for stage I NSCLC. PMID:21947365

  17. The identification of proteomic markers of sperm freezing resilience in ram seminal plasma.

    PubMed

    Rickard, J P; Leahy, T; Soleilhavoup, C; Tsikis, G; Labas, V; Harichaux, G; Lynch, G W; Druart, X; de Graaf, S P

    2015-08-01

    The source and composition of seminal plasma has previously been shown to alter the ability of spermatozoa to survive cryopreservation. In the present study, the ionic and proteomic composition of seminal plasma from rams with high (HSP; n = 3) or low (LSP; n = 3) freezing resilient spermatozoa was assessed. 75 proteins were identified to be more abundant in HSP and 48 proteins were identified to be more abundant in LSP. Individual seminal plasma proteomes were established for each of the six rams examined. For each ram, correlations were conducted between previously recorded freezing resilience [1] and individual spectral counts in order to identify markers of freezing resilience. 26S proteasome complex, acylamino acid releasing enzyme, alpha mannosidase class 2C, heat shock protein 90, tripeptidyl-peptidase 2, TCP-1 complex, sorbitol dehydrogenase and transitional endoplasmic reticulum ATPase were found to be positively correlated (r(2) > 0.7) with freezing resilience. Cystatin, zinc-2-alpha glycoprotein, angiogenin-2-like protein, cartilage acidic protein-1, cathepsin B and ribonuclease 4 isoform 1 were found to be negatively correlated (r(2) > 0.7) with freezing resilience. Several negative markers were found to originate from the accessory sex glands, whereas many positive markers originated from spermatozoa and were part of or associated with the 26S proteasome or CCT complex. PMID:26025878

  18. Proteomic analysis of plasma from rats following total parenteral nutrition-induced liver injury.

    PubMed

    Tsai, Jai-Jen; Kuo, Hsing-Chun; Lee, Kam-Fai; Tsai, Tung-Hu

    2015-11-01

    Total parenteral nutrition (TPN) is provided as the primary nitrogen source to manage patients with intestinal failure who were not able to sustain themselves on enteral feeds. The most common complication of long-term TPN use is hepatitis. A proteomic approach was used to identify proteins that are differentially expressed in the plasma of rats following TPN-related acute liver injury. Six male rats were randomly assigned to either the saline infusion control group or the TPN infusion group. Our results demonstrate that TPN infusion in rats resulted in hepatic dysfunction and hepatocyte apoptosis. Five proteins that were differentially expressed between TPN infusion and normal rats were determined and validated in vivo. Fascinatingly, the proteomic differential displays, downregulated proteins included peroxiredoxin 2 (PRDX2), alpha-1-antiproteinase (A1AT), and fibrinogen gamma chain (FIBG), which were involved in oxidative stress, inflammatory respondence and cells apoptosis. After TPN infusion, two protein spots showed increased expression, namely, the glucagon receptor (GLR) protein and apolipoprotein A-1 (APOA1), which may mediate the effects of TPN administration on glycogen and lipid metabolism. In this study, proteomic analysis suggested TPN-related acute liver injury could be involved in limiting cellular protection mechanisms against oxidative stress-induced apoptosis. On the basis of the results, we also give molecular evidences replying TPN-related hepatitis. PMID:26314240

  19. Proteomic Identification of Novel Differentiation Plasma Protein Markers in Hypobaric Hypoxia-Induced Rat Model

    PubMed Central

    Ahmad, Mohammad Faiz; Sharma, Manish; Garg, Iti; Bhargava, Kalpana

    2014-01-01

    Background Hypobaric hypoxia causes complex changes in the expression of genes, including stress related genes and corresponding proteins that are necessary to maintain homeostasis. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of complex and dynamic changes that occur during the hypobaric hypoxia. Methods In this study we investigated the temporal plasma protein alterations of rat induced by hypobaric hypoxia at a simulated altitude of 7620 m (25,000 ft, 282 mm Hg) in a hypobaric chamber. Total plasma proteins collected at different time points (0, 6, 12 and 24 h), separated by two-dimensional electrophoresis (2-DE) and identified using matrix assisted laser desorption ionization time of flight (MALDI-TOF/TOF). Biological processes that were enriched in the plasma proteins during hypobaric hypoxia were identified using Gene Ontology (GO) analysis. According to their properties and obvious alterations during hypobaric hypoxia, changes of plasma concentrations of Ttr, Prdx-2, Gpx -3, Apo A-I, Hp, Apo-E, Fetub and Nme were selected to be validated by Western blot analysis. Results Bioinformatics analysis of 25 differentially expressed proteins showed that 23 had corresponding candidates in the database. The expression patterns of the eight selected proteins observed by Western blot were in agreement with 2-DE results, thus confirming the reliability of the proteomic analysis. Most of the proteins identified are related to cellular defense mechanisms involving anti-inflammatory and antioxidant activity. Their presence reflects the consequence of serial cascades initiated by hypobaric hypoxia. Conclusion/Significance This study provides information about the plasma proteome changes induced in response to hypobaric hypoxia and thus identification of the candidate proteins which can act as novel biomarkers. PMID:24842778

  20. Large-Scale Multiplexed Quantitative Discovery Proteomics Enabled by the Use of an O-18-Labeled “Universal” Reference Sample

    SciTech Connect

    Qian, Weijun; Liu, Tao; Petyuk, Vladislav A.; Gritsenko, Marina A.; Petritis, Brianne O.; Polpitiya, Ashoka D.; Kaushal, Amit; Xiao, Wenzhong; Finnerty, Celeste C.; Jescheke, Marc G.; Jaitly, Navdeep; Monroe, Matthew E.; Moore, Ronald J.; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Hemdon, David N.; Camp, David G.; Smith, Richard D.

    2009-01-01

    Quantitative comparison of protein abundances across a relatively large number of patient samples is an important challenge for clinical proteomic applications. Herein we describe a dual-quantitation strategy that allows the simultaneous integration of complementary label-free and stable isotope labeling based approaches without increasing the number of LC-MS analyses. The approach utilizes a stable isotope 18O-labeled “universal” reference sample as a comprehensive set of internal standards spiked into each individually processed unlabeled patient sample. The quantitative data are based on both the direct 16O-MS intensities for label-free quantitation and the 16O/18O isotopic peptide pair ratios that compare each patient sample to the identical labeled reference. The effectiveness of this dual-quantitation approach for large scale quantitative proteomics is demonstrated by the application to a set of 38 clinical plasma samples from surviving and non-surviving severe burn patients. With the coupling of immunoaffinity depletion, cysteinyl-peptide enrichment based fractionation, high resolution LC-MS measurements, and the dual-quantitation approach, a total of 318 proteins were confidently quantified with at least two peptides and 263 proteins were quantified by both approaches. The strategy also enabled a direct comparison between the two approaches with the labeling approach showing significantly better precision in quantitation while the label-free approach resulted in more protein identifications. The relative abundance differences determined by the two approaches also show strong correlation. Finally, the dual-quantitation strategy allowed us to identify more candidate protein biomarkers, illustrating the complementary nature of the two quantitative methods.

  1. An efficient organic solvent based extraction method for the proteomic analysis of Arabidopsis plasma membranes.

    PubMed

    Mitra, Srijeet K; Walters, Benjamin T; Clouse, Steven D; Goshe, Michael B

    2009-06-01

    Membrane proteins are involved in diverse cellular processes and are an integral component of many signaling cascades, but due to their highly hydrophobic nature and the complexities associated with studying these proteins in planta, alternative methods are being developed to better characterize these proteins on a proteome-wide scale. In our previous work ( Mitra , S. K. et al. J. Proteome Res. 2007 , 6 , ( 5 ), 1933 - 50 ), methanol-assisted solubilization was determined to facilitate the identification of both hydrophobic and hydrophilic membrane proteins compared to Brij-58 solubilization and was particularly effective for leucine-rich repeat receptor-like kinases (LRR RLKs). To improve peptide identification and to overcome sample losses after tryptic digestion, we have developed an effective chloroform extraction method to promote plasma membrane protein identification. The use of chloroform extraction over traditional solid-phase extraction (SPE) prior to off-line strong cation exchange liquid chromatography (SCXC) and reversed-phase liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis facilitated the removal of chlorophylls, major contaminants of plant tissue preparations that can affect downstream analysis, in addition to the effective removal of trypsin used in the digestion. On the basis of a statistically derived 5% false discovery rate, the chloroform extraction procedure increased the identification of unique peptides for plasma membrane proteins over SPE by 70% which produced nearly a 2-fold increase in detection of membrane transporters and LRR RLKs without increased identification of contaminating Rubisco and ribosomal peptides. Overall, the combined use of methanol and chloroform provides an effective method to study membrane proteins and can be readily applied to other tissues and cells types for proteomic analysis. PMID:19334764

  2. Effects of Increased CO2 on Fish Gill and Plasma Proteome

    PubMed Central

    Bresolin de Souza, Karine; Jutfelt, Fredrik; Kling, Peter; Förlin, Lars; Sturve, Joachim

    2014-01-01

    Ocean acidification and warming are both primarily caused by increased levels of atmospheric CO2, and marine organisms are exposed to these two stressors simultaneously. Although the effects of temperature on fish have been investigated over the last century, the long-term effects of moderate CO2 exposure and the combination of both stressors are almost entirely unknown. A proteomics approach was used to assess the adverse physiological and biochemical changes that may occur from the exposure to these two environmental stressors. We analysed gills and blood plasma of Atlantic halibut (Hippoglossus hippoglossus) exposed to temperatures of 12°C (control) and 18°C (impaired growth) in combination with control (400 µatm) or high-CO2 water (1000 µatm) for 14 weeks. The proteomic analysis was performed using two-dimensional gel electrophoresis (2DE) followed by Nanoflow LC-MS/MS using a LTQ-Orbitrap. The high-CO2 treatment induced the up-regulation of immune system-related proteins, as indicated by the up-regulation of the plasma proteins complement component C3 and fibrinogen β chain precursor in both temperature treatments. Changes in gill proteome in the high-CO2 (18°C) group were mostly related to increased energy metabolism proteins (ATP synthase, malate dehydrogenase, malate dehydrogenase thermostable, and fructose-1,6-bisphosphate aldolase), possibly coupled to a higher energy demand. Gills from fish exposed to high-CO2 at both temperature treatments showed changes in proteins associated with increased cellular turnover and apoptosis signalling (annexin 5, eukaryotic translation elongation factor 1γ, receptor for protein kinase C, and putative ribosomal protein S27). This study indicates that moderate CO2-driven acidification, alone and combined with high temperature, can elicit biochemical changes that may affect fish health. PMID:25058324

  3. Proteomic Profiling of Nonenzymatically Glycated Proteins in Human Plasma and Erythrocyte Membrane

    SciTech Connect

    Zhang, Qibin; Tang, Ning; Schepmoes, Athena A.; Phillips, Lawrence S.; Smith, Richard D.; Metz, Thomas O.

    2008-05-01

    Non-enzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. In this report, a thorough proteomic profiling of glycated proteins was attempted by using phenylboronate affinity chromatography to enrich glycated proteins and glycated, tryptic peptides from human plasma and erythrocyte membranes. Enriched peptides were subsequently analyzed by liquid chromatography coupled with electron transfer dissociation tandem mass spectrometry, and 76 and 31 proteins were confidently identified as glycated from human plasma and erythrocyte membrane, respectively. It was observed that most of the glycated proteins can be identified in samples from individuals with normal glucose tolerance, although samples from individuals with impaired glucose tolerance and type 2 diabetes mellitus have slightly higher numbers of glycated proteins and more glycation sites identified.

  4. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  5. Plasma proteome analysis reveals the geographical origin and liver tumor status of Dab (Limanda limanda) from UK marine waters.

    PubMed

    Ward, Douglas G; Wei, Wenbin; Cheng, Yaping; Billingham, Lucinda J; Martin, Ashley; Johnson, Philip I; Lyons, Brett P; Feist, Stephen W; Stentiford, Grant D

    2006-06-15

    The flatfish species dab (Limanda limanda) is the sentinel for offshore marine monitoring in the United Kingdom National Marine Monitoring Programme (NMMP). At certain sites in the North and Irish Seas, the prevalence of macroscopic liver tumors can exceed 10%. The plasma proteome of these fish potentially contains reporter proteins or "biomarkers" that may enable development of diagnostic tests for liver cancer and further our understanding of the disease. Following selection of sample groups by quality-assured histopathology ("phenotype anchoring"), we used surface-enhanced laser desorption/ionization (SELDI) time-of-flight mass spectrometry to produce proteomic profiles of plasma from 213 dab collected during the 2004 UK NMMP. The resulting protein profiles were compared between fish from the North and Irish Seas and between fish with liver neoplasia or nondiseased liver. Significant differences were found between the plasma proteomes of dab from the North Sea and Irish Sea, which in conjunction with artificial neural networks can correctly determine from which sea dab were captured in 85% of the cases. In addition, the presence of liver tumors is associated with significant changes in the plasma proteome. We conclude that SELDI-based plasma profiling is potentially of use in nonlethal marine monitoring using wild sentinels such as dab. Furthermore, accurate selection of sample groups is critical for avoiding effects of confounding factors such as age, gender, and geographic origin of samples. PMID:16830578

  6. An Automated Platform for Fractionation of Human Plasma Glycoproteome in Clinical Proteomics

    PubMed Central

    Kullolli, Majlinda; Hancock, William S.; Hincapie, Marina

    2010-01-01

    This publication describes the development of an automated platform for the study of the plasma glycoproteome. The method consists of targeted depletion in-line with glycoprotein fractionation. A key element of this platform is the enabling of high throughput sample processing in a manner that minimizes analytical bias in a clinical sample set. The system, named High Performance Multi Lectin Affinity Chromatography (HP-MLAC), is composed of a serial configuration of depletion columns containing anti-albumin antibody and Protein A with in-line multi lectin affinity chromatography (M-LAC) which consists of three mixtures of lectins Concanavalin A (Con A), Jacalin (JAC) and Wheat Germ Agglutinin (WGA). We have demonstrated that this platform gives high recoveries for the fractionation of the plasma proteome (≥95%) and excellent stability (over 200 runs). In addition, glycoproteomes isolated using the HP-MLAC platform were shown to be highly reproducible and glycan specific as demonstrated by re-chromatography of selected fractions and proteomic analysis of the unbound (glycoproteome 1) and bound (glycoproteome 2) fractions. PMID:19957969

  7. Automated platform for fractionation of human plasma glycoproteome in clinical proteomics.

    PubMed

    Kullolli, Majlinda; Hancock, William S; Hincapie, Marina

    2010-01-01

    This publication describes the development of an automated platform for the study of the plasma glycoproteome. The method consists of targeted depletion in-line with glycoprotein fractionation. A key element of this platform is the enabling of high throughput sample processing in a manner that minimizes analytical bias in a clinical sample set. The system, named High Performance Multi-Lectin Affinity Chromatography (HP-MLAC), is composed of a serial configuration of depletion columns containing anti-albumin antibody and protein A with in-line multilectin affinity chromatography (M-LAC) which consists of three mixtures of lectins concanavalin A (ConA), jacalin (JAC), and wheat germ agglutinin (WGA). We have demonstrated that this platform gives high recoveries for the fractionation of the plasma proteome (> or = 95%) and excellent stability (over 200 runs). In addition, glycoproteomes isolated using the HP-MLAC platform were shown to be highly reproducible and glycan specific as demonstrated by rechromatography of selected fractions and proteomic analysis of the unbound (glycoproteome 1) and bound (glycoproteome 2) fractions. PMID:19957969

  8. Plasma proteomic analysis of stable coronary artery disease indicates impairment of reverse cholesterol pathway

    PubMed Central

    Basak, Trayambak; Tanwar, Vinay Singh; Bhardwaj, Gourav; Bhardwaj, Nitin; Ahmad, Shadab; Garg, Gaurav; V, Sreenivas; Karthikeyan, Ganesan; Seth, Sandeep; Sengupta, Shantanu

    2016-01-01

    Coronary artery disease (CAD) is one of the largest causes of death worldwide yet the traditional risk factors, although useful in identifying people at high risk, lack the desired predictive accuracy. Techniques like quantitative plasma proteomics holds immense potential to identify newer markers and this study (conducted in three phases) was aimed to identify differentially expressed proteins in stable CAD patients. In the first (discovery) phase, plasma from CAD cases (angiographically proven) and controls were subjected to iTRAQ based proteomic analysis. Proteins found to be differentially expressed were then validated in the second and third (verification and validation) phases in larger number of (n = 546) samples. After multivariate logistic regression adjusting for confounding factors (age, diet, etc.), four proteins involved in the reverse cholesterol pathway (Apo A1, ApoA4, Apo C1 and albumin) along with diabetes and hypertension were found to be significantly associated with CAD and could account for approximately 88% of the cases as revealed by ROC analysis. The maximum odds ratio was found to be 6.70 for albumin (p < 0.0001), followed by Apo AI (5.07, p < 0.0001), Apo CI (4.03, p = 0.001), and Apo AIV (2.63, p = 0.003). Down-regulation of apolipoproteins and albumin implicates the impairment of reverse cholesterol pathway in CAD. PMID:27350024

  9. Plasma proteomic analysis of stable coronary artery disease indicates impairment of reverse cholesterol pathway.

    PubMed

    Basak, Trayambak; Tanwar, Vinay Singh; Bhardwaj, Gourav; Bhardwaj, Nitin; Ahmad, Shadab; Garg, Gaurav; V, Sreenivas; Karthikeyan, Ganesan; Seth, Sandeep; Sengupta, Shantanu

    2016-01-01

    Coronary artery disease (CAD) is one of the largest causes of death worldwide yet the traditional risk factors, although useful in identifying people at high risk, lack the desired predictive accuracy. Techniques like quantitative plasma proteomics holds immense potential to identify newer markers and this study (conducted in three phases) was aimed to identify differentially expressed proteins in stable CAD patients. In the first (discovery) phase, plasma from CAD cases (angiographically proven) and controls were subjected to iTRAQ based proteomic analysis. Proteins found to be differentially expressed were then validated in the second and third (verification and validation) phases in larger number of (n = 546) samples. After multivariate logistic regression adjusting for confounding factors (age, diet, etc.), four proteins involved in the reverse cholesterol pathway (Apo A1, ApoA4, Apo C1 and albumin) along with diabetes and hypertension were found to be significantly associated with CAD and could account for approximately 88% of the cases as revealed by ROC analysis. The maximum odds ratio was found to be 6.70 for albumin (p < 0.0001), followed by Apo AI (5.07, p < 0.0001), Apo CI (4.03, p = 0.001), and Apo AIV (2.63, p = 0.003). Down-regulation of apolipoproteins and albumin implicates the impairment of reverse cholesterol pathway in CAD. PMID:27350024

  10. Mining the human plasma proteome with three-dimensional strategies by high-resolution Quadrupole Orbitrap Mass Spectrometry.

    PubMed

    Zhao, Yan; Chang, Cheng; Qin, Peibin; Cao, Qichen; Tian, Fang; Jiang, Jing; Li, Xianyu; Yu, Wenfeng; Zhu, Yunping; He, Fuchu; Ying, Wantao; Qian, Xiaohong

    2016-01-21

    Human plasma is a readily available clinical sample that reflects the status of the body in normal physiological and disease states. Although the wide dynamic range and immense complexity of plasma proteins are obstacles, comprehensive proteomic analysis of human plasma is necessary for biomarker discovery and further verification. Various methods such as immunodepletion, protein equalization and hyper fractionation have been applied to reduce the influence of high-abundance proteins (HAPs) and to reduce the high level of complexity. However, the depth at which the human plasma proteome has been explored in a relatively short time frame has been limited, which impedes the transfer of proteomic techniques to clinical research. Development of an optimal strategy is expected to improve the efficiency of human plasma proteome profiling. Here, five three-dimensional strategies combining HAP depletion (the 1st dimension) and protein fractionation (the 2nd dimension), followed by LC-MS/MS analysis (the 3rd dimension) were developed and compared for human plasma proteome profiling. Pros and cons of the five strategies are discussed for two issues: HAP depletion and complexity reduction. Strategies A and B used proteome equalization and tandem Seppro IgY14 immunodepletion, respectively, as the first dimension. Proteome equalization (strategy A) was biased toward the enrichment of basic and low-molecular weight proteins and had limited ability to enrich low-abundance proteins. By tandem removal of HAPs (strategy B), the efficiency of HAP depletion was significantly increased, whereas more off-target proteins were subtracted simultaneously. In the comparison of complexity reduction, strategy D involved a deglycosylation step before high-pH RPLC separation. However, the increase in sequence coverage did not increase the protein number as expected. Strategy E introduced SDS-PAGE separation of proteins, and the results showed oversampling of HAPs and identification of fewer

  11. Identification of potential plasma biomarkers for esophageal squamous cell carcinoma by a proteomic method.

    PubMed

    Zhao, Jia; Fan, Yu-Xia; Yang, Yang; Liu, Dong-Lei; Wu, Kai; Wen, Feng-Biao; Zhang, Chun-Yang; Zhu, Deng-Yan; Zhao, Song

    2015-01-01

    Among malignant tumors, the mortality rate of esophageal squamous cell carcinoma (ESCC) ranks sixth in the world. Late-stage diagnosis of ESCC increases the mortality. Therefore, more effective biomarkers for early diagnosis of ESCC are necessary. Unfortunately, appropriate biomarkers for clinical diagnosis and prognosis have not been identified yet. However, recent progresses in quantitative proteomics have offered opportunities to identify plasma proteins as biomarkers for ESCC. In the present study, plasma samples were analyzed by differential in-gel electrophoresis (DIGE) and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). A total of 31 proteins representing 12 unique gene products were identified, in which 16 proteins were up-regulated and 15 down-regulated in tumors. The up-regulated proteins were alpha-2-HS-glycoprotein (AHSG), leucine-rich alpha-2-glycoprotein (LRG), zinc-alpha-2-glycoprotein, alpha-1-antichymotrypsin, complement factor I and complement C4-B, whereas the down-regulated proteins were serum albumin, Ig alpha-2 chain C region, alpha-1-antitrypsin, fibrinogen gamma chain, haptoglobin and hemoglobin subunit alpha. Among all the differentially expressed proteins, AHSG and LRG were validated by ELISA. The results were consistent with the data from the proteomics results, further suggesting that AHSG and LRG may be employed as potential biomarkers for the early diagnosis of ESCC. In summary, this study was the first time to use DIGE combined MALDI-TOF/TOF platform to identify the potential plasma biomarkers for ESCC. The plasma AHSG and LRG showed great potential for ESCC screening. PMID:25973038

  12. Plasma Fractionation Enriches Post-Myocardial Infarction Samples Prior to Proteomics Analysis

    PubMed Central

    de Castro Brás, Lisandra E.; DeLeon, Kristine Y.; Ma, Yonggang; Dai, Qiuxia; Hakala, Kevin; Weintraub, Susan T.; Lindsey, Merry L.

    2012-01-01

    Following myocardial infarction (MI), matrix metalloproteinase-9 (MMP-9) levels increase, and MMP-9 deletion improves post-MI remodeling of the left ventricle (LV). We provide here a technical report on plasma-analysis from wild type (WT) and MMP-9 null mice using fractionation and mass-spectrometry-based proteomics. MI was induced by coronary artery ligation in male WT and MMP-9 null mice (4–8 months old; n = 3/genotype). Plasma was collected on days 0 (pre-) and 1 post-MI. Plasma proteins were fractionated and proteins in the lowest (fraction 1) and highest (fraction 12) molecular weight fractions were separated by 1-D SDS-PAGE, digested in-gel with trypsin and analyzed by HPLC-ESI-MS/MS on an Orbitrap Velos. We tried five different fractionation protocols, before reaching an optimized protocol that allowed us to identify over 100 proteins. Serum amyloid A substantially increased post-MI in both genotypes, while alpha-2 macroglobulin increased only in the null samples. In fraction 12, extracellular matrix proteins were observed only post-MI. Interestingly, fibronectin-1, a substrate of MMP-9, was identified at both day 0 and day 1 post-MI in the MMP-9 null mice but was only identified post-MI in the WT mice. In conclusion, plasma fractionation offers an improved depletion-free method to evaluate plasma changes following MI. PMID:22778955

  13. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester; Ingham, Matthew; Kaler, Maryann; Yao, Xianglan; Wu, Wells W.; Shen Rongfong; Daniels, Mathew P.; Levine, Stewart J.

    2009-01-16

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatory cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.

  14. Proteomic Analysis of the Ontogenetic Variability in Plasma Composition of Juvenile and Adult Bothrops jararaca Snakes

    PubMed Central

    de Morais-Zani, Karen; Grego, Kathleen Fernandes; Tanaka, Aparecida Sadae; Tanaka-Azevedo, Anita Mitico

    2013-01-01

    The ontogenetic variability in venom composition of some snake genera, including Bothrops, as well as the biological implications of such variability and the search of new molecules that can neutralize the toxic components of these venoms have been the subject of many studies. Thus, considering the resistance of Bothrops jararaca to the toxic action of its own venom and the ontogenetic variability in venom composition described in this species, a comparative study of the plasma composition of juvenile and adult B. jararaca snakes was performed through a proteomic approach based on 2D electrophoresis and mass spectrometry, which allowed the identification of proteins that might be present at different levels during ontogenetic development. Among the proteins identified by mass spectrometry, antihemorrhagic factor Bj46a was found only in adult plasma. Moreover, two spots identified as phospholipase A2 inhibitors were significantly increased in juvenile plasma, which can be related to the higher catalytic PLA2 activity shown by juvenile venom in comparison to that of adult snakes. This work shows the ontogenetic variability of B. jararaca plasma, and that these changes can be related to the ontogenetic variability described in its venom. PMID:24062950

  15. With or without you - Proteomics with or without major plasma/serum proteins.

    PubMed

    Gianazza, Elisabetta; Miller, Ingrid; Palazzolo, Luca; Parravicini, Chiara; Eberini, Ivano

    2016-05-17

    The first sections of this review compile and discuss strategies and protocols for managing plasma/serum as a source of biomarkers relevant to human disease. In many such cases, depletion of abundant protein(s) is a crucial preliminary step to the procedure; specific conceptual and technical approaches, however, make it possible to effectively use to this purpose whole plasma/serum. The final sections focus instead on the complexity associated with each of the major serum/plasma proteins in terms of both, multiple molecular structures (existence of a number of protein species) and of multiple molecular functions (behavior as multifunctional/multitasking/moonlighting proteins). Reviewing evidence in these and some related fields (regulation of the synthetic pattern by proteins and non-protein compounds and its connection with health and disease) prompts the suggestion/recommendation that information on the abundant components of plasma/serum proteome is routinely obtained and processed/mined as a valuable contribution to the characterization of any non-physiological condition and to the understanding of its mechanisms and of its implications/sequels. PMID:27072114

  16. The effect of colostrum intake on blood plasma proteome profile in newborn lambs: low abundance proteins

    PubMed Central

    2014-01-01

    Background Colostrum intake by newborn lambs plays a fundamental role in the perinatal period, ensuring lamb survival. In this study, blood plasma samples from two groups of newborn lambs (Colostrum group and Delayed Colostrum group) at 2 and 14 h after birth were treated to reduce the content of high abundance proteins and analyzed using Two-Dimensional Differential in Gel Electrophoresis and MALDI MS/MS for protein identification in order to investigate low abundance proteins with immune function in newborn lambs. Results The results showed that four proteins were increased in the blood plasma of lambs due to colostrum intake. These proteins have not been previously described as increased in blood plasma of newborn ruminants by colostrum intake. Moreover, these proteins have been described as having an immune function in other species, some of which were previously identified in colostrum and milk. Conclusions In conclusion, colostrum intake modified the low abundance proteome profile of blood plasma from newborn lambs, increasing the concentration of apolipoprotein A-IV, plasminogen, serum amyloid A and fibrinogen, demonstrating that colostrum is essential, not only for the provision of immunoglobulins, but also because of increases in several low abundance proteins with immune function. PMID:24708841

  17. Proteomic identification of plasma proteins as markers of growth promoter abuse in cattle.

    PubMed

    Kinkead, Ruth A; Elliott, Christopher T; Cannizzo, Francesca T; Biolatti, Bartolomeo; Mooney, Mark H

    2015-06-01

    Growth-promoting agents are continually misused for increasing animal growth and fraudulent gain in the meat industry, yet detection rates from conventional targeted testing for drug residues do not reflect this. This is because testing currently relies on direct detection of drugs or related metabolites and administrators of such compounds can take adaptive measures to avoid detection through the use of endogenous or unknown drugs, and low dose or combined mixtures. New detection methods are needed which focus on the screening of biological responses of an animal to such growth-promoting agents as it has been demonstrated that genomic, proteomic and metabolomics profiles are altered by xenobiotic intake. Therefore, an untargeted proteomics approach using comparative two-dimensional gel electrophoresis (2DE) was carried out to identify putative proteins altered in plasma after treatment with oestradiol, dexamethasone or prednisolone. Twenty-four male cattle were randomly assigned to four groups (n = 6) for experimental treatment over 40 days, namely a control group of non-treated cattle, and three groups administered 17β-oestradiol-3-benzoate (0.01 mg/kg, intramuscular), dexamethasone sodium phosphate (0.7 mg/day, per os) or prednisolone acetate (15 mg/day, per os), respectively. Plasma collected from each animal at day 25 post study initiation was subjected to proteomic analysis by 2DE for comparison of protein expression between treated and untreated animals. Analysis of acquired gel images revealed 22 plasma proteins which differed in expression by more than 50% (p < 0.05) in treated animals compared to untreated animals. Proteins of interest underwent identification by LC-MS/MS analysis and were found to have associated roles in transport, blood coagulation, immune response and metabolism pathways. In this way, seven proteins are highlighted as novel biomarker candidates including transthyretin which is shown to be significantly increased in all

  18. The plasma membrane proteome of maize roots grown under low and high iron conditions.

    PubMed

    Hopff, David; Wienkoop, Stefanie; Lüthje, Sabine

    2013-10-01

    Iron (Fe) homeostasis is essential for life and has been intensively investigated for dicots, while our knowledge for species in the Poaceae is fragmentary. This study presents the first proteome analysis (LC-MS/MS) of plasma membranes isolated from roots of 18-day old maize (Zea mays L.). Plants were grown under low and high Fe conditions in hydroponic culture. In total, 227 proteins were identified in control plants, whereas 204 proteins were identified in Fe deficient plants and 251 proteins in plants grown under high Fe conditions. Proteins were sorted by functional classes, and most of the identified proteins were classified as signaling proteins. A significant number of PM-bound redox proteins could be identified including quinone reductases, heme and copper-containing proteins. Most of these components were constitutive, and others could hint at an involvement of redox signaling and redox homeostasis by change in abundance. Energy metabolism and translation seem to be crucial in Fe homeostasis. The response to Fe deficiency includes proteins involved in development, whereas membrane remodeling and assembly and/or repair of Fe-S clusters is discussed for Fe toxicity. The general stress response appears to involve proteins related to oxidative stress, growth regulation, an increased rigidity and synthesis of cell walls and adaption of nutrient uptake and/or translocation. This article is part of a Special Issue entitled: Plant Proteomics in Europe. PMID:23353019

  19. Evaluation of Multi-Protein Immunoaffinity Subtraction for Plasma Proteomics and Candidate Biomarker Discovery Using Mass Spectrometry

    SciTech Connect

    Liu, Tao; Qian, Weijun; Mottaz, Heather M.; Gritsenko, Marina A.; Norbeck, Angela D.; Moore, Ronald J.; Purvine, Samuel O.; Camp, David G.; Smith, Richard D.

    2006-11-01

    The detection of low-abundance protein disease biomarkers from human blood poses significant challenges due to the high dynamic range of protein concentrations that span more than 10 orders of magnitude, as well as the extreme complexity of the serum/plasma proteome. Therefore, experimental strategies that include the removal of high-abundance proteins have been increasingly utilized in proteomic studies of serum, plasma, and other body fluids to enhance detection of low-abundance proteins and achieve broader proteome coverage. However, both the specificity and reproducibility of the high-abundance protein depletion process represent common concerns. Here, we report a detailed evaluation of the performance of two commercially available immunoaffinity subtraction systems commonly used in human serum/plasma proteome characterization by high resolution LC-MS/MS. One system uses mammalian IgG antibodies to remove six of the most abundant plasma proteins, and the other uses chicken immunoglobulin yolk (IgY) antibodies to remove twelve of the most abundant plasma proteins. Plasma samples were repeatedly processed using these two systems, and the resulting flow-through fractions and bound fractions were individually analyzed for comparison. Removal of target proteins by both immunoaffinity subtraction systems proved reproducible and efficient. Nontarget proteins, including spiked protein standards, were also observed to bind to the columns, but in a fairly reproducible manner. The results suggest that these multi-protein immunoaffinity subtraction systems are both highly effective and reproducible for removing high-abundance proteins and therefore, can be readily integrated into quantitative strategies to enhance detection of low-abundance proteins in biomarker discovery studies.

  20. A Reference Proteomic Database of Lactobacillus plantarum CMCC-P0002

    PubMed Central

    Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum. PMID:21998671

  1. A reference proteomic database of Lactobacillus plantarum CMCC-P0002.

    PubMed

    Zhu, Li; Hu, Wei; Liu, Datao; Tian, Wanhong; Yu, Gang; Liu, Xiankai; Wang, Jie; Feng, Erling; Zhang, Xuemin; Chen, Bei; Zeng, Ming; Wang, Hengliang

    2011-01-01

    Lactobacillus plantarum is a widespread probiotic bacteria found in many fermented food products. In this study, the whole-cell proteins and secretory proteins of L. plantarum were separated by two-dimensional electrophoresis method. A total of 434 proteins were identified by tandem mass spectrometry, including a plasmid-encoded hypothetical protein pLP9000_05. The information of first 20 highest abundance proteins was listed for the further genetic manipulation of L. plantarum, such as construction of high-level expressions system. Furthermore, the first interaction map of L. plantarum was established by Blue-Native/SDS-PAGE technique. A heterodimeric complex composed of maltose phosphorylase Map3 and Map2, and two homodimeric complexes composed of Map3 and Map2 respectively, were identified at the same time, indicating the important roles of these proteins. These findings provided valuable information for the further proteomic researches of L. plantarum. PMID:21998671

  2. Comparative Proteome Analyses of Human Plasma Following in vivo Lipopolysaccharide Administration Using Multidimensional Separations Coupled with Tandem Mass Spectrometry

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Camp, David G.; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Smith, Richard D.

    2005-01-03

    There is significant interest in characterization of the human plasma proteome due to its potential for providing biomarkers applicable to clinical diagnosis and treatment and for gaining a better understanding of human diseases. We describe here a strategy for comparative proteome analyses of human plasma, which is applicable to biomarker identifications for various disease states. Multidimensional liquid chromatography-mass spectrometry has been applied to make comparative proteome analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Peptide peak areas and the number of peptide identifications for each protein were used to evaluate the reproducibility of LC-MS/MS and to compare relative changes in protein concentration between the samples following LPS treatment. A total of 804 distinct plasma proteins (not including immunoglobulins) were confidently identified with 32 proteins observed to be significantly increased in concentration following LPS administration, including several known inflammatory response or acute-phase mediators such as C-reactive protein, serum amyloid A and A2, LPS-binding protein, LPS-responsive and beige-like anchor protein, hepatocyte growth factor activator and von Willebrand factor, and thus constituting potential biomarkers for inflammatory response.

  3. In-Depth Analysis of a Plasma or Serum Proteome Using a 4D Protein Profiling Method

    PubMed Central

    Tang, Hsin-Yao; Beer, Lynn A.; Speicher, David W.

    2011-01-01

    Comprehensive proteomic analysis of human plasma or serum has been a major strategy used to identify biomarkers that serve as indicators of disease. However, such in-depth proteomic analyses are challenging due to the complexity and extremely large dynamic range of protein concentrations in plasma. Therefore, reduction in sample complexity through multidimensional pre-fractionation strategies is critical, particularly for the detection of low-abundance proteins that have the potential to be the most specific disease biomarkers. We describe here a 4D protein profiling method that we developed for comprehensive proteomic analyses of both plasma and serum. Our method consists of abundant protein depletion coupled with separation strategies – microscale solution isoelectrofocusing and 1D SDS-PAGE – followed by reversed-phase separation of tryptic peptides prior to LC–MS/MS. Using this profiling strategy, we routinely identify a large number of proteins over nine orders of magnitude, including a substantial number of proteins at the low ng/mL or lower levels from approximately 300 μL of plasma sample. PMID:21468940

  4. Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis.

    PubMed

    Packialakshmi, Balamurugan; Liyanage, Rohana; Lay, Jackson O; Okimoto, Ronald; Rath, Narayan C

    2016-01-01

    Femoral head necrosis (FHN) is a skeletal problem in broiler chickens, where the proximal femoral head cartilage shows susceptibility to separation from its growth plate. The selected birds with FHN showed higher body weights and reduced plasma cholesterol. The proteomic differences in the plasma of healthy and FHN-affected chickens were explored using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography/electrospray ionization-tandem mass spectrometry (LC-MS/MS) to prospect for protein biomarkers. We isolated two differentially expressed low molecular weight proteins and identified them by MALDI peptide mass fingerprinting as fibrinogen- and fetuin-derived peptides, respectively. These peptides were reduced in birds susceptible to femoral head problems. Quantitation of LC-MS/MS spectra showed elevated levels of gallinacin-9, apolipoprotein A1, and hemoglobin and reduced levels of alpha-1-acid glycoprotein, albumin, and SPINK7 proteins in FHN. These results suggest that the bodyweight and the lipid profiles along with the above proteins can be useful as noninvasive biomarkers of FHN. PMID:27147818

  5. Proteomic Changes in the Plasma of Broiler Chickens with Femoral Head Necrosis

    PubMed Central

    Packialakshmi, Balamurugan; Liyanage, Rohana; Lay, Jackson O.; Okimoto, Ronald; Rath, Narayan C.

    2016-01-01

    Femoral head necrosis (FHN) is a skeletal problem in broiler chickens, where the proximal femoral head cartilage shows susceptibility to separation from its growth plate. The selected birds with FHN showed higher body weights and reduced plasma cholesterol. The proteomic differences in the plasma of healthy and FHN-affected chickens were explored using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography/electrospray ionization-tandem mass spectrometry (LC-MS/MS) to prospect for protein biomarkers. We isolated two differentially expressed low molecular weight proteins and identified them by MALDI peptide mass fingerprinting as fibrinogen- and fetuin-derived peptides, respectively. These peptides were reduced in birds susceptible to femoral head problems. Quantitation of LC-MS/MS spectra showed elevated levels of gallinacin-9, apolipoprotein A1, and hemoglobin and reduced levels of alpha-1-acid glycoprotein, albumin, and SPINK7 proteins in FHN. These results suggest that the bodyweight and the lipid profiles along with the above proteins can be useful as noninvasive biomarkers of FHN. PMID:27147818

  6. Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum *

    PubMed Central

    Zhu, Jia-ying; Fang, Qi; Ye, Gong-yin; Hu, Cui

    2011-01-01

    Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism. PMID:21265041

  7. Impact of Protein Stability, Cellular Localization, and Abundance on Proteomic Detection of Tumor-Derived Proteins in Plasma

    PubMed Central

    Faca, Vitor M.; Zhang, Wenxuan; Zhang, Qing; Jain, Anjali; Hanash, Sam; Agus, David B.; McIntosh, Martin W.; Mallick, Parag

    2011-01-01

    Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein's stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker prioritization strategy that favors secreted and stable proteins over all but the

  8. Impact of protein stability, cellular localization, and abundance on proteomic detection of tumor-derived proteins in plasma.

    PubMed

    Fang, Qiaojun; Kani, Kian; Faca, Vitor M; Zhang, Wenxuan; Zhang, Qing; Jain, Anjali; Hanash, Sam; Agus, David B; McIntosh, Martin W; Mallick, Parag

    2011-01-01

    Tumor-derived, circulating proteins are potentially useful as biomarkers for detection of cancer, for monitoring of disease progression, regression and recurrence, and for assessment of therapeutic response. Here we interrogated how a protein's stability, cellular localization, and abundance affect its observability in blood by mass-spectrometry-based proteomics techniques. We performed proteomic profiling on tumors and plasma from two different xenograft mouse models. A statistical analysis of this data revealed protein properties indicative of the detection level in plasma. Though 20% of the proteins identified in plasma were tumor-derived, only 5% of the proteins observed in the tumor tissue were found in plasma. Both intracellular and extracellular tumor proteins were observed in plasma; however, after normalizing for tumor abundance, extracellular proteins were seven times more likely to be detected. Although proteins that were more abundant in the tumor were also more likely to be observed in plasma, the relationship was nonlinear: Doubling the spectral count increased detection rate by only 50%. Many secreted proteins, even those with relatively low spectral count, were observed in plasma, but few low abundance intracellular proteins were observed. Proteins predicted to be stable by dipeptide composition were significantly more likely to be identified in plasma than less stable proteins. The number of tryptic peptides in a protein was not significantly related to the chance of a protein being observed in plasma. Quantitative comparison of large versus small tumors revealed that the abundance of proteins in plasma as measured by spectral count was associated with the tumor size, but the relationship was not one-to-one; a 3-fold decrease in tumor size resulted in a 16-fold decrease in protein abundance in plasma. This study provides quantitative support for a tumor-derived marker prioritization strategy that favors secreted and stable proteins over all but the

  9. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes.

    PubMed

    Faca, Vitor; Pitteri, Sharon J; Newcomb, Lisa; Glukhova, Veronika; Phanstiel, Doug; Krasnoselsky, Alexei; Zhang, Qing; Struthers, Jason; Wang, Hong; Eng, Jimmy; Fitzgibbon, Matt; McIntosh, Martin; Hanash, Samir

    2007-09-01

    In-depth analysis of the serum and plasma proteomes by mass spectrometry is challenged by the vast dynamic range of protein abundance and substantial complexity. There is merit in reducing complexity through fractionation to facilitate mass spectrometry analysis of low-abundance proteins. However, fractionation reduces throughput and has the potential of diluting individual proteins or inducing their loss. Here, we have investigated the contribution of extensive fractionation of intact proteins to depth of analysis. Pooled serum depleted of abundant proteins was fractionated by an orthogonal two-dimensional system consisting of anion-exchange and reversed-phase chromatography. The resulting protein fractions were aliquotted; one aliquot was analyzed by shotgun LC-MS/MS, and another was further resolved into protein bands in a third dimension using SDS-PAGE. Individual gel bands were excised and subjected to in situ digestion and mass spectrometry. We demonstrate that increased fractionation results in increased depth of analysis based on total number of proteins identified in serum and based on representation in individual fractions of specific proteins identified in gel bands following a third-dimension SDS gel analysis. An intact protein analysis system (IPAS) based on a two-dimensional plasma fractionation schema was implemented that resulted in identification of 1662 proteins with high confidence with representation of protein isoforms that differed in their chromatographic mobility. Further increase in depth of analysis was accomplished by repeat analysis of aliquots from the same set of two-dimensional fractions resulting in overall identification of 2254 proteins. We conclude that substantial depth of analysis of proteins from milliliter quantities of serum or plasma and detection of isoforms are achieved with depletion of abundant proteins followed by two-dimensional protein fractionation and MS analysis of individual fractions. PMID:17696519

  10. The effects of eating marine- or vegetable-fed farmed trout on the human plasma proteome profiles of healthy men.

    PubMed

    Rentsch, Maria L; Lametsch, René; Bügel, Susanne; Jessen, Flemming; Lauritzen, Lotte

    2015-02-28

    Most human intervention studies have examined the effects on a subset of risk factors, some of which may require long-term exposure. The plasma proteome may reflect the underlying changes in protein expression and activation, and this could be used to identify early risk markers. The aim of the present study was to evaluate the impact of regular fish intake on the plasma proteome. We recruited thirty healthy men aged 40 to 70 years, who were randomly allocated to a daily meal of chicken or trout raised on vegetable or marine feeds. Blood samples were collected before and after 8 weeks of intervention, and after the removal of the twelve most abundant proteins, plasma proteins were separated by two-dimensional gel electrophoresis. Protein spots < 66 kDa with a pI > 4·3 visualised by silver staining were matched by two-dimensional imaging software. Within-subject changes in spots were compared between the treatment groups. Differentially affected spots were identified by matrix-assisted laser desorption ionisation-time of flight/time of flight MS and the human Swiss-Prot database. We found 23/681 abundant plasma protein spots, which were up- or down-regulated by the dietary treatment (P < 0·05, q < 0·30), and eighteen of these were identified. In each trout group, ten spots differed from those in subjects given the chicken meal, but only three of these were common, and only one spot differed between the two trout groups. In both groups, the affected plasma proteins were involved in biological processes such as regulation of vitamin A and haem transport, blood fibrinolysis and oxidative defence. Thus, regular fish intake affects the plasma proteome, and the changes may indicate novel mechanisms of effect. PMID:25622825

  11. Industrial-scale proteomics: from liters of plasma to chemically synthesized proteins.

    PubMed

    Rose, Keith; Bougueleret, Lydie; Baussant, Thierry; Böhm, Günter; Botti, Paolo; Colinge, Jacques; Cusin, Isabelle; Gaertner, Hubert; Gleizes, Anne; Heller, Manfred; Jimenez, Silvia; Johnson, Andrew; Kussmann, Martin; Menin, Laure; Menzel, Christoph; Ranno, Frederic; Rodriguez-Tomé, Patricia; Rogers, John; Saudrais, Cedric; Villain, Matteo; Wetmore, Diana; Bairoch, Amos; Hochstrasser, Denis

    2004-07-01

    Human blood plasma is a useful source of proteins associated with both health and disease. Analysis of human blood plasma is a challenge due to the large number of peptides and proteins present and the very wide range of concentrations. In order to identify as many proteins as possible for subsequent comparative studies, we developed an industrial-scale (2.5 liter) approach involving sample pooling for the analysis of smaller proteins (M(r) generally < ca. 40 000 and some fragments of very large proteins). Plasma from healthy males was depleted of abundant proteins (albumin and IgG), then smaller proteins and polypeptides were separated into 12 960 fractions by chromatographic techniques. Analysis of proteins and polypeptides was performed by mass spectrometry prior to and after enzymatic digestion. Thousands of peptide identifications were made, permitting the identification of 502 different proteins and polypeptides from a single pool, 405 of which are listed here. The numbers refer to chromatographically separable polypeptide entities present prior to digestion. Combining results from studies with other plasma pools we have identified over 700 different proteins and polypeptides in plasma. Relatively low abundance proteins such as leptin and ghrelin and peptides such as bradykinin, all invisible to two-dimensional gel technology, were clearly identified. Proteins of interest were synthesized by chemical methods for bioassays. We believe that this is the first time that the small proteins in human blood plasma have been separated and analyzed so extensively. PMID:15221774

  12. Two-dimensional proteome reference maps for the soybean cyst nematode Heterodera glycines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-dimensional electrophoresis (2-DE) reference maps of Heterodera glycines were constructed. After in-gel digestion with trypsin, 803 spots representing 426 proteins were subsequently identified by LC-MS/MS. Proteins with annotated function were further categorized by Gene Ontology. Results showed...

  13. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    PubMed

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-01

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. PMID:26851364

  14. Targeted proteomic quantitation of the absolute expression and turnover of cystic fibrosis transmembrane conductance regulator in the apical plasma membrane.

    PubMed

    McShane, Adam J; Bajrami, Bekim; Ramos, Alex A; Diego-Limpin, Pamela A; Farrokhi, Vahid; Coutermarsh, Bonita A; Stanton, Bruce A; Jensen, Tim; Riordan, John R; Wetmore, Diana; Joseloff, Elizabeth; Yao, Xudong

    2014-11-01

    Deficient chloride transport through cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes lethal complications in CF patients. CF is the most common autosomal recessive genetic disease, which is caused by mutations in the CFTR gene; thus, CFTR mutants can serve as primary targets for drugs to modulate and rescue the ion channel's function. The first step of drug modulation is to increase the expression of CFTR in the apical plasma membrane (PM); thus, accurate measurement of CFTR in the PM is desired. This work reports a tandem enrichment strategy to prepare PM CFTR and uses a stable isotope labeled CFTR sample as the quantitation reference to measure the absolute amount of apical PM expression of CFTR in CFBE 41o- cells. It was found that CFBE 41o- cells expressing wild-type CFTR (wtCFTR), when cultured on plates, had 2.9 ng of the protein in the apical PM per million cells; this represented 10% of the total CFTR found in the cells. When these cells were polarized on filters, the apical PM expression of CFTR increased to 14%. Turnover of CFTR in the apical PM of baby hamster kidney cells overexpressing wtCFTR (BHK-wtCFTR) was also quantified by targeted proteomics based on multiple reaction monitoring mass spectrometry; wtCFTR had a half-life of 29.0 ± 2.5 h in the apical PM. This represents the first direct measurement of CFTR turnover using stable isotopes. The absolute quantitation and turnover measurements of CFTR in the apical PM can significantly facilitate understanding the disease mechanism of CF and thus the development of new disease-modifying drugs. Absolute CFTR quantitation allows for direct result comparisons among analyses, analysts, and laboratories and will greatly amplify the overall outcome of CF research and therapy. PMID:25227318

  15. Targeted Proteomic Quantitation of the Absolute Expression and Turnover of Cystic Fibrosis Transmembrane Conductance Regulator in the Apical Plasma Membrane

    PubMed Central

    2015-01-01

    Deficient chloride transport through cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes lethal complications in CF patients. CF is the most common autosomal recessive genetic disease, which is caused by mutations in the CFTR gene; thus, CFTR mutants can serve as primary targets for drugs to modulate and rescue the ion channel’s function. The first step of drug modulation is to increase the expression of CFTR in the apical plasma membrane (PM); thus, accurate measurement of CFTR in the PM is desired. This work reports a tandem enrichment strategy to prepare PM CFTR and uses a stable isotope labeled CFTR sample as the quantitation reference to measure the absolute amount of apical PM expression of CFTR in CFBE 41o- cells. It was found that CFBE 41o- cells expressing wild-type CFTR (wtCFTR), when cultured on plates, had 2.9 ng of the protein in the apical PM per million cells; this represented 10% of the total CFTR found in the cells. When these cells were polarized on filters, the apical PM expression of CFTR increased to 14%. Turnover of CFTR in the apical PM of baby hamster kidney cells overexpressing wtCFTR (BHK-wtCFTR) was also quantified by targeted proteomics based on multiple reaction monitoring mass spectrometry; wtCFTR had a half-life of 29.0 ± 2.5 h in the apical PM. This represents the first direct measurement of CFTR turnover using stable isotopes. The absolute quantitation and turnover measurements of CFTR in the apical PM can significantly facilitate understanding the disease mechanism of CF and thus the development of new disease-modifying drugs. Absolute CFTR quantitation allows for direct result comparisons among analyses, analysts, and laboratories and will greatly amplify the overall outcome of CF research and therapy. PMID:25227318

  16. Towards the profiling of the Arabidopsis thaliana plasma membrane transportome by targeted proteomics.

    PubMed

    Monneuse, Jean-Marc; Sugano, Madeleine; Becue, Thierry; Santoni, Véronique; Hem, Sonia; Rossignol, Michel

    2011-05-01

    Plant membranes bear a variety of transporters belonging to multigene families that are affected by environmental and nutritional conditions. In addition, they often display high-sequence identity, making difficult in-depth investigation by current shot-gun strategies. In this study, we set up a targeted proteomics approach aimed at identifying and quantifying within single experiments the five major proton pumps of the autoinhibited H(+) ATPases (AHA) family, the 13 plasma membrane intrinsic proteins (PIP) water channels (PIPs), and ten members of ammonium transporters (AMTs) and nitrate transporter (NRT) families. Proteotypic peptides were selected and isotopically labeled heavy versions were used for technical optimization and for quantification of the corresponding light version in biological samples. This approach allowed to quantify simultaneously nine PIPs in leaf membranes and 13 PIPs together with three autoinhibited H(+) ATPases, two ammonium transporters, and two NRTs in root membranes. Similarly, it was used to investigate the effect of a salt stress on the expression of these latter 20 transporters in roots. These novel isoform-specific data were compared with published transcriptome information and revealed a close correlation between PIP isoforms and transcripts levels. The obtained resource is reusable and can be expanded to other transporter families for large-scale profiling of membrane transporters. PMID:21413151

  17. Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.

