Sample records for refined vegetable oils

  1. Optimization of Refining Craft for Vegetable Insulating Oil

    NASA Astrophysics Data System (ADS)

    Zhou, Zhu-Jun; Hu, Ting; Cheng, Lin; Tian, Kai; Wang, Xuan; Yang, Jun; Kong, Hai-Yang; Fang, Fu-Xin; Qian, Hang; Fu, Guang-Pan

    2016-05-01

    Vegetable insulating oil because of its environmental friendliness are considered as ideal material instead of mineral oil used for the insulation and the cooling of the transformer. The main steps of traditional refining process included alkali refining, bleaching and distillation. This kind of refining process used in small doses of insulating oil refining can get satisfactory effect, but can't be applied to the large capacity reaction kettle. This paper using rapeseed oil as crude oil, and the refining process has been optimized for large capacity reaction kettle. The optimized refining process increases the acid degumming process. The alkali compound adds the sodium silicate composition in the alkali refining process, and the ratio of each component is optimized. Add the amount of activated clay and activated carbon according to 10:1 proportion in the de-colorization process, which can effectively reduce the oil acid value and dielectric loss. Using vacuum pumping gas instead of distillation process can further reduce the acid value. Compared some part of the performance parameters of refined oil products with mineral insulating oil, the dielectric loss of vegetable insulating oil is still high and some measures are needed to take to further optimize in the future.

  2. Assessing food allergy risks from residual peanut protein in highly refined vegetable oil.

    PubMed

    Blom, W Marty; Kruizinga, Astrid G; Rubingh, Carina M; Remington, Ben C; Crevel, René W R; Houben, Geert F

    2017-08-01

    Refined vegetable oils including refined peanut oil are widely used in foods. Due to shared production processes, refined non-peanut vegetable oils can contain residual peanut proteins. We estimated the predicted number of allergic reactions to residual peanut proteins using probabilistic risk assessment applied to several scenarios involving food products made with vegetable oils. Variables considered were: a) the estimated production scale of refined peanut oil, b) estimated cross-contact between refined vegetable oils during production, c) the proportion of fat in representative food products and d) the peanut protein concentration in refined peanut oil. For all products examined the predicted risk of objective allergic reactions in peanut-allergic users of the food products was extremely low. The number of predicted reactions ranged depending on the model from a high of 3 per 1000 eating occasions (Weibull) to no reactions (LogNormal). Significantly, all reactions were predicted for allergen intakes well below the amounts reported for the most sensitive individual described in the clinical literature. We conclude that the health risk from cross-contact between vegetable oils and refined peanut oil is negligible. None of the food products would warrant precautionary labelling for peanut according to the VITAL ® programme of the Allergen Bureau. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    PubMed

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  4. Identification of vegetable oil botanical speciation in refined vegetable oil blends using an innovative combination of chromatographic and spectroscopic techniques.

    PubMed

    Osorio, Maria Teresa; Haughey, Simon A; Elliott, Christopher T; Koidis, Anastasios

    2015-12-15

    European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mechanism of formation of 3-chloropropan-1,2-diol (3-MCPD) esters under conditions of the vegetable oil refining.

    PubMed

    Šmidrkal, Jan; Tesařová, Markéta; Hrádková, Iveta; Berčíková, Markéta; Adamčíková, Aneta; Filip, Vladimír

    2016-11-15

    3-MCPD esters are contaminants that can form during refining of vegetable oils in the deodorization step. It was experimentally shown that their content in the vegetable oil depends on the acid value of the vegetable oil and the chloride content. 3-MCPD esters form approximately 2-5 times faster from diacylglycerols than from monoacylglycerols. It has been proved that the higher fatty acids content in the oil caused higher 3-MCPD esters content in the deodorization step. Neutralization of free fatty acids in the vegetable oil before the deodorization step by alkaline carbonates or hydrogen carbonates can completely suppress the formation of 3-MCPD esters. Potassium salts are more effective than sodium salts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Effect of the addition of fatty by-products from the refining of vegetable oil on methane production in co-digestion.

    PubMed

    Torrijos, M; Sousbie, P; Badey, L; Bosque, F; Steyer, J P

    2012-01-01

    The purpose of this work was to investigate the effects of the addition of by-products from the refining of vegetable oil on the behavior of co-digestion reactors treating a mixture of grass, cow dung and fruit and vegetable waste. Three by-products were used: one soapstock, one used winterization earth and one skimming of aeroflotation of the effluents. Three 15 l reactors were run in parallel and fed five times a week. In a first phase of 4 weeks, the three reactors were fed with the co-digestion substrates alone (grass, cow dung and fruit and vegetable waste) at an organic loading rate (OLR) of 1.5 g VS/kg d (VS: volatile solids). Then, a different by-product from the refining of oil was added to the feed of each reactor at an OLR of 0.5 g VS/kg d, generating a 33% increase in the OLR. The results show that the addition of by-products from the refining of oil is an efficient way of increasing the methane production of co-digestion reactors thanks to high methane yield of such by-products (0.69-0.77 l CH(4)/g VS loaded). In fact, in this work, it was possible to raise the methane production of the reactors by about 60% through a 33% increase in the OLR thanks to the addition of the by-products from the refining of vegetable oil.

  7. Natural Organochlorines as Precursors of 3-Monochloropropanediol Esters in Vegetable Oils.

    PubMed

    Tiong, Soon Huat; Saparin, Norliza; Teh, Huey Fang; Ng, Theresa Lee Mei; Md Zain, Mohd Zairey Bin; Neoh, Bee Keat; Md Noor, Ahmadilfitri; Tan, Chin Ping; Lai, Oi Ming; Appleton, David Ross

    2018-01-31

    During high-temperature refining of vegetable oils, 3-monochloropropanediol (3-MCPD) esters, possible carcinogens, are formed from acylglycerol in the presence of a chlorine source. To investigate organochlorine compounds in vegetable oils as possible precursors for 3-MCPD esters, we tested crude palm, soybean, rapeseed, sunflower, corn, coconut, and olive oils for the presence of organochlorine compounds. Having found them in all vegetable oils tested, we focused subsequent study on oil palm products. Analysis of the chlorine isotope mass pattern exhibited in high-resolution mass spectrometry enabled organochlorine compound identification in crude palm oils as constituents of wax esters, fatty acid, diacylglycerols, and sphingolipids, which are produced endogenously in oil palm mesocarp throughout ripening. Analysis of thermal decomposition and changes during refining suggested that these naturally present organochlorine compounds in palm oils and perhaps in other vegetable oils are precursors of 3-MCPD esters. Enrichment and dose-response showed a linear relationship to 3-MCPD ester formation and indicated that the sphingolipid-based organochlorine compounds are the most active precursors of 3-MCPD esters.

  8. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Estimation of trace amounts of benzene in solvent-extracted vegetable oils and oil seed cakes.

    PubMed

    Masohan, A; Parsad, G; Khanna, M K; Chopra, S K; Rawat, B S; Garg, M O

    2000-09-01

    A new method is presented for the qualitative and quantitative estimation of trace amounts (up to 0.15 ppm) of benzene in crude as well as refined vegetable oils obtained by extraction with food grade hexane (FGH), and in the oil seed cakes left after extraction. The method involves the selection of two solvents; cyclohexanol, for thinning of viscous vegetable oil, and heptane, for azeotroping out trace benzene as a concentrate from the resulting mixture. Benzene is then estimated in the resulting azeotrope either by UV spectroscopy or by GC-MS subject to availability and cost effectiveness of the latter. Repeatability and reproducibility of the method is within 1-3% error. This method is suitable for estimating benzene in vegetable oils and oil seed cakes.

  10. Evaluating lubricating capacity of vegetal oils using Abbott-Firestone curve

    NASA Astrophysics Data System (ADS)

    Georgescu, C.; Cristea, G. C.; Dima, C.; Deleanu, L.

    2017-02-01

    The paper presents the change of functional parameters defined on the Abbott-Firestone curve in order to evaluate the surface quality of the balls from the four ball tester, after tests done with several vegetable oils. The tests were done using two grades of rapeseed oil (degummed and refined) and two grades of soybean oil (coarse and degummed) and a common transmission oil (T90). Test parameters were 200 N and 0.576 m/s (1500 rpm) for 60 minutes. For the refined rapeseed oil, the changes in shape of the Abbott-Firestone curves are more dramatic, these being characterized by high values of Spk (the average value for the wear scars on the three balls), thus being 40% of the sum Svk + Sk + Spk, percentage also obtained for the soybean oil, but the value Spk being lower. For the degummed soybean oil, the profile height of the wear scars are taller than those obtained after testing the coarse soybean oil, meaning that the degumming process has a negative influence on the worn surface quality and the lubricating capacity of this oil. Comparing the surface quality of the wear scars on fixed tested balls is a reliable method to point out the lubricant properties of the vegetable oils, especially if they are compared to a “classical” lubricant as a non-additivated transmission mineral oil T90. The best surface after testing was obtained for the soybean oil, followed by T90 oil and the degummed grades of the soybean oil and rapeseed oil (these three giving very close values for the functional parameters), but the refined rapeseed oil generated the poorest quality of the wear scars on the balls, under the same testing conditions.

  11. Emission and Performance Analysis of ZrO2 And CeO2 Coated Piston Using Refined Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Hemanandh, J.; Narayanan, K. V.; Manoj, Vemuri

    2017-05-01

    Increase in global warming and pollution leads to look for an alternative fuel. The aim of this paper to improve the performance and to reduce the emissions in DI diesel engine. The 80% of ZrO2 and 20% of CeO2 were mixed and coated on the piston head using plasma spray method. The B10 fuel of various refined vegetable oil methyl esters were used as fuel. The test was conducted in the 4-stroke DI diesel engine at a constant speed of 1500 rpm. The results show that the brake thermal efficiency, NOx and BSFC was increased. The CO and HC were decreased.

  12. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining.

    PubMed

    Venturi, Francesca; Sanmartin, Chiara; Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-08-22

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil.

  13. Development of Phenol-Enriched Olive Oil with Phenolic Compounds Extracted from Wastewater Produced by Physical Refining

    PubMed Central

    Taglieri, Isabella; Nari, Anita; Andrich, Gianpaolo; Terzuoli, Erika; Donnini, Sandra; Nicolella, Cristiano; Zinnai, Angela

    2017-01-01

    While in the last few years the use of olive cake and mill wastewater as natural sources of phenolic compounds has been widely considered and several studies have focused on the development of new extraction methods and on the production of functional foods enriched with natural antioxidants, no data has been available on the production of a phenol-enriched refined olive oil with its own phenolic compounds extracted from wastewater produced during physical refining. In this study; we aimed to: (i) verify the effectiveness of a multi-step extraction process to recover the high-added-value phenolic compounds contained in wastewater derived from the preliminary washing degumming step of the physical refining of vegetal oils; (ii) evaluate their potential application for the stabilization of olive oil obtained with refined olive oils; and (iii) evaluate their antioxidant activity in an in vitro model of endothelial cells. The results obtained demonstrate the potential of using the refining wastewater as a source of bioactive compounds to improve the nutraceutical value as well as the antioxidant capacity of commercial olive oils. In the conditions adopted, the phenolic content significantly increased in the prototypes of phenol-enriched olive oils when compared with the control oil. PMID:28829365

  14. Organogels of vegetable oil with plant wax – trans/saturated fat replacements

    USDA-ARS?s Scientific Manuscript database

    This featured article reviews recent advances on the development of trans fat-free, low saturated fat food products from organogels formed by a plant wax in a vegetable oil. Plant waxes are of great interest in this research area because they are obtained as by-products during the oil refining proce...

  15. Detection of Adulterated Vegetable Oils Containing Waste Cooking Oils Based on the Contents and Ratios of Cholesterol, β-Sitosterol, and Campesterol by Gas Chromatography/Mass Spectrometry.

    PubMed

    Zhao, Haixiang; Wang, Yongli; Xu, Xiuli; Ren, Heling; Li, Li; Xiang, Li; Zhong, Weike

    2015-01-01

    A simple and accurate authentication method for the detection of adulterated vegetable oils that contain waste cooking oil (WCO) was developed. This method is based on the determination of cholesterol, β-sitosterol, and campesterol in vegetable oils and WCO by GC/MS without any derivatization. A total of 148 samples involving 12 types of vegetable oil and WCO were analyzed. According to the results, the contents and ratios of cholesterol, β-sitosterol, and campesterol were found to be criteria for detecting vegetable oils adulterated with WCO. This method could accurately detect adulterated vegetable oils containing 5% refined WCO. The developed method has been successfully applied to multilaboratory analysis of 81 oil samples. Seventy-five samples were analyzed correctly, and only six adulterated samples could not be detected. This method could not yet be used for detection of vegetable oils adulterated with WCO that are used for frying non-animal foods. It provides a quick method for detecting adulterated edible vegetable oils containing WCO.

  16. Characterization and Evaluation of Re-Refined Engine Lubricating Oil.

    DTIC Science & Technology

    1981-12-01

    performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production

  17. 30 CFR 208.4 - Royalty oil sales to eligible refiners.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Royalty oil sales to eligible refiners. 208.4... MANAGEMENT SALE OF FEDERAL ROYALTY OIL General Provisions § 208.4 Royalty oil sales to eligible refiners. (a... and defense. The Secretary will review these items and will determine whether eligible refiners have...

  18. Influence of deep frying on the unsaponifiable fraction of vegetable edible oils enriched with natural antioxidants.

    PubMed

    Orozco, Mara I; Priego-Capote, Feliciano; Luque de Castro, Maria D

    2011-07-13

    The influence of deep frying, mimicked by 20 heating cycles at 180 °C (each cycle from ambient temperature to 180 °C maintained for 5 min), on the unsaponifiable fraction of vegetable edible oils represented by three characteristic families of compounds (namely, phytosterols, aliphatic alcohols, and triterpenic compounds) has been studied. The target oils were extra virgin olive oil (with intrinsic content of phenolic antioxidants), refined sunflower oil enriched with antioxidant phenolic compounds isolated from olive pomace, refined sunflower oil enriched with an autoxidation inhibitor (dimethylpolysiloxane), and refined sunflower oil without enrichment. Monitoring of the target analytes as a function of both heating cycle and the presence of natural antioxidants was also evaluated by comparison of the profiles after each heating cycle. Identification and quantitation of the target compounds were performed by gas cromatography-mass spectrometry in single ion monitoring mode. Analysis of the heated oils revealed that the addition of natural antioxidants could be an excellent strategy to decrease degradation of lipidic components of the unsaponifiable fraction with the consequent improvement of stability.

  19. Petroleum mineral oil refining and evaluation of cancer hazard.

    PubMed

    Mackerer, Carl R; Griffis, Larry C; Grabowski, John S; Reitman, Fred A

    2003-11-01

    Petroleum base oils (petroleum mineral oils) are manufactured from crude oils by vacuum distillation to produce several distillates and a residual oil that are then further refined. Aromatics including alkylated polycyclic aromatic compounds (PAC) are undesirable constituents of base oils because they are deleterious to product performance and are potentially carcinogenic. In modern base oil refining, aromatics are reduced by solvent extraction, catalytic hydrotreating, or hydrocracking. Chronic exposure to poorly refined base oils has the potential to cause skin cancer. A chronic mouse dermal bioassay has been the standard test for estimating carcinogenic potential of mineral oils. The level of alkylated 3-7-ring PAC in raw streams from the vacuum tower must be greatly reduced to render the base oil noncarcinogenic. The processes that can reduce PAC levels are known, but the operating conditions for the processing units (e.g., temperature, pressure, catalyst type, residence time in the unit, unit engineering design, etc.) needed to achieve adequate PAC reduction are refinery specific. Chronic dermal bioassays provide information about whether conditions applied can make a noncarcinogenic oil, but cannot be used to monitor current production for quality control or for conducting research or developing new processes since this test takes at least 78 weeks to conduct. Three short-term, non-animal assays all involving extraction of oil with dimethylsulfoxide (DMSO) have been validated for predicting potential carcinogenic activity of petroleum base oils: a modified Ames assay of a DMSO extract, a gravimetric assay (IP 346) for wt. percent of oil extracted into DMSO, and a GC-FID assay measuring 3-7-ring PAC content in a DMSO extract of oil, expressed as percent of the oil. Extraction with DMSO concentrates PAC in a manner that mimics the extraction method used in the solvent refining of noncarcinogenic oils. The three assays are described, data demonstrating the

  20. Production and characterization of refined oils obtained from Indian oil sardine (Sardinella longiceps).

    PubMed

    Chakraborty, Kajal; Joseph, Deepu

    2015-01-28

    Crude Sardinella longiceps oil was refined in different stages such as degumming, neutralization, bleaching, and deodorization. The efficiency of these processes was evaluated on the basis of free fatty acid (FFA), peroxide (PV), p-anisidine (pAV), total oxidation (TOTOX), thiobarbituric acid reactive species (TBARS) values, Lovibond CIE-L*a*b* color analyses, and (1)H NMR or GC-MS experiments. The utilities of NMR-based proton signal characteristics as new analytical tools to understand the signature peaks and relative abundance of different fatty acids and monitoring the refining process of fish oil have been demonstrated. Phosphoric acid (1%) was found to be an effective degumming reagent to obtain oil with the lowest FFA, PV, pAV, TOTOX, and TBARS values and highest color reduction. Significant reduction in the contents of hydrocarbon functionalities as shown by the decrease in proton integral in the characteristic (1)H NMR region was demonstrated by using 1% H3PO4 during the course of the degumming process. A combination (1.25:3.75%) of activated charcoal and Fuller's earth at 3% concentration for a stirring time of 40 min was found to be effective in bleaching the sardine oil. This study demonstrated that unfavorable odor-causing components, particularly low molecular weight carbonyl compounds, could successfully be removed by the refining process. The alkane-dienals/alkanes, which cause unfavorable fishy odors, were successfully removed by distillation (100 °C) under vacuum with aqueous acetic acid solution (0.25 N) to obtain greater quality of refined sardine oil, a rich source of essential fatty acids and improved oxidative stability. The present study demonstrated that the four-stage refinement process of sardine oil resulted in a significant improvement in quality characteristics and nutritional values, particularly n-3 PUFAs, with improved fish oil characteristics for use in the pharmaceutical and functional food industries.

  1. Preservation of micronutrients during rapeseed oil refining: a tool to optimize the health value of edible vegetable oils? Rationale and design of the Optim'Oils randomized clinical trial.

    PubMed

    Gladine, C; Meunier, N; Blot, Adeline; Bruchet, Lucile; Pagès, X; Gaud, M; Floter, E; Metin, Z; Rossignol, A; Cano, N; Chardigny, J M

    2011-03-01

    Numerous micronutrients naturally abundant in oilseeds prevent the risk of cardiovascular diseases by reducing cholesterolemia and oxidative stress. These micronutrients include phytosterols and various antioxidants such as polyphenols, tocopherols and coenzyme Q10/Q9 but most of them are lost during the oilseed oil refining. The main objective of the Optim'Oil project was to modify the processes of oil refining in order to reduce the lost of micronutrients. Two clinical trials (cross-over, monocentric, randomized, double-blind and controlled) were designed to investigate the effect of an optimized rapeseed oil 1) on cardiovascular biomarkers (long-term study) and 2) on oxidative stress parameters (post-prandial study). For the long-term study, 59 volunteers ingested daily 20 g of oil and 22 g of margarine (optimized or standard) for 2 periods of 3 weeks separated by a 3-week wash-out period. Blood samples were collected at the beginning and at the end of each period. For the post-prandial study, a sub-group of 16 volunteers came fasted at the laboratory and took 300 mL of a test meal containing 60% of the optimized or standard oils. Blood samples were collected before and during 6h after the test meal intake. In comparison with the standard oil and margarine, the optimized oil and margarine exhibit as expected an increased content of phytosterol (+22%), polyphenols (× 11), tocopherols (+131%) and coenzyme Q10/Q9 (+165%). Overall, conditions of this study were relevant to investigate the effect of the optimized rapeseed oil and margarine on the cardiovascular risk and the oxidative stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  3. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  4. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  5. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  6. 19 CFR 10.56 - Vegetable oils, denaturing; release.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Vegetable oils, denaturing; release. 10.56 Section... Vegetable Oils § 10.56 Vegetable oils, denaturing; release. (a) Olive, palm-kernel, rapeseed, sunflower, and sesame oil shall be classifiable under subheadings 1509.10.20, 1509.10.40, 1509.90.20, 1509.90.40, 1510...

  7. Type of vegetable oils used in cooking and risk of metabolic syndrome among Asian Indians.

    PubMed

    Lakshmipriya, Nagarajan; Gayathri, Rajagopal; Praseena, Kallingal; Vijayalakshmi, Parthasarathy; Geetha, Gunasekaran; Sudha, Vasudevan; Krishnaswamy, Kamala; Anjana, Ranjit Mohan; Henry, Jeyakumar; Mohan, Viswanathan

    2013-03-01

    There is little data on the type of vegetable oil used and the prevalence of metabolic syndrome (MS) in Asian Indians. Food frequency questionnaire was used to document the type of cooking oil in 1875 adults in Chennai city. MS was assessed by new harmonizing criteria. The prevalence of MS was higher among sunflower oil users (30.7%) than palmolein (23.2%) and traditional oil (17.1%, p < 0.001) users. The higher prevalence of MS in sunflower oil group persisted even when stratified according to body mass index, except in obese groups. The risk of MS was further compounded by quantity of refined cereals consumed. Higher LA%E and linoleic acid/alpha-linolenic acid ratio in sunflower oil probably contributes to increased risk of MS.

  8. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.

    PubMed

    Tan, Jin; Li, Rong; Jiang, Zi-Tao; Tang, Shu-Hua; Wang, Ying; Shi, Meng; Xiao, Yi-Qian; Jia, Bin; Lu, Tian-Xiang; Wang, Hao

    2017-02-15

    Synchronous front-face fluorescence spectroscopy has been developed for the discrimination of used frying oil (UFO) from edible vegetable oil (EVO), the estimation of the using time of UFO, and the determination of the adulteration of EVO with UFO. Both the heating time of laboratory prepared UFO and the adulteration of EVO with UFO could be determined by partial least squares regression (PLSR). To simulate the EVO adulteration with UFO, for each kind of oil, fifty adulterated samples at the adulterant amounts range of 1-50% were prepared. PLSR was then adopted to build the model and both full (leave-one-out) cross-validation and external validation were performed to evaluate the predictive ability. Under the optimum condition, the plots of observed versus predicted values exhibited high linearity (R(2)>0.96). The root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP) were both lower than 3%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Upgrading and Refining of Crude Oils and Petroleum Products by Ionizing Irradiation.

    PubMed

    Zaikin, Yuriy A; Zaikina, Raissa F

    2016-06-01

    A general trend in the oil industry is a decrease in the proven reserves of light crude oils so that any increase in future oil exploration is associated with high-viscous sulfuric oils and bitumen. Although the world reserves of heavy oil are much greater than those of sweet light oils, their exploration at present is less than 12 % of the total oil recovery. One of the main constraints is very high expenses for the existing technologies of heavy oil recovery, upgrading, transportation, and refining. Heavy oil processing by conventional methods is difficult and requires high power inputs and capital investments. Effective and economic processing of high viscous oil and oil residues needs not only improvements of the existing methods, such as thermal, catalytic and hydro-cracking, but the development of new technological approaches for upgrading and refining of any type of problem oil feedstock. One of the perspective approaches to this problem is the application of ionizing irradiation for high-viscous oil processing. Radiation methods for upgrading and refining high-viscous crude oils and petroleum products in a wide temperature range, oil desulfurization, radiation technology for refining used oil products, and a perspective method for gasoline radiation isomerization are discussed in this paper. The advantages of radiation technology are simple configuration of radiation facilities, low capital and operational costs, processing at lowered temperatures and nearly atmospheric pressure without the use of any catalysts, high production rates, relatively low energy consumption, and flexibility to the type of oil feedstock.

  10. Floral and vegetative cues in oil-secreting and non-oil-secreting Lysimachia species

    PubMed Central

    Schäffler, I.; Balao, F.; Dötterl, S.

    2012-01-01

    Background and Aims Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected. Methods Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods. Key Results Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied. Conclusions Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have

  11. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstratingmore » these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production« less

  12. Method of refining cracked oil by using metallic soaps. [desulfurization of cracked oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masakichi, M.; Marunouchi, K.K.; Yoshimura, T.

    1937-04-13

    The method of refining cracked oil consists in dissolving oil-soluble heavy metallic soap of oleic acid in a volatile organic solvent which will disperse homogeneously in cracked oil; pouring the solution thus obtained slowly into cracked oil to effect dispersion naturally and homogeneously at room temperature in the cracked oil. This process serves to react the mercaptans in the cracked oil with the heavy metallic soap by a double decomposition reaction and to precipitate the mercaptans as insoluble metallic salts. The remaining liquid is distilled to separate it from the remaining solvent.

  13. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated vegetable oil may be safely used in accordance with...

  14. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN INTERIM BASIS PENDING ADDITIONAL STUDY Specific Requirements for Certain Food Additives § 180.30 Brominated vegetable oil. The food additive brominated... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Brominated vegetable oil. 180.30 Section 180.30...

  15. Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils.

    PubMed

    Stone, H D

    1997-01-01

    Animal, vegetable, and synthetic oils were tested as potential replacements for mineral oil in Newcastle disease oil emulsion vaccines. Emulsifying surfactants of seed oil origin comprised 10% of the the oil phase that was used to prepare water-in-oil emulsion vaccines that contained a final concentration of 20% aqueous antigen. The hemagglutination inhibition responses of chickens inoculated with 46 of the newly formulated oil vaccines were, in most cases, not significantly different from those of control chickens inoculated with mineral oil vaccine. Tissue reactions associated with animal, vegetable, and synthetic oil vaccines were less severe than those associated with mineral oil vaccines. Viscosity of the mineral oil formulations ranged from 1/2 to 3 1/2 times that of the mineral oil control vaccines. These findings indicate that any of several oils may be more suitable than mineral oil for preparation of immune adjuvants for poultry vaccines.

  16. Sedimentation Of Oil-MIneral Aggregates For Remediation Of Vegetable Oil Spills

    EPA Science Inventory

    A response alternative for floating vegetable oil spills based on sedimentation of negatively buoyant oil-mineral aggregrates followed by anaerobic biodegradation in the sediments is under investigation. Sedimentation of floating canola oil by interaction with montmorillonite wa...

  17. Influence of simulated deep frying on the antioxidant fraction of vegetable oils after enrichment with extracts from olive oil pomace.

    PubMed

    Orozco-Solano, M I; Priego-Capote, F; Luque de Castro, M D

    2011-09-28

    The stability of the antioxidant fraction in edible vegetable oils has been evaluated during a simulated deep frying process at 180 °C. Four edible oils (i.e., extra-virgin olive oil with a 400 μg/mL overall content in naturally existing phenols; high-oleic sunflower oil without natural content of these compounds but enriched either with hydrophilic antioxidants isolated from olive pomace or with an oxidation inhibitor, dimethylsiloxane; and sunflower oil without enrichment) were subjected to deep heating consisting of 20 cycles at 180 °C for 5 min each. An oil aliquot was sampled after each heating cycle to study the influence of heating on the antioxidant fraction composed of hydrophilic and lipophilic antioxidants such as phenols and tocopherols, respectively. The decomposition curves for each group of compounds caused by the influence of deep heating were studied to compare their resistance to oxidation. Thus, the suitability of olive pomace as raw material to obtain these compounds offers an excellent alternative to the use of olive-tree materials different from leaves. The enrichment of refined edible oils with natural antioxidants from olive pomace is a sustainable strategy to take benefits from this residue.

  18. [Fast discrimination of edible vegetable oil based on Raman spectroscopy].

    PubMed

    Zhou, Xiu-Jun; Dai, Lian-Kui; Li, Sheng

    2012-07-01

    A novel method to fast discriminate edible vegetable oils by Raman spectroscopy is presented. The training set is composed of different edible vegetable oils with known classes. Based on their original Raman spectra, baseline correction and normalization were applied to obtain standard spectra. Two characteristic peaks describing the unsaturated degree of vegetable oil were selected as feature vectors; then the centers of all classes were calculated. For an edible vegetable oil with unknown class, the same pretreatment and feature extraction methods were used. The Euclidian distances between the feature vector of the unknown sample and the center of each class were calculated, and the class of the unknown sample was finally determined by the minimum distance. For 43 edible vegetable oil samples from seven different classes, experimental results show that the clustering effect of each class was more obvious and the class distance was much larger with the new feature extraction method compared with PCA. The above classification model can be applied to discriminate unknown edible vegetable oils rapidly and accurately.

  19. Nonlinear joint dynamics between prices of crude oil and refined products

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Ma, Guofeng; Liu, Guangsheng

    2015-02-01

    In this paper, we investigate the relationships between crude oil and refined product prices. We find that nonlinear correlations are stronger in the long-term than in the short-term. Crude oil and product prices are cointegrated and financial crisis in 2007-2008 caused a structural break of the cointegrating relationship. Moreover, different from the findings in most studies, we reveal that the relationships are almost symmetric based on a threshold error correction model. The so-called 'asymmetric relationships' are caused by some outliers and financial crisis. Most of the time, crude oil prices play the major role in the adjustment process of the long-term equilibrium. However, refined product prices dominated crude oil prices during the period of financial crisis. Important policy and risk management implications can be learned from the empirical findings.

  20. Differentiation of refined and virgin edible oils by means of the trans- and cis-phytol isomer distribution.

    PubMed

    Vetter, Walter; Schröder, Markus; Lehnert, Katja

    2012-06-20

    The differentiation of nonrefined (e.g., cold-pressed) and refined edible oils is an important task in food control because of the higher commercial value of the former. Here, we explored the suitability of the relative abundance of cis-phytol as a marker for authentication of nonrefined edible oils. Phytol, the tetramethyl-branched, monoenoic alcohol, is found widespread in nature as a part of chlorophyll. In chlorophyll, only trans-phytol is found. In this study, we present a method for the analysis of the phytol isomers, considering that traces of cis-phytol (contributing 0.1% to the phytol content) can be determined next to trans-phytol. For this purpose, phytol was gathered with the unsaponifiable matter from the oil, trimethylsilylated, and analyzed by gas chromatography coupled to mass spectrometry. With this method, 27 samples of edible oils (16 refined and 11 nonrefined edible oils) were analyzed for the abundance of cis-phytol relative to trans-phytol. In the nonrefined oils (e.g., olive oil, rapeseed oil, maize oil, and sunflower oil), cis-phytol contributed 0.1% (n = 3) or less (n = 8) to the phytol content. In contrast, the refined olive oils (n = 4) contained a share of 1.3-3% cis-phytol; the refined rapeseed oil (n = 3) contained a share of 0.7-1.0% cis-phytol; and the refined sunflower oil (n = 4) contained a share of 0.3-0.9% cis-phytol. Only one refined pomegranate kernel did not contain cis-phytol. The phytol concentration was not suited to distinguish nonrefined from refined oils. In contrast, our data suggest that the virtual absence of cis-phytol can be used as a marker for nonrefined (e.g., cold-pressed) edible oils.

  1. Potential of vegetable oils for lubricants

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils offer significant advantages in terms of resource renewability, biodegradability, and comparable performance properties to petroleum-based products. The petroleum-based lubricants render unfavorable impact on the environment. With the growing environmental concerns, seed oils are find...

  2. Implications of Increasing Light Tight Oil Production for U.S. Refining

    EIA Publications

    2015-01-01

    EIA retained Turner, Mason & Company to provide analysis of the implications of increasing domestic light tight oil production for U.S. refining, focusing on regional crude supply/demand balances, refinery crude slates, operations, capital investment, product yields, crude oil exports/imports, petroleum product exports, infrastructure constraints and expansions, and crude oil price relationships.

  3. Heavy metal absorbing Thioether-functionalized ligands derived from vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Sulfur-functionalized vegetable oils containing thioether groups have been shown to effectively remove Ag+ from aqueous solution. Interestingly, the absorption capacity differs depending upon the choice of which vegetable oil precursor is functionalized. In this study, we will provide data for oils ...

  4. Modelling consumer intakes of vegetable oils and fats.

    PubMed

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development.

  5. Modelling consumer intakes of vegetable oils and fats

    PubMed Central

    Tennant, David; Gosling, John Paul

    2015-01-01

    Vegetable oils and fats make up a significant part of the energy intake in typical European diets. However, their use as ingredients in a diverse range of different foods means that their consumption is often hidden, especially when oils and fats are used for cooking. As a result, there are no reliable estimates of the consumption of different vegetable oils and fats in the diet of European consumers for use in, for example, nutritional assessments or chemical risk assessments. We have developed an innovative model to estimate the consumption of vegetable oils and fats by European Union consumers using the European Union consumption databases and elements of probabilistic modelling. A key feature of the approach is the assessment of uncertainty in the modelling assumptions that can be used to build user confidence and to guide future development. PMID:26160467

  6. Authentication of edible vegetable oils adulterated with used frying oil by Fourier Transform Infrared Spectroscopy.

    PubMed

    Zhang, Qing; Liu, Cheng; Sun, Zhijian; Hu, Xiaosong; Shen, Qun; Wu, Jihong

    2012-06-01

    The application of Fourier Transform Infrared (FTIR) Spectroscopy to authenticate edible vegetable oils (corn, peanut, rapeseed and soybean oil) adulterated with used frying oil was introduced in this paper. The FTIR spectrum of oil was divided into 22 regions which corresponded to the constituents and molecular structures of vegetable oils. Samples of calibration set were classified into four categories for corn and peanut oils and five categories for rapeseed and soybean oils by cluster analysis. Qualitative analysis of validation set was obtained by discriminant analysis. Area ratio between absorption band 19 and 20 and wavenumber shift of band 19 were treated by linear regression for quantitative analysis. For four adulteration types, LODs of area ratio were 6.6%, 7.2%, 5.5%, 3.6% and wavenumber shift were 8.1%, 9.0%, 6.9%, 5.6%, respectively. The proposed methodology is a useful tool to authenticate the edible vegetable oils adulterated with used frying oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Modified vegetable oils-based lubricant emulsions

    USDA-ARS?s Scientific Manuscript database

    Lubricants made from vegetable oils represent only a small section of the market today. Recent legislation, however, in both the United States and Europe, could begin to brighten their prospects due to their eco-friendly and biodegradable character, unlike petroleum oil-based products. In order to u...

  8. Lubricant Properties of Modified Vegetable Oils

    USDA-ARS?s Scientific Manuscript database

    Lubricants made from vegetable oils represent a small section of the market today, but recent legislation in both the United States and Europe could begin to brighten their prospects due to their eco-friendly and biodegradable character unlike petroleum oil based products. In order to understand th...

  9. Anaerobic digestion of residues from production and refining of vegetable oils as an alternative to conventional solutions.

    PubMed

    Torrijos, M; Thalla, Arun Kumar; Sousbie, P; Bosque, F; Delgenès, J P

    2008-01-01

    The purpose of this work was to study the anaerobic digestion of by-products generated during the production and refining of oil with the objective of proposing an alternative solution (methanisation) to the conventional solutions while reducing the energy consumption of fossil origin on refinery sites. The production of sunflower oil was taken as example. Glycerine from the production of biodiesel was also included in this study. The results show that glycerine has a high potential for methanisation because of its high methane potential (465 ml CH4/g VS) and high metabolization rates (0.42 g VS/g VSS.d). The use of oil cake as substrate for anaerobic digestion is not interesting because it has a low methane potential of 215 ml CH4/g VS only and because it is easily recovered in animal feed. Six residues have quite a high methane potential (465 to 850 ml CH4/g VS) indicating a good potential for anaerobic digestion. However, they contain a mixture of rapidly and slowly biodegradable organic matter and the loading rates must remain quite low (0.03 to 0.09 g VS/g VSS.d) to prevent any accumulation of slowly biodegradable solids in the digesters. IWA Publishing 2008.

  10. On the Mineral and Vegetal Oils Used as Electroinsulation in Transformers

    NASA Astrophysics Data System (ADS)

    Şerban, Mariana; Sângeorzan, Livia; Helerea, Elena

    Due to the relatively large availability and reduced price, the mineral transformer oils are widely used as electrical insulating liquids. However, mineral oil drastically degrades over time in service. New efforts were made to improve mineral oils characteristics, and other types of liquids like vegetal oils are proposed. This paper deals with new comparative tests on mineral and vegetal oils using as indicator the electric strength. The samples of non-additive mineral oil type TR 30 and vegetal oils of rape, sunflower and corn have been tested with increasing voltage of 60 Hz using different electrodes. The obtained data have been statistical processed. The analyze shows different average values of electrical strength for the different type of sample. New method of testing through electrical breakdown is proposed. Experimental data confirms that it is possible to use as electroinsulation organic vegetal oils in power transformers.

  11. Glycidyl fatty acid esters in refined edible oils: A review on formation, occurrence, analysis, and elimination methods

    USDA-ARS?s Scientific Manuscript database

    Glycidyl fatty acid esters (GEs), one of the main contaminants in processed oil, are mainly formed during the deodorization step in the oil refining process of edible oils and therefore occur in almost all refined edible oils. GEs are potential carcinogens, due to the fact that they hydrolyze into t...

  12. Lightning Impulse Breakdown Characteristics and Electrodynamic Process of Insulating Vegetable Oil-Based Nanofluid

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Zhao-Tao; Zou, Ping; Du, Bin; Liao, Rui-Jin

    2012-06-01

    Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe3O4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.

  13. Storage stability of cooked sausages containing vegetable oils.

    PubMed

    Papavergou, E J; Ambrosiadis, J A; Psomas, J

    1995-01-01

    Comminuted cooked sausages were produced using standard industrial practices, by substituting corn oil, sunflower oil, cotton seed oil, soybean oil and hydrogenated vegetable fat for animal fat. When processed, products were assessed for their stability with respect to autoxidation and change in organoleptic properties during vacuum-packed storage in a domestic refrigerator at 4 degrees C. Data obtained indicated that changes in thiobarbituric acid (TBA) values and organoleptic properties of products produced using corn oil, sunflower oil and hydrogenated vegetable fat were similar to those observed for reference material produced using lard. In the case of samples produced using soybean and cotton seed oil, TBA value changes were more pronounced, but did not exceed acceptable limits. A more rapid deterioration of organoleptic characteristics was also observed for the same samples, which showed flavour problems after 3 months of storage at 4 degrees C. Substitution of plant oils for lard considerably reduced the cholesterol content and increased the ratio of unsaturated to saturated fatty acids of cooked sausages.

  14. A New Strategy to Refine Crude Indian Sardine Oil.

    PubMed

    Charanyaa, S; Belur, Prasanna D; Regupathi, I

    2017-05-01

    Current work aims to develop a refining process for removing phospholipids, free fatty acids (FFA), and metal ions without affecting n-3 polyunsaturated fatty acid (n-3 PUFA) esters present in the crude Indian sardine oil. Sardine oil was subjected to degumming with various acids (orthophosphoric acid, acetic acid, and lactic acid), conventional and membrane assisted deacidification using various solvents (methanol, ethanol, propanol and butanol) and bleaching with bleaching agents (GAC, activated earth and bentonite) and all the process parameters were further optimized. Degumming with 5%(w/w) ortho phosphoric acid, two stage solvent extraction with methanol at 1:1 (w/w) in each stage and bleaching with 3% (w/w) activated charcoal loading, at 80ºC for 10 minutes resulted in the reduction of phospholipid content to 5.66 ppm from 612.66 ppm, FFA to 0.56% from 5.64% with the complete removal of iron and mercury. Under these conditions, the obtained bleached oil showed an enhancement of n-3 PUFA from 16.39 % (11.19 Eicosapentaenoic acid (EPA) + 5.20 Docosahexaenoic acid (DHA)) to 17.91 % (11.81 EPA + 6.1 DHA). Replacing conventional solvent extraction with membrane deacidification using microporous, hydrophobic polytetrafluoroethylene membrane (PTFE), resulted in a lesser solvent residue (0.25% (w/w)) in the deacidified oil. In view of lack of reports on refining of n-3 PUFA rich marine oils without concomitant loss of n-3 PUFA, this report is significant.

  15. Fast-HPLC Fingerprinting to Discriminate Olive Oil from Other Edible Vegetable Oils by Multivariate Classification Methods.

    PubMed

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Pérez-Castaño, Estefanía; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the differentiation of olive oil from other vegetable oils using reversed-phase LC and applying chemometric techniques was developed. A 3 cm short column was used to obtain the chromatographic fingerprint of the methyl-transesterified fraction of each vegetable oil. The chromatographic analysis took only 4 min. The multivariate classification methods used were k-nearest neighbors, partial least-squares (PLS) discriminant analysis, one-class PLS, support vector machine classification, and soft independent modeling of class analogies. The discrimination of olive oil from other vegetable edible oils was evaluated by several classification quality metrics. Several strategies for the classification of the olive oil were used: one input-class, two input-class, and pseudo two input-class.

  16. A novel quantitative analysis method of three-dimensional fluorescence spectra for vegetable oils contents in edible blend oil

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei

    2015-04-01

    Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.

  17. Vegetable oils and animal fats for diesel fuels: a systems study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less

  18. Wet scrubbing of biomass producer gas tars using vegetable oil

    NASA Astrophysics Data System (ADS)

    Bhoi, Prakashbhai Ramabhai

    The overall aims of this research study were to generate novel design data and to develop an equilibrium stage-based thermodynamic model of a vegetable oil based wet scrubbing system for the removal of model tar compounds (benzene, toluene and ethylbenzene) found in biomass producer gas. The specific objectives were to design, fabricate and evaluate a vegetable oil based wet scrubbing system and to optimize the design and operating variables; i.e., packed bed height, vegetable oil type, solvent temperature, and solvent flow rate. The experimental wet packed bed scrubbing system includes a liquid distributor specifically designed to distribute a high viscous vegetable oil uniformly and a mixing section, which was designed to generate a desired concentration of tar compounds in a simulated air stream. A method and calibration protocol of gas chromatography/mass spectroscopy was developed to quantify tar compounds. Experimental data were analyzed statistically using analysis of variance (ANOVA) procedure. Statistical analysis showed that both soybean and canola oils are potential solvents, providing comparable removal efficiency of tar compounds. The experimental height equivalent to a theoretical plate (HETP) was determined as 0.11 m for vegetable oil based scrubbing system. Packed bed height and solvent temperature had highly significant effect (p0.05) effect on the removal of model tar compounds. The packing specific constants, Ch and CP,0, for the Billet and Schultes pressure drop correlation were determined as 2.52 and 2.93, respectively. The equilibrium stage based thermodynamic model predicted the removal efficiency of model tar compounds in the range of 1-6%, 1-4% and 1-2% of experimental data for benzene, toluene and ethylbenzene, respectively, for the solvent temperature of 30° C. The NRTL-PR property model and UNIFAC for estimating binary interaction parameters are recommended for modeling absorption of tar compounds in vegetable oils. Bench scale

  19. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.

    PubMed

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.

  20. Genetically engineered plants with increased vegetative oil content

    DOEpatents

    Benning, Christoph

    2017-05-23

    The invention relates to genetically modified agricultural plants with increased oil content in vegetative tissues, as well as to expression systems, plant cells, seeds and vegetative tissues related thereto.

  1. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2013-03-01

    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  3. Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements

    PubMed Central

    Halvorsen, Bente Lise; Blomhoff, Rune

    2011-01-01

    Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461

  4. Sea transport of animal and vegetable oils and its environmental consequences.

    PubMed

    Bucas, Gwenaelle; Saliot, Alain

    2002-12-01

    The increasing production-and therefore sea traffic--of vegetable oils has regularly led to spillages during the past 40 years. The accident of Allegra, on October,lst, 1997, in the English Channel gave rise to a spillage of 900 tonnes of palm nut oil. The drift of this solid vegetable oil was followed by aerial observations. Samples of oil were collected in order to analyse its chemical evolution. This study, associated with several bibliographic cases of pollution by non-petroleum oils, shows that drifting oils can mix with floating material to sink or form a crust. They can also be oxidized or disperse and/or be degraded by bacteria. They may also polymerise. The coating properties of vegetable oils act as crude oils to affect sea life, tourism and yachting. As a result, it is necessary to quickly collect the oil after a spillage, using usual equipment (booms and pumps).

  5. [FREQUENTLY USED VEGETABLE OILS IN SOUTH AMERICA: FEATURES AND PROPERTIES].

    PubMed

    Durán Agüero, Samuel; Torres García, Jairo; Sanhueza Catalán, Julio

    2015-07-01

    In recent decades, the consumption of vegetable oils has increased in our society, being an important part of the diet worldwide. South America is a major producer of an important variety of vegetable oils. The composition of vegetable oils is not standard as it varies greatly in the amount of saturated, monounsaturated and polyunsaturated fatty acids, and particularly in the amounts of omega-6 and omega-3, which are associated with the source either plant species, seed, plant or fruit, providing different nutritional benefits. The purpose of this article is to review and update the data and evidence about the consumption of oils produced and commercialized in South America, such as soybean oil, corn, palm, sunflower, canola and olive oils, and also to determine health effects from studies related with the topic. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  6. Wetland Vegetation Monitoring within Barataria Basin, Louisiana Following Exposure to Oil

    NASA Astrophysics Data System (ADS)

    Steyer, G.; Piazza, S.; Kokaly, R. F.; Patton, B.; Heckman, D.

    2011-12-01

    Following the Deepwater Horizon explosion and subsequent oil spill in April 2010 coastal wetlands in Louisiana were directly oiled, exposing vegetation and marsh soils to petroleum hydrocarbons. Oiling was observed at the marsh/water interface as well as within coastal marshes. The physical and chemical effects of oil spills can have both short and long term effects on wetland vegetation. These effects can include reductions in primary productivity and direct plant mortality. Even in the absence of this oiling event, the coastal landscape of Louisiana experiences high rates of land loss resulting from natural and anthropogenic causes. This additional stress has the potential to further reduce the extent and health of coastal marshes in this fragile ecosystem. We conducted a field study to document the impact of oiling on above and belowground vegetation biomass, plant species composition, and vegetation cover at sites within Barataria Basin, Louisiana. Six sampling sites were established, three within obviously oiled marshes and three where oiling was not readily apparent. Four sampling events occurred between October 2010 and October 2011. The preliminary results of the field study will be presented along with how these data helped validate remotely sensed data observations (AVIRIS) and calibrate ground reflectance in oiled and non-oiled marshes.

  7. Fouling mechanism in ultrafiltration of vegetable oil

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.

    2018-03-01

    Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.

  8. Photolysis of polychlorinated dibenzo-p-dioxins and dibenzofurans dissolved in vegetable oils: influence of oil quality.

    PubMed

    Isosaari, Pirjo; Laine, Olli; Tuhkanen, Tuula; Vartiainen, Terttu

    2005-03-20

    Sunlight or ultraviolet light irradiation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the presence of vegetable oil offers a potential method for the cleanup of contaminated soil. In this study, the effects of different types of vegetable oils on the photochemical degradation of 1,2,3,4,6,7,8-heptachlorodibenzofuran and heptachlorodibenzo-p-dioxin (1,2,3,4,6,7,8-HpCDF/HpCDD) were investigated in the laboratory. Using a blacklight lamp as a source of ultraviolet light, 93-100% of 1,2,3,4,6,7,8-HpCDF degraded in 60 min in rapeseed oil, extra virgin olive oil and olive oil. Less degradation occurred in palm oil (59%), toluene (39%) and hexane (20%). The better degradation in vegetable oils in comparison with organic solvents was attributed to the photooxidation of lipids producing hydrogen for PCDD/F dechlorination. In addition to the hydrogen donor capacity, permeability of ultraviolet light was involved in the differences between vegetable oils. alpha-Tocopherol and chlorophyll did not influence the performance of oil at concentrations normally present in vegetable oils, whereas beta-carotene had an inhibitory effect on the degradation of 1,2,3,4,6,7,8-HpCDF. Up to 28% of the degradation products of 1,2,3,4,6,7,8-HpCDF were formed via the dechlorination pathway. Products included both toxic (2,3,7,8-chlorinated) and non-toxic PCDD/Fs, the toxic PCDD/Fs being more stable. Irradiation of 1,2,3,4,6,7,8-HpCDD yielded only non-toxic dechlorination products. Polychlorinated hydroxybiphenyls (OH-PCBs), polychlorinated dihydroxybiphenyls (DOH-PCBs) and polychlorinated hydroxydiphenylethers (OH-PCDEs) containing one to seven chlorine atoms were not detected in irradiated HpCDF/HpCDD samples.

  9. Comparison of oil refining and biodiesel production process between screw press and n-hexane techniques from beauty leaf feedstock

    NASA Astrophysics Data System (ADS)

    Bhuiya, M. M. K.; Rasul, M. G.; Khan, M. M. K.; Ashwath, N.

    2016-07-01

    The Beauty Leaf Tree (Callophylum inophyllum) is regarded as an alternative source of energy to produce 2nd generation biodiesel due to its potentiality as well as high oil yield content in the seed kernels. The treating process is indispensable during the biodiesel production process because it can augment the yield as well as quality of the product. Oil extracted from both mechanical screw press and solvent extraction using n-hexane was refined. Five replications each of 25 gm of crude oil for screw press and five replications each of 25 gm of crude oil for n-hexane were selected for refining as well as biodiesel conversion processes. The oil refining processes consists of degumming, neutralization as well as dewaxing. The degumming, neutralization and dewaxing processes were performed to remove all the gums (phosphorous-based compounds), free fatty acids, and waxes from the fresh crude oil before the biodiesel conversion process carried out, respectively. The results indicated that up to 73% and 81% of mass conversion efficiency of the refined oil in the screw press and n-hexane refining processes were obtained, respectively. It was also found that up to 88% and 90% of biodiesel were yielded in terms of mass conversion efficiency in the transesterification process for the screw press and n-hexane techniques, respectively. While the entire processes (refining and transesterification) were considered, the conversion of beauty leaf tree (BLT) refined oil into biodiesel was yielded up to 65% and 73% of mass conversion efficiency for the screw press and n-hexane techniques, respectively. Physico-chemical properties of crude and refined oil, and biodiesel were characterized according to the ASTM standards. Overall, BLT has the potential to contribute as an alternative energy source because of high mass conversion efficiency.

  10. Properties of cookies made with natural wax-vegetable oil organogels

    USDA-ARS?s Scientific Manuscript database

    Organogels prepared with a natural wax and a vegetable oil were examined as alternatives to a commercial margarine in cookie. To investigate effects of wax and vegetable oil on properties of cookie dough and cookies, organogels prepared from four different waxes including sunflower wax, rice bran wa...

  11. Assessment of the radiological impact of oil refining industry.

    PubMed

    Bakr, W F

    2010-03-01

    The field of radiation protection and corresponding national and international regulations has evolved to ensure safety in the use of radioactive materials. Oil and gas production processing operations have been known to cause naturally occurring radioactive materials (NORMs) to accumulate at elevated concentrations as by-product waste streams. A comprehensive radiological study on the oil refining industry in Egypt was carried out to assess the radiological impact of this industry on the workers. Scales, sludge, water and crude oil samples were collected at each stage of the refining process. The activity concentration of (226)Ra, (232)Th and (40)K were determined using high-resolution gamma spectrometry. The average activity concentrations of the determined isotopes are lower than the IAEA exempt activity levels for NORM isotopes. Different exposure scenarios were studied. The average annual effective dose for workers due to direct exposure to gamma radiation and dust inhalation found to be 0.6 microSv and 3.2 mSv, respectively. Based on the ALARA principle, the results indicate that special care must be taken during cleaning operations in order to reduce the personnel's exposure due to maintenance as well as to avoid contamination of the environment. 2009 Elsevier Ltd. All rights reserved.

