Science.gov

Sample records for reflected infrared light

  1. Differences in visible and near-infrared light reflectance between orange fruit and leaves

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Escobar, D. E.; Berumen, A.

    1975-01-01

    The objective was to find the best time during the season (April 26, 1972 to January 8, 1973) to distinguish orange fruit from leaves by spectrophotometrically determining at 10-day intervals when the difference in visible (550- and 650-nm wavelengths) and near-infrared (850-nm wavelength) light reflectance between fruit and nearby leaves was largest. December 5 to January 8 was the best time to distinguish fruit from leaves. During this period the fruit's color was rapidly changing from green to yellow, and the difference in visible light reflectance between fruit and leaves was largest. The difference in near-infrared reflectance between leaves and fruit remained essentially constant during ripening when the difference in visible light reflectance between leaves and fruit was largest.

  2. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images

    PubMed Central

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine. PMID:27294940

  3. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images.

    PubMed

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-01-01

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine. PMID:27294940

  4. Digital infrared fundus reflectance.

    PubMed

    Packer, S; Schneider, K; Lin, H Z; Feldman, M

    1980-06-01

    An infrared sensor was inserted at the film plane of a fundus camera. The signal was visualized on an oscilloscope. In this manner we measured infrared reflectance from the surface of the fundus. The purpose was to characterize choroidal malignant melanomas more reliably than is done with infrared color translation photography. Control lesions were choroidal nevi, metastatic tumors, and disciform macular degenerations. Correlations were made with radioactive phosphorus (32P) uptake, fluorescein angiography, and histopathologic findings. Several cases are presented, one in which this new method of infrared detection was the first diagnostic test to detect the spread of a choroidal melanoma. The simplicity of this technique and its increased accuracy justify the needed further refinements. PMID:7413142

  5. Electrically actuated phase-change pixels for transmissive and reflective spatial light modulators in the near and mid infrared.

    PubMed

    Hendrickson, Joshua; Liang, Haibo; Soref, Richard; Mu, Jianwei

    2015-12-20

    Transmissive and reflective spatial light modulators have been designed and simulated for the 1.55 to 2.10 μm spectral region. An electrically actuated layer of phase-change material (PCM) was employed as the electro-optical medium for two-state self-holding "light-to-dark" intensity modulation of free-space light beams. The PCM was sandwiched between transparent conductive N-doped Si or indium tin oxide contact layers in a simple planar structure. A 100 to 500 nm PCM layer of Ge2Sb2Te5 (GST) was employed for optimum performance at 1.55 μm where the transmissive-modulator insertion loss was around 4.5 dB. The GST light-dark contrast was found to be 32 dB. For the GST reflection device, an included metal film (Ag) improved the 1.55 μm performance metrics to 0.7 dB of insertion loss with a contrast around 26 dB. The calculated performance for both types of spatial light modulators was robust to changes in the input incidence angle near normal incidence. Applications include infrared scene generation and signal processing. PMID:26837038

  6. Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.; Smyth, C. C.; Sellai, A.; McCafferty, P. G.; Dawson, P.; Morrow, T.; Graham, W. G.

    1994-02-01

    Surface plasmons have been observed directly in YBCO films in an Otto-geometry attenuated total reflection measurement at a wavelength of 3.392 μm. The laser deposited films are c-axis oriented on an MgO substrate. This observation confirms theoretical deductions from complex dielectric function data. Measured data have been fitted to a theoretical model and are compared with the optical constants determined by Bozovic [1]. The investigations have been extended to films with other orientations to investigate whether material anisotropy is reflected in the results and non-metallic behaviour is found.

  7. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    NASA Astrophysics Data System (ADS)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  8. Shining new light on old principles: localization of evanescent field interactions at infrared-attenuated total reflection sensing interfaces.

    PubMed

    Dobbs, Gary T; Mizaikoff, Boris

    2006-06-01

    A combined experimental and spectral ray tracing approach for identifying and evaluating evanescent field interactions with discrete surface deposits along a horizontal attenuated total reflection (HATR) element is presented. By experimentally depositing poly(styrene-co-butadiene) (PSCB) residues at fixed intervals along the measurement surface of a HATR crystal, distinct regions of evanescent field interaction with the surface deposits along the multi-reflection waveguide are visualized via infrared absorption features of PSCB. The infrared-attenuated total reflection (IR-ATR) measurements were confirmed by spectral ray tracing analysis simulating transmission-absorption spectra after modeling the polymeric surface deposits as thin-film IR absorbing cylinders. The presented analytical procedures and simulations provide a generic strategy for identifying and evaluating "active" sensing regions along ATR elements. Additionally, the simulated ATR setup along with the presented spectral ray tracing procedures provide a virtual platform aiding the development, optimization, and integration of deep-sea IR-ATR sensor probes with submersible mid-infrared spectrometers for in situ marine monitoring applications, which was the initial motivation for these studies. PMID:16808857

  9. Effects of surface contamination on the infrared emissivity and visible-light scattering of highly reflective surfaces at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1972-01-01

    A technique is described for the simultaneous in situ measurement of film thickness, refractive index, total normal emissivity, visible-light scattering, and reflectance of contaminant films on a highly reflective liquid-nitrogen cooled, stainless steel substrate. Emissivities and scattering data are obtained for films of water, carbon dioxide, silicone oil, and a number of aromatic and aliphatic hydrocarbons as a function of film thickness between zero and 20 microns. Of the contaminants investigated, water has by far the greatest effect on emissivity, followed by silicone oil, aliphatic hydrocarbons, aromatic hydrocarbons, and carbon dioxide. The emissivity increases more rapidly with film thickness between zero and 2.5 microns than at thicknesses greater than 2.5 microns. Scattering of visible light changes very little below 2 microns thickness but increases rapidly with thickness beyond 2 to 3 microns. The effect of contaminant films on passive radiation coolers is discussed.

  10. Near infrared leaf reflectance modeling

    NASA Technical Reports Server (NTRS)

    Parrish, J. B.

    1985-01-01

    Near infrared leaf reflectance modeling using Fresnel's equation (Kumar and Silva, 1973) and Snell's Law successfully approximated the spectral curve for a 0.25-mm turgid oak leaf lying on a Halon background. Calculations were made for ten interfaces, air-wax, wax-cellulose, cellulose-water, cellulose-air, air-water, and their inverses. A water path of 0.5 mm yielded acceptable results, and it was found that assignment of more weight to those interfaces involving air versus water or cellulose, and less to those involving wax, decreased the standard deviation of the error for all wavelengths. Data suggest that the air-cell interface is not the only important contributor to the overall reflectance of a leaf. Results also argue against the assertion that the near infrared plateau is a function of cell structure within the leaf.

  11. A new experimental setup for in situ infrared reflection absorption spectroscopy studies of atmospheric corrosion on metal surfaces considering the influence of ultraviolet light.

    PubMed

    Wiesinger, R; Kleber, Ch; Frank, J; Schreiner, M

    2009-04-01

    The knowledge available regarding the influence of ultraviolet (UV) light on the atmospheric corrosion of materials is very rudimentary. Therefore, a new experimental setup consisting of a cell for studying in situ reactions occurring at the metal/atmosphere interface by simultaneously applying infrared reflection absorption spectroscopy (IRRAS) and quartz crystal microbalance (QCM) measurements was designed and built. The cell presented consists of an acrylic glass body with a UV-light-transparent window mounted in such a way that the sample can be irradiated and weathered under controlled atmospheric conditions under a grazing angle of incidence of the IR beam. This new setup was tested by using a specimen of polycrystalline silver, where the growth of Ag(2)CO(3) and AgOH as basic silver carbonate on the surface could be observed. The weathering tests were carried out in synthetic air containing 90% relative humidity (RH) and 250 ppm CO(2), with and without UV light. The results obtained from the IRRAS spectra could be perfectly correlated with the in situ QCM data. PMID:19366514

  12. Lights, Camera, Reflection!

    ERIC Educational Resources Information Center

    Mourlam, Daniel

    2013-01-01

    There are many ways to critique teaching, but few are more effective than video. Personal reflection through the use of video allows one to see what really happens in the classrooms--good and bad--and provides a visual path forward for improvement, whether it be in one's teaching, work with a particular student, or learning environment. This…

  13. Infrared hollow optical fiber probes for reflectance spectral imaging.

    PubMed

    Huang, Chenhui; Kino, Saiko; Katagiri, Takashi; Matsuura, Yuji

    2015-05-10

    Systems for infrared reflectance imaging are built with an FT-IR spectrometer, hollow optical fibers, and a high-speed infrared camera. To obtain reflectance images of biological samples, an optical fiber probe equipped with a light source at the distal end and a hybrid fiber probe composed of fibers for beam radiation and ones for image detection have been developed. By using these systems, reflectance spectral images of lipid painted on biomedical hard tissue, which provides reflectance of around 4%, are successfully acquired. PMID:25967522

  14. Variable area light reflecting assembly

    DOEpatents

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  15. Variable area light reflecting assembly

    DOEpatents

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  16. Improved Spatial Resolution For Reflection Mode Infrared Spectromicroscopy

    SciTech Connect

    Bechtel, Hans A; Martin, Michael C.; May, T. E.; Lerch, Philippe

    2009-08-13

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the numerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using a microscope coupled to a synchrotron source.

  17. Virtual reflected-light microscopy.

    PubMed

    Harrison, A P; Wong, C M; Joseph, D

    2011-12-01

    Research on better methods to digitally represent microscopic specimens has increased over recent decades. Opaque specimens, such as microfossils and metallurgic specimens, are often viewed using reflected light microscopy. Existing 3D surface estimation techniques for reflected light microscopy do not model reflectance, restricting the representation to only one illumination condition and making them an imperfect recreation of the experience of using an actual microscope. This paper introduces a virtual reflected-light microscopy (VRLM) system that estimates both shape and reflectance from a set of specimen images. When coupled with anaglyph creation, the system can depict both depth information and illumination cues under any desired lighting configuration. Digital representations are compact and easily viewed in an online setting. A prototype used to construct VRLM representations is comprised only of a microscope, a digital camera, a motorized stage and software. Such a system automatically acquires VRLM representations of large batches of specimens. VRLM representations are then disseminated in an interactive online environment, which allows users to change the virtual light source direction and type. Experiments demonstrate high quality VRLM representations of 500 microfossils. PMID:21919903

  18. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  19. Infrared reflection nebulae in Orion molecular cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Y.; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New obervations of Orion Molecular Cloud-2 have been made from 1-100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry and spectrophotometry has shown that the extended emission regions associated with two of the previously known near infrared sources, IRS1 and IRS4, are infrared reflection nebulae, and that the compact sources IRS1 and IRS4 are the main luminosity sources in the cloud. The constraints from the far infrared observations and an analysis of the scattered light from the IRS1 nebula show that OMC-2/IRS1 can be characterized by L less than or equal to 500 Solar luminosities and T approx. 1000 K. The near infrared (1-5) micron albedo of the grains in the IRS1 nebula is greater than 0.08.

  20. Infrared reflection nebulae in Orion Molecular Cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08.

  1. Reflective coherent spatial light modulator

    DOEpatents

    Simpson, John T.; Richards, Roger K.; Hutchinson, Donald P.; Simpson, Marcus L.

    2003-04-22

    A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps of selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.

  2. Value of Reflected Light Microscopy in Teaching.

    ERIC Educational Resources Information Center

    Pasteris, Jill Dill

    1983-01-01

    Briefly reviews some optical and other physical properties of minerals that can be determined in reflected/incident light. Topics include optical properties of minerals, reflectance, internal reflections, color, bireflectance and reflection pleochroism, anisotropism, zonation, and reflected light microscopy as a teaching tool in undergraduate…

  3. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light. PMID:11538693

  4. Extended near infrared emission from visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1982-01-01

    Extended near infrared (2 to 5 microns) emission was observed from three visual reflection nebulae, NGC 7023, 2023, and 2068. The emission from each nebula consists of a smooth continuum, which can be described by a greybody with a color temperature of 1000 K, and emission features at 3.3 and 3.4 microns. The continuum emission cannot be explained by free-free emission, reflected light, or field stars, or by thermal emission from grains, with commonly accepted ratios of infrared to ultraviolet emissivities, which are in equilibrium with the stellar radiation field. A possible explanation is thermal emission from grains with extremely low ratios of infrared to ultraviolet emissivities, or from grains with a temperature determined by mechanisms other than equilibrium radiative heating. Another possibility is continuum fluorescence.

  5. Extended near-infrared emission from visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.; Werner, M. W.; Dinerstein, H. L.

    1983-01-01

    Extended near infrared (2 to 5 microns) emission was observed from three visual reflection nebulae, NGC 7023, 2023, and 2068. The emission from each nebula consists of a smooth continuum, which can be described by a greybody with a color temperature of 1000 K, and emission features at 3.3 and 3.4 microns. The continuum emission cannot be explained by free-free emission, reflected light, or field stars, or by thermal emission from grains, with commonly accepted ratios of infrared to ultraviolet emissivities, which are in equilibrium with the stellar radiation field. A possible explanation is thermal emission from grains with extremely low ratios of infrared to ultraviolet emissivities, or from grains with a temperature determined by mechanisms other than equilibrium radiative heating. Another possibility is continuum fluorescence. Previously announced in STAR N83-25629

  6. Improved Spatial Resolution for Reflection Mode Infrared Microscopy

    SciTech Connect

    Bechtel, Hans A.; Martin, Michael C.; May, T.E.; Lerch, Philippe

    2009-10-09

    Standard commercial infrared microscopes operating in reflection mode use a mirror to direct the reflected light from the sample to the detector. This mirror blocks about half of the incident light, however, and thus degrades the spatial resolution by reducing the umerical aperture of the objective. Here, we replace the mirror with a 50% beamsplitter to allow full illumination of the objective and retain a way to direct the reflected light to the detector. The improved spatial resolution is demonstrated using two different microscopes apable of diffraction-limited resolution: the first microscope is coupled to a synchrotron source and utilizes a single point detector, whereas the second microscope has a standard blackbody source and uses a focal planetarray (FPA) detector.

  7. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  8. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  9. Infrared reflectance spectra: Effects of particle size, provenance and preparation

    SciTech Connect

    Su, Yin-Fong; Myers, Tanya L.; Brauer, Carolyn S.; Blake, Thomas A.; Forland, Brenda M.; Szecsody, James E.; Johnson, Timothy J.

    2014-09-22

    We have recently developed methods for making more accurate infrared total and diffuse directional - hemispherical reflectance measurements using an integrating sphere. We have found that reflectance spectra of solids, especially powders, are influenced by a number of factors including the sample preparation method, the particle size and morphology, as well as the sample origin. On a quantitative basis we have investigated some of these parameters and the effects they have on reflectance spectra, particularly in the longwave infrared. In the IR the spectral features may be observed as either maxima or minima: In general, upward-going peaks in the reflectance spectrum result from strong surface scattering, i.e. rays that are reflected from the surface without bulk penetration, whereas downward-going peaks are due to either absorption or volume scattering, i.e. rays that have penetrated or refracted into the sample interior and are not reflected. The light signals reflected from solids usually encompass all such effects, but with strong dependencies on particle size and preparation. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to observe the effects on the spectral features: Bulk materials were ground with a mortar and pestle and sieved to separate the samples into various size fractions between 5 and 500 microns. The median particle size is demonstrated to have large effects on the reflectance spectra. For certain minerals we also observe significant spectral change depending on the geologic origin of the sample. All three such effects (particle size, preparation and provenance) result in substantial change in the reflectance spectra for solid materials; successful identification algorithms will require sufficient flexibility to account for these parameters.

  10. Infrared spectroscopy with visible light

    NASA Astrophysics Data System (ADS)

    Kalashnikov, Dmitry A.; Paterova, Anna V.; Kulik, Sergei P.; Krivitsky, Leonid A.