    PubMed

    Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong

    2016-05-01

    Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. PMID:27103520

  18. Proteomic analysis of plasma membrane proteins in wheat roots exposed to phenanthrene.

    PubMed

    Shen, Yu; Du, Jiangxue; Yue, Le; Zhan, Xinhua

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are potentially carcinogenic and toxic to humans through ingestion of contaminated food crops. PAHs can enter crop roots through proton/PAH symporters; however, to date, the symporter remains unclear. Here we reveal, for the first time, the plasma membrane proteome of Triticum aestivum seedling roots in response to phenanthrene (a model PAH) exposure. Two-dimensional gel electrophoresis (2-DE) coupled with MALDI-TOF/TOF-MS and protein database search engines were employed to analyze and identify phenanthrene-responsive proteins. Over 192 protein spots are reproducibly detected in each gel, while 8 spots are differentially expressed under phenanthrene treatment. Phenanthrene induces five up-regulated proteins distinguished as 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2, enolase, heat shock protein 80-2, probable mediator of RNA polymerase II transcription subunit 37e (heat shock 70-kDa protein 1), and lactoylglutathione lyase. Three proteins identified as adenosine kinase 2, 4-hydroxy-7-methoxy-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl glucoside beta-D-glucosidase 1c, and glyceraldehyde-3-phosphate dehydrogenase 3 are down-regulated under exposure to phenanthrene. The up-regulated proteins are related to plant defense response, antioxidant system, and glycolysis. The down-regulated proteins involve the metabolism of high-energy compounds and plant growth. Magnesium, which is able to bind to enolase, can enhance the transport of phenanthrene into wheat roots. Therefore, it is concluded that phenanthrene can induce differential expression of proteins in relation to carbohydrate metabolism, self-defense, and plant growth on wheat root plasma membrane. This study not only provides novel insights into PAH uptake by plant roots and PAH stress responses, but is also a good starting point for further determination and analyses of their functions using genetic and other approaches. PMID:26897580

  19. IgY14 and SuperMix immunoaffinity separations coupled with liquid chromatography-mass spectrometry for human plasma proteomic biomarker discovery

    SciTech Connect

    Shi, Tujin; Zhou, Jianying; Gritsenko, Marina A.; Hossain, Mahmud; Camp, David G.; Smith, Richard D.; Qian, Weijun

    2012-02-01

    Interest in the application of advanced proteomics technologies to human blood plasma- or serum-based clinical samples for the purpose of discovering disease biomarkers continues to grow; however, the enormous dynamic range of protein concentrations in these types of samples (often >10 orders of magnitude) represents a significant analytical challenge, particularly for detecting low-abundance candidate biomarkers. In response, immunoaffinity separation methods for depleting multiple high- and moderate-abundance proteins have become key tools for enriching low-abundance proteins and enhancing detection of these proteins in plasma proteomics. Herein, we describe IgY14 and tandem IgY14-Supermix separation methods for removing 14 high-abundance and up to 60 moderate-abundance proteins, respectively, from human blood plasma and highlight their utility when combined with liquid chromatography-tandem mass spectrometry for interrogating the human plasma proteome.

  20. Plasma proteome profiles of White Sucker (Catostomus commersonii) from the Athabasca River within the oil sands deposit.

    PubMed

    Simmons, Denina B D; Sherry, James P

    2016-09-01

    There are questions about the potential for oil sands related chemicals to enter the Athabasca River, whether from tailing ponds, atmospheric deposition, precipitation, or transport of mining dust, at concentrations sufficient to negatively impact the health of biota. We applied shotgun proteomics to generate protein profiles of mature male and female White Sucker (Catostomus commersonii) that were collected from various sites along the main stem of the Athabasca River in 2011 and 2012. On average, 399±131 (standard deviation) proteins were identified in fish plasma from each location in both years. Ingenuity Pathway Analysis software was used to determine the proteins' core functions and to compare the datasets by location, year, and sex. Principal component analysis (PCA) was used to determine if variation in the number of proteins related to a core function among all male and female individuals from both sampling years was affected by location. The core biological functions of plasma proteins that were common to both sampling years for males and females from each location were also estimated separately (based on Ingenuity's Knowledge Base). PCA revealed site-specific differences in the functional characteristics of the plasma proteome from white sucker sampled from downstream of oil sands extraction facilities compared with fish from upstream. Plasma proteins that were unique to fish downstream of oil sands extraction were related to lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism, endocrine system disorders, skeletal and muscular development and function, neoplasia, carcinomas, and gastrointestinal disease. PMID:27013027

  1. Selenium and glutathione peroxidase reference values in whole blood and plasma of a reference population living in Valencia, Spain.

    PubMed

    Alegría, A; Barberá, R; Clemente, G; Farré, R; García, M J; Lagarda, M J

    1996-12-01

    In order to assess the reference values for selenium nutritional status, adequate indicators (selenium concentration and glutathione peroxidase activity) were determined in whole blood and blood derivates of a healthy population (n = 287) from the province of Valencia, Spain. The reference population was selected by applying preestablished criteria. Selenium in whole blood and plasma was measured by graphite furnace atomic absorption spectrometry (GFAAS), with a deuterium correction, after addition of Pd/Mg(NO3)2 as the matrix modifier and appropriate dilution. Accuracy was checked by means of a reference material (Seronorm Trace Metals serum and whole blood). The population's reference intervals for selenium content at a 95% confidence level were: 53.03-108.96 and 66.71-119.4 mg/L for plasma and whole blood selenium concentration respectively. GPX activity was measured using a modification of the Paglia and Valentine method, and the reference intervals obtained ranged from 196 to 477 U/L in plasma, from 49 to 93 U/gHb in erythrocytes and from 52 to 96 U/gHb in whole blood. The only statistically significant differences detected between men and women are for to the GPX activity in whole blood. The results obtained are in the range of values found by others authors in healthy populations residing in different European countries. PMID:9021673

  2. General intelligence is associated with subclinical inflammation in Nepalese children: A population-based plasma proteomics study.

    PubMed

    Lee, Sun Eun; West, Keith P; Cole, Robert N; Schulze, Kerry J; Wu, Lee Shu-Fune; Yager, James D; Groopman, John; Christian, Parul

    2016-08-01

    Improving child cognition in impoverished countries is a public health priority. Yet, biological pathways and associated biomarkers of impaired cognition remain poorly understood and largely unknown, respectively. This study aimed to explore and quantify associations between functional plasma protein biomarkers and childhood intellectual test performance. We applied proteomics to quantify proteins in plasma samples of 249 rural Nepalese children, 6-8years of age who, 1year later at 7-9years of age, were administered the Universal Nonverbal Intelligence Test (UNIT). Among 751 plasma proteins quantified, 22 were associated with UNIT scores, passing a false discovery rate threshold of 5.0% (q<0.05). UNIT scores were higher by 2.3-9.2 points for every 50% increase in relative abundance of two insulin-like growth factor binding proteins (IGFBPs), six subclasses of apolipoprotein (Apo) and transthyretin, and lower by 4.0-15.3 points for each 50% increase in relative abundance of 13 proteins predominantly involved in inflammation. Among them, IGFBP-acid labile subunit, orosomucoid 1 (ORM1), Apo C-I, and pyruvate kinase isoenzymes M1/M2 jointly explained 37% of the variance in UNIT scores. After additional adjustment for height-for-age Z-score and household socio-economic status as indicators of long-term nutritional and social stress, associations with 6 proteins involved in inflammation, including ORM1, α-1-antichymotrypsin, reticulocalbin 1, and 3 components of the complement cascade, remained significant (q<0.05). Using untargeted proteomics, stable, constitutive facets of subclinical inflammation were associated with lower developmental test performance in this rural South Asian child population. Plasma proteomics may offer opportunities to identify functional, antecedent biomarkers of child cognitive development. PMID:27039242

  3. Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery.

    PubMed

    Zhou, Cong; Simpson, Kathryn L; Lancashire, Lee J; Walker, Michael J; Dawson, Martin J; Unwin, Richard D; Rembielak, Agata; Price, Patricia; West, Catharine; Dive, Caroline; Whetton, Anthony D

    2012-04-01

    A mass spectrometry-based plasma biomarker discovery workflow was developed to facilitate biomarker discovery. Plasma from either healthy volunteers or patients with pancreatic cancer was 8-plex iTRAQ labeled, fractionated by 2-dimensional reversed phase chromatography and subjected to MALDI ToF/ToF mass spectrometry. Data were processed using a q-value based statistical approach to maximize protein quantification and identification. Technical (between duplicate samples) and biological variance (between and within individuals) were calculated and power analysis was thereby enabled. An a priori power analysis was carried out using samples from healthy volunteers to define sample sizes required for robust biomarker identification. The result was subsequently validated with a post hoc power analysis using a real clinical setting involving pancreatic cancer patients. This demonstrated that six samples per group (e.g., pre- vs post-treatment) may provide sufficient statistical power for most proteins with changes>2 fold. A reference standard allowed direct comparison of protein expression changes between multiple experiments. Analysis of patient plasma prior to treatment identified 29 proteins with significant changes within individual patient. Changes in Peroxiredoxin II levels were confirmed by Western blot. This q-value based statistical approach in combination with reference standard samples can be applied with confidence in the design and execution of clinical studies for predictive, prognostic, and/or pharmacodynamic biomarker discovery. The power analysis provides information required prior to study initiation. PMID:22338609

  4. Shotgun Proteomic Analysis of Plasma from Dairy Cattle Suffering from Footrot: Characterization of Potential Disease-Associated Factors

    PubMed Central

    Sun, Dongbo; Zhang, Hong; Guo, Donghua; Sun, Anguo; Wang, Hongbin

    2013-01-01

    The plasma proteome of healthy dairy cattle and those with footrot was investigated using a shotgun LC-MS/MS approach. In total, 648 proteins were identified in healthy plasma samples, of which 234 were non-redundant proteins and 123 were high-confidence proteins; 712 proteins were identified from footrot plasma samples, of which 272 were non-redundant proteins and 138 were high-confidence proteins. The high-confidence proteins showed significant differences between healthy and footrot plasma samples in molecular weight, isoelectric points and the Gene Ontology categories. 22 proteins were found that may differentiate between the two sets of plasma proteins, of which 16 potential differential expression (PDE) proteins from footrot plasma involved in immunoglobulins, innate immune recognition molecules, acute phase proteins, regulatory proteins, and cell adhesion and cytoskeletal proteins; 6 PDE proteins from healthy plasma involved in regulatory proteins, cytoskeletal proteins and coagulation factors. Of these PDE proteins, haptoglobin, SERPINA10 protein, afamin precursor, haptoglobin precursor, apolipoprotein D, predicted peptidoglycan recognition protein L (PGRP-L) and keratan sulfate proteoglycan (KS-PG) were suggested to be potential footrot-associated factors. The PDE proteins PGRP-L and KS-PG were highlighted as potential biomarkers of footrot in cattle. The resulting protein lists and potential differentially expressed proteins may provide valuable information to increase understanding of plasma protein profiles in cattle and to assist studies of footrot-associated factors. PMID:23418487

  5. Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from Arabidopsis Seedlings.

    PubMed

    de Michele, Roberto; McFarlane, Heather E; Parsons, Harriet T; Meents, Miranda J; Lao, Jeemeng; González Fernández-Niño, Susana M; Petzold, Christopher J; Frommer, Wolf B; Samuels, A Lacey; Heazlewood, Joshua L

    2016-03-01

    The plant plasma membrane is the interface between the cell and its environment undertaking a range of important functions related to transport, signaling, cell wall biosynthesis, and secretion. Multiple proteomic studies have attempted to capture the diversity of proteins in the plasma membrane using biochemical fractionation techniques. In this study, two-phase partitioning was combined with free-flow electrophoresis to produce a population of highly purified plasma membrane vesicles that were subsequently characterized by tandem mass spectroscopy. This combined high-quality plasma membrane isolation technique produced a reproducible proteomic library of over 1000 proteins with an extended dynamic range including plasma membrane-associated proteins. The approach enabled the detection of a number of putative plasma membrane proteins not previously identified by other studies, including peripheral membrane proteins. Utilizing multiple data sources, we developed a PM-confidence score to provide a value indicating association to the plasma membrane. This study highlights over 700 proteins that, while seemingly abundant at the plasma membrane, are mostly unstudied. To validate this data set, we selected 14 candidates and transiently localized 13 to the plasma membrane using a fluorescent tag. Given the importance of the plasma membrane, this data set provides a valuable tool to further investigate important proteins. The mass spectrometry data are available via ProteomeXchange, identifier PXD001795. PMID:26781341

  6. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing

    PubMed Central

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G.; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    Background. The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. Methods. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Results. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. Conclusions. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine. PMID:26539504

  7. Design and characterization of an RF excited micro atmospheric pressure plasma jet for reference in plasma medicine

    NASA Astrophysics Data System (ADS)

    Schulz-von der Gathen, Volker

    2015-09-01

    Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.

  8. Plasma proteome changes associated with refractory anemia and refractory anemia with ringed sideroblasts in patients with myelodysplastic syndrome

    PubMed Central

    2013-01-01

    Background Refractory anemia and refractory anemia with ringed sideroblasts are two myelodysplastic syndrome (MDS) subgroups linked with anemia. MDS is a group of heterogeneous oncohematological bone marrow disorders characterized by ineffective hematopoiesis, blood cytopenias, and progression of the disease toward acute myeloid leukemia. The aim of this study was to search for plasma proteome changes in MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Results A total of 26 patient and healthy donor plasma samples were depleted of fourteen high-abundant plasma proteins, separated with 2D electrophoresis, and statistically processed with Progenesis SameSpots software. 55 significantly differing spots were observed and corresponded to 39 different proteins identified by nanoLC-MS/MS. Changes in the fragments of the inter-alpha-trypsin inhibitor heavy chain H4 protein were observed. Using mass spectrometry-based relative label-free quantification of tryptic peptides, there were differences in alpha-2-HS-glycoprotein peptides, while no differences were observed between the control and patient sample groups for retinol-binding protein 4 peptides. Conclusions This study describes plasma proteome changes associated with MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Changes observed in the inter-alpha-trypsin inhibitor heavy chain H4 fragments were in agreement with our previous studies of other MDS subgroups: refractory cytopenia with multilineage dysplasia and refractory anemia with excess blasts subtype 1. Mass spectrometry-based relative quantification of retinol-binding protein 4 peptides has shown that there are differences in the modification of this protein between refractory anemia with excess blasts subtype 1 patients and MDS patients with refractory anemia and refractory anemia with ringed sideroblasts. Alpha-2-HS-glycoprotein seems to be a new potential MDS biomarker candidate. PMID

  9. Remote Ischemic Preconditioning (RIPC) Modifies the Plasma Proteome in Children Undergoing Repair of Tetralogy of Fallot: A Randomized Controlled Trial

    PubMed Central

    Hepponstall, Michele; Ignjatovic, Vera; Binos, Steve; Attard, Chantal; Karlaftis, Vasiliki; d’Udekem, Yves; Monagle, Paul; Konstantinov, Igor E.

    2015-01-01

    Background Remote ischemic preconditioning (RIPC) has been applied in paediatric cardiac surgery. We have demonstrated that RIPC induces a proteomic response in plasma of healthy volunteers. We tested the hypothesis that RIPC modifies the proteomic response in children undergoing Tetralogy of Fallot (TOF) repair. Methods and Results Children (n=40) were randomized to RIPC and control groups. Blood was sampled at baseline, after cardiopulmonary bypass (CPB) and 6, 12 and 24h post-CPB. Plasma was analysed by liquid chromatography mass spectrometry (LC-MS) in an untargeted approach. Peptides demonstrating differential expression (p<0.01) were subjected to tandem LC-MS/MS and protein identification. Corresponding proteins were identified using the NCBI protein database. There was no difference in age (7.3±3.5vs6.8±3.6 months)(p=0.89), weight (7.7±1.8vs7.5±1.9 kg)(p=0.71), CPB time (104±7vs94±7 min)(p=0.98) or aortic cross-clamp time (83±22vs75±20 min)(p=0.36). No peptides were differentially expressed at baseline or immediately after CPB. There were 48 peptides with higher expression in the RIPC group 6h post-CPB. This was no longer evident at 12 or 24h, with one peptide down-regulated in the RIPC group. The proteins identified were: inter-alpha globulin inhibitor (42.0±11.8 vs 820.8±181.1, p=0.006), fibrinogen preproprotein (59.3±11.2 vs 1192.6±278.3, p=0.007), complement-C3 precursor (391.2±160.9 vs 5385.1±689.4, p=0.0005), complement C4B (151.5±17.8 vs 4587.8±799.2, p=0.003), apolipoprotein B100 (53.4±8.3 vs 1364.5±278.2, p=0.005) and urinary proteinase inhibitor (358.6±74.9 vs 5758.1±1343.1, p=0.009). These proteins are involved in metabolism, haemostasis, immunity and inflammation. Conclusions We provided the first comprehensive analysis of RIPC-induced proteomic changes in children undergoing surgery. The proteomic changes peak 6h post-CPB and return to baseline within 24h of surgery. Trial Registration ACTR.org.au ACTRN12610000496011 PMID

  10. Reference Intervals for Plasma Amyloid β in Korean Adults Without Cognitive Impairment.

    PubMed

    Kim, Min Young; Kim, Kyu Nam; Cho, Hye Min; Lee, Duck Joo; Cho, Doo Yeoun

    2016-11-01

    Amyloid β (Aβ) peptides are important components of plaques in patients with Alzheimer's disease (AD). Recent studies suggest that a low plasma ratio of Aβ42 to Aβ40 may precede the development of the sporadic form of AD. The aim of this study was to establish reference intervals for plasma Aβ in Korean adults. A total of 370 apparently healthy individuals (181 males and 189 females aged 40-69 yr) without cognitive impairment were enrolled. Plasma concentrations of Aβ40 and Aβ42 were measured by using a human amyloid β assay kit (Immuno-Biological Laboratories, Japan). Reference intervals were established according to the "CLSI guidelines for defining, establishing, and verifying reference intervals in the clinical laboratory". There was no need to partition the data with respect to gender or age group. The 95th percentile reference intervals for Aβ40 and Aβ42 were 127-331 pg/mL and 2.31-19.84 pg/mL, respectively. The reference interval for the Aβ42/Aβ40 ratio was 0.011-0.092. Plasma Aβ concentrations obtained in this study could be used as reference intervals for clinical purposes. PMID:27578514

  11. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    PubMed

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress. PMID:27341663

  12. Proteomic Analysis on Cercariae and Schistosomula in Reference to Potential Proteases Involved in Host Invasion of Schistosoma japonicum Larvae.

    PubMed

    Liu, Mu; Ju, Chuan; Du, Xiao-Feng; Shen, Hai-Mo; Wang, Ji-Peng; Li, Jian; Zhang, Xu-Min; Feng, Zheng; Hu, Wei

    2015-11-01

    Schistosomiasis is a parasitic zoonosis posing great threat to human health. The infection is acquired by larval cercariae penetrating host skin and transforming into juveniles, schistosomula. Proteolytic enzymes secreted from the cercarial acetabular glands are known to aid to the skin penetration, but molecular mechanisms remain largely unclear. To profile the protein composition and identify potential invasive proteases, we developed a new method for simulating cercarial transformation and collecting schistosomula, and for the first time, we compared the proteomes of Schistosoma japonicum cercariae and schistosomula by using in-gel shotgun proteomic analysis. Totally, 1972 proteins were identified in association with ten main biological processes based on Gene Ontology analysis; 46 proteases were detected in cercariae, and among them, 25 proteases disappeared after penetrated. Notably, leishmanolysins and serine and cysteine proteases were found abundant but differentially expressed. Recombinant serine protease SjCE2b and cysteine protease SjCB2 were produced and used for validation of native proteins. Immunofluorescence and Western blotting assays detected SjCE2b and SjCB2 in cercariae but not in schistosomula, suggesting the two enzymes might be consumed upon skin migration. Our data comprehensively chart the proteomic changes during cercarial invasion, revealing the potential proteases involved, providing a platform for the development of molecular anti-infection strategy. PMID:26370134

  13. LDL Receptor-related Protein 1 Regulates the Abundance of Diverse Cell-signaling Proteins in the Plasma Membrane Proteome

    PubMed Central

    Gaultier, Alban; Simon, Gabriel; Niessen, Sherry; Dix, Melissa; Takimoto, Shinako; Cravatt, Benjamin F.; Gonias, Steven L.

    2010-01-01

    LDL receptor-related protein 1 (LRP1) is an endocytic receptor, reported to regulate the abundance of other receptors in the plasma membrane, including uPAR and tissue factor. The goal of this study was to identify novel plasma membrane proteins, involved in cell-signaling, which are regulated by LRP1. Membrane protein ectodomains were prepared from RAW 264.7 cells in which LRP1 was silenced and control cells using protease K. Peptides were identified by LC-MS/MS. By analysis of spectral counts, 31 transmembrane and secreted proteins were regulated in abundance at least 2-fold when LRP1 was silenced. Validation studies confirmed that semaphorin4D (Sema4D), plexin domain-containing protein-1 (Plxdc1), and neuropilin-1 were more abundant in the membranes of LRP1 gene-silenced cells. Regulation of Plxdc1 by LRP1 was confirmed in CHO cells, as a second model system. Plxdc1 co-immunoprecipitated with LRP1 from extracts of RAW 264.7 cells and mouse liver. Although Sema4D did not co-immunoprecipitate with LRP1, the cell-surface level of Sema4D was increased by RAP, which binds to LRP1 and inhibits binding of other ligands. These studies identify Plxdc1, Sema4D, and neuropilin-1 as novel LRP1-regulated cell-signaling proteins. Overall, LRP1 emerges as a generalized regulator of the plasma membrane proteome. PMID:20919742

  14. Analysis of the bovine plasma proteome by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry.

    PubMed

    Henning, Ann-Kristin; Groschup, Martin H; Mettenleiter, Thomas C; Karger, Axel

    2014-01-01

    In this study, the bovine plasma proteome was analysed using a three step protocol: (1) plasma was treated with a combinatorial peptide ligand library (CPLL) to assimilate the differences in concentrations of different proteins in raw plasma; (2) CPLL-treated material was fractionated by three standard electrophoretic separation techniques, and (3) samples were analysed by nano-liquid chromatography (nLC) matrix-assisted laser desorption/ionisation (MALDI) time-of-flight tandem (TOF/TOF) mass spectrometry. The efficiencies of three fractionation protocols for plasma proteome analysis were compared. After size fractionation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), resolution of proteins was better and yields of identified proteins were higher than after charge-based fractionation by preparative gel-free isoelectric focussing. For proteins with isoelectric points >6 and molecular weights ⩾ 63 kDa, the best results were obtained with a 'shotgun' approach, in which the CPLL-treated plasma was digested and the peptides, rather than the proteins, were fractionated by gel-free isoelectric focussing. However, the three fractionation techniques were largely complementary, since only about one-third of the proteome was identified by each approach. PMID:24268478

  15. In-depth 2-DE reference map of Aspergillus fumigatus and its proteomic profiling on exposure to itraconazole.

    PubMed

    Gautam, Poonam; Mushahary, Dolly; Hassan, Wazid; Upadhyay, Santosh Kumar; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Sarma, Puranam Usha

    2016-07-01

    Aspergillus fumigatus (A. fumigatus) is a medically important opportunistic fungus that may lead to invasive aspergillosis in humans with weak immune system. Proteomic profiling of this fungus on exposure to itraconazole (ITC), an azole antifungal drug, may lead to identification of its molecular targets and better understanding on the development of drug resistance against ITC in A. fumigatus. Here, proteome analysis was performed using 2-DE followed by mass spectrometric analysis which resulted in identification of a total of 259 unique proteins. Further, proteome profiling of A. fumigatus was carried out on exposure to ITC, 0.154 μg/ml, the minimum inhibitory concentration (MIC50). Image analysis showed altered levels of 175 proteins (66 upregulated and 109 downregulated) of A. fumigatus treated with ITC as compared to the untreated control. Peptide mass fingerprinting led to the identification of 54 proteins (12 up-regulated and 42 down-regulated). The differentially expressed proteins include proteins related to cell stress, carbohydrate metabolism and amino acid metabolism. We also observed four proteins, including nucleotide phosphate kinase (NDK), that are reported to interact with calcineurin, a protein involved in regulation of cell morphology and fungal virulence. Comparison of differentially expressed proteins on exposure to ITC with artemisinin (ART), an antimalarial drug with antifungal activity(1), revealed a total of 26 proteins to be common among them suggesting that common proteins and pathways are targeted by these two antifungal agents. The proteins targeted by ITC may serve as important leads for development of new antifungal drugs. PMID:26868900

  16. Langmuir Probe Measurements in an Inductively Coupled GEC Reference Cell Plasma

    NASA Technical Reports Server (NTRS)

    Ji, J. S.; Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    Measurements of electron number density, electron temperature, and electron energy distribution function (EEDF) using a compensated Langmuir probe have been performed on an inductively (transformer ) coupled Gaseous Electronics Conference (GEC) reference cell plasma. The plasma source is operated with CH4, CF4, or their mixtures with argon. The effect of independently driving the electrode supporting the wafer on the probe data is studied. In particular, we find that the plasma structure depends on the phase in addition to the magnitude of the power coupled to the electrode relative to that of the transformer coil. The Langmuir probe is translated in a plane parallel to the electrode to investigate the spatial structure of the plasma. The probe data is also compared with fluid model predictions.

  17. A reference protocol for comparing the biocidal properties of gas plasma generating devices

    NASA Astrophysics Data System (ADS)

    Shaw, A.; Seri, P.; Borghi, C. A.; Shama, G.; Iza, F.

    2015-12-01

    Growing interest in the use of non-thermal, atmospheric pressure gas plasmas for decontamination purposes has resulted in a multiplicity of plasma-generating devices. There is currently no universally approved method of comparing the biocidal performance of such devices and in the work described here spores of the Gram positive bacterium Bacillus subtilis (ATCC 6633) are proposed as a suitable reference biological agent. In order to achieve consistency in the form in which the biological agent in question is presented to the plasma, a polycarbonate membrane loaded with a monolayer of spores is proposed. The advantages of the proposed protocol are evaluated by comparing inactivation tests in which an alternative microorganism (methicillin resistant Staphylococcus aureus—MRSA) and the widely-used sample preparation technique of directly pipetting cell suspensions onto membranes are employed. In all cases, inactivation tests with either UV irradiation or plasma exposure were more reproducible when the proposed protocol was followed.

  18. Constructing Proteome Reference Map of the Porcine Jejunal Cell Line (IPEC-J2) by Label-Free Mass Spectrometry.

    PubMed

    Kim, Sang Hoon; Pajarillo, Edward Alain B; Balolong, Marilen P; Lee, Ji Yoon; Kang, Dae-Kyung

    2016-06-28

    In this study, the global proteome of the IPEC-J2 cell line was evaluated using ultra-high performance liquid chromatography coupled to a quadrupole Q Exactive™ Orbitrap mass spectrometer. Proteins were isolated from highly confluent IPEC-J2 cells in biological replicates and analyzed by label-free mass spectrometry prior to matching against a porcine genomic dataset. The results identified 1,517 proteins, accounting for 7.35% of all genes in the porcine genome. The highly abundant proteins detected, such as actin, annexin A2, and AHNAK nucleoprotein, are involved in structural integrity, signaling mechanisms, and cellular homeostasis. The high abundance of heat shock proteins indicated their significance in cellular defenses, barrier function, and gut homeostasis. Pathway analysis and annotation using the Kyoto Encyclopedia of Genes and Genomes database resulted in a putative protein network map of the regulation of immunological responses and structural integrity in the cell line. The comprehensive proteome analysis of IPEC-J2 cells provides fundamental insights into overall protein expression and pathway dynamics that might be useful in cell adhesion studies and immunological applications. PMID:26975772

  19. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma.

    PubMed

    Tian, Wen-Dong; Li, Jun-Zheng; Hu, Shui-Wang; Peng, Xiao-Wei; Li, Gang; Liu, Xiong; Chen, Huai-Hong; Xu, Xia; Li, Xiang-Ping

    2015-01-01

    Hypopharyngeal squamous cell carcinoma (HSCC) has very poor prognosis compared with other head and neck squamous cell carcinomas. Late-stage diagnosis of HSCC increases mortality. Therefore, more effective biomarkers for early diagnosis of HSCC are necessary. Unfortunately, appropriate biomarkers for clinical diagnosis and prognosis have not been identified yet. However, recent progresses in quantitative proteomics have offered opportunities to identify plasma proteins as biomarkers for HSCC. In the present study, plasma samples were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). A total of 26 proteins representing 12 unique gene products were identified. The up-regulation proteins were alpha-2-HS-glycoprotein (AHSG), complement C4-B, haptoglobin, C-reactive protein, and ceruloplasmin, whereas the down-regulation proteins were serum albumin, angiotensinogen, alpha-1-antichymotrypsin, Ig gamma-3 chain C region, fibrinogen gamma chain, apolipoprotein A-I, and Ig kappa chain C region. Among all the differentially expressed proteins, AHSG was validated by western blot and ELISA. The results were consistent with the data from 2D-DIGE, further suggesting that AHSG may be employed as a potential biomarker for the early diagnosis of HSCC. In summary, this study was the first to use 2D-DIGE and MALDI-TOF/TOF platform to identify the potential plasma biomarkers for HSCC. The plasma AHSG showed great potential for HSCC screening. PMID:26464644

  20. Plasma Membrane Proteomics of Human Breast Cancer Cell Lines Identifies Potential Targets for Breast Cancer Diagnosis and Treatment

    PubMed Central

    Ziegler, Yvonne S.; Moresco, James J.; Tu, Patricia G.; Yates, John R.; Nardulli, Ann M.

    2014-01-01

    The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease. PMID:25029196

  1. Plasma Proteomic Profiling in Hereditary Breast Cancer Reveals a BRCA1-Specific Signature: Diagnostic and Functional Implications

    PubMed Central

    Scumaci, Domenica; Tammè, Laura; Fiumara, Claudia Vincenza; Pappaianni, Giusi; Concolino, Antonio; Leone, Emanuela; Faniello, Maria Concetta; Quaresima, Barbara; Ricevuto, Enrico; Costanzo, Francesco Saverio; Cuda, Giovanni

    2015-01-01

    Background Breast cancer (BC) is a leading cause of death among women. Among the major risk factors, an important role is played by familial history of BC. Germ-line mutations in BRCA1/2 genes account for most of the hereditary breast and/or ovarian cancers. Gene expression profiling studies have disclosed specific molecular signatures for BRCA1/2-related breast tumors as compared to sporadic cases, which might help diagnosis and clinical follow-up. Even though, a clear hallmark of BRCA1/2-positive BC is still lacking. Many diseases are correlated with quantitative changes of proteins in body fluids. Plasma potentially carries important information whose knowledge could help to improve early disease detection, prognosis, and response to therapeutic treatments. The aim of this study was to develop a comprehensive approach finalized to improve the recovery of specific biomarkers from plasma samples of subjects affected by hereditary BC. Methods To perform this analysis, we used samples from patients belonging to highly homogeneous population previously reported. Depletion of high abundant plasma proteins, 2D gel analysis, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis were used into an integrated approach to investigate tumor-specific changes in the plasma proteome of BC patients and healthy family members sharing the same BRCA1 gene founder mutation (5083del19), previously reported by our group, with the aim to identify specific signatures. Results The comparative analysis of the experimental results led to the identification of gelsolin as the most promising biomarker. Conclusions Further analyses, performed using a panel of breast cancer cell lines, allowed us to further elucidate the signaling network that might modulate the expression of gelsolin in breast cancer. PMID:26061043

  2. Proteomic identification of alpha-2-HS-glycoprotein as a plasma biomarker of hypopharyngeal squamous cell carcinoma

    PubMed Central

    Tian, Wen-Dong; Li, Jun-Zheng; Hu, Shui-Wang; Peng, Xiao-Wei; Li, Gang; Liu, Xiong; Chen, Huai-Hong; Xu, Xia; Li, Xiang-Ping

    2015-01-01

    Hypopharyngeal squamous cell carcinoma (HSCC) has very poor prognosis compared with other head and neck squamous cell carcinomas. Late-stage diagnosis of HSCC increases mortality. Therefore, more effective biomarkers for early diagnosis of HSCC are necessary. Unfortunately, appropriate biomarkers for clinical diagnosis and prognosis have not been identified yet. However, recent progresses in quantitative proteomics have offered opportunities to identify plasma proteins as biomarkers for HSCC. In the present study, plasma samples were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). A total of 26 proteins representing 12 unique gene products were identified. The up-regulation proteins were alpha-2-HS-glycoprotein (AHSG), complement C4-B, haptoglobin, C-reactive protein, and ceruloplasmin, whereas the down-regulation proteins were serum albumin, angiotensinogen, alpha-1-antichymotrypsin, Ig gamma-3 chain C region, fibrinogen gamma chain, apolipoprotein A-I, and Ig kappa chain C region. Among all the differentially expressed proteins, AHSG was validated by western blot and ELISA. The results were consistent with the data from 2D-DIGE, further suggesting that AHSG may be employed as a potential biomarker for the early diagnosis of HSCC. In summary, this study was the first to use 2D-DIGE and MALDI-TOF/TOF platform to identify the potential plasma biomarkers for HSCC. The plasma AHSG showed great potential for HSCC screening. PMID:26464644

  3. Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using O-16/O-18 Labeling and the Accurate Mass and Time Tag Approach

    SciTech Connect

    Qian, Weijun; Monroe, Matthew E.; Liu, Tao; Jacobs, Jon M.; Anderson, Gordon A.; Shen, Yufeng; Moore, Ronald J.; Anderson, David J.; Zhang, Rui; Calvano, Steven E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2005-05-01

    Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. We describe here an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes post-digestion trypsin-catalyzed 16O/18O labeling, two-dimensional liquid chromatography (LC)-Fourier transform ion cyclotron resonance ((FTICR) mass spectrometry, and the accurate mass and time (AMT) tag strategy for identification and quantification of peptides/proteins from complex samples. A peptide mass and time tag database was initially generated using tandem mass spectrometry (MS/MS) following extensive multidimensional LC separations and the database serves as a ‘look-up’ table for peptide identification. The mass and time tag database contains >8,000 putative identified peptides, which yielded 938 confident plasma protein identifications. The quantitative approach was applied to the comparative analyses of plasma samples from an individual prior to and 9 hours after lipopolysaccharide (LPS) administration without depletion of high abundant proteins. Accurate quantification of changes in protein abundance was demonstrated with both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses and the protein abundances for 28 proteins were observed to be significantly changed following LPS administration, including several known inflammatory response mediators.

  4. Quantitative Proteome Analysis of Human Plasma Following in vivo Lipopolysaccharide Administration using 16O/18O Labeling and the Accurate Mass and Time Tag Approach

    PubMed Central

    Qian, Wei-Jun; Monroe, Matthew E.; Liu, Tao; Jacobs, Jon M.; Anderson, Gordon A.; Shen, Yufeng; Moore, Ronald J.; Anderson, David J.; Zhang, Rui; Calvano, Steve E.; Lowry, Stephen F.; Xiao, Wenzhong; Moldawer, Lyle L.; Davis, Ronald W.; Tompkins, Ronald G.; Camp, David G.; Smith, Richard D.

    2007-01-01

    SUMMARY Identification of novel diagnostic or therapeutic biomarkers from human blood plasma would benefit significantly from quantitative measurements of the proteome constituents over a range of physiological conditions. Herein we describe an initial demonstration of proteome-wide quantitative analysis of human plasma. The approach utilizes post-digestion trypsin-catalyzed 16O/18O peptide labeling, two-dimensional liquid chromatography (LC)-Fourier transform ion cyclotron resonance ((FTICR) mass spectrometry, and the accurate mass and time (AMT) tag strategy to identify and quantify peptides/proteins from complex samples. A peptide accurate mass and LC-elution time AMT tag database was initially generated using tandem mass spectrometry (MS/MS) following extensive multidimensional LC separations to provide the basis for subsequent peptide identifications. The AMT tag database contains >8,000 putative identified peptides, providing 938 confident plasma protein identifications. The quantitative approach was applied without depletion for high abundant proteins for comparative analyses of plasma samples from an individual prior to and 9 h after lipopolysaccharide (LPS) administration. Accurate quantification of changes in protein abundance was demonstrated by both 1:1 labeling of control plasma and the comparison between the plasma samples following LPS administration. A total of 429 distinct plasma proteins were quantified from the comparative analyses and the protein abundances for 25 proteins, including several known inflammatory response mediators, were observed to change significantly following LPS administration. PMID:15753121

  5. Plasma and Cerebrospinal Proteomes From Children With Cerebral Malaria Differ From Those of Children With Other Encephalopathies

    PubMed Central

    Gitau, Evelyn N.; Kokwaro, Gilbert O.; Karanja, Henry; Newton, Charles R. J. C.; Ward, Stephen A.

    2013-01-01

    Clinical signs and symptoms of cerebral malaria in children are nonspecific and are seen in other common encephalopathies in malaria-endemic areas. This makes accurate diagnosis difficult in resource-poor settings. Novel malaria-specific diagnostic and prognostic methods are needed. We have used 2 proteomic strategies to identify differentially expressed proteins in plasma and cerebrospinal fluid from children with a diagnosis of cerebral malaria, compared with those with a diagnosis of malaria-slide-negative acute bacterial meningitis and other nonspecific encephalopathies. Here we report the presence of differentially expressed proteins in cerebral malaria in both plasma and cerebrospinal fluid that could be used to better understand pathogenesis and help develop more-specific diagnostic methods. In particular, we report the expression of 2 spectrin proteins that have known Plasmodium falciparum–binding partners involved in the stability of the infected red blood cell, suppressing further invasion and possibly enhancing the red blood cell's ability to sequester in microvasculature. PMID:23888081

  6. Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database

    SciTech Connect

    Omenn, Gilbert; States, David J.; Adamski, Marcin; Blackwell, Thomas W.; Menon, Rajasree; Hermjakob, Henning; Apweiler, Rolf; Haab, Brian B.; Simpson, Richard; Eddes, James; Kapp, Eugene; Moritz, Rod; Chan, Daniel W.; Rai, Alex J.; Admon, Arie; Aebersold, Ruedi; Eng, Jimmy K.; Hancock, William S.; Hefta, Stanley A.; Meyer, Helmut; Paik, Young-Ki; Yoo, Jong-Shin; Ping, Peipei; Pounds, Joel G.; Adkins, Joshua N.; Qian, Xiaohong; Wang, Rong; Wasinger, Valerie; Wu, Chi Yue; Zhao, Xiaohang; Zeng, Rong; Archakov, Alexander; Tsugita, Akira; Beer, Ilan; Pandey, Akhilesh; Pisano, Michael; Andrews, Philip; Tammen, Harald; Speicher, David W.; Hanash, Samir M.

    2005-08-13

    HUPO initiated the Plasma Proteome Project (PPP) in 2002. Its pilot phase has (1) evaluated advantages and limitations of many depletion, fractionation, and MS technology platforms; (2) compared PPP reference specimens of human serum and EDTA, heparin, and citrate-anticoagulated plasma; and (3) created a publicly-available knowledge base (www.bioinformatics. med.umich.edu/hupo/ppp; www.ebi.ac.uk/pride). Thirty-five participating laboratories in 13 countries submitted datasets. Working groups addressed (a) specimen stability and protein concentrations; (b) protein identifications from 18 MS/MS datasets; (c) independent analyses from raw MS-MS spectra; (d) search engine performance, subproteome analyses, and biological insights; (e) antibody arrays; and (f) direct MS/SELDI analyses. MS-MS datasets had 15 710 different International Protein Index (IPI) protein IDs; our integration algorithm applied to multiple matches of peptide sequences yielded 9504 IPI proteins identified with one or more peptides and 3020 proteins identified with two or more peptides (the Core Dataset). These proteins have been characterized with Gene Ontology, InterPro, Novartis Atlas, OMIM, and immunoassay based concentration determinations. The database permits examination of many other subsets, such as 1274 proteins identified with three or more peptides. Reverse protein to DNA matching identified proteins for 118 previously unidentified ORFs. We recommend use of plasma instead of serum, with EDTA (or citrate) for anticoagulation. To improve resolution, sensitivity and reproducibility of peptide identifications and protein matches, we recommend combinations of depletion, fractionation, and MS/MS technologies, with explicit criteria for evaluation of spectra, use of search algorithms, and integration of homologous protein matches. This Special Issue of PROTEOMICS presents papers integral to the collaborative analysis plus many reports of supplementary work on various aspects of the PPP workplan

  7. Randomized Trial of Glucosamine and Chondroitin Supplementation on Inflammation and Oxidative Stress Biomarkers and Plasma Proteomics Profiles in Healthy Humans

    PubMed Central

    Navarro, Sandi L.; White, Emily; Kantor, Elizabeth D.; Zhang, Yuzheng; Rho, Junghyun; Song, Xiaoling; Milne, Ginger L.; Lampe, Paul D.; Lampe, Johanna W.

    2015-01-01

    Background Glucosamine and chondroitin are popular non-vitamin dietary supplements used for osteoarthritis. Long-term use is associated with lower incidence of colorectal and lung cancers and with lower mortality; however, the mechanism underlying these observations is unknown. In vitro and animal studies show that glucosamine and chondroitin inhibit NF-kB, a central mediator of inflammation, but no definitive trials have been done in healthy humans. Methods We conducted a randomized, double-blind, placebo-controlled, cross-over study to assess the effects of glucosamine hydrochloride (1500 mg/d) plus chondroitin sulfate (1200 mg/d) for 28 days compared to placebo in 18 (9 men, 9 women) healthy, overweight (body mass index 25.0–32.5 kg/m2) adults, aged 20–55 y. We examined 4 serum inflammatory biomarkers: C-reactive protein (CRP), interleukin 6, and soluble tumor necrosis factor receptors I and II; a urinary inflammation biomarker: prostaglandin E2-metabolite; and a urinary oxidative stress biomarker: F2-isoprostane. Plasma proteomics on an antibody array was performed to explore other pathways modulated by glucosamine and chondroitin. Results Serum CRP concentrations were 23% lower after glucosamine and chondroitin compared to placebo (P = 0.048). There were no significant differences in other biomarkers. In the proteomics analyses, several pathways were significantly different between the interventions after Bonferroni correction, the most significant being a reduction in the “cytokine activity” pathway (P = 2.6 x 10-16), after glucosamine and chondroitin compared to placebo. Conclusion Glucosamine and chondroitin supplementation may lower systemic inflammation and alter other pathways in healthy, overweight individuals. This study adds evidence for potential mechanisms supporting epidemiologic findings that glucosamine and chondroitin are associated with reduced risk of lung and colorectal cancer. Trial Registration ClinicalTrials.gov NCT01682694 PMID

  8. Status of the GEC RF Reference Cell/laser diagnostics of plasma etching discharges

    SciTech Connect

    Hargis, P.J. Jr.; Greenerg, K.E.; Miller, P.A.

    1991-01-01

    The Gaseous Electronics Conference (GEC) RF Reference Cell was developed to enhance studies of radiofrequency (rf) discharge systems analogous to those used to fabricate microelectronic devices. The Reference Cell concept includes both a standard discharge-chamber design and a set of diagnostic tools that can be used to verify that different Cells behave similarly. Voltage and current measurements in Reference Cells in the United States show that, with proper care, plasmas that behave in a similar manner can be generated in different Cells. The versatility of the Reference Cell is illustrated by results on the use of planar laser-induced fluorescence imaging to obtain two-dimensional spatial profiles of SO{sub 2} in an SF{sub 6}/O{sub 2} rf discharge. 4 refs., 5 figs.

  9. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid E.; Li, Xujing

    2015-06-01

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97-104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  10. Tokamak magneto-hydrodynamics and reference magnetic coordinates for simulations of plasma disruptions

    SciTech Connect

    Zakharov, Leonid E.; Li, Xujing

    2015-06-15

    This paper formulates the Tokamak Magneto-Hydrodynamics (TMHD), initially outlined by X. Li and L. E. Zakharov [Plasma Science and Technology 17(2), 97–104 (2015)] for proper simulations of macroscopic plasma dynamics. The simplest set of magneto-hydrodynamics equations, sufficient for disruption modeling and extendable to more refined physics, is explained in detail. First, the TMHD introduces to 3-D simulations the Reference Magnetic Coordinates (RMC), which are aligned with the magnetic field in the best possible way. The numerical implementation of RMC is adaptive grids. Being consistent with the high anisotropy of the tokamak plasma, RMC allow simulations at realistic, very high plasma electric conductivity. Second, the TMHD splits the equation of motion into an equilibrium equation and the plasma advancing equation. This resolves the 4 decade old problem of Courant limitations of the time step in existing, plasma inertia driven numerical codes. The splitting allows disruption simulations on a relatively slow time scale in comparison with the fast time of ideal MHD instabilities. A new, efficient numerical scheme is proposed for TMHD.

  11. Plasma Proteomic Analysis May Identify New Markers for Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer

    SciTech Connect

    Cai Xuwi; Shedden, Kerby; Ao Xiaoping; Davis, Mary

    2010-07-01

    Purpose: To study whether radiation induces differential changes in plasma proteomics in patients with and without radiation-induced lung toxicity (RILT) of Grade {>=}2 (RILT2). Methods and Materials: A total of 57 patients with NSCLC received radiation therapy (RT) were eligible. Twenty patients, 6 with RILT2 with tumor stage matched to 14 without RILT2, were enrolled for this analysis. Platelet-poor plasma was obtained before RT, at 2, 4, 6 weeks during RT, and 1 and 3 months after RT. Plasma proteomes were compared using a multiplexed quantitative proteomics approach involving ExacTag labeling, reverse-phase high-performance liquid chromatography and nano-LC electrospray tandem mass spectrometry. Variance components models were used to identify the differential protein expression between patients with and without RILT2. Results: More than 100 proteins were identified and quantified. After excluding proteins for which there were not at least 2 subjects with data for at least two time points, 76 proteins remained for this preliminary analysis. C4b-binding protein alpha chain, Complement C3, and Vitronectin had significantly higher expression levels in patients with RILT2 compared with patients without RILT2, based on both the data sets of RT start to 3 months post-RT (p < 0.01) and RT start to the end of RT (p < 0.01). The expression ratios of patients with RILT2 vs. without RILT2 were 1.60, 1.36, 1.46, and 1.66, 1.34, 1.46, for the above three proteins, respectively. Conclusions: This proteomic approach identified new plasma protein markers for future studies on RILT prediction.

  12. Feeding milk replacer instead of whole milk affects blood plasma proteome and lipid profile in preruminant calves.

    PubMed

    Lepczyński, A; Herosimczyk, A; Ożgo, M; Skrzypczak, W F

    2015-01-01

    The study was undertaken to determine the effect of feeding milk or milk-replacer on the blood plasma proteome and lipid profile in calves during the second week of life. Feeding milk-replacer significantly decreased the expression of plasma apoA-I. Age of calves affected apoA-I expression, which was higher on the 8th than on the 11th and 14th day of life. A significant effect of interaction between diet and age was also observed. The expression of apoA-IV, was significantly affected by diet and was lower in calves fed milk replacer. Expression of this protein was significantly lower at the 8th day of life and was up-regulated in the calves fed milk-replacer at the second week of life. Calves fed milk-replacer had greater expression of haptoglobin, which differed significantly between days of blood sampling, being higher on the 8th than on the 11th and 14th day. The interactive effect of diet and age affected haptoglobin expression, which was successively down-regulated in calves fed milk re- placer. Diet had a significant effect on the plasma lipid profile. Animals fed milk had a greater concentration of TC, HDLC and LDLC. The composition of milk-replacer, especially fat source, is probably the main factor that affects expression of proteins involved in cholesterol metabolism and level of components of lipid profile in calves fed formula. We claim that the initially increased level of haptoglobin, followed by its decrease during the second week of life in calves fed milk-replacer may indicate the presence of short-term stress induced by changes in the feeding system. PMID:25928915

  13. Oxide etch dusty plasma studies in the GEC reference cell using dynamic laser light scattering techniques

    SciTech Connect

    Anderson, H.M.; Radovanov, S.

    1995-12-31

    Particulate generation has been studied during reactive on etching (RIE) of oxide wafers in CF{sub 4}/CHF{sub 3} plasmas using the GEC Reference Cell. Under certain discharge process conditions, copious amounts of submicron particles form due to plasma interaction with the oxide substrate. Particles were observed in situ by laser light scattering (LLS) and dynamic laser light scattering (DLSS). DLLS can be used to determine information about particle size, motion, and growth dynamics. DLSS measurements show process-induced dust particles confined in an electrostatic trap exhibit low-frequency oscillatory motion consistent with charge density wave (CDW) motion. These results are also consistent with the plasma dust particles forming a strongly coupled Coulomb liquid phase.

  14. "Omics" of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men.

    PubMed

    Sinha, Indu; Karagoz, Kubra; Fogle, Rachel L; Hollenbeak, Christopher S; Zea, Arnold H; Arga, Kazim Y; Stanley, Anne E; Hawkes, Wayne C; Sinha, Raghu

    2016-04-01

    Low selenium levels have been linked to a higher incidence of cancer and other diseases, including Keshan, Chagas, and Kashin-Beck, and insulin resistance. Additionally, muscle and cardiovascular disorders, immune dysfunction, cancer, neurological disorders, and endocrine function have been associated with mutations in genes encoding for selenoproteins. Selenium biology is complex, and a systems biology approach to study global metabolomics, genomics, and/or proteomics may provide important clues to examining selenium-responsive markers in circulation. In the current investigation, we applied a global proteomics approach on plasma samples collected from a previously conducted, double-blinded placebo controlled clinical study, where men were supplemented with selenized-yeast (Se-Yeast; 300 μg/day, 3.8 μmol/day) or placebo-yeast for 48 weeks. Proteomic analysis was performed by iTRAQ on 8 plasma samples from each arm at baseline and 48 weeks. A total of 161 plasma proteins were identified in both arms. Twenty-two proteins were significantly altered following Se-Yeast supplementation and thirteen proteins were significantly changed after placebo-yeast supplementation in healthy men. The differentially expressed proteins were involved in complement and coagulation pathways, immune functions, lipid metabolism, and insulin resistance. Reconstruction and analysis of protein-protein interaction network around selected proteins revealed several hub proteins. One of the interactions suggested by our analysis, PHLD-APOA4, which is involved in insulin resistance, was subsequently validated by Western blot analysis. Our systems approach illustrates a viable platform for investigating responsive proteomic profile in 'before and after' condition following Se-Yeast supplementation. The nature of proteins identified suggests that selenium may play an important role in complement and coagulation pathways, and insulin resistance. PMID:27027327

  15. Proteomic profiling of human plasma identifies apolipoprotein E as being associated with smoking and a marker for squamous metaplasia of the lung.