  12. Study on the thermal degradation of 3-MCPD esters in model systems simulating deodorization of vegetable oils.

    PubMed

    Ermacora, Alessia; Hrncirik, Karel

    2014-05-01

    The establishment of effective strategies for the mitigation of 3-MCPD esters in refined vegetable oils is restricted by limited knowledge of their mechanisms of formation and decomposition. In order to gain better understanding on the thermal stability of these compounds, a model system for mimicking oil refining conditions was developed. Pure 3-MCPD esters (3-MCPD dipalmitate and 3-MCPD dilaurate) were subjected to thermal treatment (180-260°C) and the degradation products where monitored over time (0-24h). After 24h of treatment, both 3-MCPD esters showed a significant degradation (ranging from 30% to 70%), correlating with the temperature applied. The degradation pathway, similar for both compounds, was found to involve isomerisation (very rapid, equilibrium was reached within 2h at 260°C), dechlorination and deacylation reactions. The higher relative abundance of non-chlorinated compounds, namely acylglycerols, in the first stages of the treatment suggested that dechlorination is preferred over deacylation with the conditions applied in this study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters

    NASA Astrophysics Data System (ADS)

    Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.

    2017-09-01

    To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.

  14. Thermal Effusivity of Vegetable Oils Obtained by a Photothermal Technique

    NASA Astrophysics Data System (ADS)

    Cervantes-Espinosa, L. M.; de L. Castillo-Alvarado, F.; Lara-Hernández, G.; Cruz-Orea, A.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.

    2014-10-01

    Thermal properties of several vegetable oils such as soy, corn, and avocado commercial oils were obtained by using a photopyroelectric technique. The inverse photopyroelectric configuration was used in order to obtain the thermal effusivity of the oil samples. The theoretical equation for the photopyroelectric signal in this configuration, as a function of the incident light modulation frequency, was fitted to the experimental data in order to obtain the thermal effusivity of these samples. The obtained results are in good agreement with the thermal effusivity reported for other vegetable oils. All measurements were done at room temperature.

  15. Refining of crude rubber seed oil as a feedstock for biofuel production.

    PubMed

    Gurdeep Singh, Haswin Kaur; Yusup, Suzana; Abdullah, Bawadi; Cheah, Kin Wai; Azmee, Fathin Nabilah; Lam, Hon Loong

    2017-12-01

    Crude rubber seed oil is a potential source for biofuel production. However it contains undesirable impurities such as peroxides and high oxidative components that not only affect the oil stability, colour and shelf-life but promote insoluble gums formation with time that could cause deposition in the combustion engines. Therefore to overcome these problems the crude rubber seed oil is refined by undergoing degumming and bleaching process. The effect of bleaching earth dosage (15-40 wt %), phosphoric acid dosage (0.5-1.0 wt %) and reaction time (20-40 min) were studied over the reduction of the peroxide value in a refined crude rubber seed oil. The analysis of variance shows that bleaching earth dosage was the most influencing factor followed by reaction time and phosphoric acid dosage. A minimum peroxide value of 0.1 milliequivalents/gram was achieved under optimized conditions of 40 wt % of bleaching earth dosage, 1.0 wt % of phosphoric acid dosage and 20 min of reaction time using Response Surface Methodology design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Utilization of the Fine Particles Obtained from Cold Pressed Vegetable Oils: A Case Study in Organic Rice Bran, Sunflower and Sesame Oils.

    PubMed

    Srikaeo, Khongsak; Poungsampao, Phuttan; Phuong, Nguyen Thi

    2017-01-01

    Fine particles obtained from the physical refining of organic cold pressed vegetable oils which are normally discarded as a process waste can be utilized as cosmetic and food ingredients. This paper demonstrated the use of the fine particles from rice bran (Thai Jasmine and Riceberry varieties), sunflower and sesame oils as the ingredient in body mask and as dietary fiber. It was found that the fine particles from rice brans exhibited better antioxidant properties than those of sunflower and sesame. The mixed fine particles were added to body mask formula. The addition of the fine particles affected the physical properties and stability of the body mask especially viscosity and pH. Total dietary fiber recovered from the fine particles ranged from 17.91-23.83 g/100g dry sample. Dietary fiber from Riceberry exhibited the best antioxidant properties as evidenced by DPPH radical scavenging activity and reducing power.

  17. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  18. Optimization of palm oil physical refining process for reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Tan, Soo Choon; Abdul Latip, Razam; Tan, Chin Ping

    2013-04-03

    The reduction of 3-monochloropropane-1,2-diol (3-MCPD) ester formation in refined palm oil was achieved by incorporation of additional processing steps in the physical refining process to remove chloroester precursors prior to the deodorization step. The modified refining process was optimized for the least 3-MCPD ester formation and acceptable refined palm oil quality using response surface methodology (RSM) with five processing parameters: water dosage, phosphoric acid dosage, degumming temperature, activated clay dosage, and deodorization temperature. The removal of chloroester precursors was largely accomplished by increasing the water dosage, while the reduction of 3-MCPD esters was a compromise in oxidative stability and color of the refined palm oil because some factors such as acid dosage, degumming temperature, and deodorization temperature showed contradictory effects. The optimization resulted in 87.2% reduction of 3-MCPD esters from 2.9 mg/kg in the conventional refining process to 0.4 mg/kg, with color and oil stability index values of 2.4 R and 14.3 h, respectively.

  19. A rapid method to authenticate vegetable oils through surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Lv, Ming Yang; Zhang, Xin; Ren, Hai Rui; Liu, Luo; Zhao, Yong Mei; Wang, Zheng; Wu, Zheng Long; Liu, Li Min; Xu, Hai Jun

    2016-03-01

    Vegetable oils are essential in our daily diet. Among various vegetable oils, the major difference lies in the composition of fatty acids, including unsaturated fatty acids (USFA) and saturated fatty acids (SFA). USFA include oleic acid (OA), linoleic acid (LA), and α-linolenic acid (ALA), while SFA are mainly palmitic acid (PA). In this study, the most typical and abundant USFA present with PA in vegetable oils were quantified. More importantly, certain proportional relationships between the integrated intensities of peaks centered at 1656 cm-1 (S1656) in the surface-enhanced Raman scattering spectra of different USFA were confirmed. Therefore, the LA or ALA content could be converted into an equivalent virtual OA content enabling the characterization of the USFA content in vegetable oils using the equivalent total OA content. In combination with the S1656 of pure OA and using peanut, sesame, and soybean oils as examples, the ranges of S1656 corresponding to the National Standards of China were established to allow the rapid authentication of vegetable oils. Gas chromatograph-mass spectrometer analyses verified the accuracy of the method, with relative errors of less than 5%. Moreover, this method can be extended to other detection fields, such as diseases.

  20. Comprehension of direct extraction of hydrophilic antioxidants using vegetable oils by polar paradox theory and small angle X-ray scattering analysis.

    PubMed

    Li, Ying; Fabiano-Tixier, Anne Sylvie; Ruiz, Karine; Rossignol Castera, Anne; Bauduin, Pierre; Diat, Olivier; Chemat, Farid

    2015-04-15

    Since the polar paradox theory rationalised the fact that polar antioxidants are more effective in nonpolar media, extractions of phenolic compounds in vegetable oils were inspired and achieved in this study for obtaining oils enriched in phenolic compounds. Moreover, the influence of surfactants on the extractability of phenolic compounds was experimentally studied first, followed by the small angle X-ray scattering analysis for the oil structural observation before and after extraction so as to better understand the dissolving mechanism underpinning the extraction. The results showed a significant difference on the extraction yield of phenolic compounds among oils, which was mainly dependent on their composition instead of the unsaturation of fatty acids. Appropriate surfactant additions could significantly improve extraction yield for refined sunflower oils, which 1% w/w addition of glyceryl oleate was determined as the optimal. Besides, 5% w/w addition of lecithin performed the best in oil enrichments compared with mono- and di-glycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Optimization of biodiesel production process using recycled vegetable oil

    NASA Astrophysics Data System (ADS)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  2. Detection of Vegetable Oil Variance Using Surface Plasmon Resonance (SPR) Technique

    NASA Astrophysics Data System (ADS)

    Supardianningsih; Panggabean, R. D.; Romadhon, I. A.; Laksono, F. D.; Nofianti, U.; Abraha, K.

    2018-05-01

    The difference between coconut oil, corn oil, olive oil, and palm oil has been detected using surface plasmon resonance (SPR) technique. This is a new method in material characterization that can be used to identify vegetable oil variance. The SPR curve was measured by SPR system consisting of optical instruments, mechanical instruments, Main UNIT, and user interface (computer). He-Ne laser beam of wavelength 633 nm was used as light source, while gold (Au) thin film evaporated on half cylinder prism was used as the base so that surface plasmon polariton (SPP) waves propagate at the interface. Tween-80 and PEG-400 are used as surfactant and co-surfactant to make water-oil emulsion from each sample. The sample was prepared with the ratio of oil: surfactant: co-surfactant as 1:2:1 and then stirred on the water to make emulsions. The angle shift was measured by the change of SPR angle from prism/Au/air system to prism/Au/water-oil emulsion. The different SPR angle of each sample has been detected in the various number of spray, a method that was used for depositing the emulsion. From this work, we conclude that the saturated fatty acid component was the most significant component that changes the refractive index in the vegetable oil in water emulsion that can be used to characterize the vegetable oil variance.

  3. Value-added potential of expeller-pressed canola oil refining: characterization of sinapic acid derivatives and tocopherols from byproducts.

    PubMed

    Chen, Yougui; Thiyam-Hollander, Usha; Barthet, Veronique J; Aachary, Ayyappan A

    2014-10-08

    Valuable phenolic antioxidants are lost during oil refining, but evaluation of their occurrence in refining byproducts is lacking. Rapeseed and canola oil are both rich sources of sinapic acid derivatives and tocopherols. The retention and loss of sinapic acid derivatives and tocopherols in commercially produced expeller-pressed canola oils subjected to various refining steps and the respective byproducts were investigated. Loss of canolol (3) and tocopherols were observed during bleaching (84.9%) and deodorization (37.6%), respectively. Sinapic acid (2) (42.9 μg/g), sinapine (1) (199 μg/g), and canolol (344 μg/g) were found in the refining byproducts, namely, soap stock, spent bleaching clay, and wash water, for the first time. Tocopherols (3.75 mg/g) and other nonidentified phenolic compounds (2.7 mg sinapic acid equivalent/g) were found in deodistillates, a byproduct of deodorization. DPPH radical scavenging confirmed the antioxidant potential of the byproducts. This study confirms the value-added potential of byproducts of refining as sources of endogenous phenolics.

  4. ANAEROBIC BIODEGRADATION OF VEGETABLE OIL AND ITS METABOLIC INTERMEDIATES IN OIL-ENRICHED FRESHWATER SEDIMENTS

    EPA Science Inventory

    Anaerobic biodegradation of vegetable oil in freshwater sediments is strongly inhibited by high concentrations of oil, but the presence of ferric hydroxide relieves the inhibition. The effect of ferric hydroxide is not due to physical or chemical interactions with long-chain fatt...

  5. Enzymatic transesterification of waste vegetable oil to produce biodiesel.

    PubMed

    Lopresto, C G; Naccarato, S; Albo, L; De Paola, M G; Chakraborty, S; Curcio, S; Calabrò, V

    2015-11-01

    An experimental study on enzymatic transesterification was performed to produce biodiesel from waste vegetable oils. Lipase from Pseudomonas cepacia was covalently immobilized on a epoxy-acrylic resin support. The immobilized enzyme exhibited high catalytic specific surface and allowed an easy recovery, regeneration and reutilisation of biocatalyst. Waste vegetable oils - such as frying oils, considered not competitive with food applications and wastes to be treated - were used as a source of glycerides. Ethanol was used as a short chain alcohol and was added in three steps with the aim to reduce its inhibitory effect on lipase activity. The effect of biocatalyst/substrate feed mass ratios and the waste oil quality have been investigated in order to estimate the process performances. Biocatalyst recovery and reuse have been also studied with the aim to verify the stability of the biocatalyst for its application in industrial scale. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Canola, corn and vegetable oils as alternative for wheat germ oil in fruit fly liquid larval diets

    USDA-ARS?s Scientific Manuscript database

    Four wheat germ oil alternatives (corn oil, vegetable oil, canola oil with 10% vitamin E, and canola oil with 20% vitamin E) purchased from a Hawaii local supermarket were added into a fruit fly liquid larval diet as a supplement for rearing fruit fly larvae and were evaluated for the possibility to...

  7. Offline Solid-phase Extraction Large-volume Injection-Gas chromatography for the Analysis of Mineral Oil-saturated Hydrocarbons in Commercial Vegetable Oils.

    PubMed

    Liu, Lingling; Huang, Hua; Wu, Yanwen; Li, Bingning; Ouyang, Jie

    2017-09-01

    An offline solid-phase extraction (SPE) approach combined with a large-volume injection (LVI)-gas chromatography-flame ionization detector (LVI-GC-FID) is improved for routine analysis of mineral oil saturated hydrocarbons (MOSH) in vegetable oils. The key procedure of the method consists in using offline SPE columns for MOSH purification. The SPE column packed with 1% Ag-activated silica gel was used to separate MOSH from triglycerides and olefins in variety of vegetable oils. The eluent of MOSH fraction was only 3 mL and the concentration step was quick with little evaporation loss. The limit of quantification (LOQ) of the method was 2.5 mg/kg and the linearity ranged from 2 to 300 mg/kg. The accuracy was assessed by measuring the recoveries from spiked oil samples and was higher than 90%. Twenty-seven commercial vegetable oils were analyzed, and different levels of MOSH contamination were detected with the highest being 259.4 mg/kg. The results suggested that it is necessary to routinely detect mineral oil contamination in vegetable oils for food safety.

  8. Vitamin A--fortified vegetable oil exported from Malaysia and Indonesia can significantly contribute to vitamin A intake worldwide.

    PubMed

    Laillou, Arnaud; Panagides, Dora; Garrett, Greg S; Moench-Pfanner, Regina

    2013-06-01

    Vitamin A deficiency is a public health problem worldwide, affecting approximately 190 million preschool-aged children and 19.1 million pregnant women. Fortification of vegetable oils with vitamin A is an effective, low-cost technology to improve vitamin A intake. To examine the potential contribution of fortification of vegetable oils with vitamin A in Indonesia and Malaysia to increasing vitamin A consumption in these two countries and in countries to which oil is exported. Detailed interviews were administered and a desk review was conducted. We also estimated potential vitamin A intakes from fortified vegetable oil. Malaysia and Indonesia are two of the largest producers and exporters of vegetable oil. Fortification of vegetable oil in both countries has the potential to be used as a tool for control of vitamin A deficiency. Both countries have the capacity to export fortified vegetable oil. Vegetable oil fortified at a level of 45 IU/g could provide 18.8% of the Estimated Average Requirement (EAR) for an Ethiopian woman, 30.9% and 46.9% of the EAR for a Bangladeshi child and woman, respectively, and 17.5% of the EAR for a Cambodian woman. Although concerns about obesity are valid, fortification of existing vegetable oil supplies does not promote overconsumption of oil but rather promotes consumption of vegetable oil of higher nutrient quality. Fortifying vegetable oil on a large scale in Malaysia and Indonesia can reach millions of people globally, including children less than 5 years old. The levels of fortification used are far from reaching the Tolerable Upper Intake Level (UL). Vegetable oil fortification has the potential to become a global public health intervention strategy.

  9. Improving vegetable oil properties for lubrication methods

    USDA-ARS?s Scientific Manuscript database

    The inherent problems of vegetable oils, such as poor oxidation and low-temperature properties, can be improved by attaching functional groups at the sites of unsaturation through chemical modifications. In this article, you will see how functionalization helps overcome these disadvantages....

  10. A New Approach to Prepare Vegetable Oil-Based Polymers

    USDA-ARS?s Scientific Manuscript database

    Polymers from vegetable oils, such as soybean oil, were prepared by cationic polymerization in supercritical carbon dioxide (scCO2) medium. Boron trifluoride diethyl etherate (BF3.OEt2) was selected as catalyst. The resulting polymers have molecular weight ranging from 21,842 to 118,300 g/mol. Nu...

  11. Military Fuels Refined from Paraho-II Shale Oil.

    DTIC Science & Technology

    1981-03-01

    FUELS REFINED O FROM PARAHO-II SHALE OIL INTERIM REPORT AFLRL No. 131 4!t by J.N. Bowden E.C. Owens D.W. Naegeli L.L. Stavinoha U.S. Army Fuels and...J.N./Bowden, E.C. /Owens, D.W./ Naegeli / DAAK70-78-C-0001 € L.L. Stavinoha DAAK70-80-C-0001 V 9 PERFORMING ORGANIZATION NAME AND ADDRESSES J0...Combustor Design and Oper- ating Conditions," Combustion Science and Technology, 19, 119, 1979. 16. Moses, C.A., and Naegeli , D.W., "Fuel Property

  12. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis.

    PubMed

    Peng, Dan; Bi, Yanlan; Ren, Xiaona; Yang, Guolong; Sun, Shangde; Wang, Xuede

    2015-12-01

    This study was performed to develop a hierarchical approach for detection and quantification of adulteration of sesame oil with vegetable oils using gas chromatography (GC). At first, a model was constructed to discriminate the difference between authentic sesame oils and adulterated sesame oils using support vector machine (SVM) algorithm. Then, another SVM-based model is developed to identify the type of adulterant in the mixed oil. At last, prediction models for sesame oil were built for each kind of oil using partial least square method. To validate this approach, 746 samples were prepared by mixing authentic sesame oils with five types of vegetable oil. The prediction results show that the detection limit for authentication is as low as 5% in mixing ratio and the root-mean-square errors for prediction range from 1.19% to 4.29%, meaning that this approach is a valuable tool to detect and quantify the adulteration of sesame oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Replacement of Dietary Saturated Fat by PUFA-Rich Pumpkin Seed Oil Attenuates Non-Alcoholic Fatty Liver Disease and Atherosclerosis Development, with Additional Health Effects of Virgin over Refined Oil

    PubMed Central

    Morrison, Martine C.; Mulder, Petra; Stavro, P. Mark; Suárez, Manuel; Arola-Arnal, Anna; van Duyvenvoorde, Wim; Kooistra, Teake; Wielinga, Peter Y.; Kleemann, Robert

    2015-01-01

    Background and Aims As dietary saturated fatty acids are associated with metabolic and cardiovascular disease, a potentially interesting strategy to reduce disease risk is modification of the quality of fat consumed. Vegetable oils represent an attractive target for intervention, as they largely determine the intake of dietary fats. Furthermore, besides potential health effects conferred by the type of fatty acids in a vegetable oil, other minor components (e.g. phytochemicals) may also have health benefits. Here, we investigated the potential long-term health effects of isocaloric substitution of dietary fat (i.e. partial replacement of saturated by unsaturated fats), as well as putative additional effects of phytochemicals present in unrefined (virgin) oil on development of non-alcoholic fatty liver disease (NAFLD) and associated atherosclerosis. For this, we used pumpkin seed oil, because it is high in unsaturated fatty acids and a rich source of phytochemicals. Methods ApoE*3Leiden mice were fed a Western-type diet (CON) containing cocoa butter (15% w/w) and cholesterol (1% w/w) for 20 weeks to induce risk factors and disease endpoints. In separate groups, cocoa butter was replaced by refined (REF) or virgin (VIR) pumpkin seed oil (comparable in fatty acid composition, but different in phytochemical content). Results Both oils improved dyslipidaemia, with decreased (V)LDL-cholesterol and triglyceride levels in comparison with CON, and additional cholesterol-lowering effects of VIR over REF. While REF did not affect plasma inflammatory markers, VIR reduced circulating serum amyloid A and soluble vascular adhesion molecule-1. NAFLD and atherosclerosis development was modestly reduced in REF, and VIR strongly decreased liver steatosis and inflammation as well as atherosclerotic lesion area and severity. Conclusions Overall, we show that an isocaloric switch from a diet rich in saturated fat to a diet rich in unsaturated fat can attenuate NAFLD and atherosclerosis

  14. Replacement of Dietary Saturated Fat by PUFA-Rich Pumpkin Seed Oil Attenuates Non-Alcoholic Fatty Liver Disease and Atherosclerosis Development, with Additional Health Effects of Virgin over Refined Oil.

    PubMed

    Morrison, Martine C; Mulder, Petra; Stavro, P Mark; Suárez, Manuel; Arola-Arnal, Anna; van Duyvenvoorde, Wim; Kooistra, Teake; Wielinga, Peter Y; Kleemann, Robert

    2015-01-01

    As dietary saturated fatty acids are associated with metabolic and cardiovascular disease, a potentially interesting strategy to reduce disease risk is modification of the quality of fat consumed. Vegetable oils represent an attractive target for intervention, as they largely determine the intake of dietary fats. Furthermore, besides potential health effects conferred by the type of fatty acids in a vegetable oil, other minor components (e.g. phytochemicals) may also have health benefits. Here, we investigated the potential long-term health effects of isocaloric substitution of dietary fat (i.e. partial replacement of saturated by unsaturated fats), as well as putative additional effects of phytochemicals present in unrefined (virgin) oil on development of non-alcoholic fatty liver disease (NAFLD) and associated atherosclerosis. For this, we used pumpkin seed oil, because it is high in unsaturated fatty acids and a rich source of phytochemicals. ApoE*3Leiden mice were fed a Western-type diet (CON) containing cocoa butter (15% w/w) and cholesterol (1% w/w) for 20 weeks to induce risk factors and disease endpoints. In separate groups, cocoa butter was replaced by refined (REF) or virgin (VIR) pumpkin seed oil (comparable in fatty acid composition, but different in phytochemical content). Both oils improved dyslipidaemia, with decreased (V)LDL-cholesterol and triglyceride levels in comparison with CON, and additional cholesterol-lowering effects of VIR over REF. While REF did not affect plasma inflammatory markers, VIR reduced circulating serum amyloid A and soluble vascular adhesion molecule-1. NAFLD and atherosclerosis development was modestly reduced in REF, and VIR strongly decreased liver steatosis and inflammation as well as atherosclerotic lesion area and severity. Overall, we show that an isocaloric switch from a diet rich in saturated fat to a diet rich in unsaturated fat can attenuate NAFLD and atherosclerosis development. Phytochemical-rich virgin pumpkin

  15. Base catalytic transesterification of vegetable oil.

    PubMed

    Mainali, Kalidas

    2012-01-01

    Sustainable economic and industrial growth requires safe, sustainable resources of energy. Biofuel is becoming increasingly important as an alternative fuel for the diesel engine. The use of non-edible vegetable oils for biofuel production is significant because of the increasing demand for edible oils as food. With the recent debate of food versus fuel, some non-edible oils like soapnut and Jatropha (Jatropha curcus. L) are being investigated as possible sources of biofuel. Recent research has focused on the application of heterogeneous catalysis. This review considers catalytic transesterification and the possibility of heterogeneous base catalysts. The process of transesterification, and the effect of parameters, mechanism and kinetics are reviewed. Although chromatography (GC and HPLC) are the analytical methods most often used for biofuel characterization, other techniques and some improvements to analytical methods are discussed.

  16. Cleaning oil refining drainage waters out of emulsified oil products with thermic treated cedar nut shell

    NASA Astrophysics Data System (ADS)

    Pyatanova, P. A.; Adeeva, L. N.

    2017-08-01

    It was elaborated the ability of the sorbent produced by thermic treatment of cedar nut shell to destruct model and real first kind (direct) emulsions in static and dynamic conditions. In static conditions optimal ratio sorbent-emulsion with the original concentration of oil products 800 mg/l was in the range of 2.0 g per 100 ml of emulsion which corresponds to the level of treatment 94.9%. The time of emulsion destruction was 40 minutes. This sorbent is highly active in dynamic processes of oil-contaminated water treatment, the level of treatment 96.0% is being achieved. Full dynamic sorptive capacity of the sorbent is 0.85 g/g. Sorbent based on the thermic treated cedar nut shell can be elaborated as sorptive filter element of local treatment facilities of oil refining and petrochemical processes. After the treatment with this sorbent of drainage waters of oil refinery in dynamic conditions the concentration of oil products became less than mpc on oil products for waste waters coming to biological treatment.

  17. Direct determination of 3-chloropropanol esters in edible vegetable oils using high resolution mass spectrometry (HRMS-Orbitrap).

    PubMed

    Graziani, Giulia; Gaspari, Anna; Chianese, Donato; Conte, Lanfranco; Ritieni, Alberto

    2017-11-01

    A series of refined edible oils derived from mixed seeds, peanuts, corn, sunflower and palm obtained from the local supermarket were analyzed for their content of 3-MCPD esters. A direct analytical method for the determination of 3-monochloropropane-1,2-diol esters (3-MCPD esters) was applied to investigate the major MCPD esters found in common edible oils; in particular seven types of monoesters and eleven types of diesters were detected. The limits of detection (LODs) for monoesters and diesters of 3-MCPD were in the range of 0.079-12.678 µg kg -1 and 0.033-18.610 µg kg -1 in edible oils, and the ranges of limits of quantitation (LOQs) were 0.979-38.035 µg kg -1 and 0.100-55 µg kg -1 , respectively. The recoveries of 3-MCPD esters from oil samples were in the range of 80-100%, with RSD ranging between 1.9 and 11.8%. The concentration levels of total 3-MCPD diesters in vegetable oil samples were in the range from 0.106 up to 3.444 μg g -1 whereas total monoesters ranged from 0.005 up to 1.606 μg g -1 .

  18. Reaction pathways for the deoxygenation of vegetable oils and related model compounds.

    PubMed

    Gosselink, Robert W; Hollak, Stefan A W; Chang, Shu-Wei; van Haveren, Jacco; de Jong, Krijn P; Bitter, Johannes H; van Es, Daan S

    2013-09-01

    Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis.

    PubMed

    de Oliveira, Dayse A S B; Minozzo, Marcelo G; Licodiedoff, Silvana; Waszczynskyj, Nina

    2016-09-15

    In this study, the effects of chemical refining and deodorization on fatty acid profiles and physicochemical and sensory characteristics of the tuna by-product oil obtained by enzymatic hydrolysis were evaluated. Enzymatic extraction was conducted for 120 min at 60 °C and pH 6.5 using Alcalase at an enzyme-substrate ratio of 1:200 w/w. The chemical refining of crude oil consisted of degumming, neutralization, washing, drying, bleaching, and deodorization; deodorization was conducted at different temperatures and processing times. Although chemical refining was successful, temperature and chemical reagents favored the removal of polyunsaturated fatty acids (PUFA) from the oil. Aroma attributes of fishy odor, frying odor, and rancid odor predominantly contributed to the sensory evaluation of the product. Deodorization conditions of 160 °C for 1h and 200 °C for 1h were recommended for the tuna by-product oil, which is rich in PUFA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  1. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  2. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    PubMed Central

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (p<0.05) differences in the moisture, protein, and fat content among the emulsion-type pork sausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (p<0.05), increased water-holding capacity in emulsion-type pork sausages. Also, cholesterol content in T6 was significantly lower than T2 (p<0.05). In the texture profile analysis, hardness and chewiness of emulsion-type pork sausages were significantly (p<0.05) decreased by vegetable oil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers. PMID:26761810

  3. 33 CFR 154.1240 - Specific requirements for animal fats and vegetable oils facilities that could reasonably be...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fats and vegetable oils facilities that could reasonably be expected to cause substantial harm to the... SECURITY (CONTINUED) POLLUTION FACILITIES TRANSFERRING OIL OR HAZARDOUS MATERIAL IN BULK Response Plans for Animal Fats and Vegetable Oils Facilities § 154.1240 Specific requirements for animal fats and vegetable...

  4. Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining.

    PubMed

    Li, Chang; Li, Linyan; Jia, Hanbing; Wang, Yuting; Shen, Mingyue; Nie, Shaoping; Xie, Mingyong

    2016-05-15

    In the present study, lab-scale physical refining processes were investigated for their effects on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters. The potential precursors, partial acylglycerols and chlorines were determined before each refining step. 3-MCPD esters were not detected in degummed and bleached oil when the crude oils were extracted by solvent. While in the hot squeezed crude oils, 3-MCPD esters were detected with low amounts. 3-MCPD esters were generated with maximum values in 1-1.5h at a certain deodorizing temperature (220-260°C). Chlorine seemed to be more effective precursor than partial acylglycerol. By washing bleached oil before deodorization with ethanol solution, the precursors were removed partially and the content of 3-MCPD esters decreased to some extent accordingly. Diacetin was found to reduce 3-MCPD esters effectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. [Consumption of nuts and vegetal oil in people with type 1 diabetes mellitus].

    PubMed

    Ferrer-García, Juan Carlos; Granell Vidal, Lina; Muñoz Izquierdo, Amparo; Sánchez Juan, Carlos

    2015-06-01

    Recent studies have demonstrated the cardiovascular benefits of the Mediterranean Diet, enriched with olive oil and nuts. People with diabetes, who have an increased risk of cardiovascular complications, could benefit greatly from following this type of eating pattern. Analysis of vegetable fats intake from nuts and olive oil in patients with 1 Diabetes Mellitus type (DM1). Transverse descriptive study comparing 60 people with type 1 Diabetes Mellitus (DM1) with 60 healthy individuals. We collect the frequency of consumption of vegetable oils and nuts and calculate the contribution of these foods in mono and polyunsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid). For data collection we designed a food frequency questionnaire specifically. We also collect anthropometric variables, cardiovascular risk factors and diabetes-related variables. Vegetable fat intake from vegetable oils (3.02 ± 1.14 vs 3.07 ± 1.27 portions/day, P = 0.822) and nuts (1.35 ± 2.24 vs 1.60 ± 2.44 portions/week, P = 0.560), was similar in both groups. The DM1 group consumed fewer portions of olive oil daily than the control group (2.55 ± 1.17 vs 3.02 ± 1.34 portions/day, P = 0.046). We detected a significantly lower intake of α-linolenic acid in the control group (1.13 ± 2.06 versus 2.64 ± 4.37 g/day, p = 0.018) while there were not differences in the rest of fatty acids (oleic acid 28.30 ± 18.13 vs 29.53 ± 16.90 g/day, P = 0.703; linoleic 13.70 ± 16.80 vs 15.45 ± 19.90 g/day, P = 0.605). In DM1, it not demonstrated an influence of the intake of vegetable fats and oils from nuts in the anthropometric, metabolic and diabetes-specific variables. In people with DM1, total intake of vegetable oils and nuts do not differ from the general population. However, the consumption of olive oil and the contribution of α-linolenic fatty acid derived from such fats are slightly lower than the general population. Although intake of vegetable oils and nuts in people with DM1

  6. Development of karanja oil based offset printing ink in comparison with linseed oil.

    PubMed

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  7. Ultrasound assisted PTC catalyzed saponification of vegetable oils using aqueous alkali.

    PubMed

    Bhatkhande, B S; Samant, S D

    1998-03-01

    A few vegetable oils were saponified using aqueous KOH and different PTCs at room temperature in the presence of ultrasound. The extent of saponification was studied using the saponification value as a reference. Optimizations of various parameters such as time, selection of PTC, quantity of PTC, quantity of KOH and quantity of water were carried out using soyabean oil as a sample oil under sonication with stirring. To study the effect of ultrasound, the saponification was also carried out at 35 +/- 2 degrees C under different conditions, namely stirring, sonication, stirring and sonication, and heating at 100 degrees C. It was found that the heterogeneous liquid-liquid phase saponification of different vegetable oils using aq. KOH/CTAB was remarkably accelerated at 35 +/- 2 degrees C in the presence of ultrasound along with stirring.

  8. 21 CFR 180.30 - Brominated vegetable oil.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Brominated vegetable oil. 180.30 Section 180.30 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED IN FOOD OR IN CONTACT WITH FOOD ON AN...

  9. Self-consistent photothermal techniques: Application for measuring thermal diffusivity in vegetable oils

    NASA Astrophysics Data System (ADS)

    Balderas-López, J. A.; Mandelis, Andreas

    2003-01-01

    The thermal wave resonator cavity (TWRC) was used to measure the thermal properties of vegetable oils. The thermal diffusivity of six commercial vegetable oils (olive, corn, soybean, canola, peanut, and sunflower) was measured by means of this device. A linear relation between both the amplitude and phase as functions of the cavity length for the TWRC was observed and used for the measurements. Three significant figure precisions were obtained. A clear distinction between extra virgin olive oil and other oils in terms of thermal diffusivity was shown. The high measurement precision of the TWRC highlights the potential of this relatively new technique for assessing the quality of this kind of fluids in terms of their thermophysical properties.

  10. A Comparative Study on Formation of Polar Components, Fatty Acids and Sterols during Frying of Refined Olive Pomace Oil Pure and Its Blend Coconut Oil.

    PubMed

    Ben Hammouda, Ibtissem; Triki, Mehdi; Matthäus, Bertrand; Bouaziz, Mohamed

    2018-04-04

    The frying performance of pure refined olive-pomace oil (ROPO) and blended with refined coconut oil (RCO) (80:20) was compared during a frying operation of French fries at 180 °C. Blending polyunsaturated oils with highly saturated or monounsaturated oils has been studied extensively, however in literature there is no study has been reported so far on blending ROPO (rich in monounsaturated fatty acids) with RCO (rich in saturated fatty acids) to formulate new frying oils. At the end of the frying process, the blend of ROPO/RCO exhibited a higher chemical stability than the pure ROPO based on total polar compounds (TPC), and polymers. The rate of TPC formation was achieved 23.3% and 30.6% for the blend and the pure oil, respectively. Trans and free fatty acids content, as well as anisidine value were also observed to be the highest in the pure ROPO. This study evaluated the frying performance in the search for appropriate frying oils to deliver healthy fried products with optimized nutritional qualities.

  11. Determination of vegetable oils and fats adulterants in diesel oil by high performance liquid chromatography and multivariate methods.

    PubMed

    Brandão, Luiz Filipe Paiva; Braga, Jez Willian Batista; Suarez, Paulo Anselmo Ziani

    2012-02-17

    The current legislation requires the mandatory addition of biodiesel to all Brazilian road diesel oil A (pure diesel) marketed in the country and bans the addition of vegetable oils for this type of diesel. However, cases of irregular addition of vegetable oils directly to the diesel oil may occur, mainly due to the lower cost of these raw materials compared to the final product, biodiesel. In Brazil, the situation is even more critical once the country is one of the largest producers of oleaginous products in the world, especially soybean, and also it has an extensive road network dependent on diesel. Therefore, alternatives to control the quality of diesel have become increasingly necessary. This study proposes an analytical methodology for quality control of diesel with intention to identify and determine adulterations of oils and even fats of vegetable origin. This methodology is based on detection, identification and quantification of triacylglycerols on diesel (main constituents of vegetable oils and fats) by high performance liquid chromatography in reversed phase with UV detection at 205nm associated with multivariate methods. Six different types of oils and fats were studied (soybean, frying oil, corn, cotton, palm oil and babassu) and two methods were developed for data analysis. The first one, based on principal component analysis (PCA), nearest neighbor classification (KNN) and univariate regression, was used for samples adulterated with a single type of oil or fat. In the second method, partial least square regression (PLS) was used for the cases where the adulterants were mixtures of up to three types of oils or fats. In the first method, the techniques of PCA and KNN were correctly classified as 17 out of 18 validation samples on the type of oil or fat present. The concentrations estimated for adulterants showed good agreement with the reference values, with mean errors of prediction (RMSEP) ranging between 0.10 and 0.22% (v/v). The PLS method was

  12. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.

  13. Analysis of the Triglycerides of Some Vegetable Oils.

    ERIC Educational Resources Information Center

    Farines, Marie; And Others

    1988-01-01

    Explains that triglycerides consist of a mixture of different compounds, depending on the total number of fatty acid constituents. Details the method and instrumentation necessary for students to analyze a vegetable oil for its triglyceride content. Describes sample results. (CW)

  14. Improved biobased lubricants from chemically modified vegetable oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils possess a number of desirable properties for lubricant application such as excellent boundary properties, high viscosity index, low volatility, low traction coefficient, renewability, and biodegradability. Unfortunately, they also have a number of weaknesses that make them less desira...

  15. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    PubMed

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  16. Impacts, recovery rates, and treatment options for spilled oil in marshes.

    PubMed

    Michel, Jacqueline; Rutherford, Nicolle

    2014-05-15

    In a review of the literature on impacts of spilled oil on marshes, 32 oil spills and field experiments were identified with sufficient data to generate recovery curves and identify influencing factors controlling the rate of recovery. For many spills, recovery occurred within 1-2 growing seasons, even in the absence of any treatment. Recovery was longest for spills with the following conditions: Cold climate; sheltered settings; thick oil on the marsh surface; light refined products with heavy loading; oils that formed persistent thick residues; and intensive treatment. Recovery was shortest for spills with the following conditions: Warm climate; light to heavy oiling of the vegetation only; medium crude oils; and less-intensive treatment. Recommendations are made for treatment based on the following oiling conditions: Free-floating oil on the water in the marsh; thicker oil (>0.5 cm) on marsh surface; thinner oil (<0.5 cm) on marsh surface; heavy oil loading on vegetation; and light to moderate oil loading on vegetation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    USDA-ARS?s Scientific Manuscript database

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  18. New antioxidants and antioxidant systems for improvement of the stability of vegetable oils and fish oils

    USDA-ARS?s Scientific Manuscript database

    Most vegetable oils and fish oils contain polyunsaturated fatty acids ranging from 18 carbons with two to three double bonds, to 22 or 24 carbons, and up to six double bonds. Nutritional research over the years has indicated that individual fatty acids from the diet play a complex role in nutrition ...

  19. Methods of refining natural oils, and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  20. Alkyl amine and vegetable oil mixture-a viable candidate for CO2 capture and utilization.

    PubMed

    Uma Maheswari, A; Palanivelu, K

    2017-02-01

    In this present work, the absorption of CO 2 in alkyl amines and vegetable oil mixture has been evaluated. The results showed that the absorption is higher in alkyl amines and vegetable oil mixture compared with the aqueous alkyl amines. In addition to that, by employing the greener and non-toxic vegetable oil media, the CO 2 gas has been captured as well as converted into value-added products, such as carbamates of ethylenediamine, diethylenetriamine, and triethylenetetramine. The carbamates have been isolated and characterized by Fourier transform infrared and 1 H and 13 C nuclear magnetic resonance spectroscopic techniques. The formation of these products in precipitate form has not been observed in the case of aqueous medium. Among the various alkyl amine and vegetable oil combinations, triethylenetetramine in coconut oil medium showed the maximum CO 2 capture capacity of 72%. The coconut oil used for the process has been recovered, recycled, and reused for 3 cycles. Thus, this novel scheme seems to be a better alternative to conquer the drawback of aqueous amine-based CO 2 capture as well as for the capture and utilization of the CO 2 gas to gain the value-added products.

  1. Novel biobased photo-crosslinked polymer networks prepared from vegetable oil and 2,5-furan diacrylate

    USDA-ARS?s Scientific Manuscript database

    Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...

  2. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh.

    PubMed

    Zengel, Scott; Weaver, Jennifer; Wilder, Susan L; Dauzat, Jeff; Sanfilippo, Chris; Miles, Martin S; Jellison, Kyle; Doelling, Paige; Davis, Adam; Fortier, Barret K; Harris, James; Panaccione, James; Wall, Steven; Nixon, Zachary

    2018-01-15

    In-situ burning of oiled marshes is a cleanup method that can be more effective and less damaging than intrusive manual and mechanical methods. In-situ burning of oil spills has been examined for several coastal marsh types; however, few published data are available for Phragmites australis marshes. Following an estimated 4200gallon crude oil spill and in-situ burn in a Phragmites tidal freshwater marsh at Delta National Wildlife Refuge (Mississippi River Delta, Louisiana), we examined vegetation impacts and recovery across 3years. Oil concentrations in marsh soils were initially elevated in the oiled-and-burned sites, but were below background levels within three months. Oiling and burning drastically affected the marsh vegetation; the formerly dominant Phragmites, a non-native variety in our study sites, had not fully recovered by the end of our study. However, overall vegetation recovery was rapid and local habitat quality in terms of native plants, particularly Sagittaria species, and wildlife value was enhanced by burning. In-situ burning appears to be a viable response option to consider for future spills in marshes with similar plant species composition, hydrogeomorphic settings, and oiling conditions. In addition, likely Phragmites stress from high water levels and/or non-native scale insect damage was also observed during our study and has recently been reported as causing widespread declines or loss of Phragmites stands in the Delta region. It remains an open question if these stressors could lead to a shift to more native vegetation, similar to what we observed following the oil spill and burn. Increased dominance by native plants may be desirable as local patches, but widespread loss of Phragmites, even if replaced by native species, could further acerbate coastal erosion and wetland loss, a major concern in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Polysulfide and bio-based EP additive performance in vegetable vs. paraffinic base oils

    USDA-ARS?s Scientific Manuscript database

    Twist compression test (TCT) and 4-ball extreme pressure (EP) methods were used to investigate commercial polysulfide (PS) and bio-based polyester (PE) EP additives in paraffinic (150N) and refined soybean (SOY) base oils of similar viscosity. Binary blends of EP additive and base oil were investiga...

  4. Development of combinations of chemically modified vegetable oils as pork backfat substitutes in sausages formulation.

    PubMed

    Ospina-E, Juan Camilo; Cruz-S, Adriana; Pérez-Alvarez, José Angel; Fernández-López, Juana

    2010-03-01

    Today's consumers look for foods which provide nutrition and pleasure, while safeguarding their health, the result of which is that they increasingly avoid foods containing cholesterol and saturated and trans fatty acids. Chemically modified vegetable oils can help tailor meat products to meet this growing need and at the same time fulfil the technological needs of the meat processing industry. In this study, 16 backfat samples were characterised for their solid fat content (SFC) and melting point and these characteristics were used to design a mixture of chemically modified vegetable oils for use as a pork fat substitute for elaborating sausages. The mixtures were prepared with different vegetable oils bearing in mind with stearic acid content due to its close correlation with the SFC. The backfat was characterised as a function of its SFC and some modified vegetable oil mixtures were proposed, which led to a 10-20% diminution in saturated fatty acids and with a melting point similar to those observed in the backfat. The fatty acid profile pointed to a polyunsaturated/saturated fatty acids ratio higher than 0.4, and an n-6/n-3 fatty acid ratio of less than 4 in both modified vegetable oil mixtures proposed. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Preparation of margarines from organogels of sunflower wax and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    It was previously reported that sunflower wax (SW) had high potential as an organogelator for soybean oil-based margarine and spread products. In this study twelve other vegetable oils were evaluated in a margarine formulation to test feasibility of utilization of SW as an alternative to solid fats ...

  6. Economics of on-farm production and use of vegetable oils for fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 permore » liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.« less

  7. Methods of refining natural oils and methods of producing fuel compositions

    DOEpatents

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  8. Glycidyl esters in refined palm (Elaeis guineensis) oil and related fractions. Part II: practical recommendations for effective mitigation.

    PubMed

    Craft, Brian D; Nagy, Kornél; Seefelder, Walburga; Dubois, Mathieu; Destaillats, Frédéric

    2012-05-01

    In a previous work, it was shown that at high temperatures (up to 280°C) glycidyl esters (GE) are formed from diacylglycerols (DAG) via elimination of free fatty acid (FFA). In the present study, the impact of DAG content and temperature on the formation of GE using a model vacuum system mimicking industrial edible oil deodorization is investigated. These deodorization experiments confirmed that the formation of GE from DAG is extensive at temperatures above 230-240°C, and therefore, this value should be considered as an upper limit for refining operations. Furthermore, experimental data suggest that the formation of GE accelerates in particular when the DAG levels in refined oils exceed 3-4% of total lipids. Analysis of the lipid composition of crude palm oil (CPO) samples allowed the estimation that this critical DAG content corresponds to about 1.9-2.5% of FFA, which is the conventional quality marker of CPO. Moreover, high levels (>100ppm) of GE were also found in palm fatty acid distillate samples, which may indicate that the level of GE in fully refined palm oils also depends on the elimination rate of GE into the fatty acid distillate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Rapid determination of saponification value and polymer content of vegetable and fish oils by terahertz spectroscopy.

    PubMed

    Jiang, Feng Ling; Ikeda, Ikuo; Ogawa, Yuichi; Endo, Yasushi

    2012-01-01

    A rapid method for determining the saponification value (SV) and polymer content of vegetable and fish oils using the terahertz (THz) spectroscopy was developed. When the THz absorption spectra for vegetable and fish oils were measured in the range of 20 to 400 cm⁻¹, two peaks were seen at 77 and 328 cm⁻¹. The level of absorbance at 77 cm⁻¹ correlated well with the SV. When the THz absorption spectra of thermally treated high-oleic safflower oils were measured, the absorbance increased with heating time. The polymer content in thermally treated oil correlated with the absorbance at 77 cm⁻¹. These results demonstrate that the THz spectrometry is a suitable non-destructive technique for the rapid determination of the SV and polymer content of vegetable and fish oils.

  10. Single-cylinder diesel engine study of four vegetable oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobus, M.J.; Geyer, S.M.; Lestz, S.S.

    A single-cylinder, 0.36l, D.I. Diesel engine was operated on Diesel fuel, sunflowerseed oil, cottonseed oil, soybean oil, and peanut oil. The purpose of this study was to provide a detailed comparison of performance and emissions data and to characterize the biological activity of the particulate soluble organic fraction for each fuel using the Ames Salmonella typhimurium test. In addition, exhaust gas aldehyde samples were collected using the DNPH method. These samples were analyzed gravimetrically and separated into components from formaldehyde to heptaldehyde with a gas chromatograph. Results comparing the vegetable oils to Diesel fuel generally show slight improvements in thermalmore » efficiency and indicated specific energy consumption; equal or higher gas-phase emissions; lower indicated specific revertant emissions; and significantly higher aldehyde emissions, including an increased percentage of formaldehyde.« less

  11. Soil TPH Concentration Estimation Using Vegetation Indices in an Oil Polluted Area of Eastern China

    PubMed Central

    Zhu, Linhai; Zhao, Xuechun; Lai, Liming; Wang, Jianjian; Jiang, Lianhe; Ding, Jinzhi; Liu, Nanxi; Yu, Yunjiang; Li, Junsheng; Xiao, Nengwen; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    Assessing oil pollution using traditional field-based methods over large areas is difficult and expensive. Remote sensing technologies with good spatial and temporal coverage might provide an alternative for monitoring oil pollution by recording the spectral signals of plants growing in polluted soils. Total petroleum hydrocarbon concentrations of soils and the hyperspectral canopy reflectance were measured in wetlands dominated by reeds (Phragmites australis) around oil wells that have been producing oil for approximately 10 years in the Yellow River Delta, eastern China to evaluate the potential of vegetation indices and red edge parameters to estimate soil oil pollution. The detrimental effect of oil pollution on reed communities was confirmed by the evidence that the aboveground biomass decreased from 1076.5 g m−2 to 5.3 g m−2 with increasing total petroleum hydrocarbon concentrations ranging from 9.45 mg kg−1 to 652 mg kg−1. The modified chlorophyll absorption ratio index (MCARI) best estimated soil TPH concentration among 20 vegetation indices. The linear model involving MCARI had the highest coefficient of determination (R 2 = 0.73) and accuracy of prediction (RMSE = 104.2 mg kg−1). For other vegetation indices and red edge parameters, the R2 and RMSE values ranged from 0.64 to 0.71 and from 120.2 mg kg−1 to 106.8 mg kg−1 respectively. The traditional broadband normalized difference vegetation index (NDVI), one of the broadband multispectral vegetation indices (BMVIs), produced a prediction (R 2 = 0.70 and RMSE = 110.1 mg kg−1) similar to that of MCARI. These results corroborated the potential of remote sensing for assessing soil oil pollution in large areas. Traditional BMVIs are still of great value in monitoring soil oil pollution when hyperspectral data are unavailable. PMID:23342066

  12. Replacement of dietary fish oils by alpha-linolenic acid-rich oils lowers omega 3 content in tilapia flesh.

    PubMed

    Karapanagiotidis, Ioannis T; Bell, Michael V; Little, David C; Yakupitiyage, Amararatne

    2007-06-01

    A 20-week feeding trial was conducted to determine whether increasing linolenic acid (18:3n-3) in vegetable oil (VO) based diets would lead to increased tissue deposition of 22:6n-3 in Nile tilapia (Oreochromis niloticus). Five isonitrogenous and isoenergetic diets were supplemented with 3% of either linseed oil (LO), a mixture of linseed oil with refined palm olein oil (PO) (LO-PO 2:1) and a mixture of refined palm olein oil with linseed oil (PO-LO 3:2) or with fish oil (FO) or corn oil (CO) as controls. The PO-LO, LO-PO and LO diets supplied a similar amount of 18:2n-6 (0.5% of diet by dry weight) and 0.5, 0.7 and 1.1% of 18:3n-3, respectively. Increased dietary 18:3n-3 caused commensurate increases in longer-chain n-3 PUFA and decreases in longer-chain n-6 PUFA in the muscle lipids of tilapia. However, the biosynthetic activities of fish fed the LO-based diets were not sufficient to raise the tissue concentrations of 20:5n-3, 22:5n-3 and 22:6n-3 to those of fish fed FO. The study suggests that tilapia (O. niloticus) has a limited capacity to synthesise 20:5n-3 and 22:6n-3 from dietary 18:3n-3. The replacement of FO in the diet of farmed tilapia with vegetable oils could therefore lower tissue concentrations of 20:5n-3 and 22:6n-3, and consequently produce an aquaculture product of lower lipid nutritional value for the consumer.

  13. Effects of Oil-Contaminated Sediments on Submerged Vegetation: An Experimental Assessment of Ruppia maritima.

    PubMed

    Martin, Charles W; Hollis, Lauris O; Turner, R Eugene

    2015-01-01

    Oil spills threaten the productivity of ecosystems through the degradation of coastal flora and the ecosystem services these plants provide. While lab and field investigations have quantified the response of numerous species of emergent vegetation to oil, the effects on submerged vegetation remain uncertain. Here, we discuss the implications of oil exposure for Ruppia maritima, one of the most common species of submerged vegetation found in the region affected by the recent Deepwater Horizon oil spill. We grew R. maritima in a range of manipulated sediment oil concentrations: 0, 0.26, 0.53, and 1.05 mL oil /L tank volume, and tracked changes in growth (wet weight and shoot density/length), reproductive activity (inflorescence and seed production), root characteristics (mass, length, diameter, and area), and uprooting force of plants. While no statistical differences were detected in growth, plants exhibited significant changes to reproductive output, root morphology, and uprooting force. We found significant reductions in inflorescences and fruiting bodies at higher oil concentrations. In addition, the roots growing in the high oil were shorter and wider. Plants in medium and high oil required less force to uproot. A second experiment was performed to separate the effects of root morphology and oiled sediment properties and indicated that there were also changes to sediment cohesion that contributed to a reduction in uprooting forces in medium and high oil. Given the importance of sexual reproduction for these plants, oil contamination may have substantial population-level effects. Moreover, areas containing buried oil may be more susceptible to high energy storm events due to the reduction in uprooting force of foundation species such as R. maritima.