    2016-02-01

    Spectral measurements in the infrared optical range provide unique fingerprints of materials, which are useful for material analysis, environmental sensing and health diagnostics. Current infrared spectroscopy techniques require the use of optical equipment suited for operation in the infrared range, components of which face challenges of inferior performance and high cost. Here, we develop a technique that allows spectral measurements in the infrared range using visible-spectral-range components. The technique is based on nonlinear interference of infrared and visible photons, produced via spontaneous parametric down conversion. The intensity interference pattern for a visible photon depends on the phase of an infrared photon travelling through a medium. This allows the absorption coefficient and refractive index of the medium in the infrared range to be determined from the measurements of visible photons. The technique can substitute and/or complement conventional infrared spectroscopy and refractometry techniques, as it uses well-developed components for the visible range.

  11. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  12. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Shochat, Ariel; Mathews, Marlon S.

    2013-04-01

    The authors' aim is to assess and quantitatively measure brain hemodynamic and morphological variations during closed-head injury (CHI) in mice using orthogonal diffuse near-infrared reflectance spectroscopy (o-DRS). CHI is a type of injury to the head that does not penetrate the skull. Usually, it is caused by mechanical blows to the head and frequently occurs in traffic accidents, falls, and assaults. Measurements of brain optical properties, namely absorption and reduced scattering coefficients in the wavelength range from 650 to 1000 nm were carried out by employing different source-detector distance and locations to provide depth sensitivity on an intact scalp over the duration of the whole experiment. Furthermore, alteration in both cortical hemodynamics and morphologic markers, i.e., scattering power and amplitude properties were derived. CHI was induced in anesthetized male mice by a weight-drop model using ˜50 g cylindrical metal falling from a height of 90 cm onto the intact scalp producing an impact of 4500 g cm. With respect to baseline, difference in brain physiological properties was observed following injury up to 1 h post-trauma. Additionally, the reduced scattering spectral shapes followed Mie scattering theory was quantified and clearly shows changes in both scattering amplitude and power from baseline indicating structural variations likely from evolving cerebral edema during CHI. We further demonstrate high correlation between scattering amplitude and scattering power, with more than 20% difference in slope in comparison to preinjury. This result indicates the possibility of using the slope also as a marker for detection of structural changes. Finally, experiments investigating brain function during the first 20 min postinjury were conducted and changes in chromophore concentrations and scattering were observed. Overall, our experiments demonstrate the potential of using the proposed technique as a valuable quantitative noninvasive tool for

  13. Photovoltaic module with light reflecting backskin

    DOEpatents

    Gonsiorawski, Ronald C.

    2007-07-03

    A photovoltaic module comprises electrically interconnected and mutually spaced photovoltaic cells that are encapsulated by a light-transmitting encapsulant between a light-transparent front cover and a back cover, with the back cover sheet being an ionomer/nylon alloy embossed with V-shaped grooves running in at least two directions and coated with a light reflecting medium so as to provide light-reflecting facets that are aligned with the spaces between adjacent cells and oriented so as to reflect light falling in those spaces back toward said transparent front cover for further internal reflection onto the solar cells, whereby substantially all of the reflected light will be internally reflected from said cover sheet back to the photovoltaic cells, thereby increasing the current output of the module. The internal reflector improves power output by as much as 67%.

  14. The Influence of Particle Size on Infrared Reflectance Spectra

    SciTech Connect

    Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Blake, Thomas A.; Johnson, Timothy J.; Richardson, Robert L.

    2014-06-13

    Reflectance spectra of solids are influenced by the absorption coefficient as well as the particle size and morphology. In the infrared, spectral features may be observed as either maxima or minima: in general, the upward-going peaks in the reflectance spectrum result from surface scattering, which are rays that have reflected from the surface without penetration, whereas downward-going peaks result from either absorption or volume scattering, i.e. rays that have penetrated into the sample or refracted into the sample interior and are not reflected. The light signal reflected from solids usually encompasses all these effects which include dependencies on particle size, morphology and sample density. This paper measures the reflectance spectra in the 1.3 – 16 micron range for various bulk materials that have a combination of strong and weak absorption bands in order to understand the effects on the spectral features as a function of the mean grain size of the sample. The bulk materials were ground with a mortar and pestle and then sieved to separate the samples into various size fractions: 0-45, 45-90, 90-180, 180-250, 250-500, and >500 microns. The directional-hemispherical spectra were recorded using a Fourier transform infrared spectrometer equipped with an integrating sphere to measure the reflectance for all of the particle-size fractions. We have studied both organic and inorganic materials, but this paper focuses on inorganic salts, NaNO3 in particular. Our studies clearly show that particle size has an enormous influence on the measured reflectance spectra for bulk materials and that successful identification requires sufficient representative reflectance data so as to include the particle size(s) of interest. Origins of the effects are discussed.

  15. Light reflection models for computer graphics.

    PubMed

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future. PMID:17835348

  16. Studies of the Reflection, Refraction and Internal Reflection of Light

    ERIC Educational Resources Information Center

    Lanchester, P. C.

    2014-01-01

    An inexpensive apparatus and associated experiments are described for studying the basic laws of reflection and refraction of light at an air-glass interface, and multiple internal reflections within a glass block. In order to motivate students and encourage their active participation, a novel technique is described for determining the refractive…

  17. Infrared light sources with semimetal electron injection

    DOEpatents

    Kurtz, Steven R.; Biefeld, Robert M.; Allerman, Andrew A.

    1999-01-01

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GalnSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2-6 .mu.m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  18. Infrared light sources with semimetal electron injection

    SciTech Connect

    Kurtz, S.R.; Biefeld, R.M.; Allerman, A.A.

    1999-11-30

    An infrared light source is disclosed that comprises a layered semiconductor active region having a semimetal region and at least one quantum-well layer. The semimetal region, formed at an interface between a GaAsSb or GaInSb layer and an InAsSb layer, provides electrons and holes to the quantum-well layer to generate infrared light at a predetermined wavelength in the range of 2--6 {mu}m. Embodiments of the invention can be formed as electrically-activated light-emitting diodes (LEDs) or lasers, and as optically-pumped lasers. Since the active region is unipolar, multiple active regions can be stacked to form a broadband or multiple-wavelength infrared light source.

  19. Selective reflection of obliquely incident polarised light

    SciTech Connect

    Fofanov, Ya A

    2009-06-30

    A series of reflection resonances formed by the hyperfine components of the D{sub 2}-lines in the spectrum of the natural mixture of rubidium isotopes is studied. Passages from resonantly frustrated total internal reflection to resonance Brewster reflection caused by the frequency tuning of the incident light are demonstrated experimentally. The contrast of the strongest refection resonances exceeds 500% at the moderate heating of reflecting cells. The intensity of the reflected light changes in this case by more than 20 times. A theory is developed which is based on a two-level model for resonance atoms and Fresnel formulas for reflection coefficients. Numerical calculations based on the proposed theory confirm main experimental results. (laser applications and other topics in quantum electronics)

  20. Infrared-Bolometer Arrays with Reflective Backshorts

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Abrahams, John; Allen, Christine A.

    2011-01-01

    Integrated circuits that incorporate square arrays of superconducting-transition- edge bolometers with optically reflective backshorts are being developed for use in image sensors in the spectral range from far infrared to millimeter wavelengths. To maximize the optical efficiency (and, thus, sensitivity) of such a sensor at a specific wavelength, resonant optical structures are created by placing the backshorts at a quarter wavelength behind the bolometer plane. The bolometer and backshort arrays are fabricated separately, then integrated to form a single unit denoted a backshort-under-grid (BUG) bolometer array. In a subsequent fabrication step, the BUG bolometer array is connected, by use of single-sided indium bump bonding, to a readout device that comprises mostly a superconducting quantum interference device (SQUID) multiplexer circuit. The resulting sensor unit comprising the BUG bolometer array and the readout device is operated at a temperature below 1 K. The concept of increasing optical efficiency by use of backshorts at a quarter wavelength behind the bolometers is not new. Instead, the novelty of the present development lies mainly in several features of the design of the BUG bolometer array and the fabrication sequence used to implement the design. Prior to joining with the backshort array, the bolometer array comprises, more specifically, a square grid of free-standing molybdenum/gold superconducting-transition-edge bolometer elements on a 1.4- m-thick top layer of silicon that is part of a silicon support frame made from a silicon-on-insulator wafer. The backshort array is fabricated separately as a frame structure that includes support beams and contains a correspond - ing grid of optically reflective patches on a single-crystal silicon substrate. The process used to fabricate the bolometer array includes standard patterning and etching steps that result in the formation of deep notches in the silicon support frame. These notches are designed to

  1. Light Transmission Through Reflecting Cylindrical Tubes

    ERIC Educational Resources Information Center

    Cohen, D. K.; Potts, J. E.

    1978-01-01

    Describes an experiment in which a point source of light, when viewed through a cylindrical tube having reflecting inner walls, appears as a series of sharply defined rings, due to the multiple reflections from the inner walls of the tube. ( GA)

  2. Reflections From Plasma Would Enhance Infrared Detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1992-01-01

    Quantum efficiency of proposed photoemission semiconductor detector of long-wavelength infrared radiation enhanced by multiple passes of radiation. Device has features of back-to-back heterojunction internal-photoemission (HIP) detector, and Fabry-Perot interferometer. Arrays of devices of this type incorporated into integrated-circuit infrared imaging devices.

  3. Reflectance of polytetrafluoroethylene for xenon scintillation light

    SciTech Connect

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-15

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region ({lambda}{approx_equal}175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  4. Reflectance of polytetrafluoroethylene for xenon scintillation light

    NASA Astrophysics Data System (ADS)

    Silva, C.; Pinto da Cunha, J.; Pereira, A.; Chepel, V.; Lopes, M. I.; Solovov, V.; Neves, F.

    2010-03-01

    Gaseous and liquid xenon particle detectors are being used in a number of applications including dark matter search and neutrino-less double beta decay experiments. Polytetrafluoroethylene (PTFE) is often used in these detectors both as electrical insulator and as a light reflector to improve the efficiency of detection of scintillation photons. However, xenon emits in the vacuum ultraviolet (VUV) wavelength region (λ ≃175 nm) where the reflecting properties of PTFE are not sufficiently known. In this work, we report on measurements of PTFE reflectance, including its angular distribution, for the xenon scintillation light. Various samples of PTFE, manufactured by different processes (extruded, expanded, skived, and pressed) have been studied. The data were interpreted with a physical model comprising both specular and diffuse reflections. The reflectance obtained for these samples ranges from about 47% to 66% for VUV light. Other fluoropolymers, namely, ethylene tetrafluoroethylene (ETFE), fluorinated ethylene propylene (FEP), and perfluoro-alkoxyalkane (PFA) were also measured.

  5. [Near infrared light irradiator using halogen lamp].

    PubMed

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer. PMID:22860296

  6. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  7. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  8. Forensic applications of microscopical infrared internal reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Tungol, Mary W.; Bartick, Edward G.; Reffner, John A.

    1994-01-01

    Applications of microscopical infrared internal reflection spectroscopy in forensic science are discussed. Internal reflection spectra of single fibers, hairs, paint chips, vehicle rubber bumpers, photocopy toners, carbon copies, writing ink on paper, lipstick on tissue, black electrical tape, and other types of forensic evidence have been obtained. The technique is convenient, non-destructive, and may permit smeared materials to be analyzed in situ.

  9. Cosmic Infrared Background Fluctuations and Zodiacal Light

    NASA Astrophysics Data System (ADS)

    Arendt, Richard G.; Kashlinsky, A.; Moseley, S. H.; Mather, J.

    2016-06-01

    We performed a specific observational test to measure the effect that the zodiacal light can have on measurements of the spatial fluctuations of the near-IR background. Previous estimates of possible fluctuations caused by zodiacal light have often been extrapolated from observations of the thermal emission at longer wavelengths and low angular resolution or from IRAC observations of high-latitude fields where zodiacal light is faint and not strongly varying with time. The new observations analyzed here target the COSMOS field at low ecliptic latitude where the zodiacal light intensity varies by factors of ˜2 over the range of solar elongations at which the field can be observed. We find that the white-noise component of the spatial power spectrum of the background is correlated with the modeled zodiacal light intensity. Roughly half of the measured white noise is correlated with the zodiacal light, but a more detailed interpretation of the white noise is hampered by systematic uncertainties that are evident in the zodiacal light model. At large angular scales (≳100″) where excess power above the white noise is observed, we find no correlation of the power with the modeled intensity of the zodiacal light. This test clearly indicates that the large-scale power in the infrared background is not being caused by the zodiacal light.

  10. Infrared reflectance spectra (4-12 micron) of lunar samples

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.

    1991-01-01

    Presented here are infrared reflectance spectra of a typical set of Apollo samples to illustrate spectral character in the mid-infrared (4 to 12 microns) of lunar materials and how the spectra varies among three main forms: soil, breccia, and igneous rocks. Reflectance data, to a close approximation, are the inverse of emission spectra; thus, for a given material the spectral reflectance (R) at any given wavelength is related to emission (E) by 1 - R equals E. Therefore, one can use reflectance spectra of lunar samples to predict how emission spectra of material on the lunar surface will appear to spectrometers on orbiting spacecraft or earthbound telescopes. Spectra were measured in the lab in dry air using a Fourier Transform Infrared spectrometer. Shown here is only the key portion (4 to 12 microns) of each spectrum relating to the principal spectral emission region for sunlit lunar materials and to where the most diagnostic spectral features occur.

  11. Measuring Light Reflectance of BGO Crystal Surfaces

    SciTech Connect

    Janecek, Martin; Moses, William

    2008-07-28

    A scintillating crystal's surface reflectance has to be well understood in order to accurately predict and optimize the crystal?s light collection through Monte Carlo simulations. In this paper, we measure the inner surface reflectance properties for BGO. The measurements include BGO crystals with a mechanically polished surface, rough-cut surface, and chemically etched surface, and with various reflectors attached, both air- coupled and with coupling compound. The measurements are performed with a laser aimed at the center of a hemispherical shaped BGO crystal. The hemispherical shape eliminates any non-perpendicular angles for light entering and exiting the crystal. The reflected light is collected with an array of photodiodes. The laser can be set at an arbitrary angle, and the photodiode array is rotated to fully cover 2? of solid angle. The current produced in the photodiodes is readout with a digital multimeter connected through a multiplexer. The two rows of photodiodes achieve 5-degree by 4-degree resolution, and the current measurement has a dynamic range of 10^5:1. The acquired data was not described by the commonly assumed linear combination of specular and diffuse (Lambertian) distributions, except for a very few surfaces. Surface roughness proved to be the most important parameter when choosing crystal setup. The reflector choice was of less importance and of almost no consequence for rough-cut surfaces. Pure specular reflection distribution for all incidence angles was measured for polished surfaces with VM2000 film, while the most Lambertian distribution for any surface finish was measured for titanium dioxide paint. The distributions acquired in this paper will be used to create more accurate Monte Carlo models for light reflection distribution within BGO crystals.

  12. Red and near-infrared spectral reflectance of snow

    NASA Technical Reports Server (NTRS)

    Obrien, H. W.; Munis, R. H.

    1975-01-01

    The spectral reflectance of snow in the range of 0.60 to 2.50 microns wavelengths was studied in a cold laboratory using natural snow and simulated preparations of snow. A white barium sulfate powder was used as the standard for comparison. The high reflectance (usually nearly 100%) of fresh natural snow in visible wavelengths declines rapidly at wavelengths longer than the visible, as the spectral absorption coefficients of ice increase. Aging snow becomes only somewhat less reflective than fresh snow in the visible region and usually retains a reflectance greater than 80%. In the near infrared, aging snow tends to become considerably less reflective than fresh snow.

  13. Capabilities and Limitations of Infrared Reflectance Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Klima, R. L.; Pieters, C. M.