    PubMed

    Rice, Shawn J; Liu, Xin; Miller, Bruce; Joshi, Monika; Zhu, Junjia; Caruso, Carla; Gilbert, Chris; Toth, Jennifer; Reed, Michael; Rassaei, Negar; Das, Arun; Barochia, Amit; El-Bayoumy, Karam; Belani, Chandra P

    2015-09-01

    Biomarkers to identify subjects at high-risk for developing lung cancer will revolutionize the disease outlook. Most biomarker studies have focused on patients already diagnosed with lung cancer and in most cases the disease is often advanced and incurable. The objective of this study was to use proteomics to identify a plasma biomarker for early detection of lung lesions that may subsequently be the harbinger for cancer. Plasma samples were obtained from subjects without lung cancer grouped as never, current, or ex-smokers. An iTRAQ-based proteomic analysis was performed on these pooled plasma samples. We identified 31 proteins differentially abundant in current smokers or ex-smokers relative to never smokers. Western blot and ELISA analyses confirmed the iTRAQ results that demonstrated an increase of apolipoprotein E (APOE) in current smokers as compared to both never and ex-smokers. There was a strong and significant correlation of the plasma APOE levels with development of premalignant squamous metaplasia. Additionally, we also showed that higher tissue levels of APOE are seen with squamous metaplasia, supporting a direct relationship. Our analysis reveals that elevated plasma APOE is associated with smoking, and APOE is a novel predictive protein biomarker for early morphological changes of squamous metaplasia in the lung. PMID:26058877

  16. Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum.

    PubMed

    Brandtzaeg, Ole Kristian; Johnsen, Elin; Roberg-Larsen, Hanne; Seip, Knut Fredrik; MacLean, Evan L; Gesquiere, Laurence R; Leknes, Siri; Lundanes, Elsa; Wilson, Steven Ray

    2016-01-01

    The neuropeptide oxytocin (OT) is associated with a plethora of social behaviors, and is a key topic at the intersection of psychology and biology. However, tools for measuring OT are still not fully developed. We describe a robust nano liquid chromatography-mass spectrometry (nanoLC-MS) platform for measuring the total amount of OT in human plasma/serum. OT binds strongly to plasma proteins, but a reduction/alkylation (R/A) procedure breaks this bond, enabling ample detection of total OT. The method (R/A + robust nanoLC-MS) was used to determine total OT plasma/serum levels to startlingly high concentrations (high pg/mL-ng/mL). Similar results were obtained when combining R/A and ELISA. Compared to measuring free OT, measuring total OT can have advantages in e.g. biomarker studies. PMID:27528413

  17. Proteomics tools reveal startlingly high amounts of oxytocin in plasma and serum

    PubMed Central

    Brandtzaeg, Ole Kristian; Johnsen, Elin; Roberg-Larsen, Hanne; Seip, Knut Fredrik; MacLean, Evan L.; Gesquiere, Laurence R.; Leknes, Siri; Lundanes, Elsa; Wilson, Steven Ray

    2016-01-01

    The neuropeptide oxytocin (OT) is associated with a plethora of social behaviors, and is a key topic at the intersection of psychology and biology. However, tools for measuring OT are still not fully developed. We describe a robust nano liquid chromatography-mass spectrometry (nanoLC-MS) platform for measuring the total amount of OT in human plasma/serum. OT binds strongly to plasma proteins, but a reduction/alkylation (R/A) procedure breaks this bond, enabling ample detection of total OT. The method (R/A + robust nanoLC-MS) was used to determine total OT plasma/serum levels to startlingly high concentrations (high pg/mL-ng/mL). Similar results were obtained when combining R/A and ELISA. Compared to measuring free OT, measuring total OT can have advantages in e.g. biomarker studies. PMID:27528413

  18. A mouse plasma peptide atlas as a resource for disease proteomics.

    PubMed

    Zhang, Qing; Menon, Rajasree; Deutsch, Eric W; Pitteri, Sharon J; Faca, Vitor M; Wang, Hong; Newcomb, Lisa F; Depinho, Ronald A; Bardeesy, Nabeel; Dinulescu, Daniela; Hung, Kenneth E; Kucherlapati, Raju; Jacks, Tyler; Politi, Katerina; Aebersold, Ruedi; Omenn, Gilbert S; States, David J; Hanash, Samir M

    2008-01-01

    We present an in-depth analysis of mouse plasma leading to the development of a publicly available repository composed of 568 liquid chromatography-tandem mass spectrometry runs. A total of 13,779 distinct peptides have been identified with high confidence. The corresponding approximately 3,000 proteins are estimated to span a 7 logarithmic range of abundance in plasma. A major finding from this study is the identification of novel isoforms and transcript variants not previously predicted from genome analysis. PMID:18522751

  19. Validity of extracellular water assessment with saliva samples using plasma as the reference biological fluid.

    PubMed

    Matias, Catarina N; Silva, Analiza M; Santos, Diana A; Gobbo, Luis A; Schoeller, Dale A; Sardinha, Luís B

    2012-11-01

    Extracellular water (ECW) assessment is based on dilution techniques, commonly using blood sampling. However, plasma collection is an invasive procedure. We aimed to validate the use of saliva for ECW estimation by the bromide dilution technique using plasma as the reference method, in a sample of elite athletes. A total of 89 elite athletes with a mean age of 20.4 ± 4.4 years were evaluated. Baseline samples were collected before sodium bromide oral dose administration, and enriched samples were collected 3 h post-dose administration. The bromide concentration was assessed by high-performance liquid chromatography. Comparison of means, concordance coefficient correlation (CCC), multiple regression and Bland-Altman analysis were performed. The ECW from saliva explained 91% of the variance in ECW by plasma with a standard error of estimation of 0.91 kg. The CCC between alternative and reference methods was 0.952. No significant trend was observed between the mean and difference of the methods, with limits of agreement ranging between -1.5 and 2.1 kg. These findings reveal that bromide dilution volume calculated from saliva samples is a valid noninvasive method for ECW assessment in elite athletes. PMID:22275182

  20. Comparative proteomics reveals novel components at the plasma membrane of differentiated HepaRG cells and different distribution in hepatocyte- and biliary-like cells.

    PubMed

    Petrareanu, Catalina; Macovei, Alina; Sokolowska, Izabela; Woods, Alisa G; Lazar, Catalin; Radu, Gabriel L; Darie, Costel C; Branza-Nichita, Norica

    2013-01-01

    Hepatitis B virus (HBV) is a human pathogen causing severe liver disease and eventually death. Despite important progress in deciphering HBV internalization, the early virus-cell interactions leading to infection are not known. HepaRG is a human bipotent liver cell line bearing the unique ability to differentiate towards a mixture of hepatocyte- and biliary-like cells. In addition to expressing metabolic functions normally found in liver, differentiated HepaRG cells support HBV infection in vitro, thus resembling cultured primary hepatocytes more than other hepatoma cells. Therefore, extensive characterization of the plasma membrane proteome from HepaRG cells would allow the identification of new cellular factors potentially involved in infection. Here we analyzed the plasma membranes of non-differentiated and differentiated HepaRG cells using nanoliquid chromatography-tandem mass spectrometry to identify the differences between the proteomes and the changes that lead to differentiation of these cells. We followed up on differentially-regulated proteins in hepatocytes- and biliary-like cells, focusing on Cathepsins D and K, Cyclophilin A, Annexin 1/A1, PDI and PDI A4/ERp72. Major differences between the two proteomes were found, including differentially regulated proteins, protein-protein interactions and intracellular localizations following differentiation. The results advance our current understanding of HepaRG differentiation and the unique properties of these cells. PMID:23977166

  1. Plasma Proteome Profiles Associated with Diet-Induced Metabolic Syndrome and the Early Onset of Metabolic Syndrome in a Pig Model

    PubMed Central

    te Pas, Marinus F. W.; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P. L.; Smits, Mari A.

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases. PMID:24086269

  2. An inductively coupled plasma source for the Gaseous Electronics Conference RF Reference Cell

    SciTech Connect

    Miller, P.A.; Hebner, G.A.; Greenberg, K.E.; Pochan, P.D.; Aragon, B.P.

    1995-07-01

    In order to extend the operating range of the GEC RF Reference Cell, the authors developed an inductively coupled plasma source that replaced the standard parallel-plate upper-electrode assembly. Voltage and current probes, Langmuir probes, and an 80 GHz interferometer provided information on plasmas formed in argon, chlorine, and nitrogen at pressures from 0.1 Pa to 3 Pa. For powers deposited in the plasma from 20 W to 300 W, the source produced peak electron densities between 10{sup 10}/cm{sup 3} and 10{sup 12}/cm{sup 3} and electron temperatures near 4 eV. The electron density peaked on axis with typical full-width at half maximum of 7 cm to 9 cm. Discharges in chlorine and nitrogen had bimodal operation that was clearly evident from optical emission intensity. A dim mode occurred at low power and a bright mode at high power. The transition between modes had hysteresis. After many hours of high-power operation, films formed on electrodes and walls of one Cell. These deposits affected the dim-to-bright mode transition, and also apparently caused generation of hot electrons and increased the plasma potential.

  3. Plasma Proteomic Analysis of Simian Immunodeficiency Virus Infection of Rhesus Macaques

    PubMed Central

    Wiederin, Jayme L.; Donahoe, Robert M.; Anderson, James R.; Yu, Fang; Fox, Howard S.; Gendelman, Howard E.; Ciborowski, Pawel S.

    2012-01-01

    Lentiviral replication in its target cells affects a delicate balance between cellular co-factors required for virus propagation and immunoregulation for host defense. To better elucidate cellular proteins linked to viral infection we tested plasma from rhesus macaques infected with the simian immunodeficiency viral strain SIVsmm9, prior to, 10 days (acute) and 49 weeks (chronic) after viral infection. Changes in plasma protein content were measured by quantitative mass spectrometry by isobaric Tags for Absolute and Relative Quantitation (iTRAQ) methods. An 81 and 232% increase in SERPINA1 was seen during acute and chronic infection, respectively. Interestingly, gelsolin, vitamin D binding protein and histidine rich glycoprotein were decreased by 45% in acute conditions but returned to baseline during chronic infection. When compared to uninfected controls, a 48–103% increase in leucine rich alpha 2-glycoprotein, vitronectin and ceruloplasmin was observed during chronic viral infection. Observed changes in plasma proteins expression likely represent a compensatory host response to persistent viral infection. PMID:20677826

  4. Proteomic Insight Reveals Elevated Levels of Albumin in Circulating Immune Complexes in Diabetic Plasma.

    PubMed

    Bhat, Shweta; Jagadeeshaprasad, Mashanipalya G; Patil, Yugendra R; Shaikh, Mahemud L; Regin, Bhaskaran S; Mohan, Viswanathan; Giri, Ashok P; Balasubramanyam, Muthuswamy; Boppana, Ramanamurthy; Kulkarni, Mahesh J

    2016-06-01

    A Hyperglycemic condition in diabetes promotes formation of advanced glycation end products, which are known to elicit immune response and form complexes with immunoglobulins called circulating immune complexes. To investigate the involvement of advanced glycation end product (AGE)-modified proteins in the elicitation of an immune response, circulating immune complexes were isolated and proteins associated were identified and characterized. Label-free-based mass spectrometric analysis of circulating immune complexes in clinical plasma of prediabetic, newly diagnosed diabetes, and diabetic microalbuminurea revealed elevated levels of serum albumin in the circulating immune complexes, which were also observed to be AGE modified. Further, to examine the role of glycation, circulating immune complexeswere analyzed in the streptozotocin-induced diabetic mice treated with or without aminoguanidine, a prototype glycation inhibitor. Mass spectrometric analysis of circulating immune complexes showed elevated levels of serum albumin in plasma from diabetic mice over that of control animals. Aminoguanidine-treated diabetic mice displayed decreased AGE modification of plasma albumin, accompanied by a reduced level of albumin in the circulating immune complexes. In addition, elevated levels of proinflammatory cytokines such as IL-1b, IL-2, and TNF-alpha were observed in diabetes, which were reduced with aminoguanidine treatment, suggesting the involvement of glycation in the immune response. PMID:27056913

  5. Affinity Proteomics Reveals Elevated Muscle Proteins in Plasma of Children with Cerebral Malaria

    PubMed Central

    Pramana, Setia; Conte, Ianina; Brown, Biobele J.; Orimadegun, Adebola E.; Ajetunmobi, Wasiu A.; Afolabi, Nathaniel K.; Akinkunmi, Francis; Omokhodion, Samuel; Akinbami, Felix O.; Shokunbi, Wuraola A.; Kampf, Caroline; Pawitan, Yudi; Uhlén, Mathias; Sodeinde, Olugbemiro; Schwenk, Jochen M.; Wahlgren, Mats; Fernandez-Reyes, Delmiro; Nilsson, Peter

    2014-01-01

    Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria. PMID:24743550

  6. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria.

    PubMed

    Bachmann, Julie; Burté, Florence; Pramana, Setia; Conte, Ianina; Brown, Biobele J; Orimadegun, Adebola E; Ajetunmobi, Wasiu A; Afolabi, Nathaniel K; Akinkunmi, Francis; Omokhodion, Samuel; Akinbami, Felix O; Shokunbi, Wuraola A; Kampf, Caroline; Pawitan, Yudi; Uhlén, Mathias; Sodeinde, Olugbemiro; Schwenk, Jochen M; Wahlgren, Mats; Fernandez-Reyes, Delmiro; Nilsson, Peter

    2014-04-01

    Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria. PMID:24743550

  7. Plasma proteome profiling of a mouse model of breast cancer identifies a set of up-regulated proteins in common with human breast cancer cells.

    PubMed

    Pitteri, Sharon J; Faca, Vitor M; Kelly-Spratt, Karen S; Kasarda, A Erik; Wang, Hong; Zhang, Qing; Newcomb, Lisa; Krasnoselsky, Alexei; Paczesny, Sophie; Choi, Gina; Fitzgibbon, Matthew; McIntosh, Martin W; Kemp, Christopher J; Hanash, Samir M

    2008-04-01

    We have applied an in-depth quantitative proteomic approach, combining isotopic labeling extensive intact protein separation and mass spectrometry, for high confidence identification of protein changes in plasmas from a mouse model of breast cancer. We hypothesized that a wide spectrum of proteins may be up-regulated in plasma with tumor development and that comparisons with proteins expressed in human breast cancer cell lines may identify a subset of up-regulated proteins in common with proteins expressed in breast cancer cell lines that may represent candidate biomarkers for breast cancer. Plasma from PyMT transgenic tumor-bearing mice and matched controls were obtained at two time points during tumor growth. A total of 133 proteins were found to be increased by 1.5-fold or greater at one or both time points. A comparison of this set of proteins with published findings from proteomic analysis of human breast cancer cell lines yielded 49 proteins with increased levels in mouse plasma that were identified in breast cancer cell lines. Pathway analysis comparing the subset of up-regulated proteins known to be expressed in breast cancer cell lines with other up-regulated proteins indicated a cancer related function for the former and a host-response function for the latter. We conclude that integration of proteomic findings from mouse models of breast cancer and from human breast cancer cell lines may help identify a subset of proteins released by breast cancer cells into the circulation and that occur at increased levels in breast cancer. PMID:18311905

  8. Determination of trace metals in marine biological reference materials by inductively coupled plasma mass spectrometry

    SciTech Connect

    Beauchemin, D.; McLaren, J.W.; Willie, S.N.; Berman, S.S.

    1988-04-01

    Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of two marine biological reference materials (dogfish liver tissue (DOLT-1) and dogfish muscle tissue (DORM-1)). The materials were put into solution by digestion in a nitric acid/hydrogen peroxide mixture. Thirteen elements (Na, Mg, Cr, Fe, Mn, Co, Ni, Cu, Zn, As, Cd, Hg, and Pb) were then determined. Accurate results were obtained by standard additions or isotope dilution techniques for all of these elements in DORM-1 and for all but Cr in DOLT-1.

  9. Determination of perfluorinated compounds in human plasma and serum Standard Reference Materials using independent analytical methods.

    PubMed

    Reiner, Jessica L; Phinney, Karen W; Keller, Jennifer M

    2011-11-01

    Perfluorinated compounds (PFCs) were measured in three National Institute of Standards and Technology (NIST) Standard Reference Materials (SRMs) (SRMs 1950 Metabolites in Human Plasma, SRM 1957 Organic Contaminants in Non-fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum) using two analytical approaches. The methods offer some independence, with two extraction types and two liquid chromatographic separation methods. The first extraction method investigated the acidification of the sample followed by solid-phase extraction (SPE) using a weak anion exchange cartridge. The second method used an acetonitrile extraction followed by SPE using a graphitized non-porous carbon cartridge. The extracts were separated using a reversed-phase C(8) stationary phase and a pentafluorophenyl (PFP) stationary phase. Measured values from both methods for the two human serum SRMs, 1957 and 1958, agreed with reference values on the Certificates of Analysis. Perfluorooctane sulfonate (PFOS) values were obtained for the first time in human plasma SRM 1950 with good reproducibility among the methods (below 5% relative standard deviation). The nominal mass interference from taurodeoxycholic acid, which has caused over estimation of the amount of PFOS in biological samples, was separated from PFOS using the PFP stationary phase. Other PFCs were also detected in SRM 1950 and are reported. SRM 1950 can be used as a control material for human biomonitoring studies and as an aid to develop new measurement methods. PMID:21912833

  10. Blood and Plasma Biochemistry Reference Intervals for Wild Juvenile American Alligators ( Alligator mississippiensis ).

    PubMed

    Hamilton, Matthew T; Kupar, Caitlin A; Kelley, Meghan D; Finger, John W; Tuberville, Tracey D

    2016-07-01

    : American alligators ( Alligator mississippiensis ) are one of the most studied crocodilian species in the world, yet blood and plasma biochemistry information is limited for juvenile alligators in their northern range, where individuals may be exposed to extreme abiotic and biotic stressors. We collected blood samples over a 2-yr period from 37 juvenile alligators in May, June, and July to establish reference intervals for 22 blood and plasma analytes. We observed no effect of either sex or blood collection time on any analyte investigated. However, our results indicate a significant correlation between a calculated body condition index and aspartate aminotransferase and creatine kinase. Glucose, total protein, and potassium varied significantly between sampling sessions. In addition, glucose and potassium were highly correlated between the two point-of-care devices used, although they were significantly lower with the i-STAT 1 CG8+ cartridge than with the Vetscan VS2 Avian/Reptile Rotor. The reference intervals presented herein should provide baseline data for evaluating wild juvenile alligators in the northern portion of their range. PMID:27224213

  11. Hematological and plasma biochemical reference ranges of Alaskan seabirds: Their ecological significance and clinical importance

    USGS Publications Warehouse

    Newman, S.H.; Piatt, J.F.; White, J.

    1997-01-01

    Blood was analyzed from 151 pelagic marine birds to establish reference ranges for hematological and plasma biochemical parameters from healthy, wild populations of Pacific seabirds. Of the 13 species examined, 9 were from the Family Alcidae (N = 122 individuals) and the remainder (N = 29) from the Families Phalacrocoracidae, Laridae, and Procellariidae. Three of 8 hematological parameters (total white blood cell count, lymphocyte count and eosinophil count) differed significantly among species, as did 9 of 13 plasma biochemical parameters (alkaline phosphatase, aspartate aminotransferase, creatine kinase, cholesterol, glucose, lactate dehydrogenase, total bilirubin, total protein and field total protein). There were no differences among species for packed cell volume, buffy coat, cell counts of heterophils, monoqtes and basophils, or for concentrations of alanine aminotransferase, triglycerides, uric acid and calcium. Plasma calcium concentration, triglyceride levels and field total protein varied significantly between sexes, with females having higher mean concentrations of all 3 parameters. However, no significant relationships between measures of breeding condition (brood patch size, subcutaneous and mesenteric fat deposits, or ovarian follicle size and ovary weight) and calcium or alkaline phosphatase concentrations in female birds could be identified. Alanine aminotransferase and uric acid were the only analytes which did not differ significantly between species or sexes.

  12. Numerical analysis of the non-equilibrium plasma flow in the gaseous electronics conference reference reactor

    NASA Astrophysics Data System (ADS)

    Bijie, Yang; Ning, Zhou; Quanhua, Sun

    2016-01-01

    The capacitively coupled plasma in the gaseous electronics conference reference reactor is numerically investigated for argon flow using a non-equilibrium plasma fluid model. The finite rate chemistry is adopted for the chemical non-equilibrium among species including neutral metastable, whereas a two-temperature model is employed to resolve the thermal non-equilibrium between electrons and heavy species. The predicted plasma density agrees very well with experimental data for the validation case. A strong thermal non-equilibrium is observed between heavy particles and electrons due to its low collision frequency, where the heavy species remains near ambient temperature for low pressure and low voltage conditions (0.1 Torr, 100 V). The effects of the operating parameters on the ion flux are also investigated, including the electrode voltage, chamber pressure, and gas flow rate. It is found that the ion flux can be increased by either elevating the electrode voltage or lowering the gas pressure. Project supported by the National Natural Science Foundation of China (Nos. 11372325, 11475239).

  13. Proteomic analysis of the plasma membrane-movement tubule complex of cowpea mosaic virus.

    PubMed

    den Hollander, Paulus W; de Sousa Geraldino Duarte, Priscilla; Bloksma, Hanke; Boeren, Sjef; van Lent, Jan W M

    2016-05-01

    Cowpea mosaic virus forms tubules constructed from the movement protein (MP) in plasmodesmata (PD) to achieve cell-to-cell movement of its virions. Similar tubules, delineated by the plasma membrane (PM), are formed protruding from the surface of infected protoplasts. These PM-tubule complexes were isolated from protoplasts by immunoprecipitation and analysed for their protein content by tandem mass spectrometry to identify host proteins with affinity for the movement tubule. Seven host proteins were abundantly present in the PM-tubule complex, including molecular chaperonins and an AAA protein. Members of both protein families have been implicated in establishment of systemic infection. The potential role of these proteins in tubule-guided cell-cell transport is discussed. PMID:26780773

  14. Combination of virtual and experimental 2DE together with ESI LC-MS/MS gives a clearer view about proteomes of human cells and plasma.

    PubMed

    Naryzhny, Stanislav N; Zgoda, Victor G; Maynskova, Maria A; Novikova, Svetlana E; Ronzhina, Natalia L; Vakhrushev, Igor V; Khryapova, Elena V; Lisitsa, Andrey V; Tikhonova, Olga V; Ponomarenko, Elena A; Archakov, Alexander I

    2016-01-01

    Virtual and experimental 2DE coupled with ESI LC-MS/MS was introduced to obtain better representation of the information about human proteome. The proteins from HEPG2 cells and human blood plasma were run by 2DE. After staining and protein spot identification by MALDI-TOF MS, the protein maps were generated. The experimental physicochemical parameters (pI/Mw) of the proteoforms further detected by ESI LC-MS/MS in these spots were obtained. Next, the theoretical pI and Mw of identified proteins were calculated using program Compute pI/Mw (http://web.expasy.org/compute_pi/pi_tool-doc.html). Accordingly, the relationship between theoretical and experimental parameters was analyzed, and the correlation plots were built. Additionally, virtual/experimental information about different protein species/proteoforms from the same genes was extracted. As it was revealed from the plots, the major proteoforms detected in HepG2 cell line have pI/Mw parameters similar to theoretical values. In opposite, the minor protein species have mainly very different from theoretical pI and Mw parameters. A similar situation was observed in plasma in much higher degree. It means that minor protein species are heavily modified in cell and even more in plasma proteome. PMID:26454001

  15. Pressurized Pepsin Digestion in Proteomics

    PubMed Central

    López-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolić, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Paša-Tolić, Ljiljana

    2011-01-01

    Integrated top-down bottom-up proteomics combined with on-line digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to high throughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications. Herein, we describe recent efforts toward efficient integration of bottom-up and top-down LC-MS-based proteomics strategies. Since most proteomics separations utilize acidic conditions, we exploited the compatibility of pepsin (where the optimal digestion conditions are at low pH) for integration into bottom-up and top-down proteomics work flows. Pressure-enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an off-line mode using a Barocycler or an on-line mode using a modified high pressure LC system referred to as a fast on-line digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results were compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultrarapid integrated bottom-up top-down proteomics strategy using a standard mixture of proteins and a monkey pox virus proteome. PMID:20627868

  16. Proteomic analysis of plasma from cows affected with milk fever using two-dimensional differential in-gel electrophoresis and mass spectrometry.

    PubMed

    Xia, C; Zhang, H Y; Wu, L; Xu, C; Zheng, J S; Yan, Y J; Yang, L J; Shu, S

    2012-10-01

    Milk fever is an important metabolic disorder of dairy cows after calving, and is characterized by hypocalcemia, tetany, lateral recumbency, and eventual coma. To date, there have been many reports about the pathogenesis and pathophysiology of milk fever, but the plasma protein profile in milk fever has not been reported. The aim of our study was to investigate novel pathophysiological changes in the plasma proteome of cows affected with milk fever. Plasma samples were collected from eight Holstein cows with milk fever (T), and eight control Holstein cows without milk fever (C), at an intensive Holstein dairy farm in Heilongjiang province, China. Samples were analyzed by fluorescence two-dimensional (2D) differential in-gel electrophoresis (DIGE), followed by in-gel digestion, and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) for peptide mass fingerprinting of selected protein spots. Eight of the 23 differential protein spots in the plasma of T and C cows were isolated and identified by 2D-DIGE and MALDI-TOF-MS. The protein spots represented five unique proteins, and had significant alterations in spot volume as determined by DeCyder differential in-gel analysis (DIA) software. The upregulated proteins were identified as serpin peptidase inhibitor (angiotensin), which regulates blood pressure and maintains fluid and electrolyte homeostasis, and endopin 2B which is involved in neural regulation. The downregulated proteins were serum albumin, which acts as a transport protein, fibrinogen beta chain which is involved in blood coagulation, and IgG heavy-chain C-region (IgG-C(H)) which participates in the immune response. In conclusion, we were able to use proteomic technologies to identify several novel plasma proteins in cows affected with milk fever. These findings may reveal new pathophysiological changes that occur in cows with milk fever. PMID:22119234

  17. A lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform for identification of multiple liver cancer biomarkers in human plasma.

    PubMed

    Ahn, Yeong Hee; Shin, Park Min; Oh, Na Ree; Park, Gun Wook; Kim, Hoguen; Yoo, Jong Shin

    2012-09-18

    Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression. PMID:22789673

  18. Hematologic and plasma biochemistry reference intervals of healthy adult barn owls (Tyto alba).

    PubMed

    Szabo, Zoltan; Klein, Akos; Jakab, Csaba

    2014-06-01

    Hematologic and plasma biochemistry parameters of barn owls (Tyto alba) were studied in collaboration by the Exotic Division of the Faculty of Veterinary Science of the Szent Istvan University and the Eötvös Loránd University, both in Budapest, Hungary. Blood samples were taken from a total of 42 adult barn owls kept in zoos and bird repatriation stations. The following quantitative and qualitative hematologic values were determined: packed cell volume, 46.2 +/- 4%; hemoglobin concentration, 107 +/- 15 g/L; red blood cell count, 3.2 +/- 0.4 x 10(12)/L; white blood cell count, 13.7 +/- 2.7 x 10(9)/L; heterophils, 56.5 +/- 11.5% (7.8 +/- 2 x 10(9)/L); lymphocytes, 40.3 +/- 10.9% (5.5 +/- 1.9 x 10(9)/L); monocytes, 1.8 +/- 2.1% (0.3 +/- 0.3 x 10(9)/ L); eosinophils, 1 +/- 1% (0.1 +/- 0.1 x 10(9)/L); and basophils, 0.6 +/- 0.5% (0.1 +/- 0.1 x 10(9)/L). The following plasma biochemistry values also were determined: aspartate aminotransferase, 272 +/- 43 U/L; L-gamma-glutamyltransferase, 9.5 +/- 4.7 U/L; lipase, 31.7 +/- 11.1 U/L; creatine kinase, 2228 +/- 578 U/L; lactate dehydrogenase, 1702 +/- 475 U/L; alkaline phosphatase, 358 +/- 197 U/L; amylase, 563 +/- 114 U/L; glutamate dehydrogenase, 7.5 +/- 2.5 U/L; total protein, 30.6 +/- 5.3 g/L; uric acid, 428 +/- 102 micromol/L; and bile acids, 43 +/- 18 micromol/L. These results provide reliable reference values for the clinical interpretation of hematologic and plasma biochemistry results for the species. PMID:25055626

  19. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study

    PubMed Central

    Meachem, Melissa D.; Snead, Elisabeth R.; Kidney, Beverly A.; Jackson, Marion L.; Dickinson, Ryan; Larson, Victoria; Simko, Elemir

    2015-01-01

    While pancreatitis is now recognized as a common ailment in cats, the diagnosis remains challenging due to discordant results and suboptimal sensitivity of ultrasound and specific feline pancreatic lipase (Spec fPL) assay. Pancreatitis also shares similar clinical features with pancreatic carcinoma, a rare but aggressive disease with a grave prognosis. The objective of this pilot study was to compare the plasma proteomes of normal healthy cats (n = 6), cats with pancreatitis (n = 6), and cats with pancreatic carcinoma (n = 6) in order to identify potential new biomarkers of feline pancreatic disease. After plasma protein separation by 2-dimensional gel electrophoresis, protein spots were detected by Coomassie Brilliant Blue G-250 staining and identified by mass spectrometry. Alpha-1-acid glycoprotein (AGP), apolipoprotein-A1 (Apo-A1), and apolipoprotein-A1 precursor (Pre Apo-A1) appeared to be differentially expressed, which suggests the presence of a systemic acute-phase response and alteration of lipid metabolism in cats with pancreatic disease. Future studies involving greater case numbers are needed in order to assess the utility of these proteins as potential biomarkers. More sensitive proteomic techniques may also be helpful in detecting significant but low-abundance proteins. PMID:26130850

  20. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  1. Reference study to characterize plasma and magnetic properties of ultracool atmospheres

    NASA Astrophysics Data System (ADS)

    Rodríguez-Barrera, M. I.; Helling, Ch.; Stark, C. R.; Rice, A. M.

    2015-12-01

    Radio and X-ray emission from brown dwarfs (BDs) suggest that an ionized gas and a magnetic field with a sufficient flux density must be present. We perform a reference study for late M-dwarfs (MD), BDs and giant gas planet to identify which ultracool objects are most susceptible to plasma and magnetic processes. Only thermal ionization is considered. We utilize the DRIFT-PHOENIX model grid where the local atmospheric structure is determined by the global parameters Teff, log (g) and [M/H]. Our results show that it is not unreasonable to expect Hα or radio emission to origin from BD atmospheres as in particular the rarefied upper parts of the atmospheres can be magnetically coupled despite having low degrees of thermal gas ionization. Such ultracool atmospheres could therefore drive auroral emission without the need for a companion's wind or an outgassing moon. The minimum threshold for the magnetic flux density required for electrons and ions to be magnetized is well above typical values of the global magnetic field of a BD and a giant gas planet. Na+, K+ and Ca+ are the dominating electron donors in low-density atmospheres (low log(g), solar metallicity) independent of Teff. Mg+ and Fe+ dominate the thermal ionization in the inner parts of MD atmospheres. Molecules remain unimportant for thermal ionization. Chemical processes (e.g. cloud formation) affecting the most abundant electron donors, Mg and Fe, will have a direct impact on the state of ionization in ultracool atmospheres.

  2. Multielemental analysis in small amounts of environmental reference materials with inductively coupled plasma mass spectrometry.

    PubMed

    Dombovári, J; Becker, J S; Dietze, H J

    2000-07-01

    The lowest possible sample weight for performing multielemental trace element analysis on environmental and biological samples by ICP-MS has been investigated. The certified reference materials Bovine Liver NIST SRM 1577b, Human Hair NCS DC 73347 and Oriental Tobacco Leaves CTA-OTL-1 were applied at sample weights (1, 5, 20 and 50 mg aliquots, n = 10) which were significantly lower than those recommended with most recoveries in the range of 95-110%. Samples were digested in a mixture of nitric acid, hydrogen peroxide and hydrogen fluoride by closed-vessel microwave digestion. Multielemental analysis was performed with an optimized ICP-QMS method. Aqueous standard solutions were applied for external calibration with rhodium as the internal standard element. The detection limits varied between 0.02-0.38 microg/g for Li, Na, Cr, Mn, Ni, Cu, Zn, Sr, Cd, Ba and Pb, and up to 1.92 microg/g for Mg, Al, Ca, Fe and Ni. Digested human plasma samples were spiked with multielemental solution (0.5-10 microg/L) to test the analytical method and the recoveries were 95-105% for most analytes. Our results show that in the case of homogeneous SRMs it is possible to use them in very low amounts (1-5 mg) for method development and quality control. PMID:11227466

  3. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue.

    PubMed

    Ma, Yuhang; Gao, Jing; Yin, Jiajing; Gu, Liping; Liu, Xing; Chen, Su; Huang, Qianfang; Lu, Huifang; Yang, Yuemin; Zhou, Hu; Wang, Yufan; Peng, Yongde

    2016-02-01

    Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM. PMID:26767403

  4. The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame

    NASA Astrophysics Data System (ADS)

    Dimmock, A. P.; Nykyri, K.

    2013-08-01

    The magnetosheath operates as a natural filter between the solar wind and the magnetospheric plasma. As a result of this, the magnetosheath plays a crucial role in the plasma momentum and energy transport from the interplanetary medium into the magnetosphere. Statistical studies of the magnetosheath are difficult due to the dynamic nature of the terrestrial bow shock and the magnetopause. As a result of this, the spatial and temporal dependence of magnetosheath plasma properties under varying solar wind conditions is still not completely understood. We present a study of magnetosheath plasma properties using 5 years of THEMIS and OMNI data to produce statistical maps of fundamental magnetosheath plasma properties. The magnetosheath interplanetary medium reference frame is applied to present data in a normalized reference frame which accounts for both boundary and orbital motion. The statistical maps are compared with the MHD runs from the CCMC-BATS-R-US model which agree favorably. The results are also used to investigate the presence of any magnetosheath plasma parameter asymmetries and their possible causes.

  5. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment.

    PubMed

    Elortza, Felix; Mohammed, Shabaz; Bunkenborg, Jakob; Foster, Leonard J; Nühse, Thomas S; Brodbeck, Urs; Peck, Scott C; Jensen, Ole N

    2006-04-01

    Plasma membrane proteins are displayed through diverse mechanisms, including anchoring in the extracellular leaflet via glycosylphosphatidylinositol (GPI) molecules. GPI-anchored membrane proteins (GPI-APs) are a functionally and structurally diverse protein family, and their importance is well-recognized as they are candidate cell surface biomarker molecules with potential diagnostic and therapeutic applications in molecular medicine. GPI-APs have also attracted interest in plant biotechnology because of their role in root development and cell remodeling. Using a shave-and-conquer concept, we demonstrate that phospholipase D (PLD) treatment of human and plant plasma membrane fractions leads to the release of GPI-anchored proteins that were identified and characterized by capillary liquid chromatography and tandem mass spectrometry. In contrast to phospholipase C, the PLD enzyme is not affected by structural heterogeneity of the GPI moiety, making PLD a generally useful reagent for proteomic investigations of GPI-anchored proteins in a variety of cells, tissues, and organisms. A total of 11 human GPI-APs and 35 Arabidopsis thaliana GPI-APs were identified, representing a significant addition to the number of experimentally detected GPI-APs in both species. Computational GPI-AP sequence analysis tools were investigated for the characterization of the identified GPI-APs, and these demonstrated that there is some discrepancy in their efficiency in classification of GPI-APs and the exact assignment of omega-sites. This study highlights the efficiency of an integrative proteomics approach that combines experimental and computational methods to provide the selectivity, specificity, and sensitivity required for characterization of post-translationally modified membrane proteins. PMID:16602701

  6. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array

    PubMed Central

    Welton, Joanne Louise; Brennan, Paul; Gurney, Mark; Webber, Jason Paul; Spary, Lisa Kate; Carton, David Gil; Falcón-Pérez, Juan Manuel; Walton, Sean Peter; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2016-01-01

    Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen–antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios. PMID:27363484

  7. Proteomics analysis of vesicles isolated from plasma and urine of prostate cancer patients using a multiplex, aptamer-based protein array.

    PubMed

    Welton, Joanne Louise; Brennan, Paul; Gurney, Mark; Webber, Jason Paul; Spary, Lisa Kate; Carton, David Gil; Falcón-Pérez, Juan Manuel; Walton, Sean Peter; Mason, Malcolm David; Tabi, Zsuzsanna; Clayton, Aled

    2016-01-01

    Proteomics analysis of biofluid-derived vesicles holds enormous potential for discovering non-invasive disease markers. Obtaining vesicles of sufficient quality and quantity for profiling studies has, however, been a major problem, as samples are often replete with co-isolated material that can interfere with the identification of genuine low abundance, vesicle components. Here, we used a combination of ultracentrifugation and size-exclusion chromatography to isolate and analyse vesicles of plasma or urine origin. We describe a sample-handling workflow that gives reproducible, quality vesicle isolations sufficient for subsequent protein profiling. Using a semi-quantitative aptamer-based protein array, we identified around 1,000 proteins, of which almost 400 were present at comparable quantities in plasma versus urine vesicles. Significant differences were, however, apparent with elements like HSP90, integrin αVβ5 and Contactin-1 more prevalent in urinary vesicles, while hepatocyte growth factor activator, prostate-specific antigen-antichymotrypsin complex and many others were more abundant in plasma vesicles. This was also applied to a small set of specimens collected from men with metastatic prostate cancer, highlighting several proteins with the potential to indicate treatment refractory disease. The study provides a practical platform for furthering protein profiling of vesicles in prostate cancer, and, hopefully, many other disease scenarios. PMID:27363484

  8. Proteomics-based identification and validation of novel plasma biomarkers phospholipid transfer protein and mannan-binding lectin serine protease-1 in age-related macular degeneration

    PubMed Central

    Kim, Hye-Jung; Ahn, Seong Joon; Woo, Se Joon; Hong, Hye Kyoung; Suh, Eui Jin; Ahn, Jeeyun; Park, Ji Hyun; Ryoo, Na-Kyung; Lee, Ji Eun; Kim, Ki Woong; Park, Kyu Hyung; Lee, Cheolju

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of severe, progressive visual loss among the elderly. There are currently no established serological markers for the diagnosis of AMD. In this study, we carried out a large-scale quantitative proteomics analysis to identify plasma proteins that could serve as potential AMD biomarkers. We found that the plasma levels of phospholipid transfer protein (PLTP) and mannan-binding lectin serine protease (MASP)-1 were increased in AMD patients relative to controls. The receiver operating characteristic curve based on data from an independent set of AMD patients and healthy controls had an area under the curve of 0.936 for PLTP and 0.716 for MASP-1, revealing excellent discrimination between the two groups. A proteogenomic combination model that incorporated PLTP and MASP-1 along with two known risk genotypes of age-related maculopathy susceptibility 2 and complement factor H genes further enhanced discriminatory power. Additionally, PLTP and MASP-1 mRNA and protein expression levels were upregulated in retinal pigment epithelial cells upon exposure to oxidative stress in vitro. These results indicate that PLTP and MASP-1 can serve as plasma biomarkers for the early diagnosis and treatment of AMD, which is critical for preventing AMD-related blindness. PMID:27605007

  9. Proteomics-based identification and validation of novel plasma biomarkers phospholipid transfer protein and mannan-binding lectin serine protease-1 in age-related macular degeneration.

    PubMed

    Kim, Hye-Jung; Ahn, Seong Joon; Woo, Se Joon; Hong, Hye Kyoung; Suh, Eui Jin; Ahn, Jeeyun; Park, Ji Hyun; Ryoo, Na-Kyung; Lee, Ji Eun; Kim, Ki Woong; Park, Kyu Hyung; Lee, Cheolju

    2016-01-01

    Age-related macular degeneration (AMD) is a major cause of severe, progressive visual loss among the elderly. There are currently no established serological markers for the diagnosis of AMD. In this study, we carried out a large-scale quantitative proteomics analysis to identify plasma proteins that could serve as potential AMD biomarkers. We found that the plasma levels of phospholipid transfer protein (PLTP) and mannan-binding lectin serine protease (MASP)-1 were increased in AMD patients relative to controls. The receiver operating characteristic curve based on data from an independent set of AMD patients and healthy controls had an area under the curve of 0.936 for PLTP and 0.716 for MASP-1, revealing excellent discrimination between the two groups. A proteogenomic combination model that incorporated PLTP and MASP-1 along with two known risk genotypes of age-related maculopathy susceptibility 2 and complement factor H genes further enhanced discriminatory power. Additionally, PLTP and MASP-1 mRNA and protein expression levels were upregulated in retinal pigment epithelial cells upon exposure to oxidative stress in vitro. These results indicate that PLTP and MASP-1 can serve as plasma biomarkers for the early diagnosis and treatment of AMD, which is critical for preventing AMD-related blindness. PMID:27605007

  10. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas.

    PubMed

    Flint, Mark; Matthews, Beren J; Limpus, Colin J; Mills, Paul C

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65-97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11-50%)], pre-albumin [two of five, 40% (95% CI 5-85%)], albumin [13 of 22, 59% (95% CI 36-79%)], total albumin [13 of 22, 59% (95% CI 36-79%)], α- [10 of 22, 45% (95% CI 24-68%)], β- [two of 10, 20% (95% CI 3-56%)], γ- [one of 10, 10% (95% CI 0.3-45%)] and β-γ-globulin [one of 12, 8% (95% CI 0.2-38%)] and total globulin [five of 22, 23% (8-45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle. PMID:27293722

  11. Establishment of reference intervals for plasma protein electrophoresis in Indo-Pacific green sea turtles, Chelonia mydas

    PubMed Central

    Flint, Mark; Matthews, Beren J.; Limpus, Colin J.; Mills, Paul C.

    2015-01-01

    Biochemical and haematological parameters are increasingly used to diagnose disease in green sea turtles. Specific clinical pathology tools, such as plasma protein electrophoresis analysis, are now being used more frequently to improve our ability to diagnose disease in the live animal. Plasma protein reference intervals were calculated from 55 clinically healthy green sea turtles using pulsed field electrophoresis to determine pre-albumin, albumin, α-, β- and γ-globulin concentrations. The estimated reference intervals were then compared with data profiles from clinically unhealthy turtles admitted to a local wildlife hospital to assess the validity of the derived intervals and identify the clinically useful plasma protein fractions. Eighty-six per cent {19 of 22 [95% confidence interval (CI) 65–97]} of clinically unhealthy turtles had values outside the derived reference intervals, including the following: total protein [six of 22 turtles or 27% (95% CI 11–50%)], pre-albumin [two of five, 40% (95% CI 5–85%)], albumin [13 of 22, 59% (95% CI 36–79%)], total albumin [13 of 22, 59% (95% CI 36–79%)], α- [10 of 22, 45% (95% CI 24–68%)], β- [two of 10, 20% (95% CI 3–56%)], γ- [one of 10, 10% (95% CI 0.3–45%)] and β–γ-globulin [one of 12, 8% (95% CI 0.2–38%)] and total globulin [five of 22, 23% (8–45%)]. Plasma protein electrophoresis shows promise as an accurate adjunct tool to identify a disease state in marine turtles. This study presents the first reference interval for plasma protein electrophoresis in the Indo-Pacific green sea turtle.

  12. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach.

    PubMed

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  13. Identification of phosphorylated MYL12B as a potential plasma biomarker for septic acute kidney injury using a quantitative proteomic approach

    PubMed Central

    Wu, Fan; Dong, Xiu-Juan; Li, Yan-Yan; Zhao, Yan; Xu, Qiu-Lin; Su, Lei

    2015-01-01

    Acute kidney injury (AKI) is a common and increasingly encountered complication in hospitalized patients with critical illness in intensive care units (ICU). According to the etiology, Sepsis-induced AKI (SAKI) is a leading contributor to AKI and significantly has very poor prognosis, which might be related to the late detection when the elevation of BUN and serum creatinine (SCr) is used. Many genes are up-regulated in the damaged kidney with the corresponding protein products appearing in plasma and urine. Some of these are candidate biomarkers for more timely diagnosis of SAKI. Therefore, extensive research efforts over this past decade have been directed at the discovery and validation of novel SAKI biomarkers to detect injury prior to changes in kidney function, a number of serum and urinary proteins, including NGAL, KIM-1, cystatin-C, IL-18, and L-FABP, have been identified for predicting SAKI before a rise in BUN and serum creatinine in several experimental and clinical trainings. Unfortunately, an ideal biomarker of SAKI with highly sensitivity and specificity has not been identified yet. Recent progresses in quantitative proteomics have offered opportunities to discover biomarkers for SAKI. In the present study, kidney tissue samples from SAKI mice were analyzed by two-dimensional differential gel electrophoresis (2D-DIGE), and 4 up-regulated proteins, which were actin (ACTB), myosin regulatory light chain 12B (MYL12B), myosin regulatory light polypeptide 9 (MYL9), and myosin regulatory light chain 12A (MYL12A) were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF MS). Among all the varied proteins, MYL12B was validated by western blot. Interestingly, there was no change between the SAKI and control kidney tissues, however, phosphorylated MYL12B was detected to be consistent with the proteomics data. Furthermore, phosphorylated MYL12B was found similarly to be increased in SAKI plasma

  14. Comparative Studies of the Proteome, Glycoproteome, and N-Glycome of Clear Cell Renal Cell Carcinoma Plasma before and after Curative Nephrectomy

    PubMed Central

    2015-01-01

    Clear cell renal cell carcinoma is the most prevalent of all reported kidney cancer cases, and currently there are no markers for early diagnosis. This has stimulated great research interest recently because early detection of the disease can significantly improve the low survival rate. Combining the proteome, glycoproteome, and N-glycome data from clear cell renal cell carcinoma plasma has the potential of identifying candidate markers for early diagnosis and prognosis and/or to monitor disease recurrence. Here, we report on the utilization of a multi-dimensional fractionation approach (12P-M-LAC) and LC–MS/MS to comprehensively investigate clear cell renal cell carcinoma plasma collected before (disease) and after (non-disease) curative nephrectomy (n = 40). Proteins detected in the subproteomes were investigated via label-free quantification. Protein abundance analysis revealed a number of low-level proteins with significant differential expression levels in disease samples, including HSPG2, CD146, ECM1, SELL, SYNE1, and VCAM1. Importantly, we observed a strong correlation between differentially expressed proteins and clinical status of the patient. Investigation of the glycoproteome returned 13 candidate glycoproteins with significant differential M-LAC column binding. Qualitative analysis indicated that 62% of selected candidate glycoproteins showed higher levels (upregulation) in M-LAC bound fraction of disease samples. This observation was further confirmed by released N-glycans data in which 53% of identified N-glycans were present at different levels in plasma in the disease vs non-disease samples. This striking result demonstrates the potential for significant protein glycosylation alterations in clear cell renal cell carcinoma cancer plasma. With future validation in a larger cohort, information derived from this study may lead to the development of clear cell renal cell carcinoma candidate biomarkers. PMID:25184692

  15. Molecular Biologist's Guide to Proteomics

    PubMed Central

    Graves, Paul R.; Haystead, Timothy A. J.

    2002-01-01

    The emergence of proteomics, the large-scale analysis of proteins, has been inspired by the realization that the final product of a gene is inherently more complex and closer to function than the gene itself. Shortfalls in the ability of bioinformatics to predict both the existence and function of genes have also illustrated the need for protein analysis. Moreover, only through the study of proteins can posttranslational modifications be determined, which can profoundly affect protein function. Proteomics has been enabled by the accumulation of both DNA and protein sequence databases, improvements in mass spectrometry, and the development of computer algorithms for database searching. In this review, we describe why proteomics is important, how it is conducted, and how it can be applied to complement other existing technologies. We conclude that currently, the most practical application of proteomics is the analysis of target proteins as opposed to entire proteomes. This type of proteomics, referred to as functional proteomics, is always driven by a specific biological question. In this way, protein identification and characterization has a meaningful outcome. We discuss some of the advantages of a functional proteomics approach and provide examples of how different methodologies can be utilized to address a wide variety of biological problems. PMID:11875127

  16. Two-dimensional self-consistent radio frequency plasma simulations relevant to the Gaseous Electronics Conference RF Reference Cell

    SciTech Connect

    Lymberopoulos, D.P.; Economou, D.J.

    1995-07-01

    Over the pst few years multidimensional self-consistent plasma simulations including complex chemistry have been developed which are promising tools for furthering the understanding of reactive gas plasmas and for reactor design and optimization. These simulations must be benchmarked against experimental data obtained in well-characterized systems such as the Gaseous Electronics Conference (GEC) reference cell. Two-dimensional simulations relevant to the GEC Cell are reviewed in this paper with emphasis on fluid simulations. Important features observed experimentally, such as off-axis maxima in the charge density and hot spots of metastable species density near the electrode edges in capacitively-coupled GEC cells, have been captured by these simulations. Glow discharge plasmas are used extensively in the processing of electronic materials especially for etching and deposition of thin films.

  17. Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for Improved LC-MS/MS Coverage of the Plasma Proteome

    PubMed Central

    Zhou, Jian-Ying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.; Qian, Wei-Jun

    2009-01-01

    We report on a mouse specific SuperMix immunoaffinity separation system for separating low abundance proteins from high and moderate abundance proteins in mouse plasma. When applied in tandem with a mouse IgY7 column that removes the seven most abundant proteins in plasma, the SuperMix column captures more than 100 additional moderate abundance proteins, thus allowing significant enrichment of low abundance proteins in the flow-through fraction. A side-by-side comparison of results obtained from 2D-LC-MS/MS analyses of flow-through samples from IgY7 and SuperMix columns revealed a nearly two-fold improvement in the overall proteome coverage. Detection of low abundance proteins was also enhanced, as evidenced by a more than two-fold increase in the coverage of cytokines, growth factors, and other low abundance proteins. Moreover, the tandem separations are automated, reproducible, and allow effective identification of protein abundance differences from LC-MS/MS analyses. Considering the overall reproducibility and increased sensitivity using the IgY7-SuperMix separation system, we anticipate broad applications of this strategy for biomarker discovery using mouse models. PMID:19722698

  18. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis.

    PubMed

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-01-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency. PMID:27600335

  19. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis

    PubMed Central

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-01-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in apolipoproteins were not strictly associated with changes in plasma lipid levels. A lack of correlation between apoB and LDL concentration and an inverse relationship of some proteins with the HDL level were revealed. An increased level of apolipoprotein AIV, adiponectin, or apolipoprotein C, despite their anti-atherogenic properties, was not associated with a decrease in cardiovascular event risk in CKD patients. The presence of the distinctive pattern of apolipoproteins demonstrated in this study may suggest that lipid abnormalities in CKD are characterized by more qualitative abnormalities and may be related to HDL function rather than HDL deficiency. PMID:27600335

  20. Gene-centric view on the human proteome project: the example of the Russian roadmap for chromosome 18.

    PubMed

    Archakov, Alexander; Aseev, Alexander; Bykov, Victor; Grigoriev, Anatoly; Govorun, Vadim; Ivanov, Vadim; Khlunov, Alexander; Lisitsa, Andrey; Mazurenko, Sergey; Makarov, Alexander A; Ponomarenko, Elena; Sagdeev, Renad; Skryabin, Konstantin

    2011-05-01

    During the 2010 Human Proteome Organization Congress in Sydney, a gene-centric approach emerged as a feasible and tractable scaffold for assemblage of the Human Proteome Project. Bringing the gene-centric principle into practice, a roadmap for the 18th chromosome was drafted, postulating the limited sensitivity of analytical methods, as a serious bottleneck in proteomics. In the context of the sensitivity problem, we refer to the "copy number of protein molecules" as a measurable assessment of protein abundance. The roadmap is focused on the development of technology to attain the low- and ultralow -"copied" portion of the proteome. Roadmap merges the genomic, transcriptomic and proteomic levels to identify the majority of 285 proteins from 18th chromosome - master proteins. Master protein is the primary translation of the coding sequence and resembling at least one of the known isoforms, coded by the gene. The executive phase of the roadmap includes the expansion of the study of the master proteins with alternate splicing, single amino acid polymorphisms (SAPs) and post-translational modifications. In implementing the roadmap, Russian scientists are expecting to establish proteomic technologies for integrating MS and atomic force microscopy (AFM). These technologies are anticipated to unlock the value of new biomarkers at a detection limit of 10(-18) M, i.e. 1 protein copy per 1 μL of plasma. The roadmap plan is posted at www.proteome.ru/en/roadmap/ and a forum for discussion of the document is supported. PMID:21563312

  1. Compartment resolved reference proteome map from highly purified naïve, activated, effector, and memory CD8⁺ murine immune cells.