  14. Effects of Oil-Contaminated Sediments on Submerged Vegetation: An Experimental Assessment of Ruppia maritima

    PubMed Central

    Martin, Charles W.; Hollis, Lauris O.; Turner, R. Eugene

    2015-01-01

    Oil spills threaten the productivity of ecosystems through the degradation of coastal flora and the ecosystem services these plants provide. While lab and field investigations have quantified the response of numerous species of emergent vegetation to oil, the effects on submerged vegetation remain uncertain. Here, we discuss the implications of oil exposure for Ruppia maritima, one of the most common species of submerged vegetation found in the region affected by the recent Deepwater Horizon oil spill. We grew R. maritima in a range of manipulated sediment oil concentrations: 0, 0.26, 0.53, and 1.05 mL oil /L tank volume, and tracked changes in growth (wet weight and shoot density/length), reproductive activity (inflorescence and seed production), root characteristics (mass, length, diameter, and area), and uprooting force of plants. While no statistical differences were detected in growth, plants exhibited significant changes to reproductive output, root morphology, and uprooting force. We found significant reductions in inflorescences and fruiting bodies at higher oil concentrations. In addition, the roots growing in the high oil were shorter and wider. Plants in medium and high oil required less force to uproot. A second experiment was performed to separate the effects of root morphology and oiled sediment properties and indicated that there were also changes to sediment cohesion that contributed to a reduction in uprooting forces in medium and high oil. Given the importance of sexual reproduction for these plants, oil contamination may have substantial population-level effects. Moreover, areas containing buried oil may be more susceptible to high energy storm events due to the reduction in uprooting force of foundation species such as R. maritima. PMID:26430971

  15. Influence of vegetable oils fatty acid composition on reaction temperature and glycerides conversion to biodiesel during transesterification.

    PubMed

    Pinzi, S; Gandía, L M; Arzamendi, G; Ruiz, J J; Dorado, M P

    2011-01-01

    Presence of unreacted glycerides in biodiesel may reduce drastically its quality. This is why conversion of raw material in biodiesel through transesterification needs to readjust reaction parameter values to complete. In the present work, monitoring of glycerides transformation in biodiesel during the transesterification of vegetable oils was carried out. To check the influence of the chemical composition on glycerides conversion, selected vegetable oils covered a wide range of fatty acid composition. Reactions were carried out under alkali-transesterification in the presence of methanol. In addition, a multiple regression model was proposed. Results showed that kinetics depends on chemical and physical properties of the oils. It was found that the optimal reaction temperature depends on both length and unsaturation degree of vegetable oils fatty acid chains. Vegetable oils with higher degree of unsaturation exhibit faster monoglycerides conversion to biodiesel. It can be concluded that fatty acid composition influences reaction parameters and glycerides conversion, hence biodiesel yield and economic viability. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Biodegradation and toxicity of vegetable oils in contaminated aquatic environments: Effect of antioxidants and oil composition.

    PubMed

    Salam, Darine A; Suidan, Makram T; Venosa, Albert D

    2016-03-15

    Antioxidants may affect the oxidative rate of vegetable oils determining their fate and impact in contaminated aquatic media. In previous studies, we demonstrated the effectiveness of butylated hydroxytoluene (BHT), one of the most used antioxidants in edible oils, in enhancing the biodegradation of glyceryl trilinoleate, a pure triacylglycerol of cis,cis-9,12-octadecadienoic acid (C18:2 delta), through retarding its oxidative polymerization relatively to the oil with no added antioxidant. In this study, the effect of BHT on the biodegradation and toxicity of purified canola oil, a mixed-acid triacylglycerol with high C18:1 content, was investigated in respirometric microcosms and by use of the Microtox® assay. Investigations were carried out in the absence and presence (200 mg kg(-1)) of the antioxidant, and at an oil loading of 0.31 L m(-2) (333 gal acre(-1)). Substantial oil mineralization was achieved after 16 weeks of incubation (>77%) and was not significantly different (p>0.05) between the two BHT treatments, demonstrating an important role of the oil fatty acid composition in determining the potency of antioxidants and, consequently, the fate of spilled vegetable oils. Furthermore, for both treatments, toxicity was measured at early stages of the experiments and disappeared at a later stage of incubation. The observed transient toxicity was associated with the combined effect of toxic biodegradation intermediates and autoxidation products. These results were supported by the gradual disappearance of BHT in the microcosms initially supplemented with the antioxidant, reaching negligible amounts after only 2 weeks of incubation. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Preventive effect of cinnamon essential oil on lipid oxidation of vegetable oil

    PubMed Central

    Keshvari, Mahtab; Asgary, Sedigheh; Jafarian-dehkordi, Abbas; Najafi, Somayeh; Ghoreyshi-Yazdi, Seyed Mojtaba

    2013-01-01

    BACKGROUND Lipid oxidation is the main deterioration process that occurs in vegetable oils. This process was effectively prevented by natural antioxidants. Cinnamomum zeylanicum (Cinnamon) is rich with antioxidants. The present study was conducted to evaluate the effect of cinnamon on malondialdehyde (MDA) rate production in two high consumption oils in Iranian market. METHODS Chemical composition of cinnamon essential oil was analyzed by gas chromatography-mass spectroscopy (GC-MS). 200 µl each oil, 50 µl tween 20, and 2 ml of 40 Mm AAPH solutions were mixed and the prepared solution was divided into four glass vials. Respectively, 50 µl of 500, 1000 and 2000 ppm of cinnamon essential oil were added to three glass vials separately and one of the glass vials was used as the control. All of the glass vials were incubated at 37° C water bath. Rate of MDA production was measured by thiobarbituric acid (TBA) test at the baseline and after the 0.5, 1, 2, 3 and 5 hours. RESULTS Compounds of cinnamon essential oil by GC-MS analysis such as cinnamaldehyde (96.8%), alpha-capaene (0.2%), alpha-murolene (0.11%), para-methoxycinnamaldehyde (0.6%) and delta-cadinen (0.4%) were found to be the major compounds. For both oils, maximum rate of MDA production was achieved in 5th hours of heating. Every three concentrations of cinnamon essential oil significantly decreased MDA production (P < 0.05) in comparison with the control. CONCLUSION Essential oil of cinnamon considerably inhibited MDA production in studied oils and can be used with fresh and heated oils for reduction of lipid peroxidation and adverse free radicals effects on body. PMID:24302936

  18. Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids

    USDA-ARS?s Scientific Manuscript database

    Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...

  19. Honey, bee pollen and vegetable oil unsaponifiables in wound healing.

    PubMed

    Ragno, Alessandro; Cavallaro, Emanuela; Marsili, Daniele; Apa, Michele; D'Erasmo, Laura; Martin, Luis Severino

    2016-08-01

    We would like to remark on the mechanisms and therapeutic properties of honey, bee pollen and unsaponifiable fractions of vegetable oils in wound healing. Copyright © 2016 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  20. Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress

    PubMed Central

    Stevan, Sergio Luiz; Paiter, Leandro; Ricardo Galvão, José; Vieira Roque, Daniely; Sidinei Chaves, Eduardo

    2015-01-01

    Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index). PMID:26501293

  1. Sensor and methodology for dielectric analysis of vegetal oils submitted to thermal stress.

    PubMed

    Stevan, Sergio Luiz; Paiter, Leandro; Galvão, José Ricardo; Roque, Daniely Vieira; Chaves, Eduardo Sidinei

    2015-10-16

    Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index).

  2. Kolkhoung (Pistacia khinjuk) Hull Oil and Kernel Oil as Antioxidative Vegetable Oils with High Oxidative Stability 
and Nutritional Value.

    PubMed

    Asnaashari, Maryam; Hashemi, Seyed Mohammad Bagher; Mehr, Hamed Mahdavian; Yousefabad, Seyed Hossein Asadi

    2015-03-01

    In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

  3. [Determination of gossypol in edible vegetable oil with high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Zhang, Wenhua; Huang, Chaoqun; Xie, Wen; Shen, Li

    2014-06-01

    A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed for the determination of gossypol in edible vegetable oil. The sample was extracted with ethyl alcohol by vortex-excited oscillation. The extract was cleaned up by 0.22 microm filter membrane and centrifuged for 5 min at 4 000 r/min after standing in a fridge at 4 degrees C for 30 min. The compound was separated on a C18 column (100 mm x 2.1 mm, 3.5 microm) with acetonitrile and 1% (v/v) formic acid aqueous solution as mobile phase. The detection of gossypol was carried out by LC-MS/MS with positive electrospray ionization under multiple reaction monitoring (MRM) mode using external standard method. The limits of quantification (S/N > 10) of gossypol in edible vegetable oil was 1 mg/kg. The recoveries were from 87.4% to 100% at the spiked levels of 1, 2, 200 mg/kg of gossypol in edible vegetable oil with the relative standard deviations (RSDs) between 3.9% and 12.2%. The method, with high sensitivity, good precision and high recovery, was suitable for the confirmation and quantification of gossypol residue in edible vegetable oil.

  4. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    PubMed

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO 2 -based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0 # diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hazardous Waste Cleanup: Commonwealth Oil and Refining Company, Incorporated in Peñuellas, Puerto Rico

    EPA Pesticide Factsheets

    The Commonwealth Oil and Refining Company, Inc. (CORCO) facility is located on the south coast of Puerto Rico, on Route 127 in the Municipio (town) de Peñuelas, approximately 7 miles west of the city of Ponce. The facility was formerly a large petroleum

  6. Replacement of dietary fish oil with vegetable oils improves the growth and flesh quality of large yellow croaker ( Larmichthys crocea)

    NASA Astrophysics Data System (ADS)

    Duan, Qingyuan; Mai, Kangsen; Shentu, Jikang; Ai, Qinghui; Zhong, Huiying; Jiang, Yujian; Zhang, Lu; Zhang, Chunxiao; Guo, Sitong

    2014-06-01

    We investigated the effect of the replacement of dietary fish oil with vegetable oils on the growth and flesh quality of large yellow croaker ( Larmichthys crocea). The basal diet (FO) was formulated to contain 66.5% fish meal and 6.4% menhaden fish oil; whereas the other 3 experimental diets were formulated by replacing the fish oil with 50% soybean oil (SO50), 100% soybean oil (SO100) and 100% palm oil (PO100), respectively. The 4 diets were randomly assigned to 4 floating sea cages (3.0 m × 3.0 m × 3.0 m), and each was stocked with 250 fish individuals with an initial average weight of 245.29 g ± 7.45 g. The fish were fed to apparent satiation twice a day at 5:00 and 17:00, respectively, for 12 weeks. Experimental analysis showed that the specific growth rate of fish fed SO50 or PO100 were significantly higher than that of fish fed FO or SO100 ( P<0.05), and crude lipid contents of ventral muscle and viscera were significantly lower in fish fed FO than in those fed the other 3 diets ( P<0.05). No significant differences in condition factor, viscerosomatic index, hepatosomatic index, gutted yield and colorimetric values of fish among the dietary treatments were observed ( P>0.05). Compared to FO diet, SO50, SO100 and PO100 diets led to substantial decreases in the liquid loss and water loss from fresh fillets (1 d, 4°C) ( P<0.05). Similarly, thiobarbituric acid reactive substance (TBARS) values of fillets under different storage conditions (1 d, 4°C; 7 d, 4°C; 4 weeks, -20°C; 8 weeks, -20°C) decreased significantly after partial or complete replacement of fish oil with vegetable oils. These findings indicated that the growth performance and selected flesh quality properties (liquid holding capacity and TBARS value) of large yellow croaker were substantially improved by replacing dietary fish oil with vegetable oils.

  7. Vegetable Oil-Loaded Nanocapsules: Innovative Alternative for Incorporating Drugs for Parenteral Administration.

    PubMed

    Venturinil, C G; Bruinsmann, A; Oliveira, C P; Contri, R V; Pohlmann, A R; Guterres, S S

    2016-02-01

    An innovative nanocapsule formulation for parenteral administration using selected vegetable oils (mango, jojoba, pequi, oat, annatto, calendula, and chamomile) was developed that has the potential to encapsulate various drugs. The vegetable oil-loaded nanocapsules were prepared by interfacial deposition and compared with capric/caprylic triglyceride-loaded lipid core nanocapsules. The major objective was to investigate the effect of vegetable oils on particle size distribution and physical stability and to determine the hemolytic potential of the nanocapsules, considering their applicability for intravenous administration. Taking into account the importance of accurately determining particle size for the selected route of administration, different size characterization techniques were employed, such as Laser Diffraction, Dynamic Light Scattering, Multiple Light Scattering, Nanoparticle Tracking Analysis, and Transmission Electronic Microscopy. Laser diffraction studies indicated that the mean particle size of all nanocapsules was below 300 nm. For smaller particles, the laser diffraction and multiple light scattering data were in agreement (D[3,2]-130 nm). Dynamic light scattering and nanoparticle tracking analysis, two powerful techniques that complement each other, exhibited size values between 180 and 259 nm for all nanoparticles. Stability studies demonstrated a tendency of particle creaming for jojoba-nanocapsules and sedimentation for the other nanoparticles; however, no size variation occurred over 30 days. The hemolysis test proved the hemocompatibility of all nanosystems, irrespective of the type of oil. Although all developed nanocapsules presented the potential for parenteral administration, jojoba oil-loaded nanocapsules were selected as the most promising nanoformulation due to their low average size and high particle size homogeneity.

  8. Lipids for Health and Beauty: Enzymatic Modification of Vegetable Oil

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid has been extensively investigated for its potential as a cosmetic and pharmaceutical agent. We have prepared lipophilic derivatives of ferulic acid by a simple, enzyme-catalyzed transesterification reaction of ethyl ferulate with vegetable oils. Immobilized Candida antarctica lipase B...

  9. [Effects of vegetal oil supplementation on the lipid profile of Wistar rats ].

    PubMed

    Poveda, Elpidia; Ayala, Paola; Milena, Rodríguez; Ordóñez, Edgar; Baracaldo, Cesar; Delgado, Willman; Guerra, Martha

    2005-03-01

    Dietary tocopherols, tocotrienols and saturated, mono and polyunsaturated fatty acids have been reported to have an effect on blood lipid profiles. In Colombia, vegetable oils (palm, soy, corn, sunflower, and canola) are a common dietary constituent and consumed in high quantities. In the current study, the effects of vegetable oil consumption was examined by measuring blood concentrations of triglycerides (TG), total cholesterol (TC) and HDL cholesterol (HDL-C) in male Wistar rats. The concentrations of tocopherols, tocotrienols, and fatty acids in each oil was quantified by High Performance Liquid Chromatography (HPLC). Each rat diet was supplemented with 0.2 ml/day with one oil type. Over a 4-week period, groups of animals were sacrificed weekly and blood samples were obtained to quantify TC, TG and HDL-C for each oil class. Statistical analyses included mean, standard deviation, ANOVA and Bonferroni comparisons tests. Triglyceride content was not affected except in the control and the soy group in the third treatment week, although a tendency for decreased TG was noted in the palm oil group and for increased TG in the sunflower oil and canola oil groups. No significant differences in total cholesterol were observed. In HDL-C, significant differences were present for every treatment week (p = 0.005); this represented a decreasing trend in palm oil group and an increasing trend in the sunflower and corn oil groups. The oils effected changes in the blood lipid profile. A small amount of saturated fatty acids (tocopherol and tocotrienol) were favourable for the HDL-C increase. The presenct of tocorienols tended to decrease the TG and probably helped attenuate the unfavorable effects of the saturated fatty acids.

  10. New Insights on Degumming and Bleaching Process Parameters on The Formation of 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters in Refined, Bleached, Deodorized Palm Oil.

    PubMed

    Sim, Biow Ing; Muhamad, Halimah; Lai, Oi Ming; Abas, Faridah; Yeoh, Chee Beng; Nehdi, Imededdine Arbi; Khor, Yih Phing; Tan, Chin Ping

    2018-04-01

    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.

  11. The comparison of solid phase microextraction-GC and static headspace-GC for determination of solvent residues in vegetable oils.

    PubMed

    Ligor, Magdalena; Buszewski, Bogusław

    2008-02-01

    The objective of these investigations has been the determination of volatile organic compounds including residue solvents present in vegetable oil samples. Some olive oil, rape oil, sunflower oil, soy-bean oil, pumpkin oil, grape oil, rice oil as well as hazel-nut oil samples were analysed. Among residue solvents the following compounds have been mentioned: acetone, n-hexane, benzene, and toluene. Some experiments for the solid phase microextraction (SPME)-GC-flame ionisation detection (FID) were performed to examine extraction conditions such as fiber exposure time, temperature of extraction, and temperature of desorption. Various SPME fibers such as polydimethylsiloxane, Carboxen/polydimethylsiloxane and polydimethylsiloxane/divinylbenzene coatings were used for the isolation of tested compounds from vegetable oil samples. After optimisation of SPME, real vegetable oil samples were examined using SPME-GC/MS. Based on preliminary experiments the qualitative and quantitative analyses for the determination of acetone, n-hexane, benzene and toluene were performed by SPME-GC-FID and static head-space (SHS)-GC-FID methods. The regression coefficients for calibration curves for the examined compounds were R(2) > or = 0.992. This shows that the used method is linear in the examined concentration range (0.005-0.119 mg/kg for SPME-GC-FID and 0.003-0.728 mg/kg for SHS-GC-FID). Chemical properties of analysed vegetable oils have been characterised by chemometric procedure (cluster analysis).

  12. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-01

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.

  13. Direct Determination of MCPD Fatty Acid Esters and Glycidyl Fatty Acid Esters in Vegetable Oils by LC–TOFMS

    PubMed Central

    Haines, Troy D.; Adlaf, Kevin J.; Pierceall, Robert M.; Lee, Inmok; Venkitasubramanian, Padmesh

    2010-01-01

    Analysis of MCPD esters and glycidyl esters in vegetable oils using the indirect method proposed by the DGF gave inconsistent results when salting out conditions were varied. Subsequent investigation showed that the method was destroying and reforming MCPD during the analysis. An LC time of flight MS method was developed for direct analysis of both MCPD esters and glycidyl esters in vegetable oils. The results of the LC–TOFMS method were compared with the DGF method. The DGF method consistently gave results that were greater than the LC–TOFMS method. The levels of MCPD esters and glycidyl esters found in a variety of vegetable oils are reported. MCPD monoesters were not found in any oil samples. MCPD diesters were found only in samples containing palm oil, and were not present in all palm oil samples. Glycidyl esters were found in a wide variety of oils. Some processing conditions that influence the concentration of MCPD esters and glycidyl esters are discussed. PMID:21350591

  14. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil.

    PubMed

    Compton, David L; Evans, Kervin O; Appell, Michael

    2017-07-01

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and ultraviolet-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual water in the enzymatic synthesis of feruloylated vegetable oil was investigated using chemical theory and experimental studies by monitoring the reaction over a 22-day period. The hydrolysis of vegetable oil is thermodynamically favored over the hydrolysis of the ethyl ferulate starting material. These results suggest that hydrolyzed vegetable oil products will be experimentally observed in greater concentrations compared to hydrolyzed ethyl ferulate products. Quantum chemical studies identified several reaction mechanisms that explain the formation of side products by water, suggesting that residual water influences product quality. Efforts to reduce residual water can improve product consistency and reduce purification costs. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Oil Secretory System in Vegetative Organs of Three Arnica Taxa: Essential Oil Synthesis, Distribution and Accumulation.

    PubMed

    Kromer, Krystyna; Kreitschitz, Agnieszka; Kleinteich, Thomas; Gorb, Stanislav N; Szumny, Antoni

    2016-05-01

    Arnica, a genus including the medicinal species A. montana, in its Arbo variety, and A. chamissonis, is among the plants richest in essential oils used as pharmaceutical materials. Despite its extensive use, the role of anatomy and histochemistry in the internal secretory system producing the essential oil is poorly understood. Anatomical sections allowed differentiation between two forms of secretory structures which differ according to their distribution in plants. The first axial type is connected to the vascular system of all vegetative organs and forms canals lined with epithelial cells. The second cortical type is represented by elongated intercellular spaces filled with oil formed only between the cortex cells of roots and rhizomes at maturity, with canals lacking an epithelial layer.Only in A. montana rhizomes do secretory structures form huge characteristic reservoirs. Computed tomography illustrates their spatial distribution and fusiform shape. The axial type of root secretory canals is formed at the interface between the endodermis and cortex parenchyma, while, in the stem, they are located in direct contact with veinal parenchyma. The peripheral phloem parenchyma cells are arranged in strands around sieve tube elements which possess a unique ability to accumulate large amounts of oil bodies. The cells of phloem parenchyma give rise to the aforementioned secretory structures while the lipid components (triacylglycerols) stored there support the biosynthesis of essential oils by later becoming a medium in which these oils are dissolved. The results indicate the integrity of axial secretory structures forming a continuous system in vegetative plant organs. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.

    PubMed

    Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P

    2016-07-01

    Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.

  17. Detection of argan oil adulteration with vegetable oils by high-performance liquid chromatography-evaporative light scattering detection.

    PubMed

    Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang

    2014-06-15

    Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The effects of physical refining on the formation of 3-monochloropropane-1,2-diol esters in relation to palm oil minor components.

    PubMed

    Zulkurnain, Musfirah; Lai, Oi Ming; Latip, Razam Abdul; Nehdi, Imededdine Arbi; Ling, Tau Chuan; Tan, Chin Ping

    2012-11-15

    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The combination of activated natural zeolite-bentonite to reduce Fe and Cu in refined bleached palm oil (RBPO) by using atomic absorption spectrophotometer method

    NASA Astrophysics Data System (ADS)

    Zakwan; Raja, PM; Giyanto

    2018-02-01

    Indonesia is one of the crude palm oil (CPO) production country in the world. As many products are derivated from the CPO, the quality must be increased continuously. One of the things that influence the quality of palm oil is the Fe and Cu content. The objective of this research was to reduce Fe and Cu content in Refined Bleached Palm Oil (RBPO). In processing CPO or Refined Bleachead Palm Oil (RBPO) may be contaminated by Fe and Cu from metal tank and pipe in the factory. The zeolite and bentonite was activated by maceration method using hydrochloric acid (0,1 N). Four batch reactions consisting of refined palm oil (RPO), activated natural zeolite-bentonite (ANZB) was bleached by heating and stirring them at about 105°C and 1200 rpm for 30 minutes. The results showed that all combinations of ANZB can reduce the Fe content. Thereafter, the optimal combination of ANZB was obtained in K1, K2 and K4 with Cu content 0.02 ppm. In the future, it is needed to study on the reduction of the Fe and Cu content in palm oil with the other adsorbent.

  20. REFINING FLUORINATED COMPOUNDS

    DOEpatents

    Linch, A.L.

    1963-01-01

    This invention relates to the method of refining a liquid perfluorinated hydrocarbon oil containing fluorocarbons from 12 to 28 carbon atoms per molecule by distilling between 150 deg C and 300 deg C at 10 mm Hg absolute pressure. The perfluorinated oil is washed with a chlorinated lower aliphatic hydrocarbon, which mairtains a separate liquid phase when mixed with the oil. Impurities detrimental to the stability of the oil are extracted by the chlorinated lower aliphatic hydrocarbon. (AEC)

  1. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  2. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energymore » content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.« less

  3. Evaluation of Palm Oil as a Suitable Vegetable Oil for Vitamin A Fortification Programs

    PubMed Central

    Pignitter, Marc; Hernler, Natalie; Zaunschirm, Mathias; Kienesberger, Julia; Somoza, Mark Manuel; Kraemer, Klaus; Somoza, Veronika

    2016-01-01

    Fortification programs are considered to be an effective strategy to mitigate vitamin A deficiency in populations at risk. Fortified vegetable oils rich in polyunsaturated fatty acids were shown to be prone to oxidation, leading to limited vitamin A stability. Thus, it was hypothesized that fortified oils consisting of mainly saturated fatty acids might enhance the stability of vitamin A. Mildly (peroxide value: 1.0 meq O2/kg) and highly (peroxide value: 7.5 meq O2/kg) oxidized palm oil was stored, after fortification with 60 International Units/g retinyl palmitate, in 0.5 L transparent polyethylene terephthalate bottles under cold fluorescent lighting (12 h/day) at 32 °C for 57 days. An increase of the peroxide value by 15 meq O2/kg, which was also reflected by a decrease of α-tocopherol congener by 15%–18%, was determined independent of the initial rancidity. The oxidative deterioration of the highly oxidized palm oil during storage was correlated with a significant 46% decline of the vitamin A content. However, household storage of mildly oxidized palm oil for two months did not induce any losses of vitamin A. Thus, mildly oxidized palm oil may be recommended for vitamin A fortification programs, when other sources of essential fatty acids are available. PMID:27338464

  4. [Effects of oil-refining microbes (genus Acinetobacter) on cytogenetical structures of human lymphocytes in cell cultures].

    PubMed

    Il'inskikh, N N; Il'inskikh, E N; Il'inskikh, I N

    2012-01-01

    The objective of this study was to assess ability of oil-refining bacteria Acinetobacter calcoaceticus and A. valentis to induce karyopathological abnormalities and chromosomal aberrations in human lymphocyte cultures. It was found that the cultures infected with A. calcoaceticus showed significantly high frequencies of cytogenetical effects and chromosomal aberrant cells as compared to the intact cultures and cultures infected with A. valentis. The most of chromosomal aberrations, mainly chromatid aberrations, were located in 1 and 2 chromosomes. Moreover, the aberrations were detected in some specific chromosome areas. Abnormalities of mitotic cell division and nucleus morphology were determined in lymphocyte cultures infected with A. calcoaceticus. There were found significantly high frequencies of cells with micronuclei, nucleus protrusions, anaphase or metaphase chromosome and chromosomal fragments lagging as well as multipolar and C-mitoses. Thus, the oil-refining bacteria A. calcoaceticus in contrast to A. valentis demonstrated strong genotoxic effects in human lymphocyte cultures in vitro.

  5. Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy

    PubMed Central

    Harry-O'kuru, Rogers E.; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque

    2016-01-01

    In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied. PMID:26955488

  6. Synthesis of Polyformate Esters of Vegetable Oils: Milkweed, Pennycress, and Soy.

    PubMed

    Harry-O'kuru, Rogers E; Biresaw, Girma; Tisserat, Brent; Evangelista, Roque

    2016-01-01

    In a previous study of the characteristics of acyl derivatives of polyhydroxy milkweed oil (PHMWO), it was observed that the densities and viscosities of the respective derivatives decreased with increased chain length of the substituent acyl group. Thus from the polyhydroxy starting material, attenuation in viscosity of the derivatives relative to PHMWO was found in the order: PHMWO ≫ PAcMWE ≫ PBuMWE ≫ PPMWE (2332 : 1733 : 926.2 : 489.4 cSt, resp., at 40°C), where PAcMWE, PBuMWE, and PPMWE were the polyacetyl, polybutyroyl, and polypentanoyl ester derivatives, respectively. In an analogous manner, the densities also decreased as the chain length increased although not as precipitously compared to the viscosity drop. By inference, derivatives of vegetable oils with short chain length substituents on the triglyceride would be attractive in lubricant applications in view of their higher densities and possibly higher viscosity indices. Pursuant to this, we have explored the syntheses of formyl esters of three vegetable oils in order to examine the optimal density, viscosity, and related physical characteristics in relation to their suitability as lubricant candidates. In the absence of ready availability of formic anhydride, we opted to employ the epoxidized vegetable oils as substrates for formyl ester generation using glacial formic acid. The epoxy ring-opening process was smooth but was apparently followed by a simultaneous condensation reaction of the putative α-hydroxy formyl intermediate to yield vicinal diformyl esters from the oxirane. All three polyformyl esters milkweed, soy, and pennycress derivatives exhibited low coefficient of friction and a correspondingly much lower wear scar in the 4-ball antiwear test compared to the longer chain acyl analogues earlier studied.

  7. US refining margin trend: austerity continues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Should crude oil prices hold near current levels in 1988, US refining margins might improve little, if at all. If crude oil prices rise, margins could blush pink or worse. If they drop, US refiners would still probably not see much margin improvement. In fact, if crude prices fall, they could set off another free fall in products markets and threaten refiner survival. Volatility in refined products markets and low product demand growth are the underlying reasons for caution or pessimism as the new year approaches. Recent directional patterns in refining margins are scrutinized in this issue. This issue alsomore » contains the following: (1) the ED refining netback data for the US Gulf and West Coasts, Rotterdam, and Singapore for late November, 1987; and (2) the ED fuel price/tax series for countries of the Eastern Hemisphere, November, 1987 edition. 4 figures, 6 tables.« less

  8. γ-Oryzanol and tocopherol contents in residues of rice bran oil refining.

    PubMed

    Pestana-Bauer, Vanessa Ribeiro; Zambiazi, Rui C; Mendonça, Carla R B; Beneito-Cambra, Miriam; Ramis-Ramos, Guillermo

    2012-10-01

    Rice bran oil (RBO) contains significant amounts of the natural antioxidants γ-oryzanol and tocopherols, which are lost to a large degree during oil refining. This results in a number of industrial residues with high contents of these phytochemicals. With the aim of supporting the development of profitable industrial procedures for γ-oryzanol and tocopherol recovery, the contents of these phytochemicals in all the residues produced during RBO refining were evaluated. The samples included residues from the degumming, soap precipitation, bleaching earth filtering, dewaxing and deodorisation distillation steps. The highest phytochemical concentrations were found in the precipitated soap for γ-oryzanol (14.2 mg g(-1), representing 95.3% of total γ-oryzanol in crude RBO), and in the deodorisation distillate for tocopherols (576 mg 100 g(-1), representing 6.7% of total tocopherols in crude RBO). Therefore, among the residues of RBO processing, the deodorisation distillate was the best source of tocopherols. As the soap is further processed for the recovery of fatty acids, samples taken from every step of this secondary process, including hydrosoluble fraction, hydrolysed soap, distillation residue and purified fatty acid fraction, were also analyzed. The distillation residue left after fatty acid recovery from soap was found to be the best source of γ-oryzanol (43.1 mg g(-1), representing 11.5% of total γ-oryzanol in crude RBO). Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Experimental and theoretical study of the influence of water on hydrolyzed product formation during the feruloylation of vegetable oil

    USDA-ARS?s Scientific Manuscript database

    Feruloylated vegetable oil is a valuable green bioproduct that has several cosmeceutical applications associated with its inherent anti-oxidant and UV-absorption properties. Hydrolyzed vegetable oil by-products can influence product quality and consistency. The formation of by-products by residual w...

  10. Impacts of the Deepwater Horizon oil spill on the salt marsh vegetation of Louisiana.

    PubMed

    Hester, Mark W; Willis, Jonathan M; Rouhani, Shahrokh; Steinhoff, Marla A; Baker, Mary C

    2016-09-01

    The coastal wetland vegetation component of the Deepwater Horizon oil spill Natural Resource Damage Assessment documented significant injury to the plant production and health of Louisiana salt marshes exposed to oiling. Specifically, marsh sites experiencing trace or greater vertical oiling of plant tissues displayed reductions in cover and peak standing crop relative to reference (no oiling), particularly in the marsh edge zone, for the majority of this four year study. Similarly, elevated chlorosis of plant tissue, as estimated by a vegetation health index, was detected for marsh sites with trace or greater vertical oiling in the first two years of the study. Key environmental factors, such as hydrologic regime, elevation, and soil characteristics, were generally similar across plant oiling classes (including reference), indicating that the observed injury to plant production and health was the result of plant oiling and not potential differences in environmental setting. Although fewer significant impacts to plant production and health were detected in the latter years of the study, this is due in part to decreased sample size occurring as a result of erosion (shoreline retreat) and resultant loss of plots, and should not be misconstrued as indicating full recovery of the ecosystem. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Viscosity of Common Seed and Vegetable Oils

    NASA Astrophysics Data System (ADS)

    Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.

    1997-02-01

    Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.

  12. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    PubMed

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  13. Anicteric hepatoxicity: a potential health risk of occupational exposures in Nigerian petroleum oil refining and distribution industry.

    PubMed

    Ezejiofor, Tobias I Ndubuisi; Ezejiofor, Anthonet N; Orisakwe, Orish E; Nwigwe, Hariet C; Osuala, Ferdinand Ou; Iwuala, Moses Oe

    2014-01-22

    Literature abounds linking one's job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry. Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects. Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry. Gender differentiation data showed that

  14. Anicteric hepatoxicity: a potential health risk of occupational exposures in Nigerian petroleum oil refining and distribution industry

    PubMed Central

    2014-01-01

    Background Literature abounds linking one’s job to certain unpalatable health outcomes. Since exposures to hazardous conditions in industrial environments often results in sundry health effects among workers, we embarked on this study to investigate the hepatic health effects of occupational activities in the petroleum refining and distribution industry. Method Biochemical markers of liver functions were assayed in plasma, using Reflotron dry chemistry spectrophotometric system. The study was conducted on randomly selected workers of Port Harcourt Refining Company (PHRC) and Pipelines and Petroleum Product Marketing Company (PPMC) both in Alesa-Eleme near Port Harcourt, Nigeria, as well as non-oil work civil servants serving as control subjects. Result and conclusion Results showed that, bilirubin ranged 0.3-1.6 mg/dl with a mean of 0.66±0.20mg/dl among the oil workers as against 0.5-1.00mg/dl with a mean of 0.58±0.13mg/dl in non-oil workers, Alkaline phosphatase ranged 50.00-296.00u/l (mean: 126.21±39.49u/l) in oil workers as against 40.20-111u/l (mean: 66.83±18.54u/l) for non-oil workers, Aspartic transaminases (AST) ranged 5.80-140.20u/l (mean: 21.81±11.49u/l) in oil workers against 18.00-44.00u/l (mean: 26.89±6.99u/l) for non-oil workers, while Alanine transaminases (ALT) ranged 4.90-86.00u/l (mean: 22.14±11.28u/l) in oil workers as against 10.00-86.60u/l (mean: 22.30±10.22u/l) for the non-oil workers. A close study of the results revealed that although the mean values for all the studied parameters were still within the parametric reference ranges, however, relative to the referents, there were significant increases (P<0.05) in plasma bilirubin (though anicteric) and alkaline phosphatase that was not matched with a corresponding increase in the plasma transaminases, suggesting a possibility that toxic anicteric hepatoxicity is part of the potential health effects of sundry exposures in the Nigeria petroleum oil refining and distribution industry

  15. Estimating the impact of vitamin A-fortified vegetable oil in Bangladesh in the absence of dietary assessment data.

    PubMed

    Fiedler, John L; Lividini, Keith; Bermudez, Odilia I

    2015-02-01

    Vitamin A deficiency is a serious health problem in Bangladesh. The 2011-12 Bangladesh Micronutrient Survey found 76·8% of children of pre-school age were vitamin A deficient. In the absence of nationally representative, individual dietary assessment data, we use an alternative--household income and expenditure survey data--to estimate the potential impact of the introduction of vitamin A-fortified vegetable oil in Bangladesh. Items in the household income and expenditure survey were matched to food composition tables to estimate households' usual vitamin A intakes. Then, assuming (i) the intra-household distribution of food is in direct proportion to household members' share of the household's total adult male consumption equivalents, (ii) all vegetable oil that is made from other-than mustard seed and that is purchased is fortifiable and (iii) oil fortification standards are implemented, we modelled the additional vitamin A intake due to the new fortification initiative. Nationwide in Bangladesh. A weighted sample of 12,240 households comprised of 55,580 individuals. Ninety-nine per cent of the Bangladesh population consumes vegetable oil. The quantities consumed are sufficiently large and, varying little by socio-economic status, are able to provide an important, large-scale impact. At full implementation, vegetable oil fortification will reduce the number of persons with inadequate vitamin A intake from 115 million to 86 million and decrease the prevalence of inadequate vitamin A intake from 80% to 60%. Vegetable oil is an ideal fortification vehicle in Bangladesh. Its fortification with vitamin A is an important public health intervention.

  16. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion.

    PubMed

    Ionta, Franciny Querobim; Alencar, Catarina Ribeiro Barros de; Val, Poliana Pacifico; Boteon, Ana Paula; Jordão, Maisa Camillo; Honório, Heitor Marques; Buzalaf, Marília Afonso Rabelo; Rios, Daniela

    2017-01-01

    The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 - 5% and pure palm oil, respectively; GC5 and GC100 - 5% and pure coconut oil; GSa5 and GSa100 - 5% and pure safflower oil; GSu5 and GSu100 - 5% and pure sunflower oil; GO5 and GO100 - 5% and pure olive oil; CON- - Deionized Water (negative control) and CON+ - Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey's test (p<0.05). Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON- and CON+. Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling.

  17. Effect of vegetable oils applied over acquired enamel pellicle on initial erosion

    PubMed Central

    IONTA, Franciny Querobim; de ALENCAR, Catarina Ribeiro Barros; VAL, Poliana Pacifico; BOTEON, Ana Paula; JORDÃO, Maisa Camillo; HONÓRIO, Heitor Marques; BUZALAF, Marília Afonso Rabelo; RIOS, Daniela

    2017-01-01

    Abstract Objective The prevalence of dental erosion has been recently increasing, requiring new preventive and therapeutic approaches. Vegetable oils have been studied in preventive dentistry because they come from a natural, edible, low-cost, and worldwide accessible source. This study aimed to evaluate the protective effect of different vegetable oils, applied in two concentrations, on initial enamel erosion. Material and Methods Initially, the acquired pellicle was formed in situ for 2 hours. Subsequently, the enamel blocks were treated in vitro according to the study group (n=12/per group): GP5 and GP100 – 5% and pure palm oil, respectively; GC5 and GC100 – 5% and pure coconut oil; GSa5 and GSa100 – 5% and pure safflower oil; GSu5 and GSu100 – 5% and pure sunflower oil; GO5 and GO100 – 5% and pure olive oil; CON− – Deionized Water (negative control) and CON+ – Commercial Mouthwash (Elmex® Erosion Protection Dental Rinse, GABA/positive control). Then, the enamel blocks were immersed in artificial saliva for 2 minutes and subjected to short-term acid exposure in 0.5% citric acid, pH 2.4, for 30 seconds, to promote enamel surface softening. The response variable was the percentage of surface hardness loss [((SHi - SHf) / SHf )×100]. Data were analyzed by one-way ANOVA and Tukey’s test (p<0.05). Results Enamel blocks of GP100 presented similar hardness loss to GSu100 (p>0.05) and less than the other groups (p<0.05). There was no difference between GP5, GC5, GC100, GSa5, GSu100, GSa100, GSu5, GO5, GO100, CON− and CON+. Conclusion Palm oil seems to be a promising alternative for preventing enamel erosion. However, further studies are necessary to evaluate a long-term erosive cycling. PMID:28877281

  18. Effect Of Iron On The Sensitivity Of Hydrogen, Acetate, And Butyrate Metabolism To Inhibition By Long-Chain Fatty Acids In Vegetable-Oil-Enriched Freshwater Sediments

    EPA Science Inventory

    Freshwater sediment microbial communities enriched by growth on vegetable oil in the presence of a substoichiometric amount of ferric hydroxide (sufficient to accept about 12% of the vegetable-oil-derived electrons) degrade vegetable oil to methane faster than similar microbial c...

  19. Atypical hypocalcemia in 2 dairy cows, after having been fed discarded vegetable cooking oil.

    PubMed

    Gunn, Allan J; Abuelo, Angel

    2017-12-01

    Two mid-lactation dairy cows were presented sternally recumbent 4 days after the herd had been fed discarded vegetable cooking oil ad libitum. In both affected animals hypocalcemia was confirmed by clinical chemistry and response to treatment. This atypical presentation of hypocalcemia associated with feeding discarded cooking oil is previously unreported.

  20. Fortification of Indonesian unbranded vegetable oil: public-private initiative, from pilot to large scale.

    PubMed

    Soekirman; Soekarjo, Damayanti; Martianto, Drajat; Laillou, Arnaud; Moench-Pfanner, Regina

    2012-12-01

    Despite improved economic conditions, vitamin A deficiency remains a public health problem in Indonesia. This paper aims to describe the development of the Indonesian unbranded cooking oil fortification program and to discuss lessons learned to date and future steps necessary for implementation of mandatory, large-scale oil fortification with vitamin A. An historic overview of the steps involved in developing the Indonesian unbranded cooking oil fortification program is given, followed by a discussion of lessons learned and next steps needed. Indonesia's low-income groups generally consume unbranded vegetable oil, with an average consumption of approximately 25 g/day. Unbranded oil constitutes approximately 70% of the total oil traded in the country. In 2007-10, a pilot project to fortify unbranded vegetable oil was carried out in Makassar, and an effectiveness study found that the project significantly improved the serum retinol concentrations of schoolchildren. In 2010, the pilot was expanded to two provinces (West Java and North Sumatra) involving the biggest two national refineries. In 2011, a draft national standard for fortified oil was developed, which is currently under review by the National Standard Body and is expected to be mandated nationally in 2013 as announced officially by the Government of Indonesia in national and international meetings. Indonesia is a leading world supplier of cooking oil. With stakeholder support, the groundwork has been laid and efforts are moving forward to implement mandatory fortification. This project could encourage Indonesian industry to fortify more edible oils for export, thus expanding their market potential and potentially reducing vitamin A deficiency in the region.

  1. GLC analysis of poison ivy and poison oak urushiol components in vegetable oil preparations.

    PubMed

    Elsohly, M A; Turner, C E

    1980-05-01

    A procedure is described for the analysis of urushiol content of pharmaceutical preparations containing extracts of poison ivy (Toxicodendron radicans) and poison oak (T. diversilobum) in vegetable oils. The procedure involves extraction of the urushiols from the oily solutions using 90% methanol in water followed by GLC analysis of the extracts. Recoveries of both poison ivy and poison oak urushiols from solutions in corn oil, olive oil, sesame seed oil, and cottonseed oil were calculated. Correlation coefficients (r2) ranged from 0.97 to 1.00, and the coefficients of variations ranged from 3.08 to 7.90%.

  2. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  3. Atypical hypocalcemia in 2 dairy cows, after having been fed discarded vegetable cooking oil

    PubMed Central

    Gunn, Allan J.; Abuelo, Angel

    2017-01-01

    Two mid-lactation dairy cows were presented sternally recumbent 4 days after the herd had been fed discarded vegetable cooking oil ad libitum. In both affected animals hypocalcemia was confirmed by clinical chemistry and response to treatment. This atypical presentation of hypocalcemia associated with feeding discarded cooking oil is previously unreported. PMID:29203941

  4. Choice of cooking oils--myths and realities.

    PubMed

    Sircar, S; Kansra, U

    1998-10-01

    In contrast to earlier epidemiologic studies showing a low prevalence of atherosclerotic heart disease (AHD) and type-2 dependent diabetes mellitus (Type-2 DM) in the Indian subcontinent, over the recent years, there has been an alarming increase in the prevalence of these diseases in Indians--both abroad and at home, attributable to increased dietary fat intake. Replacing the traditional cooking fats condemned to be atherogenic, with refined vegetable oils promoted as "heart-friendly" because of their polyunsaturated fatty acid (PUFA) content, unfortunately, has not been able to curtail this trend. Current data on dietary fats indicate that it is not just the presence of PUFA but the type of PUFA that is important--a high PUFA n-6 content and high n-6/n-3 ratio in dietary fats being atherogenic and diabetogenic. The newer "heart-friendly" oils like sunflower or safflower oils possess this undesirable PUFA content and there are numerous research data now available to indicate that the sole use or excess intake of these newer vegetable oils are actually detrimental to health and switching to a combination of different types of fats including the traditional cooking fats like ghee, coconut oil and mustard oil would actually reduce the risk of dyslipidaemias, AHD and Type-2 DM.

  5. Gary Refining Company emerges from Chapter 11 bankruptcy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    On July 24, 1986 Gary Refining Company, Inc. announced that the Reorganization Plan for Gary Refining Company, Inc., Gary Refining Company, and Mesa Refining, Inc. has been approved by the United States bankruptcy Court (District of Colorado). The companies filed for protection from creditors on March 4, 1985 under Chapter 11 of the United States Bankruptcy Code. Payments to creditors are expected to begin upon start-up of the Gary Refining Company (GRC) refinery in Fruita, Colorado after delivery of shale oil from Union Oil's Parachute Creek plant. In the interim, GRC will continue to explore options for possible startup (onmore » a full scale or partial basis) prior to that time.« less

  6. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  7. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress

    PubMed Central

    Yun, Jung-Mi; Surh, Jeonghee

    2012-01-01

    This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078

  8. Enrichment of refined olive oil with phenolic compounds: evaluation of their antioxidant activity and their effect on the bitter index.

    PubMed

    Artajo, Luz S; Romero, María P; Morelló, José R; Motilva, María J

    2006-08-09

    The study of the antioxidant effects of biophenolic compounds is supported by the current interest in natural products and the ongoing replacement of synthetic antioxidants by natural antioxidants from plant sources. Olives and olive oil, especially extra virgin olive oil, contain a variety of bioactive compounds (phytochemicals) widely considered to be potentially beneficial for health. This research was focused on evaluating the antioxidant activity of the enriched refined olive oil to discover a possible functional food application. Different concentrations of individual and combined phenolic compounds were added to the refined olive oil as lipid matrix, and the antioxidant activity expressed as oxidative stability in hours was determined by using the Rancimat method. Additionally, the bitter index was evaluated to assess the effect of the enrichment in relation to the organoleptic quality. The results showed that the antioxidant activity depends on the concentration of the phenol used for the assay and the chemical structure. In general, the most positive effects were observed in 3,4-dihydroxy and 3,4,5-trihydroxy structures linked to an aromatic ring that conferred to the moiety a higher proton dislocation, thus facilitating the scavenging activity.

  9. Authentication and Quantitation of Fraud in Extra Virgin Olive Oils Based on HPLC-UV Fingerprinting and Multivariate Calibration

    PubMed Central

    Carranco, Núria; Farrés-Cebrián, Mireia; Saurina, Javier

    2018-01-01

    High performance liquid chromatography method with ultra-violet detection (HPLC-UV) fingerprinting was applied for the analysis and characterization of olive oils, and was performed using a Zorbax Eclipse XDB-C8 reversed-phase column under gradient elution, employing 0.1% formic acid aqueous solution and methanol as mobile phase. More than 130 edible oils, including monovarietal extra-virgin olive oils (EVOOs) and other vegetable oils, were analyzed. Principal component analysis results showed a noticeable discrimination between olive oils and other vegetable oils using raw HPLC-UV chromatographic profiles as data descriptors. However, selected HPLC-UV chromatographic time-window segments were necessary to achieve discrimination among monovarietal EVOOs. Partial least square (PLS) regression was employed to tackle olive oil authentication of Arbequina EVOO adulterated with Picual EVOO, a refined olive oil, and sunflower oil. Highly satisfactory results were obtained after PLS analysis, with overall errors in the quantitation of adulteration in the Arbequina EVOO (minimum 2.5% adulterant) below 2.9%. PMID:29561820

  10. Fish sauce, soy sauce, and vegetable oil fortification in Cambodia: where do we stand to date?

    PubMed

    Theary, Chan; Panagides, Dora; Laillou, Arnaud; Vonthanak, Saphoon; Kanarath, Chheng; Chhorvann, Chhea; Sambath, Pol; Sowath, Sol; Moench-Pfanner, Regina

    2013-06-01

    The prevalence of micronutrient deficiencies in Cambodia is among the highest in Southeast Asia. Fortification of staple foods and condiments is considered to be one of the most cost-effective strategies for addressing micronutrient deficiencies at the population level. The Government of Cambodia has recognized the importance of food fortification as one strategy for improving the nutrition security of its population. This paper describes efforts under way in Cambodia for the fortification of fish sauce, soy sauce, and vegetable oil. Data were compiled from a stability test of Cambodian fish sauces fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA); analysis of fortified vegetable oils in the Cambodian market; a Knowledge, Attitudes, and Practices (KAP) study of fortified products; and food fortification program monitoring documents. At different levels of fortification of fish sauce with NaFeEDTA, sedimentation and precipitation were observed. This was taken into consideration in the government-issued standards for the fortification of fish sauce. All major brands of vegetable oil found in markets at the village and provincial levels are imported, and most are nonfortified. Fish sauce, soy sauce, and vegetable oil are widely consumed throughout Cambodia and are readily available in provincial and village markets. Together with an effective regulatory monitoring system, the government can guarantee that these commodities, whether locally produced or imported, are adequately fortified. A communications campaign would be worthwhile, once fortified commodities are available, as the KAP study found that Cambodians had a positive perception of fortified sauces.

  11. Dilemma for high-tech refiners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The price difference between lighter and heavier crude oils, and between light and heavy refined products, amounts to the incentive for refiners to upgrade processing facilities. When that differential widens, the incentive to utilize lower price, lower quality crude is enhanced; when it narrows, the desirability of relying on light oil prices and supplies is intensified. The incentive to upgrade has been eroded ever since 1981 ushered in world-wide overproduction of crude oil. Lower demand due to recession met with increased pressure on producers to compete for market shares to maintain vital revenue levels - for private and national oilmore » companies alike. Light crude prices suffered, while heavy crude prices improved. As of mid-1984, the shrinkage of the price differential went into dormancy (see Energy Detente 8/8/84, A Hey-Day for Heavy Crudes) after both Mexico and Venezuela raised heavy oil prices by US $0.50 per barrel (bbl). Energy Detente refining netback data for the first half of October are presented for the US Gulf Coast and the US West Coast. The fuel price/tax series and the industrial fuel prices for October 1984 are included for countries of the Eastern Hemisphere.« less

  12. Deep drawing of 304 L Steel Sheet using Vegetable oils as Forming Lubricants

    NASA Astrophysics Data System (ADS)

    Shashidhara, Y. M.; Jayaram, S. R.

    2012-12-01

    The study involves the evaluation of deep drawing process using two non edible oils, Pongam (Pongammia pinnata) and Jatropha (Jatropha carcass) as metal forming lubricants. Experiments are conducted on 304L steel sheets under the raw and modified oils with suitable punch and die on a hydraulic press of 200 ton capacity. The punch load, draw-in-length and wall thickness distribution for deep drawn cups are observed. The drawn cups are scanned using laser scanning technique and 3D models are generated using modeling package. The wall thickness profiles of cups at different sections (or height) are measured using CAD package. Among the two raw oils, the drawn cups under Jatropha oil, have uniform wall thickness profile compared to Pongam oil. Uneven flow of material and cup rupturing is observed under methyl esters of Pongam and Jatropha oil lubricated conditions. However, the results are observed under epoxidised Jatropha oil with uniform metal flow and wall thicknesses compared to mineral and other versions of vegetable oils.

  13. Conversion of vegetable oils and animal fats into paraffinic cetane enhancers for diesel fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, A.; Feng, Y.; Hogan, E.