    2005-01-01

    Technological improvements in IR microspectroscopy have made it an increasingly appealing tool for planetary mineralogy. Microspectroscopy presents the prospect of examining small samples nondestructively and acquiring spectra that can be related to remote sensing observations. However, complications are introduced as a target beam size is reduced, and it is critical that limitations are understood. We present the results of a series of well constrained spectroscopic measurements, linking microspectroscopic data to traditionally collected reflectance spectra and petrologic information for the same rock.

  14. Infrared reflectance of high altitude clouds.

    PubMed

    Hovis, W A; Blaine, L R; Forman, M L

    1970-03-01

    The spectral reflectance characteristics of cirrostratus, cirrus clouds, and a jet contrail, in the 0.68-2.4-micro spectral interval, are of interest for remote sensing of cloud types from orbiting satellites. Measurements made with a down-looking spectrometer from a high altitude aircraft show differences between the signatures of naturally formed ice clouds, a fresh jet contrail, and a snow covered surface. PMID:20076243

  15. Light reflecting apparatus including a multi-aberration light reflecting surface

    DOEpatents

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  16. A light reflecting apparatus including a multi-aberration light reflecting surface

    DOEpatents

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A light reflecting apparatus including a multi-aberration bendable light reflecting surface is disclosed herein. This apparatus includes a structural assembly comprised of a rectangular plate which is resiliently bendable, to a limited extent, and which has a front side defining the multi-aberration light reflecting surface and an opposite back side, and a plurality of straight leg members rigidly connected with the back side of the plate and extending rearwardly therefrom. The apparatus also includes a number of different adjustment mechanisms, each of which is connected with specific ones of the leg members. These mechanisms are adjustably movable in different ways for applying corresponding forces to the leg members in order to bend the rectangular plate and light reflecting surface into different predetermined curvatures and which specifically include quadratic and cubic curvatures corresponding to different optical aberrations.

  17. Near infrared reflectance analysis by Gauss-Jordan linear algebra

    NASA Astrophysics Data System (ADS)

    Honigs, D. E.; Freelin, J. M.; Hieftje, G. M.

    1983-02-01

    Near-infrared reflectance analysis (NIRA) is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

  18. Venus in Violet and Near Infrared Light

    NASA Technical Reports Server (NTRS)

    1990-01-01

    These images of the Venus clouds were taken by Galileo's Solid State Imaging System February 13,1990, at a range of about 1 million miles. The smallest detail visible is about 20 miles. The two right images show Venus in violet light, the top one at a time six hours later than the bottom one. They show the state of the clouds near the top of Venus's cloud deck. A right to left motion of the cloud features is evident and is consistent with westward winds of about 230 mph. The two left images show Venus in near infrared light, at the same times as the two right images. Sunlight penetrates through the clouds more deeply at the near infrared wavelengths, allowing a view near the bottom of the cloud deck. The westward motion of the clouds is slower (about 150 mph) at the lower altitude. The clouds are composed of sulfuric acid droplets and occupy a range of altitudes from 30 to 45 miles. The images have been spatially filtered to bring out small scale details and de-emphasize global shading. The filtering has introduced artifacts (wiggly lines running north/south) that are faintly visible in the infrared image. The Galileo Project is managed for NASA's Office of Space Science and Applications by the Jet Propulsion Laboratory; its mission is to study Jupiter and its satellites and magnetosphere after multiple gravity assist flybys at Venus and Earth.

  19. Infrared spectra of lunar soil analogs. [spectral reflectance of minerals

    NASA Technical Reports Server (NTRS)

    Aronson, J. R.

    1977-01-01

    The infrared spectra of analogs of lunar soils were investigated to further the development of methodology for interpretation of remotely measured infrared spectra of the lunar surface. The optical constants of dunite, bytownite, augite, ilmenite, and a mare glass analog were obtained. The infrared emittance spectra of powdered minerals were measured and compared with spectra calculated by the reflectance theory using a catalog of optical constants. The results indicate that the predictions of the theory closely simulate the experimental measurements if the optical constants are properly derived.

  20. Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Edlridge, Jeffrey I.; Martin, Richard E.

    2009-01-01

    An apparatus for mid-infrared reflectance imaging has been developed as means of inspecting for subsurface damage in thermal-barrier coatings (TBCs). The apparatus is designed, more specifically, for imaging the progression of buried delamination cracks in plasma-sprayed yttria-stabilized zirconia coatings on turbine-engine components. Progression of TBC delamination occurs by the formation of buried cracks that grow and then link together to produce eventual TBC spallation. The mid-infrared reflectance imaging system described here makes it possible to see delamination progression that is invisible to the unaided eye, and therefore give sufficiently advanced warning before delamination progression adversely affects engine performance and safety. The apparatus (see figure) includes a commercial mid-infrared camera that contains a liquid-nitrogen-cooled focal plane indium antimonide photodetector array, and imaging is restricted by a narrow bandpass centered at wavelength of 4 microns. This narrow wavelength range centered at 4 microns was chosen because (1) it enables avoidance of interfering absorptions by atmospheric OH and CO2 at 3 and 4.25 microns, respectively; and (2) the coating material exhibits maximum transparency in this wavelength range. Delamination contrast is produced in the midinfrared reflectance images because the introduction of cracks into the TBC creates an internal TBC/air-gap interface with a high diffuse reflectivity of 0.81, resulting in substantially higher reflectance of mid-infrared radiation in regions that contain buried delamination cracks. The camera is positioned a short distance (.12 cm) from the specimen. The mid-infrared illumination is generated by a 50-watt silicon carbide source positioned to the side of the mid-infrared camera, and the illumination is collimated and reflected onto the specimen by a 6.35-cm-diameter off-axis paraboloidal mirror. Because the collected images are of a steady-state reflected intensity (in

  1. Broadband infrared meanderline reflective quarter-wave plate.

    PubMed

    Wadsworth, Samuel L; Boreman, Glenn D

    2011-05-23

    We present a novel reflective quarter-wave plate comprised of subwavelength meanderline elements. The device is operational over the long-wave infrared (LWIR) spectrum, with significant spectral and angular bandwidths. Power reflection is approximately 70% over the majority of the LWIR. Efficient conversion from a 45° linear polarization state into circular polarization is demonstrated from finite-element electromagnetic simulations and from broadband polarimetric measurements. PMID:21643314

  2. Standard reference material 2036 near-infrared reflection wavelength standard.

    PubMed

    Choquette, Steven J; Duewer, David L; Hanssen, Leonard M; Early, Edward A

    2005-04-01

    Standard Reference Material 2036 (SRM 2036) is a certified transfer standard intended for the verification and calibration of the wavelength/wavenumber scale of near-infrared (NIR) spectrometers operating in diffuse or trans-reflectance mode. SRM 2036 Near-Infrared Wavelength/Wavenumber Reflection Standard is a combination of a rare earth oxide glass of a composition similar to that of SRM 2035 Near-Infrared Transmission Wavelength/Wavenumber Standard and SRM 2065 Ultraviolet-Visible-Near-Infrared Transmission Wavelength/Wavenumber Standard, but is in physical contact with a piece of sintered poly(tetrafluoroethylene) (PTFE). The combination of glass contacted with a nearly ideal diffusely reflecting backing provides reflection-absorption bands that range from 15% R to 40% R. SRM 2036 is certified for the 10% band fraction air wavelength centroid location, (10%)B, of seven bands spanning the spectral region from 975 nm to 1946 nm. It is also certified for the vacuum wavenumber (10%)B of the same seven bands in the spectral region from 10 300 cm(-1) to 5130 cm(-1) at 8 cm(-1) resolution. Informational values are provided for the locations of thirteen additional bands from 334 nm to 804 nm. PMID:15901335

  3. Infrared reflection and attenuated total reflection spectra in the Bi2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.

    2015-08-01

    Infrared reflection and attenuated total reflection spectra are measured in the (111)Si/Bi2Se3 topological insulator film. The characteristic parameters of plasmons and phonons in the near-surface layers close to the Si-film interface are obtained from the dispersion analysis of the reflection spectra. It is found that the charge carrier density near the interface far exceeds that in the bulk. The dispersion laws for surface polaritons and waveguide modes are determined.

  4. Sombrero Galaxy (M104) in Infrared Light

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The razor sharp eye of the Hubble Space Telescope (HST) easily resolves the Sombrero galaxy, Messier 104 (M104). 50,000 light-years across, the galaxy is located 28 million light-years from Earth at the southern edge of the rich Virgo cluster of galaxies. Equivalent to 800 billion suns, Sombrero is one of the most massive objects in that group. The hallmark of Sombrero is a brilliant white, bulbous core encircled by the thick dust lanes comprising the spiral structure of the galaxy. As seen from Earth, the galaxy is tilted nearly edge-on. We view it from just six degrees north of its equatorial plane. This rich system of globular clusters is estimated to be nearly 2,000 in number which is 10 times as many as in our Milky Way galaxy. Similar to the clusters in the Milky Way, the ages range from 10-13 billion years old. Embedded in the bright core of M104 is a smaller disk, which is tilted relative to the large disk. The HST paired with the Spitzer infrared telescope, offers this striking composite capturing the magnificence of the Sombrero galaxy. In the Hubble view, the galaxy resembles a broad-rimmed Mexican hat, whereas in the Spitzer striking infrared view, the galaxy looks more like a bulls eye. The full view provided by Spitzer shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star forming regions. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy as well, where there is a huge black hole believed to be a billion times more massive than our Sun. The Marshall Space Flight Center (MSFC) had responsibility for design, development, and construction of the HST.

  5. Catheter based mid-infrared reflectance and reflectance generated absorption spectroscopy

    DOEpatents

    Holman, Hoi-Ying N

    2013-10-29

    A method of characterizing conditions in a tissue, by (a) providing a catheter that has a light source that emits light in selected wavenumbers within the range of mid-IR spectrum; (b) directing the light from the catheter to an area of tissue at a location inside a blood vessel of a subject; (c) collecting light reflected from the location and generating a reflectance spectra; and (d) comparing the reflectance spectra to a reference spectra of normal tissue, whereby a location having an increased number of absorbance peaks at said selected wavenumbers indicates a tissue inside the blood vessel containing a physiological marker for atherosclerosis.

  6. Remote sensing of vegetation water content using shortwave infrared reflectances

    NASA Astrophysics Data System (ADS)

    Hunt, E. Raymond, Jr.; Yilmaz, M. Tugrul

    2007-09-01

    Vegetation water content is an important biophysical parameter for estimation of soil moisture from microwave radiometers. One of the objectives of the Soil Moisture Experiments in 2004 (SMEX04) and 2005 (SMEX05) were to develop and test algorithms for a vegetation water content data product using shortwave infrared reflectances. SMEX04 studied native vegetation in Arizona, USA, and Sonora, Mexico, while SMEX05 studied corn and soybean in Iowa, USA. The normalized difference infrared index (NDII) is defined as (R 850 - R 1650)/(R 800 + R 1650), where R 850 is the reflectance in the near infrared and R1650 is the reflectance in the shortwave infrared. Simulations using the Scattering by Arbitrarily Inclined Leaves (SAIL) model indicated that NDII is sensitive to surface moisture content. From Landsat 5 Thematic Mapper and other imagery, NDII is linear with respect to foliar water content with R2 = 0.81. The regression standard error of the y estimate is 0.094 mm, which is equivalent to about a leaf area index of 0.5 m2 m -2. Based on modeling the dynamic water flow through plants, the requirement for detection of water stress is about 0.01 mm, so detection of water stress may not be possible. However, this standard error is accurate for input into the tau-omega model for soil moisture. Therefore, NDII may be a robust backup algorithm for MODIS as a standard data product.

  7. Spectral purification and infrared light recycling in extreme ultraviolet lithography sources.

    PubMed

    Bayraktar, Muharrem; van Goor, Fred A; Boller, Klaus J; Bijkerk, Fred

    2014-04-01

    We present the design of a novel collector mirror for laser produced plasma (LPP) light sources to be used in extreme ultraviolet (EUV) lithography. The design prevents undesired infrared (IR) drive laser light, reflected from the plasma, from reaching the exit of the light source. This results in a strong purification of the EUV light, while the reflected IR light becomes refocused into the plasma for enhancing the IR-to-EUV conversion. The dual advantage of EUV purification and conversion enhancement is achieved by incorporating an IR Fresnel zone plate pattern into the EUV reflective multilayer coating of the collector mirror. Calculations using Fresnel-Kirchhoff's diffraction theory for a typical collector design show that the IR light at the EUV exit is suppressed by four orders of magnitude. Simultaneously, 37% of the reflected IR light is refocused back the plasma. PMID:24718234

  8. Ganymede in Visible and Infrared Light

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This montage compares New Horizons' best views of Ganymede, Jupiter's largest moon, gathered with the spacecraft's Long Range Reconnaissance Imager (LORRI) and its infrared spectrometer, the Linear Etalon Imaging Spectral Array (LEISA).

    LEISA observes its targets in more than 200 separate wavelengths of infrared light, allowing detailed analysis of their surface composition. The LEISA image shown here combines just three of these wavelengths -- 1.3, 1.8 and 2.0 micrometers -- to highlight differences in composition across Ganymede's surface. Blue colors represent relatively clean water ice, while brown colors show regions contaminated by dark material.

    The right panel combines the high-resolution grayscale LORRI image with the color-coded compositional information from the LEISA image, producing a picture that combines the best of both data sets.

    The LEISA and LORRI images were taken at 9:48 and 10:01 Universal Time, respectively, on February 27, 2007, from a range of 3.5 million kilometers (2.2 million miles). The longitude of the disk center is 38 degrees west. With a diameter of 5,268 kilometers (3,273 miles), Ganymede is the largest satellite in the solar system.

  9. Characterizing Cool Giant Planets in Reflected Light

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    While the James Webb Space Telescope will detect and characterize extrasolar planets by transit and direct imaging, a new generation of telescopes will be required to detect and characterize extrasolar planets by reflected light imaging. NASA's WFIRST space telescope, now in development, will image dozens of cool giant planets at optical wavelengths and will obtain spectra for several of the best and brightest targets. This mission will pave the way for the detection and characterization of terrestrial planets by the planned LUVOIR or HabEx space telescopes. In my presentation I will discuss the challenges that arise in the interpretation of direct imaging data and present the results of our group's effort to develop methods for maximizing the science yield from these planned missions.

  10. Nondestructive evaluation of aircraft coatings with infrared diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Korth, Hans G.; Wilson, Kody A.; Gross, Kevin C.; Hawks, Michael R.; Zens, Timothy W. C.

    2015-05-01

    Aircraft coatings degrade over time, but aging can be difficult to detect before failure and delamination. We present a method to evaluate aircraft coatings in situ using infrared diffuse reflectance spectra. This method can detect and classify coating degradation much earlier than visual inspection. The method has been tested on two different types of coatings that were artificially aged in an autoclave. Spectra were measured using a hand-held diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). One set of 72 samples can be classified as either aged or unaged with 100% accuracy. A second sample set contained samples that had been artificially aged for 0, 24, 48 or 96 hours. Several classification methods are compared, with accuracy better than 98% possible.

  11. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  12. Terahertz and mid-infrared reflectance of epitaxial graphene.

    PubMed

    Santos, Cristiane N; Joucken, Frédéric; De Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices. PMID:27102827

  13. Terahertz and mid-infrared reflectance of epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Santos, Cristiane N.; Joucken, Frédéric; de Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-04-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices.

  14. Terahertz and mid-infrared reflectance of epitaxial graphene

    PubMed Central

    Santos, Cristiane N.; Joucken, Frédéric; De Sousa Meneses, Domingos; Echegut, Patrick; Campos-Delgado, Jessica; Louette, Pierre; Raskin, Jean-Pierre; Hackens, Benoit

    2016-01-01

    Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR). Contrary to the transmittance, reflectance measurements are not hampered by the transmission window of the substrate, and in particular by the SiC Reststrahlen band in the MIR. This allows us to present IR reflectance data exhibiting a continuous evolution from the regime of intraband to interband charge carrier transitions. A consistent and simultaneous analysis of the contributions from both transitions to the optical response yields precise information on the carrier dynamics and the number of layers. The properties of the graphene layers derived from IR reflection spectroscopy are corroborated by other techniques (micro-Raman and X-ray photoelectron spectroscopies, transport measurements). Moreover, we also present MIR microscopy mapping, showing that spatially-resolved information can be gathered, giving indications on the sample homogeneity. Our work paves the way for a still scarcely explored field of epitaxial graphene-based THz and MIR optical devices. PMID:27102827

  15. Diffuse Reflection of Laser Light From Clouds

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Davis, A.; McGill, M.