    PubMed

    Zanker, Damien; Otto, Wolfgang; Chen, Weisan; von Bergen, Martin; Tomm, Janina M

    2015-06-01

    Differentiation of CD8(+) T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from the cell surface to the nucleus. In this study, we investigated the proteome of four cytotoxic T-cell subtypes; naïve, recently activated effector, effector, and memory cells. Cells were fractionated into membrane, cytosol, soluble nuclear, chromatin-bound, and cytoskeletal compartments. Following LC-MS/MS analysis, identified peptides were analyzed via MaxQuant. Compartment fractionation and gel-LC-MS separation resulted in 2399 proteins identified in total. Comparison between the different subsets resulted in 146 significantly regulated proteins for naïve and effector cells, followed by 116 for activated, and 55 for memory cells. Besides Granzyme B signaling (for activated and/ or effector cells vs. naïve cells), the most prominent changes occurred in the TCA cycle and aspartate degradation. These changes suggest that correct balancing of metabolism is key for differentiation processes. All MS data have been deposited in the ProteomeXchange with identifier PXD001065 (http://proteomecentral.proteomexchange.org/dataset/PXD001065). PMID:25643623

  2. Clinical studies on plasma fibronectin and factor XIII; with special reference to hyperlipoproteinemia.

    PubMed

    Cucuianu, M; Rus, H G; Cristea, A; Niculescu, F; Bedeleanu, D; Poruţiu, D; Roman, S

    1985-04-30

    When compared to age-matched normal weight normolipidemic control subjects, plasma factor XIII, plasma fibronectin and serum cholinesterase levels were found to be markedly decreased in patients with decompensated cirrhosis of the liver, not significantly changed in hyperlipoproteinemia type IIa (heterozygous subjects) and increased in hypertriglyceridemic subjects (type IIb and IV) as well as in hyperlipidemic nephrotic patients. A possible accelerated hepatic synthesis of certain plasma proteins including factor XIII and fibronectin in patients with the nephrotic syndrome as well as in endogenous hypertriglyceridemia is envisaged. It is also considered that mural thrombi, richer in factor XIII and fibronectin, would be more resistant to fibrinolysis and more readily attached to subendothelial structures. PMID:3922652

  3. Hematologic and plasma biochemical reference values in Indian peafowl (Pavo cristatus).

    PubMed

    Samour, Jaime; Naldo, Jesus; Rahman, Habeeb; Sakkir, Mohammed

    2010-06-01

    Blood samples were collected from captive, adult, clinically normal Indian peafowl (Pavo cristatus) for hematologic and plasma biochemical analyses. Hematologic parameters investigated were total red blood cell count, hemoglobin, packed cell volume, fibrinogen, mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration, total white blood cell count, differential white blood cell count, and thrombocyte count. Plasma biochemical parameters investigated were alanine aminotransferase, alkaline phosphatase, amylase, aspartate aminotransferase, bile acids, total bilirubin, blood urea nitrogen, calcium, cholesterol, creatinine, creatine kinase, gamma glutamyltransferase, lactate dehydrogenase, glucose, iron, phosphorus, and uric acid, as well as plasma protein electrophoresis. Results were compared with values from studies done in houbara bustards (Chlamydotis undulata), kori bustards (Ardeotis kori), stone curlews (Burhinus oedicnemus), and taxonomically related species, including ring-necked pheasants (Phasianus colchicus), red-legged partridges (Alectoris rufa), Kashmir native fowl (Kashmirfavorella), and Bangladesh native, Fayoumi, and Assil fowl (Gallus domesticus). PMID:20806654

  4. Mouse-Specific Tandem IgY7-SuperMix Immunoaffinity Separations for Improved LC-MS/MS Coverage of the Plasma Proteome

    SciTech Connect

    Zhou, Jianying; Petritis, Brianne O.; Petritis, Konstantinos; Norbeck, Angela D.; Weitz, Karl K.; Moore, Ronald J.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.; Qian, Weijun

    2009-09-01

    We report on a customized mouse specific SuperMix immunoaffinity column and strategy for separating low abundance proteins from high and moderate abundance proteins in mouse plasma. When applied in tandem with a mouse IgY7 column that removes the seven most abundant proteins in blood, the SuperMix column captures >100 additional moderate abundance proteins, thus allowing significant enrichment of low abundance proteins in the flow-through fraction. A side-by-side comparison of results obtained from 2D-LC-MS/MS analyses of flow-through samples from IgY7 and SuperMix columns revealed a nearly two-fold improvement in the overall proteome coverage. Detection of low abundance proteins was also enhanced, as evidenced by a more than two-fold increase in the coverage of cytokines, growth factors, and other low abundance proteins. Moreover, the tandem separations are automated, reproducible, and allow effective identification of protein abundance differences from LC-MS/MS analyses. Considering the overall reproducibility and increased sensitivity using the IgY7-SuperMix separation system, we anticipate broad applications of this strategy for biomarker discovery using mouse models.

  5. Proteomic profiling of naïve multiple myeloma patient plasma cells identifies pathways associated with favourable response to bortezomib-based treatment regimens.

    PubMed

    Dytfeld, Dominik; Rosebeck, Shaun; Kandarpa, Malathi; Mayampurath, Anoop; Mellacheruvu, Dattatreya; Alonge, Mattina M; Ngoka, Lambert; Jasielec, Jagoda; Richardson, Paul G; Volchenboum, Samuel; Nesvizhskii, Alexey I; Sreekumar, Arun; Jakubowiak, Andrzej J

    2015-07-01

    Toward our goal of personalized medicine, we comprehensively profiled pre-treatment malignant plasma cells from multiple myeloma patients and prospectively identified pathways predictive of favourable response to bortezomib-based treatment regimens. We utilized two complementary quantitative proteomics platforms to identify differentially-regulated proteins indicative of at least a very good partial response (VGPR) or complete response/near complete response (CR/nCR) to two treatment regimens containing either bortezomib, liposomal doxorubicin and dexamethasone (VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our results suggest enrichment of 'universal response' pathways that are common to both treatment regimens and are probable predictors of favourable response to bortezomib, including a subset of endoplasmic reticulum stress pathways. The data also implicate pathways unique to each regimen that may predict sensitivity to DNA-damaging agents, such as mitochondrial dysfunction, and immunomodulatory drugs, which was associated with acute phase response signalling. Overall, we identified patterns of tumour characteristics that may predict response to bortezomib-based regimens and their components. These results provide a rationale for further evaluation of the protein profiles identified herein for targeted selection of anti-myeloma therapy to increase the likelihood of improved treatment outcome of patients with newly-diagnosed myeloma. PMID:25824111

  6. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots.

    PubMed

    Gutierrez-Carbonell, Elain; Takahashi, Daisuke; Lüthje, Sabine; González-Reyes, José Antonio; Mongrand, Sébastien; Contreras-Moreira, Bruno; Abadía, Anunciación; Uemura, Matsuo; Abadía, Javier; López-Millán, Ana Flor

    2016-08-01

    In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency. PMID:27321140

  7. Changes in the Plasma Proteome of Manduca sexta Larvae in Relation to the Transcriptome Variations after an Immune Challenge: Evidence for High Molecular Weight Immune Complex Formation.

    PubMed

    He, Yan; Cao, Xiaolong; Zhang, Shuguang; Rogers, Janet; Hartson, Steve; Jiang, Haobo

    2016-04-01

    Manduca sextais a lepidopteran model widely used to study insect physiological processes, including innate immunity. In this study, we explored the proteomes of cell-free hemolymph from larvae injected with a sterile buffer (C for control) or a mixture of bacteria (I for induced). Of the 654 proteins identified, 70 showed 1.67 to >200-fold abundance increases after the immune challenge; 51 decreased to 0-60% of the control levels. While there was no strong parallel between plasma protein levels and their transcript levels in hemocytes or fat body, the mRNA level changes (i.e.I/C ratios of normalized read numbers) in the tissues concurred with their protein level changes (i.e.I/C ratios of normalized spectral counts) with correlation coefficients of 0.44 and 0.57, respectively. Better correlations support that fat body contributes a more significant portion of the plasma proteins involved in various aspects of innate immunity. Consistently, ratios of mRNA and protein levels were better correlated for immunity-related proteins than unrelated ones. There is a set of proteins whose apparent molecular masses differ considerably from the calculatedMr's, suggestive of posttranslational modifications. In addition, some lowMrproteins were detected in the range of 80 to >300 kDa on a reducing SDS-polyacrylamide gel, indicating the existence of highMrcovalent complexes. We identified 30 serine proteases and their homologs, 11 of which are known members of an extracellular immune signaling network. Along with our quantitative transcriptome data, the protein identification, inducibility, and association provide leads toward a focused exploration of humoral immunity inM. sexta. PMID:26811355

  8. EXPLORATORY PLASMA BIOCHEMISTRY REFERENCE INTERVALS FOR URAL OWLS (STRIX URALENSIS, PALLAS 1771) FROM THE AUSTRIAN REINTRODUCTION PROJECT.

    PubMed

    Scope, Alexandra; Schwendenwein, Ilse; Stanclova, Gabriela; Vobornik, Angela; Zink, Richard

    2016-06-01

    The Ural owl (Strix uralensis) is the biggest forest-living owl in Austria; however, it became extinct in Austria through poaching and habitat loss more than half a century ago. The birds examined in the present study were breeding pairs from the reintroduction project with the aim of determining exploratory plasma biochemistry reference intervals in Ural owls and evaluating the amount of biological variation between seasons, sexes, and ages. A total of 45 birds were sampled, including 13 adult males, 14 adult females, and 18 juvenile birds. Remarkably, almost all of the analytes showed significant differences between the subgroups, primarily between seasons, followed by age and sex. Only creatinkinase, glucose, lactatdehydrogenase, and triglycerides did not show any significant variations. Despite partitioning of reference values into subgroups according to biological variation diminishing the number of reference individuals in the respective groups, the resulting smaller reference intervals will improve medical assessment. The results of the present study once again demonstrate that significant seasonal fluctuations must be expected and considered in the interpretation. It can be assumed that these differences are probably even greater in free-range birds with considerable changes in food quantity and quality during and between years. PMID:27468020

  9. The GEC Reference Cell as a Benchmark for Understanding Microelectronic Processing Plasmas

    NASA Astrophysics Data System (ADS)

    Brake, M. L.

    1998-11-01

    The microelectronics manufacturing industry has used plasmas to etch and deposit materials for many years. Comparisons between experiments and models used to understand these plasmas vary, as does the behavior of seemingly identical commercial reactors. To address this problem, a collaborative experimental effort was initiated at the 1988 Gaseous Electronic Conference (GEC). An ad hoc committee was formed to develop a preliminary design of an experimental system that would be cost effective, easy to duplicate and accommodate anticipated diagnostics. This initial design runs in a capacitively coupled mode at 13.56 MHz. Since then many reactors have been modified by replacing the top electrode with a coil so that the reactor can be run in an inductively coupled plasma mode, (ICP). Industry is moving towards the ICP systems because they provide a more uniform, higher density plasma compared to the capacitive systems. At U of M, the GEC reactor has been used to study the etching of silicon based materials. Initial experiments included current and voltage measurements to determine deposited power. These power measurements matched that of GEC reactors at other locations. The GEC reactor was then benchmarked against a SEMI Group 1000 TP/CC RIE. When the plate spacing and power density were matched, the two systems exhibited similar etching and relative F concentration trends. An optical sensor was developed to collect parallel rays from a large port on the U of M GEC reactor and used an Abel inversion technique to obtain the spatial profile of the optical emission. During these studies, it was discovered that the emission and etch pattern followed similar spatial trends. In order for this sensor to be used on commercial systems, which have very small windows, major modifications to the sensor geometry had to be made. In the new sensor system, the field of view rotates about one point outside a small viewport. The radial emission profiles of the discharge are now obtained

  10. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  11. Plant proteomics methods and protocols.

    PubMed

    Jorrin-Novo, Jesus V

    2014-01-01

    In this first, introductory chapter, it is intended to summarize from a methodological point of view the state of the art in plant proteomics, focusing on mass spectrometry-based strategies. Thus, this chapter is mainly directed at beginners or at those trying to get into the field, rather than at those with real experience or a long trajectory in plant proteomics research. The different alternative workflows, methods, techniques, and protocols from the experimental design to the data analysis will be briefly commented, with cross references to previous monographs and reviews, as well as to the rest of the book chapters. The difficulty of working with proteins, together with the power, limitations, and challenges of the approach will also be briefly discussed.Proteins, as molecular entities, and the cell proteome, as a whole, are much more complex than what we thought in the past and can be studied in a single experiment. Because of that, fractionation and complementary strategies are required for its study. The MS analysis of complex samples may result in up to 100,000-peptide spectra that cannot be easily analyzed with standard procedures. Therefore, proteomics, more than other -omics, needs a dry lab, time, and an effort in data mining.As main conclusion, it can be stated that proteomics is in its beginnings. It is starting to make important contributions to a proper gene annotation, identification, and characterization of gene products or protein species and to the knowledge of living organisms, having also an enormous application potential to translational research. However, and despite its great potential, and as in any other experimental approach, it is far from being a Pandora's Box. In the case of plant research, the full potential of proteomics is quite far from being totally exploited, and second-, third-, and fourth-generation proteomics techniques are still of very limited use. Most of the plant proteomics papers so far published belong to the

  12. Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease

    PubMed Central

    Muenchhoff, Julia; Poljak, Anne; Thalamuthu, Anbupalam; Gupta, Veer B.; Chatterjee, Pratishtha; Raftery, Mark; Masters, Colin L.; Morris, John C.; Bateman, Randall J.; Fagan, Anne M.; Martins, Ralph N.; Sachdev, Perminder S.

    2016-01-01

    The autosomal dominant form of Alzheimer’s disease (ADAD) is far less prevalent than late onset Alzheimer’s disease (LOAD), but enables well-informed prospective studies, since symptom onset is near certain and age of onset is predictable. Our aim was to discover plasma proteins associated with early AD pathology by investigating plasma protein changes at the asymptomatic and symptomatic stages of ADAD. Eighty-one proteins were compared across asymptomatic mutation carriers (aMC, n = 15), symptomatic mutation carriers (sMC, n = 8) and related noncarriers (NC, n = 12). Proteins were also tested for associations with cognitive measures, brain amyloid deposition and glucose metabolism. Fewer changes were observed at the asymptomatic than symptomatic stage with seven and 16 proteins altered significantly in aMC and sMC, respectively. This included complement components C3, C5, C6, apolipoproteins A-I, A-IV, C-I and M, histidine-rich glycoprotein, heparin cofactor II and attractin, which are involved in inflammation, lipid metabolism and vascular health. Proteins involved in lipid metabolism differed only at the symptomatic stage, whereas changes in inflammation and vascular health were evident at asymptomatic and symptomatic stages. Due to increasing evidence supporting the usefulness of ADAD as a model for LOAD, these proteins warrant further investigation into their potential association with early stages of LOAD. PMID:27381087

  13. A proteomic study reveals novel insights into the diversity of aquaporin forms expressed in the plasma membrane of plant roots.

    PubMed Central

    Santoni, Véronique; Vinh, Joëlle; Pflieger, Delphine; Sommerer, Nicolas; Maurel, Christophe

    2003-01-01

    Aquaporins are channel proteins that facilitate the diffusion of water across cell membranes. The genome of Arabidopsis thaliana encodes 35 full-length aquaporin homologues. Thirteen of them belong to the plasma membrane intrinsic protein (PIP) subfamily and predominantly sit at the plasma membrane (PM). In the present work we combine separations of membrane proteins (by one- and two-dimensional gel electrophoresis) with identification by MS (matrix-assisted laser-desorption ionization-time-of-flight and electrospray-ionization tandem MS) to take an inventory of aquaporin isoforms expressed in the PM of Arabidopsis thaliana roots. Our analysis provides direct evidence for the expression of five PIPs (PIP1;1, PIP1;5, PIP2;1, PIP2;2 and PIP2;7) in the root PM and suggests the presence of at least three other PIP isoforms. In addition, we show that the same PIP isoform can be present under several forms with distinct isoelectric points. More specifically, we identify phosphorylated aquaporins in the PIP1 and PIP2 subgroups and suggest the existence of other post-translational modifications. Their identification should provide clues to reveal novel molecular mechanisms for aquaporin regulation. PMID:12678916

  14. Urinary proteomics in cardiovascular disease: Achievements, limits and hopes.

    PubMed

    Delles, Christian; Diez, Javier; Dominiczak, Anna F

    2011-06-01

    Cardiovascular disease (CVD) is the major cause of mortality and morbidity worldwide. Diagnosis of CVD and risk stratification of patients with CVD remains challenging despite the availability of a wealth of non-invasive and invasive tests. Clinical proteomics analyses a large number of peptides and proteins in biofluids. For clinical applications, the urinary proteome appears particularly attractive due to the relative low complexity compared with the plasma proteome and the noninvasive collection of urine. In this article, we review the results from pilot studies into urinary proteomics of coronary artery disease and discuss the potential of urinary proteomics in the context of pathogenesis of CVD. PMID:21523916

  15. What is Proteomics? - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The term "proteome" refers to the entire complement of proteins, including the modifications made to a particular set of proteins, produced by an organism or a cellular system. This will vary with time and distinct requirements, such as stresses, that a cell or organism undergoes.

  16. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea

    PubMed Central

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-01-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca2+ concentration ([Ca2+]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca2+ channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca2+ signalling was proposed. PMID:25956883

  17. Comparative proteomics of root plasma membrane proteins reveals the involvement of calcium signalling in NaCl-facilitated nitrate uptake in Salicornia europaea.

    PubMed

    Nie, Lingling; Feng, Juanjuan; Fan, Pengxiang; Chen, Xianyang; Guo, Jie; Lv, Sulian; Bao, Hexigeduleng; Jia, Weitao; Tai, Fang; Jiang, Ping; Wang, Jinhui; Li, Yinxin

    2015-08-01

    Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca(2+) channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca(2+) signalling was proposed. PMID:25956883

  18. The proteome of schizophrenia

    PubMed Central

    Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-01-01

    On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia. PMID:27336025

  19. Proteomics beyond large-scale protein expression analysis.

    PubMed

    Boersema, Paul J; Kahraman, Abdullah; Picotti, Paola

    2015-08-01

    Proteomics is commonly referred to as the application of high-throughput approaches to protein expression analysis. Typical results of proteomics studies are inventories of the protein content of a sample or lists of differentially expressed proteins across multiple conditions. Recently, however, an explosion of novel proteomics workflows has significantly expanded proteomics beyond the analysis of protein expression. Targeted proteomics methods, for example, enable the analysis of the fine dynamics of protein systems, such as a specific pathway or a network of interacting proteins, and the determination of protein complex stoichiometries. Structural proteomics tools allow extraction of restraints for structural modeling and identification of structurally altered proteins on a proteome-wide scale. Other variations of the proteomic workflow can be applied to the large-scale analysis of protein activity, location, degradation and turnover. These exciting developments provide new tools for multi-level 'omics' analysis and for the modeling of biological networks in the context of systems biology studies. PMID:25636126

  20. Determination of organomercury in biological reference materials by inductively coupled plasma mass spectrometry using flow injection analysis

    SciTech Connect

    Beauchemin, D.; Siu, K.W.; Berman, S.S.

    1988-12-01

    Inductively coupled plasma mass spectrometry was used for the determination of organomercury in two marine biological standard reference materials for trace metals (dogfish muscle tissue DORM-1 and lobster hepatopancreas TORT-1). In most parts of this study, the organomercury was extracted as the chloride from the material with toluene and back extracted into an aqueous medium of cysteine acetate. Since the final extracts contained more than 4% sodium, isotope dilution and flow injection analysis were used to respectively counter the effect of concomitant elements and avoid clogging the interface. Comparison of results with gas chromatography shows that the only significant organomercury is methyl-mercury. At least 93% of mercury in DORM-1 and 39% of mercury in TORT-1 exist as methylmercury.

  1. Global proteomic analysis of plasma from mice infected with Plasmodium berghei ANKA using two dimensional gel electrophoresis and matrix assisted laser desorption ionization-time of flight mass spectrometry

    PubMed Central

    2011-01-01

    Background A global proteomic strategy was used to identify proteins, which are differentially expressed in the murine model of severe malaria in the hope of facilitating future development of novel diagnostic, disease monitoring and treatment strategies. Methods Mice (4-week-old CD1 male mice) were infected with Plasmodium berghei ANKA strain, and infection allowed to establish until a parasitaemia of 30% was attained. Total plasma and albumin depleted plasma samples from infected and control (non-infected) mice were separated by two-dimensional gel electrophoresis (2-DE). After staining, the gels were imaged and differential protein expression patterns were interrogated using image analysis software. Spots of interest were then digested using trypsin and the proteins identified using matrix-assisted laser desorption and ionization-time of flight (MALDI-TOF) mass spectrometry (MS) and peptide mass fingerprinting software. Results Master gels of control and infected mice, and the corresponding albumin depleted fractions exhibited distinctly different 2D patterns comparing control and infected plasma, respectively. A wide range of proteins demonstrated altered expression including; acute inflammatory proteins, transporters, binding proteins, protease inhibitors, enzymes, cytokines, hormones, and channel/receptor-derived proteins. Conclusions Malaria-infection in mice results in a wide perturbation of the host serum proteome involving a range of proteins and functions. Of particular interest is the increased secretion of anti-inflammatory and anti apoptotic proteins. PMID:21791037

  2. DEVELOPMENT OF REFERENCE RANGES FOR PLASMA TOTAL CHOLINESTERASE AND BRAIN ACETYLCHOLINESTERASE ACTIVITY IN FREE-RANGING CARNABY'S BLACK-COCKATOOS (CALYPTORHYNCHUS LATIROSTRIS).

    PubMed

    Vaughan-Higgins, Rebecca; Vitali, Simone; Reiss, Andrea; Besier, Shane; Hollingsworth, Tom; Smith, Gerard

    2016-07-01

    Published avian reference ranges for plasma cholinesterase (ChE) and brain acetylcholinesterase (AChE) are numerous. However, a consistently reported recommendation is the need for species- and laboratory-specific reference ranges because of variables, including assay methods, sample storage conditions, season, and bird sex, age, and physiologic status. We developed normal reference ranges for brain AChE and plasma total ChE (tChE) activity for Carnaby's Black-Cockatoos (Calyptorhynchus latirostris) using a standardized protocol (substrate acetylthiocholine at 25 C). We report reference ranges for brain AChE (19-41 μmol/min per g, mean 21±6.38) and plasma tChE (0.41-0.53 μmol/min per mL, mean 0.47±0.11) (n=15). This information will be of use in the ongoing field investigation of a paresis-paralysis syndrome in the endangered Carnaby's Black-Cockatoos, suspected to be associated with exposure to anticholinesterase compounds and add to the paucity of reference ranges for plasma tChE and brain AChE in Australian psittacine birds. PMID:27195690

  3. Age- and sex-related reference ranges for eight plasma constituents derived from randomly selected adults in a Scottish new town.

    PubMed Central

    Gardner, M D; Scott, R

    1980-01-01

    The results of analysis of blood specimens from randomly selected adults aged 19-88 years in the new town of Cumbernauld were used to establish age- and sex-related reference ranges by the centile method (central 95%) for plasma calcium, phosphate, total protein, albumin, globulins, urea, creatinine, and urate. The possible existence of a subpopulation with a higher reference range for urea is mooted. PMID:7400337

  4. Accounting for population variation in targeted proteomics

    SciTech Connect

    Fujimoto, Grant M.; Monroe, Matthew E.; Rodriguez, Larissa M.; Wu, Chaochao; MacLean, Brendan; Smith, Richard D.; MacCoss, Michael; Payne, Samuel H.

    2014-01-03

    Individual proteomes typically differ from the reference human proteome at ~10,000 single amino acid variants. When viewed at the population scale, this individual variation results in a wide variety of protein sequences. In targeted proteomics experiments, such variability would confound accurate protein quantification. To facilitate researchers in identifying target peptides with high variability within the human population we have created the Population Variation plug-in for Skyline, which provides easy access to the polymorphisms stored in dbSNP. Given a set of peptides, the tool reports minor allele frequency for common polymorphisms. We highlight the importance of considering genetic variation by applying the tool to public datasets.

  5. Proteomic Investigations into Hemodialysis Therapy

    PubMed Central

    Bonomini, Mario; Sirolli, Vittorio; Pieroni, Luisa; Felaco, Paolo; Amoroso, Luigi; Urbani, Andrea

    2015-01-01

    The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. PMID:26690416

  6. Pressurized Pepsin Digestion in Proteomics: An Automatable Alternative to Trypsin for Integrated Top-down Bottom-up Proteomics

    SciTech Connect

    Lopez-Ferrer, Daniel; Petritis, Konstantinos; Robinson, Errol W.; Hixson, Kim K.; Tian, Zhixin; Lee, Jung Hwa; Lee, Sang-Won; Tolic, Nikola; Weitz, Karl K.; Belov, Mikhail E.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2011-02-01

    Integrated top-down bottom-up proteomics combined with online digestion has great potential to improve the characterization of protein isoforms in biological systems and is amendable to highthroughput proteomics experiments. Bottom-up proteomics ultimately provides the peptide sequences derived from the tandem MS analyses of peptides after the proteome has been digested. Top-down proteomics conversely entails the MS analyses of intact proteins for more effective characterization of genetic variations and/or post-translational modifications (PTMs). Herein, we describe recent efforts towards efficient integration of bottom-up and top-down LCMS based proteomic strategies. Since most proteomic platforms (i.e. LC systems) operate in acidic environments, we exploited the compatibility of the pepsin (i.e. the enzyme’s natural acidic activity) for the integration of bottom-up and top-down proteomics. Pressure enhanced pepsin digestions were successfully performed and characterized with several standard proteins in either an offline mode using a Barocycler or an online mode using a modified high pressure LC system referred to as a fast online digestion system (FOLDS). FOLDS was tested using pepsin and a whole microbial proteome, and the results compared against traditional trypsin digestions on the same platform. Additionally, FOLDS was integrated with a RePlay configuration to demonstrate an ultra-rapid integrated bottom-up top-down proteomic strategy employing a standard mixture of proteins and a monkey pox virus proteome.

  7. Legume proteomics: Progress, prospects, and challenges.

    PubMed

    Rathi, Divya; Gayen, Dipak; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Legumes are the major sources of food and fodder with strong commercial relevance, and are essential components of agricultural ecosystems owing to their ability to carry out endosymbiotic nitrogen fixation. In recent years, legumes have become one of the major choices of plant research. The legume proteomics is currently represented by more than 100 reference maps and an equal number of stress-responsive proteomes. Among the 48 legumes in the protein databases, most proteomic studies have been accomplished in two model legumes, soybean, and barrel medic. This review highlights recent contributions in the field of legume proteomics to comprehend the defence and regulatory mechanisms during development and adaptation to climatic changes. Here, we attempted to provide a concise overview of the progress in legume proteomics and discuss future developments in three broad perspectives: (i) proteome of organs/tissues; (ii) subcellular compartments; and (iii) spatiotemporal changes in response to stress. Such data mining may aid in discovering potential biomarkers for plant growth, in general, apart from essential components involved in stress tolerance. The prospect of integrating proteome data with genome information from legumes will provide exciting opportunities for plant biologists to achieve long-term goals of crop improvement and sustainable agriculture. PMID:26563903

  8. Endothelial Cell Proteomic Response to Rickettsia conorii Infection Reveals Activation of the Janus Kinase (JAK)-Signal Transducer and Activator of Transcription (STAT)-Inferferon Stimulated Gene (ISG)15 Pathway and Reprogramming Plasma Membrane Integrin/Cadherin Signaling.

    PubMed

    Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R

    2016-01-01

    Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from

  9. Plasma and Red Cell Reference Intervals of 5-Methyltetrahydrofolate of Healthy Adults in Whom Biochemical Functional Deficiencies of Folate and Vitamin B12 Had Been Excluded

    PubMed Central

    Sobczyńska-Malefora, Agata; Harrington, Dominic J.; Voong, Kieran; Shearer, Martin J.

    2014-01-01

    5-Methyltetrahydrofolate (5-MTHF) is the predominant form of folate and a strong determinant of homocysteine concentrations. There is evidence that suboptimal 5-MTHF availability is a risk factor for cardiovascular disease independent of homocysteine. The analysis of folates remains challenging and is almost exclusively limited to the reporting of “total” folate rather than individual molecular forms. The purpose of this study was to establish the reference intervals of 5-MTHF in plasma and red cells of healthy adults who had been prescreened to exclude biochemical evidence of functional deficiency of folate and/or vitamin B12. Functional folate and vitamin B12 status was assessed by respective plasma measurements of homocysteine and methylmalonic acid in 144 healthy volunteers, aged 19–64 years. After the exclusion of 10 individuals, values for 134 subjects were used to establish the upper reference limits for homocysteine (13 μmol/L females and 15 μmol/L males) and methylmalonic acid (430 nmol/L). Subjects with values below these cutoffs were designated as folate and vitamin B12 replete and their plasma and red cell 5-MTHF reference intervals determined, N = 126: 6.6–39.9 nmol/L and 223–1041 nmol/L, respectively. The application of these intervals will assist in the evaluation of folate status and facilitate studies to evaluate the relationship of 5-MTHF to disease. PMID:24527038

  10. Polyploidy and the proteome.

    PubMed

    Soltis, Douglas E; Misra, Biswapriya B; Shan, Shengchen; Chen, Sixue; Soltis, Pamela S

    2016-08-01

    Although major advances have been made during the past 20 years in our understanding of the genetic and genomic consequences of polyploidy, our knowledge of polyploidy and the proteome is in its infancy. One of our goals is to stimulate additional study, particularly broad-scale proteomic analyses of polyploids and their progenitors. Although it may be too early to generalize regarding the extent to which transcriptomic data are predictive of the proteome of polyploids, it is clear that the proteome does not always reflect the transcriptome. Despite limited data, important observations on the proteomes of polyploids are emerging. In some cases, proteomic profiles show qualitatively and/or quantitatively non-additive patterns, and proteomic novelty has been observed. Allopolyploids generally combine the parental contributions, but there is evidence of parental dominance of one contributing genome in some allopolyploids. Autopolyploids are typically qualitatively identical to but quantitatively different from their parents. There is also evidence of parental legacy at the proteomic level. Proteomes clearly provide insights into the consequences of genomic merger and doubling beyond what is obtained from genomic and/or transcriptomic data. Translating proteomic changes in polyploids to differences in morphology and physiology remains the holy grail of polyploidy--this daunting task of linking genotype to proteome to phenotype should emerge as a focus of polyploidy research in the next decade. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26993527

  11. Proteomics of Staphylococcus aureus--current state and future challenges.

    PubMed

    Hecker, Michael; Engelmann, Susanne; Cordwell, Stuart J

    2003-04-01

    This paper presents a short review of the proteome of Staphylococcus aureus, a gram-positive human pathogen of increasing importance for human health as a result of the increasing antibiotic resistance. A proteome reference map is shown which can be used for future studies and is followed by a demonstration of how proteomics could be applied to obtain new information on S. aureus physiology. The proteomic approach can provide new data on the regulation of metabolism as well as of the stress or starvation responses. Proteomic signatures encompassing specific stress or starvation proteins are excellent tools to predict the physiological state of a cell population. Furthermore proteomics is very useful for analysing the size and function of known and unknown regulons and will open a new dimension in the comprehensive understanding of regulatory networks in pathogenicity. Finally, some fields of application of S. aureus proteomics are discussed, including proteomics and strain evaluation, the role of proteomics for analysis of antibiotic resistance or for discovering new targets and diagnostics tools. The review also shows that the post-genome era of S. aureus which began in 2001 with the publication of the genome sequence is still in a preliminary stage, however, the consequent application of proteomics in combination with DNA array techniques and supported by bioinformatics will provide a comprehensive picture on cell physiology and pathogenicity in the near future. PMID:12659740

  12. Copy Number Analysis of the Murine Platelet Proteome Spanning the Complete Abundance Range*

    PubMed Central

    Zeiler, Marlis; Moser, Markus; Mann, Matthias

    2014-01-01

    Knowledge of the identity and quantity of expressed proteins of a cell type is a prerequisite for a complete understanding of its molecular functions. Mass-spectrometry-based proteomics has allowed the identification of the entire protein complement of yeast and the close-to-complete set of proteins expressed in mammalian cell lines. Using recent technological advances, we here characterized the proteome of murine platelets, key actors in mediating hemostasis and thrombosis. We accurately measured the absolute protein concentrations of 13 platelet proteins using SILAC-protein epitope signature tags and used them as reference points to estimate the copy numbers of all proteins of the platelet proteome. To distinguish contaminants such as plasma or erythrocyte proteins from true platelet proteins, we monitored protein abundance profiles across multiple purification steps. In total, we absolutely quantified 4,400 platelet proteins, with estimated copy numbers ranging from less than 10 to about a million per cell. Stoichiometries derived from our data correspond well with previous studies. Our study provides a close-to-complete reference map of platelet proteins that will be useful to the community, for instance, for interpreting mouse models of human platelet diseases. PMID:25205226

  13. Functional proteomics of synaptic plasma membrane ATP-ases of rat hippocampus: effect of l-acetylcarnitine and relationships with Dementia and Depression pathophysiology.

    PubMed

    Ferrari, Federica; Gorini, Antonella; Villa, Roberto Federico

    2015-06-01

    Synaptic energy state and mitochondrial dysfunction are crucial factors in many brain pathologies. l-acetylcarnitine, a natural derivative of carnitine, improves brain energy metabolism, and has been proposed for the Therapy of many neurological and psychiatric diseases. The effects of the drug on the maximum rate (Vmax) of enzymatic activities related to hippocampal synaptic energy utilization were evaluated, in the perspective of its employment for Dementias and Depression Therapy. Two types of synaptic plasma membranes (SPM1 and SPM2) were isolated from the hippocampus of rats treated with l-acetylcarnitine (30 and 60mg/kg i.p., 28 days, 5 days/week). Acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain-insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase activities were evaluated. In control animals, enzymatic activities were differently expressed in SPM1 , being the evaluated enzymatic activities higher in SPM2. Subchronic treatment with l-acetylcarnitine (i) did not modify AChE on both SPMs; (ii) increased Na(+), K(+), Mg(2+)-ATP-ase, ouabain-insensitive Mg(2+)-ATP-ase and Na(+), K(+)-ATP-ase at the dose of 30 and 60mg/kg on SPM1 and SPM2; (iii) increased Ca(2+), Mg(2+)-ATP-ase activity on both SPMs at the dose of 60mg/kg. These results have been discussed considering the pathophysiology and treatment of Dementias and Depression because, although referred to normal healthy animals, they support the notion that l-acetylcarnitine may have positive effects in these pathologies. PMID:25797282

  14. Plasma osmolality reference values in African grey parrots (Psittacus erithacus erithacus), Hispaniolan Amazon parrots (Amazona ventralis), and red-fronted macaws (Ara rubrogenys).

    PubMed

    Beaufrère, Hugues; Acierno, Mark; Mitchell, Mark; Guzman, David Sanchez-Migallon; Bryant, Heather; Tully, Thomas N

    2011-06-01

    Birds are routinely presented to veterinarians for dehydration. Success with these cases ultimately depends on providing replacement fluids and re-establishing fluid homeostasis. Few studies have been done to determine reference ranges for plasma osmolality in birds. The goals of this study were to determine reference values for plasma osmolality in 3 species of parrots and to provide recommendations on fluid selection for replacement therapy in these species. Blood samples were collected from 21 adult Hispaniolan Amazon parrots (Amazona ventralis), 21 Congo African grey parrots (Psittacus erithacus erithacus), and 9 red-fronted macaws (Ara rubrogenys), and were placed into lithium heparin containers. Plasma osmolality was measured in duplicate with a freezing point depression osmometer. Summary statistics were computed from the average values. Reference ranges, calculated by using the robust method, were 288-324, 308-345, and 223-369 mOsm/kg in African grey parrots, Hispaniolan Amazon parrots, and red-fronted macaws, respectively. The mean +/- SD values were 306 +/- 7, 327 +/- 7, and 304 +/- 18 mOsm/kg in African grey parrots, Hispaniolan Amazon parrots, and red-fronted macaws, respectively. Comparisons with osmolality values in mammals and values previously reported for psittacine bird species suggest that plasma osmolality is slightly higher in parrots than in mammals, species-specific differences exist, and differences between reported values occur. Overall, fluids with an osmolarity close to 300-320 mOsm/L, such as Normosol-R, Plasmalyte-R, Plasmalyte-A, and NaCl 0.9%, can be recommended in parrots for fluid replacement therapy when isotonic fluids are required. PMID:21877445

  15. The Staphylococcus aureus proteome.

    PubMed

    Otto, Andreas; van Dijl, Jan Maarten; Hecker, Michael; Becher, Dörte

    2014-03-01

    Staphylococcus aureus is a Gram-positive commensal bacterium that is regarded as a major threat for modern health care systems. This relates both to the ability of S. aureus to overcome antibiotic therapy by developing high-level resistance against multiple antibiotics and this bacterium's extensive arsenal of virulence factors. Understanding the mechanisms of resistance and functional studies on stress and starvation responses are the main goals of proteomics in staphylococcal research. This review high-lights recent advances in gel-based and gel-free proteomics analyses of S. aureus and pinpoints the importance of location-specific proteomics studies targeting the cytosol, the membrane, the cell surface and the extracellular milieu in combination with integrated global proteome studies. Emerging hot topics in staphylococcal proteomics are discussed with special focus on in vivo proteomics, membrane vesicles, biofilm formation and the acquisition of absolute proteome data for systems biological modeling approaches. PMID:24439828

  16. Ultra-High-Efficiency Strong Cation Exchange LC/RPLC/MS/MS for High Dynamic Range Characterization of the Human Plasma Proteome

    SciTech Connect

    Shen, Yufeng; Jacobs, Jon M.; Camp, David G.; Fang, Ruihua; Moore, Ronald J.; Smith, Richard D.; Xiao, Wenzhong; Davis, Ronald W.; Tompkins, Ronald G.

    2004-02-15

    In this study, we report a comprehensive approach for ultrahigh-efficiency separations by liquid chromatography (LC)/tandem mass spectrometry (MS/MS) for broad protein characterization of human plasma. The power of this approach is demonstrated by the confident identification of 1062 human plasma proteins based upon identification of 2992 tryptic peptides using highly conservative SEQUEST search criteria from a non-depleted human plasma sample. The approach provides a dynamic range of {approx}9 orders of magnitude in protein abundance using conventional ion trap MS/MS, which enabled identification of pg/mL concentration human plasma proteins (e.g. cytokines) co-existing with mg/mL-level human serum albumin. This dynamic range was obtained by combining high-efficiency reversed-phase (RP) LC coupled with efficient pre-fractionation strong cation exchange (SCX) LC to achieve ultrahigh-efficiency separations. A single-dimension, high-efficiency RPLC provided a protein identification dynamic range of 4 orders of magnitude in protein content and identified 433 human plasma proteins; while the ultrahigh-efficiency SCXLC/RPLC (i.e. 15 fractions from SCXLC), with the assistance of the SCXLC-sample component concentration (up to 102 fold), extended the protein identification dynamic range to {approx}9 orders of magnitude in protein content, identifying 822 human plasma proteins; combination of single- and two-dimension LC/MS/MS led to identification of 1062 human plasma proteins.

  17. Proteomic and functional profiles of a follicle-stimulating hormone positive human nonfunctional pituitary adenoma.

    PubMed

    Wang, Xiaowei; Guo, Tianyao; Peng, Fang; Long, Ying; Mu, Yun; Yang, Haiyan; Ye, Ningrong; Li, Xuejun; Zhan, Xianquan

    2015-06-01

    Nonfunctional pituitary adenoma (NFPA) is highly heterogeneous with different hormone-expressed subtypes in NFPA tissues including follicle-stimulating hormone (FSH) positive, luteinizing hormone-positive, FSH/luteinizing hormone-positive, and negative types. To analyze in-depth the variations in the proteomes among different NFPA subtypes for our long-term goal to clarify molecular mechanisms of NFPA and to detect tumor biomarker for personalized medicine practice, a reference map of proteome of a human FSH-expressed NFPA tissue was described here. 2DE and PDQuest image analysis were used to array each protein. MALDI-TOF PMF and human Swiss-Prot databases with MASCOT search were used to identify each protein. A good 2DE pattern with high level of between-gel reproducibility was attained with an average positional deviation 1.98 ± 0.75 mm in the IEF direction and 1.62 ± 0.68 mm in the SDS-PAGE direction. Approximately 1200 protein spots were 2DE-detected and 192 redundant proteins that were contained in 141 protein spots were PMF-identified, representing 107 nonredundant proteins. Those proteins were located in cytoplasm, nucleus, plasma membrane, extracellular space, and so on, and those functioned in transmembrane receptor, ion channel, transcription/translation regulator, transporter, enzyme, phosphatase, kinase, and so on. Several important pathway networks were characterized from those identified proteins with DAVID and Ingenuity Pathway Analysis systems, including gluconeogenesis and glycolysis, mitochondrial dysfunction, oxidative stress, cell-cycle alteration, MAPKsignaling system, immune response, TP53-signaling, VEGF-signaling, and inflammation signaling pathways. Those resulting data contribute to a functional profile of the proteome of a human FSH-positive NFPA tissue, and will serve as a reference for the heterogeneity analysis of NFPA proteomes. PMID:25809007

  18. Proteomic patterns associated with heterosis.

    PubMed

    Xing, Jiewen; Sun, Qixin; Ni, Zhongfu

    2016-08-01

    Heterosis is characterized by higher seed yields, plant biomass or other traits in heterozygotes or hybrids compared with their genetically divergent parents, which are often homozygous. Despite extensive investigation of heterosis and its wide application in crops such as maize, rice, wheat and sorghum, its molecular basis is still enigmatic. In the past century, some pioneers have proposed multigene models referring to the complementation of allelic and gene expression variation, which is likely to be an important contributor to heterosis. In addition, there are potential interactions of epigenetic variation involved in heterosis via novel mechanisms. At the level of gene expression, many recent studies have revealed that the heterosis phenomenon can be deciphered not only at the transcriptional level but also at the proteomic level. This review presents an update on the information supporting the involvement of proteomic patterns in heterosis and a possible future direction of the field. This article is part of a Special Issue entitled: Plant Proteomics - a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26721744

  19. Hematologic and plasma biochemical reference intervals for Morelet's crocodiles (Crocodylus moreletii) in the northern wetlands of Campeche, Mexico.

    PubMed

    Padilla, Sergio E; Weber, Manuel; Jacobson, Elliott R

    2011-07-01

    Health surveys and hematologic and plasma biochemical analyses were conducted in 52 free-ranging and 51 captive Morelet's crocodiles (Crocodylus moreletii) in Campeche, Mexico, March-September 2007. Blood samples from 92 crocodiles (45 free-ranging and 47 captive) were collected for hematologic and plasma biochemical analyses. Average values of erythrocytes of free-ranging crocodiles were 1,046,166 cells/μl, and total white cells were 1.03 × 10(4) cells/μl. Captive crocodiles had erythrocyte and leukocyte values of 1,100,416 cells/μl and 8.51 × 10(3) cells/μl, respectively. There were no significant differences in values of erythrocytes or in hematocrit between free-ranging and captive crocodiles, or between sexes, or among size classes. Counts of leukocytes in free-ranging crocodiles were significantly higher than in captive individuals. The mean values of plasma analytes were 69.55 mg/l (glucose), 250.14 mg/l (cholesterol), 3.04 mg/l (uric acid), 2.70 mg/l (creatinine), and 20.20 IU/l (alanine aminotransferase). There were significant differences in cholesterol between free-ranging and captive crocodiles and between sexes. PMID:21719816

  20. Dataset on protein composition of a human plasma sub-proteome able to modulate the Dengue 2 virus infection in Huh 7.5 cells.

    PubMed

    Huerta, Vivian; Ramos, Yassel; Yero, Alexis; Pupo, Dianne; Martin, Dayron; Márquez, Gabriel; Martín, Alejandro; Sarría, Mónica; Gallien, Sebastien; González, Luis J; Domon, Bruno; Chinea, Glay

    2016-03-01

    The four serotypes of dengue virus (DENV1-4) are the causal agents of the emerging disease Dengue Fever and its severe forms. DENV is inoculated into human blood through a mosquito bite. Thus, plasma is an important media for DENV dissemination in infected persons and several important interactions should take place for the virus with human plasma proteins that strongly influence or may determine the course of the infection. This dataset contains 239 proteins identified in the elution fractions of human plasma subjected to DE-52 anion exchange chromatography. Data on DENV2 infection of Huh 7.5 cells in presence of the human plasma fraction is also presented. PMID:26862582

  1. Dataset on protein composition of a human plasma sub-proteome able to modulate the Dengue 2 virus infection in Huh 7.5 cells

    PubMed Central

    Huerta, Vivian; Ramos, Yassel; Yero, Alexis; Pupo, Dianne; Martin, Dayron; Márquez, Gabriel; Martín, Alejandro; Sarría, Mónica; Gallien, Sebastien; González, Luis J.; Domon, Bruno; Chinea, Glay

    2015-01-01

    The four serotypes of dengue virus (DENV1-4) are the causal agents of the emerging disease Dengue Fever and its severe forms. DENV is inoculated into human blood through a mosquito bite. Thus, plasma is an important media for DENV dissemination in infected persons and several important interactions should take place for the virus with human plasma proteins that strongly influence or may determine the course of the infection. This dataset contains 239 proteins identified in the elution fractions of human plasma subjected to DE-52 anion exchange chromatography. Data on DENV2 infection of Huh 7.5 cells in presence of the human plasma fraction is also presented. PMID:26862582

  2. Proteomics in diagnosis of prostate cancer.

    PubMed

    Davalieva, K; Polenakovic, M

    2015-01-01

    Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. The introduction of prostate specific antigen (PSA) has greatly increased the number of men diagnosed with PCa but at the same time, as a result of the low specificity, led to overdiagnosis, resulting to unnecessary biopsies and high medical cost treatments. The primary goal in PCa research today is to find a biomarker or biomarker set for clear and effecttive diagnosis of PCa as well as for distinction between aggressive and indolent cancers. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, MALDI MS profiling, shotgun proteomics with label-based (ICAT, iTRAQ) and label-free (SWATH) quantification, MudPIT, CE-MS have been applied to the study of PCa in the past 15 years. Various biological samples, including tumor tissue, serum, plasma, urine, seminal plasma, prostatic secretions and prostatic-derived exosomes were analyzed with the aim of identifying diagnostic and prognostic biomarkers and developing a deeper understanding of the disease at the molecular level. This review is focused on the overall analysis of expression proteomics studies in the PCa field investigating all types of human samples in the search for diagnostics biomarkers. Emphasis is given on proteomics platforms used in biomarker discovery and characterization, explored sources for PCa biomarkers, proposed candidate biomarkers by comparative proteomics studies and the possible future clinical application of those candidate biomarkers in PCa screening and diagnosis. In addition, we review the specificity of the putative markers and existing challenges in the proteomics research of PCa. PMID:26076772

  3. Actionable mutations in plasma cell-free DNA in patients with advanced cancers referred for experimental targeted therapies

    PubMed Central

    Janku, Filip; Angenendt, Philipp; Tsimberidou, Apostolia M.; Fu, Siqing; Naing, Aung; Falchook, Gerald S.; Hong, David S.; Holley, Veronica R.; Cabrilo, Goran; Wheler, Jennifer J.; Piha-Paul, Sarina A.; Zinner, Ralph G.; Bedikian, Agop Y.; Overman, Michael J.; Kee, Bryan K.; Kim, Kevin B.; Kopetz, E. Scott; Luthra, Rajyalakshmi; Diehl, Frank; Meric-Bernstam, Funda; Kurzrock, Razelle

    2015-01-01

    Cell-free (cf) DNA in the plasma of cancer patients offers an easily obtainable source of biologic material for mutation analysis. Plasma samples from 157 patients with advanced cancers who progressed on systemic therapy were tested for 21 mutations in BRAF, EGFR, KRAS, and PIK3CA using the BEAMing method and results were compared to mutation analysis of archival tumor tissue from a CLIA-certified laboratory obtained as standard of care from diagnostic or therapeutic procedures. Results were concordant for archival tissue and plasma cfDNA in 91% cases for BRAF mutations (kappa = 0.75, 95% confidence interval [CI] 0.63 – 0.88), in 99% cases for EGFR mutations (kappa = 0.90, 95% CI 0.71– 1.00), in 83% cases for KRAS mutations (kappa = 0.67, 95% CI 0.54 – 0.80) and in 91% cases for PIK3CA mutations (kappa = 0.65, 95% CI 0.46 – 0.85). Patients (n = 41) with > 1% of KRAS mutant cfDNA had a shorter median survival compared to 20 patients with 1% of mutant cfDNA (BRAF, EGFR, KRAS, or PIK3CA) had a shorter median survival compared to 33 patients with

  4. Temporal variance in hematologic and plasma biochemical reference intervals for free-ranging eastern box turtles (Terrapene carolina carolina).

    PubMed

    Kimble, Steven J A; Williams, Rod N

    2012-07-01

    Eastern box turtle (Terrapene carolina carolina) populations are in decline, likely due to anthropogenic forces and disease, necessitating hematologic and biochemical data from healthy individuals for evaluation of wild populations. We repeatedly sampled 21 free-ranging eastern box turtles from May to September 2009 in the spring, summer, and fall to establish temporal hematologic and biochemical reference intervals. Packed cell volume, aspartate aminotransferase, and potassium levels declined significantly as the active season progressed. High levels of albumin, globulin, and calcium coincided with the presence of eggs in females. These reference intervals should provide baseline data for the clinical evaluation of wild box turtles presented for veterinary care or for studies of wild populations. PMID:22740550

  5. Proteomic identification of biomarkers of vascular injury

    PubMed Central

    Huang, Ngan F; Kurpinski, Kyle; Fang, Qizhi; Lee, Randall J; Li, Song

    2011-01-01

    Predictive biomarkers may be beneficial for detecting, diagnosing, and assessing the risk of restenosis and vascular injury. We utilized proteomic profiling to identify protein markers in the blood following vascular injury, and corroborated the differential protein expression with immunological approaches. Rats underwent carotid artery injury, and plasma was collected after 2 or 5 weeks. Proteomic profiling was carried out by two-dimensional differential in-gel electrophoresis. The differentially expressed plasma proteins were identified by mass spectroscopy and confirmed by immunoblotting. Proteomic profiling by two-dimensional differential in-gel electrophoresis and mass spectroscopy revealed plasma proteins that were differentially expressed at 2 weeks after injury. Among the proteins identified included vitamin D binding protein (VDBP), aldolase A (aldo A), and apolipoproteinE (apoE). Immunoblotting results validated a significant reduction in these proteins in the plasma at 2 or 5 weeks after vascular injury, in comparison to control animals without vascular injury. These findings suggest that VDBP, aldo A, and apoE may be biomarkers for vascular injury, which will have important prognostic and diagnostic implications. PMID:21416056

  6. Postgenomics: Proteomics and Bioinformatics in Cancer Research

    PubMed Central

    2003-01-01

    Now that the human genome is completed, the characterization of the proteins encoded by the sequence remains a challenging task. The study of the complete protein complement of the genome, the “proteome,” referred to as proteomics, will be essential if new therapeutic drugs and new disease biomarkers for early diagnosis are to be developed. Research efforts are already underway to develop the technology necessary to compare the specific protein profiles of diseased versus nondiseased states. These technologies provide a wealth of information and rapidly generate large quantities of data. Processing the large amounts of data will lead to useful predictive mathematical descriptions of biological systems which will permit rapid identification of novel therapeutic targets and identification of metabolic disorders. Here, we present an overview of the current status and future research approaches in defining the cancer cell's proteome in combination with different bioinformatics and computational biology tools toward a better understanding of health and disease. PMID:14615629

  7. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis. PMID:27284200

  8. A xenograft mouse model coupled with in-depth plasma proteome analysis facilitates identification of novel serum biomarkers for human ovarian cancer.