    1995-11-01

    The two principal methods of producing biodiesel fuels are (a) transesterification of vegetable oils and animal fats with a monohydric alcohol, and (b) direct hydrotreating of tree oils, vegetable oils and animal fats. The patented hydrotreating technology is based on the catalytic processing of biomass oils and fats with hydrogen, under elevated temperature and pressure conditions. The typical mix of hydrotreated products is as follows: 5-15% light distillate (naphta), 40-60% middle distillate (cetane), 5-15% heavy distillate and 5-10% burner gas. The naptha fraction may be used as a gasoline supplement. The middle distillate is designed for use as a cetanemore » booster for diesel fuels. Both heavy distillate and light hydrocarbon gases are usable as power boiler fuels. Typically, the cetane enhancer would be admixed with diesel fuel in the range of 5 to 30% by volume. This new diesel blend meets the essential quality characteristics of the basic diesel fuel, for direct use in diesel engines without any modifications. The basic hydrotreatment technology has been evaluated further in the laboratory on degummed soya oil, yellow grease and animal tallow. The preliminary findings suggest that the technology can provide efficient conversion of these materials into cetane enhancers for diesel fuels.« less

  14. A systematic review of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors: implications for novel high-oleic soybean oils.

    PubMed

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-11-01

    High-oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)(6) risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n-6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n-6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: -8.0%, -10.9%, -7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: -5.7%, -9.2%, -7.3%, -11.7%, -12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n-6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n-6 PUFAs would have favorable and comparable effects on plasma lipid risk factors and

  15. Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect

    NASA Astrophysics Data System (ADS)

    Haryono, Agus; Triwulandari, Evi; Jiang, Pingping

    2017-01-01

    Plasticizer molecules are low molecular weight compounds that are widely used in polymer industries especially in polyvinyl chloride (PVC) resin. As an additive in PVC resin, the important role of plasticizer molecules is to improve the flexibility and processability of PVC by lowering the glass transition temperature (Tg). However, the commercial plasticizer like di(2-ethylhexyl)phthalate (DEHP) is known to cause liver cancer, at least in laboratory rats. DEHP can leach out from PVC into blood, certain drug solutions and fatty foods, which has been detected in the bloodstream of patients undergoing transfusion. Vegetable oil based plasticizers have some attractive properties such as non-toxic, bio-degradable, good heat and light stability, renewable resources, and environmentally friendly. Here we discussed the main results and development of vegetable oil based plasticizer, and especially palm oil based plasticizer. The interaction between plasticizer and polymer was discussed from the properties of the plasticized polymeric material.

  16. Retention of natural antioxidants of blends of groundnut and sunflower oils with minor oils during storage and frying.

    PubMed

    Sunil, L; Reddy, P Vanitha; Krishna, A G Gopala; Urooj, Asna

    2015-02-01

    Unrefined groundnut oil (GNO) and refined sunflower oil (SFO) were blended with four minor oils including laboratory refined red palmolein (RRPO), physically refined rice bran oil (RBO), unrefined sesame oil (SESO), and unrefined coconut oil (CNO) containing natural antioxidants viz., β-carotene, tocopherols, oryzanol and lignans. The five blends prepared were GNO + RRPO (80:20), GNO + RBO (80:20), GNO + SESO (80:20), SFO + RRPO (50:50) and SFO + CNO (60:40). Prepared blends contained saturated fatty acids (SFA) (16.7-53.3 %); monounsaturated fatty acids (MUFA) (16.0-45.5 %) and polyunsaturated fatty acids (PUFA) (29.2-37.8 %). GNO blends viz., GNO + RRPO, GNO + RBO and GNO + SESO contained β-carotene (10.7 mg/100 g), oryzanol (0.12 g/100 g) and lignans (0.35 g/100 g) respectively as natural antioxidants. SFO was enriched with β-carotene (28.7 mg/100 g) and medium chain fatty acids (34.2 %) by blending with RRPO and CNO respectively. The oil blends (200 ml) were packed and stored at 38 °C/90 % relative humidity (RH) and 27 °C/65 % RH and samples were withdrawn at fixed intervals for analysis. Freshly prepared blends were also investigated for their frying performance. During storage, GNO + RBO blend showed highest oxidative stability probably due to the presence of oryzanol in the order GNO + RBO > GNO + SESO > GNO + RRPO. During frying, the peroxide value of GNO blends with RBO (rich in oryzanol) and SESO (rich in lignans) was less while the free fatty acid value was less in SFO blends with RRPO and CNO. Hence, blending of natural antioxidants rich minor oils (RRPO, RBO and SESO) with the major vegetable oils (GNO and SFO) may preserve them by lowering their rate of oxidation during storage and frying.

  17. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils.

    PubMed

    Goodacre, Royston; Vaidyanathan, Seetharaman; Bianchi, Giorgio; Kell, Douglas B

    2002-11-01

    There is a continuing need for improved methods for assessing the adulteration of foodstuffs. We report some highly encouraging data, where we have developed direct infusion electrospray ionisation mass spectrometry (ESI-MS) together with chemometrics as a novel, rapid (1 min per sample) and powerful technique to elucidate key metabolite differences in vegetable and nut oils. Principal components analysis of these ESI-MS spectra show that the reproducibility of this approach is high and that olive oil can be discriminated from oils which are commonly used as adulterants. These adulterants include refined hazelnut oil, which is particularly challenging given its chemical similarity to olive oils.

  18. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils.

    PubMed

    Goula, Athanasia M; Ververi, Maria; Adamopoulou, Anna; Kaderides, Kyriakos

    2017-01-01

    The objective of this work was to develop a new process for pomegranate peels application in food industries based on ultrasound-assisted extraction of carotenoids using different vegetable oils as solvents. In this way, an oil enriched with antioxidants is produced. Sunflower oil and soy oil were used as alternative solvents and the effects of various parameters on extraction yield were studied. Extraction temperature, solid/oil ratio, amplitude level, and extraction time were the factors investigated with respect to extraction yield. Comparative studies between ultrasound-assisted and conventional solvent extraction were carried out in terms of processing procedure and total carotenoids content. The efficient extraction period for achieving maximum yield of pomegranate peel carotenoids was about 30min. The optimum operating conditions were found to be: extraction temperature, 51.5°C; peels/solvent ratio, 0.10; amplitude level, 58.8%; solvent, sunflower oil. A second-order kinetic model was successfully developed for describing the mechanism of ultrasound extraction under different processing parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Systematic Review of High-Oleic Vegetable Oil Substitutions for Other Fats and Oils on Cardiovascular Disease Risk Factors: Implications for Novel High-Oleic Soybean Oils12

    PubMed Central

    Huth, Peter J; Fulgoni, Victor L; Larson, Brian T

    2015-01-01

    High–oleic acid soybean oil (H-OSBO) is a trait-enhanced vegetable oil containing >70% oleic acid. Developed as an alternative for trans-FA (TFA)-containing vegetable oils, H-OSBO is predicted to replace large amounts of soybean oil in the US diet. However, there is little evidence concerning the effects of H-OSBO on coronary heart disease (CHD)6 risk factors and CHD risk. We examined and quantified the effects of substituting high-oleic acid (HO) oils for fats and oils rich in saturated FAs (SFAs), TFAs, or n–6 (ω-6) polyunsaturated FAs (PUFAs) on blood lipids in controlled clinical trials. Searches of online databases through June 2014 were used to select studies that defined subject characteristics; described control and intervention diets; substituted HO oils compositionally similar to H-OSBO (i.e., ≥70% oleic acid) for equivalent amounts of oils high in SFAs, TFAs, or n–6 PUFAs for ≥3 wk; and reported changes in blood lipids. Studies that replaced saturated fats or oils with HO oils showed significant reductions in total cholesterol (TC), LDL cholesterol, and apolipoprotein B (apoB) (P < 0.05; mean percentage of change: −8.0%, −10.9%, −7.9%, respectively), whereas most showed no changes in HDL cholesterol, triglycerides (TGs), the ratio of TC to HDL cholesterol (TC:HDL cholesterol), and apolipoprotein A-1 (apoA-1). Replacing TFA-containing oil sources with HO oils showed significant reductions in TC, LDL cholesterol, apoB, TGs, TC:HDL cholesterol and increased HDL cholesterol and apoA-1 (mean percentage of change: −5.7%, −9.2%, −7.3%, −11.7%, −12.1%, 5.6%, 3.7%, respectively; P < 0.05). In most studies that replaced oils high in n–6 PUFAs with equivalent amounts of HO oils, TC, LDL cholesterol, TGs, HDL cholesterol, apoA-1, and TC:HDL cholesterol did not change. These findings suggest that replacing fats and oils high in SFAs or TFAs with either H-OSBO or oils high in n–6 PUFAs would have favorable and comparable effects on

  20. Novel approaches to analysis of 3-chloropropane-1,2-diol esters in vegetable oils.

    PubMed

    Moravcova, Eliska; Vaclavik, Lukas; Lacina, Ondrej; Hrbek, Vojtech; Riddellova, Katerina; Hajslova, Jana

    2012-03-01

    A sensitive and accurate method utilizing ultrahigh performance liquid chromatography (U-HPLC) coupled to high resolution mass spectrometry based on orbitrap technology (orbitrapMS) for the analysis of nine 3-chloropropane-1,2-diol (3-MCPD) diesters in vegetable oils was developed. To remove the interfering triacylglycerols that induce strong matrix effects, a clean-up step on silica gel column was used. The quantitative analysis was performed with the use of deuterium-labeled internal standards. The lowest calibration levels estimated for the respective analytes ranged from 2 to 5 μg kg(-1). Good recovery values (89-120%) and repeatability (RSD 5-9%) was obtained at spiking levels of 2 and 10 mg kg(-1). As an alternative, a novel ambient desorption ionization technique, direct analysis in real time (DART), hyphenated with orbitrapMS, was employed for no separation, high-throughput, semi-quantitative screening of 3-MCPD diesters in samples obtained by chromatographic fractionation. Additionally, the levels of 3-MCPD diesters measured in reallife vegetable oil samples (palm oil, sunflower oil, rapeseed oil) using both methods are reported. Relatively good agreement of the data generated by U-HPLC-orbitrapMS and DART-orbitrapMS were observed. With regard to a low ionization yield achieved for 3-MCPD monoesters, the methods presented in this paper were not yet applicable for the analysis of these contaminants at the naturally occurring levels.

  1. EFFECTS OF FERRIC HYDROXIDE ON THE ANAEROBIC BIODEGRADATION KINETICS AND TOXICITY OF VEGETABLE OIL IN FRESHWATER SEDIMENTS

    EPA Science Inventory

    Biodegradation of vegetable oil in freshwater sediments exhibits self-inhibitory characteristics when it occurs under methanogenic conditions but not under iron-reducing conditions. The basis of the protective effect of iron was investigated by comparing its effects on oil biodeg...

  2. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E; Cohen, Steven A; Gildon, Demond L

    2015-04-07

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  3. Methods of refining and producing dibasic esters and acids from natural oil feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.

    2016-03-15

    Methods are provided for refining natural oil feedstocks and producing dibasic esters and/or dibasic acids. The methods comprise reacting a terminal olefin with an internal olefin in the presence of a metathesis catalyst to form a dibasic ester and/or dibasic acid. In certain embodiments, the olefin esters are formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having olefin esters.

  4. Influence of oil composition on the formation of fatty acid esters of 2-chloropropane-1,3-diol (2-MCPD) and 3-chloropropane-1,2-diol (3-MCPD) under conditions simulating oil refining.

    PubMed

    Ermacora, Alessia; Hrncirik, Karel

    2014-10-15

    The toxicological relevance and widespread occurrence of fatty acid esters of 2-chloropropane-1,3-diol (2-MCPD) and 3-chloropropane-1,2-diol (3-MCPD) in refined oils and fats have recently triggered an interest in the mechanism of formation and decomposition of these contaminants during oil processing. In this work, the effect of the main precursors, namely acylglycerols and chlorinated compounds, on the formation yield of MCPD esters was investigated in model systems simulating oil deodorization. The composition of the oils was modified by enzymatic hydrolysis, silica gel purification and application of various refining steps prior to deodorization (namely degumming, neutralization, bleaching). Partial acylglycerols showed greater ability, than did triacylglycerols, to form MCPD esters. However, no direct correlation was found between these two parameters, since the availability of chloride ions was the main limiting factor in the formation reaction. Polar chlorinated compounds were found to be the main chloride donors, although the presence of reactive non-polar chloride-donating species was also observed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Properties of Base Stocks Obtained from Used Engine Oils by Acid/Clay Re-refining (Proprietes des Stocks de Base Obtenus par Regeneration des Huiles a Moteur Usees par le Procede de Traitement a l’Acide et a la Terre),

    DTIC Science & Technology

    1980-09-01

    Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4

  6. High-resolution detection of adulteration of maize oil using multi-component compound-specific delta13C values of major and minor components and discriminant analysis.

    PubMed

    Mottram, Hazel R; Woodbury, Simon E; Rossell, J Barry; Evershed, Richard P

    2003-01-01

    Maize oil commands a premium price and is thus a target for adulteration with cheaper vegetable oils. Detection of this activity presents a particular challenge to the analyst because of the natural variability in the fatty acid composition of maize oils and because of their high sterol and tocopherol contents. This paper describes a method that allows detection of adulteration at concentrations of just 5% (m/m), based on the Mahalanobis distances of the principal component scores of the delta(13)C values of major and minor vegetable oil components. The method makes use of a database consisting of delta(13)C values and relative abundances of the major fatty acyl components of over 150 vegetable oils. The sterols and tocopherols of 16 maize oils and 6 potential adulterant oils were found to be depleted in (13)C by a constant amount relative to the bulk oil. Moreover, since maize oil contains particularly high levels of sterols and tocopherols, their delta(13)C values were not significantly altered when groundnut oil was added up to 20% (m/m) and it is possible to use the values for the minor components to predict the values that would be expected in a pure oil; therefore, comparison of the predicted values with those obtained experimentally allows adulteration to be detected. A refinement involved performing a discriminant analysis on the delta(13)C values of the bulk oil and the major fatty acids (16:0, 18:1 and 18:2) and using the Mahalanobis distances to determine the percentage of adulterant oil present. This approach may be refined further by including the delta(13)C values of the minor components in the discriminant analysis thereby increasing the sensitivity of the approach to concentrations at which adulteration would not be attractive economically. Copyright 2003 John Wiley & Sons, Ltd.

  7. Experimental investigation of various vegetable fibers as sorbent materials for oil spills.

    PubMed

    Annunciado, T R; Sydenstricker, T H D; Amico, S C

    2005-11-01

    Oil spills are a global concern due to their environmental and economical impact. Various commercial systems have been developed to control these spills, including the use of fibers as sorbents. This research investigates the use of various vegetable fibers, namely mixed leaves residues, mixed sawdust, sisal (Agave sisalana), coir fiber (Cocos nucifera), sponge-gourd (Luffa cylindrica) and silk-floss as sorbent materials of crude oil. Sorption tests with crude oil were conducted in deionized and marine water media, with and without agitation. Water uptake by the fibers was investigated by tests in dry conditions and distillation of the impregnated sorbent. The silk-floss fiber showed a very high degree of hydrophobicity and oil sorption capacity of approximately 85goil/g sorbent (in 24hours). Specific gravity measurements and buoyancy tests were also used to evaluate the suitability of these fibers for the intended application.

  8. A new analytical method for quantification of olive and palm oil in blends with other vegetable edible oils based on the chromatographic fingerprints from the methyl-transesterified fraction.

    PubMed

    Jiménez-Carvelo, Ana M; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-03-01

    A new analytical method for the quantification of olive oil and palm oil in blends with other vegetable edible oils (canola, safflower, corn, peanut, seeds, grapeseed, linseed, sesame and soybean) using normal phase liquid chromatography, and applying chemometric tools was developed. The procedure for obtaining of chromatographic fingerprint from the methyl-transesterified fraction from each blend is described. The multivariate quantification methods used were Partial Least Square-Regression (PLS-R) and Support Vector Regression (SVR). The quantification results were evaluated by several parameters as the Root Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV). It has to be highlighted that the new proposed analytical method, the chromatographic analysis takes only eight minutes and the results obtained showed the potential of this method and allowed quantification of mixtures of olive oil and palm oil with other vegetable oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Fourier Transform Infrared Spectroscopy (FTIR) and Multivariate Analysis for Identification of Different Vegetable Oils Used in Biodiesel Production

    PubMed Central

    Mueller, Daniela; Ferrão, Marco Flôres; Marder, Luciano; da Costa, Adilson Ben; de Cássia de Souza Schneider, Rosana

    2013-01-01

    The main objective of this study was to use infrared spectroscopy to identify vegetable oils used as raw material for biodiesel production and apply multivariate analysis to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier transform infrared spectroscopy using a universal attenuated total reflectance sensor (FTIR-UATR). For the multivariate analysis principal component analysis (PCA), hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft independent modeling of class analogy (SIMCA) were used. The results indicate that is possible to develop a methodology to identify vegetable oils used as raw material in the production of biodiesel by FTIR-UATR applying multivariate analysis. It was also observed that the iPCA found the best spectral range for separation of biodiesel batches using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the soybean biodiesel samples. PMID:23539030

  10. A novel cardanol-based antioxidant and its application in vegetable oils and biodiesel

    USDA-ARS?s Scientific Manuscript database

    A novel antioxidant, epoxidized cardanol (ECD), derived from cardanol has been synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD in vegetable oils and biodiesel was evaluated by the pressurized differential scanning calorimetry and Rancimat methods, respectively....

  11. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  12. Solvent Extraction for Vegetable Oil Production: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The EPA has identified solvent extraction for vegetable oil production processes as major sources of a single hazardous air pollutant (HAP), n-hexane. Learn more about the rule requirements and regulations, as well as find compliance help

  13. Instantaneous characterization of vegetable oils via TAG and FFA profiles by easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Simas, Rosineide C; Catharino, Rodrigo R; Cunha, Ildenize B S; Cabral, Elaine C; Barrera-Arellano, Daniel; Eberlin, Marcos N; Alberici, Rosana M

    2010-04-01

    A fast and reliable method is presented for the analysis of vegetable oils. Easy ambient sonic-spray ionization mass spectrometry (EASI-MS) is shown to efficiently desorb and ionize the main oil constituents from an inert surface under ambient conditions and to provide comprehensive triacylglyceride (TAG) and free fatty acid (FFA) profiles detected mainly as either [TAG + Na](+) or [FFA-H](-) ions. EASI(+/-)-MS analysis is simple, easily implemented, requires just a tiny droplet of the oil and is performed without any pre-separation or chemical manipulation. It also causes no fragmentation of TAG ions hence diacylglyceride (DAG) and monoacylglyceride (MAG) profiles and contents can also be measured. The EASI(+/-)-MS profiles of TAG and FFA permit authentication and quality control and can be used, for instance, to access levels of adulteration, acidity, oxidation or hydrolysis of vegetable oils in general.

  14. The use of isotope ratios (13C/12C) for vegetable oils authentication

    NASA Astrophysics Data System (ADS)

    Cristea, G.; Magdas, D. A.; Mirel, V.

    2012-02-01

    Stable isotopes are now increasingly used for the control of the geographical origin or authenticity of food products. The falsification may be more or less sophisticated and its sophistication as well as its costs increases with the improvement of analytical methods. In this study 22 vegetable oils (olive, sunflower, palm, maize) commercialized on Romanian market were investigated by mean of δ13C in bulk oil and the obtained results were compared with those reported in literature in order to check the labeling of these natural products. The obtained results were in the range of the mean values found in the literature for these types of oils, thus providing their accurate labeling.

  15. Synthesis of epoxidized cardanol and its antioxidative properties for vegetable oils and biodiesel

    USDA-ARS?s Scientific Manuscript database

    A novel antioxidant epoxidized cardanol (ECD), derived from cardanol, was synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD used in vegetable oils and biodiesel was evaluated by pressurized differential scanning calorimetry (PDSC) and the Rancimat method, respect...

  16. Sedimentation and deformation of an aqueous sodium hydroxide drop in vegetable oil

    NASA Astrophysics Data System (ADS)

    White, Andrew; Hyacinthe, Hyaquino; Ward, Thomas

    2013-11-01

    The addition of water droplets in fuels is known to provide benefits such as decreased Nitrous Oxide NOx emissions. Unfortunately the shelf life of a water-fuel emulsion is limited by the sedimentation rate of the water droplets. It is well known that adding surfactants can significantly slow the sedimentation rate due to the introduction of Marangoni stresses. In the case of a vegetable oil fuel, adding sodium hydroxide (NaOH) to the water droplets will produce surfactants through saponification in the form of sodium-carboxylate salts. Pendant drops of aqueous NaOH solutions with pH between 11 and 13 will be suspended in several oils such as corn, olive, canola and soybean oil in order to measure the interfacial tension. The change in interfacial tension with time will be used to estimate the surfactant concentration and the saponification rate. Then individual drops will be placed in the oils to observe the settling velocity and drop deformation. NSF CBET.

  17. Partial replacement of pork back-fat by vegetable oils in burger patties: effect on oxidative stability and texture and color changes during cooking and chilled storage.

    PubMed

    Rodríguez-Carpena, J G; Morcuende, D; Estévez, M

    2011-09-01

    The present study was aimed to examine the impact of partial back-fat replacement (50%) by avocado (A), sunflower (S), and olive (O) oil on the chemical composition, oxidative stability, color, and texture of porcine burger patties (10% fat) subjected to oven cooking (170 °C/18 min) and chilling (+ 4 °C/15 d). The addition of vegetable oils caused a significant reduction of saturated fatty acids and a concomitant enrichment in unsaturated fatty acids. The incorporation of vegetable oils to porcine patties caused a significant reduction of TBARS formed as a result of cooking and the subsequent chilling. The usage of vegetable oils as back-fat replacers had no impact on the formation of protein carbonyls. Porcine patties with A- and O-patties displayed a more favorable ratio between volatiles contributing to rancidity and those contributing pleasant odor notes. Treated and control patties underwent similar discoloration during processing. The usage of vegetable oils and particularly, avocado and olive oils, as back-fat replacers, could be an interesting strategy to improve the nutritional and technological properties of porcine patties. The present study highlights the potential nutritional and technological benefits of replacing animal fat by vegetable oils in porcine patties subjected to cooking and chilling. The industrial application of vegetable oils in processed meat products would meet the current consumers' interest towards healthier food products. In addition, the usage of avocado oil would contribute to boost the avocado industry by providing an additional value to a by-product of great biological significance. © 2011 Institute of Food Technologists®

  18. Recovery of different waste vegetable oils for biodiesel production: a pilot experience in Bahia State, Brazil.

    PubMed

    Torres, Ednildo Andrade; Cerqueira, Gilberto S; Tiago, M Ferrer; Quintella, Cristina M; Raboni, Massimo; Torretta, Vincenzo; Urbini, Giordano

    2013-12-01

    In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH. The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthesis of fatty acid methyl ester from used vegetable cooking oil by solid reusable Mg 1-x Zn 1+x O2 catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-02-01

    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Effects of Vegetable Oil Type and Lipophilic Emulsifiers on the Induction Period of Fat Crystallization.

    PubMed

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2015-01-01

    The induction period of crystallization, which is defined as the time required for oil to start to crystallize, is useful indicator of the freeze-thaw stability of food emulsions such as mayonnaise. We investigated the induction period of vegetable oils with low melting points, such as rapeseed and soybean oils, which are commonly employed for mayonnaise production. The induction period was measured by monitoring the temperature of a specimen during storage at low temperature. The induction period depended on the type of oil and lipophilic emulsifier, emulsifier concentration, and storage temperature. The effect of the oil type on the induction period depended on the composition of the oil. Differential scanning calorimetry (DSC) analyses of the lipophilic emulsifiers suggested that the melting trend of the emulsifier is strongly related to the induction period.

  1. Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry.

    PubMed

    Qian, Mingrong; Zhang, Hu; Wu, Liqin; Jin, Nuo; Wang, Jianmei; Jiang, Kezhi

    2015-01-01

    A sensitive gas chromatographic-triple quadrupole mass spectrometric (GC-QqQ MS) analytical method, for the determination of zearalenone and its five derivatives in edible vegetable oil, was developed. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated and dried with nitrogen gas. The residue was silylated with N,O-bis-trimethylsilyltrifluoroacetamide, containing 1% trimethylchlorosilane. GC-QqQ MS was performed in the reaction-monitoring mode to confirm and quantify mycotoxins in vegetable oil. The limits of quantitation were 0.03-0.2 μg kg(-1) for the six mycotoxins. The average recoveries, measured at 2, 20 and 200 μg kg(-1), were in the range 80.3-96.5%. Zearalenone was detected in the range 5.2-184.6 μg kg(-1) in nine maize oils and at 40.7 μg kg(-1) in a rapeseed oil from the local market. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Phase-transfer catalysis and ultrasonic waves II: saponification of vegetable oil.

    PubMed

    Entezari, M H; Keshavarzi, A

    2001-07-01

    Saponification of oils which is a commercially important heterogeneous reaction, can be speeded up by the application of ultrasound in the presence of phase-transfer catalyst (PTC). This paper focuses on the ability of ultrasound to cause efficient mixing of this liquid-liquid heterogeneous reaction. Castor oil was taken as a model oil and the kinetic of the reaction was followed by the extent of saponification. The hydrolysis of castor oil was carried out with different PTC such as cetyl trimethyl ammonium bromide (CTAB), benzyl triethyl ammonium chloride (BTAC) and tetrabutyl ammonium bromide (TBAB) in aqueous alkaline solution. As hydroxyl anion moves very slowly from aqueous to oil phase, the presence of a PTC is of prime importance. For this purpose, cationic surfactants are selected. The sonication of biphasic system were performed by 20 kHz (simple horn and cup horn) and 900 kHz. It was found that CTAB was better than the two others and this could be related to the molecular structure of the PTCs. The effect of temperature was also studied on the saponification process. By increasing the temperature, the yield was also increased and this could be explained by intermolecular forces, interfacial tension and mass transfer. Saponification of three different vegetable oils shows that the almond oil is saponified easier than the two others and this could be related to their properties such as surface tension, viscosity and density.

  3. Object-based inversion of crosswell radar tomography data to monitor vegetable oil injection experiments

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Versteeg, Roelof J.; Casey, Clifton C.

    2004-01-01

    Crosswell radar methods can be used to dynamically image ground-water flow and mass transport associated with tracer tests, hydraulic tests, and natural physical processes, for improved characterization of preferential flow paths and complex aquifer heterogeneity. Unfortunately, because the raypath coverage of the interwell region is limited by the borehole geometry, the tomographic inverse problem is typically underdetermined, and tomograms may contain artifacts such as spurious blurring or streaking that confuse interpretation.We implement object-based inversion (using a constrained, non-linear, least-squares algorithm) to improve results from pixel-based inversion approaches that utilize regularization criteria, such as damping or smoothness. Our approach requires pre- and post-injection travel-time data. Parameterization of the image plane comprises a small number of objects rather than a large number of pixels, resulting in an overdetermined problem that reduces the need for prior information. The nature and geometry of the objects are based on hydrologic insight into aquifer characteristics, the nature of the experiment, and the planned use of the geophysical results.The object-based inversion is demonstrated using synthetic and crosswell radar field data acquired during vegetable-oil injection experiments at a site in Fridley, Minnesota. The region where oil has displaced ground water is discretized as a stack of rectangles of variable horizontal extents. The inversion provides the geometry of the affected region and an estimate of the radar slowness change for each rectangle. Applying petrophysical models to these results and porosity from neutron logs, we estimate the vegetable-oil emulsion saturation in various layers.Using synthetic- and field-data examples, object-based inversion is shown to be an effective strategy for inverting crosswell radar tomography data acquired to monitor the emplacement of vegetable-oil emulsions. A principal advantage of

  4. Vegetable oils for tractors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  5. Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet.

    PubMed

    Beidokhti, Maliheh Najari; Jäger, Anna K

    2017-04-06

    Type 2 diabetes is the most common type of diabetes and its prevalence is rapidly increasing throughout the world. Modifications of lifestyle such as suitable diet and exercise programs along with pharmacotherapy and education of patients are beneficial therapies for patients with type 2 diabetes. The ethnopharmacological use of herbal medicines, many of them part of our diet as spices, vegetables and fruits, has been developed for the treatment of diabetes due to inexpensiveness, easy availability and few side effects. Our aim is to present a review for researchers who are interested in the biologically active dietary plants traditionally utilized in the treatment of diabetes. Information was obtained from a literature search of electronic databases such as Google Scholar, Pubmed, Sci Finder and Cochrane. Common and scientific name of the fruits, vegetables, beverages, oils and spices and the words 'antidiabetic', 'hypoglycemic', 'anti-hyperglycemic', 'type 2 diabetes' were used as keywords for search. Certain fruits and vegetables are functional foods and their consumption reduces the incidence of type 2 diabetes. Hypoglycemic effects of fruits and vegetables may be due to their inducing nature on pancreatic β-cells for insulin secretion, or bioactive compounds such as flavonoids, alkaloids and anthocyanins, which act as insulin-like molecules or insulin secretagogues. This write-up covers hypoglycemic, anti-hyperglycemic and anti-diabetic activities of some dietary fruits, vegetables, beverages, oils and spices and their active hypoglycemic constituents. Including such plant species in the diet might improve management of type 2 diabetes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Optimization of Bleaching Parameters in Refining Process of Kenaf Seed Oil with a Central Composite Design Model.

    PubMed

    Chew, Sook Chin; Tan, Chin Ping; Nyam, Kar Lin

    2017-07-01

    Kenaf seed oil has been suggested to be used as nutritious edible oil due to its unique fatty acid composition and nutritional value. The objective of this study was to optimize the bleaching parameters of the chemical refining process for kenaf seed oil, namely concentration of bleaching earth (0.5 to 2.5% w/w), temperature (30 to 110 °C) and time (5 to 65 min) based on the responses of total oxidation value (TOTOX) and color reduction using response surface methodology. The results indicated that the corresponding response surface models were highly statistical significant (P < 0.0001) and sufficient to describe and predict TOTOX value and color reduction with R 2 of 0.9713 and 0.9388, respectively. The optimal parameters in the bleaching stage of kenaf seed oil were: 1.5% w/w of the concentration of bleaching earth, temperature of 70 °C, and time of 40 min. These optimum parameters produced bleached kenaf seed oil with TOTOX value of 8.09 and color reduction of 32.95%. There were no significant differences (P > 0.05) between experimental and predicted values, indicating the adequacy of the fitted models. © 2017 Institute of Food Technologists®.

  7. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Muhammad; Ahmad, Siti Hajar; Khoramnia, Anahita; Ghazali, Hasanah Mohd

    2014-01-01

    Blends (30:70, 50:50 and 70:30 w/w) of Moringa oleifera seed oil (MoO) with palm olein (PO), palm stearin (PS), palm kernel oil (PKO) and virgin coconut oil (VCO) were prepared. To determine the physicochemical properties of the blends, the iodine value (IV), saponication value (SV), fatty acid (FA) composition, triacylglycerol (TAG) composition, thermal behaviour (DSC) and solid fat content (SFC) tests were analysed. The incorporation of high oleic acid (81.73%) MoO into the blends resulted in the reduction of palmitic acid content of PO and PS from 36.38% to 17.17% and 54.66% to 14.39% and lauric acid content of PKO and VCO from 50.63% to 17.70% and 51.26% to 26.05% respectively while oleic acid and degree of unsaturation were increased in all blends. Changes in the FA composition and TAG profile have significantly affected the thermal behavior and solid fat content of the oil blends. In MoO/PO blends the melting temperature of MoO decreased while, in MoO/PS, MoO/PKO and MoO/VCO blends, it increased indicating produce of zero-trans harder oil blends without use of partial hydrogenation. The spreadability of PS, PKO and VCO in low temperatures was also increased due to incorporation of MoO. The melting point of PS significantly decreased in MoO/PS blends which proved to be suitable for high oleic bakery shortening and confectionary shortening formulation. The finding appears that blending of MoO with other vegetable oils would enable the initial properties of the oils to be modified or altered and provide functional and nutritional attributes for usage in various food applications, increasing the possibilities for the commercial use of these oils.

  8. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol-methanol mixtures.

    PubMed

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar

    2014-12-01

    This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol-methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol-methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1-2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol-methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils.

    PubMed

    Ji, Wenhua; Zhang, Mingming; Duan, Wenjuan; Wang, Xiao; Zhao, Hengqiang; Guo, Lanping

    2017-11-15

    Phytic acid-stabilized Fe 3 O 4 -graphene oxide (GOPA@Fe 3 O 4 ) was assembled by microwave-enhanced hydrothermal synthesis and super-amphipathicity was demonstrated by measurement of dynamic oil and water contact angles. GOPA@Fe 3 O 4 was used as a sorbent for enrichment of eight polycyclic aromatic hydrocarbons (PAHs) from vegetable oils by magnetic solid-phase extraction (MSPE). The extraction-desorption factors were systematically investigated and, under optimum conditions, the super-amphiphilic sorbent achieved wide linear ranges (0.2-200ngg -1 ), satisfactory precision (3.44-6.64% for intra-day and 5.39-8.41% for inter-day) and low limits of detection (LODs, 0.06-0.15ngg -1 ) for PAHs. Excellent recoveries (85.6-102.3%) for spiked PAHs were obtained with genuine vegetable oil samples. These results indicate that MSPE using GOPA@Fe 3 O 4 as the sorbent, coupled with high performance liquid chromatography (HPLC), is an efficient and simple method for the detection of low concentrations of PAHs in vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. U.S. Refining Capacity Utilization

    EIA Publications

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  11. Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol.

    PubMed

    Dang, Tan Hiep; Chen, Bing-Hung; Lee, Duu-Jong

    2013-10-01

    Biodiesel production from transesterification of vegetable oils in excess methanol was performed by using as-prepared catalyst from low-cost kaolin clay. This effective heterogeneous catalyst was successfully prepared from natural kaolin firstly by dehydroxylation at 800°C for 10h and, subsequently, by NaOH-activation hydrothermally at 90°C for 24h and calcined again at 500°C for 6h. The as-obtained catalytic material was characterized with instruments, including FT-IR, XRD, SEM, and porosimeter (BET/BJH analysis). The as-prepared catalyst was advantageous not only for its easy preparation, but also for its cost-efficiency and superior catalysis in transesterification of vegetable oils in excess methanol to produce fatty acid methyl esters (FAMEs). Conversion efficiencies of soybean and palm oils to biodiesel over the as-prepared catalysts reached 97.0±3.0% and 95.4±3.7%, respectively, under optimal conditions. Activation energies of transesterification reactions of soybean and palm oils in excess methanol using these catalysts are 14.09 kJ/mol and 48.87 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Preparation and Viscosity of Biodiesel from New and Used Vegetable Oil: An Inquiry-Based Environmental Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clarke, Nathan R.; Casey, John Patrick; Brown, Earlene D.; Oneyma, Ezenwa; Donaghy, Kelley J.

    2006-01-01

    A synthesis is developed to make biodiesel from vegetable oils such as soybean, sunflower, and corn oil, as an exercise in the laboratory. Viscosity measurements were used to gain an understanding of an intermolecular property of the biodiesel and that has limited the implementation of biodiesel on a wide scale basis, solidification at low…

  13. Modeling the dose effects of soybean oil in salad dressing on carotenoid and fat-soluble vitamin bioavailability in salad vegetables.

    PubMed

    White, Wendy S; Zhou, Yang; Crane, Agatha; Dixon, Philip; Quadt, Frits; Flendrig, Leonard M

    2017-10-01

    Background: Previously, we showed that vegetable oil is necessary for carotenoid absorption from salad vegetables. Research is needed to better define the dose effect and its interindividual variation for carotenoids and fat-soluble vitamins. Objective: The objective was to model the dose-response relation between the amount of soybean oil in salad dressing and the absorption of 1 ) carotenoids, phylloquinone, and tocopherols in salad vegetables and 2 ) retinyl palmitate formed from the provitamin A carotenoids. Design: Women ( n = 12) each consumed 5 vegetable salads with salad dressings containing 0, 2, 4, 8, or 32 g soybean oil. Blood was collected at selected time points. The outcome variables were the chylomicron carotenoid and fat-soluble vitamin area under the curve (AUC) and maximum content in the plasma chylomicron fraction ( C max ). The individual-specific and group-average dose-response relations were investigated by fitting linear mixed-effects random coefficient models. Results: Across the entire 0-32-g range, soybean oil was linearly related to the chylomicron AUC and C max values for α-carotene, lycopene, phylloquinone, and retinyl palmitate. Across 0-8 g of soybean oil, there was a linear increase in the chylomicron AUC and C max values for β-carotene. Across a more limited 0-4-g range of soybean oil, there were minor linear increases in the chylomicron AUC for lutein and α- and total tocopherol. Absorption of all carotenoids and fat-soluble vitamins was highest with 32 g oil ( P < 0.002). For 32 g oil, the interindividual rank order of the chylomicron AUCs was consistent across the carotenoids and fat-soluble vitamins ( P < 0.0001). Conclusions: Within the linear range, the average absorption of carotenoids and fat-soluble vitamins could be largely predicted by the soybean oil effect. However, the effect varied widely, and some individuals showed a negligible response. There was a global soybean oil effect such that those who absorbed more of

  14. Sorting out the phytoprostane and phytofuran profile in vegetable oils.

    PubMed

    Domínguez-Perles, Raúl; Abellán, Ángel; León, Daniel; Ferreres, Federico; Guy, Alexander; Oger, Camille; Galano, Jean Marie; Durand, Thierry; Gil-Izquierdo, Ángel

    2018-05-01

    Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D 1t -PhytoP, 9-D 1t -PhytoP, 16-B 1 -PhytoP, and 9-L 1 -PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL -1 , respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL -1 , and of ent-16-(RS)-9-epi-ST-Δ 14 -10-PhytoF (21.46 μg mL -1 ). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL -1 ). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Properties of Cookies Made with Natural Wax-Vegetable Oil Organogels.

    PubMed

    Hwang, Hong-Sik; Singh, Mukti; Lee, Suyong

    2016-05-01

    The aim of this study was to examine the feasibility of cookies in which the conventional margarine is replaced with an organogel of vegetable oil (VO) and natural wax. New cookies from VO organogels contain no trans fats and much less saturated fats than cookies made with a conventional margarine. To understand the effects of different kinds of waxes, organogels were prepared from 4 different waxes including sunflower wax (SW), rice bran wax (RBW), beeswax, and candelilla wax and properties of cookie dough and cookie were evaluated. To investigate the effects of different VOs on the properties of cookies, 3 VOs including olive oil, soybean oil and flaxseed oil representing oils rich in oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3), respectively, were used. Both the wax and VO significantly affected properties of organogel such as firmness and melting behavior shown in differential scanning calorimetry. The highest firmness of organogel was observed with SW and flaxseed oil. Properties of dough such as hardness and melting behavior were also significantly affected by wax and VO while trends were somewhat different from those for organogels. SW and RBW provided greatest hardnesses to cookie dough. However, hardness, spread factor, and fracturability of cookie containing the wax-VO organogel were not significantly affected by different waxes and VOs. Several cookies made with wax-VO organogels showed similar properties to cookies made with a commercial margarine. Therefore, this study shows the high feasibility of utilization of the organogel technology in real foods such as cookies rich in unsaturated fats. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Soybean plant-based toxicity assessment and phytoremediation of soils contaminated by vegetable and mineral oils used in power electrical transformers.

    PubMed

    Sanderson, Karina; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando Rodolfo; Trigueros, Daniela Estelita Goes; Júnior, Luiz Antônio Zanão; Schuelter, Adilson Ricken; Neves, Camila Vargas; Kroumov, Alexander Dimitrov

    2018-04-01

    In this work, deleterious effects in soils due to the presence of dielectric fluids were investigated. For this purpose, vegetable (Envirotemp ® FR3) and mineral (Lubrax AV 66 IN) oils were used for simulating a set of soils contaminated in different oil contents (0.5, 1.0, 2.0, 2.5, 5.0, 7.5 and 10%) in which three 120-days soybean crop periods (SCP) were carried out using the species Glycine max (L.) Merr. Both soil and soybean plant samples were analysed on following the changes on chemical attributes, content of oils and greases (COG) in soils and phytotechnical characteristics of soybean plant. No significant changes on soil chemical attributes were found. For a 0.5% vegetable oil fraction, COG removals of 35, 60 and 90% were observed after the 1st, 2nd, and 3rd SCPs, respectively, whereas removals of 25, 40 and 70% were observed for 0.5% mineral oil fraction after the 1st, 2nd, and 3rd SCPs, respectively. There was an effectively accumulated removal on all tested oil fractions as being proportional to the integrated 120-days SCPs, suggesting a lesser number of crops for a complete abatement of oil fraction in soil. A 100% recovery on the seedlings emergence fractions was also evidenced, revealing that at least a number of 7 and 9 SCPs should be applied continuously in soils contaminated by vegetable and mineral oils, respectively, in order to no longer jeopardize soybean plant growth. Finally, an empirical prediction of the number of SCPs necessary for the complete removal of oil from the soil was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Optical methods and differential scanning calorimetry as a potential tool for discrimination of olive oils (extra virgin and mix with vegetable oils)

    NASA Astrophysics Data System (ADS)

    Nikolova, Kr.; Yovcheva, T.; Marudova, M.; Eftimov, T.; Bodurov, I.; Viraneva, A.; Vlaeva, I.

    2016-03-01

    Eleven samples from olive oil have been investigated using four physical methods - refractive index measurement, fluorescence spectra, color parameters and differential scanning colorimetry. In pomace olive oil (POO) and extra virgin olive oil (EVOO) the oleic acid (65.24 %-78.40 %) predominates over palmitic (10.47 %-15.07 %) and linoleic (5.26 %-13.92 %) acids. The fluorescence spectra contain three peaks related to oxidation products at about λ = (500-540) nm, chlorophyll content at about λ = (675-680) nm and non determined pigments at λ = (700-750) nm. The melting point for EVOO and POO is between -1 °C and -6 °C. In contrast, the salad olive oils melt between -24 °C and -30 °C. The refractive index for EVOO is lower than that for mixed olive oils. The proposed physical methods could be used for fast and simple detection of vegetable oils in EVOO without use of chemical substances. The experimental results are in accordance with those obtained by chemical analysis.

  18. Production and characterization of a functional Iranian white brined cheese by replacement of dairy fat with vegetable oils.

    PubMed

    Achachlouei, B Fathi; Hesari, J; Damirchi, S Azadmard; Peighambardoust, Sh; Esmaiili, M; Alijani, S

    2013-10-01

    Full-fat cheese usually contains high amounts of saturated fatty acids and cholesterol, which may have negative health effects. In this study, full-fat white brined cheese, as a control sample, and experimental cheeses with olive and canola oils (T1, white brined cheese containing 50% canola oil, T2, white brined cheese containing 50% olive oil, T3, white brined cheese containing 100% canola oil and T4, white brined cheese containing 100% olive oil) were prepared from bovine milk. Physicochemical properties, lipolysis, proteolysis patterns and sensorial properties in the prepared samples were determined during 80 days of storage at 20-day intervals. Cheese incorporating vegetable oils showed lower amounts of saturated fatty acids and higher amounts of unsaturated fatty acids compared with the full-fat cheese (control) samples. Moisture, pH, lipolysis value, as assessed by the acid-degree value, and proteolysis values (pH 4.6 SN/TN% and NPN/TN%) significantly (p < 0.05) were increased in all samples, whereas total titrable acidity decreased during 40 days of ripening but then increased slightly. Sensory properties of white brined cheese incorporating with vegetable oils were different from those of full-fat cheese samples. White brined cheese containing olive and canola oils (100% fat substitution) received better sensory scores compared to other samples. The results showed that it is possible to replace dairy fat with olive and canola oils, which can lead to produce a new healthy and functional white brined cheese.

  19. Isotope dilution gas chromatography with mass spectrometry for the analysis of 4-octyl phenol, 4-nonylphenol, and bisphenol A in vegetable oils.

    PubMed

    Wu, Pinggu; Zhang, Liqun; Yang, Dajin; Zhang, Jing; Hu, Zhengyan; Wang, Liyuan; Ma, Bingjie

    2016-03-01

    By the combination of solid-phase extraction as well as isotope dilution gas chromatography with mass spectrometry, a sensitive and reliable method for the determination of endocrine-disrupting chemicals including bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils was established. The application of a silica/N-(n-propyl)ethylenediamine mixed solid-phase extraction cartridge achieved relatively low matrix effects for bisphenol A, 4-octylphenol, and 4-nonylphenol in vegetable oils. Experiments were designed to evaluate the effects of derivatization, and the extraction parameters were optimized. The estimated limits of detection and quantification for bisphenol A, 4-octylphenol, and 4-nonylphenol were 0.83 and 2.5 μg/kg, respectively. In a spiked experiment in vegetable oils, the recovery of the added bisphenol A was 97.5-110.3%, recovery of the added 4-octylphenol was 64.4-87.4%, and that of 4-nonylphenol was 68.2-89.3%. This sensitive method was then applied to real vegetable oil samples from Zhejiang Province of China, and none of the target compounds were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Dispersive liquid-liquid microextraction of phenolic compounds from vegetable oils using a magnetic ionic liquid.

    PubMed

    Zhu, Shuqiang; Wang, Lijun; Su, Along; Zhang, Haixia

    2017-08-01

    A novel method was developed for the determination of two endocrine-disrupting chemicals, bisphenol A and 4-nonylphenol, in vegetable oil by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography with tandem mass spectrometry. Using a magnetic liquid as the microextraction solvent, several key parameters were optimized, including the type and volume of the magnetic liquid, extraction time, amount of dispersant, and the type of reverse extractant. The detection limits for bisphenol A and 4-nonylphenol were 0.1 and 0.06 μg/kg, respectively. The recoveries were 70.4-112.3%, and the relative standard deviations were less than 4.2%. The method is simple for the extraction of bisphenol A and 4-nonylphenol from vegetable oil and suitable for routine analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, Dayna M.; Marquez, Francisco M.

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gasesmore » to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO 2 emissions that could affect the environment were, in all cases, less than 4.1%.« less

  2. Production of biodiesel from vegetable oils; Producción de biodiesel a partir de aceites vegetales

    DOE PAGES

    Ortiz, Dayna M.; Marquez, Francisco M.

    2014-06-10

    One of the major impacts that humans have had on the world is the consequence of the use of natural resources of the planet, whose purpose has been the energy supply for economic and technological development. This economic development has caused an increase in the demand for goods and services in industrialized countries, and in turn has led to an increase in per capita consumption of energy worldwide. For this reason, it is very important to develop new energy alternatives to reduce the actual dependence on petroleum and, at the same time, reduce the impact of emissions of greenhouse gasesmore » to the environment. An alternative to using fossil fuels is biodiesel, which is biodegradable, eco-friendly, and represents an economical source of energy. Biodiesel may be produced by the transesterification reaction of new or used vegetable oils (for example sunflower, corn, or olive oil) with a short chain alcohol (methanol) in the presence of a catalyst (NaOH). In the present work we have synthesized biodiesel from these three types of vegetable oils that have been subsequently characterized. Different chemical tests have been used to ensure the quality of the biodiesel obtained. The results indicate that sunflower oil provided better efficiency biodiesel, followed by corn and olive oils. CO 2 emissions that could affect the environment were, in all cases, less than 4.1%.« less

  3. Toxicity of vegetable oils to the coconut mite Aceria guerreronis and selectivity against the predator Neoseiulus baraki.

    PubMed

    Oliveira, Natália N F C; Galvão, Andreia S; Amaral, Ester A; Santos, Auderes W O; Sena-Filho, José G; Oliveira, Eugenio E; Teodoro, Adenir V

    2017-05-01

    The coconut mite, Aceria guerreronis (Acari: Eriophyidae), is a major tropical pest of coconut. Here, we assessed the chemical profiles and the potential use of babassu, degummed soybean, and coconut oils to control A. guerreronis as well as their side-effects on the predatory mite Neoseiulus baraki (Acari: Phytoseiidae), a key natural enemy of the coconut mite. Babassu and coconut oils had similar fatty acids chemical profiles. All vegetable oils showed toxicity to A. guerreronis; degummed soybean oil exhibited the highest toxicity (LC 50  = 0.15 µL/cm 2 ). Although all oils were less toxic to N. baraki, their potential to attract/repel this predatory mite differed. Whereas N. baraki females were unresponsive to coconut oil at both concentrations (i.e., LC 50 and LC 99 estimated for A. guerreronis), irrespective of exposure period (i.e., 1 or 24 h), the babassu oil repelled the predator, independent of exposure period, when applied at its LC 99 (1.48 µL/cm 2 ). Intriguingly, this oil also exhibited attractiveness to N. baraki 24 h after exposure when applied at its LC 50 (0.26 µL/cm 2 ). A similar attractiveness pattern was recorded 24 h after N. baraki was exposed to degummed soybean oil at both concentrations tested (LC 50  = 0.15 µL/cm 2 ; LC 99  = 1.39 µL/cm 2 ). However, N. baraki was repelled by degummed soybean oil at its LC 50 after 1 h of exposure. Therefore, the present study demonstrated that all the vegetable oils used here had higher toxicity to the coconut mite and considerable selectivity to the predator N. baraki, indicating they are promising tools that can potentially be included in management programs to control A. guerreronis in commercial coconut plantations.

  4. Plasticizer contamination in edible vegetable oil in a U.S. retail market.

    PubMed

    Bi, Xiaolong; Pan, Xiaojun; Yuan, Shoujun; Wang, Qiquan

    2013-10-02

    With the wide application of plastics, the contamination of plasticizers migrating from plastic materials in the environment is becoming ubiquitous. The presence of phthalates, the major group of plasticizers, in edible items has gained increasingly more concern due to their endocrine disrupting property. In this study, 15 plasticizers in 21 edible vegetable oils purchased from a U.S. retail market were analyzed using gas chromatograph-mass spectrometry. Di(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) were detected in all oil samples. Benzylbutyl phthalate (BzBP), dibutyl phthalate (DBP), and diethyl phthalate (DEP) were detected at a rate of 95.2, 90.5, and 90.5%, respectively. The detection rates for all other plasticizers ranged from 0 to 57.1%. The content of total plasticizers in oil samples was determined to be 210-7558 μg/kg, which was comparable to the content range in oil marketed in Italy. Although no significant difference (p = 0.05) in the total content of plasticizer was observed among oil species (soybean, canola, corn, and olive), the wider range and higher average of total content of plasticizers in olive oil than other oil species indicated the inconsistence of plasticizer contamination in olive oil and a possible priority for quality monitoring. No significant difference (p = 0.05) in the total content of plasticizers was found among glass-bottle (n = 4), plastic-bottle (n = 14), and metal-can (n = 3) packaging, implying that oil packaging is not the major cause of plasticizer contamination. The daily intake amount of plasticizers contained in edible oil on this U.S. retail market constituted only a minimum percentage of reference dose established by US EPA, thus no obvious toxicological effect might be caused. However, the fact that DEHP content in two olive oils exceeded relevant special migration limits (SMLs) of Europe and China might need attention.

  5. Phenols and the antioxidant capacity of Mediterranean vegetables prepared with extra virgin olive oil using different domestic cooking techniques.