    1999-01-01

    Laser light reflected from an aqueous suspension of particles or "cloud" with known thickness and particle size distribution defines the "cloud radiative Green's function", G. G is sensitive to cloud thickness, allowing retrieval of that important quantity. We describe a laboratory simulation of G, useful in design of an offbeam Lidar instrument for remote sensing of cloud thickness. Clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The size distribution extends from 0.5 microns to 25 microns, roughly lognormal, similar to real clouds. Density of suspended spheres is adjusted so photon mean-free-path is about 10 cm, 1000 times smaller than in real clouds. The light source is a Nd:YAG laser at 530 nm. Detectors are flux and photon-counting PMTs, with a glass probe for precise positioning. A Labview 5 VI controls position and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider,and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns. Step size is selectable. Far from the beam, the rate of exponential increase in the beam direction scales as expected from diffusion theory, linearly with cloud thickness, and inversely as the square root of the reduced optical thickness, independent of particle size. Nearer the beam the signal increases faster than exponential and depends on particle size. Results verify 3D Monte Carlo simulations that demonstrate detectability of remotely sensed offbeam returns, without filters at night, with narrow bandpass filter in day.

  16. Far-infrared reflectance spectra of optical black coatings

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1983-01-01

    Far-infrared specular reflectance spectra of six optically black coatings near normal incidence are presented. The spectra were obtained using nine bandpass transmission filters in the wavelength range between 12 and 300 microns. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of two coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns which is attributed to amorphous silicate material. Inverse relationships between these spectra and coating roughness and thickness are noted and lead to development of a reflecting-layer model for the measured reflectance. The model is applied to the spectra of several coatings whose construction falls within its constraints.

  17. Visible and near infrared reflectances measured from laboratory ice clouds.

    PubMed

    Barkey, Brian; Liou, K N

    2008-05-01

    We present laboratory results of the 0.68 microm visible (VIS) and 1.617 microm near infrared (NIR) reflectances typically used for inferring optical depth and ice crystal size from satellite radiometers, from ice clouds generated in a temperature controlled column cloud chamber. Two types of ice crystals were produced in this experiment: small columns and dendrites with mean maximum dimensions of about 17 and 35 microm. Within experimental uncertainty, the measured reflectances from ice clouds at both wavelengths agree reasonably well with the theoretical results computed from the plane-parallel adding-doubling method for radiative transfer using the measured ice particle morphology. We demonstrate that laboratory scattering and reflectance data for thin ice clouds with optical depths less than 0.4 can be used for validation of the thin cirrus optical depth and ice crystal size that have been routinely retrieved from the satellite VIS-NIR two channel pair. PMID:18449323

  18. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOEpatents

    Sawicki, R.H.; Sweatt, W.

    1985-11-21

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and provides for adjustably bending the light reflecting surface into one of different curvatures depending upon the astigmatism to be corrected and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  19. Raman and infrared reflection spectroscopy in black phosphorus

    NASA Astrophysics Data System (ADS)

    Sugai, S.; Shirotani, I.

    1985-03-01

    The symmetry and energies of all optically active phonon modes in black phosphorous are determined by polarized Raman scattering and infrared reflection spectroscopy at room temperature. The obtained energies are; 365 and 470 cm -1 for A g modes, 197 for B lg, 442 for B 2g, 223 and 440 for B 3g, 136 (TO) and 138 (LO) for B lu, and 468 (TO) and 470 (LO) for B 2u, respectively. The small TO-LO splitting is related to the charge transfer between phosphorus atoms induced by the atomic displacement.

  20. Surface roughness and gloss study of prints: application of specular reflection at near infrared

    NASA Astrophysics Data System (ADS)

    Silfsten, P.; Dutta, R.; Pääkkönen, P.; Tåg, C.-M.; Gane, P. A. C.; Peiponen, K.-E.

    2012-12-01

    Absolute reflectance data were measured with a spectrophotometer in the visible and near infrared (NIR) spectral range. The specular reflectance data in the NIR were used for the assessment of the surface roughness of magenta, yellow, cyan and black prints on paper. In addition, surface roughness data obtained from the prints with a mechanical diamond stylus, an optical profiling system and the spectrophotometer are compared with each other. The surface roughness obtained with the aid of the spectrophotometer data suggests a smoother surface than when measured with the diamond stylus and the optical profiling system. The gloss of the prints can be obtained from the absolute specular reflectance spectra in the spectral region of visible light. It is shown that specular reflection data at a fixed wavelength in the NIR are useful also in the interpretation of gloss in the visible spectral range, but using an unconventional grazing angle of incidence.

  1. Far-infrared emissivity measurements of reflective surfaces

    NASA Technical Reports Server (NTRS)

    Xu, J.; Lange, A. E.; Bock, J. J.

    1996-01-01

    An instrument developed to measure the emissivity of reflective surfaces by comparing the thermal emission of a test sample to that of a reference surface is reported. The instrument can accurately measure the emissivity of mirrors made from lightweight thermally insulating materials such as glass and metallized carbon fiber reinforced plastics. Far infrared measurements at a wavelength of 165 micrometers are reported. The instrument has an absolute accuracy of Delta epsilon = 9 x 10(exp -4) and can reproducibly measure an emissivity of as small as 2 x 10(exp -4) between flat reflective surfaces. The instrument was used to measure mirror samples for balloon-borne and spaceborne experiments. An emissivity of (6.05 +/- 1.24) x 10(exp -3) was measured for gold evaporated on glass, and (6.75 +/- 1.17) x 10(exp -3) for aluminum evaporated on glass.

  2. Photo-induced reflectivity in the mid and far infrared

    SciTech Connect

    Haar, P.; Harrington, K.J.; Schwettman, H.A.

    1995-12-31

    Interest in switching FEL beams has motivated studies of photo-induced reflectivity in the mid and far infrared. We are particularly interested in Ge{sup 4}, GaAs, and Si{sup 5}, materials that can be pumped with a visible or near-IR conventional laser and which together cover the wavelengths from 3-100{mu}m. We have made quantitative measurements to determine the induced reflectivity, carrier lifetime, and transient absorption of these materials at several wavelengths across this range using a variety of pump laser wavelengths and pulse lengths. These measurements allow us to determine the feasibility of single pulse selection and cavity dumping with our FELs at high repetition rates.

  3. Narrowband Mid-infrared reflectance filters using guided mode resonance

    PubMed Central

    Kodali, Anil K.; Schulmerich, Matthew; Ip, Jason; Yen, Gary; Cunningham, Brian T.; Bhargava, Rohit

    2010-01-01

    There is a need to develop mid-infrared (IR) spectrometers for applications in which the absorbance of only a few vibrational mode (optical) frequencies needs to be recorded; unfortunately, there are limited alternatives for the same. The key requirement is the development of a means to access discretely a small set of spectral positions from the wideband thermal sources commonly used for spectroscopy. We present here the theory, design and practical realization of a new class of filters in the mid-infrared (IR) spectral regions based on using guided mode resonances (GMR) for narrowband optical reflection. A simple, periodic surface-relief configuration is chosen to enable both a spectral response and facile fabrication. A theoretical model based on rigorous coupled wave analysis is developed, incorporating anomalous dispersion of filter materials in the mid-IR spectral region. As a proof-of-principle demonstration, a set of four filters for a spectral region around the C-H stretching mode (2600–3000 cm−1) are fabricated and responses compared to theory. The reflectance spectra were well-predicted by the developed theory and results were found to be sensitive to the angle of incidence and dispersion characteristics of the material. In summary, the work reported here forms the basis for a rational design of filters that can prove useful for IR absorption spectroscopy. PMID:20527738

  4. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  5. NASA SOFIA International Year of Light (IYL) Event: Infrared Light: Hanging out in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Clark, Coral; Backman, Dana E.; Harman, Pamela; Veronico, Nicholas

    2015-01-01

    As an International Year of Light committee endorsed event, Infrared Light: Hanging out in the Stratosphere will engage learners around the world, linking participants with scientists at work on board NASA SOFIA, the world's largest flying observatory. This major event will showcase science-in-action, interviews, live data, and observations performed both aboard the aircraft and at partner centers on land.SOFIA (Stratospheric Observatory For Infrared Astronomy) is an 80% - 20% partnership of NASA and the German Aerospace Center (DLR) consisting of an extensively modified Boeing 747SP aircraft carrying a reflecting telescope with an effective diameter of 2.5 meters. SOFIA is a program in NASA's Science Mission Directorate, Astrophysics Division. Science investigators leverage SOFIA's unique capabilities to study the universe at infrared wavelengths by making observations that are impossible for even the largest and highest ground-based telescopes. SOFIA received Full Operating Capacity status in May, 2014, and astrophysicists will continue to utilize the observatory and upgraded instruments to study astronomical objects and phenomena, including star birth and death; planetary system formation; identification of complex molecules in space; planets, comets, and asteroids in our solar system; and nebulae and dust in galaxies.This landmark event will reflect and build on the ProjectLink. In October 1995, SOFIA's predecessor, the Kuiper Airborne Observatory (KAO), performed the first satellite links from an airplane to the ground. The KAO downlinked to the Exploratorium museum (SF, CA), where over 200 students watched the webcast, conversed, and participated in simultaneous observations at the world-renowned science museum. SOFIA will now take this concept into the 21st century, utilizing internet technologies to engage and inspire 100,000+ learners of all ages through simultaneous presentations and appearances by over 70 SOFIA Educators at schools and informal learning

  6. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  7. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  8. Aerosol collection and analysis using diffuse reflectance infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Samuels, Alan C.; Wong, Diane M.; Meyer, Gerald J.; Roelant, Geoffrey J.; Williams, Barry R.; Miles, Ronald W., Jr.; Manning, Christopher J.

    2004-08-01

    Infrared spectroscopy is routinely employed for the identification of organic molecules and, more recently, for the classification of biological materials. We have developed a sample collection method that facilitates infrared analysis of airborne particulates using a diffuse reflectance (DR) technique. Efforts are underway to extend the method to include simultaneous analysis of vapor phase organics by using adsorbent substrates compatible with the DR technique. This series of laboratory results provides proof-of-principle for both the sample collection and data collection processes. Signal processing of the DR spectra is shown to provide rapid qualitative identification of representative aerosol materials, including particulate matter commonly found in the environment. We compare the results for such materials as bacterial spores, pollens and molds, clays and dusts, smoke and soot. Background correction analysis is shown to be useful for differentiation and identification of these constituents. Issues relating to complex mixtures of environmental samples under highly variable conditions are considered. Instrumentation development and materials research are now underway with the aim of constructing a compact sampling system for near real-time monitoring of aerosol and organic pollutants. A miniature, tilt-compensated Fourier transform spectrometer will provide spectroscopic interrogation. A series of advanced digital signal processing methods are also under development to enhance the sensor package. The approach will be useful for industrial applications, chemical and biological agent detection, and environmental monitoring for chemical vapors, hazardous air pollutants, and allergens.

  9. Studies of dust grain properties in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Tielens, A. G. G. M.; Werner, M. W.

    1990-01-01

    A model has been developed for reflection nebulae around luminous IR sources embedded in dense dust clouds. The shape of the IR spectrum is shown to be the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of the model results with IR observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse ISM, or consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains. By adding water-ice mantles to the silicate and graphite cores, the 3.08 micron ice-band feature observed in the spectra of several IR reflection nebulae has been modeled. It is shown that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains.

  10. Detection of cracks on tomatoes using hyperspectral near-infrared reflectance imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detection of cuticle cracks on tomatoes. A hyperspectral near-infrared reflectance imaging system in the region of 1000-1700 nm was used to obtain hyperspectral reflectance ima...

  11. Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials

    NASA Astrophysics Data System (ADS)

    Hobbs, Douglas S.; MacLeod, Bruce D.

    2005-05-01

    Rugged infrared transmitting materials have a high refractive index, which leads to large reflection losses. Multi-layer thin-film coatings designed for anti-reflection (AR), exhibit good performance, but have limited bandwidths, narrow acceptance angles, polarization effects, high costs, and short lifetimes in harsh environments. Many aerospace and military applications requiring high optical transmission, durability, survivability, and radiation resistance, are inadequately addressed by thin-film coating technology. Surface relief microstructures have been shown to be an effective alternative to thin-film AR coatings in many infrared and visible-band applications. These microstructures, etched directly into the window surface and commonly referred to as "Motheye" textures, impart an optical function that minimizes surface reflections without compromising the inherent durability of the window material. Reflection losses are reduced to a minimum for broad-band light incident over a wide angular range. For narrow-band applications such as laser communications, a simpler type of AR surface structure called a sub-wavelength, or "SWS" surface, is used. In general, both the Motheye and SWS surface textures will exhibit the same characteristics as the bulk material with respect to durability, thermal issues, and radiation resistance. The problems associated with thin-film coating adhesion and stress, are thus eliminated by design. Optical performance data for AR structures fabricated in fused silica, sapphire, Clear ZnS, ZnSe, cadmium zinc telluride (CZT), silicon, and germanium, will be presented.

  12. Determination of in vivo skin moisture level by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Saknite, Inga; Spigulis, Janis

    2015-03-01

    Near-infrared spectroscopy has a potential for noninvasive determination of skin moisture level due to high water absorption. In this study, diffuse reflectance spectra of in vivo skin were acquired in the spectral range of 900 nm to 1700 nm by using near-infrared spectrometer, optical fiber and halogen bulb light source. Absorption changes after applying skin moisturizers were analyzed over time at different body sites. Results show difference in absorption when comparing dry and normal skin. Comparison of absorption changes over time after applying moisturizer at different body sites is analyzed and discussed. Some patterns of how skin reacts to different skin moisturizers are shown, although no clear pattern can be seen due to signal noise.

  13. Apparatus for and method of correcting for astigmatism in a light beam reflected off of a light reflecting surface

    DOEpatents

    Sawicki, Richard H.; Sweatt, William

    1987-01-01

    A technique for adjustably correcting for astigmatism in a light beam is disclosed herein. This technique utilizes first means which defines a flat, rectangular light reflecting surface having opposite reinforced side edges and which is resiliently bendable, to a limited extent, into different concave and/or convex cylindrical curvatures about a particular axis and second means acting on the first means for adjustably bending the light reflecting surface into a particular selected one of the different curvatures depending upon the astigmatism to be corrected for and for fixedly maintaining the curvature selected. In the embodiment disclosed, the light reflecting surface is adjustably bendable into the selected cylindrical curvature by application of a particular bending moment to the reinforced side edges of the light reflecting surface.

  14. Infrared light emission from semiconductor devices

    SciTech Connect

    Barton, D.L.; Tangyunyong, P.; Soden, J.M.; Liang, A.Y.; Low, F.J.; Zaplatin, A.N.; Shivanandan, K.; Donohoe, G.

    1996-10-01

    We present results using near-infrared (NIR) cameras to study emission of common defect classes for integrated circuits. The cameras are based on a liquid nitrogen cooled HgCdTe imaging array with high quantum efficiency and very low read noise. The array was developed for infrared astronomy and has high quantum efficiency in the wavelength range from 0.8 to 2.5 {mu}m. For comparison, the same set of samples used to characterize the performance of the NIR camera were studied using a non-intensified, liquid-nitrogen-cooled, slow scan CCD camera (with a spectral range 400-1100 nm). Results show that the NIR camera images all of the defect classes studied here with much shorter integration times than the cooled CCD, suggesting that photon emission beyond 1 {mu}m is significantly stronger than at shorter wavelengths.