    PubMed

    Tang, Hsin-Yao; Beer, Lynn A; Chang-Wong, Tony; Hammond, Rachel; Gimotty, Phyllis; Coukos, George; Speicher, David W

    2012-02-01

    Proteomics discovery of novel cancer serum biomarkers is hindered by the great complexity of serum, patient-to-patient variability, and triggering by the tumor of an acute-phase inflammatory reaction. This host response alters many serum protein levels in cancer patients, but these changes have low specificity as they can be triggered by diverse causes. We addressed these hurdles by utilizing a xenograft mouse model coupled with an in-depth 4-D protein profiling method to identify human proteins in the mouse serum. This strategy ensures that identified putative biomarkers are shed by the tumor, and detection of low-abundance proteins shed by the tumor is enhanced because the mouse blood volume is more than a thousand times smaller than that of a human. Using TOV-112D ovarian tumors, more than 200 human proteins were identified in the mouse serum, including novel candidate biomarkers and proteins previously reported to be elevated in either ovarian tumors or the blood of ovarian cancer patients. Subsequent quantitation of selected putative biomarkers in human sera using label-free multiple reaction monitoring (MRM) mass spectrometry (MS) showed that chloride intracellular channel 1, the mature form of cathepsin D, and peroxiredoxin 6 were elevated significantly in sera from ovarian carcinoma patients. PMID:22032327

  9. Quantitative transporter proteomics by liquid chromatography with tandem mass spectrometry: addressing methodologic issues of plasma membrane isolation and expression-activity relationship.

    PubMed

    Kumar, Vineet; Prasad, Bhagwat; Patilea, Gabriela; Gupta, Anshul; Salphati, Laurent; Evers, Raymond; Hop, Cornelis E C A; Unadkat, Jashvant D

    2015-02-01

    To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs. PMID:25488931

  10. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  11. Reference measurements for total mercury and methyl mercury content in marine biota samples using direct or species-specific isotope dilution inductively coupled plasma mass spectrometry.

    PubMed

    Krata, Agnieszka; Vassileva, Emilia; Bulska, Ewa

    2016-11-01

    The analytical procedures for reference measurements of the total Hg and methyl mercury (MeHg) mass fractions at various concentration levels in marine biota samples, candidates for certified reference materials (oyster and clam Gafrarium tumidum), were evaluated. Two modes of application of isotope dilution inductively coupled plasma mass spectrometry method (ID ICP-MS), namely direct isotope dilution and species-specific isotope dilution analysis with the use of two different quantification mass spectrometry techniques were compared. The entire ID ICP-MS measurement procedure was described by mathematical modelling and the combined uncertainty of measurement results was estimated. All factors influencing the final results as well as isotopic equilibrium were systematically investigated. This included the procedural blank, the moisture content in the biota samples and all factors affecting the blend ratio measurements (instrumental background, spectral interferences, dead time and mass discrimination effects as well as the repeatability of measured isotopic ratios). Modelling of the entire measurement procedures and the use of appropriate certified reference materials enable to assure the traceability of obtained values to the International System of Units (SI): the mole or the kilogram. The total mass fraction of mercury in oyster and clam biota samples, after correction for moisture contents, was found to be: 21.1 (1.1) 10(-9) kg kg(-1) (U =5.1% relative, k=2) and 390.0 (9.4) 10(-9) kg kg(-1) (U=2.4% relative, k=2), respectively. For the determination of mercury being present as methyl mercury, the non-chromatographic separation on anion-exchange resin AG1-X8 of the blended samples was applied. The content of MeHg (as Hg) in oyster sample was found: 4.81 (24) 10(-9)kgkg(-1) (U=5.0%, k=2) and 4.84 (21) 10(-9)kgkg(-1) (U=4.3%, k=2) with the use of quadrupole (ICP QMS) or sector field (ICP SFMS) inductively coupled plasma mass spectrometers, respectively. In the

  12. Plasma electrophoretic profiles and hemoglobin binding protein reference intervals in the eastern box turtle (Terrapene carolina carolina) and influences of age, sex, season, and location.

    PubMed

    Flower, Jennifer E; Byrd, John; Cray, Carolyn; Allender, Matthew C

    2014-12-01

    Evaluation of plasma electrophoretic profiles and acute phase protein concentrations may play a valuable role in health assessment of reptiles; however, little is known about reference intervals in free-ranging eastern box turtles (Terrapene carolina carolina). The purpose of this study was to establish reference intervals of protein electrophoretic profiles and hemoglobin binding protein ([HBP] as determined by a haptoglobin assay) in free-ranging eastern box turtles and to assess any possible correlations between varying age class (adults vs. juvenile), sex (male, female, or unknown), season (spring, summer, or fall), or location (Tennessee vs. Illinois). Blood samples were obtained from 324 eastern box turtles from 2010 to 2012 at three sites in Illinois and one site in Tennessee, USA. Significant differences were observed with total protein (sex, season, state, Illinois location), albumin (age class, season, state, Illinois location), α-1 globulins (sex, season, Illinois location), α-2 globulins (sex, season, state, Illinois location), β globulins (age class, sex, season, state, Illinois location), γ globulins (sex, season state, Illinois location), and hemoglobin binding protein (age class, sex, state, Illinois location). The use of electrophoretic profiles and acute phase proteins is a relatively new concept in reptilian medicine, and this study allowed for establishment of references intervals in the eastern box turtle and emphasized differences that occured based on age, sex, season, and location. Future research in this area can now build on these data to determine changes in population health over time or alterations due to specific environmental or disease threats. PMID:25632671

  13. Shotgun MS proteomic analysis of bronchoalveolar lavage fluid in normal subjects.

    PubMed

    Nguyen, Elizabeth V; Gharib, Sina A; Schnapp, Lynn M; Goodlett, David R

    2014-10-01

    We provide a review of proteomic techniques used to characterize the bronchoalveolar lavage fluid (BALF) proteome of normal healthy subjects. Bronchoalveolar lavage (BAL) is the most common technique for sampling the components of the alveolar space. The proteomic techniques used to study normal BALF include protein separation by 2DE, whereby proteins were identified by comparison to a reference gel as well as high pressure liquid chromatography (HPLC)-MS/MS, also known as shotgun proteomics. We summarize recent progress using shotgun MS technologies to define the normal BALF proteome. Surprisingly, we find that despite advances in shotgun proteomic technologies over the course of the last 10 years, which have resulted in greater numbers of proteins being identified, the functional landscape of normal BALF proteome was similarly described by all methods examined. PMID:24616423

  14. Shotgun MS proteomic analysis of bronchoalveolar lavage fluid in normal subjects

    PubMed Central

    Nguyen, Elizabeth V.; Gharib, Sina A.; Schnapp, Lynn M.; Goodlett, David R.

    2014-01-01

    We provide a review of proteomic techniques used to characterize the bronchoalveolar lavage fluid (BALF) proteome of normal healthy subjects. Bronchoalveolar lavage (BAL) is the most common technique for sampling the components of the alveolar space. The proteomic techniques used to study normal BALF include protein separation by 2D gel electrophoresis whereby proteins were identified by comparison to a reference gel as well as high pressure liquid chromatography (HPLC)-tandem mass spectrometry technique, also known as shotgun proteomics. We summarize recent progress using shotgun MS technologies to define the normal BALF proteome. Surprisingly, we find that despite advances in shotgun proteomic technologies over the course of the last ten years, which have resulted in greater numbers of proteins being identified, the functional landscape of normal BALF proteome was similarly described by all methods examined. PMID:24616423

  15. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins.

    PubMed

    Wang, Chenyuan; Liu, Yang; Chang, Cheng; Wu, Songfeng; Gao, Jie; Zhang, Yang; Chen, Yingjie; Zhong, Fan; Deng, Gaopi

    2016-01-01

    The object of this research was to report a draft proteome of human fallopian tube (hFT) comprises 5416 identified proteins, which could be considered as a physiological reference to complement Human Proteome Draft. The proteomic raw data and metadata were stored in an integrated proteome resources centre iProX (IPX00034300). This hFT proteome contains many hFT markers newly identified by mass spectrum. This hFT proteome comprises 660 high-, 3605 medium- and 1181 low-abundant proteins. Ribosome, cytoskeleton, vesicle and protein folding associated proteins showed obvious tendency to be higher abundance in hFT. The extraordinary high coverage of mesenchymal stem cells (MSCs)-associated proteins were identified in this hFT proteome, which highly supported that hFT should contain a plenty of MSCs. PMID:26759384

  16. Human fallopian tube proteome shows high coverage of mesenchymal stem cells associated proteins

    PubMed Central

    Wang, Chenyuan; Liu, Yang; Chang, Cheng; Wu, Songfeng; Gao, Jie; Zhang, Yang; Chen, Yingjie; Zhong, Fan; Deng, Gaopi

    2016-01-01

    The object of this research was to report a draft proteome of human fallopian tube (hFT) comprises 5416 identified proteins, which could be considered as a physiological reference to complement Human Proteome Draft. The proteomic raw data and metadata were stored in an integrated proteome resources centre iProX (IPX00034300). This hFT proteome contains many hFT markers newly identified by mass spectrum. This hFT proteome comprises 660 high-, 3605 medium- and 1181 low-abundant proteins. Ribosome, cytoskeleton, vesicle and protein folding associated proteins showed obvious tendency to be higher abundance in hFT. The extraordinary high coverage of mesenchymal stem cells (MSCs)-associated proteins were identified in this hFT proteome, which highly supported that hFT should contain a plenty of MSCs. PMID:26759384

  17. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  18. Differential Plasma Glycoproteome of p19ARF Skin Cancer Mouse Model Using the Corra Label-Free LC-MS Proteomics Platform

    PubMed Central

    Letarte, Simon; Brusniak, Mi-Youn; Campbell, David; Eddes, James; Kemp, Christopher J.; Lau, Hollis; Mueller, Lukas; Schmidt, Alexander; Shannon, Paul; Kelly-Spratt, Karen S.; Vitek, Olga; Zhang, Hui; Aebersold, Ruedi; Watts, Julian D.

    2010-01-01

    A proof-of-concept demonstration of the use of label-free quantitative glycoproteomics for biomarker discovery workflow is presented here, using a mouse model for skin cancer as an example. Blood plasma was collected from 10 control mice, and 10 mice having a mutation in the p19ARF gene, conferring them high propensity to develop skin cancer after carcinogen exposure. We enriched for N-glycosylated plasma proteins, ultimately generating deglycosylated forms of the modified tryptic peptides for liquid chromatography mass spectrometry (LC-MS) analyses. LC-MS runs for each sample were then performed with a view to identifying proteins that were differentially abundant between the two mouse populations. We then used a recently developed computational framework, Corra, to perform peak picking and alignment, and to compute the statistical significance of any observed changes in individual peptide abundances. Once determined, the most discriminating peptide features were then fragmented and identified by tandem mass spectrometry with the use of inclusion lists. We next assessed the identified proteins to see if there were sets of proteins indicative of specific biological processes that correlate with the presence of disease, and specifically cancer, according to their functional annotations. As expected for such sick animals, many of the proteins identified were related to host immune response. However, a significant number of proteins also directly associated with processes linked to cancer development, including proteins related to the cell cycle, localisation, trasport, and cell death. Additional analysis of the same samples in profiling mode, and in triplicate, confirmed that replicate MS analysis of the same plasma sample generated less variation than that observed between plasma samples from different individuals, demonstrating that the reproducibility of the LC-MS platform was sufficient for this application. These results thus show that an LC-MS-based workflow

  19. Proteomics for systems toxicology

    PubMed Central

    Titz, Bjoern; Elamin, Ashraf; Martin, Florian; Schneider, Thomas; Dijon, Sophie; Ivanov, Nikolai V.; Hoeng, Julia; Peitsch, Manuel C.

    2014-01-01

    Current toxicology studies frequently lack measurements at molecular resolution to enable a more mechanism-based and predictive toxicological assessment. Recently, a systems toxicology assessment framework has been proposed, which combines conventional toxicological assessment strategies with system-wide measurement methods and computational analysis approaches from the field of systems biology. Proteomic measurements are an integral component of this integrative strategy because protein alterations closely mirror biological effects, such as biological stress responses or global tissue alterations. Here, we provide an overview of the technical foundations and highlight select applications of proteomics for systems toxicology studies. With a focus on mass spectrometry-based proteomics, we summarize the experimental methods for quantitative proteomics and describe the computational approaches used to derive biological/mechanistic insights from these datasets. To illustrate how proteomics has been successfully employed to address mechanistic questions in toxicology, we summarized several case studies. Overall, we provide the technical and conceptual foundation for the integration of proteomic measurements in a more comprehensive systems toxicology assessment framework. We conclude that, owing to the critical importance of protein-level measurements and recent technological advances, proteomics will be an integral part of integrative systems toxicology approaches in the future. PMID:25379146

  20. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    NASA Astrophysics Data System (ADS)

    Beijer, P. A. C.; Sobota, A.; van Veldhuizen, E. M.; Kroesen, G. M. W.

    2016-03-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1-10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen.

  1. Proteomic Findings in Melanoma

    PubMed Central

    Sengupta, Deepanwita; Tackett, Alan J

    2016-01-01

    Although the emergence of proteomics as an independent branch of science is fairly recent, within a short period of time it has contributed substantially in various disciplines. The tool of mass spectrometry has become indispensable in the analysis of complex biological samples. Clinical applications of proteomics include detection of predictive and diagnostic markers, understanding mechanism of action of drugs as well as resistance mechanisms against them and assessment of therapeutic efficacy and toxicity of drugs in patients. Here, we have summarized the major contributions of proteomics towards the study of melanoma, which is a deadly variety of skin cancer with a high mortality rate. PMID:27274624

  2. A proteomic glimpse into human ureter proteome

    PubMed Central

    Hirao, Yoshitoshi; Elguoshy, Amr; Xu, Bo; Zhang, Ying; Fujinaka, Hidehiko; Yamamoto, Keiko; Yates, John R.; Yamamoto, Tadashi

    2015-01-01

    Urine has evolved as one of the most important biofluids in clinical proteomics due to its noninvasive sampling and its stability. Yet, it is used in clinical diagnostics of several disorders by detecting changes in its components including urinary protein/polypeptide profile. Despite the fact that majority of proteins detected in urine are primarily originated from the urogenital (UG) tract, determining its precise source within the UG tract remains elusive. In this article, we performed a comprehensive analysis of ureter proteome to assemble the first unbiased ureter dataset. Next, we compared these data to urine, urinary exosome, and kidney mass spectrometric datasets. Our result concluded that among 2217 nonredundant ureter proteins, 751 protein candidates (33.8%) were detected in urine as urinary protein/polypeptide or exosomal protein. On the other hand, comparing ureter protein hits (48) that are not shown in corresponding databases to urinary bladder and prostate human protein atlas databases pinpointed 21 proteins that might be unique to ureter tissue. In conclusion, this finding offers future perspectives for possible identification of ureter disease‐associated biomarkers such as ureter carcinoma. In addition, the ureter proteomic dataset published in this article will provide a valuable resource for researchers working in the field of urology and urine biomarker discovery. All MS data have been deposited in the ProteomeXchange with identifier PXD002620 (http://proteomecentral.proteomexchange.org/dataset/PXD002620). PMID:26442468

  3. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    USGS Publications Warehouse

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  4. Determination of heavy metals and their speciation in street dusts by inductively coupled plasma-optical emission spectrometry after a Community Bureau of Reference sequential extraction procedure.

    PubMed

    Altundag, Huseyin; Imamoglu, Mustafa; Doganci, Secil; Baysal, Erkan; Albayrak, Sinem; Tuzen, Mustafa

    2013-01-01

    Sequential selective extraction techniques are commonly used to fractionate the solid-phase forms of metals in soils. This procedure provides measurements of extractable metals from media, such as acetic acid (0.11 M), hydroxyl ammonium chloride (0.1 M), hydrogen peroxide (8.8 M) plus ammonium acetate (1 M), and aqua regia stages of the sequential extraction procedure. In this work, the extractable Pb, Cu, Mn, Sr, Ni, V, Fe, Zn, and Cr were evaluated in street dust samples from Sakarya, Turkey, between May and October 2009 using the three-step sequential extraction procedure described by the Community Bureau of Reference (BCR, now the Standards, Measurements, and Testing Programme) of the European Union. The sampling sites were divided into 10 categories; a total of 50 street dusts were analyzed. The determination of multielements in the samples was performed by inductively coupled plasma-optical emission spectrometry. Validation of the proposed method was performed using BCR 701 certified reference material. The results showed good agreement between the obtained and the certified values for the metals analyzed. PMID:24000761

  5. An assessment of prominent lines in inductively-coupled argon plasmas with special reference to spectrographic general survey analysis

    NASA Astrophysics Data System (ADS)

    Boumans, P. W. J. M.

    About 600 prominent lines for inductively-coupled plasma-atomic emission spectrometry (ICP-AES) using an argon ICP were studied with the triple objective of (1) compiling a library of prominent lines for spectrographic general survey analysis in this laboratory, (2) comparing the detection limits and sensitivities of the lines with literature data, in particular those in the author's Line Coincidence Tables for ICP-AES [Pergamon Press, Oxford (1980)], and (3) providing a list of lines with "universal" sensitivities that can be generally used for semiquantitative analysis. A 50 MHz ICP operated under compromise conditions and spectrographic detection were used. The latter limited the wavelength region of the prominent lines covered to a range between 235 and 446 nm. For 598 lines listed in the Line Coincidence Tables (LCT) the paper presents the visually estimated detection limits and an assessment of band interferences in regions of ±0.05nm about the prominent lines. Similar data are presented for 88 computer predicted, supplementary prominent lines [Spectrochim. Acta 36B, 169 (1981)] for which the predictions came true. For the 383 prominent lines located between 252 and 446 nm densitometrically determined detection limits and sensitivities are given. The sensitivities were converted to a "universal scale", independent of the spectral characteristics of the optics and the detector. The results of the visual and densitometric determinations are compared mutually and with the data given in the LCT, which are primarily based on the experimental work of Winge et al. [Appt. Specirosc. 33, 206 (1979)]; consequently the present paper also assesses the extent to which data for prominent lines can be transferred from the one ICP to the other, if both are operated under compromise conditions. The conversion of sensitivities on the "universal scale" to a scale applicable to a particular apparatus using the corresponding spectral distributions of the background intensity is

  6. Proteomic analysis of two metabolic proteins with potential to translocate to plasma membrane associated with tumor metastasis development and drug targets.

    PubMed

    Xue, Ting; Zhang, Yan; Zhang, Luofu; Yao, Ling; Hu, Xiaofang; Xu, Lisa X

    2013-04-01

    Metastasis is the main cause for death of breast cancer patients. However, the underlying mechanism is still poorly understood. Plasma membrane (PM) proteins play a key role in various biological processes, especially for cell migration. In this study, we used a set of well-characterized mammary mouse cell lines, 67NR, 168FARN, 4T1, representing the metastatic progression, to study the differentially expressed membrane proteins. These proteins were analyzed by a linear ion trap tandem mass spectrometry (LTQ-MS/MS) following cell surface biotinylation and streptavidin purification. A total of 1667 membrane proteins were identified, out of which 472 were characterized as differentially expressed with at least 2-fold change and p-value < 0.01. Functional clustering of the 472 proteins revealed that 178 of them were metabolic proteins. Finally, we focused on two metabolic proteins, fatty acid synthase (FASN) and NAD(P)H steroid dehydrogenase-like protein (NSDHL), which were validated by Western blot and immunofluorescence. We found that FASN and NSDHL translocated to the plasma membrane from the intracellular compartment, and their expressions increased from 67NR to 4T1. This alteration of localization along with differential expressions might be necessary for metastasis development. Potentially, FASN and NSDHL could serve as drug targets in new antimetastasis therapy. PMID:23445495

  7. Proteome Characterization Centers - TCGA

    Cancer.gov

    The centers, a component of NCI’s Clinical Proteomic Tumor Analysis Consortium, will analyze a subset of TCGA samples to define proteins translated from cancer genomes and their related biological processes.

  8. Proteomics Research in Schizophrenia

    PubMed Central

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J.

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MSE) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  9. Proteomics Research in Schizophrenia.

    PubMed

    Davalieva, Katarina; Maleva Kostovska, Ivana; Dwork, Andrew J

    2016-01-01

    Despite intense scientific efforts, the neuropathology and pathophysiology of schizophrenia are poorly understood. Proteomic studies, by testing large numbers of proteins for associations with disease, may contribute to the understanding of the molecular mechanisms of schizophrenia. They may also indicate the types and locations of cells most likely to harbor pathological alterations. Investigations using proteomic approaches have already provided much information on quantitative and qualitative protein patterns in postmortem brain tissue, peripheral tissues and body fluids. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, SELDI-TOF, shotgun proteomics with label-based (ICAT), and label-free (MS(E)) quantification have been applied to the study of schizophrenia for the past 15 years. This review summarizes the results, mostly from brain but also from other tissues and bodily fluids, of proteomics studies in schizophrenia. Emphasis is given to proteomics platforms, varying sources of material, proposed candidate biomarkers emerging from comparative proteomics studies, and the specificity of the putative markers in terms of other mental illnesses. We also compare proteins altered in schizophrenia with reports of protein or mRNA sequences that are relatively enriched in specific cell types. While proteomic studies of schizophrenia find abnormalities in the expression of many proteins that are not cell type-specific, there appears to be a disproportionate representation of proteins whose synthesis and localization are highly enriched in one or more brain cell type compared with other types of brain cells. Two of the three proteins most commonly altered in schizophrenia are aldolase C and glial fibrillary acidic protein, astrocytic proteins with entirely different functions, but the studies are approximately evenly divided with regard to the direction of the differences and the concordance or discordance between the two proteins. Alterations of common myelin

  10. Nanoscaled Proteomic Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Lee

    2013-09-01

    Global proteomics research is currently hampered by the extremely complexity of the proteome and the absence of techniques like the polymerase chain reaction in genomics which enables multiplication of a single protein molecule. Since all the existing analytical technologies cannot overcome the detection limit and the dynamic concentration barrier, development of improved analytical technologies at nanoscale, ideally those that could recognize single protein molecule in the presence of high abundant of others, is a high priority for proteomics. In this chapter, we will show the state-of-the-art of nanoproteomics, i.e., the application of nanotechnologies to proteomics. Various nanomaterials including carbon nanomaterials, magnetic nanoparticles, silica nanoparticles, polymer and copolymer nanoparticles, metal and metal oxide nanoparticles have been used to improve sensitivity, specificity, and repeatability of proteomic analysis especially when the multidimensional separation system coupled with MALDI-TOF-MS is used. Among them, gold nanoparticles (GNPs) and carbon nanotubes (CNTs) are the two most important nanomaterials: while GNPs are frequently utilized for enzyme immobilization, high throughput bioassay, selection of target-peptides and target-protein, CNTs including single-walled carbon nanotubes (SWCNTs) and mutiple-walled carbon nanotubes (MWCNTs) have wide applications to electronic sensor, sensitive immunodetection, nanobiocatalysis, affinity probes, MALDI matrices, protein digestion, peptides enrichment and analysis. In perspectives, a deep understanding of the structures and property of nanomaterials and interdisciplinary applications of nanotechnology to proteomics will certainly be revolutionary and intellectually rewarding.

  11. Collaborations in Proteomics Research - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute (NCI), through the Office of Cancer Clinical Proteomics Research (OCCPR), has signed two Memorandums of Understanding (MOUs) in the sharing of proteomics reagents and protocols

  12. Dataset of target mass spectromic proteome profiling for human chromosome 18.

    PubMed

    Ilgisonis, Ekaterina V; Kopylov, Arthur T; Zgoda, Victor G

    2016-09-01

    Proteome profiling is a type of quantitative analysis that reveals level of protein expression in the sample. Proteome profiling by using selected reaction monitoring is an approach for the Chromosome-centric Human Proteome Project (C-HPP). Here we describe dataset generated in the course of the pilot phase of Russian part of C-HPP, which was focused on human Chr 18 proteins. Proteome profiling was performed using stable isotope-labeled standards (SRM/SIS) for plasma, liver tissue and HepG2 cells. Dataset includes both positive and negative results of protein detection. These data were partly discussed in recent publications, "Chromosome 18 Transcriptome Profiling and Targeted Proteome Mapping in Depleted Plasma, Liver Tissue and HepG2 Cells" [1] and "Chromosome 18 transcriptoproteome of liver tissue and HepG2 Cells and targeted proteome mapping in depleted plasma: Update 2013" [2], supporting the accompanying publication "State of the Chromosome 18-centric HPP in 2016: Transcriptome and Proteome Profiling of Liver Tissue and HepG2 Cells" [3], and are deposited at the ProteomeXchange via the PASSEL repository with the dataset identifier PASSEL: PASS00697 for liver and HepG2 cell line. PMID:27595127

  13. Introduction to mass spectrometry-based proteomics.

    PubMed

    Matthiesen, Rune; Bunkenborg, Jakob

    2013-01-01

    Mass spectrometry has been widely applied to study biomolecules and one rapidly developing field is the global analysis of proteins, proteomics. Understanding and handling mass spectrometry data is a multifaceted task that requires many decisions to be made to get the most comprehensive information from an experiment. Later chapters in this book deal in-depth with various aspects of the process and how different tools can be applied to the many analytical challenges. This introductory chapter is intended as a basic introduction to mass spectrometry (MS)-based proteomics to set the scene for newcomers and give pointers to reference material. There are many applications of mass spectrometry in proteomics and each application is associated with some analytical choices, instrumental limitations and data processing steps that depend on the aim of the study and means of conducting it. Different aspects of the proteome can be explored by choosing the right combination of sample preparation, MS instrumentation and data processing. This chapter gives an outline for some of these commonly used setups and some of the key concepts, many of which are explored in greater depth in later chapters. PMID:23666720

  14. Proteomics analysis of human oligodendroglioma proteome.

    PubMed

    Khaghani-Razi-Abad, Solmaz; Hashemi, Mehrdad; Pooladi, Mehdi; Entezari, Maliheh; Kazemi, Elham

    2015-09-10

    Proteomics analyses enable the identification and quantitation of proteins. From a purely clinical perspective, the application of proteomics based on innovations, may greatly affect the future management of malignant brain tumors. This optimism is based on four main reasons: diagnosis, prognosis, selection of targeted therapy based on molecular profile of the brain tumor and monitoring therapeutic response, or resistance. We extracted the proteins of tumor and normal brain tissues, and then evaluated the protein purity by Bradford test. In this study, we separated the proteins by two-dimensional (2DG) gel electrophoresis methods. Then spots were analyzed, compared using statistical data and specific software and were identified by pH isoelectric, molecular weights and data banks. The protein profiles were determined using 2D gel electrophoresis and MALDI TOF/TOF mass spectrometry approaches. Simple statistical tests were used to establish a putative hierarchy in which the change in protein level was ranked according to a cut-off point with p<0.05. The 2D gel showed a total of 1328 spots among which 157 spots were under-expressed and 276 spots were overexpressed. Most proteins are subjects to post-translational modifications, where amino acid residues may be chemically modified or conjugated by small proteins like ubiquitin. Proteomics is a powerful way to identifying multiple proteins which are altered following a neuropharmacological intervention in a CNS disease. PMID:26002447

  15. Integrative Proteomics and Tissue Microarray Profiling Indicate the Association between Overexpressed Serum Proteins and Non-Small Cell Lung Cancer

    PubMed Central

    Hu, Haichuan; Wang, Rui; Sun, Yihua; Zeng, Rong; Chen, Haiquan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide. Clinically, the treatment of non-small cell lung cancer (NSCLC) can be improved by the early detection and risk screening among population. To meet this need, here we describe the application of extensive peptide level fractionation coupled with label free quantitative proteomics for the discovery of potential serum biomarkers for lung cancer, and the usage of Tissue microarray analysis (TMA) and Multiple reaction monitoring (MRM) assays for the following up validations in the verification phase. Using these state-of-art, currently available clinical proteomic approaches, in the discovery phase we confidently identified 647 serum proteins, and 101 proteins showed a statistically significant association with NSCLC in our 18 discovery samples. This serum proteomic dataset allowed us to discern the differential patterns and abnormal biological processes in the lung cancer blood. Of these proteins, Alpha-1B-glycoprotein (A1BG) and Leucine-rich alpha-2-glycoprotein (LRG1), two plasma glycoproteins with previously unknown function were selected as examples for which TMA and MRM verification were performed in a large sample set consisting about 100 patients. We revealed that A1BG and LRG1 were overexpressed in both the blood level and tumor sections, which can be referred to separate lung cancer patients from healthy cases. PMID:23284758

  16. Leveraging Genomics Software to Improve Proteomics Results

    SciTech Connect

    Fodor, I K; Nelson, D O

    2005-09-06

    Rigorous data analysis techniques are essential in quantifying the differential expression of proteins in biological samples of interest. Statistical methods from the microarray literature were applied to the analysis of two-dimensional difference gel electrophoresis (2-D DIGE) proteomics experiments, in the context of technical variability studies involving human plasma. Protein expression measurements were corrected to account for observed intensity-dependent biases within gels, and normalized to mitigate observed gel to gel variations. The methods improved upon the results achieved using the best currently available 2-D DIGE proteomics software. The spot-wise protein variance was reduced by 10% and the number of apparently differentially expressed proteins was reduced by over 50%.

  17. Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus) Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis

    PubMed Central

    Neely, Benjamin A.; Ferrante, Jason A.; Chaves, J. Mauro; Soper, Jennifer L.; Almeida, Jonas S.; Arthur, John M.; Gulland, Frances M. D.; Janech, Michael G.

    2015-01-01

    Domoic acid toxicosis (DAT) in California sea lions (Zalophus californianus) is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05). Interestingly, 11 apolipoprotein E (ApoE) charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value) and high specificity (92.3% with 85.7% positive predictive value). These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers. PMID:25919366

  18. Proteomic Analysis of Plasma from California Sea Lions (Zalophus californianus) Reveals Apolipoprotein E as a Candidate Biomarker of Chronic Domoic Acid Toxicosis.

    PubMed

    Neely, Benjamin A; Ferrante, Jason A; Chaves, J Mauro; Soper, Jennifer L; Almeida, Jonas S; Arthur, John M; Gulland, Frances M D; Janech, Michael G

    2014-01-01

    Domoic acid toxicosis (DAT) in California sea lions (Zalophus californianus) is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05). Interestingly, 11 apolipoprotein E (ApoE) charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value) and high specificity (92.3% with 85.7% positive predictive value). These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers. PMID:25919366

  19. Proteomics of Foodborne Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Fagerquist, Clifton K.

    This chapter is intended to be a relatively brief overview of proteomic techniques currently in use for the identification and analysis of microorganisms with a special emphasis on foodborne pathogens. The chapter is organized as follows. First, proteomic techniques are introduced and discussed. Second, proteomic applications are presented specifically as they relate to the identification and qualitative/quantitative analysis of foodborne pathogens.

  20. Proteomic Assessment of Poultry Spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...

  1. Mining Proteomes Using Bioorthogonal Probes.

    PubMed

    Wu, Haoxing; Devaraj, Neal K

    2016-07-21

    The definition of proteomes in cells and animals at particular stages facilitates an understanding of protein function. In this issue of Cell Chemical Biology, Elliott et al. (2016) report an elegant approach of bioorthogonal labeling and enrichment of proteomes from stochastic orthogonal recoding of translation. With this method, low abundance proteomes can be identified in a multicellular system. PMID:27447043

  2. The Cysteine Proteome

    PubMed Central

    Go, Young-Mi; Chandler, Joshua D.; Jones, Dean P.

    2015-01-01

    The cysteine (Cys) proteome is a major component of the adaptive interface between the genome and the exposome. The thiol moiety of Cys undergoes a range of biologic modifications enabling biological switching of structure and reactivity. These biological modifications include sulfenylation and disulfide formation, formation of higher oxidation states, S-nitrosylation, persulfidation, metallation, and other modifications. Extensive knowledge about these systems and their compartmentalization now provides a foundation to develop advanced integrative models of Cys proteome regulation. In particular, detailed understanding of redox signaling pathways and sensing networks is becoming available to discriminate network structures. This research focuses attention on the need for atlases of Cys modifications to develop systems biology models. Such atlases will be especially useful for integrative studies linking the Cys proteome to imaging and other omics platforms, providing a basis for improved redox-based therapeutics. Thus, a framework is emerging to place the Cys proteome as a complement to the quantitative proteome in the omics continuum connecting the genome to the exposome. PMID:25843657

  3. Simultaneous determination of macro and trace elements in biological reference materials by microwave induced plasma optical emission spectrometry with slurry sample introduction

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Golik, Bartosz

    2004-05-01

    A slurry sampling technique (SST) has been utilized for simultaneous multi-element analysis by microwave-induced plasma optical emission spectrometry (MIP-OES). Slurry samples from a spray chamber are fed directly into the microwave cavity-torch assembly (power 300 W) with no desolvation apparatus. The performance of SST-MIP-OES was demonstrated by the determination of macro (Na, K, Ca, Mg, P) and trace (Cd, Cu, Mn, Sr, Zn) elements in three biological certified reference materials using a V-groove, clog-free Babington-type nebulizer. Slurry concentrations up to 1% m/v (particles <20 μm), prepared in 10% HNO 3 (pH 1.2) containing 0.01% of Triton X-100, were used with calibration by the standard additions method. The method offers relatively good precision (R.S.D. ranged from 7 to 11%) with measured concentrations being in satisfactory agreement with certified values for NRCC TORT-1 (Lobster hepatopancreas), NRCC LUTS-1 (Lobster hepatopancreas) and IAEA-153 (Milk powder). The concentrations of Na, K, Ca, Mg, P and Cd, Cu, Mn, Sr, Zn were determined in the range 90-22 000 μg/g and 1-420 μg/g, respectively. The method could be useful as a routine procedure.

  4. Determination of trace sulfur in biodiesel and diesel standard reference materials by isotope dilution sector field inductively coupled plasma mass spectrometry.

    PubMed

    Amais, Renata S; Long, Stephen E; Nóbrega, Joaquim A; Christopher, Steven J

    2014-01-01

    A method is described for quantification of sulfur at low concentrations on the order of mgkg(-1) in biodiesel and diesel fuels using isotope dilution and sector field inductively coupled plasma mass spectrometry (ID-SF-ICP-MS). Closed vessel microwave-assisted digestion was employed using a diluted nitric acid and hydrogen peroxide decomposition medium to reduce sample dilution volumes. Medium resolution mode was employed to eliminate isobaric interferences at (32)S and (34)S related to polyatomic phosphorus and oxygen species, and sulfur hydride species. The method outlined yielded respective limits of detection (LOD) and limits of quantification (LOQ) of 0.7 mg kg(-1) S and 2.5 mg kg(-1) S (in the sample). The LOD was constrained by instrument background counts at (32)S but was sufficient to facilitate value assignment of total S mass fraction in NIST SRM 2723b Sulfur in Diesel Fuel Oil at 9.06±0.13 mg kg(-1). No statistically significant difference at a 95% confidence level was observed between the measured and certified values for certified reference materials NIST SRM 2773 B100 Biodiesel (Animal-Based), CENAM DRM 272b and NIST SRM 2723a Sulfur in Diesel Fuel Oil, validating method accuracy. PMID:24331043

  5. High-Throughput Proteomics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  6. Establishing Substantial Equivalence: Proteomics

    NASA Astrophysics Data System (ADS)

    Lovegrove, Alison; Salt, Louise; Shewry, Peter R.

    Wheat is a major crop in world agriculture and is consumed after processing into a range of food products. It is therefore of great importance to determine the consequences (intended and unintended) of transgenesis in wheat and whether genetically modified lines are substantially equivalent to those produced by conventional plant breeding. Proteomic analysis is one of several approaches which can be used to address these questions. Two-dimensional PAGE (2D PAGE) remains the most widely available method for proteomic analysis, but is notoriously difficult to reproduce between laboratories. We therefore describe methods which have been developed as standard operating procedures in our laboratory to ensure the reproducibility of proteomic analyses of wheat using 2D PAGE analysis of grain proteins.

  7. Proteomic evaluation of sheep serum proteins

    PubMed Central

    2012-01-01

    Background The applications of proteomic strategies to ovine medicine remain limited. The definition of serum proteome may be a good tool to identify useful protein biomarkers for recognising sub-clinical conditions and overt disease in sheep. Findings from bovine species are often directly translated for use in ovine medicine. In order to characterize normal protein patterns and improve knowledge of molecular species-specific characteristics, we generated a two-dimensional reference map of sheep serum. The possible application of this approach was tested by analysing serum protein patterns in ewes with mild broncho-pulmonary disease, which is very common in sheep and in the peripartum period which is a stressful time, with a high incidence of infectious and parasitic diseases. Results This study generated the first reference 2-DE maps of sheep serum. Overall, 250 protein spots were analyzed, and 138 identified. Compared with healthy sheep, serum protein profiles of animals with rhino-tracheo-bronchitis showed a significant decrease in protein spots identified as transthyretin, apolipoprotein A1 and a significant increase in spots identified as haptoglobin, endopin 1b and alpha1B glycoprotein. In the peripartum period, haptoglobin, alpha-1-acid glycoprotein, apolipoprotein A1 levels rose, while transthyretin content dropped. Conclusions This study describes applications of proteomics in putative biomarker discovery for early diagnosis as well as for monitoring the physiological and metabolic situations critical for ovine welfare. PMID:22630135

  8. Advances and Challenges in Liquid Chromatography-Mass Spectrometry-Based Proteomics Profiling for Clinical Applications

    SciTech Connect

    Qian, Weijun; Jacobs, Jon M.; Liu, Tao; Camp, David G.; Smith, Richard D.

    2006-08-01

    The advances in proteomic technologies provide tremendous opportunities for applying these technologies in biomarker-related clinical applications; however, the unique characteristics of human biofluids such as high dynamic range in protein abundances and extreme complexity of human proteomes present tremendous challenges for current analytical technologies. In this review, we focus on summarizing the recent advances in LC-MS based proteomic profiling and its applications in clinical proteomics as well as the major challenges for implementing these technologies for more effective biomarker discovery. Over the last few years, tremendous efforts have been directed towards the development of more effective approaches for characterizing the human plasma/serum and other biofluid proteomes. The developments in immunodepletion and various fractionation approaches in combination with much improved LC-MS platforms have enabled the profiling of the plasma proteome with much greater dynamic range of coverage, allowing many proteins at low ng/mL levels being confidently identified. Despite the significant advances and efforts, the dynamic range of measurements or extent of proteome coverage, the confidence of peptide/protein identification, the accuracy of quantitation, the throughput of analysis, and the robustness of the present instrumentation are still among the major challenges for implementation of a proteomic profiling platform suitable for efficient clinical applications.

  9. Quantitative proteomic survey of endoplasmic reticulum in mouse liver.

    PubMed

    Song, Yanping; Jiang, Ying; Ying, Wantao; Gong, Yan; Yan, Yujuan; Yang, Dong; Ma, Jie; Xue, Xiaofang; Zhong, Fan; Wu, Songfeng; Hao, Yunwei; Sun, Aihua; Li, Tao; Sun, Wei; Wei, Handong; Zhu, Yunping; Qian, Xiaohong; He, Fuchu

    2010-03-01

    To gain a better understanding of the critical function of the endoplasmic reticulum (ER) in liver, we carried out a proteomic survey of mouse liver ER. The ER proteome was profiled with a new three-dimensional, gel-based strategy. From 6152 and 6935 MS spectra, 903 and 1042 proteins were identified with at least two peptides matches at 95% confidence in the rough (r) and smooth (s) ER, respectively. Comparison of the rER and sER proteomes showed that calcium-binding proteins are significantly enriched in the sER suggesting that the ion-binding function of the ER is compartmentalized. Comparison of the rat and mouse ER proteomes showed that 662 proteins were common to both, comprising 53.5% and 49.3% of those proteomes, respectively. We proposed that these proteins were stably expressed proteins that were essential for the maintenance of ER function. GO annotation with a hypergeometric model proved this hypothesis. Unexpectedly, 210 unknown proteins and some proteins previously reported to occur in the cytosol were highly enriched in the ER. This study provides a reference map for the ER proteome of liver. Identification of new ER proteins will enhance our current understanding of the ER and also suggest new functions for this organelle. PMID:20073521

  10. Data for mitochondrial proteomic alterations in the aging mouse brain

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Villeneuve, Lance M.; Fox, Howard S.

    2015-01-01

    Mitochondria are dynamic organelles critical for many cellular processes, including energy generation. Thus, mitochondrial dysfunction likely plays a role in the observed alterations in brain glucose metabolism during aging. Despite implications of mitochondrial alterations during brain aging, comprehensive quantitative proteomic studies remain limited. Therefore, to characterize the global age-associated mitochondrial proteomic changes in the brain, we analyzed mitochondria isolated from the brain of 5-, 12-, and 24-month old mice using quantitative mass spectrometry. We identified changes in the expression of proteins important for biological processes involved in the generation of precursor metabolites and energy through the breakdown of carbohydrates, lipids, and proteins. These results are significant because we identified age-associated proteomic changes suggestive of altered mitochondrial catabolic reactions during brain aging. The proteomic data described here can be found in the PRIDE Archive using the reference number PXD001370. A more comprehensive analysis of this data may be obtained from the article “Proteomic analysis and functional characterization of mouse brain mitochondria during aging reveal alterations in energy metabolism” in PROTEOMICS. PMID:26217775

  11. Accuracy and Reproducibility in Quantification of Plasma Protein Concentrations by Mass Spectrometry without the Use of Isotopic Standards

    PubMed Central

    Kramer, Gertjan; Woolerton, Yvonne; van Straalen, Jan P.; Vissers, Johannes P. C.; Dekker, Nick; Langridge, James I.; Beynon, Robert J.; Speijer, Dave; Sturk, Auguste; Aerts, Johannes M. F. G.

    2015-01-01

    Background Quantitative proteomic analysis with mass spectrometry holds great promise for simultaneously quantifying proteins in various biosamples, such as human plasma. Thus far, studies addressing the reproducible measurement of endogenous protein concentrations in human plasma have focussed on targeted analyses employing isotopically labelled standards. Non-targeted proteomics, on the other hand, has been less employed to this end, even though it has been instrumental in discovery proteomics, generating large datasets in multiple fields of research. Results Using a non-targeted mass spectrometric assay (LCMSE), we quantified abundant plasma proteins (43 mg/mL—40 ug/mL range) in human blood plasma specimens from 30 healthy volunteers and one blood serum sample (ProteomeXchange: PXD000347). Quantitative results were obtained by label-free mass spectrometry using a single internal standard to estimate protein concentrations. This approach resulted in quantitative results for 59 proteins (cut off ≥11 samples quantified) of which 41 proteins were quantified in all 31 samples and 23 of these with an inter-assay variability of ≤ 20%. Results for 7 apolipoproteins were compared with those obtained using isotope-labelled standards, while 12 proteins were compared to routine immunoassays. Comparison of quantitative data obtained by LCMSE and immunoassays showed good to excellent correlations in relative protein abundance (r = 0.72–0.96) and comparable median concentrations for 8 out of 12 proteins tested. Plasma concentrations of 56 proteins determined by LCMSE were of similar accuracy as those reported by targeted studies and 7 apolipoproteins quantified by isotope-labelled standards, when compared to reference concentrations from literature. Conclusions This study shows that LCMSE offers good quantification of relative abundance as well as reasonable estimations of concentrations of abundant plasma proteins. PMID:26474480

  12. “Seed Proteomics"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  13. Developing the wool proteome.

    PubMed

    Clerens, Stefan; Cornellison, Charisa D; Deb-Choudhury, Santanu; Thomas, Ancy; Plowman, Jeffrey E; Dyer, Jolon M

    2010-08-01

    The wool proteome has been largely uncharted due to a lack of database coverage, poor protein extractability and dynamic range issues. Yet, investigating correlations between wool physical properties and protein content, or characterising UV-, heat- or processing-induced protein damage requires the availability of an identifiable and identified proteome. In this study we have achieved unprecedented wool proteome identification through a strategy of comprehensive data acquisition, iterative protein identification/validation and concurrent augmentation of the sequence database. Data acquisition comprised a range of different hyphenated MS techniques including LC-MS/MS, LC-MALDI, 2D-LC-MS/MS and SDS-PAGE LC-MS. Using iterative searching of databases and search result combination using ProteinScape, a systematic expansion of identifiable proteins in the sequence database was achieved. This was followed by extensive validation and rationalisation of the protein identifications. In total, 72 complete and 30 partial ovine-specific protein sequences were added to the database, and 113 wool proteins were identified. Enhanced access to ovine-specific protein identification and characterisation will facilitate all wool fibre protein chemistry and proteomics research. PMID:20478423

  14. A Sydney proteome story.

    PubMed

    Williams, Keith L; Gooley, Andrew A; Wilkins, Marc R; Packer, Nicolle H

    2014-07-31

    This is the story of the experience of a multidisciplinary group at Macquarie University in Sydney as we participated in, and impacted upon, major currents that washed through protein science as the field of Proteomics emerged. The large scale analysis of proteins became possible. This is not a history of the field. Instead we have tried to encapsulate the stimulating personal ride we had transiting from conventional academe, to a Major National Research Facility, to the formation of Proteomics company Proteome Systems Ltd. There were lots of blind alleys, wrong directions, but we also got some things right and our efforts, along with those of many other groups around the world, did change the face of protein science. While the transformation is by no means yet complete, protein science is very different from the field in the 1990s. This article is part of a Special Issue entitled: 20years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini, Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez. PMID:24735915

  15. Arabidopsis peroxisome proteomics

    PubMed Central

    Bussell, John D.; Behrens, Christof; Ecke, Wiebke; Eubel, Holger

    2013-01-01

    The analytical depth of investigation of the peroxisomal proteome of the model plant Arabidopsis thaliana has not yet reached that of other major cellular organelles such as chloroplasts or mitochondria. This is primarily due to the difficulties associated with isolating and obtaining purified samples of peroxisomes from Arabidopsis. So far only a handful of research groups have been successful in obtaining such fractions. To make things worse, enriched peroxisome fractions frequently suffer from significant organellar contamination, lowering confidence in localization assignment of the identified proteins. As with other cellular compartments, identification of peroxisomal proteins forms the basis for investigations of the dynamics of the peroxisomal proteome. It is therefore not surprising that, in terms of functional analyses by proteomic means, peroxisomes are lagging considerably behind chloroplasts or mitochondria. Alternative strategies are needed to overcome the obstacle of hard-to-obtain organellar fractions. This will help to close the knowledge gap between peroxisomes and other organelles and provide a full picture of the physiological pathways shared between organelles. In this review, we briefly summarize the status quo and discuss some of the methodological alternatives to classic organelle proteomic approaches. PMID:23630535

  16. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  17. A complete mass spectrometric map for the analysis of the yeast proteome and its application to quantitative trait analysis

    PubMed Central

    Picotti, Paola; Clement-Ziza, Mathieu; Lam, Henry; Campbell, David S.; Schmidt, Alexander; Deutsch, Eric W.; Röst, Hannes; Sun, Zhi; Rinner, Oliver; Reiter, Lukas; Shen, Qin; Michaelson, Jacob J.; Frei, Andreas; Alberti, Simon; Kusebauch, Ulrike; Wollscheid, Bernd; Moritz, Robert; Beyer, Andreas; Aebersold, Ruedi

    2013-01-01

    Complete reference maps or datasets, like the genomic map of an organism, are highly beneficial tools for biological and biomedical research. Attempts to generate such reference datasets for a proteome so far failed to reach complete proteome coverage, with saturation apparent at approximately two thirds of the proteomes tested, even for the most thoroughly characterized proteomes. Here, we used a strategy based on high-throughput peptide synthesis and mass spectrometry to generate a close to complete reference map (97% of the genome-predicted proteins) of the S. cerevisiae proteome. We generated two versions of this mass spectrometric map one supporting discovery- (shotgun) and the other hypothesis-driven (targeted) proteomic measurements. The two versions of the map, therefore, constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. The reference libraries can be browsed via a web-based repository and associated navigation tools. To demonstrate the utility of the reference libraries we applied them to a protein quantitative trait locus (pQTL) analysis, which requires measurement of the same peptides over a large number of samples with high precision. Protein measurements over a set of 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, impacting on the levels of related proteins. Our results suggest that selective pressure favors the acquisition of sets of polymorphisms that maintain the stoichiometry of protein complexes and pathways. PMID:23334424

  18. A Normative Study of the Synovial Fluid Proteome from Healthy Porcine Knee Joints

    PubMed Central

    2015-01-01

    Synovial fluid in an articulating joint contains proteins derived from the blood plasma and proteins that are produced by cells within the joint tissues, such as synovium, cartilage, ligament, and meniscus. The proteome composition of healthy synovial fluid and the cellular origins of many synovial fluid components are not fully understood. Here, we present a normative proteomics study using porcine synovial fluid. Using our optimized method, we identified 267 proteins with high confidence in healthy synovial fluid. We also evaluated mRNA expression data from tissues that can contribute to the synovial fluid proteome, including synovium, cartilage, blood, and liver, to better estimate the relative contributions from these sources to specific synovial fluid components. We identified 113 proteins in healthy synovial fluid that appear to be primarily derived from plasma transudates, 37 proteins primarily derived from synovium, and 11 proteins primarily derived from cartilage. Finally, we compared the identified synovial fluid proteome to the proteome of human plasma, and we found that the two body fluids share many similarities, underlining the detected plasma derived nature of many synovial fluid components. Knowing the synovial fluid proteome of a healthy joint will help to identify mechanisms that cause joint disease and pathways involved in disease progression. PMID:25160569

  19. Proteome Analyses of Hepatocellular Carcinoma

    PubMed Central

    Megger, Dominik A.; Naboulsi, Wael; Meyer, Helmut E.; Sitek, Barbara

    2014-01-01

    Proteomics has evolved into a powerful and widely used bioanalytical technique in the study of cancer, especially hepatocellular carcinoma (HCC). In this review, we provide an up to date overview of feasible proteome-analytical techniques for clinical questions. In addition, we present a broad summary of proteomic studies of HCC utilizing various technical approaches for the analysis of samples derived from diverse sources like HCC cell lines, animal models, human tissue and body fluids. PMID:26357614

  20. Plant-bacterium interactions analyzed by proteomics

    PubMed Central

    Afroz, Amber; Zahur, Muzna; Zeeshan, Nadia; Komatsu, Setsuko

    2013-01-01

    The evolution of the plant immune response has resulted in a highly effective defense system that is able to resist potential attack by microbial pathogens. The primary immune response is referred to as pathogen associated molecular pattern (PAMP) triggered immunity and has evolved to recognize common features of microbial pathogens. In response to the delivery of pathogen effector proteins, plants acquired R proteins to fight against pathogen attack. R-dependent defense response is important in understanding the biochemical and cellular mechanisms and underlying these interactions will enable molecular and transgenic approaches for crops with increased biotic resistance. Proteomic analyses are particularly useful for understanding the mechanisms of host plant against the pathogen attack. Recent advances in the field of proteome analyses have initiated a new research area, i.e., the analysis of more complex microbial communities and their interaction with plant. Such areas hold great potential to elucidate, not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa, symbiotic, pathogenic bacteria, and commensal bacteria. During biotic stress, plant hormonal signaling pathways prioritizes defense over other cellular functions. Some plant pathogens take advantage of hormone dependent regulatory system by mimicking hormones that interfere with host immune responses to promote virulence (vir). In this review, it is discussed the cross talk that plays important role in response to pathogens attack with different infection strategies using proteomic approaches. PMID:23424014

  1. High-throughput production of a stable isotope-labeled peptide library for targeted proteomics using a wheat germ cell-free synthesis system.