    PubMed

    Ramírez-Anaya, Jessica Del Pilar; Samaniego-Sánchez, Cristina; Castañeda-Saucedo, Ma Claudia; Villalón-Mir, Marina; de la Serrana, Herminia López-García

    2015-12-01

    Potato, tomato, eggplant and pumpkin were deep fried, sautéed and boiled in Mediterranean extra virgin olive oil (EVOO), water, and a water/oil mixture (W/O). We determined the contents of fat, moisture, total phenols (TPC) and eighteen phenolic compounds, as well as antioxidant capacity in the raw vegetables and compared these with contents measured after cooking. Deep frying and sautéing led to increased fat contents and TPC, whereas both types of boiling (in water and W/O) reduced the same. The presence of EVOO in cooking increased the phenolics identified in the raw foods as oleuropein, pinoresinol, hydroxytyrosol and tyrosol, and the contents of vegetable phenolics such as chlorogenic acid and rutin. All the cooking methods conserved or increased the antioxidant capacity measured by DPPH, FRAP and ABTS. Multivariate analyses showed that each cooked vegetable developed specific phenolic and antioxidant activity profiles resulting from the characteristics of the raw vegetables and the cooking techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Influence of non-edible vegetable based oil as cutting fluid on chip, surface roughness and cutting force during drilling operation of Mild Steel

    NASA Astrophysics Data System (ADS)

    Susmitha, M.; Sharan, P.; Jyothi, P. N.

    2016-09-01

    Friction between work piece-cutting tool-chip generates heat in the machining zone. The heat generated reduces the tool life, increases surface roughness and decreases the dimensional sensitiveness of work material. This can be overcome by using cutting fluids during machining. They are used to provide lubrication and cooling effects between cutting tool and work piece and cutting tool and chip during machining operation. As a result, important benefits would be achieved such longer tool life, easy chip flow and higher machining quality in the machining processes. Non-edible vegetable oils have received considerable research attention in the last decades owing to their remarkable improved tribological characteristics and due to increasing attention to environmental issues, have driven the lubricant industry toward eco friendly products from renewable sources. In the present work, different non-edible vegetable oils are used as cutting fluid during drilling of Mild steel work piece. Non-edible vegetable oils, used are Karanja oil (Honge), Neem oil and blend of these two oils. The effect of these cutting fluids on chip formation, surface roughness and cutting force are investigated and the results obtained are compared with results obtained with petroleum based cutting fluids and dry conditions.

  7. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Koltunov, Alexander; Kokaly, Raymond F; Roberts, Dar A

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  8. Detection of salt marsh vegetation stress and recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico using AVIRIS data

    USGS Publications Warehouse

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill.

  9. Detection of Salt Marsh Vegetation Stress and Recovery after the Deepwater Horizon Oil Spill in Barataria Bay, Gulf of Mexico Using AVIRIS Data

    PubMed Central

    Khanna, Shruti; Santos, Maria J.; Ustin, Susan L.; Koltunov, Alexander; Kokaly, Raymond F.; Roberts, Dar A.

    2013-01-01

    The British Petroleum Deepwater Horizon Oil Spill in the Gulf of Mexico was the biggest oil spill in US history. To assess the impact of the oil spill on the saltmarsh plant community, we examined Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data flown over Barataria Bay, Louisiana in September 2010 and August 2011. Oil contamination was mapped using oil absorption features in pixel spectra and used to examine impact of oil along the oiled shorelines. Results showed that vegetation stress was restricted to the tidal zone extending 14 m inland from the shoreline in September 2010. Four indexes of plant stress and three indexes of canopy water content all consistently showed that stress was highest in pixels next to the shoreline and decreased with increasing distance from the shoreline. Index values along the oiled shoreline were significantly lower than those along the oil-free shoreline. Regression of index values with respect to distance from oil showed that in 2011, index values were no longer correlated with proximity to oil suggesting that the marsh was on its way to recovery. Change detection between the two dates showed that areas denuded of vegetation after the oil impact experienced varying degrees of re-vegetation in the following year. This recovery was poorest in the first three pixels adjacent to the shoreline. This study illustrates the usefulness of high spatial resolution airborne imaging spectroscopy to map actual locations where oil from the spill reached the shore and then to assess its impacts on the plant community. We demonstrate that post-oiling trends in terms of plant health and mortality could be detected and monitored, including recovery of these saltmarsh meadows one year after the oil spill. PMID:24223872

  10. Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil

    PubMed Central

    Tauk-Tornisielo, Sâmia M.; Arasato, Luciana S.; de Almeida, Alex F.; Govone, José S.; Malagutti, Eleni N.

    2009-01-01

    The fungi strains were tested in Bioscreen automated system to select the best nutritional source. Following, shaking submserse cultures were studied in media containing sole carbon or nitrogen source. The growth of these strains improved in media containing vegetable oil, with high concentration of lipids. The high concentration of γ-linolenic acid was obtained with M. circinelloides in culture containing sesame oil. PMID:24031370

  11. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  12. Formation of hydrocarbon compounds during the hydrocracking of non-edible vegetable oils with cobalt-nickel supported on hierarchical HZSM-5 catalyst

    NASA Astrophysics Data System (ADS)

    Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.

    2017-05-01

    The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.

  13. Layered double hydroxide catalyst for the conversion of crude vegetable oils to a sustainable biofuel

    NASA Astrophysics Data System (ADS)

    Mollaeian, Keyvan

    Over the last two decades, the U.S. has developed the production of biodiesel, a mixture of fatty acid methyl esters, using chiefly vegetable oils as feedstocks. However, there is much concern about the availability of high-quality vegetable oils for longterm biodiesel production. Problems have also risen due to the production of glycerol, an unwanted byproduct, as well as the need for process wash water. Therefore, this study was initiated to produce not only fatty acid methyl esters (FAMEs) but also fatty acid glycerol carbonates (FAGCs) by replacing methanol with dimethyl carbonate (DMC). The process would have no unnecessary byproducts and would be a simplified process compared to traditional biodiesel. In addition, this altering of the methylating agent could convert triglycerides, free fatty acids, and phospholipids to a sustainable biofuel. In this project, Mg-Al Layered Double Hydroxide (LDH) was optimized by calcination in different temperature varied from 250°C to 450°C. The gallery between layers was increased by intercalating sodium dodecylsulfate (SDS). During catalyst preparation, the pH was controlled ~10. In our experiment, triazabicyclodecene (TBD) was attached with trimethoxysilane (3GPS) as a coupling agent, and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) was added to remove SDS from the catalyst. The catalyst was characterized by XRD, FTIR, and Raman spectroscopy. The effect of the heterogeneous catalyst on the conversion of canola oil, corn oil, and free fatty acids was investigated. To analyze the conversion of lipid oils to biofuel an in situ Raman spectroscopic method was developed. Catalyst synthesis methods and a proposed mechanism for converting triglycerides and free fatty acids to biofuel will be presented.

  14. Transformation of soil and vegetable conditions at oil production territories

    NASA Astrophysics Data System (ADS)

    Gatina, Evgeniia

    2017-04-01

    On the territory of modern oil production soil, vegetation, ecosystem conditions of the environment are significantly transformed. Researches have been conducted on the oil production territories located in a boreal coniferous forest natural zone from 2005 to 2015. Standard geobotanical and soil methods are used. Mechanical destruction of a plant cover, change of the water conditions, intake of oil products and salty waters in ecosystems, pollution of the atmosphere are considered as the major technology-related factors defining transformation of land ecosystems at operation of the oil field. Under the mechanical destruction of a plant cover the pioneer plant communities are formed. These communities are characterized by most reduced specific wealth with prevalence of types of meadow groups of plants and presence of types of wetland groups of plants. The biodiversity of biocenosis which are affected linear infrastructure facilities of oil production territories and change of the water conditions, decreases. It is observed decrease in species wealth, simplification of structure of communities. Under the salting of soils in ecosystems there is a decrease species diversity of communities to prevalence nitrophilous and meadow plant species. At the increased content of organic substances in the soils that is a consequence of intake of oil products, is characteristic increase in specific richness of communities, introduction of types of wetland and oligotrophic groups of plants in forest communities. Influence depends on distance to an influence source. In process of removal from a source of atmospheric pollution in forest communities there is a decrease in species diversity and complication of structure of community. It is caused by introduction of types of meadow groups of plants in ecotone sites of the forest communities located near a source of influence and restoration of structural features of forest communities in process of removal from an influence source

  15. Effect of heating oils and fats in containers of different materials on their trans fatty acid content.

    PubMed

    Kala, A L Amrutha; Joshi, Vishal; Gurudutt, K N

    2012-08-30

    The nature of the container material and temperature employed for deep-frying can have an influence on the development of trans fatty acids (TFAs) in the fat used. The present study was undertaken to determine the effect of heating vegetable oils and partially hydrogenated vegetable fats with different initial TFA content in stainless steel, Hindalium (an aluminium alloy), cast iron and glass containers. Ground nut oil (oil 1), refined, bleached and deodorised (RBD) palmolein (oil 2) and two partially hydrogenated vegetable oils with low (fat 1) and high (fat 2) TFA content were uniformly heated at 175-185 °C over a period of 12 h. An increase in TFA content to 20 g kg⁻¹ was observed in oil 2 in the cast iron container, while a decrease in TFA content of 20-30 g kg⁻¹ was observed in fat 2 in all containers. The heating process of fats and oils also led to an increase in Butyro refractometer reading and colour values. This study showed that the TFA 18:1t content of oil 1, oil 2 and fat 1 increased with repeated or prolonged heating. The cast iron container showed the highest increase in TFA 18:1t for RBD palmolein (oil 2). The amount of linoleic acid trans isomers formed in the heating process was negligible. Fat 2 with high initial TFA content showed a decrease in TFA 18:1 and 18:2 on heating in all containers. Oils heated in glass and stainless steel containers showed less TFA 18:1t formation. Copyright © 2012 Society of Chemical Industry.

  16. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa (ATCC 10145) on waste frying oil as low cost carbon source.

    PubMed

    Wadekar, S D; Kale, S B; Lali, A M; Bhowmick, D N; Pratap, A P

    2012-01-01

    Vegetable edible oils and fats are mainly used for frying purposes in households and the food industry. The oil undergoes degradation during frying and hence has to be replaced from time to time. Rhamnolipids are produced by microbial cultivation using refined vegetable oils as a carbon source and Pseudomonas aeruginosa (ATCC 10145). The raw material cost accounts for 10-30% of the overall cost of biosurfactant production and can be reduced by using low-cost substrates. In this research, attention was focused on the preparation of rhamnolipids, which are biosurfactants, using potential frying edible oils as a carbon source via a microbial fermentation technique. The use of low-cost substrates as a carbon source was emphasized to tilt the cost of production for rhamnolipids. The yield was 2.8 g/L and 7.5 g/L from waste frying oil before and after activated earth treatment, respectively. The crude product contained mainly dirhamnolipids, confirmed by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectroscopy (LC-MS), and (1)H-nuclear magnetic resonance (NMR). Hence, the treatment can be used to convert waste frying oil as a low-cost substrate into a cost-effective carbon source.

  17. Evaluation of various extracted vegetable oils, roasted soybeans, medium-chain triglyceride and an animal-vegetable fat blend for postweaning swine.

    PubMed

    Cera, K R; Mahan, D C; Reinhart, G A

    1990-09-01

    A total of 280 crossbred pigs weaned at 21 d of age and weighing approximately 6 kg were utilized in five replicates to evaluate pig growth responses when fed a basal diet or one of several dietary lipid sources during a 4-wk postweaning period. A basal corn-soybean meal-corn starch-dried whey diet was compared with diets supplemented at a 7.75% level with one of the following lipid sources: corn oil, coconut oil, soybean oil, medium-chain triglyceride (MCT) or an animal-vegetable blend. A sixth treatment evaluated a roasted soybean diet formulated to an energy:lysine level equivalent to that of the fat-supplemented diets. In Exp. II, 36 crossbred weanling barrows were used to determine apparent fat and N digestibilities when soybean oil, roasted soybean, coconut oil or the MCT-supplemented diets were fed. Although pigs fed coconut oil grew somewhat faster, fat inclusion generally did not increase pig growth rate or result in lowered feed intake during the initial weeks postweaning; during the latter portion of the starter phase the addition of dietary fat resulted in a higher growth rate but feed intake was unaffected, resulting in an overall improvement in feed-to-gain ratio (P less than .05) for all but the roasted soybean diet. Pigs fed coconut oil had higher serum triglyceride and lower serum urea concentrations than did pigs fed diets containing most other lipid sources. Pigs fed MCT and coconut oil diets had a higher (P less than .01) apparent fat digestibility during the initial 2 wk postweaning than pigs fed soybean oil or roasted soybean diets. Pigs fed MCT and roasted soybeans had poorest growth rates; apparent fat and N digestibilities were lowest (P less than .05) for the roasted soybean diet.

  18. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2014-11-25

    This is a method to reactively refine hydrocarbons, such as heavy oils with API gravities of less than 20.degree. and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure using a selected fluid at supercritical conditions. The reaction portion of the method delivers lighter weight, more volatile hydrocarbons to an attached contacting device that operates in mixed subcritical or supercritical modes. This separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques. This method produces valuable products with fewer processing steps, lower costs, increased worker safety due to less processing and handling, allow greater opportunity for new oil field development and subsequent positive economic impact, reduce related carbon dioxide, and wastes typical with conventional refineries.

  19. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.

    PubMed

    Roy, Marie-Claude; Foote, Lee; Ciborowski, Jan J H

    2016-05-01

    Reclaiming wetlands following open pit mining for industrial oil sand extraction is challenging due to the physical and chemical conditions of the post-mined landscape. The aim of our study was to examine and compare the influence of oil sands process water (OSPW) and material (fine fluid tails or FFT) on the plant community composition of created wetlands. Compared to created-unamended and natural wetlands, the created wetlands amended with OSPW and/or FFT (created-tailings wetlands) had significantly higher water salinity, conductivity, dissolved oxygen concentration and lower oxidative-reductive potential. Water chemistry parameters of created-unamended did not differ significantly from those of natural wetlands. The sediment of created wetlands had significantly less moisture, total nitrogen, and organic content than the natural wetlands. The application of OSPW/FFT in created wetlands will likely lead to initial vegetation composition atypical of natural regional wetlands. For the objective of reclaiming vegetation composition to the status of natural regional wetlands, unamended wetlands were the best reclamation option, based on the physical and chemical parameters measured. Despite being the favored reclamation option, created-unamended wetlands' physical and chemical characteristics remain atypical of natural wetlands. Most significantly, the basin morphometry of created wetlands was significantly different from that of naturally-formed wetlands in the region, and this appears to partly explain difference in vegetation composition. We also demonstrate that species richness alone is not a useful measure in wetland monitoring. Instead, plant community composition is a better indicator of wetland conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography.

    PubMed

    Ma, Lukai; Liu, Guoqin

    2017-12-27

    A group of toxic aldehydes such as, malondialdehyde (MDA), 4-hydroxy-2-hexenal (HHE), and 4-hydroxy-2-nonenal (HNE) have been found in various vegetable oils and oil-based foods. Then simultaneous determination of them holds a great need in both the oil chemistry field and food field. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation and detection of MDA, HHE, and HNE in vegetable oils by reversed-phase-high-performance liquid chromatography (RP-HPLC) coupled with photodiode array detector (PAD) at dual-channel detection mode. The effect of various experimental factors on the extraction performance, such as coextraction solvent system, butylated hydroxytoluene addition, and trichloroacetic acid addition were systematically investigated. Results showed that the linear ranges were 0.02-10.00 μg/mL for MDA, 0.02-4.00 μg/mL for HHE, and 0.03-4.00 μg/mL for HNE with the satisfactory correlation coefficient of >0.999 for all detected aldehydes. The limit of detection (LOD) and limit of quantification (LOQ) of MDA, HHE, and HNE were ∼0.021and 0.020 μg/mL, ∼0.009 and 0.020 μg/mL, and ∼0.014 and 0.030 μg/mL, respectively. Their recoveries were 99.64-102.18%, 102.34-104.61%, and 98.87-103.04% for rapeseed oil and 96.38-98.05%, 96.19-101.34%, and 96.86-99.04% for French fries, separately. Under the selected conditions, the developed methods was successfully applied to the simultaneous determination of MDA, HHE, and HNE in different tested vegetable oils. The results indicated that this method could be employed for the quality assessment of vegetable oils.

  1. Metabolism and Fatty Acid Profile in Fat and Lean Rainbow Trout Lines Fed with Vegetable Oil: Effect of Carbohydrates

    PubMed Central

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies. PMID:24124573

  2. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    PubMed

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  3. Effect of fertilizer formulation and bioaugmentation on biodegradation and leaching of crude oils and refined products in soils.

    PubMed

    Coulon, F; Brassington, K J; Bazin, R; Linnet, P E; Thomas, K A; Mitchell, T R; Lethbridge, G; Smith, J W N; Pollarda, S J T

    2012-09-01

    The effects of soil characteristics and oil types as well as the efficacy of two fertilizer formulations and three bioaugmentation packages in improving the bioremediation of oil-contaminated soils were assessed as a means of ex situ treatment selection and optimization through seven laboratory microcosm studies. The influence of bioremediation on leaching of oil from the soil was also investigated. The studies demonstrated the benefits ofbiostimulation to overcome nutrient limitation, as most of the soils were nutrient depleted. The application of both liquid and pelleted slow-release N and P fertilizers increased both the hydrocarbon biodegradation rates (by a factor of 1.4 to 2.9) and the percentage of hydrocarbon mass degraded (by > 30% after 12 weeks and 80% after 37 weeks), when compared with the unamended soils. Slow-release fertilizers can be particularly useful when multiple liquid applications are not practical or cost-effective. Bioaugmentation products containing inoculum plus fertilizer also increased biodegradation by 20% to 37% compared with unamended biotic controls; however, there was no clear evidence of additional benefits due to the inocula, compared with fertilizer alone. Therefore biostimulation is seen as the most cost-effective bioremediation strategy for contaminated soils with the levels of crude oil and refined products used in this study. However, site-specific considerations remain essential for establishing the treatability of oil-contaminated soils.

  4. Determination of Milk Fat Adulteration with Vegetable Oils and Animal Fats by Gas Chromatographic Analysis.

    PubMed

    Kim, Jin-Man; Kim, Ha-Jung; Park, Jung-Min

    2015-09-01

    This study assessed the potential application of gas chromatography (GC) in detecting milk fat (MF) adulteration with vegetable oils and animal fats and of characterizing samples by fat source. One hundred percent pure MF was adulterated with different vegetable oils and animal fats at various concentrations (0%, 10%, 30%, 50%, 70%, and 90%). GC was used to obtain the fatty acid (FA) profiles, triacylglycerol (TG) contents, and cholesterol contents. The pure MF and the adulterated MF samples were discriminated based on the total concentrations of saturated FAs and on the 2 major FAs (oleic acid [C18:1n9c] and linoleic acid [C18:2n6c], TGs [C52 and C54], and cholesterol contents using statistical analysis to compared difference. These bio-markers enabled the detection of as low as 10% adulteration of non-MF into 100% pure MF. The study demonstrated the high potential of GC to rapidly detect MF adulteration with vegetable and animal fats, and discriminate among commercial butter and milk products according to the fat source. These data can be potentially useful in detecting foreign fats in these butter products. Furthermore, it is important to consider that several individual samples should be analyzed before coming to a conclusion about MF authenticity. © 2015 Institute of Food Technologists®

  5. Evaluation of the Liberian Petroleum Refining Company operations: crude oil refining vs product importation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuels, G.; Barron, W.F.; Barnes, R.W.

    1985-02-01

    This report is one of a series of project papers providing background information for an assessment of energy options for Liberia, West Africa. It presents information on a controversial recommendation of the energy assessment - that the only refinery in the country be closed and refined products be imported for a savings of approximately $20 million per year. The report reviews refinery operations, discusses a number of related issues, and presents a detailed analysis of the economics of the refinery operations as of 1982. This analysis corroborates the initial estimate of savings to be gained from importing all refined products.more » 1 reference, 24 tables.« less

  6. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    PubMed

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  8. Refining Field Measurements of Methane Flux Rates from Abandoned Oil and Gas Wells

    NASA Astrophysics Data System (ADS)

    Lagron, C. S.; Kang, M.; Riqueros, N. S.; Jackson, R. B.

    2015-12-01

    Recent studies in Pennsylvania demonstrate the potential for significant methane emissions from abandoned oil and gas wells. A subset of tested wells was high emitting, with methane flux rates up to seven orders of magnitude greater than natural fluxes (up to 105 mg CH4/hour, or about 2.5LPM). These wells contribute disproportionately to the total methane emissions from abandoned oil and gas wells. The principles guiding the chamber design have been developed for lower flux rates, typically found in natural environments, and chamber design modifications may reduce uncertainty in flux rates associated with high-emitting wells. Kang et al. estimate errors of a factor of two in measured values based on previous studies. We conduct controlled releases of methane to refine error estimates and improve chamber design with a focus on high-emitters. Controlled releases of methane are conducted at 0.05 LPM, 0.50 LPM, 1.0 LPM, 2.0 LPM, 3.0 LPM, and 5.0 LPM, and at two chamber dimensions typically used in field measurements studies of abandoned wells. As most sources of error tabulated by Kang et al. tend to bias the results toward underreporting of methane emissions, a flux-targeted chamber design modification can reduce error margins and/or provide grounds for a potential upward revision of emission estimates.

  9. Extraction of tocopherolquinone from commercially produced vegetable oil waste and its regeneration back to vitamin E

    NASA Astrophysics Data System (ADS)

    Bayala, Isso

    Vegetable oils are the most important natural source of vitamin E in the human diet. These oils are refined in order to eliminate impurities and undesirable substances that may affect the taste or cause health risks. While the goal of the refinery is to improve the quality of certain organoleptic parameters such as odors, it also has some negative impacts on the content and stability of the micronutrients such as tocopherols and tocotrienols. Synthetic vitamin E now manufactured as all-racemic alpha tocopheryl acetate is usually marked as d, l-tocopherol or d, l-tocopheryl acetate with no known side effects, but has been proven to be less active than its natural form. Naturopathic and orthomolecular medicine advocates consider the synthetic vitamin E forms to offer little or no benefit for cancer, circulatory and heart diseases. The market for vitamin E has been growing since the year 2000 causing a gradual rise in pricing because of the shortage in supplies. On a geographical basis North America constitutes the largest consumer on the planet with 50 % of the synthetic vitamin E world market followed by Europe with 25 % and Latin America and Asia Pacific sharing equally the remaining balance. In response to the shortfall, several companies are modifying their operations by rationalizing their older facilities while upgrading technology and adding capacity to meet the demand. But this response has also its downside with companies obligated to meet tough environmental regulations. The purpose of the present dissertation was to develop a method that can help industries involved in vitamin E production maximize their productivity by transforming some of the waste products to vitamin E. To that end, a cost effective simple method was developed in chapter II using tin (II) to regenerate tocopherolquinone back to vitamin E. Chapter II also concerns a method developed to reduce tocopherolquinone back to vitamin E but this time using the chemical species chromium (III

  10. Oil-in-oil emulsions stabilised solely by solid particles.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-01-21

    A brief review of the stabilisation of emulsions of two immiscible oils is given. We then describe the use of fumed silica particles coated with either hydrocarbon or fluorocarbon groups in acting as sole stabilisers of emulsions of various vegetable oils with linear silicone oils (PDMS) of different viscosity. Transitional phase inversion of emulsions, containing equal volumes of the two oils, from silicone-in-vegetable (S/V) to vegetable-in-silicone (V/S) occurs upon increasing the hydrophobicity of the particles. Close to inversion, emulsions are stable to coalescence and gravity-induced separation for at least one year. Increasing the viscosity of the silicone oil enables stable S/V emulsions to be prepared even with relatively hydrophilic particles. Predictions of emulsion type from calculated contact angles of a silica particle at the oil-oil interface are in agreement with experiment provided a small polar contribution to the surface energy of the oils is included. We also show that stable multiple emulsions of V/S/V can be prepared in a two-step procedure using two particle types of different hydrophobicity. At fixed particle concentration, catastrophic phase inversion of emulsions from V/S to S/V can be effected by increasing the volume fraction of vegetable oil. Finally, in the case of sunflower oil + 20 cS PDMS, the study is extended to particles other than silica which differ in chemical type, particle size and particle shape. Consistent with the above findings, we find that only sufficiently hydrophobic particles (clay, zinc oxide, silicone, calcium carbonate) can act as efficient V/S emulsion stabilisers.

  11. One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction.

    PubMed

    Jiménez-Carvelo, Ana M; Pérez-Castaño, Estefanía; González-Casado, Antonio; Cuadros-Rodríguez, Luis

    2017-04-15

    A new method for differentiation of olive oil (independently of the quality category) from other vegetable oils (canola, safflower, corn, peanut, seeds, grapeseed, palm, linseed, sesame and soybean) has been developed. The analytical procedure for chromatographic fingerprinting of the methyl-transesterified fraction of each vegetable oil, using normal-phase liquid chromatography, is described and the chemometric strategies applied and discussed. Some chemometric methods, such as k-nearest neighbours (kNN), partial least squared-discriminant analysis (PLS-DA), support vector machine classification analysis (SVM-C), and soft independent modelling of class analogies (SIMCA), were applied to build classification models. Performance of the classification was evaluated and ranked using several classification quality metrics. The discriminant analysis, based on the use of one input-class, (plus a dummy class) was applied for the first time in this study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Simultaneous enantioselective determination of triadimefon and its metabolite triadimenol in edible vegetable oil by gel permeation chromatography and ultraperformance convergence chromatography/tandem mass spectrometry.

    PubMed

    Yao, Zhoulin; Li, Xiaoge; Miao, Yelong; Lin, Mei; Xu, Mingfei; Wang, Qiang; Zhang, Hu

    2015-11-01

    A novel, sensitive, and efficient enantioselective method for the determination of triadimefon and its metabolite triadimenol in edible vegetable oil, was developed by gel permeation chromatography and ultraperformance convergence chromatography/tandem triple quadrupole mass spectrometry. After the vegetable oil samples were prepared using gel permeation chromatography, the eluent was collected, evaporated, and dried with nitrogen gas. The residue was redissolved by adding methanol up to a final volume of 1 mL. The analytes of six enantiomers were analyzed on Chiralpak IA-3 column (150 × 4.6 mm) using compressed liquid CO2-mixed 14 % co-solvents, comprising methanol/acetonitrile/isopropanol = 20/20/60 (v/v/v) in the mobile phase at 30 °C, and the total separation time was less than 4 min at a flow rate of 2 mL/min. Quantification was achieved using matrix-matched standard calibration curves. The overall mean recoveries for six enantiomers from vegetable oil were 90.1-97.3 %, with relative standard deviations of 0.8-5.4 % intra-day and 2.3-5.0 % inter-day at 0.5, 5, and 50 μg/kg levels. The limits of quantification were 0.5 μg/kg for all enantiomers based on five replicate extractions at the lowest fortified level in vegetable oil. Moreover, the absolute configuration of six enantiomers had been determined based on comparisons of the vibrational circular dichroism experimental spectra with the theoretical curve obtained by density functional theory calculations. Application of the proposed method to the 40 authentic vegetable oil samples from local markets suggests its potential use in enantioselective determination of triadimefon and triadimenol enantiomers. Graphical Abstract Chemical structures and UPC(2)-MS/MS separation chromatograms of triadimefon and triadimenol.

  13. FIELD STUDIES ON USBM AND TOSCO II RETORTED OIL SHALES: VEGETATION, MOISTURE, SALINITY, AND RUNOFF, 1977-1980

    EPA Science Inventory

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cov...

  14. Soy Sauce Residue Oil Extracted by a Novel Continuous Phase Transition Extraction under Low Temperature and Its Refining Process.

    PubMed

    Zhao, Lichao; Zhang, Yong; He, Liping; Dai, Weijie; Lai, Yingyi; Yao, Xueyi; Cao, Yong

    2014-04-09

    On the basis of previous single-factor experiments, extraction parameters of soy sauce residue (SSR) oil extracted using a self-developed continuous phase transition extraction method at low temperature was optimized using the response surface methodology. The established optimal conditions for maximum oil yield were n-butane solvent, 0.5 MPa extraction pressure, 45 °C temperature, 62 min extraction time, and 45 mesh raw material granularity. Under these conditions, the actual yield was 28.43% ± 0.17%, which is relatively close to the predicted yield. Meanwhile, isoflavone was extracted from defatted SSR using the same method, but the parameters and solvent used were altered. The new solvent was 95% (v/v) ethanol, and extraction was performed under 1.0 MPa at 60 °C for 90 min. The extracted isoflavones, with 0.18% ± 0.012% yield, mainly comprised daidzein and genistein, two kinds of aglycones. The novel continuous phase transition extraction under low temperature could provide favorable conditions for the extraction of nonpolar or strongly polar substances. The oil physicochemical properties and fatty acids compositions were analyzed. Results showed that the main drawback of the crude oil was the excess of acid value (AV, 63.9 ± 0.1 mg KOH/g) and peroxide value (POV, 9.05 ± 0.3 mmol/kg), compared with that of normal soybean oil. However, through molecular distillation, AV and POV dropped to 1.78 ± 0.12 mg KOH/g and 5.9 ± 0.08 mmol/kg, respectively. This refined oil may be used as feedstuff oil.

  15. Biodiesel production from vegetable oil and waste animal fats in a pilot plant.

    PubMed

    Alptekin, Ertan; Canakci, Mustafa; Sanli, Huseyin

    2014-11-01

    In this study, corn oil as vegetable oil, chicken fat and fleshing oil as animal fats were used to produce methyl ester in a biodiesel pilot plant. The FFA level of the corn oil was below 1% while those of animal fats were too high to produce biodiesel via base catalyst. Therefore, it was needed to perform pretreatment reaction for the animal fats. For this aim, sulfuric acid was used as catalyst and methanol was used as alcohol in the pretreatment reactions. After reducing the FFA level of the animal fats to less than 1%, the transesterification reaction was completed with alkaline catalyst. Due to low FFA content of corn oil, it was directly subjected to transesterification. Potassium hydroxide was used as catalyst and methanol was used as alcohol for transesterification reactions. The fuel properties of methyl esters produced in the biodiesel pilot plant were characterized and compared to EN 14214 and ASTM D6751 biodiesel standards. According to the results, ester yield values of animal fat methyl esters were slightly lower than that of the corn oil methyl ester (COME). The production cost of COME was higher than those of animal fat methyl esters due to being high cost biodiesel feedstock. The fuel properties of produced methyl esters were close to each other. Especially, the sulfur content and cold flow properties of the COME were lower than those of animal fat methyl esters. The measured fuel properties of all produced methyl esters met ASTM D6751 (S500) biodiesel fuel standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterizing the Impacts of the Deepwater Horizon Oil Spill on Marshland Vegetation, Gulf Coast Louisiana, Using Airborne Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kokaly, R. F.; Roberts, D. A.; Heckman, D.; Piazza, S.; Steyer, G.; Couvillion, B.; Holloway, J. M.; Mills, C. T.; Hoefen, T. M.

    2010-12-01

    Between April-July 2010 oil from the nation's largest oil spill contaminated the coastal marshlands of Louisiana. Data from the Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) are being used to (1) delineate the area of impact, (2) quantify the depth of oil penetration into the marsh and (3) characterize the physical and chemical impacts of the oil on the ecosystem. AVIRIS was flown on NASA ER-2 and Twin Otter aircraft, acquiring data at 7.5 and 4.4 meter pixel size, respectively. Concurrently, field surveys and sample collections were made in the imaged areas. Data were collected in early May, early July, late July and mid-August over the area ranging from Terrebonne Bay to the end of the Mississippi River delta. AVIRIS data were converted from radiance to reflectance. Oiled areas were detected by comparing AVIRIS spectra to field and laboratory spectrometer measurements of oiled and unaffected vegetation using the USGS Material Identification and Characterization Algorithm (MICA). Results indicate that the area in and around Barataria Bay was most extensively and heavily affected. In field surveys, stems of Spartina alterniflora and Juncus roemerianus, the dominant species observed in the heavily oiled zones, were bent and broken by the weight of the oil, resulting in a damaged canopy that extended up to 30 meters into marsh. In less impacted zones, oil was observed on the plant stems but the canopy remained intact. In the bird's foot region of the delta, the area impacted was less extensive and the dominant affected species, Phragmites australis, suffered oiled stems but only minor fracturing of the canopy. Additional AVIRIS flights and field surveys are planned for the fall of 2010 and summer 2011. By comparing plant species composition, canopy biochemical content, and vegetation fractional cover within affected areas and to unaffected areas, we will continue to monitor degradation and recovery in the ecosystem, including on the longer-term chemical

  17. Comparison of Oxidation Stability and Quenchant Cooling Curve Performance of Soybean Oil and Palm Oil

    NASA Astrophysics Data System (ADS)

    Said, Diego; Belinato, Gabriela; Sarmiento, Gustavo S.; Otero, Rosa L. Simencio; Totten, George E.; Gastón, Analía; Canale, Lauralice C. F.

    2013-07-01

    The potential use of vegetable oil-derived industrial oils continues to be of great interest because vegetable oils are relatively non-toxic, biodegradable, and they are a renewable basestock alternative to petroleum oil. However, the fatty ester components containing conjugated double bonds of the triglyceride structure of vegetable oils typically produce considerably poorer thermal-oxidative stability than that achievable with petroleum basestocks under typical use conditions. Typically, these conditions involve furnace loads of hot steel (850 °C), which are rapidly immersed and cooled to bath temperatures of approximately 50-60 °C. This is especially true when a vegetable oil is held in an open tank with agitation and exposed to air at elevated temperatures for extended periods of time (months or years). This paper will describe the thermal-oxidative stability and quenching performance of soybean oil and palm oil and the resulting impact on the heat transfer coefficient. These results are compared to typical fully formulated, commercially available accelerated (fast) and an unaccelerated (slow) petroleum oil-based quenchants.

  18. Melting, crystallization and storage stability of virgin coconut oil and its blends by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).

    PubMed

    Srivastava, Yashi; Semwal, Anil Dutt; Sajeevkumar, Vallayil Appukuttan; Sharma, G K

    2017-01-01

    The blends were prepared of virgin coconut oil with refined soyabean oil (VCO-RSOY) and refined safflower oil (VCO-RSAFF). Blending with VCO improved the fatty acid composition which increased the shelf stability of 20:80 VCO-RSOY and VCO-RSAFF up to 12 months in different packaging systems such as low density polyethylene, linear low density polyethylene, metalized polyester pouches, polyethylene teteraphthalate, high density polyethylene (HDPE), Amber HDPE bottle. The specific spectral regions of FTIR proved to be very useful for the determination of adulteration as well as for the study of oxidation process. Band shifts observed at 3008, 1652, 1397, 1097, 912 and 845 cm -1 have been used to differentiate RSAFF from VCO. VCO spectrums did not have these chemical shifts. Further the spectrum of RSOY showed same band shifts as RSAFF except 1652, 1397, 869.6 and 845 cm -1 . Differential Scanning Calorimetry provided useful information regarding the nature of thermodynamic changes related to physical state of vegetable oil. The physical state changes included melting and crystallization events which require the intake and release of energy.

  19. Effects of replacing pork back fat with vegetable oils and rice bran fiber on the quality of reduced-fat frankfurters.

    PubMed

    Choi, Yun-Sang; Choi, Ji-Hun; Han, Doo-Jeong; Kim, Hack-Youn; Lee, Mi-Ai; Jeong, Jong-Youn; Chung, Hai-Jung; Kim, Cheon-Jei

    2010-03-01

    The effects of substituting olive, grape seed, corn, canola, or soybean oil and rice bran fiber on the chemical composition, cooking characteristics, fatty acid composition, and sensory properties of low-fat frankfurters were investigated. Ten percent of the total fat content of frankfurters with a total fat content of 30% (control) was partially replaced by one of the vegetable oils to reduce the pork fat content by 10%. The moisture and ash content of low-fat frankfurters with vegetable oil and rice bran fiber were all higher than the control (P<0.05). Low-fat frankfurters had reduced-fat content, energy values, cholesterol and trans-fat levels, and increased pH, cooking yield and TBA values compared to the controls (P<0.05). Low-fat frankfurters with reduced-fat content plus rice bran fiber had sensory properties similar to control frankfurters containing pork fat. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  20. Lipase catalyzed synthesis of neutral glycerides rich in micronutrients from rice bran oil fatty acid distillate.

    PubMed

    Nandi, Sumit; Gangopadhyay, Sarbani; Ghosh, Santinath

    2008-01-01

    Neutral glycerides with micronutrients like sterols, tocopherols and squalene may be prepared from cheap raw material like rice bran oil fatty acid distillate (RBO FAD). RBO FAD is an important byproduct of vegetable oil refining industries in the physical refining process. Glycerides like triacylglycerols (TAG), diacylglycerols (DAG) and monoacylglycerols (MAG) containing significant amounts of unsaponifiable matter like sterols, tocopherols and hydrocarbons (mainly squalene) may certainly be considered as novel functional food ingredients. Fatty acids present in RBO FAD were esterified with glycerol of varying amount (1:0.33, 1:0.5, 1:1 and 1:1.5 of FAD : glycerol ratio) for 8 h using non-specific enzyme NS 40013 (Candida antartica). After esterification the product mixture containing mono, di- and triglycerides was purified by molecular distillation to remove excess free fatty acids and also other volatile undesirable components. The purified product containing sterols, tocopherols and squalene can be utilized in various food formulations.

  1. Vegetable Oils and Animal Fats

    EPA Pesticide Factsheets

    non-petroleum oils are also regulated under CFR 112. Like petroleum oils, they can cause devastating physical effects, be toxic, destroy food supplies and habitats, produce rancid odors, foul shorelines and treatment plants, be flammable, and linger.

  2. Petroleum Oils

    EPA Pesticide Factsheets

    Different types of crude oil and refined product, of all different chemical compositions, have distinct physical properties. These properties affect the way oil spreads and breaks down, its hazard to marine and human life, and the likelihood of threat.

  3. Performance evaluation of NEEM oil and HONGE Oil as cutting fluid in drilling operation of mild steel

    NASA Astrophysics Data System (ADS)

    Jyothi, P. N.; Susmitha, M.; Sharan, P.

    2017-04-01

    Cutting fluids are used in machining industries for improving tool life, reducing work piece and thermal deformation, improving surface finish and flushing away chips from the cutting zone. Although the application of cutting fluids increases the tool life and Machining efficiency, but it has many major problems related to environmental impacts and health hazards along with recycling & disposal. These problems gave provision for the introduction of mineral, vegetable and animal oils. These oils play an important role in improving various machining properties, including corrosion protection, lubricity, antibacterial protection, even emulsibility and chemical stability. Compared to mineral oils, vegetable oils in general possess high viscosity index, high flash point, high lubricity and low evaporative losses. Vegetable oils can be edible or non-edible oils and Various researchers have proved that edible vegetable oils viz., palm oil, coconut oil, canola oil, soya bean oil can be effectively used as eco-friendly cutting fluid in machining operations. But in present situations harnessing edible oils for lubricants formation restricts the use due to increased demands of growing population worldwide and availability. In the present work, Non-edible vegetable oil like Neem and Honge are been used as cutting fluid for drilling of Mild steel and its effect on cutting temperature, hardness and surface roughness are been investigated. Results obtained are compared with SAE 20W40 (petroleum based cutting fluid)and dry cutting condition.

  4. Analysis of Benzo[a]pyrene in Vegetable Oils Using Molecularly Imprinted Solid Phase Extraction (MISPE) Coupled with Enzyme-Linked Immunosorbent Assay (ELISA)

    PubMed Central

    Pschenitza, Michael; Hackenberg, Rudolf; Niessner, Reinhard; Knopp, Dietmar

    2014-01-01

    This paper describes the development of a molecularly imprinted polymer-based solid phase extraction (MISPE) method coupled with enzyme-linked immunosorbent assay (ELISA) for determination of the PAH benzo[a]pyrene (B[a]P) in vegetable oils. Different molecularly imprinted polymers (MIPs) were prepared using non-covalent 4-vinylpyridine/divinylbenzene co-polymerization at different ratios and dichloromethane as porogen. Imprinting was done with a template mixture of phenanthrene and pyrene yielding a broad-specific polymer for PAHs with a maximum binding capacity (Q) of ∼32 μg B[a]P per 50 mg of polymer. The vegetable oil/n-hexane mixture (1:1, (v/v)) was pre-extracted with acetonitrile, the solvent evaporated, the residue reconstituted in n-hexane and subjected to MISPE. The successive washing with n-hexane and isopropanol revealed most suitable to remove lipid matrix constituents. After elution of bound PAHs from MISPE column with dichloromethane, the solvent was evaporated, the residue reconstituted with dimethyl sulfoxide and diluted 100-fold with methanol/water (10:90, (v/v)) for analysis of B[a]P equivalents with an ELISA. The B[a]P recovery rates in spiked vegetable oil samples of different fatty acid composition were determined between 63% and 114%. The presence of multiple PAHs in the oil sample, because of MIP selectivity and cross-reactivity of the ELISA, could yield overestimated B[a]P values. PMID:24887045

  5. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils.

    PubMed

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-04-15

    A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  7. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  8. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  9. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  10. 21 CFR 163.155 - Milk chocolate and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Milk chocolate and vegetable fat coating. 163.155... § 163.155 Milk chocolate and vegetable fat coating. (a) Description. Milk chocolate and vegetable fat...) Safe and suitable vegetable derived oils, fats, and stearins other than cacao fat. The oils, fats, and...

  11. Using supercritical fluids to refine hydrocarbons

    DOEpatents

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  12. Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage.

    PubMed

    Kehili, Mouna; Choura, Sirine; Zammel, Ayachi; Allouche, Noureddine; Sayadi, Sami

    2018-04-25

    Tomato peels by-product from a Tunisian industry was used for the extraction of lycopene-rich oleoresin using hexane solvent maceration. Tomato peels oleoresin, TPO, exhibited competitive free radicals scavenging activity with synthetic antioxidants. The efficacy of TPO in stabilizing refined olive (ROO) and sunflower (RSO) oils was investigated for five months, under accelerated shelf-life, compared to the synthetic antioxidant, butylated hydroxytoluene (BHT). TPO was added to ROO and RSO at four different concentrations, namely 250, 500, 1000 and 2000 µg/g and BHT standard at 200 µg/g. Lipid oxidation was tracked by measuring the peroxide value, acidity, conjugated dienes and trienes. Results suggested the highest efficiency of 250 µg/g and 2000 µg/g of TPO, referring to 5 µg/g and 40 µg/g of lycopene, for the oxidative stabilization of ROO and RSO, respectively. The protective effect of TPO against the primary oxidation of these refined oils was significantly correlated to their lycopene contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Vegetable oil induced inflammatory response by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea).

    PubMed

    Tan, Peng; Dong, Xiaojing; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-12-01

    High level of vegetable oil (VO) in diets could induce strong inflammatory response, and thus decrease nonspecific immunity and disease resistance in most marine fish species. The present study was conducted to investigate whether dietary VO could exert these anti-immunological effects by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea). Three iso-nitrogenous and iso-lipid diets with 0% (FO, fish oil, the control), 50% (FV, fish oil and vegetable oil mixed) and 100% (VO, vegetable oil) vegetable oil were fed to fish with three replicates for ten weeks. The results showed that activities of respiratory burst (RB) and alternative complement pathway (ACP), as well as disease resistance after immune challenge were significantly decreased in large yellow croaker fed VO diets compared to FO diets. Inflammatory response of experimental fish was markedly elevated by VO reflected by increase of pro-inflammatory cytokines (IL1β and TNFα) and decrease of anti-inflammatory cytokine (arginase I and IL10) genes expression. TLR-related genes expression, nucleus p65 protein, IKKα/β and IκBα phosphorylation were all significantly increased in the AT of large yellow croaker fed VO diets. Moreover, the expression of macrophage infiltration marker proteins (cluster of differentiation 68 [CD68] and colony-stimulating factor 1 receptor [CSF1R]) was significantly increased while the expression of anti-inflammatory M2 macrophage polarization marker proteins (macrophage mannose receptor 1 [MRC1] and cluster of differentiation 209 [CD209]) was significantly decreased in the AT of large yellow croaker fed VO diets. In conclusion, VO could induce inflammatory responses by activating TLR-NF-κB signalling, increasing macrophage infiltration into adipose tissue and polarization of macrophage in large yellow croaker. Copyright © 2016. Published by Elsevier Ltd.

  14. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation.

    PubMed

    Pagani, María Ayelén; Baltanás, Miguel A

    2010-02-01

    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  15. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  16. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    USDA-ARS?s Scientific Manuscript database

    Our mission is to develop new, value-added uses for commodity crops and oils. We chose to fulfill this mission while adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycerols (FSG) from the biocatalytic transester...

  17. Cardiac lesions in rats fed rapeseed oils.

    PubMed Central

    Charlton, K M; Corner, A H; Davey, K; Kramer, J K; Mahadevan, S; Sauer, F D

    1975-01-01

    Fully refined rapeseed oils containing different amounts of erucic acid (1.6%, 4.3% and 22.3%) were fed, at 20% by weight of diet, to weanling male and female Sprague-Dawley rats for periods up to 112 days. Transient myocardial lipidosis characterized by accumulation of fat droplets in myocardial fibers was marked in male and female rats fed oxidized and unoxidized rapeseed oil containing 22.3% erucic acid, moderate with rapeseed oil containing 4.3% erucic acid and very slight in rats fed rapeseed oil containing 1.6% erucic acid. Peak intensity of myocardial lipidosis occurred at three to seven days and regressed thereafter. Focal myocardial necrosis and fibrosis occurred in male rats fed rapeseed oils containing different levels of erucic acid for 112 days. The incidence of myocardial necrosis and fibrosis was markedly lower in female rats, and the incidence of these lesions in either sex was not affected by the state of oxidation of these oils. In a second experiment, male rats were fed diets containing crude, partially refined or fully refined rapeseed oils. There was no correlation between the number of foci of myocardial necrosis and fibrosis and the state of refinement of the oils, but there were generally fewer lesions in rats fed those oils having the lowest levels of erucic acid. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:1170010

  18. Composition and properties of virgin pistachio oils and their by-products from different cultivars.

    PubMed

    Ojeda-Amador, Rosa M; Fregapane, Giuseppe; Salvador, María Desamparados

    2018-02-01

    Pistachios (Pistacia vera) exhibit an interesting nutritional value, due to the high content of oleic acid and minor components with antioxidant and bioactive properties. This work aimed to characterize pistachio virgin oils and their partially defatted residual cakes, obtained from eight cultivars (Aegina, Avdat, Kastel, Kerman, Larnaka, Mateur, Napoletana, and Sirora). Interesting results on phenolics, tocopherols and antioxidant activity were observed, which were greatly affected by variety. Pistachio virgin oils are rich in healthy oleic acid (55-74%), phytosterols (3200-7600mg/kg) and γ-tocopherol (550-720mg/kg). A high content of phenolic compounds (8600-15000mg/kg gallic acid equivalents) and the corresponding antioxidant activities (12-46 and 155-496mmol/kg for DPPH and ORAC) of the residual cakes demonstrate their potential applications as functional ingredients and as rich sources of bioactive compounds. Moreover, virgin pistachio oils possess peculiar and pleasant sensory characteristics, contributing greater added value to the consumers compared to refined vegetable oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ANAEROBIC BIODEGRADABILITY OF NON-PETROLEUM OILS.

    EPA Science Inventory

    Research has demonstrated that vegetable oils are amenable to anaerobic biodegradation. This is in contrast to petroleum oils. Vegetable oils are already oxygenated because they are composed of fatty acids and glycerols, which contribute to the biodegradability. A strategy has be...

  20. Biocatalytic Refining of Soybean Oil into Cosmeceutical Ingredients

    USDA-ARS?s Scientific Manuscript database

    Our mission is to develop new, value-added uses for commodity crops and their oils. We strive to fulfill this mission with the self imposed responsibility of adhering as closely as possible to the tenants of “green” chemistry. We have developed patented, all-natural oils called Feruloyl Soy Glycer...

  1. Field studies on USBM and TOSCO II retorted oil shales: vegetation, moisture, salinity, and runoff, 1977-1980. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Berg, W.A.; Harbert, H.P. III

    1981-08-01

    Field studies were initiated in 1973 to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement within the soil/shale profile. Research plots with two types of retorted shales (TOSCO II and USBM) with leaching and soil cover treatments were established at two locations: low-elevation (Anvil Points) and high-elevation (Piceance Basin) in western Colorado. Vegetation was established by intensive management including leaching, N and P fertilization, seeding, mulching, and irrigation. After seven growing seasons, a good vegetative cover remained with few differences between treatments, with the exception of the TOSCO retorted shale, south-aspect, whichmore » consistently supported less perennial vegetative cover than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed. Rodent activity on some treatments had a significantly negative effect on vegetative cover.« less

  2. Nutritionally enriched 1,3-diacylglycerol-rich oil: Low calorie fat with hypolipidemic effects in rats.

    PubMed

    Prabhavathi Devi, B L A; Gangadhar, K N; Prasad, R B N; Sugasini, D; Rao, Y Poorna Chandra; Lokesh, B R

    2018-05-15

    An enzymatic process was developed for the preparation of a nutritionally enriched 1,3-diacylglycerol(DAG)-rich oil from a blend of refined sunflower and rice bran oils. The process involves hydrolysis of vegetable oil blend using Candida cylindracea followed by esterification with glycerol using Lipozyme RM1M. The resultant DAG-rich oil contains 84% of DAG (66% of 1,3-DAG, 18% of 1,2-DAG) and 16% of triacylglycerol (TAG) along with micro nutrients like γ-oryzanol, tocotrienols, tocopherols and phytosterols. Nutritional studies of the DAG-rich oil were conducted in Wistar rats and compared with sunflower oil (SFO). The calorific value of the DAG-rich oil was estimated to be 6.45 Kcals/g as against 9.25 Kcals/g for SFO. The serum and liver cholesterol and TAG levels in rats fed with 1,3-DAG-rich oil were found to be significantly reduced as compared to rats fed diet containing SFO. We conclude that 1,3-DAG-rich oil is a low calorie fat and exhibits hypolipidemic effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    PubMed

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  4. Conflicting energy and environmental policies: The portsmouth oil refinery

    NASA Astrophysics Data System (ADS)

    Choi, Yearn Hong

    1984-03-01

    This case study presents the series of decision-making processes surrounding a current environmental issue—the Portsmouth oil refinery in Virginia. Crude oil must be refined before it can be used as fuel. Additionally, some oil must be desulfurized for use other than as gasoline. In 1977, the nation imported about one million barrels of oil a day. Although the US Department of Energy has emphasized the critical need for greater east coast refinery capability, the east coast is to supply only 25% of its refined oil needs. In the same year, the east coast met its demands for petroleum products from three sources: (a) refinery production, 22.7%, (b) product imports, 28.0%, and (c) products from the Gulf Coast, 49.3%.1 The energy program after the Arab oil embargo has an objective of encouraging the construction of oil refineries and petrochemical plants in the United States rather than abroad. The tariff is higher on imports of refined oil products than of crude oil, and new refineries are allowed to import a large proportion of their requirements tarifffree. The US federal government does not directly regulate the locations for oil refineries or methods of desulfurization. The oil import program, however, does influence decisions concerning location of desulfurization facilities and refineries, and air and water pollution standards affect methods of refining, besides making desulfurization necessary.

  5. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  7. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil.