  15. Investigation of Latent Traces Using Infrared Reflectance Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Schubert, Till; Wenzel, Susanne; Roscher, Ribana; Stachniss, Cyrill

    2016-06-01

    The detection of traces is a main task of forensics. Hyperspectral imaging is a potential method from which we expect to capture more fluorescence effects than with common forensic light sources. This paper shows that the use of hyperspectral imaging is suited for the analysis of latent traces and extends the classical concept to the conservation of the crime scene for retrospective laboratory analysis. We examine specimen of blood, semen and saliva traces in several dilution steps, prepared on cardboard substrate. As our key result we successfully make latent traces visible up to dilution factor of 1:8000. We can attribute most of the detectability to interference of electromagnetic light with the water content of the traces in the shortwave infrared region of the spectrum. In a classification task we use several dimensionality reduction methods (PCA and LDA) in combination with a Maximum Likelihood classifier, assuming normally distributed data. Further, we use Random Forest as a competitive approach. The classifiers retrieve the exact positions of labelled trace preparation up to highest dilution and determine posterior probabilities. By modelling the classification task with a Markov Random Field we are able to integrate prior information about the spatial relation of neighboured pixel labels.

  16. Method of Detecting Coliform Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K. (Inventor)

    2014-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  17. Red and infrared light distribution in blood

    NASA Astrophysics Data System (ADS)

    de Magalhães, Ana Carolina; Yoshimura, Elisabeth M.

    2013-02-01

    Low level laser therapy (LLLT) is used in several applications, including the reduction of inflammatory processes. It might be used to prevent the systemic inflammatory response syndrome (SIRS), which some patients develop after cardiopulmonary bypass (CPB) surgery. The objectives of this study were to investigate light distribution inside blood, in order to implement the LLLT during CPB, and, through this study, to determine the best wavelength and the best way to perform the treatment. The blood, diluted to the same conditions of CPB procedure was contained inside a cuvette and an optical fiber was used to collect the scattered light. Two wavelengths were used: 632.8 nm and 820 nm. Light distribution in blood inside CPB tubes was also evaluated. Compared to the 820 nm light, the 632.8 nm light is scattered further away from the laser beam, turning it possible that a bigger volume of blood be treated. The blood should be illuminated through the smallest diameter CPB tube, using at least four distinct points around it, in only one cross section, because the blood is kept passing through the tube all the time and the whole volume will be illuminated.

  18. Pluto-Charon: Infrared Reflectance from 3.6 to 8.0 Micrometers

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Emery, Joshua P.; Stansberry, John A.; VanCleve, Jeffrey E.

    2004-01-01

    We have measured the spectral reflectance of the Pluto-Charon pair at 3.6, 4.5, 5.8, and 8.0 micrometers with the Infrared Array Camera (IRAC) (G. G. Fazzio et al. Ap.J.Supp. 154, 10-17, 2004) on the Spitzer Space Telescope (STS), at eight different longitudes that cover a full rotation of the planet. STS does not have sufficient resolution to separate the light from the planet and the satellite. The image of the Pluto-Charon pair is clearly visible at each of the four wavelengths. We will discuss the spectral reflectance in terms of models that include the known components of Pluto and Charon s surfaces, and evidence for diurnal variations.

  19. Light Reflection from Water Surfaces Perturbed by Falling Rain Droplets

    ERIC Educational Resources Information Center

    Molesini, Giuseppe; Vannoni, Maurizio

    2009-01-01

    An account of peculiar light patterns produced by reflection in a pool under falling rain droplets was recently reported by Molesini and Vannoni (2008 Eur. J. Phys. 29 403-11). The mathematical approach, however, only covered the case of a symmetrical location of a light source and the observer's eyes with respect to the vertical of the falling…

  20. Studying infrared light therapy for treating Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Han, Mengmeng; Wang, Qiyan; Zeng, Yuhui; Meng, Qingqiang; Zhang, Jun; Wei, Xunbin

    2016-03-01

    Alzheimer's disease (AD) is an extensive neurodegenerative disease. It is generally believed that there are some connections between AD and amyloid protein plaques in the brain. AD is a chronic disease that usually starts slowly and gets worse over time. The typical symptoms are memory loss, language disorders, mood swings and behavioral issues. Gradual losses of somatic functions eventually lead patients to death. Currently, the main therapeutic method is pharmacotherapy, which may temporarily reduce symptoms, but has many side effects. No current treatment can reverse AD's deterioration. Infrared (IR) light therapy has been studied in a range of single and multiple irradiation protocols in previous studies and was found beneficial for neuropathology. In our research, we have verified the effect of infrared light on AD through Alzheimer's disease mouse model. This transgenic mouse model is made by co-injecting two vectors encoding mutant amyloid precursor protein (APP) and mutant presenilin-1 (PSEN1). We designed an experimental apparatus for treating mice, which primarily includes a therapeutic box and a LED array, which emits infrared light. After the treatment, we assessed the effects of infrared light by testing cognitive performance of the mice in Morris water maze. Our results show that infra-red therapy is able to improve cognitive performance in the mouse model. It might provide a novel and safe way to treat Alzheimer's disease.

  1. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  2. Cholesteric liquid crystals with a broad light reflection band.

    PubMed

    Mitov, Michel

    2012-12-11

    The cholesteric-liquid-crystalline structure, which concerns the organization of chromatin, collagen, chitin, or cellulose, is omnipresent in living matter. In technology, it is found in temperature and pressure sensors, supertwisted nematic liquid crystal displays, optical filters, reflective devices, or cosmetics. A cholesteric liquid crystal reflects light because of its helical structure. The reflection is selective - the bandwidth is limited to a few tens of nanometers and the reflectance is equal to at most 50% for unpolarized incident light, which is a consequence of the polarization-selectivity rule. These limits must be exceeded for innovative applications like polarizer-free reflective displays, broadband polarizers, optical data storage media, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. Novel cholesteric-liquid-crystalline architectures with the related fabrication procedures must therefore be developed. This article reviews solutions found in living matter and laboratories to broaden the bandwidth around a central reflection wavelength, do without the polarization-selectivity rule and go beyond the reflectance limit. PMID:23090724

  3. Near- and Mid-Infrared Reflectance Spectroscopy for the Quantitative and Qualitative Analysis of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several decades near-infrared diffuse reflectance spectroscopy (NIRS) has been used to determine the composition of a variety of agricultural products. More recently, diffuse reflectance Fourier transform mid-infrared spectroscopy (DRIFTS) has similarly been shown to be able to determine the co...

  4. Mid- Versus Near-Infrared Reflectance Spectroscopy for On-Site Determination of Soil Carbon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research has demonstrated that the determination of soil C diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is often more accurate and produces more robust calibrations than near-infrared (NIR) reflectance spectroscopy (NIRS) when analyzing ground, dry soils. DRIFTS is also not ...

  5. Study and Development of near-Infrared Reflective and Absorptive Materials for Energy Saving Application

    NASA Astrophysics Data System (ADS)

    Cui, Yu Xing

    Near-Infrared (NIR) materials find applications in the field of energy saving. Both NIR reflective and absorptive materials can be used as energy saving materials with different working principles. The reflective materials can reflect the NIR light preventing it from being transmitted. Silver thin films are the best option as reflective films based on its reflectivity and cost. On the other hand, NIR absorptive materials can effectively convert the absorbed NIR light from sunlight to heat or electric energy. The first part of this research explored methods of preparing silver thin films that could be processed at low cost. The second part involved the design, synthesis and characterization of nickel coordination polymers as NIR absorptive materials. In part 1, different solution based methods of preparing silver thin films were studied. A silver nanoparticles solution was used to make thin film by a spray-pyrolysis process. Another method involved the surface activation with a fluoro-compound or silver nanoparticles followed by electroless silver plating on different substrates. Both methods could be processed at low cost. The obtained silver films showed NIR reflection of 50˜90% with transmission of 15-28% in the visible region. In part 2, two Nickel coordination polymers were explored. Tetraamino compounds were used as bridging ligands to increase the scope of electronic delocalization and metal-ligand orbital overlap which would reduce the energy gap to the NIR region. As a result, both polymers showed broad NIR absorption with maximum of 835 and 880 nm, respectively. In addition, the polymer showed NIR halochromism. This ground study pointed out both Ni coordination polymers as NIR absorptive materials with NIR halochromism.

  6. Design and realization of a contact-less interaction system based on infrared reflection photoelectric detection array

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Lei, Bing; Feng, Ying

    2015-10-01

    Due to the good performance of high sensitivity, quick response and low cost, infrared reflection detection technology is widely used in various fields. In this work, we present a novel contact-less interaction system which is based on infrared reflection detection technology. The system is mainly composed of a Micro Controller Unit (MCU), upper computer and photoelectric detection module. The MCU is utilized to control the photoelectric detection module and to make sure that the sensing unit is lighted one by one in a given order. When the interactive object appears upon the infrared reflection photoelectric detection array, its position information will be ensured and sent to the upper computer through MCU. In this system, every sensing unit is lighted for 1ms, and the detection array includes 8×8 units. It means that the photoelectric detection array will scan 15.6 times per-second. The experimental research results indicate that the factors affecting the detection range including the working current of transmitting diode, modulation frequency, and the reflectivity of the interactive object. When the working current is 10mA, and the modulation frequency is 80 KHz, the system has a detection range of 20 cm. Moreover, efficient modulation and demodulation of optical signal is quite necessary to remove the influence of surrounding light.

  7. Self-assembled flower-like antimony trioxide microstructures with high infrared reflectance performance

    SciTech Connect

    Ge, Shengsong; Yang, Xiaokun; Shao, Qian; Liu, Qingyun; Wang, Tiejun; Wang, Lingyun; Wang, Xiaojie

    2013-04-15

    A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infrared reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.

  8. Measuring Snow Grain Size with the Near-Infrared Emitting Reflectance Dome (NERD)

    NASA Astrophysics Data System (ADS)

    Schneider, A. M.; Flanner, M.

    2014-12-01

    Because of its high visible albedo, snow plays a large role in Earth's surface energy balance. This role is a subject of intense study, but due to the wide range of snow albedo, variations in the characteristics of snow grains can introduce radiative feedbacks in a snow pack. Snow grain size, for example, is one property which directly affects a snow pack's absorption spectrum. Previous studies model and observe this spectrum, but potential feedbacks induced by these variations are largely unknown. Here, we implement a simple and inexpensive technique to measure snow grain size in an instrument we call the Near-infrared Emitting Reflectance Dome (NERD). A small black styrene dome (~17cm diameter), fitted with two narrowband light-emitting diodes (LEDs) centered around 1300nm and 1550nm and three near-infrared reverse-biased photodiodes, is placed over the snow surface enabling a multi-spectral measurement of the hemispheric directional reflectance factor (HDRF). We illuminate the snow at each wavelength, measure directional reflectance, and infer grain size from the difference in HDRFs measured on the same snow crystals at fixed viewing angles. We validate measurements from the NERD using two different reflectance standards, materials designed to be near perfect Lambertian reflectors, having known, constant reflectances (~99% and ~55%) across a wide range of wavelengths. Using a 3D Monte Carlo model simulating photon pathways through a pack of spherical snow grains, we calculate the difference in HDRFs at 1300nm and 1550nm to predict the calibration curve for a wide range of grain sizes. This theoretically derived curve gives a relationship between effective radius and the difference in HDRFs and allows us to approximate grain sizes using the NERD in just a few seconds. Further calibration requires knowledge of truth values attainable using a previously validated instrument or measurements from an inter-comparison workshop.

  9. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions

    PubMed Central

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2016-01-01

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC’s) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300–1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300–1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions. PMID:27006524

  10. A system for simultaneous near-infrared reflectance and transillumination imaging of occlusal carious lesions

    NASA Astrophysics Data System (ADS)

    Simon, Jacob C.; Darling, Cynthia L.; Fried, Daniel

    2016-02-01

    Clinicians need technologies to improve the diagnosis of questionable occlusal carious lesions (QOC's) and determine if decay has penetrated to the underlying dentin. Assessing lesion depth from near-infrared (NIR) images holds great potential due to the high transparency of enamel and stain to NIR light at λ=1300-1700-nm, which allows direct visualization and quantified measurements of enamel demineralization. Unfortunately, NIR reflectance measurements alone are limited in utility for approximating occlusal lesion depth >200-μm due to light attenuation from the lesion body. Previous studies sought to combine NIR reflectance and transillumination measurements taken at λ=1300-nm in order to estimate QOC depth and severity. The objective of this study was to quantify the change in lesion contrast and size measured from multispectral NIR reflectance and transillumination images of natural occlusal carious lesions with increasing lesion depth and severity in order to determine the optimal multimodal wavelength combinations for estimating QOC depth. Extracted teeth with varying amounts of natural occlusal decay were measured using a multispectral-multimodal NIR imaging system at prominent wavelengths within the λ=1300-1700-nm spectral region. Image analysis software was used to calculate lesion contrast and area values between sound and carious enamel regions.

  11. Laboratory Infrared Optical Constants and Reflectance Spectra of Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Hofmeister, A. M.; Speck, A. K.

    2006-12-01

    The observed SiC features in astronomical IR spectra of carbon stars (C-stars) correlate with thin-film IR absorption spectra of β-SiC, the polytype most commonly found as presolar grains in meteorites. Comparison between spectra of astronomical sources and laboratory compounds alone is also not sufficient to assess the relative contributions of different minerals to a given observed spectrum: radiative transfer modeling must be performed (cf. Thompson et al. 2006, ApJ, 652, in press). For C-star spectra, radiative transfer modeling is impeded by the lack of trustworthy SiC optical constants for both β and α polytypes. To address the need for improved dust composition parameters, we measured midand far-infrared room temperature reflectance spectra for several polytypes and orientations (E perpendicular to c, E parallel to c) of commercially manufactured SiC: semiconductor grade purity 3C (β-)SiC, several colors of 6H (α-SiC), and synthetic moissanite (α-SiC). The extremely high reflectivity was connected with discrepancies existing among previous absorption laboratory spectra from thin films, crystallites, and powders. We extracted the real and imaginary parts of the complex refractive index (m(λ) = n(λ) + ik(λ)) from these data using classical dispersion analyses [Spitzer et al. 1962] and supplied these results to 1-D radiative transfer models (DUSTY; Ivezic & Elitzur 1995; Nenkova et al. 2000) to determine how the emerging spectrum should change in response to our n(λ) and k(λ) and other dust shell parameters (effective stellar temperature, inner dust shell temperature, optical depth). The results of this work have direct application to carbon-rich AGB stellar outflows, novae, supernovae, and potentially proto-planetary nebulae and may further our understanding of the contribution of SiC to carbon star spectra and the lack of SiC features in the ISM. Work supported by NASA APRA04-000-0041, NSF-AST 0607418, and performed under contract to NASA.

  12. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to

  13. Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy.

    PubMed

    Hands, James R; Clemens, Graeme; Stables, Ryan; Ashton, Katherine; Brodbelt, Andrew; Davis, Charles; Dawson, Timothy P; Jenkinson, Michael D; Lea, Robert W; Walker, Carol; Baker, Matthew J

    2016-05-01

    The ability to diagnose cancer rapidly with high sensitivity and specificity is essential to exploit advances in new treatments to lead significant reductions in mortality and morbidity. Current cancer diagnostic tests observing tissue architecture and specific protein expression for specific cancers suffer from inter-observer variability, poor detection rates and occur when the patient is symptomatic. A new method for the detection of cancer using 1 μl of human serum, attenuated total reflection-Fourier transform infrared spectroscopy and pattern recognition algorithms is reported using a 433 patient dataset (3897 spectra). To the best of our knowledge, we present the largest study on serum mid-infrared spectroscopy for cancer research. We achieve optimum sensitivities and specificities using a Radial Basis Function Support Vector Machine of between 80.0 and 100 % for all strata and identify the major spectral features, hence biochemical components, responsible for the discrimination within each stratum. We assess feature fed-SVM analysis for our cancer versus non-cancer model and achieve 91.5 and 83.0 % sensitivity and specificity respectively. We demonstrate the use of infrared light to provide a spectral signature from human serum to detect, for the first time, cancer versus non-cancer, metastatic cancer versus organ confined, brain cancer severity and the organ of origin of metastatic disease from the same sample enabling stratified diagnostics depending upon the clinical question asked. PMID:26874961

  14. Long-Term Reduction in Infrared Autofluorescence Caused by Infrared Light Below the Maximum Permissible Exposure

    PubMed Central

    Masella, Benjamin D.; Williams, David R.; Fischer, William S.; Rossi, Ethan A.; Hunter, Jennifer J.