    PubMed

    Takemori, Nobuaki; Takemori, Ayako; Tanaka, Yuki; Ishizaki, Jun; Hasegawa, Hitoshi; Shiraishi, Atsushi; Ohashi, Yuichi

    2016-07-19

    Quantitative proteomic approaches using selected reaction monitoring (SRM) are currently limited by the difficulty in the preparation of reference standards. In this study, we demonstrat the high-throughput production of a reference peptide library using a wheat germ cell-free synthesis system to develop a large-scale SRM assay for targeted proteomics. PMID:27203355

  2. Using Extracellular Matrix Proteomics: To Understand Left Ventricular Remodeling

    PubMed Central

    Lindsey, Merry L.; Weintraub, Susan T.; Lange, Richard A.

    2011-01-01

    Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure. PMID:22337931

  3. Proteomics in bone research.

    PubMed

    Zhang, Hengwei; Recker, Robert; Lee, Wai-Nang Paul; Xiao, Gary Guishan

    2010-02-01

    Osteoporosis is prevalent among the elderly and is a major cause of bone fracture in this population. Bone integrity is maintained by the dynamic processes of bone resorption and bone formation (bone remodeling). Osteoporosis results when there is an imbalance of the two counteracting processes. Bone mineral density, measured by dual-energy x-ray absorptiometry has been the primary method to assess fracture risk for decades. Recent studies demonstrated that measurement of bone turnover markers allows for a dynamic assessment of bone remodeling, while imaging techniques, such as dual-energy x-ray absorptiometry, do not. The application of proteomics has permitted discoveries of new, sensitive, bone turnover markers, which provide unique information for clinical diagnosis and treatment of patients with bone diseases. This review summarizes the recent findings of proteomic studies on bone diseases, properties of mesenchymal stem cells with high expansion rates and osteoblast and osteoclast differentiation, with emphasis on the role of quantitative proteomics in the study of signaling dynamics, biomarkers and discovery of therapeutic targets. PMID:20121480

  4. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  5. In silico instrumental response correction improves precision of label-free proteomics and accuracy of proteomics-based predictive models.

    PubMed

    Lyutvinskiy, Yaroslav; Yang, Hongqian; Rutishauser, Dorothea; Zubarev, Roman A

    2013-08-01

    In the analysis of proteome changes arising during the early stages of a biological process (e.g. disease or drug treatment) or from the indirect influence of an important factor, the biological variations of interest are often small (∼10%). The corresponding requirements for the precision of proteomics analysis are high, and this often poses a challenge, especially when employing label-free quantification. One of the main contributors to the inaccuracy of label-free proteomics experiments is the variability of the instrumental response during LC-MS/MS runs. Such variability might include fluctuations in the electrospray current, transmission efficiency from the air-vacuum interface to the detector, and detection sensitivity. We have developed an in silico post-processing method of reducing these variations, and have thus significantly improved the precision of label-free proteomics analysis. For abundant blood plasma proteins, a coefficient of variation of approximately 1% was achieved, which allowed for sex differentiation in pooled samples and ≈90% accurate differentiation of individual samples by means of a single LC-MS/MS analysis. This method improves the precision of measurements and increases the accuracy of predictive models based on the measurements. The post-acquisition nature of the correction technique and its generality promise its widespread application in LC-MS/MS-based methods such as proteomics and metabolomics. PMID:23589346

  6. Proteomics. Tissue-based map of the human proteome.

    PubMed

    Uhlén, Mathias; Fagerberg, Linn; Hallström, Björn M; Lindskog, Cecilia; Oksvold, Per; Mardinoglu, Adil; Sivertsson, Åsa; Kampf, Caroline; Sjöstedt, Evelina; Asplund, Anna; Olsson, IngMarie; Edlund, Karolina; Lundberg, Emma; Navani, Sanjay; Szigyarto, Cristina Al-Khalili; Odeberg, Jacob; Djureinovic, Dijana; Takanen, Jenny Ottosson; Hober, Sophia; Alm, Tove; Edqvist, Per-Henrik; Berling, Holger; Tegel, Hanna; Mulder, Jan; Rockberg, Johan; Nilsson, Peter; Schwenk, Jochen M; Hamsten, Marica; von Feilitzen, Kalle; Forsberg, Mattias; Persson, Lukas; Johansson, Fredric; Zwahlen, Martin; von Heijne, Gunnar; Nielsen, Jens; Pontén, Fredrik

    2015-01-23

    Resolving the molecular details of proteome variation in the different tissues and organs of the human body will greatly increase our knowledge of human biology and disease. Here, we present a map of the human tissue proteome based on an integrated omics approach that involves quantitative transcriptomics at the tissue and organ level, combined with tissue microarray-based immunohistochemistry, to achieve spatial localization of proteins down to the single-cell level. Our tissue-based analysis detected more than 90% of the putative protein-coding genes. We used this approach to explore the human secretome, the membrane proteome, the druggable proteome, the cancer proteome, and the metabolic functions in 32 different tissues and organs. All the data are integrated in an interactive Web-based database that allows exploration of individual proteins, as well as navigation of global expression patterns, in all major tissues and organs in the human body. PMID:25613900

  7. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics.

    PubMed

    Shankaran, Mahalakshmi; King, Chelsea L; Angel, Thomas E; Holmes, William E; Li, Kelvin W; Colangelo, Marc; Price, John C; Turner, Scott M; Bell, Christopher; Hamilton, Karyn L; Miller, Benjamin F; Hellerstein, Marc K

    2016-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  8. Circulating protein synthesis rates reveal skeletal muscle proteome dynamics

    PubMed Central

    Shankaran, Mahalakshmi; King, Chelsea L.; Angel, Thomas E.; Holmes, William E.; Li, Kelvin W.; Colangelo, Marc; Price, John C.; Turner, Scott M.; Bell, Christopher; Hamilton, Karyn L.; Miller, Benjamin F.; Hellerstein, Marc K.

    2015-01-01

    Here, we have described and validated a strategy for monitoring skeletal muscle protein synthesis rates in rodents and humans over days or weeks from blood samples. We based this approach on label incorporation into proteins that are synthesized specifically in skeletal muscle and escape into the circulation. Heavy water labeling combined with sensitive tandem mass spectrometric analysis allowed integrated synthesis rates of proteins in muscle tissue across the proteome to be measured over several weeks. Fractional synthesis rate (FSR) of plasma creatine kinase M-type (CK-M) and carbonic anhydrase 3 (CA-3) in the blood, more than 90% of which is derived from skeletal muscle, correlated closely with FSR of CK-M, CA-3, and other proteins of various ontologies in skeletal muscle tissue in both rodents and humans. Protein synthesis rates across the muscle proteome generally changed in a coordinate manner in response to a sprint interval exercise training regimen in humans and to denervation or clenbuterol treatment in rodents. FSR of plasma CK-M and CA-3 revealed changes and interindividual differences in muscle tissue proteome dynamics. In human subjects, sprint interval training primarily stimulated synthesis of structural and glycolytic proteins. Together, our results indicate that this approach provides a virtual biopsy, sensitively revealing individualized changes in proteome-wide synthesis rates in skeletal muscle without a muscle biopsy. Accordingly, this approach has potential applications for the diagnosis, management, and treatment of muscle disorders. PMID:26657858

  9. [Early detection of pancreatic cancer by novel proteomic technique].

    PubMed

    Honda, Kazufumi; Ono, Masaya; Shitashige, Miki; Yamada, Tesshi

    2006-09-01

    Pancreatic cancer is the fifth leading cause of cancer-related mortality in Japan. Early detection in pancreatic cancer is one of the most feasible strategies to improve outcome. We compared plasma proteome between pancreatic cancer patients and healthy controls using surface-enhanced laser desorption/ionization coupled with hybrid quadrupole time-of-flight mass spectrometry. Proteomic spectra were generated from a total of 245 plasma samples obtained from two institutes. A discriminating proteomic pattern was built from training cohort using machine learning algorithm and was applied two validation cohorts. This set discriminating cancer patients in the first validation cohort with a sensitivity of 90.9% and a specificity of 91.9%, and was further validated in an independent cohort at a second institution. When combined with CA19-9, 100% tumor of pancreatic cancers, including early stage tumors, were detected. In this report, we describe a possible detection of early pancreatic cancer using novel proteomic technique. PMID:16972690

  10. Overflow metabolism in E. coli results from efficient proteome allocation

    PubMed Central

    Okano, Hiroyuki; Zhang, Zhongge; Shen, Yang; Williamson, James R.; Hwa, Terence

    2015-01-01

    Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast growing cells, including bacteria, fungi, and mammalian cells, but its origin has remained mysterious despite decades of research. Here we study metabolic overflow in E. coli and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions. A simple model of proteomic resource allocation can quantitatively account for all of the observed behaviors and accurately predict responses to novel perturbations. The key hypothesis of the model, that the proteome cost of energy biogenesis by respiration exceeds that by fermentation, is quantitatively confirmed by direct measurement of protein abundances via quantitative mass spectrometry. PMID:26632588

  11. Proteomic analysis of Caenorhabditis elegans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomic studies of the free-living nematode Caenorhabditis elegans have recently received great attention because this animal is a useful model platform for the in vivo study of various biological problems relevant to human disease. In general, proteomic analysis is performed in order to address a...

  12. Proteomics Approaches Shed New Light on Traditional Iranian Medicine

    PubMed Central

    Movahhed, Mina; Poursaleh, Zohreh

    2016-01-01

    Background: Until now, Iranian traditional medicine (ITM) had been extensively based on Iranian philosophy in theoretical approach in diagnosis and treatment, with doubts on academic medicine. Nevertheless, the diagnosis of temperaments, herbal standardization, and quality control had been with the obscurity of functional molecules and their action mechanisms. Proteomics is a potent board to the mechanistic investigation of ITM and has been comprehensively applied profile drug-regulated proteins. In this review, we assessed the application of this modern molecular biological method in the identification of temperaments and drug targets of ITM. Methods: All available studies related to proteomics in traditional medicine, alternative and complementary medicine, including books, journals, and other references were studied and assessed. Results: The present review showed the phenotypes of the various temperaments in healthy individuals, that is to say, same proteins with different dynamic properties. Therefore, the usefulness of proteomics seems authoritative to understand the means by which the molecular pathways protected in ITM. This might be also the key clinical viewpoint on this new approach for enabling the integration of Iranian traditional medicine and modern biological science and technology, as well for upholding the internationalization of ITM. Conclusion: Proteomics, as a powerful tool for systems biology, is an essential research methodology for understanding the mechanisms of traditional medicine. Further investigation on the applications of advanced proteomics in temperaments, herbal standardization, and quality control in ITM is recommended. PMID:27516684

  13. Proteome Studies of Filamentous Fungi

    SciTech Connect

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.

  14. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. PMID:25868663

  15. proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data*

    PubMed Central

    Wang, Xiaojing; Slebos, Robbert J. C.; Chambers, Matthew C.; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing

    2016-01-01

    To facilitate genome-based representation and analysis of proteomics data, we developed a new bioinformatics framework, proBAMsuite, in which a central component is the protein BAM (proBAM) file format for organizing peptide spectrum matches (PSMs)1 within the context of the genome. proBAMsuite also includes two R packages, proBAMr and proBAMtools, for generating and analyzing proBAM files, respectively. Applying proBAMsuite to three recently published proteomics datasets, we demonstrated its utility in facilitating efficient genome-based sharing, interpretation, and integration of proteomics data. First, the interpretation of proteomics data is significantly enhanced with the rich genomic annotation information. Second, PSMs can be easily reannotated using user-specified gene annotation schemes and assembled into both protein and gene identifications. Third, using the genome as a common reference, proBAMsuite facilitates seamless proteomics and proteogenomics data integration. Finally, proBAM files can be readily visualized in genome browsers and thus bring proteomics data analysis to a general audience beyond the proteomics community. Results from this study establish proBAMsuite as a useful bioinformatics framework for proteomics and proteogenomics research. PMID:26657539

  16. Asymmetric Proteome Equalization of the Skeletal Muscle Proteome Using a Combinatorial Hexapeptide Library

    PubMed Central

    Rivers, Jenny; Hughes, Chris; McKenna, Thérèse; Woolerton, Yvonne; Vissers, Johannes P. C.; Langridge, James I.; Beynon, Robert J.

    2011-01-01

    Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method. PMID:22205978

  17. Human protein reference database--2006 update.

    PubMed

    Mishra, Gopa R; Suresh, M; Kumaran, K; Kannabiran, N; Suresh, Shubha; Bala, P; Shivakumar, K; Anuradha, N; Reddy, Raghunath; Raghavan, T Madhan; Menon, Shalini; Hanumanthu, G; Gupta, Malvika; Upendran, Sapna; Gupta, Shweta; Mahesh, M; Jacob, Bincy; Mathew, Pinky; Chatterjee, Pritam; Arun, K S; Sharma, Salil; Chandrika, K N; Deshpande, Nandan; Palvankar, Kshitish; Raghavnath, R; Krishnakanth, R; Karathia, Hiren; Rekha, B; Nayak, Rashmi; Vishnupriya, G; Kumar, H G Mohan; Nagini, M; Kumar, G S Sameer; Jose, Rojan; Deepthi, P; Mohan, S Sujatha; Gandhi, T K B; Harsha, H C; Deshpande, Krishna S; Sarker, Malabika; Prasad, T S Keshava; Pandey, Akhilesh

    2006-01-01

    Human Protein Reference Database (HPRD) (http://www.hprd.org) was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein-protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein-protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (http://www.genprot.org), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data. PMID:16381900

  18. Human protein reference database—2006 update

    PubMed Central

    Mishra, Gopa R.; Suresh, M.; Kumaran, K.; Kannabiran, N.; Suresh, Shubha; Bala, P.; Shivakumar, K.; Anuradha, N.; Reddy, Raghunath; Raghavan, T. Madhan; Menon, Shalini; Hanumanthu, G.; Gupta, Malvika; Upendran, Sapna; Gupta, Shweta; Mahesh, M.; Jacob, Bincy; Mathew, Pinky; Chatterjee, Pritam; Arun, K. S.; Sharma, Salil; Chandrika, K. N.; Deshpande, Nandan; Palvankar, Kshitish; Raghavnath, R.; Krishnakanth, R.; Karathia, Hiren; Rekha, B.; Nayak, Rashmi; Vishnupriya, G.; Kumar, H. G. Mohan; Nagini, M.; Kumar, G. S. Sameer; Jose, Rojan; Deepthi, P.; Mohan, S. Sujatha; Gandhi, T. K. B.; Harsha, H. C.; Deshpande, Krishna S.; Sarker, Malabika; Prasad, T. S. Keshava; Pandey, Akhilesh

    2006-01-01

    Human Protein Reference Database (HPRD) () was developed to serve as a comprehensive collection of protein features, post-translational modifications (PTMs) and protein–protein interactions. Since the original report, this database has increased to >20 000 proteins entries and has become the largest database for literature-derived protein–protein interactions (>30 000) and PTMs (>8000) for human proteins. We have also introduced several new features in HPRD including: (i) protein isoforms, (ii) enhanced search options, (iii) linking of pathway annotations and (iv) integration of a novel browser, GenProt Viewer (), developed by us that allows integration of genomic and proteomic information. With the continued support and active participation by the biomedical community, we expect HPRD to become a unique source of curated information for the human proteome and spur biomedical discoveries based on integration of genomic, transcriptomic and proteomic data. PMID:16381900

  19. Biochemical and proteomic characterization of alkaptonuric chondrocytes.

    PubMed

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as "black" AKU chondrocytes, while those coming from the white portion were referred to as "white" AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both "white" and "black" AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in "black" AKU chondrocytes. PMID:22213341

  20. Biochemical and Proteomic Characterization of Alkaptonuric Chondrocytes

    PubMed Central

    Braconi, Daniela; Bernardini, Giulia; Bianchini, Claretta; Laschi, Marcella; Millucci, Lia; Amato, Loredana; Tinti, Laura; Serchi, Tommaso; Chellini, Federico; Spreafico, Adriano; Santucci, Annalisa

    2012-01-01

    Alkaptonuria (AKU) is a rare genetic disease associated with the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products which leads to the deposition of melanin-like pigments (ochronosis) in connective tissues. Although numerous case reports have described ochronosis in joints, little is known on the molecular mechanisms leading to such a phenomenon. For this reason, we characterized biochemically chondrocytes isolated from the ochronotic cartilage of AKU patients. Based on the macroscopic appearance of the ochronotic cartilage, two sub-populations were identified: cells coming from the black portion of the cartilage were referred to as “black” AKU chondrocytes, while those coming from the white portion were referred to as “white” AKU chondrocytes. Notably, both AKU chondrocytic types were characterized by increased apoptosis, NO release, and levels of pro-inflammatory cytokines. Transmission electron microscopy also revealed that intracellular ochronotic pigment deposition was common to both “white” and “black” AKU cells. We then undertook a proteomic and redox-proteomic analysis of AKU chondrocytes which revealed profound alterations in the levels of proteins involved in cell defence, protein folding, and cell organization. An increased post-translational oxidation of proteins, which also involved high molecular weight protein aggregates, was found to be particularly relevant in “black” AKU chondrocytes. J. Cell. Physiol. 227: 3333–3343, 2012. © 2011 Wiley Periodicals, Inc. PMID:22213341

  1. Ovarian Cancer Proteomic, Phosphoproteomic, and Glycoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples,

  2. Immunocapture strategies in translational proteomics

    PubMed Central

    Fredolini, Claudia; Byström, Sanna; Pin, Elisa; Edfors, Fredrik; Tamburro, Davide; Iglesias, Maria Jesus; Häggmark, Anna; Hong, Mun-Gwan; Uhlen, Mathias; Nilsson, Peter; Schwenk, Jochen M

    2016-01-01

    Aiming at clinical studies of human diseases, antibody-assisted assays have been applied to biomarker discovery and toward a streamlined translation from patient profiling to assays supporting personalized treatments. In recent years, integrated strategies to couple and combine antibodies with mass spectrometry-based proteomic efforts have emerged, allowing for novel possibilities in basic and clinical research. Described in this review are some of the field’s current and emerging immunocapture approaches from an affinity proteomics perspective. Discussed are some of their advantages, pitfalls and opportunities for the next phase in clinical and translational proteomics. PMID:26558424

  3. Vitreous Proteomics and Diabetic Retinopathy

    PubMed Central

    Walia, Saloni; Clermont, Allen C.; Gao, Ben-Bo; Aiello, Lloyd Paul; Feener, Edward P.

    2016-01-01

    Diabetic retinopathy is the major cause of acquired blindness in working age adults. Studies of the vitreous proteome have provided insights into the etiology of diabetic retinopathy and suggested potential molecular targets for treatments. Further characterization of the protein changes associated with the progression of this disease may suggest additional therapeutic approaches as well as reveal novel factors that may be useful in predicting risk and functional outcomes of interventional therapies. This article provides an overview of the various techniques used for proteomic analysis of the vitreous and details results from studies evaluating vitreous of diabetic patients using the proteomic approach. PMID:21091014

  4. Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data.

    PubMed

    Sekimoto, Shun; Ebihara, Mitsuru

    2013-07-01

    Trace amounts of three halogens (chlorine, bromine, and iodine) were determined using radiochemical neutron activation analysis (RNAA) for nine sedimentary rocks and three rhyolite samples. To obtain high-quality analytical data, the radiochemical procedure of RNAA was improved by lowering the background in gamma-ray spectrometry and completing the chemical procedure more rapidly than in conventional procedures. A comparison of the RNAA data of Br and I with corresponding inductively coupled plasma mass spectrometry (ICPMS) literature data revealed that the values obtained by ICPMS coupled with pyrohydrolysis preconcentration were systematically lower than the RNAA data for some reference samples, suggesting that the quantitative collection of Br and I cannot always be achieved by the pyrohydrolysis for some solid samples. The RNAA data of three halogens can classify sedimentary rock reference samples into two groups (the samples from inland water and those from seawater), implying the geochemical significance of halogen data. PMID:23710630

  5. Proteomic analysis of human vitreous humor

    PubMed Central

    2014-01-01

    Background The vitreous humor is a transparent, gelatinous mass whose main constituent is water. It plays an important role in providing metabolic nutrient requirements of the lens, coordinating eye growth and providing support to the retina. It is in close proximity to the retina and reflects many of the changes occurring in this tissue. The biochemical changes occurring in the vitreous could provide a better understanding about the pathophysiological processes that occur in vitreoretinopathy. In this study, we investigated the proteome of normal human vitreous humor using high resolution Fourier transform mass spectrometry. Results The vitreous humor was subjected to multiple fractionation techniques followed by LC-MS/MS analysis. We identified 1,205 proteins, 682 of which have not been described previously in the vitreous humor. Most proteins were localized to the extracellular space (24%), cytoplasm (20%) or plasma membrane (14%). Classification based on molecular function showed that 27% had catalytic activity, 10% structural activity, 10% binding activity, 4% cell and 4% transporter activity. Categorization for biological processes showed 28% participate in metabolism, 20% in cell communication and 13% in cell growth. The data have been deposited to the ProteomeXchange with identifier PXD000957. Conclusion This large catalog of vitreous proteins should facilitate biomedical research into pathological conditions of the eye including diabetic retinopathy, retinal detachment and cataract. PMID:25097467

  6. Reference Assessment

    ERIC Educational Resources Information Center

    Bivens-Tatum, Wayne

    2006-01-01

    This article presents interesting articles that explore several different areas of reference assessment, including practical case studies and theoretical articles that address a range of issues such as librarian behavior, patron satisfaction, virtual reference, or evaluation design. They include: (1) "Evaluating the Quality of a Chat Service"…

  7. Reference Services.

    ERIC Educational Resources Information Center

    Bunge, Charles A.

    1999-01-01

    Discusses library reference services. Topics include the historical development of reference services; instruction in library use, particularly in college and university libraries; guidance; information and referral services and how they differ from traditional question-answering service; and future concerns, including user fees and the planning…

  8. Redox Proteomics in Human Biofluids: Sample Preparation, Separation and Immunochemical Tagging for Analysis of Protein Oxidation.

    PubMed

    Di Domenico, Fabio; Perluigi, Marzia; Butterfield, D Allan

    2016-01-01

    Proteomics offers the simultaneous detection of a large number of proteins in a single experiment and can provide important information regarding crucial aspects of specific proteins, particularly post-translational modifications (PTMs). Investigations of oxidative PTMs are currently performed using focused redox proteomics techniques, which rely on gel electrophoresis separations of intact proteins with the final detection of oxidative PTMs being performed by mass spectrometry (MS) analysis. The application of this technique to human biofluids is being subject of increasing investigation and is expected to provide new insights on the oxidative status of the peripheral proteome in neurological diseases such as Alzheimer's disease, towards purposes of early diagnosis and prognosis. This chapter describes all the experimental steps to perform redox proteomics analysis of cerebrospinal fluid and plasma/serum samples. PMID:26235080

  9. Quantitative Proteome Mapping of Nitrotyrosines

    SciTech Connect

    Bigelow, Diana J.; Qian, Weijun

    2008-02-10

    An essential first step in the understanding disease and environmental perturbations is the early and quantitative detection of the increased levels of the inflammatory marker nitrotyrosine, as compared with its endogenous levels within the tissue or cellular proteome. Thus, methods that successfully address a proteome-wide quantitation of nitrotyrosine and related oxidative modifications can provide early biomarkers of risk and progression of disease as well as effective strategies for therapy. Multidimensional separations LC coupled with tandem mass spectrometry (LC-MS/MS) has, in recent years, significantly expanded our knowledge of human (and mammalian model system) proteomes including some nascent work in identification of post-translational modifications. In the following review, we discuss the application of LC-MS/MS for quantitation and identification of nitrotyrosine-modified proteins within the context of complex protein mixtures presented in mammalian proteomes.

  10. The human proteomics initiative (HPI).

    PubMed

    O'Donovan, C; Apweiler, R; Bairoch, A

    2001-05-01

    The availability of the human genome sequence has enabled the exploration and exploitation of the human genome and proteome to begin. Research has now focussed on the annotation of the genome and in particular of the proteome. With expert annotation extracted from the literature by biologists as the foundation, it has been possible to expand into the areas of data mining and automatic annotation. With further development and integration of pattern recognition methods and the application of alignments clustering, proteome analysis can now be provided in a meaningful way. These various approaches have been integrated to attach, extract and combine as much relevant information as possible to the proteome. This resource should be valuable to users from both research and industry. PMID:11301130

  11. Proteomics of Plant Pathogenic Fungi

    PubMed Central

    González-Fernández, Raquel; Prats, Elena; Jorrín-Novo, Jesús V.

    2010-01-01

    Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular) and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection. PMID:20589070

  12. Reference frames and reference networks

    NASA Astrophysics Data System (ADS)

    Bosy, Jaroslaw; Krynski, Jan

    2015-12-01

    The summary of research activities concerning reference frames and reference networks performed in Poland in a period of 2011-2014 is presented. It contains the results of research on implementation of IUGG2011 and IAU2012 resolutions on reference systems, implementation of the ETRS89 in Poland, operational work of permanent IGS/ EUREF stations in Poland, operational work of ILRS laser ranging station in Poland, active GNSS station networks in Poland, maintenance of vertical control in Poland, maintenance and modernization of gravity control, and maintenance of magnetic control in Poland. The bibliography of the related works is given in references.

  13. Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics

    PubMed Central

    Salmon, Magali S.; Bayer, Emmanuelle M. F.

    2013-01-01

    In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on “free” PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins. PMID:23335932

  14. NASCAP programmer's reference manual

    NASA Technical Reports Server (NTRS)

    Mandell, M. J.; Stannard, P. R.; Katz, I.

    1993-01-01

    The NASA Charging Analyzer Program (NASCAP) is a computer program designed to model the electrostatic charging of complicated three-dimensional objects, both in a test tank and at geosynchronous altitudes. This document is a programmer's reference manual and user's guide. It is designed as a reference to experienced users of the code, as well as an introduction to its use for beginners. All of the many capabilities of NASCAP are covered in detail, together with examples of their use. These include the definition of objects, plasma environments, potential calculations, particle emission and detection simulations, and charging analysis.

  15. Spectral library searching in proteomics.

    PubMed

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data. PMID:26616598

  16. The Succinated Proteome

    SciTech Connect

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John; Frizell, Norma

    2014-03-30

    Succination is a chemical modification of cysteine in protein by the Krebs cycle intermediate, fumarate, yielding S-(2-succino)cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes. Increased succination of proteins is also detected in the kidney of a fumarase conditional knock-out mouse which develops renal tumors. Keap1, the gatekeeper of the antioxidant response, was identified as a major succinated protein in renal cancer cells, suggesting that succination may play a role in activation of the antioxidant response. A wide range of proteins is subject to succination, including enzymes, adipokines, cytoskeletal proteins and ER chaperones with functional cysteine residues. There is also significant overlap between succinated and glutathionylated proteins, and with proteins containing cysteine residues that are readily oxidized to the sulfenic (cysteic) acid. Succination of adipocyte proteins is inhibited by uncouplers, which discharge the mitochondrial membrane potential (Δψm) and by ER stress inhibitors. 2SC serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic post-translational modification of proteins by proteomics approaches.

  17. THE SUCCINATED PROTEOME

    PubMed Central

    Merkley, Eric D.; Metz, Thomas O.; Smith, Richard D.; Baynes, John W.; Frizzell, Norma

    2014-01-01

    The post-translational modifications (PTMs) of cysteine residues include oxidation, S-glutathionylation, S-nitrosylation, and succination, all of which modify protein function or turnover in response to a changing intracellular redox environment. Succination is a chemical modification of cysteine in proteins by the Krebs cycle intermediate, fumarate, yielding S-(2-succino) cysteine (2SC). Intracellular fumarate concentration and succination of proteins are increased by hyperpolarization of the inner mitochondrial membrane, in concert with mitochondrial, endoplasmic reticulum (ER) and oxidative stress in 3T3 adipocytes grown in high glucose medium and in adipose tissue in obesity and diabetes in mice. Increased succination of proteins is also detected in the kidney of a fumarase deficient conditional knock-out mouse which develops renal cysts. A wide range of proteins are subject to succination, including enzymes, adipokines, cytoskeletal proteins, and ER chaperones with functional cysteine residues. There is also some overlap between succinated and glutathionylated proteins, suggesting that the same low pKa thiols are targeted by both. Succination of adipocyte proteins in diabetes increases as a result of nutrient excess derived mitochondrial stress and this is inhibited by uncouplers, which discharge the mitochondrial membrane potential (ΔΨm) and relieve the electron transport chain. 2SC therefore serves as a biomarker of mitochondrial stress or dysfunction in chronic diseases, such as obesity, diabetes, and cancer, and recent studies suggest that succination is a mechanistic link between mitochondrial dysfunction, oxidative and ER stress, and cellular progression toward apoptosis. In this article, we review the history of the succinated proteome and the challenges associated with measuring this non-enzymatic PTM of proteins by proteomics approaches. PMID:24115015

  18. The proteome of human saliva

    NASA Astrophysics Data System (ADS)

    Griffin, Timothy J.

    2013-05-01

    Human saliva holds tremendous potential for transforming disease and health diagnostics given its richness of molecular information and non-invasive collection. Enumerating its molecular constituents is an important first step towards reaching this potential. Among the molecules in saliva, proteins and peptides arguably have the most value: they can directly indicate biochemical functions linked to a health condition/disease state, and they are attractive targets for biomarker assay development. However, cataloging and defining the human salivary proteome is challenging given the dynamic, chemically heterogeneous and complex nature of the system. In addition, the overall human saliva proteome is composed of several "sub-proteomes" which include: intact full length proteins, proteins carrying post-translational modifications (PTMs), low molecular weight peptides, and the metaproteome, derived from protein products from nonhuman organisms (e.g. microbes) present in the oral cavity. Presented here will be a summary of communal efforts to meet the challenge of characterizing the multifaceted saliva proteome, focusing on the use of mass spectrometry as the proteomic technology of choice. Implications of these efforts to characterize the salivary proteome in the context of disease diagnostics will also be discussed.

  19. Comparative Bioinformatics Analyses and Profiling of Lysosome-Related Organelle Proteomes

    PubMed Central

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for 7 lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles. PMID:17375895

  20. Comparative bioinformatics analyses and profiling of lysosome-related organelle proteomes

    NASA Astrophysics Data System (ADS)

    Hu, Zhang-Zhi; Valencia, Julio C.; Huang, Hongzhan; Chi, An; Shabanowitz, Jeffrey; Hearing, Vincent J.; Appella, Ettore; Wu, Cathy

    2007-01-01

    Complete and accurate profiling of cellular organelle proteomes, while challenging, is important for the understanding of detailed cellular processes at the organelle level. Mass spectrometry technologies coupled with bioinformatics analysis provide an effective approach for protein identification and functional interpretation of organelle proteomes. In this study, we have compiled human organelle reference datasets from large-scale proteomic studies and protein databases for seven lysosome-related organelles (LROs), as well as the endoplasmic reticulum and mitochondria, for comparative organelle proteome analysis. Heterogeneous sources of human organelle proteins and rodent homologs are mapped to human UniProtKB protein entries based on ID and/or peptide mappings, followed by functional annotation and categorization using the iProXpress proteomic expression analysis system. Cataloging organelle proteomes allows close examination of both shared and unique proteins among various LROs and reveals their functional relevance. The proteomic comparisons show that LROs are a closely related family of organelles. The shared proteins indicate the dynamic and hybrid nature of LROs, while the unique transmembrane proteins may represent additional candidate marker proteins for LROs. This comparative analysis, therefore, provides a basis for hypothesis formulation and experimental validation of organelle proteins and their functional roles.

  1. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    1999-01-01

    Includes the following ready reference information: "Publishers' Toll-Free Telephone Numbers"; "How to Obtain an ISBN (International Standard Book Number)"; "How to Obtain an ISSN (International Standard Serial Number)"; and "How to Obtain an SAN (Standard Address Number)". (AEF)

  2. On the privacy risks of sharing clinical proteomics data

    PubMed Central

    Li, Sujun; Bandeira, Nuno; Wang, Xiaofeng; Tang, Haixu

    2016-01-01

    Although the privacy issues in human genomic studies are well known, the privacy risks in clinical proteomic data have not been thoroughly studied. As a proof of concept, we reported a comprehensive analysis of the privacy risks in clinical proteomic data. It showed that a small number of peptides carrying the minor alleles (referred to as the minor allelic peptides) at non-synonymous single nucleotide polymorphism (nsSNP) sites can be identified in typical clinical proteomic datasets acquired from the blood/serum samples of individual patient, from which the patient can be identified with high confidence. Our results suggested the presence of significant privacy risks in raw clinical proteomic data. However, these risks can be mitigated by a straightforward pre-processing step of the raw data that removing a very small fraction (0.1%, 7.14 out of 7,504 spectra on average) of MS/MS spectra identified as the minor allelic peptides, which has little or no impact on the subsequent analysis (and re-use) of these datasets. PMID:27595046

  3. Reproducibility of Differential Proteomic Technologies in CPTAC Fractionated Xenografts

    PubMed Central

    2015-01-01

    The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) employed a pair of reference xenograft proteomes for initial platform validation and ongoing quality control of its data collection for The Cancer Genome Atlas (TCGA) tumors. These two xenografts, representing basal and luminal-B human breast cancer, were fractionated and analyzed on six mass spectrometers in a total of 46 replicates divided between iTRAQ and label-free technologies, spanning a total of 1095 LC–MS/MS experiments. These data represent a unique opportunity to evaluate the stability of proteomic differentiation by mass spectrometry over many months of time for individual instruments or across instruments running dissimilar workflows. We evaluated iTRAQ reporter ions, label-free spectral counts, and label-free extracted ion chromatograms as strategies for data interpretation (source code is available from http://homepages.uc.edu/~wang2x7/Research.htm). From these assessments, we found that differential genes from a single replicate were confirmed by other replicates on the same instrument from 61 to 93% of the time. When comparing across different instruments and quantitative technologies, using multiple replicates, differential genes were reproduced by other data sets from 67 to 99% of the time. Projecting gene differences to biological pathways and networks increased the degree of similarity. These overlaps send an encouraging message about the maturity of technologies for proteomic differentiation. PMID:26653538

  4. On the privacy risks of sharing clinical proteomics data.

    PubMed

    Li, Sujun; Bandeira, Nuno; Wang, Xiaofeng; Tang, Haixu

    2016-01-01

    Although the privacy issues in human genomic studies are well known, the privacy risks in clinical proteomic data have not been thoroughly studied. As a proof of concept, we reported a comprehensive analysis of the privacy risks in clinical proteomic data. It showed that a small number of peptides carrying the minor alleles (referred to as the minor allelic peptides) at non-synonymous single nucleotide polymorphism (nsSNP) sites can be identified in typical clinical proteomic datasets acquired from the blood/serum samples of individual patient, from which the patient can be identified with high confidence. Our results suggested the presence of significant privacy risks in raw clinical proteomic data. However, these risks can be mitigated by a straightforward pre-processing step of the raw data that removing a very small fraction (0.1%, 7.14 out of 7,504 spectra on average) of MS/MS spectra identified as the minor allelic peptides, which has little or no impact on the subsequent analysis (and re-use) of these datasets. PMID:27595046

  5. Exploration of the normal human bronchoalveolar lavage fluid proteome

    PubMed Central

    Chen, Jinzhi; Ryu, Soyoung; Gharib, Sina A.; Goodlett, David R.; Schnapp, Lynn M.

    2015-01-01

    We obtained insight into normal lung function by proteome analysis of bronchoalveolar lavage fluid (BALF) from six normal human subjects using a “Lyse-N-Go’ shotgun proteomic protocol. Intra-sample variation was calculated using three different label-free methods, (i) protein sequence coverage; (ii) peptide spectral counts and (iii) peptide single-ion current areas (PICA), which generates protein expression data by summation of the area under the curve for a given peptide single-ion current trace and then adding values for all peptides from that same parent protein. PICA gave the least intra-subject variability and was used to calculate differences in protein expression between the six subjects. We observed an average threefold inter-sample variability, which affects analysis of changes in protein expression that occur in different diseases. We detected 167 unique proteins with >100 proteins detected in each of the six individual BAL samples, 42 of which were common to all six subjects. Gene ontology analysis demonstrated enrichment of several biological processes in the lung, reflecting its expected role in gas exchange and host defense as an immune organ. The same biological processes were enriched compared to either plasma or total genome proteome, suggesting an active enrichment of plasma proteins in the lung rather than passive capillary leak. PMID:21136857

  6. Cell death proteomics database: consolidating proteomics data on cell death.

    PubMed

    Arntzen, Magnus Ø; Bull, Vibeke H; Thiede, Bernd

    2013-05-01

    Programmed cell death is a ubiquitous process of utmost importance for the development and maintenance of multicellular organisms. More than 10 different types of programmed cell death forms have been discovered. Several proteomics analyses have been performed to gain insight in proteins involved in the different forms of programmed cell death. To consolidate these studies, we have developed the cell death proteomics (CDP) database, which comprehends data from apoptosis, autophagy, cytotoxic granule-mediated cell death, excitotoxicity, mitotic catastrophe, paraptosis, pyroptosis, and Wallerian degeneration. The CDP database is available as a web-based database to compare protein identifications and quantitative information across different experimental setups. The proteomics data of 73 publications were integrated and unified with protein annotations from UniProt-KB and gene ontology (GO). Currently, more than 6,500 records of more than 3,700 proteins are included in the CDP. Comparing apoptosis and autophagy using overrepresentation analysis of GO terms, the majority of enriched processes were found in both, but also some clear differences were perceived. Furthermore, the analysis revealed differences and similarities of the proteome between autophagosomal and overall autophagy. The CDP database represents a useful tool to consolidate data from proteome analyses of programmed cell death and is available at http://celldeathproteomics.uio.no. PMID:23537399

  7. Determination of rare earth elements in human hair and wheat flour reference materials by inductively coupled plasma mass spectrometry with dry ashing and microwave digestion

    NASA Astrophysics Data System (ADS)

    Ming, Yin; Bing, Li

    1998-09-01

    A method was developed for the determination of all rare earth elements (REEs) at sub ng g -1 levels in human hair (GBW 09101, SRM, Republic of China) and wheat flour (GBW 08503, SRM, Republic of China) by Inductively coupled plasma mass spectrometry (ICP-MS). The values obtained by dry ashing and microwave oven digestion procedures were compared with those obtained by traditional open vessel acid digestion method. The validity of the analytical procedure was examined by analyzing spiked samples and two vegetables (GBW 07603 and GBW 07605, SRMs, Republic of China). The results are satisfactory. The detection limits for 14 REEs ranged from 0.0039 to 0.0003 ng cm -3 in solution and the quantification limits ranged from 0.16 to 0.01 ng g -1 in solid sample. The precision for most REEs were less than 10% RSD.

  8. Nanopatterned structures for biomolecular analysis toward genomic and proteomic applications

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Fu; Gu, Jian; Wei, Qihuo; Liu, Yingjie; Gupta, Ravi; Nishio, Takeyoshi; Zenhausern, Frederic

    2005-01-01

    We report our fabrication of nanoscale devices using electron beam and nanoimprint lithography (NIL). We focus our study in the emerging fields of NIL, nanophotonics and nanobiotechnology and give a few examples as to how these nanodevices may be applied toward genomic and proteomic applications for molecular analysis. The examples include reverse NIL-fabricated nanofluidic channels for DNA stretching, nanoscale molecular traps constructed from dielectric constrictions for DNA or protein focusing by dielectrophoresis, multi-layer nanoburger and nanoburger multiplets for optimized surface-plasma enhanced Raman scattering for protein detection, and biomolecular motor-based nanosystems. The development of advanced nanopatterning techniques promises reliable and high-throughput manufacturing of nanodevices which could impact significantly on the areas of genomics, proteomics, drug discovery and molecular clinical diagnostics.

  9. Proteomic analysis of seminal fluid from men exhibiting oxidative stress

    PubMed Central

    2013-01-01

    Background Seminal plasma serves as a natural reservoir of antioxidants. It helps to remove excessive formation of reactive oxygen species (ROS) and consequently, reduce oxidative stress. Proteomic profiling of seminal plasma proteins is important to understand the molecular mechanisms underlying oxidative stress and sperm dysfunction in infertile men. Methods This prospective study consisted of 52 subjects: 32 infertile men and 20 healthy donors. Once semen and oxidative stress parameters were assessed (ROS, antioxidant concentration and DNA damage), the subjects were categorized into ROS positive (ROS+) or ROS negative (ROS-). Seminal plasma from each group was pooled and subjected to proteomics analysis. In-solution digestion and protein identification with liquid chromatography tandem mass spectrometry (LC-MS/MS), followed by bioinformatics analyses was used to identify and characterize potential biomarker proteins. Results A total of 14 proteins were identified in this analysis with 7 of these common and unique proteins were identified in both the ROS+ and ROS- groups through MASCOT and SEQUEST analyses, respectively. Prolactin-induced protein was found to be more abundantly present in men with increased levels of ROS. Gene ontology annotations showed extracellular distribution of proteins with a major role in antioxidative activity and regulatory processes. Conclusions We have identified proteins that help protect against oxidative stress and are uniquely present in the seminal plasma of the ROS- men. Men exhibiting high levels of ROS in their seminal ejaculate are likely to exhibit proteins that are either downregulated or oxidatively modified, and these could potentially contribute to male infertility. PMID:24004880

  10. Proteomic insights into floral biology.

    PubMed

    Li, Xiaobai; Jackson, Aaron; Xie, Ming; Wu, Dianxing; Tsai, Wen-Chieh; Zhang, Sheng

    2016-08-01

    The flower is the most important biological structure for ensuring angiosperms reproductive success. Not only does the flower contain critical reproductive organs, but the wide variation in morphology, color, and scent has evolved to entice specialized pollinators, and arguably mankind in many cases, to ensure the successful propagation of its species. Recent proteomic approaches have identified protein candidates related to these flower traits, which has shed light on a number of previously unknown mechanisms underlying these traits. This review article provides a comprehensive overview of the latest advances in proteomic research in floral biology according to the order of flower structure, from corolla to male and female reproductive organs. It summarizes mainstream proteomic methods for plant research and recent improvements on two dimensional gel electrophoresis and gel-free workflows for both peptide level and protein level analysis. The recent advances in sequencing technologies provide a new paradigm for the ever-increasing genome and transcriptome information on many organisms. It is now possible to integrate genomic and transcriptomic data with proteomic results for large-scale protein characterization, so that a global understanding of the complex molecular networks in flower biology can be readily achieved. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock. PMID:26945514

  11. Proteomic analysis of engineered cartilage

    PubMed Central

    Pu, Xinzhu; Oxford, Julia Thom

    2016-01-01

    Summary Tissue engineering holds promise for the treatment of damaged and diseased tissues, especially for those tissues that do not undergo repair and regeneration readily in situ. Many techniques are available for cell and tissue culturing and differentiation of chondrocytes using a variety of cell types, differentiation methods, and scaffolds. In each case, it is critical to demonstrate the cellular phenotype and tissue composition, with particular attention to the extracellular matrix molecules that play a structural role and that contribute to the mechanical properties of the resulting tissue construct. Mass spectrometry provides an ideal analytical method with which to characterize the full spectrum of proteins produced by tissue engineered cartilage. Using normal cartilage tissue as a standard, tissue engineered cartilage can be optimized according to the entire proteome. Proteomic analysis is a complementary approach to biochemical, immunohistochemical, and mechanical testing of cartilage constructs. Proteomics is applicable as an analysis approach to most cartilage constructs generated from a variety of cellular sources including primary chondrocytes, mesenchymal stem cells from bone marrow, adipose tissue, induced pluripotent stem cells, and embryonic stem cells. Additionally, proteomics can be used to optimize novel scaffolds and bioreactor applications, yielding cartilage tissue with the proteomic profile of natural cartilage. PMID:26445845

  12. Structural Proteomics of Herpesviruses

    PubMed Central

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-01-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  13. Nanotechnologies in proteomics.

    PubMed

    Ivanov, Yuri D; Govorun, Vadim M; Bykov, Victor A; Archakov, Alexander I

    2006-03-01

    Progress in proteomic researches is largely determined by development and implementation of new methods for the revelation and identification of proteins in biological material in a wide concentration range (from 10(-3) M to single molecules). The most perspective approaches to address this problem involve (i) nanotechnological physicochemical procedures for the separation of multicomponent protein mixtures; among these of particular interest are biospecific nanotechnological procedures for selection of proteins from multicomponent protein mixtures with their subsequent concentration on solid support; (ii) identification and counting of single molecules by use of molecular detectors. The prototypes of biospecific nanotechnological procedures, based on the capture of ligand biomolecules by biomolecules of immobilized ligate and the concentration of the captured ligands on appropriate surfaces, are well known; these are affinity chromatography, magnetic biobeads technology, different biosensor methods, etc. Here, we review the most promising nanotechnological approaches for selection of proteins and kinetic characterization of their complexes based on these biospecific methods with subsequent MS/MS identification of proteins and protein complexes. Two major groups of methods for the analysis and identification of individual molecules and their complexes by use of molecular detectors will be reviewed: scanning probe microscopy (SPM) (including atomic-force microscopy) and cryomassdetector technology. PMID:16447155

  14. Structural Proteomics of Herpesviruses.

    PubMed

    Leroy, Baptiste; Gillet, Laurent; Vanderplasschen, Alain; Wattiez, Ruddy

    2016-02-01

    Herpesviruses are highly prevalent viruses associated with numerous pathologies both in animal and human populations. Until now, most of the strategies used to prevent or to cure these infections have been unsuccessful because these viruses have developed numerous immune evasion mechanisms. Therefore, a better understanding of their complex lifecycle is needed. In particular, while the genome of numerous herpesviruses has been sequenced, the exact composition of virions remains unknown for most of them. Mass spectrometry has recently emerged as a central method and has permitted fundamental discoveries in virology. Here, we review mass spectrometry-based approaches that have recently allowed a better understanding of the composition of the herpesvirus virion. In particular, we describe strategies commonly used for proper sample preparation and fractionation to allow protein localization inside the particle but also to avoid contamination by nonstructural proteins. A collection of other important data regarding post-translational modifications or the relative abundance of structural proteins is also described. This review also discusses the poorly studied importance of host proteins in herpesvirus structural proteins and the necessity to develop a quantitative workflow to better understand the dynamics of the structural proteome. In the future, we hope that this collaborative effort will assist in the development of new strategies to fight these infections. PMID:26907323

  15. Proteome of Hydra Nematocyst*

    PubMed Central

    Balasubramanian, Prakash G.; Beckmann, Anna; Warnken, Uwe; Schnölzer, Martina; Schüler, Andreas; Bornberg-Bauer, Erich; Holstein, Thomas W.; Özbek, Suat

    2012-01-01

    Stinging cells or nematocytes of jellyfish and other cnidarians represent one of the most poisonous and sophisticated cellular inventions in animal evolution. This ancient cell type is unique in containing a giant secretory vesicle derived from the Golgi apparatus. The organelle structure within the vesicle comprises an elastically stretched capsule (nematocyst) to which a long tubule is attached. During exocytosis, the barbed part of the tubule is accelerated with >5 million g in <700 ns, enabling a harpoon-like discharge (Nüchter, T., Benoit, M., Engel, U., Ozbek, S., and Holstein, T. W. (2006) Curr. Biol. 16, R316–R318). Hitherto, the molecular components responsible for the organelle's biomechanical properties were largely unknown. Here, we describe the proteome of nematocysts from the freshwater polyp Hydra magnipapillata. Our analysis revealed an unexpectedly complex secretome of 410 proteins with venomous and lytic but also adhesive or fibrous properties. In particular, the insoluble fraction of the nematocyst represents a functional extracellular matrix structure of collagenous and elastic nature. This finding suggests an evolutionary scenario in which exocytic vesicles harboring a venomous secretome assembled a sophisticated predatory structure from extracellular matrix motif proteins. PMID:22291027

  16. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery

    PubMed Central

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N.; Carter, Jeff; Dalby, Andrew B.; Eaton, Bruce E.; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R.; Kim, Nancy; Koch, Tad H.; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K.; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M.; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I.; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D.; Vrkljan, Mike; Walker, Jeffrey J.; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K.; Wolfson, Alexey; Wolk, Steven K.; Zhang, Chi; Zichi, Dom

    2010-01-01

    Background The interrogation of proteomes (“proteomics”) in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. Methodology/Principal Findings We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (∼100 fM–1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. Conclusions/Significance We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of

  17. Imaging proteomics for diagnosis, monitoring and prediction of Alzheimer's disease.

    PubMed

    Nazeri, Arash; Ganjgahi, Habib; Roostaei, Tina; Nichols, Thomas; Zarei, Mojtaba

    2014-11-15

    Proteomic and imaging markers have been widely studied as potential biomarkers for diagnosis, monitoring and prognosis of Alzheimer's disease. In this study, we used Alzheimer Disease Neuroimaging Initiative dataset and performed parallel independent component analysis on cross sectional and longitudinal proteomic and imaging data in order to identify the best proteomic model for diagnosis, monitoring and prediction of Alzheimer disease (AD). We used plasma proteins measurement and imaging data from AD and healthy controls (HC) at the baseline and 1 year follow-up. Group comparisons at baseline and changes over 1 year were calculated for proteomic and imaging data. The results were fed into parallel independent component analysis in order to identify proteins that were associated with structural brain changes cross sectionally and longitudinally. Regression model was used to find the best model that can discriminate AD from HC, monitor AD and to predict MCI converters from non-converters. We showed that five proteins are associated with structural brain changes in the brain. These proteins could discriminate AD from HC with 57% specificity and 89% sensitivity. Four proteins whose change over 1 year were associated with brain structural changes could discriminate AD from HC with sensitivity of 93%, and specificity of 92%. This model predicted MCI conversion to AD in 2 years with 94% accuracy. This model has the highest accuracy in prediction of MCI conversion to AD within the ADNI-1 dataset. This study shows that combination of selected plasma protein levels and MR imaging is a useful method in identifying potential biomarker. PMID:25173418

  18. Ready Reference.

    ERIC Educational Resources Information Center

    Koltay, Emery

    2001-01-01

    Includes four articles that relate to ready reference, including a list of publishers' toll-free telephone numbers and Web sites; how to obtain an ISBN (International Standard Book Number) and an ISSN (International Standard Serial Number); and how to obtain an SAN (Standard Address Number), for organizations that are involved in the book…

  19. Poroelastic references

    SciTech Connect

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  20. Proteomic Changes of Alveolar Lining Fluid in Illnesses Associated with Exposure to Inhaled Non-Infectious Microbial Particles

    PubMed Central

    Teirilä, Laura; Karvala, Kirsi; Ahonen, Niina; Riska, Henrik; Pietinalho, Anne; Tuominen, Päivi; Piirilä, Päivi

    2014-01-01

    Background Hyperresponsiveness to inhaled non-infectious microbial particles (NIMPs) has been associated with illnesses in the airways. Hypersensitivity pneumonitis (HP) is considered to be the prototype for these NIMPs-related diseases; however, there is no consensus on the definitions or diagnostic criteria for HP and the spectrum of related illnesses. Methods and Findings In order to identify the possible diagnostic markers for illnesses associated with NIMPs in alveolar lining fluid, we performed a proteomic analysis using a two-dimensional difference gel electrophoresis on bronchoalveolar lavage (BAL) fluid from patients with exposure to NIMPs in the context of damp building-related illness (DBRI) or conditions on the borderline to acute HP, designated here as agricultural type of microbial exposure (AME). Samples from patients with HP and sarcoidosis (SARC) were included for reference. Results were compared to results of healthy subjects (CTR). Western blot was used for validation of potential marker proteins from BAL fluid and plasma. Protein expression patterns suggest a close similarity between AME and HP, while DBRI was similar to CTR. However, in DBRI the levels of the inflammation associated molecules galectin-3 and alpha-1-antitrypsin were increased. A novel finding emerging from this study was the increases of semenogelin levels in BAL fluid from patients with AME, HP and SARC. Histone 4 levels were increased in AME, HP and SARC. Elevated plasma levels of histone 2B were detected in HP and SARC, suggesting it to be a potential blood indicator for inflammatory diseases of the lungs. Conclusions In this study, the proteomic changes in bronchoalveolar lavage of DBRI patients were distinct from other NIMP exposure associated lung diseases, while changes in AME overlapped those observed for HP patient samples. Some of the proteins identified in this study, semenogelin and histone 4, could function as diagnostic markers for differential diagnosis between

  1. Blood-brain barrier proteomics: towards the understanding of neurodegenerative diseases.

    PubMed

    Karamanos, Yannis; Gosselet, Fabien; Dehouck, Marie-Pierre; Cecchelli, Roméo

    2014-11-01

    The blood-brain barrier (BBB) regulates the passage of endogenous and exogenous compounds and thus contributes to the brain homeostasis with the help of well-known proteins such as tight junction proteins, plasma membrane transporters and metabolic barrier proteins. In the last decade, proteomics have emerged as supplementary tools for BBB research. The development of proteomic technologies has provided several means to extend knowledge on the BBB and to investigate additional routes for the bypass of this barrier. Proteomics approaches have been used in vivo and also using in vitro BBB models to decipher the physiological characteristics and, under stress conditions, to understand the molecular mechanisms of brain diseases. This work has demonstrated that both quantitative global and targeted proteomics approaches are powerful and provide significant information on the brain microvessel endothelium. However, current knowledge is only partial and it is necessary to increase the studies using proteomics tools that will provide additional information concerning brain pathologies or BBB metabolism. Highly sensitive, accurate and specific protein quantification by quantitative targeted proteomics appears as an essential methodology for human BBB studies. PMID:25446619

  2. Proteomics technology in systems biology.

    PubMed

    Smith, Jeffrey C; Figeys, Daniel

    2006-08-01

    It has now become apparent that a full understanding of a biological process (e.g. a disease state) is only possible if all biomolecular interactions are taken into account. Systems biology works towards understanding the intricacies of cellular life through the collaborative efforts of biologists, chemists, mathematicians and computer scientists and recently, a number of laboratories around the world have embarked upon such research agendas. The fields of genomics and proteomics are foundational in systems biology studies and a great deal of research is currently being conducted in each worldwide. Moreover, many technological advances (particularly in mass spectrometry) have led to a dramatic rise in the number of proteomic studies over the past two decades. This short review summarizes a selection of technological innovations in proteomics that contribute to systems biology studies. PMID:16880956

  3. Advances of Proteomic Sciences in Dentistry

    PubMed Central

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  4. Advances of Proteomic Sciences in Dentistry.