    PubMed

    Matulka, R A; Noguchi, O; Nosaka, N

    2006-09-01

    To reduce the incorporation of dietary lipids into adipose tissue, modified fats and oils have been developed, such as medium-chain triacylglycerols (MCT). Typical dietary lipids from vegetable oils, termed long-chain triacylglycerols (LCT), are degraded by salivary, intestinal and pancreatic lipases into two fatty acids and a monoacyl glycerol; whereas, MCT are degraded by the same enzymes into three fatty acids and the simple glycerol backbone. Medium-chain fatty acids (MCFA) are readily absorbed from the small intestine directly into the bloodstream and transported to the liver for hepatic metabolism, while long-chain fatty acids (LCFA) are incorporated into chylomicrons and enter the lymphatic system. MCFA are readily broken down to carbon dioxide and two-carbon fragments, while LCFA are re-esterified to triacylglycerols and either metabolized for energy or stored in adipose tissue. Therefore, consumption of MCT decreases the incorporation of fatty acids into adipose tissue. However, MCT have technological disadvantages precluding their use in many food applications. A possible resolution is the manufacture and use of a triacylglycerol containing both LCT and MCT, termed medium- and long-chain triacylglycerol (MLCT). This manuscript describes studies performed for the safety evaluation of a MLCT oil enzymatically produced from MCT and edible vegetable oil (containing LCT), by a transesterification process. The approximate fatty acid composition of this MLCT consists of caprylic acid (9.7%), capric acid (3.3%), palmitic acid (3.8%), stearic acid (1.7%), oleic acid (51.2%), linoleic acid (18.4%), linolenic acid (9.0%), and other fatty acids (2.9%). The approximate percentages of long (L) and medium (M) fatty acids in the triacylglyerols are as follows: L, L, L (55.1%), L, L, M (35.2%), L, M, M (9.1%), and M, M, M (0.6%). The studies included: (1) acute study in rats (LD50>5000 mg/kg); (2) 6 week repeat-dose safety study via dietary administration to rats (NOAEL

  8. Effectiveness of Vegetation Index Transformation for Land Use Identifying and Mapping in the Area of Oil palm Plantation based on SPOT-6 Imagery (Case Study: PT.Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu)

    NASA Astrophysics Data System (ADS)

    Setyowati, H. A.; S, S. H. Murti B.; Sukentyas, E. S.

    2016-11-01

    The reflection of land surface, atmosphere and vegetation conditions affect the reflectance value of the object is recorded on remote sensing image so that it can affect the outcome of information extraction from remote sensing imagery one multispectral classification. This study aims to assess the ability of the transformation of generic vegetation index (Wide Dynamic Range Vegetation Index), the vegetation index transformation that is capable reducing the influence of the atmosphere (Atmospherically Resistant Vegetation Index), and the transformation of vegetation index that is capable of reducing the influence of the background soil (Second Modified Soil Adjusted Vegetation Index) for the identification and mapping of land use in the oil palm plantation area based on SPOT-6 archived on June 13, 2013 from LAPAN. The study area selected oil palm plantations PT. Tunggal Perkasa Plantations, Air Molek, Indragiri Hulu, Riau Province. The method is using the transformation of the vegetation index ARVI, MSAVI2, and WDRVI. Sample selection method used was stratified random sampling. The test method used mapping accuracy of the confusion matrix. The results showed that the best transformation of the vegetation index for the identification and mapping of land use in the plantation area is ARVI transformation with a total of accuracy is 96%. Accuracy of mapping land use settlements 100%, replanting 82.35%, 81.25% young oil palm, old oil palm 99.46%, 100% bush, body of water 100%, and 100% bare-soil.

  9. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    PubMed

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  10. A slope-ratio precision-fed rooster assay for determination of relative metabolizable energy values for fats and oils.

    PubMed

    Aardsma, M P; Parsons, C M

    2017-01-01

    The precision-fed rooster assay (PFRA) frequently yields TME n values for fats and oils in excess of their gross energies. Six experiments were conducted to determine if the PFRA could be combined with a slope-ratio type assay to yield more useful lipid TME n values. In experiment (EXP) 1, refined corn oil (RCO) was fed to conventional and cecectomized roosters at zero, 5, 10, 15, and 20% of a ground corn diet. In EXP 2 through 6, lipids were fed to conventional roosters at zero, 5, and 10% in a ground corn diet. Palomys (a novel lipid), high stearidonic acid soybean oil (SDASO), 2 animal-vegetable blends (AV1, AV2), a vegetable-based oil blend (VB), and corn oil from an ethanol plant (DDGSCO) were evaluated and compared to refined soybean oil (RSO) or RCO as the reference lipid. Multiple linear regression of diet TME n on supplemental lipid level generated regression coefficients that were used to calculate relative bioavailability values (RBV). In EXP 1, RCO was a suitable reference material as TME n linearly increased up to 20% RCO inclusion. There were some minor differences in TME n of RCO between conventional and cecetomized bird types. In EXP 2, Palomys was found to have a lower (P < 0.05) RBV (87%) than RCO. In EXP 3, there were no significant differences between SDASO and RSO. In EXP 4, the RBV of AV2 (79%) was lower (P < 0.05) than RCO, while the RBV of AV1 was not different from RCO. The RBV of DDGSCO (116%) was higher (P < 0.05) than RCO in EXP 5. The RBV of VB (84%) was lower (P < 0.001) than RCO in EXP 6; however, this may be an underestimation for low levels of VB, as there was an interaction (P < 0.01) between lipid type and lipid supplementation level. These results indicate that the precision-fed slope-ratio rooster assay can detect differences among lipids and yields practically useful lipid TME n values. © 2016 Poultry Science Association Inc.

  11. Polymercaptanized soybean oil – properties and tribological characterization

    USDA-ARS?s Scientific Manuscript database

    Polymercaptanized vegetable oils are produced in industrial scale by the addition of hydrogen sulfide across double bonds or epoxides of vegetable oils, in the presence of UV-light. To date, soybean oil, epoxidized soybean oil, and castor oil has been mercaptanized using such a procedure. Depending ...

  12. Lipase pre-hydrolysis enhance anaerobic biodigestion of soap stock from an oil refining industry.

    PubMed

    Cherif, Slim; Aloui, Fathi; Carrière, Frédéric; Sayadi, Sami

    2014-01-01

    A novel alcalophilic Staphylococcus haemolyticus strain with the lipolytic activity was used to perform enzymatic hydrolysis pretreatment of soap stock: a lipid rich solid waste from an oil refining industry. The culture liquid of the selected bacteria and an enzymatic preparation obtained by precipitation with ammonium sulphate from a filtrate of the same culture liquid were used for enzymatic pretreatment. The hydrolysis was carried with different incubation concentrations (10, 20 and 30%) of soap stock and the pretreatment efficiency was verified by running comparative biodegradability tests (crude and treated lipid waste). All pretreated assays showed higher reaction rate compared to crude lipid waste, which was confirmed by the increased levels of biogas production. The pretreatment of solutions containing 10% emulsified soap stock was optimized for 24 h hydrolysis time, enabling high-biogaz formation (800 ml). The use of enzymatic pre-treatment seemed to be a very promising alternative for treating soap stock having high fat contents.

  13. Use of whole grain and refined flour from tannin and non-tannin sorghum (Sorghum bicolor (L.) Moench) varieties in frybread.

    PubMed

    Rose, Devin J; Williams, Emily; Mkandawire, Nyambe L; Weller, Curtis L; Jackson, David S

    2014-07-01

    Frybreads were prepared using wheat flour and wheat-sorghum composite flours (refined and whole grain; white, tannin-free and red, tannin-containing) at 0, 25, 50, and 75% sorghum flour. Hardness, volume, specific volume, color, and oil uptake were determined. Frybreads made with refined white, tannin-free sorghum were also evaluated in a sensory panel. Substitution of sorghum flour for wheat flour reduced the volume and increased the darkness of the fried dough pieces compared with wheat flour controls. Oil absorption was unaffected when using white, tannin-free sorghum. When using red, tannin-containing sorghum, oil absorption increased for refined flour and decreased for whole grain flour, suggesting that a component only present in the whole grain tannin-containing Sorghum--perhaps tannins themselves--may decrease oil uptake. Panelists rated frybreads containing up to 50% white, tannin-free sorghum flour as not significantly different from control frybreads made with refined wheat flour.

  14. Synthesis and application of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils.

    PubMed

    Boulanouar, Sara; Combès, Audrey; Mezzache, Sakina; Pichon, Valérie

    2017-09-01

    The increasing use of pesticides in agriculture causes environmental issues and possible serious health risks to humans and animals. Their determination at trace concentrations in vegetable oils constitutes a significant analytical challenge. Therefore, their analysis often requires both an extraction and a purification step prior to separation with liquid chromatography (LC) and mass spectrometry (MS) detection. This work aimed at developing sorbents that are able to selectively extract from vegetable oil samples several organophosphorus (OPs) pesticides presenting a wide range of physico-chemical properties. Therefore, different conditions were screened to prepare molecularly imprinted polymers (MIPs) by a non-covalent approach. The selectivity of the resulting polymers was evaluated by studying the OPs retention in pure media on both MIPs and non-imprinted polymers (NIP) used as control. The most promising MIP sorbent was obtained using monocrotophos (MCP) as the template, methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker with a molar ratio of 1/4/20 respectively. The repeatability of the extraction procedure and of the synthesis procedure was demonstrated in pure media. The capacity of this MIP was 1mg/g for malathion. This MIP was also able to selectively extract three OPs from almond oil by applying the optimized SPE procedure. Recoveries were between 73 and 99% with SD values between 4 and 6% in this oil sample. The calculated LOQs (between 0.3 and 2μg/kg) in almond seeds with a SD between 0.1 and 0.4μg/kg were lower than the Maximum Residue Levels (MRLs) established for the corresponding compounds in almond seed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Optimization and validation of a method using UHPLC-fluorescence for the analysis of polycyclic aromatic hydrocarbons in cold-pressed vegetable oils.

    PubMed

    Silva, Simone Alves da; Sampaio, Geni Rodrigues; Torres, Elizabeth Aparecida Ferraz da Silva

    2017-04-15

    Among the different food categories, the oils and fats are important sources of exposure to polycyclic aromatic hydrocarbons (PAHs), a group of organic chemical contaminants. The use of a validated method is essential to obtain reliable analytical results since the legislation establishes maximum limits in different foods. The objective of this study was to optimize and validate a method for the quantification of four PAHs [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene] in vegetable oils. The samples were submitted to liquid-liquid extraction, followed by solid-phase extraction, and analyzed by ultra-high performance liquid chromatography. Under the optimized conditions, the validation parameters were evaluated according to the INMETRO Guidelines: linearity (r2 >0.99), selectivity (no matrix interference), limits of detection (0.08-0.30μgkg -1 ) and quantification (0.25-1.00μgkg -1 ), recovery (80.13-100.04%), repeatability and intermediate precision (<10% RSD). The method was found to be adequate for routine analysis of PAHs in the vegetable oils evaluated. Copyright © 2016. Published by Elsevier Ltd.

  16. Effects of partially hydrogenated, semi-saturated, and high oleate vegetable oils on inflammatory markers and lipids.

    PubMed

    Teng, Kim-Tiu; Voon, Phooi-Tee; Cheng, Hwee-Ming; Nesaretnam, Kalanithi

    2010-05-01

    Knowledge about the effects of dietary fats on subclinical inflammation and cardiovascular disease risk are mainly derived from studies conducted in Western populations. Little information is available on South East Asian countries. This current study investigated the chronic effects on serum inflammatory markers, lipids, and lipoproteins of three vegetable oils. Healthy, normolipidemic subjects (n = 41; 33 females, 8 males) completed a randomized, single-blind, crossover study. The subjects consumed high oleic palm olein (HOPO diet: 15% of energy 18:1n-9, 9% of energy 16:0), partially hydrogenated soybean oil (PHSO diet: 7% of energy 18:1n-9, 10% of energy 18:1 trans) and an unhydrogenated palm stearin (PST diet: 11% of energy 18:1n-9, 14% of energy 16:0). Each dietary period lasted 5 weeks with a 7 days washout period. The PHSO diet significantly increased serum concentrations of high sensitivity C-reactive protein compared to HOPO and PST diets (by 26, 23%, respectively; P < 0.05 for both) and significantly decreased interleukin-8 (IL-8) compared to PST diet (by 12%; P < 0.05). In particular PHSO diet, and also PST diet, significantly increased total:HDL cholesterol ratio compared to HOPO diet (by 23, 13%, respectively; P < 0.05), with the PST diet having a lesser effect than the PHSO diet (by 8%; P < 0.05). The use of vegetable oils in their natural state might be preferred over one that undergoes the process of hydrogenation in modulating blood lipids and inflammation.

  17. Recycling oil: a question of quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, M.

    If all used U.S. petroleum products could be recycled, a saving of 70,000 barrels a day could be realized on U.S. imported oil. After the sludge, water, and other contaminants are removed from used oil, a satisfactory basestock product remains. The Energy Policy and Conservation Act of 1975 directed the National Bureau of Standards to develop test procedures that can be used to establish the substantial equivalency of recycled oil with virgin oil for each potential end use. The tasks being performed by NBS on recycled oil are discussed. The researchers are also looking at the polynuclear aromatic hydrocarbons foundmore » in used and re-refined lubricating oils. It is estimated that by 1985 some 125 companies will refine nearly 20 million barrels of oil yearly with a value of $1 billion. (MCW)« less

  18. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery

    PubMed Central

    Zengel, Scott; Bernik, Brittany M.; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline “cleanup” treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We

  19. Bulk C, H, O, and fatty acid C stable isotope analyses for purity assessment of vegetable oils from the southern and northern hemispheres.

    PubMed

    Spangenberg, Jorge E

    2016-09-06

    |The carbon, hydrogen and oxygen stable isotope composition (δ 13 C, δ 2 H, and δ 18 O values) of plants and their products is linked to photosynthetic fractionation, environmental factors and agricultural practices. Therefore, they contribute to determining the purity of commercial vegetable oils and may provide information on their geographical origin. Maize, olive, sunflower, groundnut, soybean and rice oils differing in sites of growth in the southern and northern hemispheres were characterized by bulk oil stable isotope ratios (δ 13 C bulk , δ 2 H bulk , and δ 18 O bulk values), fatty acids (FAs) concentrations and δ 13 C FA values using elemental analysis/isotope ratio mass spectrometry, gas chromatography/mass spectrometry, gas chromatography/flame ionization detection and gas chromatography/combustion/isotope ratio mass spectrometry. Principal component analysis was applied to examine the inherent structure of the data. The δ 13 C bulk values of maize oils (-18.4 to -14.9 ‰) are typical for C 4 plants, and those of olive (-30.2 to -28.2 ‰), sunflower (-30.2 to -29.2 ‰), groundnut (-29.3 ‰), soybean (-30.6 ‰), and rice (-34.5 ‰) oils are typical for C 3 plants. The δ 2 H bulk values vary from -161 to -132‰ for maize oils and -171 to -109 ‰ for C 3 oils. The δ 18 O bulk values of all oils vary between 15.2 and 38.9 ‰. The major δ 13 C FA differences (>5 ‰) within plant species render the inter-C 3 -species comparison difficult. These differences are explained in terms of variations in the lipid biosynthetic pathways and blend of vegetable oils of different FA composition and δ 13 C FA values. The samples from the southern hemisphere are generally enriched in 13 C compared with those from the northern hemisphere. Differences between the southern and northern hemispheres were observed in δ 2 H (p < 0.001) and δ 18 O bulk (p = 0.129) values for all C 3 oils, and in δ 13 C 18:1 (p = 0.026) and δ 18 O bulk (p = 0

  20. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes.

    PubMed

    Ramli, Muhamad Roddy; Siew, Wai Lin; Ibrahim, Nuzul Amri; Kuntom, Ainie; Abd Razak, Raznim Arni

    2015-01-01

    This paper examines the processing steps of extracting palm oil from fresh fruit bunches in a way that may impact on the formation of chloropropandiol fatty esters (3-MCPD esters), particularly during refining. Diacylglycerols (DAGs) do not appear to be a critical factor when crude palm oils are extracted from various qualities of fruit bunches. Highly hydrolysed oils, in spite of the high free fatty acid (FFA) contents, did not show exceptionally high DAGs, and the oils did not display a higher formation of 3-MCPD esters upon heat treatment. However, acidity measured in terms of pH appears to have a strong impact on 3-MCPD ester formation in the crude oil when heated at high temperatures. The differences in the extraction process of crude palm oil from current commercial processes and that from a modified experimental process showed clearly the effect of acidity of the oil on the formation of 3-MCPD esters. This paper concludes that the washing or dilution step in palm oil mills removes the acidity of the vegetative materials and that a well-optimised dilution/washing step in the extraction process will play an important role in reducing formation of 3-MCPD esters in crude palm oil upon further heat processing.

  1. The Research of New Environment-Friendly Oil-based Drilling Fluid Base Oil

    NASA Astrophysics Data System (ADS)

    Sui, Dianjie; Sun, Yuxue; Zhao, Jingyuan; Zhao, Fulei; Zhu, Xiuyu; Xu, Jianjun

    2018-01-01

    In this paper, the heavy hydrocarbon of Daqing is used, and the desulfurization and de-aromatization experiments and refining process are carried out, A base oil suitable for oil-based drilling fluid was developed, and the performance of base oil was evaluated, we can know the aromatics content of oil base is low, less toxic, less pollution and it can meet the requirement of environmental protection.

  2. Remote sensing assessment of oil lakes and oil-polluted surfaces at the Greater Burgan oil field, Kuwait

    NASA Astrophysics Data System (ADS)

    Kwarteng, Andy Yaw

    A heinous catastrophe imposed on Kuwait's desert environment during the 1990 to 1991 Arabian Gulf War was the formation of oil lakes and oil-contaminated surfaces. Presently, the affected areas consist of oil lakes, thick light and disintegrated tarmats, black soil and vegetation. In this study, Landsat TM, Spot, colour aerial photographs and IRS-1D digital image data acquired between 1989 and 1998 were used to monitor the spatial and temporal changes of the oil lakes and polluted surfaces at the Greater Burgan oil field. The use of multisensor datasets provided the opportunity to observe the polluted areas in different wavelengths, look angles and resolutions. The images were digitally enhanced to optimize the visual outlook and improve the information content. The data documented the gradual disappearance of smaller oil lakes and soot/black soil from the surface with time. Even though some of the contaminants were obscured by sand and vegetation and not readily observed on the surface or from satellite images, the harmful chemicals still remain in the soil. Some of the contaminated areas displayed a remarkable ability to support vegetation growth during the higher than average rainfall that occurred between 1992 to 1998. The total area of oil lakes calculated from an IRS-1D panchromatic image acquired on 16 February 1998, using supervised classification applied separately to different parts, was 24.13 km 2.

  3. Regioisomeric distribution of 9‐ and 13‐hydroperoxy linoleic acid in vegetable oils during storage and heating

    PubMed Central

    Zaunschirm, Mathias; Lach, Judith; Unterberger, Laura; Kopic, Antonio; Keßler, Claudia; Kienesberger, Julia; Pischetsrieder, Monika; Eggersdorfer, Manfred; Riegger, Christoph; Somoza, Veronika

    2017-01-01

    Abstract BACKGROUND The oxidative deterioration of vegetable oils is commonly measured by the peroxide value, thereby not considering the contribution of individual lipid hydroperoxide isomers, which might have different bioactive effects. Thus, the formation of 9‐ and 13‐hydroperoxy octadecadienoic acid (9‐HpODE and 13‐ HpODE), was quantified after short‐term heating and conditions representative of long‐term domestic storage in samples of linoleic acid, canola, sunflower and soybean oil, by means of stable isotope dilution analysis–liquid chromatography‐mass spectroscopy. RESULTS Although heating of pure linoleic acid at 180 °C for 30 min led to an almost complete loss of 9‐HpODE and 13‐HpODE, heating of canola, sunflower and soybean oil resulted in the formation of 5.74 ± 3.32, 2.00 ± 1.09, 16.0 ± 2.44 mmol L–1 13‐HpODE and 13.8 ± 8.21, 10.0 ± 6.74 and 45.2 ± 6.23 mmol L–1 9‐HpODE. An almost equimolar distribution of the 9‐ and 13‐HpODE was obtained during household‐representative storage conditions after 56 days, whereas, under heating conditions, an approximately 2.4‐, 2.8‐ and 5.0‐fold (P ≤ 0.001) higher concentration of 9‐HpODE than 13‐HpODE was detected in canola, soybean and sunflower oil, respectively. CONCLUSION A temperature‐dependent distribution of HpODE regioisomers could be shown in vegetable oils, suggesting their application as markers of lipid oxidation in oils used for short‐term heating. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29095495

  4. Improved sample extraction and clean-up for the GC-MS determination of BADGE and BFDGE in vegetable oil.

    PubMed

    Brede, C; Skjevrak, I; Herikstad, H; Anensen, E; Austvoll, R; Hemmingsen, T

    2002-05-01

    A straightforward method was established for the determination of migration contaminants in olive oil with a special focus on the two can-coating migration compounds bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE). The preferred sample preparation was a single liquid-liquid extraction of compounds from the oil into 20% (v/v) methanol in acetonitrile, followed by clean-up with solid-phase extraction on aminopropyl bonded to silica. This purification procedure selectively removed all free fatty acids from the extracts without removing phenolic compounds of interest. The solid-phase extraction columns were used many times by implementing a procedure of washing out the strongly retained fatty acids with 2% acetic acid in methanol. Gas chromatography coupled with full scan (m/z 33-700) electron ionization mass spectrometry was used for the determination of several model compounds in olive oil samples. BADGE and BFDGE could be determined in the 0.05-2 mg kg(-1) range in oil samples with a relative SD of <6% (six replicates). The method was used in an enforcement campaign for the Norwegian Food Control Authority to analyse vegetable oil samples from canned fish-in-oil.

  5. Towards an energy-friendly and cleaner solvent-extraction of vegetable oil.

    PubMed

    Kong, Weibin; Baeyens, Jan; Qin, Peiyong; Zhang, Huili; Tan, Tianwei

    2018-07-01

    The extraction of vegetable oils is an energy-intensive process. It has moreover a significant environmental impact through hexane emissions and through the production of organic-loaded wastewater. A rice bran oil process was selected as the basis, since full data were available. By using Aspen Plus v8.2 simulation, with additional scripts, several improvements were examined, such as using heat exchanger networks, integrating a Vapor Recompression Heat Pump after the evaporation and stripping, and examining a nitrogen stripping of hexane in the rice bran meal desolventizing unit followed by a gas membrane to recover hexane. Energy savings by the different individual and combined improvements are calculated, and result in a 94.2% gain in steam consumption and a 73.8% overall energy saving. The power consumption of the membrane unit reduces the overall energy savings by about 5%. Hexane separation and enrichment by gas membranes facilitates its condensation and re-use, while achieving a reduction of hexane emissions by over 50%. Through the considerable reduction of required steam flow rates, 61% of waste water is eliminated, mostly as organic-loaded steam condensate. Through overall energy savings, 52% of related CO 2 emissions are eliminated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Trace metal contents of selected seeds and vegetables from oil producing areas of Nigeria.

    PubMed

    Wegwu, Matthew O; Omeodu, Stephen I

    2010-07-01

    The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 microg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 microg/g dry weight. The highest manganese (Mn) level (902 microg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 microg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 microg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 microg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 microg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 microg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.

  7. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  8. [The effect of carbon tetrachloride poisoning on the activity of digestive proteases in rats and correction of the disorders with vegetable oils].

    PubMed

    Esaulenko, E E; Khil'chuk, M A; Bykov, I M

    2013-01-01

    The results of the study of activity of digestive proteases (pepsin, trypsin, chymotrypsin) in homogenates of stomach, pancreas and duodenum in experimental animals have been presented. Rats were exposed to intoxication with carbon tetrachloride (subcutaneous administration of a 50% oil solution of CCl4 in the dose of 0.5 ml per 100 g body weight) for three days and then they were given analysed oils (black nut, walnut and flax oil) intragastrically by gavage at a dose of 0.2 ml per day within 23 days. Pepsin level in gastric mucosa homogenates and chymotrypsin activity in pancreatic homogenates were determined by method of N.P. Pyatnitskiy based on on the ability of enzymes to coagulate dairy-acetate mixture, respectively, at 25 degrees C and 35 degrees C. Trypsin activity in homogenates of pancreatic was determined by method of Erlanger - Shaternikova colorimetrically. It has been established that intoxication with CCl4 decreased the synthesis of proteolytic enzymes of the stomach (by 51%) and pancreas (by 70-78%). Injections of analysed vegetable oils to animals contributed to the normalization of proteolytic enzymes synthesis. The conclusion that there are prospects of using the analysed vegetable oils containing large quantity of polyunsaturated fatty acids (omega-3 and omega-6) for the correction of detected biochemical abnormalities has been done.

  9. Simulation of the effect of an oil refining project on the water environment using the MIKE 21 model

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Wang, Qinggai; Lu, Xuchuan; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei; Wang, Yaping

    2018-02-01

    A case study of the Caofeidian oil refining project is conducted. A two-dimensional convective dispersion mathematical model is established to simulate the increase in the concentration of pollutants resulting from the wastewater discharge from the Caofeidian oil refining project and to analyze the characteristics of the dispersion of pollutants after wastewater is discharged and the effect of the wastewater discharge on the surrounding sea areas. The results demonstrate the following: (1) The Caofeidian sea area has strong tidal currents, which are significantly affected by the terrain. There are significant differences in the tidal current velocity and the direction between the deep-water areas and the shoals. The direction of the tidal currents in the deep-water areas is essentially parallel to the contour lines of the sea areas. Onshore currents and rip currents submerging the shoals are the dominant currents in the shoals. (2) The pollutant concentration field in the offshore areas changes periodically with the movement of the tidal current. The dilution and dispersion of pollutants are affected by the ocean currents in different tidal periods. The turbulent dispersion of pollutants is the most intense when a neap tide ebbs, followed by when a neap tide rises, when a spring tide ebbs and when a spring tide rises. (3) There are relatively good hydrodynamic conditions near the project's wastewater discharge outlet. Wastewater is well diluted after being discharged. Areas with high concentrations of pollutants are concentrated near the wastewater discharge outlet and the offshore areas. These pollutants migrate southwestward with the flood tidal current and northeastward with the ebb tidal current and have no significant impact on the protection targets in the open sea areas and nearby sea areas.

  10. Green Printing: Colorimetric and Densitometric Analysis of Solvent-Based and Vegetable Oil-Based Inks of Multicolor Offset Printing

    ERIC Educational Resources Information Center

    Dharavath, H. Naik; Hahn, Kim

    2009-01-01

    The purpose of this study was to determine the differences in the measurable print attributes (Print Contrast and Dot Gain) and color gamut of solvent-based (SB) inks vs. vegetable oil-based (VO) inks of multicolor offset printing. The literature review revealed a lack of published research on this subject. VO inks tend to perform (color…

  11. 26 CFR 1.954-8 - Foreign base company oil related income.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... refined oil in country A. In addition, assume that country A is a net exporter of crude oil. As in Example...) Special rules for applying the extraction exception of paragraph (a)(1)(i) of this section—(1) Refining income described in section 907(c)(2)(A). With regard to a controlled foreign corporation's refining...

  12. 26 CFR 1.954-8 - Foreign base company oil related income.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... refined oil in country A. In addition, assume that country A is a net exporter of crude oil. As in Example...) Special rules for applying the extraction exception of paragraph (a)(1)(i) of this section—(1) Refining income described in section 907(c)(2)(A). With regard to a controlled foreign corporation's refining...

  13. 26 CFR 1.954-8 - Foreign base company oil related income.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... refined oil in country A. In addition, assume that country A is a net exporter of crude oil. As in Example...) Special rules for applying the extraction exception of paragraph (a)(1)(i) of this section—(1) Refining income described in section 907(c)(2)(A). With regard to a controlled foreign corporation's refining...

  14. Automotive gear oil lubricant from soybean oil

    USDA-ARS?s Scientific Manuscript database

    The use of lubricants that are based on renewable materials is rapidly increasing. Vegetable oils have good lubricity, wear protection and low volatility which are desired properties for automotive gear lubricant applications. Soybean oil is used widely in the lubricant industry due to its properti...

  15. Formation of Glycidyl Fatty Acid Esters Both in Real Edible Oils during Laboratory-Scale Refining and in Chemical Model during High Temperature Exposure.

    PubMed

    Cheng, Weiwei; Liu, Guoqin; Liu, Xinqi

    2016-07-27

    In the present study, the formation mechanisms of glycidyl fatty acid esters (GEs) were investigated both in real edible oils (soybean oil, camellia oil, and palm oil) during laboratory-scale preparation and refining and in chemical model (1,2-dipalmitin (DPG) and 1-monopalmitin (MPG)) during high temperature exposure (160-260 °C under nitrogen). The formation process of GEs in the chemical model was monitored using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The results showed that the roasting and pressing process could produce certain amounts of GEs that were much lower than that produced in the deodorization process. GE contents in edible oils increased continuously and significantly with increasing deodorization time below 200 °C. However, when the temperature exceeded 200 °C, GE contents sharply increased in 1-2 h followed by a gradual decrease, which could verify a simultaneous formation and degradation of GEs at high temperature. In addition, it was also found that the presence of acylglycerol (DAGs and MAGs) could significantly increase the formation yield of GEs both in real edible oils and in chemical model. Compared with DAGs, moreover, MAGs displayed a higher formation capacity but substantially lower contribution to GE formation due to their low contents in edible oils. In situ ATR-FTIR spectroscopic evidence showed that cyclic acyloxonium ion intermediate was formed during GE formation derived from DPG and MPG in chemical model heated at 200 °C.

  16. Association of elevated blood pressure and impaired vasorelaxation in experimental Sprague-Dawley rats fed with heated vegetable oil

    PubMed Central

    2010-01-01

    Background Poor control of blood pressure leads to hypertension which is a major risk factor for development of cardiovascular disease. The present study aimed to explore possible mechanisms of elevation in blood pressure following consumption of heated vegetable oil. Methods Forty-two male Sprague-Dawley rats were equally divided into six groups: Group I (control) - normal rat chow, Group II - fresh soy oil, Group III - soy oil heated once, Group IV - soy oil heated twice, Group V - soy oil heated five times, Group VI - soy oil heated ten times. Blood pressure was measured at the baseline level and at a monthly interval for six months. Plasma nitric oxide, heme oxygenase and angiotensin-converting enzyme levels were measured prior to treatment, at month-three and month-six later. At the end of treatment, the rats were sacrificed and thoracic aortas were taken for measurement of vascular reactivity. Results Blood pressure increased significantly (p < 0.01) in the repeatedly heated oil groups compared to the control and fresh soy oil groups. Consumption of diet containing repeatedly heated oil resulted higher plasma angiotensin-converting enzyme level and lower nitric oxide content and heme oxygenase concentration. Reheated soy oil groups exhibited attenuated relaxation in response to acetylcholine or sodium nitroprusside, and greater contraction to phenylephrine. Conclusion As a result of consumption of repeatedly heated soy oil, an elevation in blood pressure was observed which may be due to the quantitative changes in endothelium dependent and independent factors including enzymes directly involved in the regulation of blood pressure. PMID:20573259

  17. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  18. Validation of Fluorescence Spectroscopy to Detect Adulteration of Edible Oil in Extra Virgin Olive Oil (EVOO) by Applying Chemometrics.

    PubMed

    Ali, Hina; Saleem, Muhammad; Anser, Muhammad Ramzan; Khan, Saranjam; Ullah, Rahat; Bilal, Muhammad

    2018-01-01

    Due to high price and nutritional values of extra virgin olive oil (EVOO), it is vulnerable to adulteration internationally. Refined oil or other vegetable oils are commonly blended with EVOO and to unmask such fraud, quick, and reliable technique needs to be standardized and developed. Therefore, in this study, adulteration of edible oil (sunflower oil) is made with pure EVOO and analyzed using fluorescence spectroscopy (excitation wavelength at 350 nm) in conjunction with principal component analysis (PCA) and partial least squares (PLS) regression. Fluorescent spectra contain fingerprints of chlorophyll and carotenoids that are characteristics of EVOO and differentiated it from sunflower oil. A broad intense hump corresponding to conjugated hydroperoxides is seen in sunflower oil in the range of 441-489 nm with the maximum at 469 nm whereas pure EVOO has low intensity doublet peaks in this region at 441 nm and 469 nm. Visible changes in spectra are observed in adulterated EVOO by increasing the concentration of sunflower oil, with an increase in doublet peak and correspondingly decrease in chlorophyll peak intensity. Principal component analysis showed a distinct clustering of adulterated samples of different concentrations. Subsequently, the PLS regression model was best fitted over the complete data set on the basis of coefficient of determination (R 2 ), standard error of calibration (SEC), and standard error of prediction (SEP) of values 0.99, 0.617, and 0.623 respectively. In addition to adulterant, test samples and imported commercial brands of EVOO were also used for prediction and validation of the models. Fluorescence spectroscopy combined with chemometrics showed its robustness to identify and quantify the specified adulterant in pure EVOO.

  19. Biofuels Refining Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobban, Lance

    The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publicationsmore » acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for

  20. Selective Hydrodeoxygenation of Vegetable Oils and Waste Cooking Oils to Green Diesel Using a Silica-Supported Ir-ReOx Bimetallic Catalyst.

    PubMed

    Liu, Sibao; Simonetti, Trent; Zheng, Weiqing; Saha, Basudeb

    2018-05-09

    High yields of diesel-range alkanes are prepared by hydrodeoxygenation of vegetable oils and waste cooking oils over ReO x -modified Ir/SiO 2 catalysts under mild reaction conditions. The catalyst containing a Re/Ir molar ratio of 3 exhibits the best performance, achieving 79-85 wt % yield of diesel-range alkanes at 453 K and 2 MPa H 2 . The yield is nearly quantitative for the theoretical possible long-chain alkanes on the basis of weight of the converted oils. The catalyst retains comparable activity upon regeneration through calcination. Control experiments using probe molecules as model substrates suggest that C=C bonds of unsaturated triglycerides and free fatty acids are first hydrogenated to their corresponding saturated intermediates, which are then converted to aldehyde intermediates through hydrogenolysis of acyl C-O bonds and subsequently hydrogenated to fatty alcohols. Finally, long-chain alkanes without any carbon loss are formed by direct hydrogenolysis of the fatty alcohols. Small amounts of alkanes with one carbon fewer are also formed by decarbonylation of the aldehyde intermediates. A synergy between Ir and partially reduced ReO x sites is discussed to elucidate the high activity of Ir-ReO x /SiO 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. AEROBIC BIODEGRADABILITY AND TOXICITY OF NON-PETROLEUM OILS.

    EPA Science Inventory

    Vegetable oil spills are a widely known phenomenon, but are the least understood. These spills can be as devastating to the environment as petroleum oil spills. Previous laboratory research results have indicated that as vegetable oils degrade aerobically, the aqueous solutions b...

  2. Thermal and Tribological Properties of Jatropha Oil as Additive in Commercial Oil

    NASA Astrophysics Data System (ADS)

    Gallardo-Hernández, E. A.; Lara-Hernández, G.; Nieto-Camacho, F.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Hernández-Aguilar, C.; Contreras-Gallegos, E.; Torres, M. Vite; Flores-Cuautle, J. J. A.

    2017-04-01

    The recent use that has been given to bio-oil as an additive, in a commercial engine oil, raises the necessity to study its physical properties. The present study is aimed to obtain thermal properties of blends made with Jatropha-Curcas L. Oil, Crude, and Refined, at different concentrations using SAE40W oil (EO) as a lubricant base. By using photothermal techniques, thermal effusivity and diffusivity were obtained. The obtained results show that thermal effusivity increases from 455 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} to 520 Ws^{1/2}{\\cdot }m^{-2}{\\cdot }K^{-1} as the percentage of additive increases as well, whereas thermal diffusivity values range from 7× 10^{-8}m2{\\cdot }s^{-1} to 10× 10^{-8}m2{\\cdot }s^{-1}. In the present study, four balls test was used in order to obtain friction coefficient and wear scar values for studied samples, the obtained results point out that in general refined Jatropha-Curcas L. oil presents smaller wear scars than the crude one.

  3. Elastohydrodynamics of farm-based blends comprising amphiphilic oils

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils contain non-polar hydrocarbon chains and polar ester groups (and possibly also other functional groups such as hydroxyl groups in castor oil). The presence of polar and non-polar groups within the same molecule gives vegetable oil amphiphilic character. The density, refractive index, ...

  4. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.

  5. Emulsified industrial oils recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil canmore » be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.« less

  6. Benefits of foods supplemented with vegetable oils rich in α-linolenic, stearidonic or docosahexaenoic acid in hypertriglyceridemic subjects: a double-blind, randomized, controlled trail.

    PubMed

    Dittrich, Manja; Jahreis, Gerhard; Bothor, Kristin; Drechsel, Carina; Kiehntopf, Michael; Blüher, Matthias; Dawczynski, Christine

    2015-09-01

    The aim of the study was to investigate the influence of foods enriched with vegetable oils varying in their n-3 polyunsaturated fatty acids profile on cardiovascular risk factors for hypertriglyceridemic subjects. Fifty-nine hypertriglyceridemic subjects (triglycerides ≥ 1.5 mmol/L) were included in the randomized, double-blind, placebo-controlled, crossover study. The placebo group received sunflower oil [linoleic acid (LA) group; 10 g LA/day]. The intervention groups received linseed oil [α-linolenic acid (ALA) group; 7 g ALA/day], echium oil [stearidonic acid (SDA) group; 2 g SDA/day] or microalgae oil [docosahexaenoic acid (DHA) group; 2 g DHA/day] over 10 weeks. Blood samples were collected at baseline and at the end of each period. Total cholesterol (TC) and low-density-lipoprotein cholesterol decreased significantly in the LA and ALA groups (LA: P ≤ 0.01, ALA: P ≤ 0.05). No changes in blood lipids were observed in the SDA group. Significant increases in TC and high-density-lipoprotein cholesterol occurred in the DHA group (P ≤ 0.05). In the ALA and SDA groups, the content of eicosapentaenoic acid in erythrocyte lipids increased significantly (P ≤ 0.05) after 10 weeks (ALA group: 38 ± 37 %, SDA group: 73  ± 59 %). Foods enriched with different vegetable oils rich in ALA or SDA are able to increase the n-3 long-chain polyunsaturated fatty acids content in erythrocyte lipids; echium oil is more potent in comparison with linseed oil. Blood lipids were beneficially modified through the consumption of food products enriched with sunflower, linseed and microalgae oils, whereas echium oil did not affect blood lipids. ClinicalTrials.gov: NCT01437930.

  7. Identification of unresolved complex mixtures (UCMs) of hydrocarbons in commercial fish oil supplements.

    PubMed

    Reid, Anna-Jean M; Budge, Suzanne M

    2015-01-01

    Heightened awareness of the health benefits of fish oil consumption has led to a great increase in the number of fish oil supplements available to the consumer. Therefore manufacturers are continually looking for ways to distinguish their products from those of competitors. Minimally refined or virgin fish oils provide a unique feature; however, petroleum hydrocarbon contamination from oil spills is a reality in the world's oceans. The question arises whether oil produced from fish species caught in these polluted areas is free of petroleum hydrocarbons, with particular interest in unresolved complex mixtures (UCMs). This study investigates the presence of UCMs in commercially available fish oil supplements advertised as being virgin, as well as refined. Weathered petroleum hydrocarbons in the form of a UCM were found at 523 µg g(-1) in a virgin Alaskan salmon oil supplement. Supplements that were refined were free of this contamination. Fish used in the production of fish oil supplements appear to have accumulated petrogenic hydrocarbons in their tissues which were not removed by minimal oil refining. Further study is required to determine if there are any health implications associated with long-term consumption of these contaminated supplements. © 2014 Society of Chemical Industry.

  8. A convenient ultrasound-assisted saponification for the simultaneous determination of vitamin E isomers in vegetable oil by HPLC with fluorescence detection.

    PubMed

    Yang, Yi; Lu, Dan; Yin, Shuo; Yang, Danni; Chen, Yaling; Li, Yongxin; Sun, Chengjun

    2018-04-01

    An efficient ultrasound-assisted saponification was developed for simultaneous determination of vitamin E isomers in vegetable oil by high-performance liquid chromatography with fluorescence detection. The samples were saponified ultrasonically with potassium hydroxide solution for only 7 min, then the analytes were extracted with ether. Vitamin E isomers were separated on a C 18 column at 25°C with a mobile phase of methanol/acetonitrile (81:19, v/v) at a flow rate of 0.8 mL/min. Fluorescence detection was operated at 290 nm of excitation wavelength and 327 nm of emission wavelength. Under the optimized conditions, good linearities over the range of 0.001-8.00 μg/mL (r > 0.999) were obtained. Mean recoveries of the method were 88.0-106%, with intra- and interday RSDs less than 11.8 and 12.8%, respectively. The detection limits and quantification limits of the method were 0.30-1.8 and 1.0-6.1 μg/kg, respectively. The recoveries of this method were much higher than that of the quick, easy, cheap, effective, rugged, and safe method and direct dilution method, but were similar to those of hot saponification. This proposed method provides reliable, simple, and rapid quantification of vitamin E isomers in vegetable oils. Five kinds of vegetable oils were analyzed, the quantification results were within the ranges reported by other authors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 40 CFR 80.230 - Who is not eligible for the hardship provisions for small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... reorganization; (3) Importers; and (4) Refiners who produce gasoline other than by processing crude oil through... refineries for which the Administrator has approved an extension of the small refiner gasoline sulfur...

  10. 40 CFR 80.230 - Who is not eligible for the hardship provisions for small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Gasoline Sulfur... reorganization; (3) Importers; and (4) Refiners who produce gasoline other than by processing crude oil through... refineries for which the Administrator has approved an extension of the small refiner gasoline sulfur...

  11. Nonisothermal bioreactors in the treatment of vegetation waters from olive oil: laccase versus syringic acid as bioremediation model.

    PubMed

    Attanasio, Angelina; Diano, Nadia; Grano, Valentina; Sicuranza, Stefano; Rossi, Sergio; Bencivenga, Umberto; Fraconte, Luigi; Di Martino, Silvana; Canciglia, Paolo; Mita, Damiano Gustavo

    2005-01-01

    Laccase from Trametes versicolor was immobilized by diazotization on a nylon membrane grafted with glycidil methacrylate, using phenylenediamine as spacer and coupling agent. The behavior of these enzyme derivatives was studied under isothermal and nonisothermal conditions by using syringic acid as substrate, in view of the employment of these membranes in processes of detoxification of vegetation waters from olive oil mills. The pH and temperature dependence of catalytic activity under isothermal conditions has shown that these membranes can be usefully employed under extreme pH and temperatures. When employed under nonisothermal conditions, the membranes exhibited an increase of catalytic activity linearly proportional to the applied transmembrane temperature difference. Percentage activity increases ranging from 62% to 18% were found in the range of syringic acid concentration from 0.02 to 0.8 mM, when a difference of 1 degrees C was applied across the catalytic membrane. Because the percentage activity increase is strictly related to the reduction of the production times, the technology of nonisothermal bioreactors has been demonstrated to be an useful tool also in the treatment of vegetation waters from olive oil mills.

  12. Development of new antioxidant systems for frying oil and omega-3 oils

    USDA-ARS?s Scientific Manuscript database

    The development of natural antioxidant systems for frying oil will be discussed in this presentation. This study aimed to utilize vegetable oils such as soybean oil for frying, of which the United States is the world’s largest producer. To overcome the vulnerability of soybean oil to oxidation due t...

  13. Preparation of Jojoba Oil Ester Derivatives for Biodiesel Evaluation

    USDA-ARS?s Scientific Manuscript database

    As a result of the increase in commodity vegetable oil prices, it is imperative that non-food oils should be considered as alternative feedstocks for biodiesel production. Jojoba oil is unusual in that it is comprised of wax esters as opposed to the triglycerides found in typical vegetable oils. A...

  14. Relative efficacy of various oils in repelling mosquitoes.

    PubMed

    Ansari, M A; Razdan, R K

    1995-09-01

    Field studies were carried out to determine the relative efficacy of repellant action of vegetable, essential and chemical base oils against vector mosquitoes. Results revealed that essential oils viz. Cymbopogan martinii martinii var. Sofia (palmarosa), Cymbopogan citratus (lemon grass) and Cymbopogan nardus (citronella) oils are as effective as chemical base oil namely mylol. These oils provide almost complete protection against Anopheles culicifacies and other anopheline species. Per cent protection against Culex quinquefasciatus ranged between 95-96%. Camphor (C. camphora) oil also showed repellent action and provided 97.6% protection against An. culicifacies and 80.7% against Cx. quinquefasciatus. Vegetable oils namely mustard (B. compestris) and coconut (C. nucisera) showed repellent action, however the efficacy of these oils was not much pronounced against Cx. quinquefasciatus. Results of statistical analysis revealed significant difference between vegetable and essential oils (p < 0.01) against tested species of mosquitoes. Essential oils were found marginally superior in repellancy than camphor and mylol (p < 0.01) against An. culicifacies and Cx. quinquefasciatus.

  15. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  16. An Overview of Chemical Profiles, Antioxidant and Antimicrobial Activities of Commercial Vegetable Edible Oils Marketed in Japan

    PubMed Central

    Gangqiang, Gu; Quy, Tran Ngoc; Khanh, Tran Dang

    2018-01-01

    This study analyzed chemical components and investigated the antioxidant and antimicrobial activities of fourteen vegetable edible oils marketed in Japan. High-performance liquid chromatography (HPLC) was used to identify and quantify principal phenolic acids and flavonoids. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, sunflower, safflower, canola, soybean, Inca inchi, sesame, and rice bran showed markedly greater activity, whilst the percentage of lipid peroxidation inhibition (LPI%) in sunflower, canola, cotton, grape, flax, perilla, Inca inchi, perillartine, and rice bran were significantly higher than other oils. Maximum total phenol content (TPC) was recorded in flax, followed by perillartine, rice bran, and perilla, whereas total flavonoid content (TFC) was the greatest in Inca inchi and sesame. Benzoic acid was the most common constituent, followed by vanillic acid, p-hydroxybenzoic acid, ferulic acid, and p-coumaric acid. On the other hand, luteolin was the most abundant flavonoid, followed by esculetin, myricetin, isoquercetin, and kaempferol, while fisetin was detected only in sunflower. In general, all of the edible oils showed antimicrobial activity, but the growth inhibition of Staphylococcus aureus and Escherichia coli of cotton, grape, chia, sesame, and rice bran were greater than other oils. PMID:29439420

  17. Dietary Fats and Oils in India.

    PubMed

    Gulati, Seema; Misra, Anoop; Sharma, Meenu

    2017-01-01

    India is undergoing rapid nutrition transition concurrent with an increase in obesity, metabolic syndrome, and type 2 diabetes (T2DM). There is a shift from a healthy traditional home-cooked high-fiber, low-fat, low-calorie diet, towards increasing consumption of packaged, ready-to-eat foods which are calorie-dense and contain refined carbohydrates, high fat, salt and sugar; and less fiber. Although fats and oils have been an integral part of our diets, there is a change in the pattern of consumption, in terms of both quality and quantity. A literature search was conducted using the terms "fats, oil consumption in India, effects of vegetable oils, obesity and T2DM in Indians" in the medical search database PubMed (National Library of Medicine, Bethesda, MD, USA) from 1966 to June 2016. A manual search of the relevant quoted references was also carried out from the retrieved articles. Data have also been taken from nutritional surveys in India and worldwide, websites and published documents of the World Health Organization, the Food and Agricultural Organization, National Sample Survey Organization and websites of industries related to oil production. Increasing use of saturated fat, low intake of n-3 poly unsaturated fatty acids and increase in trans-fatty acids, along with increasing intake of dietary sugars has been noted in India. Most importantly, traditional false beliefs and unawareness about health effects of oils continues to be prevalent. Aggressive public health awareness programs coupled with governmental action and guidelines tailored for Indian population are required, to promote less consumption of fats and oils, use of healthy oils and fats, decreased intake of saturated fats and trans fatty acids, and increase intake of n-3 Poly-unsaturated fatty acids and mono-unsaturated fatty acids. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Oxygen-Induced Cracking Distillation of Oil in the Continuous Flow Tank Reactor

    ERIC Educational Resources Information Center

    Shvets, Valeriy F.; Kozlovskiy, Roman A.; Luganskiy, Artur I.; Gorbunov, Andrey V.; Suchkov, Yuriy P.; Ushin, Nikolay S.; Cherepanov, Alexandr A.

    2016-01-01

    The article analyses problems of processing black oil fuel and addresses the possibility of increasing the depth of oil refining by a new processing scheme. The study examines various methods of increasing the depth of oil refining reveals their inadequacies and highlights a need to introduce a new method of processing atmospheric and vacuum…

  19. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL.

    PubMed

    de la Torre-Carbot, Karina; Chávez-Servín, Jorge L; Jaúregui, Olga; Castellote, Ana I; Lamuela-Raventós, Rosa M; Nurmi, Tarja; Poulsen, Henrik E; Gaddi, Antonio V; Kaikkonen, Jari; Zunft, Hans-Franz; Kiesewetter, Holger; Fitó, Montserrat; Covas, María-Isabel; López-Sabater, M Carmen

    2010-03-01

    In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P < 0.05), whereas the concentrations of circulating oxidation markers, including oxidized LDL (oxLDL), conjugated dienes, and hydroxy fatty acids, decreased (P < 0.05). The levels of LDL phenols and oxidation markers were not affected by ROO consumption. The relative increase in the 3 LDL phenols was greater when men consumed VOO than when they consumed ROO (P < 0.05), as was the relative decrease in plasma oxLDL (P = 0.001) and hydroxy fatty acids (P < 0.001). Plasma oxLDL concentrations were negatively correlated with the LDL phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compounds.

  20. Oil

    USGS Publications Warehouse

    Rocke, T.E.

    1999-01-01

    Each year, an average of 14 million gallons of oil from more than 10,000 accidental spills flow into fresh and saltwater environments in and around the United States. Most accidental oil spills occur when oil is transported by tankers or barges, but oil is also spilled during highway, rail, and pipeline transport, and by nontransportation-related facilities, such as refinery, bulk storage, and marine and land facilities (Fig. 42.1). Accidental releases, however, account for only a small percentage of all oil entering the environment; in heavily used urban estuaries, the total petroleum hydrocarbon contributions due to transportation activities may be 10 percent or less. Most oil is introduced to the environment by intentional discharges from normal transport and refining operations, industrial and municipal discharges, used lubricant and other waste oil disposal, urban runoff, river runoff, atmospheric deposition, and natural seeps. Oil-laden wastewater is often released into settling ponds and wetlands (Fig. 42.2). Discharges of oil field brines are a major source of the petroleum crude oil that enters estuaries in Texas.

  1. Process for solvent refining of coal using a denitrogenated and dephenolated solvent

    DOEpatents

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1984-01-01

    A process is disclosed for the solvent refining of non-anthracitic coal at elevated temperatures and pressure in a hydrogen atmosphere using a hydrocarbon solvent which before being recycled in the solvent refining process is subjected to chemical treatment to extract substantially all nitrogenous and phenolic constituents from the solvent so as to improve the conversion of coal and the production of oil in the solvent refining process. The solvent refining process can be either thermal or catalytic. The extraction of nitrogenous compounds can be performed by acid contact such as hydrogen chloride or fluoride treatment, while phenolic extraction can be performed by caustic contact or contact with a mixture of silica and alumina.