    2014-01-01

    Purpose. Many retinal imaging instruments use infrared wavelengths to reduce the risk of light damage. However, we have discovered that exposure to infrared illumination causes a long-lasting reduction in infrared autofluorescence (IRAF). We have characterized the dependence of this effect on radiant exposure and investigated its origin. Methods. A scanning laser ophthalmoscope was used to obtain IRAF images from two macaques before and after exposure to 790-nm light (15-450 J/cm2). Exposures were performed with either raster-scanning or uniform illumination. Infrared autofluorescence images also were obtained in two humans exposed to 790-nm light in a separate study. Humans were assessed with direct ophthalmoscopy, Goldmann visual fields, multifocal ERG, and photopic microperimetry to determine whether these measures revealed any effects in the exposed locations. Results. A significant decrease in IRAF after exposure to infrared light was seen in both monkeys and humans. In monkeys, the magnitude of this reduction increased with retinal radiant exposure. Partial recovery was seen at 1 month, with full recovery within 21 months. Consistent with a photochemical origin, IRAF decreases caused by either raster-scanning or uniform illumination were not significantly different. We were unable to detect any effect of the light exposure with any measure other than IRAF imaging. We cannot exclude the possibility that changes could be detected with more sensitive tests or longer follow-up. Conclusions. This long-lasting effect of infrared illumination in both humans and monkeys occurs at exposure levels four to five times below current safety limits. The photochemical basis for this phenomenon remains unknown. PMID:24845640

  15. Reflection of femtosecond laser light in multipulse ablation of metals

    SciTech Connect

    Vorobyev, A. Y.; Guo Chunlei

    2011-08-15

    The shot-to-shot reflectance of high-intensity laser light is studied as a function of both the number of laser shots and laser fluence in multipulse ablation of a metal when the irradiated surface undergoes structural changes from an initially smooth surface to a deep crater. Our study shows that the reflectance of the irradiated surface significantly decreases due to the high intensity of laser pulses and the laser-induced surface structures in ablation regimes typically used for femtosecond laser processing of materials. The high-intensity effect dominates in the reflection reduction at low numbers of laser shots when laser-induced surface structures do not cause the reflectance to decrease noticeably. With increasing the number of laser shots, the structural effect comes into play, and both high-intensity and structural effects quickly reduce the reflectance of the sample to a low value.

  16. Light reflection from a sea-ice cover during the onset of summer melt

    NASA Astrophysics Data System (ADS)

    Perovich, Donald K.; Govoni, John W.

    1992-12-01

    A knowledge of the reflection of light from a sea ice cover is important for both the interpretation of remote sensing imagery at visible and near-infrared wavelengths and for climatological studies involving the energy balance of the polar regions. Spectral measurements of albedo, bidirectional reflectance function (BDRF), and polarized reflectance were made for sea ice conditions found during the onset of melt in the Canadian Arctic. The wavelength region studied was from the ultraviolet to the near infrared (370 - 1000 nm). Results for five surface types are presented: (1) dry snow, (2) dry snow with a glazed surface, (3) bare ice, (4) blue ice, and (5) a melt pond. Results indicate that spectral albedos decrease at all wavelengths as the melt season progresses and the surface conditions evolve from (1) through (5), and that the decrease is most pronounced at longer wavelengths. Reflectance data suggest that (1) at most angles reflectance has the same spectral shape as albedo, (2) at 30 degree(s) elevation reflectance is for the most part azimuthally isotropic and (3) at 60 degree(s) elevation a significant specular component was evident at 0 degree(s) azimuth, especially for the bare ice case.

  17. Determination of plant silicon content with near infrared reflectance spectroscopy

    PubMed Central

    Smis, Adriaan; Ancin Murguzur, Francisco Javier; Struyf, Eric; Soininen, Eeva M.; Herranz Jusdado, Juan G.; Meire, Patrick; Bråthen, Kari Anne

    2014-01-01

    Silicon (Si) is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS) for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH)4), linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species. We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi) to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n = 141, R2 = 0.90, RMSEP = 0.24), but improved when only graminoids were modeled (n = 66, R2 = 0.95, RMSEP = 0.10). A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n = 16, R2 = 0.93, RMSEP = 0.015). We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  18. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    SciTech Connect

    Kraeh, Christian; Martinez-Hurtado, J. L.; Zeitlmair, Martin; Finley, Jonathan J.; Popescu, Alexandru; Hedler, Harry

    2015-06-14

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane. In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ∼1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5–8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.

  19. Strong transmittance above the light line in mid-infrared two-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Kraeh, Christian; Martinez-Hurtado, J. L.; Zeitlmair, Martin; Popescu, Alexandru; Hedler, Harry; Finley, Jonathan J.

    2015-06-01

    The mid-infrared region of the electromagnetic spectrum between 3 and 8 μm hosts absorption lines of gases relevant for chemical and biological sensing. 2D photonic crystal structures capable of guiding light in this region of the spectrum have been widely studied, and their implementation into miniaturized sensors has been proposed. However, light guiding in conventional 2D photonic crystals is usually restricted to a frequency range below the light line, which is the dispersion relation of light in the media surrounding the structures. These structures rely on total internal reflection for confinement of the light in z-direction normal to the lattice plane. In this work, 2D mid-infrared photonic crystals consisting of microtube arrays that mitigate these limitations have been developed. Due to their high aspect ratios of ˜1:30, they are perceived as semi-infinite in the z-direction. Light transmission experiments in the 5-8 μm range reveal attenuations as low as 0.27 dB/100 μm, surpassing the limitations for light guiding above the light line in conventional 2D photonic crystals. Fair agreement is obtained between these experiments, 2D band structure and transmission simulations.

  20. Light Reflection in a Pool under Falling Rain Droplets

    ERIC Educational Resources Information Center

    Molesini, Giuseppe; Vannoni, Maurizio

    2008-01-01

    The observation of peculiar light patterns produced by reflection from a water surface perturbed by falling droplets is reported. The phenomenon is analysed in some detail, with a simplified model of a surface wave packet. A simple experiment reproducing the phenomenon in the laboratory is presented, also showing evidence of pattern distortions…

  1. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells.

    PubMed

    Andrew Chan, K L; Kazarian, Sergei G

    2016-03-29

    FTIR spectroscopic imaging is a label-free, non-destructive and chemically specific technique that can be utilised to study a wide range of biomedical applications such as imaging of biopsy tissues, fixed cells and live cells, including cancer cells. In particular, the use of FTIR imaging in attenuated total reflection (ATR) mode has attracted much attention because of the small, but well controlled, depth of penetration and corresponding path length of infrared light into the sample. This has enabled the study of samples containing large amounts of water, as well as achieving an increased spatial resolution provided by the high refractive index of the micro-ATR element. This review is focused on discussing the recent developments in FTIR spectroscopic imaging, particularly in ATR sampling mode, and its applications in the biomedical science field as well as discussing the future opportunities possible as the imaging technology continues to advance. PMID:26488803

  2. Reflected light imaging of ON and OFF responses in frog retina

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Liu, Lei; Li, Yang-Guo

    2009-02-01

    Using a near infrared (NIR) light flood-illumination imager equipped with a high-speed CCD camera, we demonstrated reflected light imaging of stimulus-evoked retinal ON and OFF responses in isolated, but intact, frog eye. Both fast and slow transient intrinsic optical signals (IOSs) were observed. Fast optical response occurred immediately after the stimulus onset, and correlated tightly with the ON and OFF edges of the visible light stimulus. High resolution images revealed both positive (increasing) and negative (decreasing) IOSs, and dynamic optical change at individual CCD pixels could often exceed 10% of the background light intensity. Our experiment on isolated eye suggests that further development of fast, high resolution fundus imager will allow robust detection of fast IOSs in vivo, and thus allow noninvasive, three-dimensional evaluation of retinal neural function.

  3. Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant E.; May, Tim E.

    2014-06-01

    The far-infrared beamline at the Canadian Light Source is a state of the art user facility, which offers significantly more far-infrared brightness than conventional globar sources. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad2 port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm-1. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. This talk will provide an overview of the the beamline, and the capabilities available to users, recent and planned improvements including the addition of a Glow Discharge cell and advances in Coherent Synchrotron Radiation. Furthermore, the process of acquiring access to the facility will be covered.

  4. The Far-Infrared Beamline at the Canadian Light Source

    NASA Astrophysics Data System (ADS)

    Billinghurst, Brant; May, Tim

    2009-06-01

    The far-infrared beamline at the Canadian Light Source. is a state of the art facility, which offers significantly more far-infrared brightness than conventional globar sources. While there is the potential to direct this advantage to many research areas, to date most of the effort has been directed toward high-resolution gas phase studies. The infrared radiation is collected from a bending magnet through a 55 X 37 mrad^{2} port to a Bruker IFS 125 HR spectrometer, which is equipped with a nine compartment scanning arm, allowing it to achieve spectral resolution better than 0.001 cm^{-1}. Currently the beamline can achieve signal to noise ratios up to 8 times that which can be achieved using a traditional thermal source. Data from the recently completed commissioning experiments will be presented along with a general overview of the beamline.

  5. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces

    PubMed Central

    Huang, K.; Pan, W.; Zhu, J. F.; Li, J. C.; Gao, N.; Liu, C.; Ji, L.; Yu, E. T.; Kang, J.Y.

    2015-01-01

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates. PMID:26679353

  6. Infrared supernova light curves and asymmetric stellar mass loss

    NASA Technical Reports Server (NTRS)

    Emmering, Robert T.; Chevalier, Roger A.

    1988-01-01

    Infrared dust emission echos from Type II supernovae are a natural consequence of the heating of circumstellar dust by the supernova light. Red supergiants, the likely progenitors of most Type II supernovae, are known in some cases to have asymmetric circumstellar envelopes. It is noted that an asymmetric dust distribution can have a substantial effect on the evolution of an infrared echo and results are presented for an ellipsoidal dust distribution. The angle between the symmetry axis and the line of sight is unknown in any particular case so that detailed observations of a number of supernovae will be necessary to test for asymmetries. Asymmetries may also be observable in the radio structure of supernovae and in a possible scattered-light echo.

  7. High Efficiency Near Infrared Spectrometer for Zodiacal Light Spectral Study

    NASA Technical Reports Server (NTRS)

    Kutyrea, A. S.

    2008-01-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 61 2, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I lneat 5 184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program.

  8. New formulation of the laws of reflection of light

    NASA Astrophysics Data System (ADS)

    Pérez, Ángel Luis; Martínez, Guadalupe; Suero, María. Isabel

    2013-11-01

    A new formulation of the laws of reflection of light based on the particle model is presented, and it is shown the equivalence between the new and the classic formulations. The proposed formulation has a significant educational value, as it allows drawing analogies between the phenomena of light reflection and elastic collisions, which are very well known by students. The proposed formulation is: "If at one point on a surface whose orientation in space is defined by a unit vector k, strikes an incident ray corresponding to a plane wave (propagating through a homogeneous and isotropic medium) whose direction of propagation coincides with that from a unit vector ui [expressed in terms of its components with respect to an orthonormal coordinate system, with one of its axis coinciding with the direction of k (ui = uix i + uiy j + uiz k)], it will be reflected so that the unit vector whose direction coincides with that from the reflected ray, ur, will only differ from the unit vector whose direction coincides with that from the incident ray, in the change of the sign of the component in the direction of k (ur = uix i + uiy j - uiz k)". Stated in everyday language, is equivalent of saying that the reflection of light occurs as if the photons underwent perfectly elastic collisions with the surface in question. As an example, this formulation is applied for the resolution of the classic reflection problem of the three plane mirrors forming a trirectangular trihedron.

  9. Stray-light suppression in a reflecting white-light coronagraph

    NASA Technical Reports Server (NTRS)

    Romoli, Marco; Weiser, Heinz; Gardner, Larry D.; Kohl, John L.

    1993-01-01

    An analysis of stray-light suppression in the white-light channel of the Ultraviolet Coronagraph Spectrometer experiment for the Solar and Heliospheric Observatory is reported. The white-light channel consists of a reflecting telescope with external and internal occultation and a polarimeter section. Laboratory tests and analytical methods are used to perform the analysis. The various stray-light contributions are classified in two main categories: the contribution from sunlight that passes directly through the entrance aperture and the contribution of sunlight that is diffracted by the edges of the entrance aperture. Values of the stray-light contributions from various sources and the total stray-light level for observations at heliocentric heights from 1.4 to 5 solar radii are derived. Anticipated signal-to-stray-light ratios are presented together with the effective stray-light rejection by the polarimeter, demonstrating the efficacy of the stray-light suppression design.

  10. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  11. Characterization and Application of a Grazing Angle Objective for Quantitative Infrared Reflection Microspectroscopy

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.

    1995-01-01

    A grazing angle objective on an infrared microspectrometer is studied for quantitative spectroscopy by considering the angular dependence of the incident intensity within the objective's angular aperture. The assumption that there is no angular dependence is tested by comparing the experimental reflectance of Si and KBr surfaces with the reflectance calculated by integrating the Fresnel reflection coefficient over the angular aperture under this assumption. Good agreement was found, indicating that the specular reflectance of surfaces can straight-forwardly be quantitatively integrated over the angular aperture without considering non-uniform incident intensity. This quantitative approach is applied to the thickness determination of dipcoated Krytox on gold. The infrared optical constants of both materials are known, allowing the integration to be carried out. The thickness obtained is in fair agreement with the value determined by ellipsometry in the visible. Therefore, this paper illustrates a method for more quantitative use of a grazing angle objective for infrared reflectance microspectroscopy.

  12. Tree Canopy Characterization for EO-1 Reflective and Thermal Infrared Validation Studies: Rochester, New York

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.

    2002-01-01

    The tree canopy characterization presented herein provided ground and tree canopy data for different types of tree canopies in support of EO-1 reflective and thermal infrared validation studies. These characterization efforts during August and September of 2001 included stem and trunk location surveys, tree structure geometry measurements, meteorology, and leaf area index (LAI) measurements. Measurements were also collected on thermal and reflective spectral properties of leaves, tree bark, leaf litter, soil, and grass. The data presented in this report were used to generate synthetic reflective and thermal infrared scenes and images that were used for the EO-1 Validation Program. The data also were used to evaluate whether the EO-1 ALI reflective channels can be combined with the Landsat-7 ETM+ thermal infrared channel to estimate canopy temperature, and also test the effects of separating the thermal and reflective measurements in time resulting from satellite formation flying.

  13. OBSERVATIONS OF THE NEAR-INFRARED SPECTRUM OF THE ZODIACAL LIGHT WITH CIBER

    SciTech Connect

    Tsumura, K.; Matsumoto, T.; Matsuura, S.; Wada, T.; Battle, J.; Bock, J.; Zemcov, M.; Cooray, A.; Hristov, V.; Levenson, L. R.; Mason, P.; Sullivan, I.; Keating, B.; Renbarger, T.; Lee, D. H.; Nam, U. W.; Suzuki, K.

    2010-08-10

    Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The low resolution spectrometer (LRS) onboard the Cosmic Infrared Background ExpeRiment (CIBER) observed the astrophysical sky spectrum between 0.75 and 2.1 {mu}m over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 0.9 {mu}m, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2.5 {mu}m using Infrared Telescope in Space (IRTS) data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earth's orbit, and the relatively high albedo of asteroidal dust compared with cometary dust.