    PubMed

    Khurshid, Zohaib; Zohaib, Sana; Najeeb, Shariq; Zafar, Muhammad Sohail; Rehman, Rabia; Rehman, Ihtesham Ur

    2016-01-01

    Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed. PMID:27187379

  5. Multielement trace determinations in A1 2O 3 ceramic powders by inductively coupled plasma mass spectrometry with special reference to on-line trace preconcentration

    NASA Astrophysics Data System (ADS)

    Pollmann, D.; Leis, F.; Tölg, G.; Tschöpel, P.; Broekaert, J. A. C.

    1994-12-01

    The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of trace elements in Al 2O 3 powders is reported. Special interest is given to a preconcentration of the trace elements by on-line coupling of chromatography to ICP-MS. This is based on the complexation of Co, Cu, Cr, Fe, Ga, Mn, Ni, V and Zn with hexamethylene-dithiocarbamate (HMDC), their preconcentration on a C18 RP column by reversed phase liquid chromatography and their elution with CH 3OH-H 2O mixtures. A direct coupling of the HPLC system to the ICP-MS has been realized by high pressure pneumatic nebulization using desolvation. With the Chromatographie method developed, removal of the AI by at least 99% was achieved. For the trace elements V, Fe, Ni, Co, Cu and Ga, high and reproducible recoveries (ranging from 96-99%) were reached. The method developed has been shown to considerably enhance the power of detection as compared with direct procedures, namely down to 0.02-0.16 ( μg/g for V and Fe, respectively. The possibilities of the method are shown by the determinations of V, Mn, Fe, Ni, Co, Cu, Zn and Ga at the μg/g level in A1 2O 3 powders. The accuracy of the method at the 0.06 to 9.0 μg/g level for Co and Fe, respectively, is demonstrated by a comparison with results of independent methods from the literature.

  6. Certification of Total Arsenic in Blood and Urine Standard Reference Materials by Radiochemical Neutron Activation Analysis and Inductively Coupled Plasma - Mass Spectrometry

    PubMed Central

    Paul, Rick L.; Davis, W. Clay; Yu, Lee; Murphy, Karen E.; Guthrie, William F.; Leber, Dennis D.; Bryan, Colleen E.; Vetter, Thomas W.; Shakirova, Gulchekhra; Mitchell, Graylin; Kyle, David J.; Jarrett, Jeffery M.; Caldwell, Kathleen L.; Jones, Robert L.; Eckdahl, Steven; Wermers, Michelle; Maras, Melissa; Palmer, C. D.; Verostek, M.F.; Geraghty, C. M.; Steuerwald, Amy J.; Parsons, Patrick J.

    2015-01-01

    A newly developed procedure for determination of arsenic by radiochemical neutron activation analysis (RNAA) was used to measure arsenic at four levels in SRM 955c Toxic Elements in Caprine Blood and at two levels in SRM 2668 Toxic Elements in Frozen Human Urine for the purpose of providing mass concentration values for certification. Samples were freeze-dried prior to analysis followed by neutron irradiation for 3 h at a fluence rate of 1×1014cm−2s−1. After sample dissolution in perchloric and nitric acids, arsenic was separated from the matrix by extraction into zinc diethyldithiocarbamate in chloroform, and 76As quantified by gamma-ray spectroscopy. Differences in chemical yield and counting geometry between samples and standards were monitored by measuring the count rate of a 77As tracer added before sample dissolution. RNAA results were combined with inductively coupled plasma – mass spectrometry (ICP-MS) values from NIST and collaborating laboratories to provide certified values of (10.81 ± 0.54) μg/kg and (213.1 ± 0.73) μg/kg for SRM 2668 Levels I and II, and certified values of (21.66 ± 0.73) μg/kg, (52.7 ± 1.1) μg/kg, and (78.8 ± 4.9) μg/kg for SRM 955c Levels 2, 3, and 4 respectively. Because of discrepancies between values obtained by different methods for SRM 955c Level 1, an information value of < 5 μg/kg was assigned for this material. PMID:26300575

  7. Scientific Workflow Management in Proteomics

    PubMed Central

    de Bruin, Jeroen S.; Deelder, André M.; Palmblad, Magnus

    2012-01-01

    Data processing in proteomics can be a challenging endeavor, requiring extensive knowledge of many different software packages, all with different algorithms, data format requirements, and user interfaces. In this article we describe the integration of a number of existing programs and tools in Taverna Workbench, a scientific workflow manager currently being developed in the bioinformatics community. We demonstrate how a workflow manager provides a single, visually clear and intuitive interface to complex data analysis tasks in proteomics, from raw mass spectrometry data to protein identifications and beyond. PMID:22411703

  8. Microbial proteomics: the quiet revolution

    SciTech Connect

    Seraphin, Bertrand; Hettich, Robert {Bob} L

    2012-01-01

    Technological developments in DNA sequencing and their application to study thousands of microbial genomes or even microbial ecosystems still today often make the headlines of general newspapers and scientific journals. These revolutionary changes are hiding another revolution that is unfolding more quietly in the background: the development of microbial proteomics to study genome expression products. It is important to recognize that while DNA sequencing reveals extensive details about the genomic potential of an organism or community, proteomic measurements reveal the functional gene products that are present and operational under specific environmental conditions, and thus perhaps better characterize the critical biomolecules that execute the life processes (enzymes, signaling, structural factors, etc.).

  9. Determination of burn patient outcome by large-scale quantitative discovery proteomics

    PubMed Central

    Finnerty, Celeste C.; Jeschke, Marc G.; Qian, Wei-Jun; Kaushal, Amit; Xiao, Wenzhong; Liu, Tao; Gritsenko, Marina A.; Moore, Ronald J.; Camp, David G.; Moldawer, Lyle L.; Elson, Constance; Schoenfeld, David; Gamelli, Richard; Gibran, Nicole; Klein, Matthew; Arnoldo, Brett; Remick, Daniel; Smith, Richard D.; Davis, Ronald; Tompkins, Ronald G.; Herndon, David N.

    2013-01-01

    Objective Emerging proteomics techniques can be used to establish proteomic outcome signatures and to identify candidate biomarkers for survival following traumatic injury. We applied high-resolution liquid chromatography-mass spectrometry (LC-MS) and multiplex cytokine analysis to profile the plasma proteome of survivors and non-survivors of massive burn injury to determine the proteomic survival signature following a major burn injury. Design Proteomic discovery study. Setting Five burn hospitals across the U.S. Patients Thirty-two burn patients (16 non-survivors and 16 survivors), 19–89 years of age, were admitted within 96 h of injury to the participating hospitals with burns covering >20% of the total body surface area and required at least one surgical intervention. Interventions None. Measurements and Main Results We found differences in circulating levels of 43 proteins involved in the acute phase response, hepatic signaling, the complement cascade, inflammation, and insulin resistance. Thirty-two of the proteins identified were not previously known to play a role in the response to burn. IL-4, IL-8, GM-CSF, MCP-1, and β2-microglobulin correlated well with survival and may serve as clinical biomarkers. Conclusions These results demonstrate the utility of these techniques for establishing proteomic survival signatures and for use as a discovery tool to identify candidate biomarkers for survival. This is the first clinical application of a high-throughput, large-scale LC-MS-based quantitative plasma proteomic approach for biomarker discovery for the prediction of patient outcome following burn, trauma or critical illness. PMID:23507713

  10. Determination of halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement.

    PubMed

    Schnetger, B; Muramatsu, Y

    1996-11-01

    A method for determining iodine, bromine, chlorine and fluorine in geological and biological materials is described. In a quartz tube, solid material was heated to 1100 degrees C under a wet oxygen flow (pyrohydrolysis). By this process the halogens (I, Br, Cl, F) were separated from the matrix and then collected in a receiver solution. The chemical yield of iodine was determined by a radioactive tracer. ICP-MS and ion chromatographic measurements were used for the determination of the halogens. The method was optimized by investigating different experimental conditions. All four halogens can be trapped in the receiver solution from one combustion procedure. Precision and accuracy were evaluated by the analysis of environmental standard reference materials (rock, soil, milk, leaves, marine tissue). The concentrations in the materials analysed were in the ranges 0.006-50 mg kg-1 for I, 0.06-1300 mg kg-1 for Br, 50-1100 mg kg-1 for F and 400-11000 mg kg-1 for Cl. The lower values represent the practical detection limit of this method. The results obtained by the proposed method and the certified values are in good agreement. PMID:8952450

  11. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  12. Proteomics Funding Opportunity - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    To expand the understanding of how cells sense and respond to changes in their physical environment, the NCI is seeking to perform proteomic assays on the panel of cell lines grown on a variety of substrates. These assays will provide insight into changes in protein levels or phosphorylation changes that could reflect the activity of mechano-transduction pathways.

  13. Comparative proteomics in acute myeloid leukemia

    PubMed Central

    Luczak, Magdalena; Kaźmierczak, Maciej; Hadschuh, Luiza; Lewandowski, Krzysztof; Komarnicki, Mieczysław

    2012-01-01

    The term proteomics was used for the first time in 1995 to describe large-scale protein analyses. At the same time proteomics was distinguished as a new domain of the life sciences. The major object of proteomic studies is the proteome, i.e. the set of all proteins accumulating in a given cell, tissue or organ. During the last years several new methods and techniques have been developed to increase the fidelity and efficacy of proteomic analyses. The most widely used are two-dimensional electrophoresis (2DE) and mass spectrometry (MS). In the past decade proteomic analyses have also been successfully applied in biomedical research. They allow one to determine how various diseases affect the pattern of protein accumulation. In this paper, we attempt to summarize the results of the proteomic analyses of acute myeloid leukemia (AML) cells. They have increased our knowledge on the mechanisms underlying AML development and contributed to progress in AML diagnostics and treatment. PMID:23788862

  14. Liver proteomics in progressive alcoholic steatosis

    SciTech Connect

    Fernando, Harshica; Wiktorowicz, John E.; Soman, Kizhake V.; Kaphalia, Bhupendra S.; Khan, M. Firoze; Shakeel Ansari, G.A.

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  15. Approaches for Defining the Hsp90-dependent Proteome

    PubMed Central

    Hartson, Steven D.; Matts, Robert L.

    2011-01-01

    Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90’s roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. PMID:21906632

  16. Trypsin-catalyzed oxygen-18 labeling for quantitative proteomics

    SciTech Connect

    Qian, Weijun; Petritis, Brianne O.; Nicora, Carrie D.; Smith, Richard D.

    2011-07-01

    Stable isotope labeling based on relative peptide/protein abundance measurements is commonly applied for quantitative proteomics. Recently, trypsin-catalyzed oxygen-18 labeling has grown in popularity due to its simplicity, cost-effectiveness, and its ability to universally label peptides with high sample recovery. In (18)O labeling, both C-terminal carboxyl group atoms of tryptic peptides can be enzymatically exchanged with (18)O, thus providing the labeled peptide with a 4 Da mass shift from the (16)O-labeled sample. Peptide (18)O labeling is ideally suited for generating a labeled "universal" reference sample used for obtaining accurate and reproducible quantitative measurements across large number of samples in quantitative discovery proteomics.

  17. Circulating Proteomic Signatures of Chronological Age.

    PubMed

    Menni, Cristina; Kiddle, Steven J; Mangino, Massimo; Viñuela, Ana; Psatha, Maria; Steves, Claire; Sattlecker, Martina; Buil, Alfonso; Newhouse, Stephen; Nelson, Sally; Williams, Stephen; Voyle, Nicola; Soininen, Hilkka; Kloszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon; Spector, Tim D; Dobson, Richard; Valdes, Ana M

    2015-07-01

    To elucidate the proteomic features of aging in plasma, the subproteome targeted by the SOMAscan assay was profiled in blood samples from 202 females from the TwinsUK cohort. Findings were replicated in 677 independent individuals from the AddNeuroMed, Alzheimer's Research UK, and Dementia Case Registry cohorts. Results were further validated using RNAseq data from whole blood in TwinsUK and the most significant proteins were tested for association with aging-related phenotypes after adjustment for age. Eleven proteins were associated with chronological age and were replicated at protein level in an independent population. These were further investigated at gene expression level in 384 females from the TwinsUK cohort. The two most strongly associated proteins were chordin-like protein 1 (meta-analysis β [SE] = 0.013 [0.001], p = 3.66 × 10(-46)) and pleiotrophin (0.012 [0.005], p = 3.88 × 10(-41)). Chordin-like protein 1 was also significantly correlated with birthweight (0.06 [0.02], p = 0.005) and with the individual Framingham 10-years cardiovascular risk scores in TwinsUK (0.71 [0.18], p = 9.9 × 10(-5)). Pleiotrophin is a secreted growth factor with a plethora of functions in multiple tissues and known to be a marker for cardiovascular risk and osteoporosis. Our study highlights the importance of proteomics to identify some molecular mechanisms involved in human health and aging. PMID:25123647

  18. On-Line Measurement of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and TIme-Integrated Filter Sampling and Reference Method

    SciTech Connect

    Cheng, M.-D.; Vannice, R.W.

    2003-05-20

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. They had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  19. On-Line Measurements of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and Time-Integrated Filter Sampling Reference Method

    SciTech Connect

    Cheng, M.D.

    2003-05-15

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. We had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were subsequently analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  20. Proteomics in Aquaculture Research: Are We There Yet?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics can be defined as the study of the entire proteome, the proteome being the expressed compliment of the genome. Proteomics aims to understand gene function and molecular processes of the living cell through the study of expressed proteins. A review of the literature suggests proteomics i...

  1. Pharmacokinetics of tildipirosin in porcine plasma, lung tissue, and bronchial fluid and effects of test conditions on in vitro activity against reference strains and field isolates of Actinobacillus pleuropneumoniae.

    PubMed

    Rose, M; Menge, M; Bohland, C; Zschiesche, E; Wilhelm, C; Kilp, S; Metz, W; Allan, M; Röpke, R; Nürnberger, M

    2013-04-01

    The pharmacokinetics of tildipirosin (Zuprevo(®) 40 mg/mL solution for injection for pigs), a novel 16-membered-ring macrolide for the treatment for swine respiratory disease (SRD), was investigated in studies collecting blood plasma and postmortem samples of lung tissue and bronchial fluid (BF) from swine. In view of factors influencing the in vitro activity of macrolides, and for the interpretation of tildipirosin pharmacokinetics in relation to minimum inhibitory concentrations (MIC), additional experiments were conducted to study the effects of pH, carbon dioxide-enriched atmosphere, buffers, and serum on tildipirosin MICs for various reference strains and Actinobacillus (A.) pleuropneumoniae field isolates. After single intramuscular (i.m.) injection at 4 mg/kg body weight, maximum plasma concentration (Cmax) was 0.9 μg/mL observed within 23 min (Tmax ). Mean residence time from the time of dosing to the time of last measurable concentration (MRTlast) and terminal half-life (T1/2) both were about 4 days. A dose-response relationship with no significant sex effect is observed for area under the plasma concentration-time curve from time 0 to the last sampling time with a quantifiable drug concentration (AUClast) over the range of doses up to 6 mg/kg. However, linear dose proportionality could not be proven with statistical methods. The time-concentration profile of tildipirosin in BF and lung far exceeded that in blood plasma. In lung, tildipirosin concentrations reached 3.1 μg/g at 2 h, peaked at 4.3 μg/g at day 1, and slowly declined to 0.8 μg/g at day 17. In BF, tildipirosin levels were 14.3, 7.0, and 6.5 μg/g at days 5, 10, and 14. T1/2 in lung was ∼7 days. Tildipirosin is rapidly and extensively distributed to the respiratory tract followed by slow elimination. Culture media pH and carbon dioxide-enriched atmosphere (CO2 -EA) had a marked impact on in vitro activity of tildipirosin in reference strains of various rapidly growing aerobic and

  2. Proteomics of Saccharomyces cerevisiae Organelles*

    PubMed Central

    Wiederhold, Elena; Veenhoff, Liesbeth M.; Poolman, Bert; Slotboom, Dirk Jan

    2010-01-01

    Knowledge of the subcellular localization of proteins is indispensable to understand their physiological roles. In the past decade, 18 studies have been performed to analyze the protein content of isolated organelles from Saccharomyces cerevisiae. Here, we integrate the data sets and compare them with other large scale studies on protein localization and abundance. We evaluate the completeness and reliability of the organelle proteomics studies. Reliability depends on the purity of the organelle preparations, which unavoidably contain (small) amounts of contaminants from different locations. Quantitative proteomics methods can be used to distinguish between true organellar constituents and contaminants. Completeness is compromised when loosely or dynamically associated proteins are lost during organelle preparation and also depends on the sensitivity of the analytical methods for protein detection. There is a clear trend in the data from the 18 organelle proteomics studies showing that proteins of low abundance frequently escape detection. Proteins with unknown function or cellular abundance are also infrequently detected, indicating that these proteins may not be expressed under the conditions used. We discuss that the yeast organelle proteomics studies provide powerful lead data for further detailed studies and that methodological advances in organelle preparation and in protein detection may help to improve the completeness and reliability of the data. PMID:19955081

  3. Periodontal Proteomics: Wonders Never Cease!

    PubMed Central

    Grover, Harpreet Singh; Kapoor, Shalini; Saksena, Neha

    2013-01-01

    Proteins are vital parts of living organisms, as they are integral components of the physiological metabolic pathways of cells. Periodontal tissues comprise multicompartmental groups of interacting cells and matrices that provide continuous support, attachment, proprioception, and physical protection for the teeth. The proteome map, that is, complete catalogue of the matrix and cellular proteins expressed in alveolar bone, cementum, periodontal ligament, and gingiva, is to be explored for more in-depth understanding of periodontium. The ongoing research to understand the signalling pathways that allow cells to divide, differentiate, and die in controlled manner has brought us to the era of proteomics. Proteomics is defined as the study of all proteins including their relative abundance, distribution, posttranslational modifications, functions, and interactions with other macromolecules, in a given cell or organism within a given environment and at a specific stage in the cell cycle. Its application to periodontal science can be used to monitor health status, disease onset, treatment response, and outcome. Proteomics can offer answers to critical, unresolved questions such as the biological basis for the heterogeneity in gingival, alveolar bone, and cemental cell populations. PMID:24490073

  4. Proteomics of foodborne bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter focuses on recent research on foodborne bacterial pathogens that use mass spectrometry-based proteomic techniques as well as protein microarrays. Mass spectrometry ionization techniques (e.g. electrospray ionization and matrix-assisted laser desorption/ionization), analyzers (e.g. ion ...

  5. Proteomic approaches to bacterial differentiation

    SciTech Connect

    Norbeck, Angela D.; Callister, Stephen J.; Monroe, Matthew E.; Jaitly, Navdeep; Elias, Dwayne A.; Lipton, Mary S.; Smith, Richard D.

    2006-01-02

    While genomic approaches have been applied to the detection and identification of individual bacteria within microbial communities, analogous proteomics approaches have been effectively precluded due to the inherent complexity. An in silico assessment of peptides derived from artificial simple and complex communities was performed to evaluate the effect of proteome complexity on species detection. Detection and validation of predicted peptides initially identified as distinctive within the simple community was experimentally performed using a mass spectrometry-based proteomics approach. An assessment of peptide distinctiveness and the potential for mapping to a particular bacterium within a community was made throughout each step of the study. A second assessment performed in silico of peptide distinctiveness for a complex community of 25 microorganisms was also conducted. The experimental data for a simple community, and the in silico data for a complex community revealed that it is feasible to predict, observe, and quantify distinctive peptides from one organism in the presence of at least a 100-fold greater abundance of another, thus yielding putative markers for the identification of a bacterium of interest. This work represents a first step towards quantitative proteomic characterization of complex microbial communities.

  6. BioAfrica's HIV-1 proteomics resource: combining protein data with bioinformatics tools.

    PubMed

    Doherty, Ryan S; De Oliveira, Tulio; Seebregts, Chris; Danaviah, Sivapragashini; Gordon, Michelle; Cassol, Sharon

    2005-01-01

    Most Internet online resources for investigating HIV biology contain either bioinformatics tools, protein information or sequence data. The objective of this study was to develop a comprehensive online proteomics resource that integrates bioinformatics with the latest information on HIV-1 protein structure, gene expression, post-transcriptional/post-translational modification, functional activity, and protein-macromolecule interactions. The BioAfrica HIV-1 Proteomics Resource http://bioafrica.mrc.ac.za/proteomics/index.html is a website that contains detailed information about the HIV-1 proteome and protease cleavage sites, as well as data-mining tools that can be used to manipulate and query protein sequence data, a BLAST tool for initiating structural analyses of HIV-1 proteins, and a proteomics tools directory. The Proteome section contains extensive data on each of 19 HIV-1 proteins, including their functional properties, a sample analysis of HIV-1HXB2, structural models and links to other online resources. The HIV-1 Protease Cleavage Sites section provides information on the position, subtype variation and genetic evolution of Gag, Gag-Pol and Nef cleavage sites. The HIV-1 Protein Data-mining Tool includes a set of 27 group M (subtypes A through K) reference sequences that can be used to assess the influence of genetic variation on immunological and functional domains of the protein. The BLAST Structure Tool identifies proteins with similar, experimentally determined topologies, and the Tools Directory provides a categorized list of websites and relevant software programs. This combined database and software repository is designed to facilitate the capture, retrieval and analysis of HIV-1 protein data, and to convert it into clinically useful information relating to the pathogenesis, transmission and therapeutic response of different HIV-1 variants. The HIV-1 Proteomics Resource is readily accessible through the BioAfrica website at: http://bioafrica.mrc.ac.za/proteomics

  7. Asthma and COPD proteomics: current approaches and future directions.

    PubMed

    Terracciano, Rosa; Pelaia, Girolamo; Preianò, Mariaimmacolata; Savino, Rocco

    2015-02-01

    Although asthma and chronic obstructive pulmonary disease COPD represent the two most common chronic respiratory diseases worldwide, the mechanisms underlying their pathobiology need to be further elucidated. Presently, differentiation of asthma and COPD are largely based on clinical and lung function parameters. However, the complexity of these multifactorial diseases may lead to misclassification and to inappropriate management strategies. Recently, tremendous progress in MS has extended the sensitivity, accuracy, and speed of analysis, enabling the identification of thousands of proteins per experiment. Beyond identification, MS has also greatly implemented quantitation issues allowing to assess qualitative-quantitative differences in protein profiles of different samples, in particular diseased versus normal. Herein, we provide a summary of recent proteomics-based investigations in the field of asthma/COPD, highlighting major issues related to sampling and processing procedures for proteomic analyses of specific airway and parenchymal specimens (induced sputum, exhaled breath condensate, epithelial lining fluid, bronchoalveolar and nasal lavage fluid), as well as blood-derived specimen (plasma and serum). Within such a context, together with current difficulties and limitations mainly due to lack of general standardization in preanalytical sampling procedure, our discussion will focus on the challenges and possible benefits of proteomic studies in phenotypic stratification of asthma and COPD. PMID:25504544

  8. The Size of the Human Proteome: The Width and Depth

    PubMed Central

    Ponomarenko, Elena A.; Poverennaya, Ekaterina V.; Ilgisonis, Ekaterina V.; Pyatnitskiy, Mikhail A.; Kopylov, Arthur T.; Zgoda, Victor G.; Lisitsa, Andrey V.; Archakov, Alexander I.

    2016-01-01

    This work discusses bioinformatics and experimental approaches to explore the human proteome, a constellation of proteins expressed in different tissues and organs. As the human proteome is not a static entity, it seems necessary to estimate the number of different protein species (proteoforms) and measure the number of copies of the same protein in a specific tissue. Here, meta-analysis of neXtProt knowledge base is proposed for theoretical prediction of the number of different proteoforms that arise from alternative splicing (AS), single amino acid polymorphisms (SAPs), and posttranslational modifications (PTMs). Three possible cases are considered: (1) PTMs and SAPs appear exclusively in the canonical sequences of proteins, but not in splice variants; (2) PTMs and SAPs can occur in both proteins encoded by canonical sequences and in splice variants; (3) all modification types (AS, SAP, and PTM) occur as independent events. Experimental validation of proteoforms is limited by the analytical sensitivity of proteomic technology. A bell-shaped distribution histogram was generated for proteins encoded by a single chromosome, with the estimation of copy numbers in plasma, liver, and HepG2 cell line. The proposed metabioinformatics approaches can be used for estimation of the number of different proteoforms for any group of protein-coding genes. PMID:27298622

  9. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus

    PubMed Central

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M.; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J.

    2015-01-01

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, l-citrulline, l-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases. PMID:26694367

  10. Breast Cancer Proteomic and Phosphoproteomic Data Released - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  11. NCI Launches Proteomics Assay Portal - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    In a paper recently published by the journal Nature Methods, Investigators from the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) announced the launch of a proteomics Assay Portal for multiple reaction monitoring-mass

  12. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  13. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  14. Reference Materials: Significance, General Requirements, and Demand.

    PubMed

    Kiełbasa, Anna; Gadzała-Kopciuch, Renata; Buszewski, Bogusław

    2016-05-01

    Reference materials play an important part in the quality control of measurements. Rapid development of such new scientific disciplines as proteomics, metabolomics, and genomics also necessitates development of new reference materials. This is a great challenge due to the complexity of the production of new reference materials and difficulties associated with achieving their homogeneity and stability. CRMs of tissue are of particular importance. They can be counted among the matrices that are most complex and time consuming in preparation. Tissue is the place of transformation and accumulation of many substances (e.g., metabolites, which are intermediate or end products resulting from metabolic processes). Trace amounts of many substances in tissues must be determined with adequate precision and accuracy. To meet the needs stemming from research and from problems and challenges faced by chemists, analysts, and toxicologists, the number of certified reference materials should be continuously increased. PMID:26042643

  15. Secretome proteomics for discovery of cancer biomarkers.

    PubMed

    Makridakis, Manousos; Vlahou, Antonia

    2010-11-10

    "Secretome" is referred to as the rich, complex set of molecules secreted from living cells. In a less strict definition frequently followed in "secretome" studies, the term also includes molecules shed from the surface of living cells. Proteins of secretome (will be referred to as secreted) play a key role in cell signaling, communication and migration. The need for developing more effective cancer biomarkers and therapeutic modalities has led to the study of cancer cell secretome as a means to identify and characterize diagnostic and prognostic markers and potential drug and therapeutic targets. Significant technological advances in the field of proteomics during the last two decades have greatly facilitated research towards this direction. Nevertheless, secretome analysis still faces some difficulties mainly related to sample collection and preparation. The goal of this article is to provide an overview of the main findings from the analysis of cancer cell secretome. Specifically, we focus on the presentation of main methodological approaches that have been developed for the study of secreted proteins and the results thereof from the analysis of secretome in different types of malignancies; special emphasis is given on correlation of findings with protein expression in body fluids. PMID:20637910

  16. Exploring the potential of public proteomics data

    PubMed Central

    Vaudel, Marc; Verheggen, Kenneth; Csordas, Attila; Ræder, Helge; Berven, Frode S.; Martens, Lennart; Vizcaíno, Juan A.

    2015-01-01

    In a global effort for scientific transparency, it has become feasible and good practice to share experimental data supporting novel findings. Consequently, the amount of publicly available MS‐based proteomics data has grown substantially in recent years. With some notable exceptions, this extensive material has however largely been left untouched. The time has now come for the proteomics community to utilize this potential gold mine for new discoveries, and uncover its untapped potential. In this review, we provide a brief history of the sharing of proteomics data, showing ways in which publicly available proteomics data are already being (re‐)used, and outline potential future opportunities based on four different usage types: use, reuse, reprocess, and repurpose. We thus aim to assist the proteomics community in stepping up to the challenge, and to make the most of the rapidly increasing amount of public proteomics data. PMID:26449181

  17. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  18. Proteomics and Ovarian Cancer: Integrating Proteomics Information Into Clinical Care

    PubMed Central

    Hays, John L.; Kim, Geoffrey; Giuroiu, Iulia; Kohn, Elise C.

    2010-01-01

    The power of proteomics allows unparalleled opportunity to query the molecular mechanisms of a malignant cell and the tumor microenvironment in patients with ovarian cancer and other solid tumors. This information has given us insight into the perturbations of signaling pathways within tumor cells and has aided the discovery of new drug targets for the tumor and possible prognostic indicators of outcome and disease response to therapy. Proteomics analysis of serum and ascites has also given us sources with which to discover possible early markers for the presence of new disease and for the progression of established cancer throughout the course of treatment. Unfortunately, this wealth of information has yielded little to date in changing the clinical care of these patients from a diagnostic, prognostic, or treatment perspective. The rational examination and translation of proteomics data in the context of past clinical trials and the design of future clinical trials must occur before we can march forward into the future of personalized medicine. PMID:20561909

  19. Database independent proteomics analysis of the ostrich and human proteome.

    PubMed

    Altelaar, A F Maarten; Navarro, Danny; Boekhorst, Jos; van Breukelen, Bas; Snel, Berend; Mohammed, Shabaz; Heck, Albert J R

    2012-01-10

    Mass spectrometry (MS)-based proteome analysis relies heavily on the presence of complete protein databases. Such a strategy is extremely powerful, albeit not adequate in the analysis of unpredicted postgenome events, such as posttranslational modifications, which exponentially increase the search space. Therefore, it is of interest to explore "database-free" approaches. Here, we sampled the ostrich and human proteomes with a method facilitating de novo sequencing, utilizing the protease Lys-N in combination with electron transfer dissociation. By implementing several validation steps, including the combined use of collision-induced dissociation/electron transfer dissociation data and a cross-validation with conventional database search strategies, we identified approximately 2,500 unique de novo peptide sequences from the ostrich sample with over 900 peptides generating full backbone sequence coverage. This dataset allowed the appropriate positioning of ostrich in the evolutionary tree. The described database-free sequencing approach is generically applicable and has great potential in important proteomics applications such as in the analysis of variable parts of endogenous antibodies or proteins modified by a plethora of complex posttranslational modifications. PMID:22198768

  20. Proteomic global profiling for cancer biomarker discovery.

    PubMed

    Faca, Vitor; Wang, Hong; Hanash, Samir

    2009-01-01

    The ultimate goal of cancer molecular diagnostics is the development of simple tests to predict cancer risk, detect cancer early, classify tumors, and monitor response to therapy. Proteomics is well suited for these tasks. However, there are substantial challenges that need to be met to identify the most informative markers using proteomics. Approaches for in-depth quantitative proteomic analysis based on isotopic labeling and protein fractionation are presented in this chapter. PMID:19241042

  1. Combining Capillary Electrophoresis with Mass Spectrometry for Applications in Proteomics

    SciTech Connect

    Simpson, David C.; Smith, Richard D.

    2005-04-01

    Throughout the field of global proteomics, ranging from simple organism studies to human medical applications, the high sample complexity creates demands for improved separations and analysis techniques. Furthermore, with increased organism complexity, the correlation between proteome and genome becomes less certain due to extensive mRNA processing prior to translation. In this way, the same DNA sequence can potentially code for regions in a number of distinct proteins; quantitative differences in expression (or abundance) between these often-related species are of significant interest. Well-established proteomics techniques, which use genomic information to identify peptides that originate from protease digestion, often cannot easily distinguish between such gene products; intact protein-level analyses are required to complete the picture, particularly for identifying post-translational modifications. While chromatographic techniques are currently better suited to peptide analysis, capillary electrophoresis (CE) in combination with mass spectrometry (MS) may become important for intact protein analysis. This review focuses on CE/MS instrumentation and techniques showing promise for such applications, highlighting those with greatest potential. Reference will also be made to developments relevant to peptide-level analyses for use in time- or sample-limited situations.

  2. Applied proteomics: mitochondrial proteins and effect on function.

    PubMed

    Lopez, Mary F; Melov, Simon

    2002-03-01

    The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria. PMID:11884366

  3. Integrative Analysis of the Mitochondrial Proteome in Yeast

    SciTech Connect

    Prokisch, Holger; Scharfe, Curt M.; Camp, David G.; Xiao, Wenzhong; David, Lior; Andreoli, Christophe; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Kozany, Christian; Hixson, Kim K.; Mottaz, Heather M.; Zischka, Hans; Ueffing, Marius; Herman, Zelek S.; Davis, Ronald W.; Meitinger, Thomas; Oefner, Peter; Smith, Richard D.; Steinmetz, Lars M.

    2004-06-30

    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidates genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  4. Proteomics by FTICR Mass Spectrometry: Top Down and Bottom Up

    SciTech Connect

    Bogdanov, Bogdan; Smith, Richard D.

    2005-03-31

    This review offers a broad overview of recent FTICR applications and technological developments in the field of proteomics, directed to a variety of people with different expertise and interests. Both the ''bottom-up'' (peptide level) and ''top-down'' (intact protein level) approaches will be covered and various related aspects will be discussed and illustrated with examples that are among the best available references in the literature. ''Bottom-up topics include peptide fragmentation, the AMT approach and DREAMS technology, quantitative proteomics, post-translational modifications, and special FTICR software focused on peptide and protein identification. Topics in the ''top-down'' part include various aspects of high-mass measurements, protein tandem mass spectrometry, protein confirmations, protein-protein complexes, as well as some esoteric applications that may become more practical in the coming years. Finally, examples of integrating both approaches and medical proteomics applications using FTICR will be provided, closing with an outlook of what may be coming our way sooner than later.

  5. Biospecimen Solicitation - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    A funding opportunity in support of the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) seeks to prospectively procure tumor samples, collected for proteomics investigation.

  6. MetazSecKB: the human and animal secretome and subcellular proteome knowledgebase.

    PubMed

    Meinken, John; Walker, Gary; Cooper, Chester R; Min, Xiang Jia

    2015-01-01

    The subcellular location of a protein is a key factor in determining the molecular function of the protein in an organism. MetazSecKB is a secretome and subcellular proteome knowledgebase specifically designed for metazoan, i.e. human and animals. The protein sequence data, consisting of over 4 million entries with 121 species having a complete proteome, were retrieved from UniProtKB. Protein subcellular locations including secreted and 15 other subcellular locations were assigned based on either curated experimental evidence or prediction using seven computational tools. The protein or subcellular proteome data can be searched and downloaded using several different types of identifiers, gene name or keyword(s), and species. BLAST search and community annotation of subcellular locations are also supported. Our primary analysis revealed that the proteome sizes, secretome sizes and other subcellular proteome sizes vary tremendously in different animal species. The proportions of secretomes vary from 3 to 22% (average 8%) in metazoa species. The proportions of other major subcellular proteomes ranged approximately 21-43% (average 31%) in cytoplasm, 20-37% (average 30%) in nucleus, 3-19% (average 12%) as plasma membrane proteins and 3-9% (average 6%) in mitochondria. We also compared the protein families in secretomes of different primates. The Gene Ontology and protein family domain analysis of human secreted proteins revealed that these proteins play important roles in regulation of human structure development, signal transduction, immune systems and many other biological processes. Database URL: http://proteomics.ysu.edu/secretomes/animal/index.php. PMID:26255309

  7. MetazSecKB: the human and animal secretome and subcellular proteome knowledgebase

    PubMed Central

    Meinken, John; Walker, Gary; Cooper, Chester R.; Min, Xiang Jia

    2015-01-01

    The subcellular location of a protein is a key factor in determining the molecular function of the protein in an organism. MetazSecKB is a secretome and subcellular proteome knowledgebase specifically designed for metazoan, i.e. human and animals. The protein sequence data, consisting of over 4 million entries with 121 species having a complete proteome, were retrieved from UniProtKB. Protein subcellular locations including secreted and 15 other subcellular locations were assigned based on either curated experimental evidence or prediction using seven computational tools. The protein or subcellular proteome data can be searched and downloaded using several different types of identifiers, gene name or keyword(s), and species. BLAST search and community annotation of subcellular locations are also supported. Our primary analysis revealed that the proteome sizes, secretome sizes and other subcellular proteome sizes vary tremendously in different animal species. The proportions of secretomes vary from 3 to 22% (average 8%) in metazoa species. The proportions of other major subcellular proteomes ranged approximately 21–43% (average 31%) in cytoplasm, 20–37% (average 30%) in nucleus, 3–19% (average 12%) as plasma membrane proteins and 3–9% (average 6%) in mitochondria. We also compared the protein families in secretomes of different primates. The Gene Ontology and protein family domain analysis of human secreted proteins revealed that these proteins play important roles in regulation of human structure development, signal transduction, immune systems and many other biological processes. Database URL: http://proteomics.ysu.edu/secretomes/animal/index.php PMID:26255309

  8. Proteomics of Leaf Tissues from Populus

    SciTech Connect

    Hurst, Gregory {Greg} B; Yang, Xiaohan; Tschaplinski, Timothy J; Tuskan, Gerald A; Lankford, Patricia K; Shah, Manesh B; Jawdy, Sara; Gunter, Lee E; Engle, Nancy L

    2010-01-01

    Trees of the genus Populus are farmed commercially for wood and fiber, and are a potential bioenergy crop. As a scientific model organism, P. trichocarpa was the first forest tree for which the genome sequence has been determined. Knowledge of the Populus proteome will provide a deeper understanding of gene expression patterns in various tissues of the plant. To build on our previous profile of the proteome of xylem tissue in Populus (Kalluri et al., Proteomics 2009, 9, 4871), we are currently developing methods for studying the proteome of Populus leaves.

  9. Quantitative Proteomic Analysis of the Human Nucleolus.

    PubMed

    Bensaddek, Dalila; Nicolas, Armel; Lamond, Angus I

    2016-01-01

    Recent years have witnessed spectacular progress in the field of mass spectrometry (MS)-based quantitative proteomics, including advances in instrumentation, chromatography, sample preparation methods, and experimental design for multidimensional analyses. It is now possible not only to identify most of the protein components of a cell proteome in a single experiment, but also to describe additional proteome dimensions, such as protein turnover rates, posttranslational modifications, and subcellular localization. Furthermore, by comparing the proteome at different time points, it is possible to create a "time-lapse" view of proteome dynamics. By combining high-throughput quantitative proteomics with detailed subcellular fractionation protocols and data analysis techniques it is also now possible to characterize in detail the proteomes of specific subcellular organelles, providing important insights into cell regulatory mechanisms and physiological responses. In this chapter we present a reliable workflow and protocol for MS-based analysis and quantitation of the proteome of nucleoli isolated from human cells. The protocol presented is based on a SILAC analysis of human MCF10A-Src-ER cells with analysis performed on a Q-Exactive Plus Orbitrap MS instrument (Thermo Fisher Scientific). The subsequent chapter describes how to process the resulting raw MS files from this experiment using MaxQuant software and data analysis procedures to evaluate the nucleolar proteome using customized R scripts. PMID:27576725

  10. ProCon - PROteomics CONversion tool.

    PubMed

    Mayer, Gerhard; Stephan, Christian; Meyer, Helmut E; Kohl, Michael; Marcus, Katrin; Eisenacher, Martin

    2015-11-01

    With the growing amount of experimental data produced in proteomics experiments and the requirements/recommendations of journals in the proteomics field to publicly make available data described in papers, a need for long-term storage of proteomics data in public repositories arises. For such an upload one needs proteomics data in a standardized format. Therefore, it is desirable, that the proprietary vendor's software will integrate in the future such an export functionality using the standard formats for proteomics results defined by the HUPO-PSI group. Currently not all search engines and analysis tools support these standard formats. In the meantime there is a need to provide user-friendly free-to-use conversion tools that can convert the data into such standard formats in order to support wet-lab scientists in creating proteomics data files ready for upload into the public repositories. ProCon is such a conversion tool written in Java for conversion of proteomics identification data into standard formats mzIdentML and Pride XML. It allows the conversion of Sequest™/Comet .out files, of search results from the popular and often used ProteomeDiscoverer® 1.x (x=versions 1.1 to1.4) software and search results stored in the LIMS systems ProteinScape® 1.3 and 2.1 into mzIdentML and PRIDE XML. This article is part of a Special Issue entitled: Computational Proteomics. PMID:26182917

  11. Proteomic biomarkers in lung cancer.

    PubMed

    Pastor, M D; Nogal, A; Molina-Pinelo, S; Carnero, A; Paz-Ares, L

    2013-09-01

    The correct understanding of tumour development relies on the comprehensive study of proteins. They are the main orchestrators of vital processes, such as signalling pathways, which drive the carcinogenic process. Proteomic technologies can be applied to cancer research to detect differential protein expression and to assess different responses to treatment. Lung cancer is the number one cause of cancer-related death in the world. Mostly diagnosed at late stages of the disease, lung cancer has one of the lowest 5-year survival rates at 15 %. The use of different proteomic techniques such as two-dimensional gel electrophoresis (2D-PAGE), isotope labelling (ICAT, SILAC, iTRAQ) and mass spectrometry may yield new knowledge on the underlying biology of lung cancer and also allow the development of new early detection tests and the identification of changes in the cancer protein network that are associated with prognosis and drug resistance. PMID:23606351

  12. Proteome analysis for rat saliva.

    PubMed

    Inenaga, Kiyotoshi; Yamada, Naoyuki; Yuji, Reiko; Kawai, Misako; Uneyama, Hisayuki; Ono, Kentaro; Suzuki, Ei-ichiro; Torii, Kunio

    2009-01-01

    Proteome analysis is a popular method to discover biomarkers for the prevention and diagnosis of diseases. Since saliva is a non-invasively available body fluid, gathering of saliva causes minimal harm to patients. Therefore, detection of proteins for the prevention and diagnosis from the saliva sample may be the preferred method, especially for children and elderly people. However, the abundance of salivary proteins and contaminant proteins from food and mouth bacteria obscure identification of proteins present in the saliva at low concentrations. To address this problem, we developed a shotgun proteomic method using two-dimensional nano-flow LC tandem mass spectrometry. We report here that our method is able to detect proteins quantitatively even in small sample volumes of saliva. PMID:20224185

  13. The rat brain hippocampus proteome.

    PubMed

    Fountoulakis, Michael; Tsangaris, George T; Maris, Antony; Lubec, Gert

    2005-05-01

    The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders. PMID:15797529

  14. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation.

    PubMed

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-08-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  15. Profiling the Proteome of Mycobacterium tuberculosis during Dormancy and Reactivation*

    PubMed Central

    Gopinath, Vipin; Raghunandanan, Sajith; Gomez, Roshna Lawrence; Jose, Leny; Surendran, Arun; Ramachandran, Ranjit; Pushparajan, Akhil Raj; Mundayoor, Sathish; Jaleel, Abdul; Kumar, Ramakrishnan Ajay

    2015-01-01

    Tuberculosis, caused by Mycobacterium tuberculosis, still remains a major global health problem. The main obstacle in eradicating this disease is the ability of this pathogen to remain dormant in macrophages, and then reactivate later under immuno-compromised conditions. The physiology of hypoxic nonreplicating M. tuberculosis is well-studied using many in vitro dormancy models. However, the physiological changes that take place during the shift from dormancy to aerobic growth (reactivation) have rarely been subjected to a detailed investigation. In this study, we developed an in vitro reactivation system by re-aerating the virulent laboratory strain of M. tuberculosis that was made dormant employing Wayne's dormancy model, and compared the proteome profiles of dormant and reactivated bacteria using label-free one-dimensional LC/MS/MS analysis. The proteome of dormant bacteria was analyzed at nonreplicating persistent stage 1 (NRP1) and stage 2 (NRP2), whereas that of reactivated bacteria was analyzed at 6 and 24 h post re-aeration. Proteome of normoxially grown bacteria served as the reference. In total, 1871 proteins comprising 47% of the M. tuberculosis proteome were identified, and many of them were observed to be expressed differentially or uniquely during dormancy and reactivation. The number of proteins detected at different stages of dormancy (764 at NRP1, 691 at NRP2) and reactivation (768 at R6 and 983 at R24) was very low compared with that of the control (1663). The number of unique proteins identified during normoxia, NRP1, NRP2, R6, and R24 were 597, 66, 56, 73, and 94, respectively. We analyzed various biological functions during these conditions. Fluctuation in the relative quantities of proteins involved in energy metabolism during dormancy and reactivation was the most significant observation we made in this study. Proteins that are up-regulated or uniquely expressed during reactivation from dormancy offer to be attractive targets for therapeutic

  16. A Quantitative Glycomics and Proteomics Combined Purification Strategy

    PubMed Central

    Muddiman, David C.

    2016-01-01

    There is a growing desire in the biological and clinical sciences to integrate and correlate multiple classes of biomolecules to unravel biology, define pathways, improve treatment, understand disease, and aid biomarker discovery. N-linked glycosylation is one of the most important and robust post-translational modifications on proteins and regulates critical cell functions such as signaling, adhesion, and enzymatic function. Analytical techniques to purify and analyze N-glycans have remained relatively static over the last decade. While accurate and effective, they commonly require significant expertise and resources. Though some high-throughput purification schemes have been developed, they have yet to find widespread adoption and often rely on the enrichment of glycopeptides. One promising method, developed by Thomas-Oates et al., filter aided N-glycan separation (FANGS), was qualitatively demonstrated on tissues. Herein, we adapted FANGS to plasma and coupled it to the individuality normalization when labeling with glycan hydrazide tags strategy in order to achieve accurate relative quantification by liquid chromatography mass spectrometry and enhanced electrospray ionization. Furthermore, we designed new functionality to the protocol by achieving tandem, shotgun proteomics and glycosylation site analysis on hen plasma. We showed that N-glycans purified on filter and derivatized by hydrophobic hydrazide tags were comparable in terms of abundance and class to those by solid phase extraction (SPE); the latter is considered a gold standard in the field. Importantly, the variability in the two protocols was not statistically different. Proteomic data that was collected in-line with glycomic data had the same depth compared to a standard trypsin digest. Peptide deamidation is minimized in the protocol, limiting non-specific deamidation detected at glycosylation motifs. This allowed for direct glycosylation site analysis, though the protocol can accommodate 18O site

  17. Forensic Proteomics of Poxvirus Production

    SciTech Connect

    Wunschel, David S.; Tulman, Edan; Engelmann, Heather E.; Clowers, Brian H.; Geary, Steven J.; Robinson, Aaron C.; Liao, Xiaofen

    2013-08-27

    The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signature of their production system. Here we have explored a proteomic analysis of Vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins, and several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.

  18. Protein Neighbors and Proximity Proteomics*

    PubMed Central

    Rees, Johanna S.; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S.; Jackson, Antony P.

    2015-01-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  19. Human saliva proteome: an overview

    NASA Astrophysics Data System (ADS)

    Griffin, Timothy J.

    2014-06-01

    Human saliva contains a rich mixture of biomolecules. Proteins are a major component of this mixture. Given their role as the molecular effectors within biological systems, ranging from catalysis to transport to structure, proteins have great potential as biomarkers of health and disease. The ability to collect these salivary biomarkers easily using non-invasive means makes saliva proteins even more attractive for diagnostic applications. Thousands of proteins are now to be known to be present in human saliva - discovered using proteomic technologies. Emerging technologies are now making it possible to go beyond large-scale cataloging of salivary proteins. These include approaches to catalog protein contributions from the community of microorganisms residing in the oral cavity (metaproteomics) that may reflect the health state of the human host. New mass spectrometry-based proteomics methods are also emerging, shifting the emphasis from large-scale discovery experiments to hypothesis-driven assays for profiling proteins of interest within saliva, enabling validation of their association with specific health conditions. This paper provides a brief overview of efforts to catalog the proteome of human saliva. Recent developments making possible characterization of the metaproteome of human saliva will be discussed, and technologies driving new mass spectrometry-based assays for targeted analysis of proteins within complex samples, such as saliva.

  20. Cell wall proteomics of crops

    PubMed Central

    Komatsu, Setsuko; Yanagawa, Yuki

    2012-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improving crop productivity, particularly under unfavorable environmental conditions. To better understand the mechanisms underlying stress response in crops, cell wall proteomic analyses are being increasingly utilized. In this review, the methods of purification and purity assays of cell wall protein fractions from crops are described, and the results of protein identification using gel-based and gel-free proteomic techniques are presented. Furthermore, protein composition of the cell walls of rice, wheat, maize, and soybean are compared, and the role of cell wall proteins in crops under flooding and drought stress is discussed. This review will be useful for clarifying the role of the cell wall of crops in response to environmental stresses. PMID:23403621

  1. Protein Neighbors and Proximity Proteomics.

    PubMed

    Rees, Johanna S; Li, Xue-Wen; Perrett, Sarah; Lilley, Kathryn S; Jackson, Antony P

    2015-11-01

    Within cells, proteins can co-assemble into functionally integrated and spatially restricted multicomponent complexes. Often, the affinities between individual proteins are relatively weak, and proteins within such clusters may interact only indirectly with many of their other protein neighbors. This makes proteomic characterization difficult using methods such as immunoprecipitation or cross-linking. Recently, several groups have described the use of enzyme-catalyzed proximity labeling reagents that covalently tag the neighbors of a targeted protein with a small molecule such as fluorescein or biotin. The modified proteins can then be isolated by standard pulldown methods and identified by mass spectrometry. Here we will describe the techniques as well as their similarities and differences. We discuss their applications both to study protein assemblies and to provide a new way for characterizing organelle proteomes. We stress the importance of proteomic quantitation and independent target validation in such experiments. Furthermore, we suggest that there are biophysical and cell-biological principles that dictate the appropriateness of enzyme-catalyzed proximity labeling methods to address particular biological questions of interest. PMID:26355100

  2. Quantitative Proteomics of Caveolin-1-regulated Proteins

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos; Sowa, Grzegorz; Derakhshan, Behrad; Lin, Michelle I.; Lee, Ji Y.; Zhao, Hongyu; Luo, Ruiyan; Colangelo, Christopher; Sessa, William C.