  2. Determination of Component Contents of Blend Oil Based on Characteristics Peak Value Integration.

    PubMed

    Xu, Jing; Hou, Pei-guo; Wang, Yu-tian; Pan, Zhao

    2016-01-01

    Edible blend oil market is confused at present. It has some problems such as confusing concepts, randomly named, shoddy and especially the fuzzy standard of compositions and ratios in blend oil. The national standard fails to come on time after eight years. The basic reason is the lack of qualitative and quantitative detection of vegetable oils in blend oil. Edible blend oil is mixed by different vegetable oils according to a certain proportion. Its nutrition is rich. Blend oil is eaten frequently in daily life. Different vegetable oil contains a certain components. The mixed vegetable oil can make full use of their nutrients and make the nutrients more balanced in blend oil. It is conducive to people's health. It is an effectively way to monitor blend oil market by the accurate determination of single vegetable oil content in blend oil. The types of blend oil are known, so we only need for accurate determination of its content. Three dimensional fluorescence spectra are used for the contents in blend oil. A new method of data processing is proposed with calculation of characteristics peak value integration in chosen characteristic area based on Quasi-Monte Carlo method, combined with Neural network method to solve nonlinear equations to obtain single vegetable oil content in blend oil. Peanut oil, soybean oil and sunflower oil are used as research object to reconcile into edible blend oil, with single oil regarded whole, not considered each oil's components. Recovery rates of 10 configurations of edible harmonic oil is measured to verify the validity of the method of characteristics peak value integration. An effective method is provided to detect components content of complex mixture in high sensitivity. Accuracy of recovery rats is increased, compared the common method of solution of linear equations used to detect components content of mixture. It can be used in the testing of kinds and content of edible vegetable oil in blend oil for the food quality detection

  3. Contact Allergy to Neem Oil.

    PubMed

    de Groot, Anton; Jagtman, Berend A; Woutersen, Marjolijn

    A case of allergic contact dermatitis from neem oil is presented. Neem oil (synonyms: Melia azadirachta seed oil [INCI name], nim oil, margosa oil) is a vegetable (fixed) oil obtained from the seed of the neem tree Azadirachta indica by cold pressing. Contact allergy to neem oil has been described previously in only 3 patients. The allergen(s) is/are unknown.

  4. Effect of heating/reheating of fats/oils, as used by Asian Indians, on trans fatty acid formation.

    PubMed

    Bhardwaj, Swati; Passi, Santosh Jain; Misra, Anoop; Pant, Kamal K; Anwar, Khalid; Pandey, R M; Kardam, Vikas

    2016-12-01

    Heating/frying and reuse of edible fats/oils induces chemical changes such as formation of trans fatty acids (TFAs). The aim of this study was to investigate the effect of heating/frying on formation of TFAs in fats/oils. Using gas chromatography with flame ionisation detector, TFA was estimated in six commonly used fat/oils in India (refined soybean oil, groundnut oil, olive oil, rapeseed oil, clarified butter, partially hydrogenated vegetable oil), before and after subjecting them to heating/frying at 180°C and 220°C. All six fats/oils subjected to heating/frying demonstrated an increase in TFAs (p<0.001), saturated fatty acids (p<0.001) and decrease in cis-unsaturated fatty acids (p<0.001). The absolute increase in TFA content of edible oils (after subjecting to heating/reheating) ranged between 2.30±0.89g/100g and 4.5±1.43g/100g; amongst edible fats it ranged between 2.60±0.38g/100g and 5.96±1.94g/100g. There were no significant differences between the two treatment groups (heating and frying; p=0.892). Considering the undesirable health effects of TFA, appropriate guidelines for heating/re-frying of edible fats/oils by Asian Indians should be devised. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Process for preparing lubricating oil from used waste lubricating oil

    DOEpatents

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  6. Survey of dissolved air flotation system efficiency for reduce of pollution of vegetable oil industry wastewater.

    PubMed

    Keramati, H; Alidadi, H; Parvaresh, A R; Movahedian, H; Mahvi, A H

    2008-10-01

    The aim of this research was to sudy the reduction of pollution of vegetable oil manufacturing wastewater with DAF system. At first phase of this examination, the optimum dosage of the coagulants was determined. The coagulants that used in this study were Alum and Ferric Chloride. The second phase was flotation in this series of examinations, oil, COD, total solid, volatile solid, fixed solid and suspended solid measured in raw wastewater and the effluent of the DAF pilot. Optimum value of pH for alum and ferric chloride obtained 7.5 and 5.5, respectively. Optimum dosage for these obtained 30 and 32 mg L(-1) in this research. Mean removal for the parameters ofoil, COD, total solid, volatile solid, fixed solid and suspended solid obtained 75.85, 78.27, 77.32, 82.47, 73.52 and 85.53%, respectively. With pressure rising from 3 to 4 and 5 atm removing rate of COD, total solid, volatile solid, fixed solid parameters reduced, but oil and suspended solid have increase. In addition, following increase of flotation time up to 120 sec all of the measured parameters have increase in removing rate. Optimum A/S for removal of COD, total solid, volatile solid, fixed solid parameters obtained 0.001 and for oil and suspended solid obtained 0.0015.

  7. Fast and effective low-temperature freezing extraction technique to determine organotin compounds in edible vegetable oil.

    PubMed

    Liu, Yingxia; Ma, Yaqian; Wan, Yiqun; Guo, Lan; Wan, Xiaofen

    2016-06-01

    Most organotin compounds that have been widely used in food packaging materials and production process show serious toxicity effects to human health. In this study, a simple and low-cost method based on high-performance liquid chromatography with inductively coupled plasma mass spectrometry for the simultaneous determination of four organotins in edible vegetable oil samples was developed. Four organotins including dibutyltin dichloride, tributyltin chloride, diphenyltin dichloride, and triphenyltin chloride were simultaneously extracted with methanol using the low-temperature precipitation process. After being concentrated, the extracts were purified by matrix solid-phase dispersion using graphitized carbon black. The experimental parameters such as extraction solvent and clean-up material were optimized. To evaluate the accuracy of the new method, the recoveries were investigated. In addition, a liquid chromatography with tandem mass spectrometry method was also proposed for comparison. The procedures of extracting and purifying samples for the analysis were simple and easy to perform batch operations, also showed good efficiency with lower relative standard deviation. The limits of detection of the four organotins were 0.28-0.59 μg/L, and the limits of quantification of the four organotins were 0.93-1.8 μg/L, respectively. The proposed method was successfully applied to the simultaneous analysis of the four organotins in edible vegetable oil. Some analytes were detected at the level of 2.5-28.8 μg/kg. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Upgrading biomass pyrolysis bio-oil to renewable fuels.

    DOT National Transportation Integrated Search

    2015-01-01

    Fast pyrolysis is a process that can convert woody biomass to a crude bio-oil (pyrolysis oil). However, some of these compounds : contribute to bio-oil shelf life instability and difficulty in refining. Catalytic hydrodeoxygenation (HDO) of the bio-o...

  9. Enzymatic Synthesis of Refined Olive Oil-Based Structured Lipid Containing Omega -3 and -6 Fatty Acids for Potential Application in Infant Formula.

    PubMed

    Li, Ruoyu; Sabir, Jamal S M; Baeshen, Nabih A; Akoh, Casimir C

    2015-11-01

    Structured lipids (SLs) containing palmitic, docosahexaenoic (DHA), and gamma-linolenic (GLA) acids were produced using refined olive oil, tripalmitin, and ethyl esters of DHA single cell oil and GLA ethyl esters. Immobilized Lipozyme TL IM lipase was used as the biocatalyst. The SLs were characterized for fatty acid profile, triacylglycerol (TAG) molecular species, solid fat content, oxidative stability index, and melting and crystallization profiles and compared to physical blend of substrates, extracted fat from commercial infant formula (IFF), and milk fat. 49.28 mol% of palmitic acid was found at the sn-2 position of SL TAG and total DHA and GLA composition were 0.73 and 5.00 mol%, respectively. The total oleic acid content was 36.13 mol% which was very close to the 30.49% present in commercial IFF. Comparable solid fat content profiles were also found between SLs and IFF. The SLs produced have potential for use in infant formulas. © 2015 Institute of Food Technologists®

  10. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils.

    PubMed

    Francisco, A; Dentinho, M T; Alves, S P; Portugal, P V; Fernandes, F; Sengo, S; Jerónimo, E; Oliveira, M A; Costa, P; Sequeira, A; Bessa, R J B; Santos-Silva, J

    2015-02-01

    The effects of dietary inclusion of Cistus ladanifer L. (CL) and a vegetable oil blend were evaluated on growth performance,carcass and meat quality of fifty four lambs that were assigned to 9 diets, corresponding to 3 levels of CL(50, 100 and 200 g/kg DM) and 3 levels of oil inclusion (0, 40 and 80 g/kg DM). Treatments had no effects on growth rate. Oil depressed dry matter intake (P = 0.017), carcass muscle (P = 0.041) and increased (P = 0.016) kidney knob channel fat. Chemical and physical meat quality traits were not affected by treatments. Off-flavour perception was higher for 8% of oil (P b 0.001). The level of 100 g/kg DM of CL inclusion improved meat stability after 7 days of storage. Supplementation with linseed and soybean oils (2:1) was a good approach to improve meat nutritional value from feedlot lambs, increasing total n-3 PUFA.

  11. In situ alcoholysis of triacylglycerols by application of switchable-polarity solvents. A new derivatization procedure for the gas-chromatographic analysis of vegetable oils.

    PubMed

    Saliu, Francesco; Orlandi, Marco

    2013-10-01

    We describe a new use of switchable-polarity solvents for the simultaneous derivatization and extraction of triacylglycerols from vegetable oils before gas-chromatographic analysis. Different equimolecular mixtures of the commercially available amidine 1,8-diazabicyclo[5.4.0]undec-7-ene and n-alkyl alcohols were tested. Triolein was used as a model compound. Very good results were achieved by using butanol (recovery of butyl oleate was 89 ± 4%). The procedure was applied for the characterization of the fatty acid profile of different vegetable oils. No statistically significant differences from the results obtained with the application of two traditional methods were evidenced. Moreover, the use of switchable-polarity solvents showed many advantages: owing to the basicity of the amidines, no catalyst was required; the transterification reaction was conducted under mild conditions, one step and in situ; no particular matrix interferences were evidenced; the solvent was recovered.

  12. 40 CFR 279.43 - Used oil transportation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...

  13. 40 CFR 279.43 - Used oil transportation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... identification number; (2) A used oil processing/re-refining facility who has obtained an EPA identification number; (3) An off-specification used oil burner facility who has obtained an EPA identification number... parts 171 through 180. Persons transporting used oil that meets the definition of a hazardous material...

  14. Animal performance and meat characteristics in steers reared in intensive conditions fed with different vegetable oils.

    PubMed

    Castro, T; Cabezas, A; De la Fuente, J; Isabel, B; Manso, T; Jimeno, V

    2016-03-01

    Enhancing the quality of beef meat is an important goal in terms of improving both the nutritional value for the consumer and the commercial value for producers. The aim of this work was to study the effects of different vegetable oil supplements on growth performance, carcass quality and meat quality in beef steers reared under intensive conditions. A total of 240 Blonde D' Aquitaine steers (average BW=293.7±38.88 kg) were grouped into 24 batches (10 steers/batch) and were randomly assigned to one of the three dietary treatments (eight batches per treatment), each supplemented with either 4% hydrogenated palm oil (PALM) or fatty acids (FAs) from olive oil (OLI) or soybean oil (SOY). No differences in growth performance or carcass quality were observed. For the meat quality analysis, a steer was randomly selected from each batch and the 6th rib on the left half of the carcass was dissected. PALM meat had the highest percentage of 16:0 (P<0.05) and the lowest n-6/n-3 polyunsaturated fatty acids (PUFA) ratio (P<0.05), OLI had the highest content of t11-18:1 (P<0.01) and c9,t11-18:2 (P<0.05) and SOY showed the lowest value of monounsaturated fatty acids (MUFA) (P<0.001), the highest percentage of PUFA (P<0.01) and a lower index of atherogenicity (P=0.07) than PALM. No significant differences in the sensory characteristics of the meat were noted. However, the results of the principal component analysis of meat characteristics enabled meat from those steers that consumed fatty acids from olive oil to be differentiated from that of steers that consumed soybean oil.

  15. Effect of the type of oil on the evolution of volatile compounds of taralli during storage.

    PubMed

    Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito M; Summo, Carmine; Gomes, Tommaso

    2012-03-01

    Baking process leads to a huge quantity of newly formed volatile compounds, which play a major role in developing the flavor of the final product. The aim of this work was to investigate on the evolution of the volatile profile of taralli as a function of both the kind of oil used in the dough and the storage time. The volatile compounds from the taralli were extracted by headspace solid-phase microextraction and analyzed by gas-chromatography/mass spectrometry (GC/MS). Forty-four volatile compounds were identified in taralli, most of which produced by thermically induced reactions occurring during baking process, such as volatiles deriving from Maillard reaction and/or sugar degradation and lipid oxidation. The results obtained demonstrated the essential role played by the type of oil on the formation and on the release of volatile compounds. The volatile compounds significantly increased during storage and their individual levels were in most cases significantly lower in taralli made with extra virgin olive oil than in those made with refined oils. Finally, the taralli made with extra virgin olive oil, compared with those prepared with other vegetable oils, showed to be more resistant to oxidation, probably due to the presence of natural antioxidants. © 2012 Institute of Food Technologists®

  16. Modified vegetation indices for Ganoderma disease detection in oil palm from field spectroradiometer data

    NASA Astrophysics Data System (ADS)

    Shafri, Helmi Z. M.; Anuar, M. Izzuddin; Saripan, M. Iqbal

    2009-10-01

    High resolution field spectroradiometers are important for spectral analysis and mobile inspection of vegetation disease. The biggest challenges in using this technology for automated vegetation disease detection are in spectral signatures pre-processing, band selection and generating reflectance indices to improve the ability of hyperspectral data for early detection of disease. In this paper, new indices for oil palm Ganoderma disease detection were generated using band ratio and different band combination techniques. Unsupervised clustering method was used to cluster the values of each class resultant from each index. The wellness of band combinations was assessed by using Optimum Index Factor (OIF) while cluster validation was executed using Average Silhouette Width (ASW). 11 modified reflectance indices were generated in this study and the indices were ranked according to the values of their ASW. These modified indices were also compared to several existing and new indices. The results showed that the combination of spectral values at 610.5nm and 738nm was the best for clustering the three classes of infection levels in the determination of the best spectral index for early detection of Ganoderma disease.

  17. A capillary electrophoresis-tandem mass spectrometry methodology for the determination of non-protein amino acids in vegetable oils as novel markers for the detection of adulterations in olive oils.

    PubMed

    Sánchez-Hernández, Laura; Marina, Maria Luisa; Crego, Antonio L

    2011-07-29

    A new analytical methodology based on capillary electrophoresis-mass spectrometry (CE-MS(2)) is presented in this work, enabling the identification and determination of six non-protein amino acids (ornithine, β-alanine, GABA, alloisoleucine, citrulline and pyroglutamic acid) in vegetable oils. This methodology is based on a previous derivatization with butanol and subsequent separation using acidic conditions followed by on-line coupling to an ion trap analyzer for MS(2) detection established through an electrospray-coaxial sheath flow interface. The electrophoretic and interface parameters were optimized obtaining the separation of all compounds in less than 15 min and with resolutions higher than 5. The proposed method was validated by assessing its accuracy, precision (RSD<7% for corrected peak areas), LODs and LOQs (between 0.04-0.19 ng/g and 0.06-0.31 ng/g, respectively) and linearity range (R(2)>0.99), and it was used in order to identify the selected non-protein amino acids in soybean oils, sunflower oils, corn oils and extra virgin olive oils. MS(2) experiments performed the fingerprint fragmentation of these compounds allowing to corroborate ornithine and alloisoleucine in seed oils but not in olive oils. The method was applied to identify and quantify olive oil adulterations with soybean oil detecting in a single run the amino acids in mixtures up to 2% (w/w). The results showed a high potential in using these compounds as novel markers for the detection of adulterations of extra virgin olive oils with seed oils. Thus, the developed method could be considered a simple, rapid and reliable method for the quality evaluation of extra virgin olive oil permitting its authentication. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. 21 CFR 173.275 - Hydrogenated sperm oil.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from rendering the fatty tissue of the sperm whale or is prepared by synthesis of fatty acids and fatty alcohols derived from the sperm whale. The sperm oil obtained by rendering is refined. The oil is...

  19. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-specification used oil fuel. 279.72... (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Fuel Marketers § 279.72 On-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or...

  20. Refining of plant oils to chemicals by olefin metathesis.

    PubMed

    Chikkali, Samir; Mecking, Stefan

    2012-06-11

    Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    PubMed

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-07

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).

  2. Comparison of different classification methods for analyzing electronic nose data to characterize sesame oils and blends.

    PubMed

    Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang

    2015-10-21

    An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results.

  3. Manufacturing vegetable oil based biodiesel: An engineering management perspective

    USDA-ARS?s Scientific Manuscript database

    According to the USDA, 6.45 million tons of cottonseed was produced in 2007. Each ton will yield approximately 44 to 46 gallons unrefined oil. Cottonseed oil bio-diesel could have the potential to create a more competitive oil market for oil mills. The proposed cost model is based on an existing cot...

  4. Effects of Removing Restrictions on U.S. Crude Oil Exports

    EIA Publications

    2015-01-01

    This report examines the implications of removing current restrictions on U.S. crude oil exports for the price of domestic and global marker crude oil streams, gasoline prices, domestic crude oil production, domestic refining activity, and trade in crude oil and petroleum products.

  5. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Muji Susantoro, Tri; Wikantika, Ketut; Saepuloh, Asep; Handoyo Harsolumakso, Agus

    2018-05-01

    Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R2 than 0,8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

  6. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  7. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  8. 21 CFR 163.153 - Sweet chocolate and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweet chocolate and vegetable fat coating. 163.153... § 163.153 Sweet chocolate and vegetable fat coating. (a) Description. Sweet chocolate and vegetable fat... specified dairy ingredient. (b) Optional ingredients. (1) Safe and suitable vegetable derived fats, oils...

  9. Contamination by oil crude extraction - Refinement and their effects on human health.

    PubMed

    Ramirez, Maria Isabel; Arevalo, Ana Paulina; Sotomayor, Santiago; Bailon-Moscoso, Natalia

    2017-12-01

    The harmful effects of oil on various species of flora and fauna have been studied extensively; however, few studies have studied the effects of oil exposure on human health. The objective of this research was to collect information on the acute health effects and serious psychological symptoms of the possible consequences of such exposure to crude oil. Some studies focused on the composition of different chemicals used in the extraction process, and wastes generated proved to be highly harmful to human health. Thus, studies have shown that individuals who live near oil fields or wells - or who take part in activities of cleaning oil spills - have presented health conditions, such as irritation to the skin, eyes, mucous membranes, kidney damage, liver, reproductive, among others. In Ecuador, this reality is not different from other countries, and some studies have shown increased diseases related with oil crude and oil spills, like skin irritation, throat, liver, lung, infertility, and abortions, and it has been linked to childhood leukemia. Other studies suggest a direct relationship between DNA damage because of oil resulting in a genetic instability of the main enzymes of cellular metabolism as well as a relationship with some cancers, such as leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Identification of 3-MCPD esters to verify the adulteration of extra virgin olive oil.

    PubMed

    Hung, Wei-Ching; Peng, Guan-Jhih; Tsai, Wen-Ju; Chang, Mei-Hua; Liao, Chia-Ding; Tseng, Su-Hsiang; Kao, Ya-Min; Wang, Der-Yuan; Cheng, Hwei-Fang

    2017-09-01

    The adulteration of olive oil is an important issue around the world. This paper reports an indirect method by which to identify 3-monochloropropane-1,2-diol (3-MCPD) esters in olive oils. Following sample preparation, the samples were spiked with 1,2-bis-palmitoyl-3-chloropropanediol standard for analysis using gas chromatograph-tandem mass spectrometry. The total recovery ranged from 102.8% to 105.5%, the coefficient of variation ranged from 1.1% to 10.1%, and the limit of quantification was 0.125 mg/kg. The content of 3-MCPD esters in samples of refined olive oil (0.97-20.53 mg/kg) exceeded those of extra virgin olive oil (non-detected to 0.24 mg/kg). These results indicate that the oil refining process increased the content of 3-MCPD esters, which means that they could be used as a target compound for the differentiation of extra virgin olive oil from refined olive oil in order to prevent adulteration.

  11. Reduced Need of Lubricity Additives in Soybean Oil Blends Under Boundary Lubrication Conditions

    USDA-ARS?s Scientific Manuscript database

    Converging prices of vegetable oils and petroleum, along with increased focus on renewable resources, gave more momentum to vegetable oil lubricants. Boundary lubrication properties of four Extreme Pressure (EP) additive blends in conventional Soy Bean Oil (SBO) and Paraffinic Mineral Oil (PMO) of ...

  12. Chemical, Rheological and Nutritional Characteristics of Sesame and Olive Oils Blended with Linseed Oil.

    PubMed

    Hashempour-Baltork, Fataneh; Torbati, Mohammadali; Azadmard-Damirchi, Sodeif; Peter Savage, Geoffrey

    2018-03-01

    Purpose: Nutritional quality and oxidation stability are two main factors in the evaluation of edible oils. Oils in their pure form do not have an ideal fatty acid composition or suitable oxidative stability during processing or storage. Methods: This study was designed to evaluate the chemical, nutritional and rheological properties of oil mixtures in three ratios of olive: sesame: linseed, 65:30:5; 60:30:10 and 55:30:15. Acidity value, peroxide value, rancimat test, fatty acid profile, nutritional indexes and rheological properties of the oil blends were determined. The nutritional quality was determined by indexes, including the atherogenic and thrombogenic indexs; the ratios of hypocholesterolemic: hypercholesterolemic; poly unsaturated fatty acid: saturated fatty acid and the ω 6 :ω 3 . Results: The results indicated that blending of other vegetable oils with linseed oil could balance ω 6 :ω 3 . Results showed that formulated oils had a good balance of oxidation stability and nutritional properties as well. Rheological data showed that these oil blends followed Newtonian behavior at 4°C and 25°C. Conclusion: According to the results, addition of linseed oil to vegetable oils containing high levels of bioactive compounds was a simple and economic practice to obtain a functional oil with good nutritional and stability properties.

  13. US refining sector still a whipping-boy: what will it take

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-27

    The fast moving US product markets are exerting a powerful pull on crude oil prices. This has meant unalleviated downward pressure on refining margins for most of the past year. Downstream of refining, product marketers want the lower rack and spot prices from refineries. Upstream, independent and major-integrated producers want the highest crude prices they can obtain, with the latter producers also wanting the highest product value realizations. Refiners, especially the major-integrated ones, are rooting for OPEC discipline louder than anybody else. This issue also contains the following: (1) weighted dollar values by product for total product barrel at variousmore » sites around the globe; (2) ED refining netback data for the US Gulf and West Coasts, Rotterdam, and Singapore for late January 1988; and (3) ED fuel price/tax series for both the Western and Eastern Hemispheres, Jan. 1988 edition. 5 figures, 18 tables.« less

  14. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  15. Vegephy: impact of vegetable oils used as extemporaneous additives on pesticide residues and their crop protection potential.

    PubMed

    Rousseau, G; Coutanceau, P; Lebeau, F; Pigeon, O; Ducat, N; De Vos, P

    2013-01-01

    Within the framework of the VEGEPHY project set up to assess the effect of refined oils used as extemporaneous additives, both alone and in combination with oligosaccharides (guar, xanthan and carboxymethyl cellulose), on the quality of plant protection treatments for wheat, a study was conducted on the effect of combinations of additives on the level of pesticide residues in wheat plants and grain and their impact on treatment efficiency. The use of some of these additives gave efficiency results that were comparable with those obtained with additives that are currently used but are not bio-based. The use of refined oils as extemporaneous additives, both alone and combined with oligosaccharides, led to better penetration by the pesticide as well as longer persistence of its activity. The experiments were conducted with fungicides, herbicides, plant growth regulators and various types of formulation (EC, SC and WG). The results obtained were conclusive, but they did depend on the physico-chemical properties of the active substance. The risk of exceeding the maximum residue levels (MRLs) of pesticides was also evaluated. Even where the MRLs had not been not exceeded, the experiments showed that in some cases the treatment with these additives could lead to pesticide residues up to two times higher than those measured for the treatment without additives. It would be necessary, therefore, to reduce the treatment dose associated with the additive and/or have a long enough pre-harvest interval to avoid exceeding the MRLs. The use of green additives could be a useful and easy way to attain the European Union (EU) goal of reducing pesticide use by improving the retention of active substances on the plant and reducing the number of treatments.

  16. Cuphea oil as a potential source of biodiesel with improved properties

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is usually produced from common vegetable oils such as soybean, rapeseed (canola), and palm as well as other feedstocks such as animal fats and used cooking oils. To enhance feedstock supply, other vegetable oils such as jatropha are of increasing interest. However, most of these feedsto...

  17. Response surface methodology as an approach to determine optimal activities of lipase entrapped in sol-gel matrix using different vegetable oils.

    PubMed

    Pinheiro, Rubiane C; Soares, Cleide M F; de Castro, Heizir F; Moraes, Flavio F; Zanin, Gisella M

    2008-03-01

    The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.

  18. Functional genomics reveals increases in cholesterol biosynthetic genes and highly unsaturated fatty acid biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo salar)

    PubMed Central

    Leaver, Michael J; Villeneuve, Laure AN; Obach, Alex; Jensen, Linda; Bron, James E; Tocher, Douglas R; Taggart, John B

    2008-01-01

    Background There is an increasing drive to replace fish oil (FO) in finfish aquaculture diets with vegetable oils (VO), driven by the short supply of FO derived from wild fish stocks. However, little is known of the consequences for fish health after such substitution. The effect of dietary VO on hepatic gene expression, lipid composition and growth was determined in Atlantic salmon (Salmo salar), using a combination of cDNA microarray, lipid, and biochemical analysis. FO was replaced with VO, added to diets as rapeseed (RO), soybean (SO) or linseed (LO) oils. Results Dietary VO had no major effect on growth of the fish, but increased the whole fish protein contents and tended to decrease whole fish lipid content, thus increasing the protein:lipid ratio. Expression levels of genes of the highly unsaturated fatty acid (HUFA) and cholesterol biosynthetic pathways were increased in all vegetable oil diets as was SREBP2, a master transcriptional regulator of these pathways. Other genes whose expression was increased by feeding VO included those of NADPH generation, lipid transport, peroxisomal fatty acid oxidation, a marker of intracellular lipid accumulation, and protein and RNA processing. Consistent with these results, HUFA biosynthesis, hepatic β-oxidation activity and enzymic NADPH production were changed by VO, and there was a trend for increased hepatic lipid in LO and SO diets. Tissue cholesterol levels in VO fed fish were the same as animals fed FO, whereas fatty acid composition of the tissues largely reflected those of the diets and was marked by enrichment of 18 carbon fatty acids and reductions in 20 and 22 carbon HUFA. Conclusion This combined gene expression, compositional and metabolic study demonstrates that major lipid metabolic effects occur after replacing FO with VO in salmon diets. These effects are most likely mediated by SREBP2, which responds to reductions in dietary cholesterol. These changes are sufficient to maintain whole body cholesterol

  19. Abdominal obesity and type 2 diabetes in Asian Indians: dietary strategies including edible oils, cooking practices and sugar intake.

    PubMed

    Gulati, S; Misra, A

    2017-07-01

    Obesity and type 2 diabetes are increasing in rural and urban regions of South Asia including India. Pattern of fat deposition in abdomen, ectopic fat deposition (liver, pancreas) and also low lean mass are contributory to early-onset insulin resistance, dysmetabolic state and diabetes in Asian Indians. These metabolic perturbations are further exacerbated by changing lifestyle, diet urbanization, and mechanization. Important dietary imbalances include increasing use of oils containing high amount of trans fatty acids and saturated fats (partially hydrogenated vegetable oil, palmolein oil) use of deep frying method and reheating of oils for cooking, high intake of saturated fats, sugar and refined carbohydrates, low intake of protein, fiber and increasing intake of processed foods. Although dietary intervention trials are few; the data show that improving quality of carbohydrates (more complex carbohydrates), improving fat quality (more monounsaturated fatty acids and omega 3 polyunsaturated fatty acids) and increasing protein intake could improve blood glucose, serum insulin, lipids, inflammatory markers and hepatic fat, but more studies are needed. Finally, regulatory framework must be tightened to impose taxes on sugar-sweetened beverages, oils such as palmolein, and dietary fats and limit trans fats.

  20. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  1. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  2. 21 CFR 163.150 - Sweet cocoa and vegetable fat coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sweet cocoa and vegetable fat coating. 163.150... § 163.150 Sweet cocoa and vegetable fat coating. (a) Description. Sweet cocoa and vegetable fat coating...) Chocolate liquor; (3) Safe and suitable vegetable derived fats, oils, and stearins other than cacao fat. The...

  3. 40 CFR 279.72 - On-specification used oil fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of § 279.11 by performing analyses or obtaining copies of analyses or other information documenting...-specification used oil fuel. (a) Analysis of used oil fuel. A generator, transporter, processor/re-refiner, or... meets the specifications for used oil fuel under § 279.11, must keep copies of analyses of the used oil...

  4. Essays on refining markets and environmental policy

    NASA Astrophysics Data System (ADS)

    Oladunjoye, Olusegun Akintunde

    This thesis is comprised of three essays. The first two essays examine empirically the relationship between crude oil price and wholesale gasoline prices in the U.S. petroleum refining industry while the third essay determines the optimal combination of emissions tax and environmental research and development (ER&D) subsidy when firms organize ER&D either competitively or as a research joint venture (RJV). In the first essay, we estimate an error correction model to determine the effects of market structure on the speed of adjustment of wholesale gasoline prices, to crude oil price changes. The results indicate that market structure does not have a strong effect on the dynamics of price adjustment in the three regional markets examined. In the second essay, we allow for inventories to affect the relationship between crude oil and wholesale gasoline prices by allowing them to affect the probability of regime change in a Markov-switching model of the refining margin. We find that low gasoline inventory increases the probability of switching from the low margin regime to the high margin regime and also increases the probability of staying in the high margin regime. This is consistent with the predictions of the competitive storage theory. In the third essay, we extend the Industrial Organization R&D theory to the determination of optimal environmental policies. We find that RJV is socially desirable. In comparison to competitive ER&D, we suggest that regulators should encourage RJV with a lower emissions tax and higher subsidy as these will lead to the coordination of ER&D activities and eliminate duplication of efforts while firms internalize their technological spillover externality.

  5. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.

  6. [Rapid discriminating hogwash oil and edible vegetable oil using near infrared optical fiber spectrometer technique].

    PubMed

    Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai

    2014-10-01

    In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.

  7. Determination of 3-monochloropropane-1,2-diol fatty acid esters in Brazilian vegetable oils and fats by an in-house validated method.

    PubMed

    Arisseto, A P; Marcolino, P F C; Vicente, E

    2014-01-01

    An in-house validated GC-MS method preceded by acid-catalysed methanolysis was applied to 97 samples of vegetable oils and fats marketed in Brazil. The levels of the compounds ranged from not detected (limit of detection = 0.05 mg kg(-1)) to 5.09 mg kg(-1), and the highest concentrations were observed in samples containing olive pomace oil and in products used for industrial applications, such as palm oil and its fractions (olein and stearin). The content of diesters and monoesters was also investigated by employing solid-phase extraction on silica cartridges, indicating that the majority of the compounds were present as diesters. This study provides the first occurrence data on these contaminants in Brazil and the results are comparable with those reported in other countries.

  8. Elastohydrodynamics of oil-soluble PAGs, high-oleic sunflower oil and their blends

    USDA-ARS?s Scientific Manuscript database

    Recent reports indicate that the oxidative stability of vegetable oils can be improved for lubrication purposes by mixing them with oil-soluble polyalkyl glycols (OS-PAG). This inspired a study of other lubrication-related properties of their blends. The viscosity, density, and elastohydrodynamic fi...

  9. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    NASA Astrophysics Data System (ADS)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  10. Impact of essential oils on the taste acceptance of tomato juice, vegetable soup, or poultry burgers.

    PubMed

    Espina, Laura; García-Gonzalo, Diego; Pagán, Rafael

    2014-08-01

    Despite the vast body of available literature on the possibilities of essential oils (EOs) as food preservatives or functional ingredients, the sensory impact of their addition to foods has barely been approached. This work focuses on the hedonic taste acceptance of 3 food products (tomato juice, vegetable soup, and poultry burgers) when they are incorporated with potentially antimicrobial concentrations (20 to 200 μL/L) of 6 selected EOs (lemon, pennyroyal mint, thyme, and rosemary) and individual compounds (carvacrol, p-cymene). Although addition of 20 μL/L of pennyroyal mint or lemon EO did not change the taste acceptance of tomato juice, higher concentrations of these compounds or any concentration of the other 4 compounds did. In vegetable soup, the tolerance limit for rosemary EO, thyme EO, carvacrol, or p-cymene was 20 μL/L, while the addition of 200 μL/L of lemon EO was accepted. Tolerance limits in poultry burgers were established in 20 μL/L for carvacrol and thyme EOs, 100 μL/L for pennyroyal mint EO and p-cymene, and 200 μL/L for lemon and rosemary EOs. Moreover, incorporation of pennyroyal mint EO to tomato juice or poultry burgers, and enrichment of vegetable soup with lemon EO, could contribute to the development of food products with an improved sensory appeal. © 2014 Institute of Food Technologists®

  11. Oil turmoil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    A review of US oil production, refining, and retailing reveals the severity of the energy problem and illustrates the confusion over what can be accomplished by decontrolling oil prices. Conflicting statements from members of Congress, the President, and the oil industry have further confused the public. The shortages can be traced to a decline in domestic production incentives and foreign production, a slowdown in refinery expansion because of environmental constraints, competition between home heating oil and gasoline for priority, the failure of states to enforce speed limits, and a national preoccupation with oil profits. Senator Kennedy, for example, advocates continuedmore » price controls with a world-wide drilling program funded by the World Bank, while decontrol advocates feel price controls will only artifically restrain US production. The economic effects of decontrol on inflation are unclear, but conservation efforts, the development of alternative energy sources, and oil development from shale and tar sands are predicted to increase as political rhetoric declines.« less

  12. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends.

    PubMed

    Norizzah, Abd Rashid; Nur Azimah, Kamarulzaman; Zaliha, Omar

    2018-04-01

    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Comparison of Different Classification Methods for Analyzing Electronic Nose Data to Characterize Sesame Oils and Blends

    PubMed Central

    Shao, Xiaolong; Li, Hui; Wang, Nan; Zhang, Qiang

    2015-01-01

    An electronic nose (e-nose) was used to characterize sesame oils processed by three different methods (hot-pressed, cold-pressed, and refined), as well as blends of the sesame oils and soybean oil. Seven classification and prediction methods, namely PCA, LDA, PLS, KNN, SVM, LASSO and RF, were used to analyze the e-nose data. The classification accuracy and MAUC were employed to evaluate the performance of these methods. The results indicated that sesame oils processed with different methods resulted in different sensor responses, with cold-pressed sesame oil producing the strongest sensor signals, followed by the hot-pressed sesame oil. The blends of pressed sesame oils with refined sesame oil were more difficult to be distinguished than the blends of pressed sesame oils and refined soybean oil. LDA, KNN, and SVM outperformed the other classification methods in distinguishing sesame oil blends. KNN, LASSO, PLS, and SVM (with linear kernel), and RF models could adequately predict the adulteration level (% of added soybean oil) in the sesame oil blends. Among the prediction models, KNN with k = 1 and 2 yielded the best prediction results. PMID:26506350

  14. Oil sorption by lignocellulosic fibers

    Treesearch

    Beom-Goo Lee; James S. Han; Roger M. Rowell

    1999-01-01

    The oil sorption capacities of cotton fiber, kenaf bast fiber, kenaf core fiber, and moss fiber were compared after refining, extraction, and reduction in particle sizes. The tests were conducted on diesel oil in a pure form. Cotton fiber showed the highest capacity, followed by kenaf core and bast fibers. Wetting, extraction, and reduction in particle size all...

  15. Exposure standard for fog oil. Technical report, Dec 89-Nov 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, W.G.

    1990-11-15

    Effects of mineral oils in animals and humans are evaluated and serve as the basis for the development of an exposure standard for fog oil. Considered are health hazards associated with fog oil purchased before and after the Military Specification was amended in April 1986 to exclude carcinogens. While repeated exposure to conventionally-refined mineral oils may cause pulmonary disease as well as severe dermatoses and cancer of the skin and scrotum, lipoid pneumonia is the major health hazard associated with highly refined mineral oils such as fog oils purchased after April 1986. While the course of lipoid pneumonia can bemore » asymptomatic in some individuals, in others its symptoms can range from occasional cough to severe, debilitating dyspnea and pulmonary illness, occasionally ending in death.« less

  16. Tracking pollutants in dietary fish oil: From ocean to table.

    PubMed

    Sun, Sheng-Xiang; Hua, Xue-Ming; Deng, Yun-Yun; Zhang, Yun-Ni; Li, Jia-Min; Wu, Zhao; Limbu, Samwel Mchele; Lu, Da-Sheng; Yin, Hao-Wen; Wang, Guo-Quan; Waagbø, Rune; Livar, Frøyland; Zhang, Mei-Ling; Du, Zhen-Yu

    2018-05-16

    Dietary fish oil used in aquafeed transfers marine pollutants to farmed fish. However, the entire transfer route of marine pollutants in dietary fish oil from ocean to table fish has not been tracked quantitatively. To track the entire transfer route of marine pollutants from wild fish to farmed fish through dietary fish oil and evaluate the related human health risks, we obtained crude and refined fish oils originating from the same batch of wild ocean anchovy and prepared fish oil-containing purified aquafeeds to feed omnivorous lean Nile tilapia and carnivorous fatty yellow catfish for eight weeks. The potential human health risk of consumption of these fish was evaluated. Marine persistent organic pollutants (POPs) were concentrated in fish oil, but were largely removed by the refining process, particularly dioxins and polychlorinated biphenyls (PCBs). The differences in the POP concentrations between crude and refined fish oils were retained in the fillets of the farmed fish. Fillets fat content and fish growth were positively and negatively correlated to the final POPs deposition in fillets, respectively. The retention rates of marine POPs in the final fillets through fish oil-contained aquafeeds were 1.3%-5.2%, and were correlated with the POPs concentrations in feeds and fillets, feed utilization and carcass ratios. The dietary crude fish oil-contained aquafeeds are a higher hazard ratio to consumers. Prohibiting the use of crude fish oil in aquafeed and improving growth and feed efficiency in farmed fish are promising strategies to reduce health risks originating from marine POPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A novel method to quantify the adulteration of extra virgin olive oil with low-grade olive oils by UV-vis.

    PubMed

    Torrecilla, José S; Rojo, Ester; Domínguez, Juan C; Rodríguez, Francisco

    2010-02-10

    A simple and novel method to quantify adulterations of extra virgin olive oil (EVOO) with refined olive oil (ROO) and refined olive-pomace oil (ROPO) is described here. This method consists of calculating chaotic parameters (Lyapunov exponent, autocorrelation coefficients, and two fractal dimensions, CPs) from UV-vis scans of adulterated EVOO samples. These parameters have been successfully linearly correlated with the ROO or ROPO concentrations in 396 EVOO adulterated samples. By an external validation process, when the adulterating agent concentration is less than 10%, the integrated CPs/UV-vis model estimates the adulterant agent concentration with a mean correlation coefficient (estimated versus real concentration of low grade olive oil) greater than 0.97 and a mean square error of less than 1%. In light of these results, this detector is suitable not only to detect adulterations but also to measure impurities when, for instance, a higher grade olive oil is transferred to another storage tank in which lower grade olive oil was stored that had not been adequately cleaned.

  18. Comparison of indirect and direct quantification of esters of monochloropropanediol in vegetable oil.

    PubMed

    Dubois, Mathieu; Tarres, Adrienne; Goldmann, Till; Empl, Anna Maria; Donaubauer, Alfred; Seefelder, Walburga

    2012-05-04

    The presence of fatty acid esters of monochloropropanediol (MEs) in food is a recent concern raised due to the carcinogenicity of their hydrolysable moieties 2- and 3-monochloropropanediol (2- and 3-MCPD). Several indirect methods for the quantification of MEs have been developed and are commonly in use until today, however significant discrepancies among analytical results obtained are challenging their reliability. The aim of the present study was therefore to test the trueness of an indirect method by comparing it to a newly developed direct method using palm oil and palm olein as examples. The indirect method was based on ester cleavage under acidic conditions, derivatization of the liberated 2- and 3-MCPD with heptafluorobutyryl imidazole and GC-MS determination. The direct method was comprised of two extraction procedures targeting 2-and 3-MCPD mono esters (co-extracting as well glycidyl esters) by the use of double solid phase extraction (SPE), and 2- and 3-MCPD di-esters by the use of silica gel column, respectively. Detection was carried out by liquid chromatography coupled to time of flight mass spectrometry (LC-ToF-MS). Accurate quantification of the intact compounds was assured by means of matrix matched standard addition on extracts. Analysis of 22 palm oil and 7 palm olein samples (2- plus 3-MCPD contamination ranged from 0.3 to 8.8 μg/g) by both methods revealed no significant bias. Both methods were therefore considered as comparable in terms of results; however the indirect method was shown to require less analytical standards, being less tedious and furthermore applicable to all type of different vegetable oils and hence recommended for routine application. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. 30 CFR 208.5 - Notice of royalty oil sale.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Notice of royalty oil sale. 208.5 Section 208.5... OF FEDERAL ROYALTY OIL General Provisions § 208.5 Notice of royalty oil sale. If the Secretary decides to take royalty oil in kind for sale to eligible refiners, MMS will issue a “Notice of...

  20. Solid phase microextraction of phthalic acid esters from vegetable oils using iron (III)-based metal-organic framework/graphene oxide coating.

    PubMed

    Zhang, Shuaihua; Yang, Qian; Li, Zhi; Wang, Wenjin; Zang, Xiaohuan; Wang, Chun; Wang, Zhi

    2018-10-15

    A hybrid composite featuring an iron-based metal-organic framework Material of Institute Lavoisier-88(Fe) and graphene oxide (MIL-88(Fe)/GO) was synthesized and used as the solid-phase microextraction (SPME) coating. The SPME fiber was prepared by covalent bonding of the MIL-88(Fe)/GO composite onto the stainless steel substrate. The fiber had a good durability and allowed >100 replicate extractions. The developed method, which combined the MIL-88(Fe)/GO coated fiber based SPME with gas chromatography-flame ionization detection (GC-FID), achieved low limits of detection (0.5-2.0 ng g -1 , S/N = 3) and good linearity (r 2  > 0.994) for the phthalic acid esters (PAEs) from various vegetable oil samples. The repeatability and fiber-to-fiber reproducibility were in the range of 4.0-9.1% and 5.7-11.4%, respectively. The method was successfully applied to the analysis of PAEs from vegetable oil samples with good recoveries (83.1-104.1%) and satisfactory precisions (RSDs < 10.5%), indicating that the MIL-88(Fe)/GO hybrid composite is a good coating material for the SPME of PAEs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Kapok oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  2. Production of polyhydroxyalkanoates from waste frying oil by Cupriavidus necator

    PubMed Central

    2011-01-01

    Polyhydroxyalkanoates (PHAs) are biopolymers, which can replace petrochemical plastics in many applications. However, these bioplastics are currently far more expensive than petrochemical plastics. Many researchers are investigating the use of inexpensive substrates derived from waste streams. Waste frying oil is abundant and can be used in PHA production without filtration. Cupriavidus necator (formerly known as Ralstonia eutropha) is a versatile organism for the production of PHAs. Small-scale batch fermentation studies have been set up, using different concentrations of pure vegetable oil, heated vegetable oil and waste frying oil. These oils are all rapeseed oils. It has been shown that Cupriavidus necator produced the homopolymer polyhydroxybutyrate (PHB) from the rapeseed oils. The achieved PHB concentration from waste frying oil was 1.2 g/l, which is similar to a concentration that can be obtained from glucose. The PHB harvest from pure oil and heated oil was 0.62 g/l and 0.9 g/l respectively. A feed of waste frying oil could thus achieve more biopolymer than pure vegetable oil. While the use of a waste product is beneficial from a life-cycle perspective, PHB is not the only product that can be made from waste oil. The collection of waste frying oil is becoming more widespread, making waste oil a good alternative to purified oil or glucose for PHB production. PMID:21906352

  3. Control of Aeromonas on minimally processed vegetables by decontamination with lactic acid, chlorinated water, or thyme essential oil solution.

    PubMed

    Uyttendaele, M; Neyts, K; Vanderswalmen, H; Notebaert, E; Debevere, J

    2004-02-01

    Aeromonas is an opportunistic pathogen, which, although in low numbers, may be present on minimally processed vegetables. Although the intrinsic and extrinsic factors of minimally processed prepacked vegetable mixes are not inhibitory to the growth of Aeromonas species, multiplication to high numbers during processing and storage of naturally contaminated grated carrots, mixed lettuce, and chopped bell peppers was not observed. Aeromonas was shown to be resistant towards chlorination of water, but was susceptible to 1% and 2% lactic acid and 0.5% and 1.0% thyme essential oil treatment, although the latter provoked adverse sensory properties when applied for decontamination of chopped bell peppers. Integration of a decontamination step with 2% lactic acid in the processing line of grated carrots was shown to have the potential to control the overall microbial quality of the grated carrots and was particularly effective towards Aeromonas.

  4. Impact of applying edible oils to silk channels on ear pests of sweet corn

    USDA-ARS?s Scientific Manuscript database

    The impact of applying vegetable oils to corn silks on ear-feeding insects in sweet corn production was evaluated in 2006 and 2007. Six vegetable oils used in this experiment were canola, corn, olive, peanut, sesame, and soybean. Water and two commercial insecticidal oils (Neemix' neem oil and Sun...

  5. Fatty acid composition including trans-fatty acids in edible oils and fats: probable intake in Indian population.

    PubMed

    Dixit, Sumita; Das, Mukul

    2012-10-01

    The susceptibility of trans-fat to the human health risk prompted the Food and Agriculture Organization (FAO) and World Health Organization (WHO) to prepare regulations or compulsory claims for trans-fatty acids (TFA) in edible oils and fats. In this study, analysis of fatty acid composition and TFA content in edible oils and fats along with the possible intake of trans-fat in Indian population was carried out. The analysis was carried out as per the Assn. of Official Analytical Chemists (AOAC) methodology and the results were statistically analyzed. The average TFA content in nonrefined mustard and refined soybean oils exceeded by 1.16- to 1.64-fold as compared to the Denmark limit of 2% TFA in fats and oils destined for human consumption. In branded/nonbranded butter and butter oil samples, average TFA limit exceeded by 4.2- to 9.5-fold whereas hydrogenated vegetable oil (HVO) samples exceeded the limit by 9.8-fold, when compared to Denmark standards. The probable TFA intake per day through different oils in Indian population were found to be less than WHO recommendation. However Punjab having highest consumption of HVO (-15 g/d) showed 1.09-fold higher TFA intake than the WHO recommendation, which is alarming and may be one of the factors for high cardiovascular disease mortality rate that needs further elucidation. Thus there is a need to prescribe TFA limit for edible oil, butter, and butter oil in India and to reduce the already proposed TFA levels in HVO to safeguard the health of consumers. The probable daily intake of trans-fatty acid (TFA) especially through hydrogenated vegetable oil (HVO) was assessed. In absence of any specification for TFA and fatty acid composition for edible oils, butter, and butter samples, a pressing need was felt to prescribe TFA limit in India. The study indicates that TFA intake through HVO consumption is higher in States like Punjab than the recommended daily intake prescribed by WHO. Hence, strategies should be adopted to

  6. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...

  7. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...

  8. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...

  9. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production 21. Vegetable Oil 22. Industrial Surface Coating: Metal Coil 23. Petroleum Transportation and... Coating: Automobiles 28. Industrial Surface Coating: Large Appliances 29. Crude Oil and Natural Gas... 53. Starch 54. Perlite 55. Phosphoric Acid: Thermal Process (Deleted) 56. Uranium Refining 57. Animal...

  10. Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems.

    PubMed

    Lima, Lionete N; Oliveira, Gladson C; Rojas, Mayerlenis J; Castro, Heizir F; Da Rós, Patrícia C M; Mendes, Adriano A; Giordano, Raquel L C; Tardioli, Paulo W

    2015-04-01

    This work describes the preparation of biocatalysts for ethanolysis of soybean and babassu oils in solvent-free systems. Polystyrene, Amberlite (XAD-7HP), and octyl-silica were tested as supports for the immobilization of Pseudomonas fluorescens lipase (PFL). The use of octyl-silica resulted in a biocatalyst with high values of hydrolytic activity (650.0 ± 15.5 IU/g), immobilization yield (91.3 ± 0.3 %), and recovered activity (82.1 ± 1.5 %). PFL immobilized on octyl-silica was around 12-fold more stable than soluble PFL, at 45 °C and pH 8.0, in the presence of ethanol at 36 % (v/v). The biocatalyst provided high vegetable oil transesterification yields of around 97.5 % after 24 h of reaction using babassu oil and around 80 % after 48 h of reaction using soybean oil. The PFL-octyl-silica biocatalyst retained around 90 % of its initial activity after five cycles of transesterification of soybean oil. Octyl-silica is a promising support that can be used to immobilize PFL for subsequent application in biodiesel synthesis.

  11. Feasibility of Department of Defense Used Lubricating Oil Re-refining.

    DTIC Science & Technology

    1983-12-01

    greater product selectivity (increasing cost effec- tiveness by tailoring the process to meet market demand ). In addition most processes have high yields...However, several issues were surfaced. The question of who in DLA is responsible for the administra- tion of a re-refining program must be resolved...Both the Property Disposal and Supply groups have a role. The Disposal group now has responsibility for .1%- iv -. d

  12. Investigating vegetation spectral reflectance for detecting hydrocarbon pipeline leaks from multispectral data

    NASA Astrophysics Data System (ADS)

    Adamu, Bashir; Tansey, Kevin; Bradshaw, Michael J.

    2013-10-01

    The aim of this paper is to analyse spectral reflectance data from Landsat TM of vegetation that has been exposed to hydrocarbon contamination from oil spills from pipelines. The study is undertaken in an area of mangrove and swamp vegetation where the detection of an oil spill is traditionally difficult to make. We used a database of oil spill records to help identify candidate sites for spectral analysis. Extracted vegetation spectra were compared between polluted and nonpolluted sites and supervised (neural network) classification was carried out to map hydrocarbon (HC) contaminated sites from the sample areas. Initial results show that polluted sites are characterised by high reflectance in the visible (VIS) 0.4μm - 0.7μm, and a lower reflectance in the near-infrared (NIR) 0.7μm - 1.1μm. This suggests that the vegetation is in a stressed state. Samples taken from pixels surrounding polluted sites show similar spectral reflectance values to that of polluted sites suggesting possible migration of HC to the wider environment. Further work will focus on increasing the sample size and investigating the impact of an oil spill on a wider buffer zone around the spill site.