  14. Accurate diffuse reflection measurements in the infrared spectral range.

    PubMed

    Richter, W; Erb, W

    1987-11-01

    A sphere arrangement for directional-hemispherical reflectance measurements in the 1-15-microm wavelength range is tested for its accuracy. Comparative measurements with the fundamental PTB sphere reflectometer in the overlapping spectral range between 1.0 and 1.1 microm indicate no systematic measurement uncertainties of the new device. The uncertainty of the reflectance measured by it is therefrom deduced to be +/-0.01 for the 1-5.6-microm wavelength range. PMID:20523415

  15. The Effect of Incident Light Polarization on Vegetation Bidirectional Reflectance Factor

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Thome, Kurt; Ranson, Kurtis J.; King, Michael D.; Butler, James J.

    2010-01-01

    The Laboratory-based Bidirectional Reflectance Factor (BRF) polarization study of vegetation is presented in this paper. The BRF was measured using a short-arc Xenon lamp/monochromator assembly producing an incoherent, tunable light source with a well-defined spectral bandpass at visible and near-infrared wavelengths of interest at 470 nm and 870 nm and coherent light source at 1.656 microns. All vegetation samples were measured using P and S linearly polarized incident light over a range of incident and scatter angles. By comparing these results, we quantitatively examine how the BRF of the samples depends on the polarization of the incident light. The differences are significant, depend strongly on the incident and scatter angles, and can be as high as 120% at 67 deg incident and 470nm. The global nature of Earth's processes requires consistent long-term calibration of all instruments involved in data retrieval. The BRF defines the reflection characteristics of Earth surface. It provides the reflectance of a target in a specific direction as a function of illumination and viewing geometry. The BRF is a function of wavelength and reflects the structural and optical properties of the surface. Various space and airborne radiometric and imaging remote sensing instruments are used in the remote sensing characterization of vegetation canopies and soils, oceans, or especially large pollution sources. The satellite data is validated through comparison with airborne, ground-based and laboratory-based data in an effort to fully understand the vegetation canopy reflectance, The Sun's light is assumed to be unpolarized at the top of the atmosphere; however it becomes polarized to some degree due to atmospheric effects by the time it reaches the vegetation canopy. Although there are numerous atmospheric correction models, laboratory data is needed for model verification and improvement.

  16. Spectroscopic direct detection of reflected light from extrasolar planets

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Figueira, P.; Santos, N. C.; Lovis, C.

    2013-12-01

    At optical wavelengths, an exoplanet's signature is essentially reflected light from the host star - several orders of magnitude fainter. Since it is superimposed on the star spectrum its detection has been a difficult observational challenge. However, the development of a new generation of instruments like Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO) and next-generation telescopes like the European Extremely Large Telescope (E-ELT) put us in a privileged position to detect these planets' reflected light as we will have access to extremely high signal-to-noise ratio spectra. With this work, we propose an alternative approach for the direct detection of the reflected light of an exoplanet. We simulated observations with ESPRESSO at Very Large Telescope (VLT) and high-resolution spectrograph (HIRES) at E-ELT of several star+planet systems, encompassing 10 h of the most favourable orbital phases. To the simulated spectra we applied the cross-correlation function to operate in a much higher signal-to-noise ratio domain than when compared with the spectra. The use of the cross-correlation function permitted us to recover the simulated planet signals at a level above 3σnoise significance on several prototypical (e.g. Neptune-type planet with a 2 d orbit with the VLT at 4.4σnoise significance) and real planetary systems (e.g. 55 Cnc e with the E-ELT at 4.9σnoise significance). Even by using a more pessimistic approach to the noise level estimation, where systematics in the spectra increase the noise 2-3 times, the detection of the reflected light from large close-orbit planets is possible. We have also shown that this kind of study is currently within reach of current instruments and telescopes (e.g. 51 Peg b with the VLT at 5.2σnoise significance), although at the limit of their capabilities.

  17. Selective reflection of light from Rb2 molecular vapor

    NASA Astrophysics Data System (ADS)

    Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Gogyan, Anahit; Movsisyan, Marina; Papoyan, Aram

    2015-07-01

    We report the first observation of selective reflection of light from an interface of a dielectric window and molecular vapor of Rb2 dimers formed in all-sapphire sealed-off rubidium vapor cell (temperature up to 520 °C, atomic and molecular densities up to 1018 and 3 × 1016 cm-3, respectively). The selective reflection signals were recorded on various rovibronic components of 1(X) 1 Σg+ - 1(A) 1 Σu+ bound-bound electronic transition of Rb2 by scanning a diode laser frequency in a spectral range of 851-854 nm. Mainly selective reflection signals corresponding to groups of several rovibronic transitions have been recorded, which was attributed to high spectral density, large collisional broadening, and low oscillator strength of individual rovibronic transitions.

  18. Qualitative flow visualization using colored lights and reflective flakes

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Bauer, J. M.

    1999-07-01

    We present a novel flow-visualization technique utilizing reflective flakes in combination with color illumination. Three differently colored columated light beams are used to illuminate the flow, each color being directed from a separate direction. In this way, the color of the light reflected from the flakes gives an indication of the local flake orientation. The flake orientation in complex three-dimensional (3-D) flow is in general a complicated function of the local velocity gradient tensor, but can be calculated if the underlying velocity field is known. This has recently been demonstrated by Gauthier et al. [Phys. Fluids. 10, 2147 (1998)] using monochome light. In complex flow fields the distribution of flakes may, however, be rearranged by the motion, thus making the local intensity of reflection depend on both orientation and flake concentration. The color is, however, immune to the local number density of flakes inside the flow, making quantitative information possible. This technique is demonstrated by visualizing the finer details of vortices in a Taylor-Couette device.

  19. Infrared light gated MoS₂ field effect transistor.

    PubMed

    Fang, Huajing; Lin, Ziyuan; Wang, Xinsheng; Tang, Chun-Yin; Chen, Yan; Zhang, Fan; Chai, Yang; Li, Qiang; Yan, Qingfeng; Chan, H L W; Dai, Ji-Yan

    2015-12-14

    Molybdenum disulfide (MoS₂) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS₂ transistor through a device composed of MoS₂ monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O₃-PbTiO₃ (PMN-PT). With a monolayer MoS₂ onto the top surface of (111) PMN-PT crystal, the drain current of MoS₂ channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS₂ transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS₂ 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS₂ in the visible range, the MoS₂ on ferroelectric single crystal may be sensitive to a broadband wavelength of light. PMID:26698982

  20. Comments on a peak of AlxGa1-xN observed by infrared reflectance

    NASA Astrophysics Data System (ADS)

    Marx, G.; Engelbrecht, J. A. A.; Lee, M. E.; Wagener, M. C.; Henry, A.

    2016-05-01

    AlxGa1-xN epilayers, grown on c-plane oriented sapphire substrates by metal organic chemical vapour deposition (MOCVD), were evaluated using FTIR infrared reflectance spectroscopy. A peak at ∼850 cm-1 in the reflectance spectra, not reported before, was observed. Possible origins for this peak are considered and discussed.

  1. NEAR-INFRARED TRANSMISSION AND REFLECTANCE SPECTROSCOPY FOR DETERMINATION OF DIETARY FIBER IN BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared (NIR) transmission and reflectance spectroscopy were investigated as rapid screening tools to evaluate the total dietary fiber content of barley. The Foss Grainspec Rice Analyzer and the NIR Systems 6500 monochromator were used to obtain transmission and reflectance spectra, respectiv...

  2. Application of representative layer theory to near-infrared reflectance spectra of powdered samples.

    PubMed

    Cairós, Carlos; Coello, Jordi; Maspoch, Santiago

    2008-12-01

    The diffuse reflectance near-infrared (NIR) spectrum of a powdered sample includes the contribution of specular and diffuse reflectance, which is a function of absorbance and scattering. The fraction of light scattered depends in a complex manner on the physical properties of the sample such as particle size, refraction index, etc. Several theories to study the dependence of NIR spectra on the particle size have been proposed. The best known is the Kubelka-Munk model, an approach based on continuous mathematics. Recently Dahm and Dahm put forward an alternative method, the representative layer theory (RLT), which uses discontinuous mathematics as a basis. This approach can be used to identify and disentangle the scattering and absorbance signals as well as their dependence on the particle size. The scattering and absorption coefficient of NaCl (a nonabsorbing material) and of potassium hydrogen phthalate, KHP (a strong absorber), have been estimated through the application of the representative layer theory, working on a particle size range from 63 to 450 microm. In both samples, the absorption coefficient of the sample (K) remains constant and practically independent of the particle size, while the scattering coefficient of the sample (S) decreases when the particle diameter increases, becoming stable around a diameter of 250 microm. PMID:19094396

  3. The Infrared Reflection Nebula Around the Protostellar System in S140

    NASA Technical Reports Server (NTRS)

    Harker, D.; Bregman, J.; Tielens, A. G. G. M.; Temi, P.; Rank, D.; Morrison, David (Technical Monitor)

    1994-01-01

    We have studied the protostellar system in S140 at 2.2, 3.1 and 3.45 microns using a 128x128 InSb array at the Lick Observatory 3m telescope. Besides the protostellar sources, the data reveal a bright infrared reflection nebula. We have developed a simple model of this region and derived the physical conditions. IRSI is surrounded by a dense dusty disk viewed almost edge-on. Photons leaking out through the poles illuminate almost directly north and south the inner edge of a surrounding shell of molecular gas, Analysis of the observed colors and intensities of the NIR light, using Mie scattering theory, reveal that the dust grains in the molecular cloud are somewhat larger than in the general diffuse interstellar medium. Moreover, the incident light has a "cool" color temperature, approximately equals 800K, and likely originates from a dust photosphere close to the protostar. Finally, we find little H2O ice associated with the dusty disk around IRSI. Most of the 3.1 micron ice extinction arises instead from cool intervening molecular cloud material. We have compared our infrared dust observations with millimeter and radio observations of molecular gas associated with this region. The large scale structure observable in the molecular gas is indicative of the interaction between the protostellar wind and the surrounding molecular cloud rather than the geometry of the protostellar disk. We conclude that S140 is a young blister formed by this outflow on the side of a molecular cloud and viewed edge-on.

  4. Optical diffuse reflectance accessory for measurements of skin tissue by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Marbach, R.; Heise, H. M.

    1995-02-01

    An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.

  5. Chemical Imaging of Biological Tissue with Synchrotron Infrared Light

    SciTech Connect

    Miller,L.; Dumas, P.

    2006-01-01

    Fourier transform infrared micro-spectroscopy (FTIRM) and imaging (FTIRI) have become valuable techniques for examining the chemical makeup of biological materials by probing their vibrational motions on a microscopic scale. Synchrotron infrared (S-IR) light is an ideal source for FTIRM and FTIRI due to the combination of its high brightness (i.e., flux density), also called brilliance, and broadband nature. Through a 10-{mu}m pinhole, the brightness of a synchrotron source is 100-1000 times higher than a conventional thermal (globar) source. Accordingly, the improvement in spatial resolution and in spectral quality to the diffraction limit has led to a plethora of applications that is just being realized. In this review, we describe the development of synchrotron-based FTIRM, illustrate its advantages in many applications to biological systems, and propose some potential future directions for the technique.

  6. Generation of infrared entangled light in asymmetric semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Wu, Jing; Zheng, Li-Li; Huang, Pei

    2010-12-01

    We proposed a scheme to achieve two-mode CV entanglement with the frequencies of entangled modes in the infrared range in an asymmetric semiconductor double-quantum-wells (DQW), where the required quantum coherence is obtained by inducing the corresponding intersubband transitions (ISBTs) with a classical field. By numerically simulating the dynamics of system, we show that the entanglement period can be prolonged via enhancing the intensity of classical field, and the generation of entanglement doesn't depend intensively on the initial condition of system in our scheme. Moreover, we also show that a bipartite entanglement amplifier can be realized in our scheme. The present research provides an efficient approach to achieve infrared entangled light in the semiconductor nanostructure, which may have significant impact on the progress of solid-state quantum information theory.

  7. Polarized infrared emissivity of one-dimensional Gaussian sea surfaces with surface reflections.

    PubMed

    Li, Hongkun; Pinel, Nicolas; Bourlier, Christophe

    2011-08-10

    Surface reflection is an important phenomenon that must be taken into account when studying sea surface infrared emissivity, especially at large observation angles. This paper models analytically the polarized infrared emissivity of one-dimensional sea surfaces with shadowing effect and one surface reflection, by assuming a Gaussian surface slope distribution. A Monte Carlo ray-tracing method is employed as a reference. It is shown that the present model agrees well with the reference method. The emissivity calculated by the present model is then compared with measurements. The comparisons show that agreements are greatly improved by taking one surface reflection into account. The Monte Carlo ray-tracing results of sea surface infrared emissivity with two and three reflections are also determined. Their contributions are shown to be negligible. PMID:21833139

  8. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  9. Using near infrared light for deep sea mining observation systems

    NASA Astrophysics Data System (ADS)

    Lu, Huimin; Li, Yujie; Li, Xin; Yang, Jianmin; Serikawa, Seiichi

    2015-10-01

    In this paper, we design a novel deep-sea near infrared light based imaging equipment for deep-sea mining observation systems. The spectral sensitivity peaks are in the red region of the invisible spectrum, ranging from 750nm to 900nm. In addition, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. The proposed model fully considered the effects of absorption, scattering and refraction. We also develop a locally adaptive Laplacian filtering for enhancing underwater transmission map after underwater dark channel prior estimation. Furthermore, we propose a spectral characteristic-based color correction algorithm to recover the distorted color. In water tank experiments, we made a linear scale of eight turbidity steps ranging from clean to heavily scattered by adding deep sea soil to the seawater (from 500 to 2000 mg/L). We compared the results of different turbidity underwater scene, illuminated alternately with near infrared light vs. white light. Experiments demonstrate that the enhanced NIR images have a reasonable noise level after the illumination compensation in the dark regions and demonstrates an improved global contrast by which the finest details and edges are significantly enhanced. We also demonstrate that the effective distance of the designed imaging system is about 1.5 meters, which can meet the requirement of micro-terrain observation around the deep-sea mining systems. Remotely Operated Underwater Vehicle (ROV)-based experiments also certified the effectiveness of the proposed method.

  10. Simulating Scintillator Light Collection Using Measured Optical Reflectance

    SciTech Connect

    Janecek, Martin; Moses, William

    2010-01-28

    To accurately predict the light collection from a scintillating crystal through Monte Carlo simulations, it is crucial to know the angular distribution from the surface reflectance. Current Monte Carlo codes allow the user to set the optical reflectance to a linear combination of backscatter spike, specular spike, specular lobe, and Lambertian reflections. However, not all light distributions can be expressed in this way. In addition, the user seldom has the detailed knowledge about the surfaces that is required for accurate modeling. We have previously measured the angular distributions within BGO crystals and now incorporate these data as look-up-tables (LUTs) into modified Geant4 and GATE Monte Carlo codes. The modified codes allow the user to specify the surface treatment (ground, etched, or polished), the attached reflector (Lumirror(R), Teflon(R), ESR film, Tyvek(R), or TiO paint), and the bonding type (air-coupled or glued). Each LUT consists of measured angular distributions with 4o by 5o resolution in theta and phi, respectively, for incidence angles from 0? to 90? degrees, in 1o-steps. We compared the new codes to the original codes by running simulations with a 3 x 10 x 30 mm3 BGO crystal coupled to a PMT. The simulations were then compared to measurements. Light output was measured by counting the photons detected by the PMT with the 3 x 10, 3 x 30, or 10 x 30 mm2 side coupled to the PMT, respectively. Our new code shows better agreement with the measured data than the current Geant4 code. The new code can also simulate reflector materials that are not pure specular or Lambertian reflectors, as was previously required. Our code is also more user friendly, as no detailed knowledge about the surfaces or light distributions is required from the user.