    2010-01-01

    Caveolae are organelles abundant in the plasma membrane of many specialized cells including endothelial cells (ECs), epithelial cells, and adipocytes, and in these cells, caveolin-1 (Cav-1) is the major coat protein essential for the formation of caveolae. To identify proteins that require Cav-1 for stable incorporation into membrane raft domains, a quantitative proteomics analysis using isobaric tagging for relative and absolute quantification was performed on rafts isolated from wild-type and Cav-1-deficient mice. In three independent experiments, 117 proteins were consistently identified in membrane rafts with the largest differences in the levels of Cav-2 and in the caveola regulatory proteins Cavin-1 and Cavin-2. Because the lung is highly enriched in ECs, we validated and characterized the role of the newly described protein Cavin-1 in several cardiovascular tissues and in ECs. Cavin-1 was highly expressed in ECs lining blood vessels and in cultured ECs. Knockdown of Cavin-1 reduced the levels of Cav-1 and -2 and weakly influenced the formation of high molecular weight oligomers containing Cav-1 and -2. Cavin-1 silencing enhanced basal nitric oxide release from ECs but blocked proangiogenic phenotypes such as EC proliferation, migration, and morphogenesis in vitro. Thus, these data support an important role of Cavin-1 as a regulator of caveola function in ECs. PMID:20585024

  3. Proteomic Signature of the Murine Intervertebral Disc

    PubMed Central

    McCann, Matthew R.; Patel, Priya; Frimpong, Agya; Xiao, Yizhi; Siqueira, Walter L.; Séguin, Cheryle A.

    2015-01-01

    Low back pain is the most common musculoskeletal problem and the single most common cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effective treatment is directly related to our limited understanding of the pathways responsible for maintaining disc health. While transcriptional analysis has permitted initial insights into the biology of the intervertebral disc, complete proteomic characterization is required. We therefore employed liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to characterize the protein content of intervertebral discs from skeletally mature wild-type mice. A total of 1360 proteins were identified and categorized using PANTHER. Identified proteins were primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), extracellular region (9%). Molecular function categorization resulted in three distinct categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural activity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted proteins. Immunohistochemical analysis confirmed distinct localization patterns of select protein with the intervertebral disc. Characterization of the protein composition of healthy intervertebral disc tissue is an important first step in identifying cellular processes and pathways disrupted during aging or disease progression. PMID:25689066

  4. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors.

    PubMed

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels H H; Borregaard, Niels

    2013-10-01

    Neutrophils are indispensable in the innate immune defense against invading microorganisms. Neutrophils contain SVs and several subsets of granules that are essential for their function. Proteins present in neutrophil SVs and granules are synthesized during terminal granulopoiesis in the bone marrow. The heterogeneity of granules, as determined by marker proteins characteristic of each granule subset, is thought to result from differences in the biosynthetic windows of major classes of granule proteins, a process referred to as targeting by timing. Qualitative proteomic analysis of neutrophil granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in-gel-digested with trypsin. The resulting peptides were analyzed using LTQ Orbitrap XL tandem MS. A total of 1292 unique proteins were identified and grouped, according to the neutrophil fraction, in which they displayed maximal expression. In addition to various known neutrophil proteins, several uncharacterized proteins were found, as well as proteins not described previously in neutrophils. To study the correlation between mRNA expression in neutrophil precursors and the localization of their cognate proteins, the distribution of 126 identified proteins was compared with their mRNA expression profiles. The neutrophil subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes. PMID:23650620

  5. Proteomic Changes during B Cell Maturation: 2D-DIGE Approach

    PubMed Central

    Salonen, Johanna; Rönnholm, Gunilla; Kalkkinen, Nisse; Vihinen, Mauno

    2013-01-01

    B cells play a pivotal role in adaptive immune system, since they maintain a delicate balance between recognition and clearance of foreign pathogens and tolerance to self. During maturation, B cells progress through a series of developmental stages defined by specific phenotypic surface markers and the rearrangement and expression of immunoglobulin (Ig) genes. To get insight into B cell proteome during the maturation pathway, we studied differential protein expression in eight human cell lines, which cover four distinctive developmental stages; early pre-B, pre-B, plasma cell and immature B cell upon anti-IgM stimulation. Our two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry based proteomic study indicates the involvement of large number of proteins with various functions. Notably, proteins related to cytoskeleton were relatively highly expressed in early pre-B and pre-B cells, whereas plasma cell proteome contained endoplasmic reticulum and Golgi system proteins. Our long time series analysis in anti-IgM stimulated Ramos B cells revealed the dynamic regulation of cytoskeleton organization, gene expression and metabolic pathways, among others. The findings are related to cellular processes in B cells and are discussed in relation to experimental information for the proteins and pathways they are involved in. Representative 2D-DIGE maps of different B cell maturation stages are available online at http://structure.bmc.lu.se/BcellProteome/. PMID:24205016

  6. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    PubMed

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  7. Fundamentals of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul M.

    2008-07-01

    Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.

  8. Comprehensive proteome analysis of an Apc mouse model uncovers proteins associated with intestinal tumorigenesis.

    PubMed

    Hung, Kenneth E; Faca, Vitor; Song, Kenneth; Sarracino, David A; Richard, Larissa Georgeon; Krastins, Bryan; Forrester, Sara; Porter, Andrew; Kunin, Alexandra; Mahmood, Umar; Haab, Brian B; Hanash, Samir M; Kucherlapati, Raju

    2009-03-01

    Tumor-derived proteins may occur in the circulation as a result of secretion, shedding from the cell surface, or cell turnover. We have applied an in-depth comprehensive proteomic strategy to plasma from intestinal tumor-bearing Apc mutant mice to identify proteins associated with tumor development. We used quantitative tandem mass spectrometry of fractionated mouse plasma to identify differentially expressed proteins in plasma from intestinal tumor-bearing Apc mutant mice relative to matched controls. Up-regulated proteins were assessed for the expression of corresponding genes in tumor tissue. A subset of proteins implicated in colorectal cancer were selected for further analysis at the tissue level using antibody microarrays, Western blotting, tumor immunohistochemistry, and novel fluorescent imaging. We identified 51 proteins that were elevated in plasma with concordant up-regulation at the RNA level in tumor tissue. The list included multiple proteins involved in colon cancer pathogenesis: cathepsin B and cathepsin D, cullin 1, Parkinson disease 7, muscle pyruvate kinase, and Ran. Of these, Parkinson disease 7, muscle pyruvate kinase, and Ran were also found to be up-regulated in human colon adenoma samples. We have identified proteins with direct relevance to colorectal carcinogenesis that are present both in plasma and in tumor tissue in intestinal tumor-bearing mice. Our results show that integrated analysis of the plasma proteome and tumor transcriptome of genetically engineered mouse models is a powerful approach for the identification of tumor-related plasma proteins. PMID:19240248

  9. Applications of Proteomic Technologies to Toxicology

    EPA Science Inventory

    Proteomics is the large-scale study of gene expression at the protein level. This cutting edge technology has been extensively applied to toxicology research recently. The up-to-date development of proteomics has presented the toxicology community with an unprecedented opportunit...

  10. Endosperm and Amyloplast Proteomes of Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in proteomics and genomics have improved our understanding of the gluten proteins, a complex and functionally important protein group. Proteomic approaches also have been used to identify other proteins that may play roles in wheat flour functionality, to assign genes for gluten proteins to...

  11. Global Proteome Analysis of Leptospira interrogans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...

  12. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  13. Centennial Paper: Proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics holds significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we wil...

  14. The promise of proteomics in animal science

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteomics hold significant promise as a method for advancing animal science research. The use of this technology in animal science is still in its infancy. The ability of proteomics to simultaneously identify and quantify potentially thousands of proteins is unparalleled. In this review, we will...

  15. Characterization of the Human Pancreatic Islet Proteome by Two-Dimensional LC/MS/MS

    SciTech Connect

    Metz, Thomas O.; Jacobs, Jon M.; Gritsenko, Marina A.; Fontes, Ghislaine; Qian, Weijun; Camp, David G.; Poitout, Vincent J.; Smith, Richard D.

    2006-12-01

    Research to elucidate the pathogenesis of type 1 diabetes mellitus has traditionally focused on the genetic and immunological factors associated with the disease, and, until recently, has not considered the target cell. While there have been reports detailing proteomic analyses of established islet cell lines or isolated rodent islets, the information gained is not always easily extrapolated to humans. Therefore, extensive characterization of the human islet proteome could result in better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the detection of 29,021 unique peptides corresponding to 4,925 proteins. As expected, major islet hormones (insulin, glucagon, somatostatin), beta-cell enriched secretory products (IAPP), ion channels (K-ATP channel), and transcription factors (PDX-1, Nkx 6.1, HNF-1 beta) were detected. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was obtained, including the insulin signaling cascade and the MAP kinase, NF-κβ, and JAK/STAT pathways. This work represents the most extensive characterization of the human islet proteome to date and provides a peptide reference library that may be utilized in future studies of islet biology and type 1 diabetes.

  16. Proteome dataset of pre-ovulatory follicular fluids from less fertile dairy cows

    PubMed Central

    Zachut, Maya; Sood, Pankaj; Livshitz, Lilya; Kra, Gitit; Levin, Yishai; Moallem, Uzi

    2016-01-01

    This article contains raw and processed data related to research published in Zachut et al. (2016) [1]. Proteomics data from preovulatory follicles in cows was obtained by liquid chromatography-mass spectrometry following protein extraction. Differential expression between controls and less fertile cows (LFC) was quantified using MS1 intensity based label-free. The only previous proteomic analysis of bovine FF detected merely 40 proteins in follicular cysts obtained from the slaughterhouse (Maniwa et al., 2005) [2], and the abundance of proteins in the bovine preovulatory FF remains unknown. Therefore, the objectives were to establish the first dataset of FF proteome in preovulatory follicles of cows, and to examine differentially expressed proteins in FF obtained in-vivo from preovulatory follicles of less fertile cows (also termed “repeat breeder”) and control (CTL) cows. The proteome of FF from 10 preovulatory follicles that were aspirated in vivo (estradiol/progesterone>1) was analyzed. This novel dataset contains 219 identified and quantified proteins in FF, consisting mainly of binding proteins, proteases, receptor ligands, enzymes and transporters. In addition, differential abundance of 8 proteins relevant to follicular function was found in LFC compared to CTL; these findings are discussed in our recent research article Zachut et al. (2016) [1]. The present dataset of bovine FF proteome can be used as a reference for any study involving disorders of follicular development in dairy cows or in comparative studies between species. PMID:27182550

  17. Proteome dataset of pre-ovulatory follicular fluids from less fertile dairy cows.

    PubMed

    Zachut, Maya; Sood, Pankaj; Livshitz, Lilya; Kra, Gitit; Levin, Yishai; Moallem, Uzi

    2016-06-01

    This article contains raw and processed data related to research published in Zachut et al. (2016) [1]. Proteomics data from preovulatory follicles in cows was obtained by liquid chromatography-mass spectrometry following protein extraction. Differential expression between controls and less fertile cows (LFC) was quantified using MS1 intensity based label-free. The only previous proteomic analysis of bovine FF detected merely 40 proteins in follicular cysts obtained from the slaughterhouse (Maniwa et al., 2005) [2], and the abundance of proteins in the bovine preovulatory FF remains unknown. Therefore, the objectives were to establish the first dataset of FF proteome in preovulatory follicles of cows, and to examine differentially expressed proteins in FF obtained in-vivo from preovulatory follicles of less fertile cows (also termed "repeat breeder") and control (CTL) cows. The proteome of FF from 10 preovulatory follicles that were aspirated in vivo (estradiol/progesterone>1) was analyzed. This novel dataset contains 219 identified and quantified proteins in FF, consisting mainly of binding proteins, proteases, receptor ligands, enzymes and transporters. In addition, differential abundance of 8 proteins relevant to follicular function was found in LFC compared to CTL; these findings are discussed in our recent research article Zachut et al. (2016) [1]. The present dataset of bovine FF proteome can be used as a reference for any study involving disorders of follicular development in dairy cows or in comparative studies between species. PMID:27182550

  18. Cell cycle: proteomics gives it a spin.

    PubMed

    Archambault, Vincent

    2005-08-01

    The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells. PMID:16097893

  19. Proteome Analysis of the Penicillin Producer Penicillium chrysogenum

    PubMed Central

    Jami, Mohammad-Saeid; Barreiro, Carlos; García-Estrada, Carlos; Martín, Juan-Francisco

    2010-01-01

    Proteomics is a powerful tool to understand the molecular mechanisms causing the production of high penicillin titers by industrial strains of the filamentous fungus Penicillium chrysogenum as the result of strain improvement programs. Penicillin biosynthesis is an excellent model system for many other bioactive microbial metabolites. The recent publication of the P. chrysogenum genome has established the basis to understand the molecular processes underlying penicillin overproduction. We report here the proteome reference map of P. chrysogenum Wisconsin 54-1255 (the genome project reference strain) together with an in-depth study of the changes produced in three different strains of this filamentous fungus during industrial strain improvement. Two-dimensional gel electrophoresis, peptide mass fingerprinting, and tandem mass spectrometry were used for protein identification. Around 1000 spots were visualized by “blue silver” colloidal Coomassie staining in a non-linear pI range from 3 to 10 with high resolution, which allowed the identification of 950 proteins (549 different proteins and isoforms). Comparison among the cytosolic proteomes of the wild-type NRRL 1951, Wisconsin 54-1255 (an improved, moderate penicillin producer), and AS-P-78 (a penicillin high producer) strains indicated that global metabolic reorganizations occurred during the strain improvement program. The main changes observed in the high producer strains were increases of cysteine biosynthesis (a penicillin precursor), enzymes of the pentose phosphate pathway, and stress response proteins together with a reduction in virulence and in the biosynthesis of other secondary metabolites different from penicillin (pigments and isoflavonoids). In the wild-type strain, we identified enzymes to utilize cellulose, sorbitol, and other carbon sources that have been lost in the high penicillin producer strains. Changes in the levels of a few specific proteins correlated well with the improved penicillin

  20. Accurate Mass Measurements in Proteomics

    SciTech Connect

    Liu, Tao; Belov, Mikhail E.; Jaitly, Navdeep; Qian, Weijun; Smith, Richard D.

    2007-08-01

    To understand different aspects of life at the molecular level, one would think that ideally all components of specific processes should be individually isolated and studied in details. Reductionist approaches, i.e., studying one biological event at a one-gene or one-protein-at-a-time basis, indeed have made significant contributions to our understanding of many basic facts of biology. However, these individual “building blocks” can not be visualized as a comprehensive “model” of the life of cells, tissues, and organisms, without using more integrative approaches.1,2 For example, the emerging field of “systems biology” aims to quantify all of the components of a biological system to assess their interactions and to integrate diverse types of information obtainable from this system into models that could explain and predict behaviors.3-6 Recent breakthroughs in genomics, proteomics, and bioinformatics are making this daunting task a reality.7-14 Proteomics, the systematic study of the entire complement of proteins expressed by an organism, tissue, or cell under a specific set of conditions at a specific time (i.e., the proteome), has become an essential enabling component of systems biology. While the genome of an organism may be considered static over short timescales, the expression of that genome as the actual gene products (i.e., mRNAs and proteins) is a dynamic event that is constantly changing due to the influence of environmental and physiological conditions. Exclusive monitoring of the transcriptomes can be carried out using high-throughput cDNA microarray analysis,15-17 however the measured mRNA levels do not necessarily correlate strongly with the corresponding abundances of proteins,18-20 The actual amount of functional proteins can be altered significantly and become independent of mRNA levels as a result of post-translational modifications (PTMs),21 alternative splicing,22,23 and protein turnover.24,25 Moreover, the functions of expressed

  1. Toxic metal proteomics: reaction of the mammalian zinc proteome with Cd²⁺.

    PubMed

    Namdarghanbari, Mohammad Ali; Bertling, Joseph; Krezoski, Susan; Petering, David H

    2014-07-01

    The hypothesis was tested that Cd(2+) undergoes measureable reaction with the Zn-proteome through metal ion exchange chemistry. The Zn-proteome of pig kidney LLC-PK1 cells is relatively inert to reaction with competing ligands, including Zinquin acid, EDTA, and apo-metallothionein. Upon reaction of Cd(2+) with the Zn-proteome, Cd(2+) associates with the proteome and near stoichiometric amounts of Zn(2+) become reactive with these chelating agents. The results strongly support the hypothesis that Cd(2+) displaces Zn(2+) from native proteomic binding sites resulting in the formation of a Cd-proteome. Mobilized Zn(2+) becomes adventitiously bound to proteome and available for reaction with added metal binding ligands. Cd-proteome and Zn-metallothionein readily exchange metal ions, raising the possibility that this reaction restores functionality to Cd-proteins. In a parallel experiment, cells were exposed to Cd(2+) and pyrithione briefly to generate substantial proteome-bound Cd(2+). Upon transition to a Cd(2+) free medium, the cells generated new metallothionein protein over time that bound most of the proteomic Cd(2+) as well as additional Zn(2+). PMID:24529759

  2. Subnuclear Proteomics in Colorectal Cancer

    PubMed Central

    Albrethsen, Jakob; Knol, Jaco C.; Piersma, Sander R.; Pham, Thang V.; de Wit, Meike; Mongera, Sandra; Carvalho, Beatriz; Verheul, Henk M. W.; Fijneman, Remond J. A.; Meijer, Gerrit A.; Jimenez, Connie R.

    2010-01-01

    Abnormalities in nuclear phenotype and chromosome structure are key features of cancer cells. Investigation of the protein determinants of nuclear subfractions in cancer may yield molecular insights into aberrant chromosome function and chromatin organization and in addition may yield biomarkers for early cancer detection. Here we evaluate a proteomics work flow for profiling protein constituents in subnuclear domains in colorectal cancer tissues and apply this work flow to a comparative analysis of the nuclear matrix fraction in colorectal adenoma and carcinoma tissue samples. First, we established the reproducibility of the entire work flow. In a reproducibility analysis of three nuclear matrix fractions independently isolated from the same colon tumor homogenate, 889 of 1,047 proteins (85%) were reproducibly identified at high confidence (minimally two peptides per protein at 99% confidence interval at the protein level) with an average coefficient of variance for the number of normalized spectral counts per protein of 30%. This indicates a good reproducibility of the entire work flow from biochemical isolation to nano-LC-MS/MS analysis. Second, using spectral counting combined with statistics, we identified proteins that are significantly enriched in the nuclear matrix fraction relative to two earlier fractions (the chromatin-binding and intermediate filament fractions) isolated from six colorectal tissue samples. The total data set contained 2,059 non-redundant proteins. Gene ontology mining and protein network analysis of nuclear matrix-enriched proteins revealed enrichment for proteins implicated in “RNA processing” and “mRNA metabolic process.” Finally, an explorative comparison of the nuclear matrix proteome in colorectal adenoma and carcinoma tissues revealed many proteins previously implicated in oncogenesis as well as new candidates. A subset of these differentially expressed proteins also exhibited a corresponding change at the mRNA level

  3. Library Reference Services.

    ERIC Educational Resources Information Center

    Miller, Constance; And Others

    1985-01-01

    Seven articles on library reference services highlight reference obsolescence in academic libraries, major studies of unobtrusive reference tests, methods for evaluating reference desk performance, reference interview evaluation, problems of reference desk control, online searching by end users, and reference collection development in…

  4. Galaxy Integrated Omics: Web-based Standards-Compliant Workflows for Proteomics Informed by Transcriptomics*

    PubMed Central

    Fan, Jun; Saha, Shyamasree; Barker, Gary; Heesom, Kate J.; Ghali, Fawaz; Jones, Andrew R.; Matthews, David A.; Bessant, Conrad

    2015-01-01

    With the recent advent of RNA-seq technology the proteomics community has begun to generate sample-specific protein databases for peptide and protein identification, an approach we call proteomics informed by transcriptomics (PIT). This approach has gained a lot of interest, particularly among researchers who work with nonmodel organisms or with particularly dynamic proteomes such as those observed in developmental biology and host-pathogen studies. PIT has been shown to improve coverage of known proteins, and to reveal potential novel gene products. However, many groups are impeded in their use of PIT by the complexity of the required data analysis. Necessarily, this analysis requires complex integration of a number of different software tools from at least two different communities, and because PIT has a range of biological applications a single software pipeline is not suitable for all use cases. To overcome these problems, we have created GIO, a software system that uses the well-established Galaxy platform to make PIT analysis available to the typical bench scientist via a simple web interface. Within GIO we provide workflows for four common use cases: a standard search against a reference proteome; PIT protein identification without a reference genome; PIT protein identification using a genome guide; and PIT genome annotation. These workflows comprise individual tools that can be reconfigured and rearranged within the web interface to create new workflows to support additional use cases. PMID:26269333

  5. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach. PMID:27020565

  6. Ultrasensitive proteome analysis using paramagnetic bead technology

    PubMed Central

    Hughes, Christopher S; Foehr, Sophia; Garfield, David A; Furlong, Eileen E; Steinmetz, Lars M; Krijgsveld, Jeroen

    2014-01-01

    In order to obtain a systems-level understanding of a complex biological system, detailed proteome information is essential. Despite great progress in proteomics technologies, thorough interrogation of the proteome from quantity-limited biological samples is hampered by inefficiencies during processing. To address these challenges, here we introduce a novel protocol using paramagnetic beads, termed Single-Pot Solid-Phase-enhanced Sample Preparation (SP3). SP3 provides a rapid and unbiased means of proteomic sample preparation in a single tube that facilitates ultrasensitive analysis by outperforming existing protocols in terms of efficiency, scalability, speed, throughput, and flexibility. To illustrate these benefits, characterization of 1,000 HeLa cells and single Drosophila embryos is used to establish that SP3 provides an enhanced platform for profiling proteomes derived from sub-microgram amounts of material. These data present a first view of developmental stage-specific proteome dynamics in Drosophila at a single-embryo resolution, permitting characterization of inter-individual expression variation. Together, the findings of this work position SP3 as a superior protocol that facilitates exciting new directions in multiple areas of proteomics ranging from developmental biology to clinical applications. PMID:25358341

  7. Proteomic Analysis of Chinese Hamster Ovary Cells

    PubMed Central

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E.; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard O.; Zhang, Hui; Betenbaugh, Michael

    2013-01-01

    In order to complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multi-dimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most a 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using CHO genome exclusively which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. 504 of the detected proteins included N-acetylation modifications and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  8. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  9. Visualizing Meta-Features in Proteomic Maps

    PubMed Central

    2011-01-01

    Background The steps of a high-throughput proteomics experiment include the separation, differential expression and mass spectrometry-based identification of proteins. However, the last and more challenging step is inferring the biological role of the identified proteins through their association with interaction networks, biological pathways, analysis of the effect of post-translational modifications, and other protein-related information. Results In this paper, we present an integrative visualization methodology that allows combining experimentally produced proteomic features with protein meta-features, typically coming from meta-analysis tools and databases, in synthetic Proteomic Feature Maps. Using three proteomics analysis scenarios, we show that the proposed visualization approach is effective in filtering, navigating and interacting with the proteomics data in order to address visually challenging biological questions. The novelty of our approach lies in the ease of integration of any user-defined proteomic features in easy-to-comprehend visual representations that resemble the familiar 2D-gel images, and can be adapted to the user's needs. The main capabilities of the developed VIP software, which implements the presented visualization methodology, are also highlighted and discussed. Conclusions By using this visualization and the associated VIP software, researchers can explore a complex heterogeneous proteomics dataset from different perspectives in order to address visually important biological queries and formulate new hypotheses for further investigation. VIP is freely available at http://pelopas.uop.gr/~egian/VIP/index.html. PMID:21798033

  10. Brain Proteomics of Anopheles gambiae

    PubMed Central

    Dwivedi, Sutopa B.; Muthusamy, Babylakshmi; Kumar, Praveen; Kim, Min-Sik; Nirujogi, Raja Sekhar; Getnet, Derese; Ahiakonu, Priscilla; De, Gourav; Nair, Bipin; Gowda, Harsha; Prasad, T.S. Keshava; Kumar, Nirbhay

    2014-01-01

    Abstract Anopheles gambiae has a well-adapted system for host localization, feeding, and mating behavior, which are all governed by neuronal processes in the brain. However, there are no published reports characterizing the brain proteome to elucidate neuronal signaling mechanisms in the vector. To this end, a large-scale mapping of the brain proteome of An. gambiae was carried out using high resolution tandem mass spectrometry, revealing a repertoire of >1800 proteins, of which 15% could not be assigned any function. A large proportion of the identified proteins were predicted to be involved in diverse biological processes including metabolism, transport, protein synthesis, and olfaction. This study also led to the identification of 10 GPCR classes of proteins, which could govern sensory pathways in mosquitoes. Proteins involved in metabolic and neural processes, chromatin modeling, and synaptic vesicle transport associated with neuronal transmission were predominantly expressed in the brain. Proteogenomic analysis expanded our findings with the identification of 15 novel genes and 71 cases of gene refinements, a subset of which were validated by RT-PCR and sequencing. Overall, our study offers valuable insights into the brain physiology of the vector that could possibly open avenues for intervention strategies for malaria in the future. PMID:24937107

  11. Proteomics and the Inner Ear

    PubMed Central

    Thalmann, Isolde

    2001-01-01

    The inner ear, one of the most complex organs, contains within its bony shell three sensory systems, the evolutionary oldest gravity receptor system, the three semicircular canals for the detection of angular acceleration, and the auditory system - unrivaled in sensitivity and frequency discrimination. All three systems are susceptible to a host of afflictions affecting the quality of life for all of us. In the first part of this review we present an introduction to the milestones of inner ear research to pave the way for understanding the complexities of a proteomics approach to the ear. Minute sensory structures, surrounded by large fluid spaces and a hard bony shell, pose extreme challenges to the ear researcher. In spite of these obstacles, a powerful preparatory technique was developed, whereby precisely defined microscopic tissue elements can be isolated and analyzed, while maintaining the biochemical state representative of the in vivo conditions. The second part consists of a discussion of proteomics as a tool in the elucidation of basic and pathologic mechanisms, diagnosis of disease, as well as treatment. Examples are the organ of Corti proteins OCP1 and OCP2, oncomodulin, a highly specific calcium-binding protein, and several disease entities, Meniere's disease, benign paroxysmal positional vertigo, and perilymphatic fistula. PMID:11790893

  12. Bioinformatic challenges in targeted proteomics.

    PubMed

    Reker, Daniel; Malmström, Lars

    2012-09-01

    Selected reaction monitoring mass spectrometry is an emerging targeted proteomics technology that allows for the investigation of complex protein samples with high sensitivity and efficiency. It requires extensive knowledge about the sample for the many parameters needed to carry out the experiment to be set appropriately. Most studies today rely on parameter estimation from prior studies, public databases, or from measuring synthetic peptides. This is efficient and sound, but in absence of prior data, de novo parameter estimation is necessary. Computational methods can be used to create an automated framework to address this problem. However, the number of available applications is still small. This review aims at giving an orientation on the various bioinformatical challenges. To this end, we state the problems in classical machine learning and data mining terms, give examples of implemented solutions and provide some room for alternatives. This will hopefully lead to an increased momentum for the development of algorithms and serve the needs of the community for computational methods. We note that the combination of such methods in an assisted workflow will ease both the usage of targeted proteomics in experimental studies as well as the further development of computational approaches. PMID:22866949

  13. Proteomic analysis for early neurodegenerative biomarker detection in an animal model.

    PubMed

    Vincenzetti, Silvia; Nasuti, Cinzia; Fedeli, Donatella; Ricciutelli, Massimo; Pucciarelli, Stefania; Gabbianelli, Rosita

    2016-02-01

    The exposure to xenobiotics in the early stages of life represents the most important component in the etiology of many neurodegenerative disorders. Proteomic analysis of plasma and brain samples from early life treated animal model was performed in order to identify early biomarkers of neurodegeneration. Two-dimensional gel electrophoresis followed by liquid chromatography-tandem mass spectrometry identified four proteins in the plasma of adolescent rats that deviated from the control group. Low expression levels of transthyretin and plasma transferrin, and the absence of long-chain fatty acid transport 1 were measured. On the other hand, the same proteomic approach was done on striatum of an adult rat model of neurodegeneration. Mitochondrial aspartate aminotransferase and voltage-dependent anion channel were under expressed, while mitochondrial malate dehydrogenase, myelin basic protein and ubiquitin-60S ribosomal protein L40 were absent in striatum of animal model compared to control group. Data show that early biomarkers for the diagnosis of neurodegeneration can be obtained by proteomic analysis, starting from adolescent age and the results highlight the time frame for the onset of neurodegeneration due to early exposure to xenobiotics. PMID:26631339

  14. A Colorimetric Method for Monitoring Tryptic Digestion Prior to Shotgun Proteomics

    PubMed Central

    Somiari, Richard I.; Renganathan, Kutralanathan; Wolfe, Steven; Somiari, Stella B.

    2014-01-01

    Tryptic digestion is an important preanalytical step in shotgun proteomics because inadequate or excessive digestion can result in a failed or incomplete experiment. Unfortunately, this step is not routinely monitored before mass spectrometry because methods available for protein digestion monitoring either are time/sample consuming or require expensive equipment. To determine if a colorimetric method (ProDM Kit) can be used to identify the extent of tryptic digestion that yields the best proteomics outcome, plasma and serum digested for 8 h and 24 h were screened with ProDM, Bioanalyzer, and LC/MS/MS, and the effect of digestion on the number of proteins identified and sequence coverage was compared. About 6% and 16% less proteins were identified when >50% of proteins were digested in plasma and serum, respectively, compared to when ~46% of proteins were digested. Average sequence coverage for albumin, haptoglobin, and serotransferrin after 2 h, 8 h, and 24 h digestion was 52%, 45%, and 45% for serum and 54%, 47%, and 42% for plasma, respectively. This paper reiterates the importance of optimizing the tryptic digestion step and demonstrates the extent to which ProDM can be used to monitor and standardize protein digestion to achieve better proteomics outcomes. PMID:24678421

  15. Neural Stem Cells (NSCs) and Proteomics*

    PubMed Central

    Shoemaker, Lorelei D.; Kornblum, Harley I.

    2016-01-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  16. Neural Stem Cells (NSCs) and Proteomics.

    PubMed

    Shoemaker, Lorelei D; Kornblum, Harley I

    2016-02-01

    Neural stem cells (NSCs) can self-renew and give rise to the major cell types of the CNS. Studies of NSCs include the investigation of primary, CNS-derived cells as well as animal and human embryonic stem cell (ESC)-derived and induced pluripotent stem cell (iPSC)-derived sources. NSCs provide a means with which to study normal neural development, neurodegeneration, and neurological disease and are clinically relevant sources for cellular repair to the damaged and diseased CNS. Proteomics studies of NSCs have the potential to delineate molecules and pathways critical for NSC biology and the means by which NSCs can participate in neural repair. In this review, we provide a background to NSC biology, including the means to obtain them and the caveats to these processes. We then focus on advances in the proteomic interrogation of NSCs. This includes the analysis of posttranslational modifications (PTMs); approaches to analyzing different proteomic compartments, such the secretome; as well as approaches to analyzing temporal differences in the proteome to elucidate mechanisms of differentiation. We also discuss some of the methods that will undoubtedly be useful in the investigation of NSCs but which have not yet been applied to the field. While many proteomics studies of NSCs have largely catalogued the proteome or posttranslational modifications of specific cellular states, without delving into specific functions, some have led to understandings of functional processes or identified markers that could not have been identified via other means. Many challenges remain in the field, including the precise identification and standardization of NSCs used for proteomic analyses, as well as how to translate fundamental proteomics studies to functional biology. The next level of investigation will require interdisciplinary approaches, combining the skills of those interested in the biochemistry of proteomics with those interested in modulating NSC function. PMID:26494823

  17. 1st Central and Eastern European Proteomic Conference and 3rd Czech Proteomic Conference.

    PubMed

    Kovarova, Hana; Gadher, Suresh Jivan; Archakov, Alexander

    2008-02-01

    The 1st Central and Eastern European Proteomic Conference was organized together with the 3rd Czech Proteomic Conference in the TOP Hotel, Prague in the Czech Republic from the 29th to the 31st October, 2007. The aim was to strengthen links with scientists from Central and Eastern Europe including Russia, which until now have been weak or nonexistent, and to highlight the emergence of excellent proteomic studies from various countries, which until now were not visible. PMID:18282121

  18. Reference Frames and Relativity.

    ERIC Educational Resources Information Center

    Swartz, Clifford

    1989-01-01

    Stresses the importance of a reference frame in mechanics. Shows the Galilean transformation in terms of relativity theory. Discusses accelerated reference frames and noninertial reference frames. Provides examples of reference frames with diagrams. (YP)

  19. Affinity Proteomics in the mountains: Alpbach 2015.

    PubMed

    Taussig, Michael J

    2016-09-25

    The 2015 Alpbach Workshop on Affinity Proteomics, organised by the EU AFFINOMICS consortium, was the 7th workshop in this series. As in previous years, the focus of the event was the current state of affinity methods for proteome analysis, including complementarity with mass spectrometry, progress in recombinant binder production methods, alternatives to classical antibodies as affinity reagents, analysis of proteome targets, industry focus on biomarkers, and diagnostic and clinical applications. The combination of excellent science with Austrian mountain scenery and winter sports engender an atmosphere that makes this series of workshops exceptional. The articles in this Special Issue represent a cross-section of the presentations at the 2015 meeting. PMID:27118167

  20. Proteomics: a subcellular look at spermatozoa

    PubMed Central

    2011-01-01

    Background Male-factor infertility presents a vexing problem for many reproductively active couples. Many studies have focused on abnormal sperm parameters. Recent advances in proteomic techniques, especially in mass spectrometry, have aided in the study of sperm and more specifically, sperm proteins. The aim of this study was to review the current literature on the various proteomic techniques, and their usefulness in diagnosing sperm dysfunction and potential applications in the clinical setting. Methods Review of PubMed database. Key words: spermatozoa, proteomics, protein, proteome, 2D-PAGE, mass spectrometry. Results Recently employed proteomic methods, such as two-dimensional polyacrylamide gel electrophoresis, mass spectrometry, and differential in gel electrophoresis, have identified numerous sperm-specific proteins. They also have provided a further understanding of protein function involved in sperm processes and for the differentiation between normal and abnormal states. In addition, studies on the sperm proteome have demonstrated the importance of post-translational modifications, and their ability to bring about physiological changes in sperm function. No longer do researchers believe that in order for them to elucidate the biochemical functions of genes, mere knowledge of the human genome sequence is sufficient. Moreover, a greater understanding of the physiological function of every protein in the tissue-specific proteome is essential in order to unravel the biological display of the human genome. Conclusion Recent advances in proteomic techniques have provided insight into sperm function and dysfunction. Several multidimensional separation techniques can be utilized to identify and characterize spermatozoa. Future developments in bioinformatics can further assist researchers in understanding the vast amount of data collected in proteomic studies. Moreover, such advances in proteomics may help to decipher metabolites which can act as biomarkers in

  1. Identification and proteomic analysis of osteoblast-derived exosomes.

    PubMed

    Ge, Min; Ke, Ronghu; Cai, Tianyi; Yang, Junyi; Mu, Xiongzheng

    2015-11-01

    Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases. PMID:26420226

  2. Proteomics of gliomas: Initial biomarker discovery and evolution of technology

    PubMed Central

    Kalinina, Juliya; Peng, Junmin; Ritchie, James C.; Van Meir, Erwin G.

    2011-01-01

    Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers. PMID:21852429

  3. Isoform analysis of LC-MS/MS data from multidimensional fractionation of the serum proteome.

    PubMed

    Krasnoselsky, Alexei L; Faca, Vitor M; Pitteri, Sharon J; Zhang, Qing; Hanash, Samir M

    2008-06-01

    We developed a visualization approach for the identification of protein isoforms, precursor/mature protein combinations, and fragments from LC-MS/MS analysis of multidimensional fractionation of serum and plasma proteins. We also describe a pattern recognition algorithm to automatically detect and flag potentially heterogeneous species of proteins in proteomic experiments that involve extensive fractionation and result in a large number of identified serum or plasma proteins in an experiment. Examples are given of proteins with known isoforms that validate our approach and present a subset of precursor/mature protein pairs that were detected with this approach. Potential applications include identification of differentially expressed isoforms in disease states. PMID:18419151

  4. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions.

    PubMed

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  5. Proteomic Profiling of Bifidobacterium bifidum S17 Cultivated Under In Vitro Conditions

    PubMed Central

    Wei, Xiao; Wang, Simiao; Zhao, Xiangna; Wang, Xuesong; Li, Huan; Lin, Weishi; Lu, Jing; Zhurina, Daria; Li, Boxing; Riedel, Christian U.; Sun, Yansong; Yuan, Jing

    2016-01-01

    Bifidobacteria are frequently used in probiotic food and dairy products. Bifidobacterium bifidum S17 is a promising probiotic candidate strain that displays strong adhesion to intestinal epithelial cells and elicits potent anti-inflammatory capacity both in vitro and in murine models of colitis. The recently sequenced genome of B. bifidum S17 has a size of about 2.2 Mb and encodes 1,782 predicted protein-coding genes. In the present study, a comprehensive proteomic profiling was carried out to identify and characterize proteins expressed by B. bifidum S17. A total of 1148 proteins entries were identified by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), representing 64.4% of the predicted proteome. 719 proteins could be assigned to functional categories according to cluster of orthologous groups of proteins (COGs). The COG distribution of the detected proteins highly correlates with that of the complete predicted proteome suggesting a good coverage and representation of the genomic content of B. bifidum S17 by the proteome. COGs that were highly present in the proteome of B. bifidum S17 were Translation, Amino Acid Transport and Metabolism, and Carbohydrate Transport and Metabolism. Complete sets of enzymes for both the bifidus shunt and the Embden-Meyerh of pathway were identified. Further bioinformatic analysis yielded 28 proteins with a predicted extracellular localization including 14 proteins with an LPxTG-motif for cell wall anchoring and two proteins (elongation factor Tu and enolase) with a potential moonlighting function in adhesion. Amongst the predicted extracellular proteins were five of six pilin proteins encoded in the B. bifidum S17 genome as well as several other proteins with a potential role in interaction with host structures. The presented results are the first compilation of a proteomic reference profile for a B. bifidum strain and will facilitate analysis of the molecular mechanisms of physiology, host-interactions and

  6. Transgenic, Fluorescent Leishmania mexicana Allow Direct Analysis of the Proteome of Intracellular Amastigotes*S⃞

    PubMed Central

    Paape, Daniel; Lippuner, Christoph; Schmid, Monika; Ackermann, Renate; Barrios-Llerena, Martin E.; Zimny-Arndt, Ursula; Brinkmann, Volker; Arndt, Benjamin; Pleissner, Klaus Peter; Jungblut, Peter R.; Aebischer, Toni

    2008-01-01

    Investigating the proteome of intracellular pathogens is often hampered by inadequate methodologies to purify the pathogen free of host cell material. This has also precluded direct proteome analysis of the intracellular, amastigote form of Leishmania spp., protozoan parasites that cause a spectrum of diseases that affect some 12 million patients worldwide. Here a method is presented that combines classic, isopycnic density centrifugation with fluorescent particle sorting for purification by exploiting transgenic, fluorescent parasites to allow direct proteome analysis of the purified organisms. By this approach the proteome of intracellular Leishmania mexicana amastigotes was compared with that of extracellular promastigotes that are transmitted by insect vectors. In total, 509 different proteins were identified by mass spectrometry and database search. This number corresponds to ∼6% of gene products predicted from the reference genome of Leishmania major. Intracellular amastigotes synthesized significantly more proteins with basic pI and showed a greater abundance of enzymes of fatty acid catabolism, which may reflect their living in acidic habitats and metabolic adaptation to nutrient availability, respectively. Bioinformatics analyses of the genes corresponding to the protein data sets produced clear evidence for skewed codon usage and translational bias in these organisms. Moreover analysis of the subset of genes whose products were more abundant in amastigotes revealed characteristic sequence motifs in 3′-untranslated regions that have been linked to translational control elements. This suggests that proteome data sets may be used to identify regulatory elements in mRNAs. Last but not least, at 6% coverage the proteome identified all vaccine antigens tested to date. Thus, the present data set provides a valuable resource for selection of candidate vaccine antigens. PMID:18474515

  7. Proteomics for Protein Expression Profiling in Neuroscience*

    PubMed Central

    Freeman, Willard M.; Hemby, Scott E.

    2013-01-01

    As the technology of proteomics moves from a theoretical approach to a practical reality, neuroscientists will have to determine the most appropriate applications for this technology. Neuroscientists will have to surmount difficulties particular to their research, such as limited sample amounts, heterogeneous cellular compositions in samples, and the fact that many proteins of interest are rare, hydrophobic proteins. This review examines protein isolation and protein fractionation and separation using two-dimensional electrophoresis (2-DE) and mass spectrometry proteomic methods. Methods for quantifying relative protein expression between samples (e.g., 2-DIGE, and ICAT) are also described. The coverage of the proteome, ability to detect membrane proteins, resource requirements, and quantitative reliability of different approaches is also discussed. Although there are many challenges in proteomic neuroscience, this field promises many rewards in the future. PMID:15176464

  8. The Mitochondrial Proteome and Human Disease

    PubMed Central

    Calvo, Sarah E.; Mootha, Vamsi K.

    2015-01-01

    For nearly three decades, the sequence of the human mitochondrial genome (mtDNA) has provided a molecular framework for understanding maternally inherited diseases. However, the vast majority of human mitochondrial disorders are caused by nuclear defects, which is not surprising since the mtDNA encodes only 13 proteins. Advances in genomics, mass spectrometry, and computation have only recently made it possible to systematically identify the complement of over 1,000 proteins that comprise the mammalian mitochondrial proteome. Here, we review recent progress in characterizing the mitochondrial proteome and highlight insights into its complexity, tissue heterogeneity, evolutionary origins, and biochemical versatility. We then discuss how this proteome is being used to discover the genetic basis of respiratory chain disorders as well as to expand our definition of mitochondrial disease. Finally, we explore future prospects and challenges for using the mitochondrial proteome as a foundation for systems analysis of the organelle. PMID:20690818

  9. Characterization of individual mouse cerebrospinal fluid proteomes

    SciTech Connect

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles; Orton, Daniel J.; Moore, Ronald J.; Smith, Richard D.

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% false discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.

  10. Analysis of soybean seed proteins using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different proteomics technologies and their application to biological sciences. In addition, different classes of soybean seed proteins are discussed. This information will be useful to scientists in obtaining a greater understanding of the...

  11. The proteomics of pediatric brain tumors.

    PubMed

    Anagnostopoulos, Athanasios K; Tsangaris, George T

    2014-10-01

    Pediatric tumors of the CNS are the leading cause of cancer-related mortality in children. In pediatric pathology, brain tumors constitute the most frequent solid malignancy. An unparalleled outburst of information in pediatric neuro-oncology research has been witnessed over the last few years, largely due to increased use of high-throughput technologies such as genomics, proteomics and meta-analysis tools. Input from these technologies gives scientists the advantage of early prognosis assessment, more accurate diagnosis and prospective curative intent in the pediatric brain tumor clinical setting. The present review aims to summarize current knowledge on research applying proteomics techniques or proteomics-based approaches performed on pediatric brain tumors. Proteins that can be used as potential disease markers or molecular targets, and their biological significance, are herein listed and discussed. Furthermore, future perspectives that proteomics technologies may offer regarding this devastating disorder are presented. PMID:25059388

  12. Automation, parallelism, and robotics for proteomics.

    PubMed

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas. PMID:16786489

  13. Proteomic Analysis of Mesenchymal Stem Cells.

    PubMed

    Faça, Vitor Marcel; Orellana, Maristela Delgado; Greene, Lewis Joel; Covas, Dimas Tadeu

    2016-01-01

    Mesenchymal stem or stromal cells (MSCs) are of great interest in biomedical sciences and disease treatment because of their multipotency and wide range of applications for tissue repair and suppression of the immune system. Proteomic analysis of these unique cells has contributed to the identification of important pathways utilized by MSCs to differentiate into distinct tissues as well as important proteins responsible for their special function in vivo and in vitro. However, comparison of proteomic studies in MSCs still suffers from the heterogeneity of MSC preparations. In addition, as proteomics technology advances, several studies can be revisited in order to increase the depth of analysis and, therefore, elucidate more refined mechanisms involved in MSC functionalities. Here, we present detailed protocols to obtain MSCs, as well as protocols to perform in-depth profiling and quantification of alterations in MSC proteomes. PMID:27236693

  14. The Clinical Proteomic Technologies for Cancer | About

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  15. The Clinical Proteomic Technologies for Cancer | Partners

    Cancer.gov

    An objective of the Reagents and Resources component of NCI's Clinical Proteomic Technologies for Cancer Initiative is to generate highly characterized monoclonal antibodies to human proteins associated with cancer.

  16. APPLICATION OF PROTEOMICS TO NEUTROPHIL BIOLOGY

    PubMed Central

    Luerman, Gregory C.; Uriarte, Silvia M.; Rane, Madhavi J.; McLeish, Kenneth R.

    2009-01-01

    Polymorphonuclear leukocytes or neutrophils are a primary effector cell of the innate immune system and contribute to the development of adaptive immunity. Neutrophils participate in both the initiation and resolution of inflammatory responses through a series of highly coordinated molecular and phenotypic changes. To accomplish these changes, neutrophils express numerous receptors and use multiple overlapping and redundant signal transduction pathways. Dysregulation of the activation or resolution pathways plays a role in a number of human diseases. A comprehensive understanding of the regulation of neutrophil responses can be provided by high throughput proteomic technologies and sophisticated computational analysis. The first steps in the application of proteomics to understanding neutrophil biology have been taken. Here we review the application of expression, structural, and functional proteomic studies to neutrophils. Although defining the complex molecular events associated with neutrophil activation is in the early stages, the data generated to date suggest that proteomic technologies will dramatically enhance our understanding of neutrophil biology. PMID:19580889

  17. Unexpected features of the dark proteome.

    PubMed

    Perdigão, Nelson; Heinrich, Julian; Stolte, Christian; Sabir, Kenneth S; Buckley, Michael J; Tabor, Bruce; Signal, Beth; Gloss, Brian S; Hammang, Christopher J; Rost, Burkhard; Schafferhans, Andrea; O'Donoghue, Seán I

    2015-12-29

    We surveyed the "dark" proteome-that is, regions of proteins never observed by experimental structure determination and inaccessible to homology modeling. For 546,000 Swiss-Prot proteins, we found that 44-54% of the proteome in eukaryotes and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, most of the dark proteome could not be accounted for by conventional explanations, such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome comprised dark proteins, in which the entire sequence lacked similarity to any known structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct and largely unexpected features, such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low evolutionary reuse, and few known interactions with other proteins. These results suggest new research directions in structural and computational biology. PMID:26578815

  18. Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer

    PubMed Central

    Rangiah, Kannan; Tippornwong, Montri; Sangar, Vineet; Austin, David; Tétreault, Marie-Pier; Rustgi, Anil K.; Blair, Ian A.; Yu, Kenneth H.

    2009-01-01

    The complexity and heterogeneity of the plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. We used cell culture as a model system and identified differentially expressed, secreted proteins which may constitute serological biomarkers. A stable isotope labeling by amino acids in cell culture (SILAC) approach was used to label the entire secreted proteomes of the CT26 murine colon cancer cell line and normal young adult mouse colon (YAMC) cell line, thereby creating a stable isotope labeled proteome (SILAP) standard. This SILAP standard was added to unlabeled murine CT26 colon cancer cell or normal murine YAMC colon epithelial cell secreted proteome samples. A multidimensional approach combining isoelectric focusing (IEF), strong cation exchange (SCX) followed by reversed phase liquid chromatography was used for extensive protein and peptide separation. A total of 614 and 929 proteins were identified from the YAMC and CT26 cell lines, with 418 proteins common to both cell lines. Twenty highly abundant differentially expressed proteins from these groups were selected for liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) analysis in sera. Differential secretion into the serum was observed for several proteins when Apcmin mice were compared with control mice. These findings were then confirmed by Western blot analysis. PMID:19769411

  19. Proteomics of the rice cell: systematic identification of the protein populations in subcellular compartments.

    PubMed

    Tanaka, N; Fujita, M; Handa, H; Murayama, S; Uemura, M; Kawamura, Y; Mitsui, T; Mikami, S; Tozawa, Y; Yoshinaga, T; Komatsu, S

    2004-06-01

    Despite recent progress in sequencing the complete genome of rice ( Oryza sativa), the proteome of this species remains poorly understood. To extend our knowledge of the rice proteome, the subcellular compartments, which include plasma membranes (PM), vacuolar membranes (VM), Golgi membranes (GM), mitochondria (MT), and chloroplasts (CP), were purified from rice seedlings and cultured suspension cells. The proteins of each of these compartments were then systematically analyzed using two-dimensional (2D) electrophoresis, mass spectrometry, and Edman sequencing, followed by database searching. In all, 58 of the 464 spots detected by 2D electrophoresis in PM, 43 of the 141 spots in VM, 46 of the 361 spots in GM, 146 in the 672 spots in MT, and 89 of the 252 spots in CP could be identified by this procedure. The characterized proteins were found to be involved in various processes, such as respiration and the citric acid cycle in MT; photosynthesis and ATP synthesis in CP; and antifungal defense and signal systems in the membranes. Edman degradation revealed that 60-98% of N-terminal sequences were blocked, and the ratios of blocked to unblocked proteins in the proteomes of the various subcellular compartments differed. The data on the proteomes of subcellular compartments in rice will be valuable for resolving questions in functional genomics as well as for genome-wide exploration of plant function. PMID:15069638

  20. High-density lipoprotein proteome dynamics in human endotoxemia

    PubMed Central

    2011-01-01

    Background A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL) and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS) was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L) and 10 men with high HDL cholesterol levels (1.9+/-0.4 mmol/L) were challenged with endotoxin (LPS) intravenously (1 ng/kg bodyweight). We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome. Results Plasma drawn at 7 time-points over a 24 hour time period after LPS challenge was used for direct capture of HDL using antibodies against apolipoprotein A-I followed by subsequent SELDI-TOF MS profiling. Upon LPS administration, profound changes in 21 markers (adjusted p-value < 0.05) were observed in the proteome in both study groups. These changes were observed 1 hour after LPS infusion and sustained up to 24 hours, but unexpectedly were not different between the 2 study groups. Hierarchical clustering of the protein spectra at all time points of all individuals revealed 3 distinct clusters, which were largely independent of baseline HDL cholesterol levels but correlated with paraoxonase 1 activity. The acute phase protein serum amyloid A-1/2 (SAA-1/2) was clearly upregulated after LPS infusion in both groups and comprised both native and N-terminal truncated variants that were identified by two-dimensional gel electrophoresis and mass spectrometry. Individuals of one of the clusters were distinguished by a lower SAA-1/2 response after LPS challenge and a delayed time-response of the truncated variants. Conclusions