  13. Biodegradation performance of environmentally-friendly insulating oil

    NASA Astrophysics Data System (ADS)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  14. Method for reclaiming waste lubricating oils

    DOEpatents

    Whisman, Marvin L.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

  15. Effect of saturated fatty acid-rich dietary vegetable oils on lipid profile, antioxidant enzymes and glucose tolerance in diabetic rats

    PubMed Central

    Kochikuzhyil, Benson Mathai; Devi, Kshama; Fattepur, Santosh Raghunandan

    2010-01-01

    Objective: To study the effect of saturated fatty acid (SFA)-rich dietary vegetable oils on the lipid profile, endogenous antioxidant enzymes and glucose tolerance in type 2 diabetic rats. Materials and Methods: Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p.) in neonatal rats. Twenty-eight-day-old normal (N) and diabetic (D) male Wistar rats were fed for 45 days with a fat-enriched special diet (10%) prepared with coconut oil (CO) – lauric acid-rich SFA, palm oil (PO) – palmitic acid-rich SFA and groundnut oil (GNO) – control (N and D). Lipid profile, endogenous antioxidant enzymes and oral glucose tolerance tests were monitored. Results: D rats fed with CO (D + CO) exhibited a significant decrease in the total cholesterol and non-high-density lipoprotein cholesterol. Besides, they also showed a trend toward improving antioxidant enzymes and glucose tolerance as compared to the D + GNO group, whereas D + PO treatment aggravated the dyslipidemic condition while causing a significant decrease in the superoxide dismutase levels when compared to N rats fed with GNO (N + GNO). D + PO treatment also impaired the glucose tolerance when compared to N + GNO and D + GNO. Conclusion: The type of FA in the dietary oil determines its deleterious or beneficial effects. Lauric acid present in CO may protect against diabetes-induced dyslipidemia. PMID:20871763

  16. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings

    PubMed Central

    Schott, Michael; Müller, Kajetan

    2018-01-01

    Achieving high quality of a coated food product is mostly dependent on the characteristics of the food material to be coated, the properties of the components in the coating solution, and the obtained coating material. In the present study, usability and effectiveness of various components as well as their concentrations were assessed to produce an effective coating material. For this purpose, different concentrations of gelling agent (sodium alginate 0–3.5%, w/w), plasticizers (glycerol and sorbitol (0–20%, w/w), surfactants (tween 40, tween 80, span 60, span 80, lecithin (0–5%, w/w), and vegetable oils (sunflower oil, olive oil, rapeseed oil (0–5%, w/w) were used to prepare edible coating solutions. Formulations were built gradually, and characteristics of coatings were evaluated by analyzing surface tension values and its polar and dispersive components, emulsion droplet size, and optical appearance in microscopic scale. The results obtained showed that 1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, and 0.2% tween 40 or tween 80 can be used in formulation to obtain an effective coating for hydrophobic food surfaces. Three formulations were designed, and their stability (emulsion droplet size, optical characteristics, and creaming index) and wettability tests on strawberry showed that they could be successfully used in coating applications. PMID:29509669

  17. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling.

    PubMed

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.

  18. Potential uses for cuphea oil processing byproducts and processed oils

    USDA-ARS?s Scientific Manuscript database

    Cuphea spp. has seeds that contain high levels of medium chain fatty acids and have the potential to be commercially cultivated. In the course of processing and refining Cuphea oil a number of bi-products are generated. Developing commercial uses for these bi-products would improve the economics of...

  19. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues.

    PubMed

    Xu, Changcheng; Shanklin, John

    2016-04-29

    Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.

  20. Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy.

    PubMed

    Oliveira, Flavia C C; Brandão, Christian R R; Ramalho, Hugo F; da Costa, Leonardo A F; Suarez, Paulo A Z; Rubim, Joel C

    2007-03-28

    In this work it has been shown that the routine ASTM methods (ASTM 4052, ASTM D 445, ASTM D 4737, ASTM D 93, and ASTM D 86) recommended by the ANP (the Brazilian National Agency for Petroleum, Natural Gas and Biofuels) to determine the quality of diesel/biodiesel blends are not suitable to prevent the adulteration of B2 or B5 blends with vegetable oils. Considering the previous and actual problems with fuel adulterations in Brazil, we have investigated the application of vibrational spectroscopy (Fourier transform (FT) near infrared spectrometry and FT-Raman) to identify adulterations of B2 and B5 blends with vegetable oils. Partial least square regression (PLS), principal component regression (PCR), and artificial neural network (ANN) calibration models were designed and their relative performances were evaluated by external validation using the F-test. The PCR, PLS, and ANN calibration models based on the Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy were designed using 120 samples. Other 62 samples were used in the validation and external validation, for a total of 182 samples. The results have shown that among the designed calibration models, the ANN/FT-Raman presented the best accuracy (0.028%, w/w) for samples used in the external validation.

  1. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  2. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  3. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  4. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  5. 50 CFR 29.21-9 - Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom... Regulations § 29.21-9 Rights-of-way for pipelines for the transportation of oil, natural gas, synthetic liquid... of oil, natural gas, synthetic liquid or gaseous fuels, or any refined product produced therefrom...

  6. Real-time near-infrared spectroscopic inspection system for adulterated sesame oil

    NASA Astrophysics Data System (ADS)

    Kang, Sukwon; Lee, Kang-jin; Son, Jaeryong; Kim, Moon S.

    2010-04-01

    Sesame seed oil is popular and expensive in Korea and has been often mixed with other less expensive vegetable oils. The objective of this research is to develop an economical and rapid adulteration determination system for sesame seed oil mixed with other vegetable oils. A recently developed inspection system consists of a light source, a measuring unit, a spectrophotometer, fiber optics, and a data acquisition module. A near-infrared transmittance spectroscopic method was used to develop the prediction model using Partial Least Square (PLS). Sesame seed oil mixed with a range of concentrations of corn, or perilla, or soybean oil was measured in 8 mm diameter glass tubes. For the model development, a correlation coefficient value of 0.98 was observed for corn, perilla, and soybean oil mixtures with standard errors of correlation of 6.32%, 6.16%, and 5.67%, respectively. From the prediction model, the correlation coefficients of corn oil, perilla oil, and soybean oil were 0.98, 0.97 and 0.98, respectively. The Standard Error of Prediction (SEP) for corn oil, perilla oil, and soybean oil were 6.52%, 6.89% and 5.88%, respectively. The results indicated that this system can potentially be used as a rapid non-destructive adulteration analysis tool for sesame seed oil mixed with other vegetable oils.

  7. Influence of the processed sunflower oil on the cement properties

    NASA Astrophysics Data System (ADS)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  8. Application of Porous Polydimethylsiloxane (PDMS) in oil absorption

    NASA Astrophysics Data System (ADS)

    Norfatriah, Abdullah; Syamaizar, Ahmad Sabli Ahmad; Samah Zuruzi, Abu

    2018-04-01

    Porous polydimethysiloxane (PDMS) displays both hydrophobic and oleophilic behaviour which makes it a suitable material to absorb oil in an aqueous stream. Furthermore, its elastomeric nature means that porous PDMS can be a reusable sorbent for oil. For such application, porous PDMS has to (i) absorb oil from aqueous stream quickly and (ii) discharge oil rapidly when compressed. In this study, porous polydimethylsiloxane (PDMS) has been fabricated using sugar templating method. The ability of porous PDMS to absorb olive, sunflower and vegetable oils with and without vibration was investigated. Small amplitude vibration was found to accelerate the oil uptake process and accelerates the absorption of olive and vegetable oil by 2.5 and 3 times, respectively. Compressive stress-strain curves over compression rates between 2 and 100 mm per min are similar and indicate mechanical property of porous PDMS does not vary significantly and can be rapidly compressed.

  9. Oligomerization of jojoba oil in super-critical carbon dioxide (green solvent) for different applications

    USDA-ARS?s Scientific Manuscript database

    Vegetable oils are renewable, non-toxic, biodegradable, non-polluting, and relatively harmless to the environment. Approximately 80% of the global plant oil and fat production is from vegetable oil, whereas 20% is from animal origin (share decreasing). Jojoba (Simmondsia chinensis) is a perennial sh...

  10. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: an overview.

    PubMed

    Juan, Joon Ching; Kartika, Damayani Agung; Wu, Ta Yeong; Hin, Taufiq-Yap Yun

    2011-01-01

    Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats.

    PubMed

    Chanjula, Pin; Cherdthong, Anusorn

    2018-04-01

    This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO) on performance, carcass traits, meat quality, and muscle chemical composition. Twenty-four crossbred (Thai Native×Anglo Nubian) uncastrated male goats (16.8± 0.46 kg body weight [BW]) were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat) on a dry matter (DM) basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Based on this experiment, there were significant differences (p>0.05) among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM) area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production.

  12. Effects of crude glycerin from waste vegetable oil in diets on performance and carcass characteristics of feedlot goats

    PubMed Central

    2018-01-01

    Objective This experiment was conducted to investigate the effects of crude glycerin from waste vegetable oil (CGWVO) on performance, carcass traits, meat quality, and muscle chemical composition. Methods Twenty-four crossbred (Thai Native×Anglo Nubian) uncastrated male goats (16.8± 0.46 kg body weight [BW]) were assigned to a completely randomized design and subjected to four experimental diets containing 0%, 2%, 4%, and 6% of CGWVO (63.42% of glycerol and 47.78% of crude fat) on a dry matter (DM) basis. The diets were offered ad libitum as total mixed rations twice daily. The feed intake, feeding behavior, growth performance, carcass and meat traits, and muscle chemical composition were evaluated. Results Based on this experiment, there were significant differences (p>0.05) among groups regarding DM intake, growth performance, and carcass traits where goats receiving 6% of CGWVO had lower daily DM intake, growth performance, and carcass traits than those fed on 0%, 2%, and 4% of CGWVO. There were no effects of CGWVO on carcass length, carcass width, Longissimus muscle (LM) area, Warner-Bratzler shear force, pH and color of LM at 45 min after slaughter, as well as on other carcass cut and muscle chemical composition. Conclusion In conclusion, the addition of up to 4% of DM in the diets for crossbred finishing goats seems to be the most interesting strategy, since it promotes greatest animal performance. Moreover, this study was a suitable approach to exploit the use of biodiesel production from waste vegetable oil for goat production. PMID:28830128

  13. Determination of 255 pesticides in edible vegetable oils using QuEChERS method and gas chromatography tandem mass spectrometry.

    PubMed

    He, Zeying; Wang, Yuehua; Wang, Lu; Peng, Yi; Wang, Wenwen; Liu, Xiaowei

    2017-02-01

    In this study, a simple and high-throughput method for determination of 255 pesticides in vegetable oils was developed based on QuEChERS sample preparation method combined with gas chromatography-triple quadrupole mass spectrometry. Different clean-up approaches were tested: A, 150 mg PSA + 150 mg C18; B, 250 mg PSA + 250 mg C18; C, 250 mg PSA + 250 mg C18 + 15 mg GCB; D, 250 mg PSA + 250 mg C18 + 50 mg GCB; and E, EMR-Lipid TM . Best clean-up capacity was observed for EMR clean-up. The extraction procedures and parameters, including extraction time, solvent/sample ratio, and buffer system, were also thoroughly investigated and optimized. The limits of quantification (LOQ) ranged between 5 and 50 μg kg -1 , and for the majority of the pesticides the LOQs were 5 μg kg -1 , which were below the regulatory MRLs. Most recoveries at seven spiking levels were in the range of 70-120 % with RSDs <20 % indicating satisfactory accuracy. The coefficient of determination (r 2 ) was >0.99 within the calibration linearity range of 2-500 μg L -1 for the majority of the pesticides. This method was proved to be simple, sensitive, and effective, which can be applied for large-scale pesticide screening and quantification in vegetable oils.

  14. Influence of thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum cholesterol and triglycerides in young pigs

    USDA-ARS?s Scientific Manuscript database

    To evaluate the effect of feeding thermally-oxidized vegetable oils and animal fats on growth performance, liver gene expression, and liver and serum fatty acid and cholesterol concentration in young pigs, 102 barrows (6.67 ± 0.03 kg BW) were divided into 3 groups and randomly assigned to dietary tr...

  15. Improving oiled shoreline cleanup with COREXIT 9580

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiocco, R.J.; Lessard, R.R.; Canevari, G.P.

    1996-08-01

    The cleanup of oiled shorelines has generally been by mechanical, labor-intensive means. The use of a chemical shoreline cleaner to assist in water-flushing oil from the surfaces can result in more complete and more rapid cleaning. Not only is the cleaning process more efficient, but it can also be less environmentally damaging since there is potentially much less human intrusion and stress on the biological community. This paper describes research and applications of COREXIT 9580 shoreline cleaner for treatment of oiled shorelines, including four recent applications in Puerto Rico, Bermuda, Texas and Nova Scotia. Research work on shoreline vegetation, suchmore » as mangroves, has also demonstrated the potential use of this product to save and restore oiled vegetation.« less

  16. 40 CFR 279.58 - Off-site shipments of used oil.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Off-site shipments of used oil. 279.58 Section 279.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279...

  17. 40 CFR 279.58 - Off-site shipments of used oil.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Off-site shipments of used oil. 279.58 Section 279.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279...

  18. 40 CFR 279.58 - Off-site shipments of used oil.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Off-site shipments of used oil. 279.58 Section 279.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279...

  19. 40 CFR 279.58 - Off-site shipments of used oil.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Off-site shipments of used oil. 279.58 Section 279.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279...

  20. 40 CFR 279.58 - Off-site shipments of used oil.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Off-site shipments of used oil. 279.58 Section 279.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Processors and Re-Refiners § 279...

  1. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Science.gov Websites

    coproduct). Approximately 100 pounds of oil or fat are reacted with 10 pounds of a short-chain alcohol Biodiesel Production Path Enlarge illustration Raw or refined plant oil, or recycled greases that have not (triglycerides) are much more viscous than biodiesel, and low-level vegetable oil blends can cause long-term

  2. Refining of Military Jet Fuels from Shale Oil. Part II. Volume II. (In Situ Shale Oil Process Data).

    DTIC Science & Technology

    1982-03-01

    SPEC Meeting Specifications OXY Test Series on In Situ Shale Oil z P Pressure (P + N) Paraffins and Naphthenes PRO Test Series on Above Ground Shale Oil...LV 6/ 12.0 Naphthenes , LV% (Aromatics, LV %/ 11.8 Gross Heating Value, Btu/lb 19,720 19,068 -73- TABLE 111-29. CRUDE SHALE: OIL HYDROTREATING SERIES M...Wt % - Ramabottomn Carbon -1.34 IParaffins (P-IN), LV % (71.1) -IOlef ins, LV % 9.4 i ~ Naphthenes , LV% - Aromatics, LV % 19.5 - Gross Heating Value

  3. Borehole geophysical monitoring of amendment emplacement and geochemical changes during vegetable oil biostimulation, Anoka County Riverfront Park, Fridley, Minnesota

    USGS Publications Warehouse

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Joesten, Peter K.; Kochiss, Christopher S.

    2007-01-01

    Based on the geophysical data, conceptual models of the distributions of emulsified vegetable oil and ground water with altered chemistry were developed. The field data indicate that, in several cases, the plume of ground water with altered chemistry would not be detected by direct chemical sampling given the construction of monitoring wells; hence the geophysical data provide valuable site-specific insights for the interpretation of water samples and monitoring of biostimulation projects. Application of geophysical methods to data from the ACP demonstrated the utility of radar for monitoring biostimulation injections.

  4. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues

    DOE PAGES

    Xu, Changcheng; Shanklin, John

    2016-02-03

    One of the most abundant energy-dense storage compounds in eukaryotes are oils in the form of triacylglycerols , and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Moreover, plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerolsmore » as a renewable and sustainable bioenergy source. We review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.« less

  5. Oil spills abatement: factors affecting oil uptake by cellulosic fibers.

    PubMed

    Payne, Katharine C; Jackson, Colby D; Aizpurua, Carlos E; Rojas, Orlando J; Hubbe, Martin A

    2012-07-17

    Wood-derived cellulosic fibers prepared in different ways were successfully employed to absorb simulated crude oil, demonstrating their possible use as absorbents in the case of oil spills. When dry fibers were used, the highest sorption capacity (six parts of oil per unit mass of fiber) was shown by bleached softwood kraft fibers, compared to hardwood bleached kraft and softwood chemithermomechanical pulp(CTMP) fibers. Increased refining of CTMP fibers decreased their oil uptake capacity. When the fibers were soaked in water before exposure to the oil, the ability of the unmodified kraft fibers to sorb oil was markedly reduced, whereas the wet CTMP fibers were generally more effective than the wet kraft fibers. Predeposition of lignin onto the surfaces of the bleached kraft fibers improved their ability to take up oil when wet. Superior ability to sorb oil in the wet state was achieved by pretreating the kraft fibers with a hydrophobic sizing agent, alkenylsuccinic anhydride (ASA). Contact angle tests on a model cellulose surface showed that some of the sorption results onto wetted fibers could be attributed to the more hydrophobic nature of the fibers after treatment with either lignin or ASA.

  6. Oil type and cross-linking influence growth of Aureobasidium melanogenum on vegetable oils as a single carbon source.

    PubMed

    Peeters, Loes H M; Huinink, Hendrik P; Voogt, Benjamin; Adan, Olaf C G

    2018-03-12

    Aureobasidium melanogenum is the main fungus found in a spontaneously formed biofilm on a oil-treated wood. This dark colored biofilm functions as a protective coating. To better understand biofilm formation, in this study A. melanogenum was cultured on olive oil and raw linseed oil. Metabolic activity and oil conversion were measured. The results show that A. melanogenum is able to grow on linseed oil and olive oil as a single carbon source. The fungus produces the enzyme lipase to convert the oil into fatty acids and glycerol. Metabolic activity and oil conversion were equal on linseed oil and olive oil. The fungus was not able to grow on severe cross-linked linseed oil, meaning that the degree of cross-linking of the oil is important for growth of A. melanogenum. Dark coloring of the colony was seen on linseed oil, which might be a stress response on the presence of autoxidation products in linseed oil. The colony on olive oil showed delayed melanin production indicating an inhibitory effect of olive oil on melanin production. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  7. Cuphea oil as a potential biodiesel feedstock to improve fuel properties

    USDA-ARS?s Scientific Manuscript database

    One of the approaches to improving the fuel properties of biodiesel, a fuel derived from vegetable oils, animal fats, or other triacylglycerol-containing materials, is to use a feedstock with an inherently different fatty acid profile than most common feedstocks such as commodity vegetable oils. Cup...

  8. Impacts of the Venezuelan Crude Oil Production Loss

    EIA Publications

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  9. Rainbow trout can discriminate between feeds with different oil sources.

    PubMed

    Geurden, I; Cuvier, A; Gondouin, E; Olsen, R E; Ruohonen, K; Kaushik, S; Boujard, T

    2005-06-02

    The purpose of present two-choice trials was to examine the capacity of groups of juvenile rainbow trout to differentiate between two isolipidic diets containing distinct oils and to detect an eventual preference. The choice was offered by means of two self-feeders per tank. One feeder distributed a standard diet with fish oil (FO), the other a diet containing vegetable oil, either rich in linolenic acid (linseed oil, LO), linoleic acid (sunflower oil, SO), or oleic acid (rapeseed oil, RO). Each 15-day preference test was preceded by a 15-day adaptation period during which both feeders distributed the same diet. The tests were followed by a 10- to 15-day validation period in order to confirm that feeder solicitations were steered by the characteristics of the diets. Preferences were expressed as relative changes in feed demands for a specific feeder. Averaged over all groups, the preference tests demonstrated the capacity of rainbow trout to discriminate between a diet with FO and a diet containing vegetable oil, and indicated a general preference for the diet with FO over the other diets irrespective of whether they received the diet with fish oil (Experiment 1) or with vegetable oil (Experiment 2) prior to the preference test. The tests also indicated a difference in the extent of relative avoidance of each of the three vegetable oil diets. Diet LO was the most avoided, as indicated by the 37-39% decrease in demands for the feeder with diet LO (P<0.05). Diet RO was the best accepted, causing a decrease in feed demands of only 15-17% (P>0.05). The avoidance of diet SO at the end of the preference test was 30% (P>0.05) after an initially higher avoidance of 43% (P<0.05). It is believed that the metabolic consequences of the excess of linolenic or linoleic acid negatively affected the feed acceptances of diets LO and SO. Further work is needed to elucidate a possible interference of differences in palatability. In all groups, the lower demands for the vegetable oil

  10. Amphiphilic copolymers based on polyoxazoline and grape seed vegetable oil derivatives: self-assemblies and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Travelet, Christophe; Stemmelen, Mylène; Lapinte, Vincent; Dubreuil, Frédéric; Robin, Jean-Jacques; Borsali, Redouane

    2013-06-01

    The self-assembly in solution of original structures of amphiphilic partially natural copolymers based on polyoxazoline [more precisely poly(2-methyl-2-oxazoline) (POx)] and grape seed vegetable oil derivatives (linear, T-, and trident-structure) is investigated. The results show that such systems are found, using dynamic light scattering (DLS), to spontaneously self-organize into monomodal, narrow-size, and stable nanoparticles in aqueous medium. The obtained hydrodynamic diameters ( D h) range from 8.6 to 32.5 nm. Specifically, such size increases strongly with increasing natural block (i.e., lipophilic species) length due to higher hydrophobic interactions (from 10.1 nm for C19 to 19.2 nm for C57). Furthermore, increasing the polyoxazoline (i.e., hydrophilic block) length leads to a moderate linear increase of the D h-values. Therefore, the first-order size effect comes from the natural lipophilic block, whereas the characteristic size can be tuned more finely (i.e., in a second-order) by choosing appropriately the polyoxazoline length. The DLS results in terms of characteristic size are corroborated using nanoparticle tracking analysis (NTA), and also by atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging where well-defined spherical and individual nanoparticles exhibit a very good mechanical resistance upon drying. Moreover, changing the lipophilic block architecture from linear to T-shape, while keeping the same molar mass, generates a branching and thus a shrinking by a factor of 2 of the nanoparticle volume, as observed by DLS. In this paper, it is clearly shown that the self-assemblies of amphiphilic block copolymer obtained from grape seed vegetable oil derivatives (sustainable renewable resources) as well as their tunability are of great interest for biomass valorization at the nanoscale level [continuation of the article by Stemmelen et al. (Polym Chem 4:1445-1458, 2013)].

  11. Quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons in edible vegetable oils marketed in Shandong of China.

    PubMed

    Jiang, Dafeng; Xin, Chenglong; Li, Wei; Chen, Jindong; Li, Fenghua; Chu, Zunhua; Xiao, Peirui; Shao, Lijun

    2015-09-01

    This work studies on the quantitative analysis and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in edible vegetable oils in Shandong, China. The concentrations of 15 PAHs in 242 samples were determined by high performance liquid chromatography coupled with fluorescence detection. The results indicated that the mean concentration of 15 PAHs in oil samples was 54.37 μg kg(-1). Low molecular weight PAH compounds were the predominant contamination. Especially, the carcinogenic benzo(a)pyrene (BaP) was detected at a mean concentration of 1.28 μg kg(-1), which was lower than the limit of European Union and China. A preliminary evaluation of human health risk assessment for PAHs was accomplished using BaP toxic equivalency factors and the incremental lifetime cancer risk (ILCR). The ILCR values for children, adolescents, adults, and seniors were all larger than 1 × 10(-6), indicating a high potential carcinogenic risk on the dietary exposed populations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Lubrication properties of new crop oils

    USDA-ARS?s Scientific Manuscript database

    Oils from new crops such as lesquerella (Lesquerella fendleri), field pennycress (Thlaspi arvense L.), meadowfoam (Limnanthes alba L.), and cuphea PSR-23 (Cuphea viscosissima × Cuphea lanceolata) were investigated and compared with vegetable oils from commodity crops such as castor, corn, and soybea...

  13. Re-refining of waste petroleum by competing solubility characteristics

    NASA Astrophysics Data System (ADS)

    Byars, Michael Steven

    1998-11-01

    The United States produces over 1.3 billion gallons of used oil per year. Of the 1.3 billion gallons about 60% is used as fuel, nearly 20% is dumped into the environment, 13% is placed in landfills, 2% is re-refined into lube oil, and the remaining is either used for other purposes or incinerated. This is a great potential source of lubricating oil. The work presented here is a solvent extraction process using a solvent (highly miscible with the oil) and a co-solvent (slightly miscible with the oil). Extractions using isopropanol, ethanol, methyl tert-butylether and methanol are presented. The criteria used for evaluation of the extraction processes are yield, product viscosity index, and ash percent. The solvent/co-solvent combinations of MTBE and ethanol performed best and had the advantage of a common solvent/co-solvent in all extraction steps. The extraction process that provided the best results was a two step process using a combination solvent of MTBE and ethanol. The used oil was first extracted using MTBE/ethanol. The extracted oil was then contacted with a solvent combination composed of 80% ethanol. This solvent combination extracted the remaining additives from the oil. The recovered oil was nearly 60% by weight with a high viscosity index and no ash content. A preliminary battery limits design and economic analysis of the process was performed. A 500 bbl/day plant would have a capital cost of 1.9 million and an annual operation cost of 310,000. The plant as designed would produce 300 bbl/day of lube feedstock and have an ROI of 19%.

  14. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    PubMed

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  15. Profiling and quantification of phenolic compounds in Camellia seed oils: Natural tea polyphenols in vegetable oil.

    PubMed

    Wang, Xiaoqin; Zeng, Qiumei; Del Mar Contreras, María; Wang, Lijuan

    2017-12-01

    In Asia, tea seed oils (seed oils from Camellia oleifera, C. chekiangoleosa, and C. sinensis) are used in edible, medicinal, and cosmetic applications. However, these oils differ in their fatty acid contents, and there is little known about their phenolic compounds. Here we analyzed the phenolic compounds of seed oils from three species gathered from 15 regions of China. Twenty-four phenolic compounds were characterized by HPLC-Q-TOF-MS, including benzoic acids (6), cinnamic acids (6), a hydroxyphenylacetic acid, flavanols (4), flavonols (3), flavones (2), and dihydroflavonoids (2). Some of these phenolic compounds had not previously been reported from C. sinensis (20), C. oleifera (15), and C. chekiangoleosa (24) seed oils. Quantification was done by HPLC-QqQ-MS using 24 chemical standards. The total concentrations in the studied samples ranged from 20.56 to 88.56μg/g. Phenolic acids were the most abundant class, accounting for 76.2-90.4%, with benzoic acid, found at up to 18.87μg/g. The concentration of catechins, typical of tea polyphenols, ranged between 2.1% and 9.7%, while the other flavonoids varied from 4.2% to 17.8%. Although the cultivation region affected the phenolic composition of the Camellia seed oils, in our hierarchical clustering analysis, the samples clustered according to species. The phenolic composition of the seed oils from C. oleifera and C. chekiangoelosa were similar. We found that the phenolic categories in Camellia seed oils were similar to tea polyphenols, thereby identifying a source of liposoluble tea polyphenols and potentially accounting for some of the reported activities of these oils. In addition, this work provides basic data that allows distinction of various Camellia seed oils, as well as improvements to be made in their quality standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Hydrogenated cottonseed oil as raw material for biobased materials

    USDA-ARS?s Scientific Manuscript database

    There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...

  17. Variability of Pinus halepensis Mill. Essential Oils and Their Antioxidant Activities Depending on the Stage of Growth During Vegetative Cycle.

    PubMed

    Djerrad, Zineb; Djouahri, Abderrahmane; Kadik, Leila

    2017-04-01

    The impact of growth stages during vegetative cycle (B 0  - B 5 ) on chemical composition and antioxidant activities of Pinus halepensis Mill. needles essential oils was investigated for the first time. GC and GC/MS analyses pointed to a quantitative variability of components; terpene hydrocarbons derivatives, represented by α-pinene (8.5 - 12.9%), myrcene (17.5 - 21.6%), p-cymene (7.9 - 11.9%) and (Z)-β-caryophyllene (17.3 - 21.2%) as major components, decreased from 88.9% at B 0 growth stage to 66.9% at B 5 growth stage, whereas oxygenated derivatives, represented by caryophyllene oxide (5.4 - 12.6%) and terpinen-4-ol (0.4 - 3.3%) as major components, increased from 7% at B 0 growth stage to 28.4% at B 5 growth stage. Furthermore, our findings showed that essential oil of P. halepensis needles collected at B 5 growth stage possess higher antioxidant activities by four different testing systems than those collected at B 0  - B 4 growth stages. This highlighted variability led to conclude that we should select essential oils to be investigated carefully depending on growth stage, in order to have the highest effectiveness of essential oil in terms of biological activities for human health purposes. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  18. Exploring the Potential of High Resolution Remote Sensing Data for Mapping Vegetation and the Age Groups of Oil Palm Plantation

    NASA Astrophysics Data System (ADS)

    Kamiran, N.; Sarker, M. L. R.

    2014-02-01

    The land use/land cover transformation in Malaysia is enormous due to palm oil plantation which has provided huge economical benefits but also created a huge concern for carbon emission and biodiversity. Accurate information about oil palm plantation and the age of plantation is important for a sustainable production, estimation of carbon storage capacity, biodiversity and the climate model. However, the problem is that this information cannot be extracted easily due to the spectral signature for forest and age group of palm oil plantations is similar. Therefore, a noble approach "multi-scale and multi-texture algorithms" was used for mapping vegetation and different age groups of palm oil plantation using a high resolution panchromatic image (WorldView-1) considering the fact that pan imagery has a potential for more detailed and accurate mapping with an effective image processing technique. Seven texture algorithms of second-order Grey Level Co-occurrence Matrix (GLCM) with different scales (from 3×3 to 39×39) were used for texture generation. All texture parameters were classified step by step using a robust classifier "Artificial Neural Network (ANN)". Results indicate that single spectral band was unable to provide good result (overall accuracy = 34.92%), while higher overall classification accuracies (73.48%, 84.76% and 93.18%) were obtained when textural information from multi-scale and multi-texture approach were used in the classification algorithm.

  19. Portable detection system of vegetable oils based on laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Zhu, Li; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan; Mu, Taotao

    2015-11-01

    Food safety, especially edible oils, has attracted more and more attention recently. Many methods and instruments have emerged to detect the edible oils, which include oils classification and adulteration. It is well known than the adulteration is based on classification. Then, in this paper, a portable detection system, based on laser induced fluorescence, is proposed and designed to classify the various edible oils, including (olive, rapeseed, walnut, peanut, linseed, sunflower, corn oils). 532 nm laser modules are used in this equipment. Then, all the components are assembled into a module (100*100*25mm). A total of 700 sets of fluorescence data (100 sets of each type oil) are collected. In order to classify different edible oils, principle components analysis and support vector machine have been employed in the data analysis. The training set consisted of 560 sets of data (80 sets of each oil) and the test set consisted of 140 sets of data (20 sets of each oil). The recognition rate is up to 99%, which demonstrates the reliability of this potable system. With nonintrusive and no sample preparation characteristic, the potable system can be effectively applied for food detection.

  20. Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies

    EIA Publications

    2009-01-01

    A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

  1. Lipase catalyzed epoxidation of fatty acid methyl esters derived from unsaturated vegetable oils in absence of carboxylic acid.

    PubMed

    Sustaita-Rodríguez, Alejandro; Ramos-Sánchez, Víctor H; Camacho-Dávila, Alejandro A; Zaragoza-Galán, Gerardo; Espinoza-Hicks, José C; Chávez-Flores, David

    2018-04-11

    Nowadays the industrial chemistry reactions rely on green technologies. Enzymes as lipases are increasing its use in diverse chemical processes. Epoxidized fatty acid methyl esters obtained from transesterification of vegetable oils have recently found applications as polymer plasticizer, agrochemical, cosmetics, pharmaceuticals and food additives. In this research article, grapeseed, avocado and olive oils naturally containing high percents of mono and poly unsaturations were used as starting materials for the production of unsaturated fatty acid methyl esters. The effect of lauric acid as an active oxygen carrier was studied on epoxidation reactions where unsaturated fatty acid methyl esters were converted to epoxy fatty acid methyl esters using immobilized Candida antarctica Lipase type B as catalyst and hydrogen peroxide as oxygen donor at mild temperature and pressure conditions. After this study it was confirmed by 1 H NMR, 13 C NMR and GC-MS that the addition of lauric acid to the enzymatic reaction is unnecessary to transform the alkenes in to epoxides. It was found that quantitative conversions were possible in despite of a carboxylic acid absence.

  2. Military jet fuel from shale oil

    NASA Technical Reports Server (NTRS)

    Coppola, E. N.

    1980-01-01

    Investigations leading to a specification for aviation turbine fuel produced from whole crude shale oil are described. Refining methods involving hydrocracking, hydrotreating, and extraction processes are briefly examined and their production capabilities are assessed.

  3. Comparison of the volatile constituents in cold-pressed bergamot oil and a volatile oil isolated by vacuum distillation.

    PubMed

    Belsito, Emilia L; Carbone, Concetta; Di Gioia, Maria L; Leggio, Antonella; Liguori, Angelo; Perri, Francesca; Siciliano, Carlo; Viscomi, Maria C

    2007-09-19

    The vacuum distillation of bergamot peels furnishes a high-quality essential oil that is totally bergapten-free. This oil was compared with that produced by distillation of cold-pressed oils and those commercially available. The oil obtained by vacuum distillation of the bergamot vegetable matrix shows a composition quite similar to that of the cold-pressed oil. It also displays qualitative characteristics that are superior with respect to those normally observed for essential oils isolated by distillation of cold-pressed oils. Oils isolated by the method presented here can constitute ideal candidates in producing foods, for example, Earl Grey tea, and cosmetic preparations.

  4. Acrylamide formation in vegetable oils and animal fats during heat treatment.

    PubMed

    Daniali, G; Jinap, S; Hajeb, P; Sanny, M; Tan, C P

    2016-12-01

    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g. Copyright © 2016. Published by Elsevier Ltd.

  5. Chemical and physical aspects of refining coal liquids

    NASA Astrophysics Data System (ADS)

    Shah, Y. T.; Stiegel, G. J.; Krishnamurthy, S.

    1981-02-01

    Increasing costs and declining reserves of petroleum are forcing oil importing countries to develop alternate energy sources. The direct liquefaction of coal is currently being investigated as a viable means of producing substitute liquid fuels. The coal liquids derived from such processes are typically high in nitrogen, oxygen and sulfur besides having a high aromatic and metals content. It is therefore envisaged that modifications to existing petroleum refining technology will be necessary in order to economically upgrade coal liquids. In this review, compositional data for various coal liquids are presented and compared with those for petroleum fuels. Studies reported on the stability of coal liquids are discussed. The feasibility of processing blends of coal liquids with petroleum feedstocks in existing refineries is evaluated. The chemistry of hydroprocessing is discussed through kinetic and mechanistic studies using compounds which are commonly detected in coal liquids. The pros and cons of using conventional petroleum refining catalysts for upgrading coal liquids are discussed.

  6. Stabilization of soybean oil during accelerated storage by essential oil of ferulago angulata boiss.

    PubMed

    Sadeghi, Ehsan; Mahtabani, Aidin; Etminan, Alireza; Karami, Farahnaz

    2016-02-01

    This study has been considered effect of Ferulago angulata essential oil on stabilizing soybean oil during accelerated storage. The essential oil was extracted by Clevenger-type apparatus. For analysis of the essential oil, GC/MS was used. Main components of the essential oil were monoterpene and sesquiterpene hydrocarbons. The essential oil of F. angulata at four concentrations, i.e. 125 (SBO-125), 250 (SBO-250), 500 (SBO-500) and SBO-Mixture (60 ppm TBHQ +60 ppm essential oil) were added to preheated refined soybean oil. TBHQ was used at 120 ppm as standard besides the control. Antioxidant activity index (AAI), free fatty acid (FFA) content, peroxide value (PV) and p-anisidine value (p-AnV) were served for appreciation of efficacy of F. angulata in stabilization of soybean oil. Results from different tests showed that SBO-mixture had highest effect and followed by SBO-TBHQ, SBO-250, SBO-125, SBO-500 and Ctrl. These results reveal F. angulata is a strong antioxidant and can be used instead of synthetic antioxidant.

  7. Effect of grape seed extract, Cistus ladanifer L., and vegetable oil supplementation on fatty acid composition of abomasal digesta and intramuscular fat of lambs.

    PubMed

    Jerónimo, Eliana; Alves, Susana P; Dentinho, Maria T P; Martins, Susana V; Prates, José A M; Vasta, Valentina; Santos-Silva, José; Bessa, Rui J B

    2010-10-13

    Thirty-six lambs were used in a 6 week experiment to evaluate the effect of vegetable oil blend supplementation (0 vs 60 g/kg of dry matter (DM)) and two dietary condensed tannin sources, grape seed extract (0 vs 25 g/kg of DM) and Cistus ladanifer L. (0 vs 250 g/kg of DM), on fatty acid (FA) composition of abomasal digesta and intramuscular polar and neutral lipids. Grape seed extract did not affect the FA profile of abomasal digesta or muscle lipid fractions. C. ladanifer had a minor effect in lambs fed diets with no oil but greatly changed the abomasal and muscle FA profiles in oil-supplemented lambs. It decreased 18:0 and increased 18:1 trans-11 in abomasal digesta and increased 18:1 trans-11 and 18:2 cis-9,trans-11 (P = 0.062) in muscle neutral lipids, resulting in an important enrichment of meat 18:2 cis-9,trans-11 when compared to other oil-supplemented diets (19.2 vs 41.7 mg/100 g of muscle).

  8. Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method

    PubMed Central

    Hossain, Afzal; Khatun, Mst. Afifa; Islam, Mahfuza; Huque, Roksana

    2017-01-01

    Antioxidant rich green leafy vegetables including garden spinach leaf, water spinach leaf, Indian spinach leaf, and green leaved amaranth were selected to evaluate the effects of water boiling and oil frying on their total phenolic content (TPC), total flavonoid content (TFC), reducing power (RP), and antioxidant capacity. The results revealed that there was a significant increase in TPC, TFC, and RP in all the selected vegetables indicating the effectiveness of the cooking process on the antioxidant potential of leafy vegetables. Both cooking processes enhanced significantly (P<0.05) the radical scavenging ability, especially the oil fried samples showed the highest values. There is a significant reduction in the vitamin C content in all the vegetables due to boiling and frying except in the Indian spinach leaf. However, the present findings suggest that boiling and frying can be used to enhance the antioxidant ability, by increasing the bioaccessibility of health-promoting constituents from the four vegetables investigated in this study. PMID:29043220

  9. Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review.

    PubMed

    Edem, D O

    2002-01-01

    The link between dietary fats and cardiovascular diseases has necessitated a growing research interest in palm oil, the second largest consumed vegetable oil in the world. Palm oil, obtained from a tropical plant, Elaeis guineensis contains 50% saturated fatty acids, yet it does not promote atherosclerosis and arterial thrombosis. The saturated fatty acid to unsaturated fatty acid ratio of palm oil is close to unity and it contains a high amount of the antioxidants, beta-carotene, and vitamin E. Although palm oil-based diets induce a higher blood cholesterol level than do corn, soybean, safflower seed, and sunflower oils, the consumption of palm oil causes the endogenous cholesterol level to drop. This phenomenon seems to arise from the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of palm oil to health include reduction in risk of arterial thrombosis and atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, and reduction in blood pressure. Palm oil has been used in the fresh state and/or at various levels of oxidation. Oxidation is a result of processing the oil for various culinary purposes. However, a considerable amount of the commonly used palm oil is in the oxidized state, which poses potential dangers to the biochemical and physiological functions of the body. Unlike fresh palm oil, oxidized palm oil induces an adverse lipid profile, reproductive toxicity and toxicity of the kidney, lung, liver, and heart. This may be as a result of the generation of toxicants brought on by oxidation. In contrast to oxidized palm oil, red or refined palm oil at moderate levels in the diet of experimental animals promotes efficient utilization of nutrients, favorable body weight gains, induction of hepatic drug metabolizing enzymes, adequate hemoglobinization of red cells and improvement of immune function. Howerer, high palm oil levels in the diet induce toxicity to the liver as shown by

  10. Middle East oil and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  11. Quantitative analysis of ruminal bacterial populations involved in lipid metabolism in dairy cows fed different vegetable oils.

    PubMed

    Vargas-Bello-Pérez, E; Cancino-Padilla, N; Romero, J; Garnsworthy, P C

    2016-11-01

    Vegetable oils are used to increase energy density of dairy cow diets, although they can provoke changes in rumen bacteria populations and have repercussions on the biohydrogenation process. The aim of this study was to evaluate the effect of two sources of dietary lipids: soybean oil (SO, an unsaturated source) and hydrogenated palm oil (HPO, a saturated source) on bacterial populations and the fatty acid profile of ruminal digesta. Three non-lactating Holstein cows fitted with ruminal cannulae were used in a 3×3 Latin square design with three periods consisting of 21 days. Dietary treatments consisted of a basal diet (Control, no fat supplement) and the basal diet supplemented with SO (2.7% of dry matter (DM)) or HPO (2.7% of DM). Ruminal digesta pH, NH3-N and volatile fatty acids were not affected by dietary treatments. Compared with control and HPO, total bacteria measured as copies of 16S ribosomal DNA/ml by quantitative PCR was decreased (P<0.05) by SO. Fibrobacter succinogenes, Butyrivibrio proteoclasticus and Anaerovibrio lipolytica loads were not affected by dietary treatments. In contrast, compared with control, load of Prevotella bryantii was increased (P<0.05) with HPO diet. Compared with control and SO, HPO decreased (P<0.05) C18:2 cis n-6 in ruminal digesta. Contents of C15:0 iso, C18:11 trans-11 and C18:2 cis-9, trans-11 were increased (P<0.05) in ruminal digesta by SO compared with control and HPO. In conclusion, supplementation of SO or HPO do not affect ruminal fermentation parameters, whereas HPO can increase load of ruminal P. bryantii. Also, results observed in our targeted bacteria may have depended on the saturation degree of dietary oils.

  12. Detection of Salt Marsh Vegetation Stress after the Deepwater Horizon BP Oil Spill Along the Shoreline of Gulf of Mexico Using Aviris Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Khanna, S.; Ustin, S.; Hestir, E. L.

    2011-12-01

    Coastal wetlands and aquatic environments are highly productive ecosystems that are rich in biodiversity. They also provide critically important habitat for both aquatic and terrestrial organisms, many of which have significant economic and recreational importance. The United States Gulf of Mexico coastline is riddled with oil wells (~50,000 wells of which ~30,000 are decommissioned or abandoned), that are subject to frequent oil spills. Oil spills have both short-term and long-term detrimental effects on the coastal environment. Brackish and salt marshes are among the most vulnerable of coastal ecosystems to oil spill impacts because oil tends to have a much longer residence time in marches compared to other environments. Remote sensing has been used extensively to directly map the oil and indirectly to detect wetland plant stress in oil spill impact zones. Using AVIRIS hyperspectral data flown over the Deepwater Horizon Gulf Oil Spill in July and September of 2010, we tested if oil had any impact on the health of the wetland plant community. Two difference indices, NDVI and NDI, two angle indices, ANIR and ARed, and two continuum removals over water absorption bands, all showed that oiled shoreline index values were significantly lower than that from unoiled shoreline in September. The impact was significant at least 10-12m inland from the shoreline. In the July dataset, the effect of oil stress was not as pronounced. A comparison of the green vegetation fraction between July and September showed no significant difference indicating that there was no significant loss of wetland area between July and September. This study illustrates the use of hyperspectral remote sensing in detecting ecosystem stress and monitoring recovery after a catastrophic event such as an oil spill.

  13. Impact of Expanded North Slope of Alaska Crude Oil Production on Crude Oil Flows in the Contiguous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosa, Sean E.; Flanagan, Tatiana Paz

    The National Transportation Fuels Model was used to simulate a hypothetical increase in North Slope of Alaska crude oil production. The results show that the magnitude of production utilized depends in part on the ability of crude oil and refined products infrastructure in the contiguous United States to absorb and adjust to the additional supply. Decisions about expanding North Slope production can use the National Transportation Fuels Model take into account the effects on crude oil flows in the contiguous United States.

  14. Optical characterization of pure vegetable oils and their biodiesels using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Firdous, S.; Anwar, S.; Waheed, A.; Maraj, M.

    2016-04-01

    Great concern regarding energy resources and environmental polution has increased interest in the study of alternative sources of energy. Biodiesels as an alternative fuel provide a suitable diesel oil substitute for internal combustion engines. The Raman spectra of pure biodiesels of soybean oil, olive oil, coconut oil, animal fats, and petroleum diesel are optically characterized for quality and biofuel as an alternative fuel. The most significant spectral differences are observed in the frequency range around 1457 cm-1 for pure petroleum diesel, 1427 for fats biodiesel, 1670 cm-1 for pure soybean oil, 1461 cm-1 for soybean oil based biodiesel, 1670 cm-1 for pure olive oil, 1666 cm-1 for olive oil based biodiesel, 1461 cm-1 for pure coconut oil, and 1460 cm-1 for coconut oil based biodiesel, which is used for the analysis of the phase composition of oils. A diode pump solid-state laser with a 532 nm wavelength is used as an illuminating light. It is demonstrated that the peak positions and relative intensities of the vibrations of the oils can be used to identify the biodiesel quality for being used as biofuel.

  15. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact.

    PubMed

    Khanna, Shruti; Santos, Maria J; Ustin, Susan L; Shapiro, Kristen; Haverkamp, Paul J; Lay, Mui

    2018-02-12

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed

  16. Comparing the Potential of Multispectral and Hyperspectral Data for Monitoring Oil Spill Impact

    PubMed Central

    Santos, Maria J.; Ustin, Susan L.; Haverkamp, Paul J.; Lay, Mui

    2018-01-01

    Oil spills from offshore drilling and coastal refineries often cause significant degradation of coastal environments. Early oil detection may prevent losses and speed up recovery if monitoring of the initial oil extent, oil impact, and recovery are in place. Satellite imagery data can provide a cost-effective alternative to expensive airborne imagery or labor intensive field campaigns for monitoring effects of oil spills on wetlands. However, these satellite data may be restricted in their ability to detect and map ecosystem recovery post-spill given their spectral measurement properties and temporal frequency. In this study, we assessed whether spatial and spectral resolution, and other sensor characteristics influence the ability to detect and map vegetation stress and mortality due to oil. We compared how well three satellite multispectral sensors: WorldView2, RapidEye and Landsat EMT+, match the ability of the airborne hyperspectral AVIRIS sensor to map oil-induced vegetation stress, recovery, and mortality after the DeepWater Horizon oil spill in the Gulf of Mexico in 2010. We found that finer spatial resolution (3.5 m) provided better delineation of the oil-impacted wetlands and better detection of vegetation stress along oiled shorelines in saltmarsh wetland ecosystems. As spatial resolution become coarser (3.5 m to 30 m) the ability to accurately detect and map stressed vegetation decreased. Spectral resolution did improve the detection and mapping of oil-impacted wetlands but less strongly than spatial resolution, suggesting that broad-band data may be sufficient to detect and map oil-impacted wetlands. AVIRIS narrow-band data performs better detecting vegetation stress, followed by WorldView2, RapidEye and then Landsat 15 m (pan sharpened) data. Higher quality sensor optics and higher signal-to-noise ratio (SNR) may also improve detection and mapping of oil-impacted wetlands; we found that resampled coarser resolution AVIRIS data with higher SNR performed

  17. Effect of chicken, fat and vegetable on glycaemia and insulinaemia to a white rice-based meal in healthy adults.

    PubMed

    Sun, Lijuan; Ranawana, Dinesh Viren; Leow, Melvin Khee-Shing; Henry, Christiani Jeyakumar

    2014-12-01

    White rice is the main staple for the majority in the world. The effects of protein, fat and vegetables on the glycaemic and insulinaemic responses to a white rice-based meal have not been reported. The aim of this study was to determine the effect of co-ingesting a high-protein food (breast chicken), a fat (ground nut oil), a leafy vegetable or all three on the glycaemic and insulinaemic responses of white rice in healthy adults. This was a randomized crossover trial conducted at the Clinical Nutrition Research Centre in Singapore. Twelve healthy volunteers were given five test meals (white rice alone, white rice with chicken, white rice with oil, white rice with vegetable and white rice with chicken, oil and vegetable) once and the reference food (glucose solution) three times in a random order at 1-week intervals. Capillary blood samples were then drawn serially for 3 h, and glucose and insulin were analysed. The glycaemic response (GR) to white rice with chicken breast, ground nut oil and vegetable was significantly lower than to white rice alone. The glycaemic index (GI) of pure white rice was 96, whereas combined with chicken breast, ground nut oil and vegetable, it was 50. The addition of oil delayed the peak glucose response and reduced the iAUC, resulting in a GI value of 67. The addition of chicken and vegetable resulted in a GI value of 73 and 82, respectively. The insulinaemic index (II) of the white rice-based meals varied between 54 and 89. Chicken breast in the meal increased the insulinaemic response and decreased the GR. White rice II was lower than the glucose control, which indicated that the former was not as insulinogenic as the latter. White rice with vegetable had the lowest II. Co-ingesting chicken, oil or vegetable with white rice considerably influences its glycaemic and insulinaemic responses. Co-ingesting white rice with all three components attenuates the GR to a greater degree than when it is eaten with any single one of them, and that

  18. Evaluating plant and plant oil repellency against the sweetpotato whitefly

    USDA-ARS?s Scientific Manuscript database

    The sweetpotato whitefly, Bemisia tabaci is a major insect pest of vegetables world-wide. We evaluated the effect of commercial plant oils – garlic oil, hot pepper wax, and mustard oil against B. tabaci. Cucumber plants served as the control. Additional treatments included no plants or oil (clear ai...

  19. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence.

    PubMed

    Karmowski, Jasmin; Hintze, Victoria; Kschonsek, Josephine; Killenberg, Margrit; Böhm, Volker

    2015-05-15

    The purpose of this study was to measure the antioxidant activity (AOA) of tocopherols and tocotrienols by using photochemiluminescence (PCL). This method enables to detect total lipophilic antioxidants. The AOA of all vitamin E isomers depended on number and position of methyl groups in the chroman ring. Correlation between the AOA and the redox potential and the biological activity of the tocochromanols was observed. The second aim was to analyse different kinds of wheat, vegetable oils, milk and milk cream on their antioxidant capacity (AOC) by using PCL and α-TEAC. The contents of vitamin E and carotenoids were analysed by HPLC. Correlations between the sum of carotenoids and vitamin E and the AOC were detected. Based on high vitamin E contents, the oils had the highest and in contrast, the product macaroni showed the lowest AOC. A concentration-dependent effect was observed in both assays, PCL and α-TEAC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. New crop oils - Properties as potential lubricants

    USDA-ARS?s Scientific Manuscript database

    New crops oils such as lesquerella, field pennycress, meadowfoam and cuphea were investigated and compared to common commodity vegetable oils for their fatty acid profiles, low temperature and lubricating properties. The fatty acid profile investigation showed that lesquerella is high in hydroxy fat...