  11. Visible and near-infrared reflectivity of solid and liquid methane: application to spectroscopy of Titan's hydrocarbon lakes

    NASA Astrophysics Data System (ADS)

    Adams, K.; Jacobsen, S. D.; Liu, Z.; Somayazulu, M.; Thomas, S.; Jurdy, D. M.

    2011-12-01

    Reflectance spectroscopy provides one of the few direct observations of outer solar system bodies for interpreting their surface compositions. At Titan, the Visual and Infrared Mapping Spectrometer (VIMS) on board the Cassini spacecraft revealed dark patches on the surface through the narrow 2 and 5 μm windows of Titan's atmosphere, which have been interpreted as hydrocarbon lakes forming seasonally through a methane cycle. Whereas the composition of planetary materials in the solar system has been inferred from characteristic absorption bands, the need to identify phase states (liquid versus solid) on dynamic planetary surfaces requires laboratory reflectance ratio measurements at relevant temperatures. Using visible and near-infrared radiation from the National Synchrotron Light Source (NSLS), we will present confocal reflectance ratio measurements of solid (single crystal) and liquid CH4 at temperatures from 50-100 K. Although the position and shape of the six characteristic methane absorption bands at around 1.7 and 2.3 μm are insensitive to temperature or phase state from 50-100 K, the broad-spectrum reflectance between 0.5-2 μm decreases upon melting by about 25% at 87-94 K. Transition from solid CH4-I to liquid states at ~90 K displays a reflectance ratio (sold/liquid) of about 1.3 at 2 μm. Darkening of CH4 upon melting is similar at visible wavelengths, and consistent with VIMS observations of hydrocarbon lakes in the far northern and southern latitudes of Titan.

  12. Thermal Emission and Reflected Light Spectra of Super Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Zahnle, Kevin; Line, Michael; Kempton, Eliza; Lewis, Nikole; Cahoy, Kerri

    2015-12-01

    Planets larger than Earth and smaller than Neptune are some of the most numerous in the galaxy, but observational efforts to understand this population have proved challenging because optically thick clouds or hazes at high altitudes obscure molecular features. We present models of super Earths that include thick clouds and hazes and predict their transmission, thermal emission, and reflected light spectra. Very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Close analysis of reflected light from warm (˜400-800 K) planets can distinguish cloudy spectra, which have moderate albedos (0.05-0.20), from hazy models, which are very dark (0.0-0.03). Reflected light spectra of cold planets (˜200 K) accessible to a space-based visible light coronagraph will have high albedos and large molecular features that will allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize this population of planets, including transmission spectra of hot (≳ 1000 K) targets, thermal emission spectra of warm targets using the James Webb Space Telescope, high spectral resolution (R ˜ 105) observations of cloudy targets, and reflected light spectral observations of directly imaged cold targets. Despite the dearth of features observed in super Earth transmission spectra to date, different observations will provide rich diagnostics of their atmospheres.

  13. A search for the near-infrared extragalactic background light

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Akiba, M.; Murakami, H.

    1988-09-01

    The diffuse celestial light at 1 - 5 μm was observed over a large portion of the sky including the Galactic pole with a rocket-borne infrared telescope cooled by solid nitrogen. After subtracting the foreground components, there still remains an appreciable amount of isotropic diffuse radiation with complex spectral feature. A part of this isotropic radiation may be contaminated by the environmental emission due to rocket engine exhaust; however, the 2.2 μm data is free from contamination and possibly attributed to an extragalactic origin.

  14. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, Daniel R.

    1999-01-01

    A system for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focussed beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focussed beams creates a "light cage" and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained.

  15. Three-dimensional light trap for reflective particles

    DOEpatents

    Neal, D.R.

    1999-08-17

    A system is disclosed for containing either a reflective particle or a particle having an index of refraction lower than that of the surrounding media in a three-dimensional light cage. A light beam from a single source illuminates an optics system and generates a set of at least three discrete focused beams that emanate from a single exit aperture and focus on to a focal plane located close to the particle. The set of focal spots defines a ring that surrounds the particle. The set of focused beams creates a ``light cage`` and circumscribes a zone of no light within which the particle lies. The surrounding beams apply constraining forces (created by radiation pressure) to the particle, thereby containing it in a three-dimensional force field trap. A diffractive element, such as an aperture multiplexed lens, or either a Dammann grating or phase element in combination with a focusing lens, may be used to generate the beams. A zoom lens may be used to adjust the size of the light cage, permitting particles of various sizes to be captured and contained. 10 figs.

  16. Detecting Phycocynanin-Pigmented Microbes in Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.

    2008-01-01

    A recently invented method of measuring concentrations of phycocynanin-pigmented algae and bacteria in water is based on measurement of the spectrum of reflected sunlight. When present in sufficiently high concentrations, phycocynanin-pigmented microorganisms can be hazardous to the health of humans who use, and of animals that depend on, an affected body of water. The present method is intended to satisfy a need for a rapid, convenient means of detecting hazardous concentrations of phycocynanin-pigmented microorganisms. Rapid detection will speed up the issuance of public health warnings and performance of corrective actions. The method involves the measurement of light reflected from a body of water in at least two, but preferably five wavelength bands. In one version of the method, the five wavelength bands are bands 1, 3, 4, 5, and 7 of the Thematic Mapper (TM) multispectral imaging instrument aboard the Landsat-7 satellite (see table). In principle, other wavelength bands indicative of phycocynanin could be used alternatively or in addition to these five. Moreover, although the method was originally intended specifically for processing Landsat- 7 TM data, it is equally applicable to processing of data from other satellite-borne instruments or from airborne, hand-held, buoy-mounted, tower-mounted, or otherwise mounted instruments that measure radiances of light reflected from water in the wavelength bands of interest.

  17. Measurement of leaf relative water content by infrared reflectance

    NASA Technical Reports Server (NTRS)

    Hunt, E. Raymond, Jr.; Rock, Barrett N.; Nobel, Park S.

    1987-01-01

    From basic considerations and Beer's law, a leaf water content index incorporating reflectances of wavelengths from 0.76 to 0.90 microns and from 1.55 to 1.75 microns was developed that relates leaf reflectance to leaf relative water content. For the leaf succulent, Agave deserti, the leaf water content index was not significantly different from the relative water content for either individual leaves or an entire plant. Also, the relative water contents of intact plants of Encelia farinosa and Hilaria rigida in the field were estimated by the leaf water content index; variations in the proportion of living to dead leaf area could cause large errors in the estimate of relative water content. Thus, the leaf water content index may be able to estimate average relative water content of canopies when TM4 and TM5 are measured at a known relative water content and fraction of dead leaf material.

  18. Infrared sensitive liquid crystal light valve with semiconductor substrate.

    PubMed

    Shcherbin, Konstantin; Gvozdovskyy, Igor; Evans, Dean R

    2016-02-10

    A liquid crystal light valve (LCLV) is an optically controlled spatial light modulator that allows recording of dynamic holograms. Almost all known LCLVs operate in the visible range of the spectrum. In the present work we demonstrate a LCLV operating in the infrared. The interaction of signal and pump waves is studied for different applied voltages, grating spacings, and intensities of the recording beams. A fourfold amplification of the weak signal beam is achieved. The amplitude of the refractive index modulation Δn=0.007 and nonlinear coupling constant n₂=-1  cm²/W are estimated from the experimental results. External phase modulation of one of the recording beams is used for a further transient increase of the signal beam gain. PMID:26906379

  19. Exact simulation of polarized light reflectance by particle deposits

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D. W.

    2015-12-01

    The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.

  20. Exoplanet Reflections: the light from 51 Peg b

    NASA Astrophysics Data System (ADS)

    Martins, J. H. C.; Santos, N.; Figueira, P.; Melo, C.

    2015-10-01

    The direct detection of reflected light from an exoplanet is, even in the most favourable cases, a herculean task, close to the detection limit of current observing facilities. To surpass this problem, we made used of a technique (Martins et al. 2013, MNRAS, 436, 1215) that uses the power of the Cross Correlation Function to recover the minute reflected signal from 51 Pegasi b with a 3-σ+ significance. This allowed us to conclude that this prototypical hot-Jupiter is most likely a highly inflated planet with a high albedo. These results were presented in the OHP2015: Twenty years of giant exoplanets conference and published in Martins et al. 2015, A&A, 576, A134.

  1. POLARIZED LIGHT REFLECTED AND TRANSMITTED BY THICK RAYLEIGH SCATTERING ATMOSPHERES

    SciTech Connect

    Natraj, Vijay; Hovenier, J. W.

    2012-03-20

    Accurate values for the intensity and polarization of light reflected and transmitted by optically thick Rayleigh scattering atmospheres with a Lambert surface underneath are presented. A recently reported new method for solving integral equations describing Chandrasekhar's X- and Y-functions is used. The results have been validated using various tests and techniques, including the doubling-adding method, and are accurate to within one unit in the eighth decimal place. Tables are stored electronically and expected to be useful as benchmark results for the (exo)planetary science and astrophysics communities. Asymptotic expressions to obtain Stokes parameters for a thick layer from those of a semi-infinite atmosphere are also provided.

  2. Reflectives: Phosphors and lasers - shedding light on rare earths

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    The first powder electroluminescent phosphor was introduced in 1936. Today, phosphors, particularly those made of high-purity rare earths, have found their way into a variety of products: industrial, commercial, and consumer, alike. The fluorescent lamp industry which remains the leading market for the use of high-purity rare earths, lit the way for the future of rare earths in the optical, x-ray, and display screen applications. Light combined with rare earth materials is also a successful recipe for reflectivity needed in filtering applications such as optics, lasers, and conductors. This article discusses the applications and markets for phosphors and rare earths.

  3. Determination of styrene-butadiene rubber composition by attenuated total internal reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Orlov, A. S.; Kiselev, S. A.; Kiseleva, E. A.; Budeeva, A. V.; Mashukov, V. I.

    2013-03-01

    A rapid method for determining the composition of styrene-butadiene rubber using attenuated total internal reflection infrared spectroscopy was proposed. PMR and 13C NMR spectroscopy and infrared transmission spectroscopy were used as absolute techniques for determining the compositions of calibration samples. It was shown that the method was applicable to a wide range of styrene-butadiene rubbers, did not require additional sample preparation, and was easily reproducible.

  4. Infrared reflectivity spectra of GaS 1-xSe x mixed crystals

    NASA Astrophysics Data System (ADS)

    Riede, V.; Neumann, H.; Sobotta, H.; Lévy, F.

    1980-04-01

    Infrared reflectivity spectra of GaS 1- xSe x mixed crystals are measured for E ‖ c in the wavenumber range from 180 to 4000 cm -1. Two-mode behaviour is found for the infrared active optical modes. The composition dependence of the mode frequencies can be described by the MREI model if a nonlinear change of the force constants with composition is assumed.

  5. Surface temperature correction for active infrared reflectance measurements of natural materials.

    PubMed

    Snyder, W C; Wan, Z

    1996-05-01

    Land surface temperature algorithms for the moderate resolution imaging spectroradiometer satellite instrument will require the spectral bidirectional reflectance distribution function (BRDF) of natural surfaces in the thermal infrared. We designed the spectral infrared bidirectional reflectance and emissivity instrument to provide such measurements by the use of a Fourier transform infrared spectrometer. A problem we encountered is the unavoidable surface heating caused by the source irradiance. For our system, the effects of the heating can cause a 30% error in the measured BRDF The error caused by heating is corrected by temporally curve fitting the radiance signal. This curve-fitting technique isolates the radiance caused by reflected irradiance. With this correction, other factors dominate the BRDF error. It is now ~5% and can be improved further. The method is illustrated with measurements of soil BRDF. PMID:21085353

  6. Reflective liquid crystal light valve with hybrid field effect mode

    NASA Technical Reports Server (NTRS)

    Boswell, Donald D. (Inventor); Grinberg, Jan (Inventor); Jacobson, Alexander D. (Inventor); Myer, Gary D. (Inventor)

    1977-01-01

    There is disclosed a high performance reflective mode liquid crystal light valve suitable for general image processing and projection and particularly suited for application to real-time coherent optical data processing. A preferred example of the device uses a CdS photoconductor, a CdTe light absorbing layer, a dielectric mirror, and a liquid crystal layer sandwiched between indium-tin-oxide transparent electrodes deposited on optical quality glass flats. The non-coherent light image is directed onto the photoconductor; this reduces the impedance of the photoconductor, thereby switching the AC voltage that is impressed across the electrodes onto the liquid crystal to activate the device. The liquid crystal is operated in a hybrid field effect mode. It utilizes the twisted nematic effect to create a dark off-state (voltage off the liquid crystal) and the optical birefringence effect to create the bright on-state. The liquid crystal thus modulates the polarization of the coherent read-out or projection light responsively to the non-coherent image. An analyzer is used to create an intensity modulated output beam.

  7. Using diffuse near-infrared light to characterize tissue optical and physiologic properties for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Pham, Tuan Hoai

    2001-05-01

    Methods based on near-infrared (NIR) diffuse reflectance offer novel and functional approaches to medical diagnostics. NIR diffuse reflectance techniques are well suited for non-invasive, quantitative characterization of tissue optical properties, namely macroscopic absorption (μa) and reduced scattering (μs') coefficient. Tissue optical properties, in turn, provide unique and clinically relevant functional and structural information about tissues. Needless to say, understanding light- tissue interactions and light transport in multiply scattering (turbid) media is essential in order to fully capitalize on the useful features of NIR diffuse reflectance spectroscopy. This thesis addresses the practical and, to a limited extent, the theoretical issues of NIR diffuse light spectroscopy. The goals of the thesis are two folds: (1)to investigate, from an instrumental and analytical perspectives, the accuracy and limitation of the various diffuse reflectance techniques in quantifying the optical properties of homogenous and layered turbid media, and (2)to evaluate the feasibility and applicability of using NIR diffuse reflectance spectroscopy to quantify in vivo tissue optical and physiologic properties during pathophysiologic processes. With respect to the first objective, we conducted validation studies to assess the accuracy of the frequency-domain and spatially-resolved techniques in quantifying μa and μs' of homogenous turbid media. Similarly, frequency-domain and time-domain approaches were used to characterize the optical properties and thickness of two-layered turbid media. For the second objective, frequency-domain system was used to quantify the changes in the in vivo optical and physiologic properties secondary to cancerous transformation, cardiovascular dysfunction, and photodynamic therapy of tumors. In summary, studies results clearly indicate that NIR diffuse reflectance techniques accurately quantify the in vivo tissue optical and physiologic

  8. Isoconversion effective activation energy profiles by variable temperature diffuse reflection infrared spectroscopy.

    PubMed

    White, Daniel R; White, Robert L

    2008-01-01

    Thermal process characterization based on calculating effective activation energies from variable temperature diffuse reflection infrared spectroscopy (VT-DRIFTS) measurements is demonstrated. Experimental factors that affect the accuracies of activation energy values are outlined. Infrared radiation scattering efficiency, thermal conductivity, and inertness towards chemical reactions are factors that should be considered when selecting an appropriate diluent for preparing samples. The Kubelka-Munk representation is superior to apparent absorbance when baseline variations in spectra measured at different temperatures can be minimized. Variable-temperature infrared spectral features, such as integrated absorption band area, can be used to compute isoconversion effective activation energies, provided that measured quantities are proportional to species concentrations. PMID:18230216

  9. Light shift from ultraviolet to near infrared light: Cerenkov luminescence with gold nanocluster - near infrared (AuNc-NIR) conjugates

    NASA Astrophysics Data System (ADS)

    Yoo, Su Woong; Mun, Hyoyoung; Oh, Gyungseok; Ryu, Youngjae; Kim, Min-Gon; Chung, Euiheon

    2015-03-01

    Cerenkov luminescence (CL) is generated when a charged particle moves faster than the speed of light in dielectric media. Recently CL imaging becomes an emerging technique with the use of radioisotopes. However, due to relatively weak blue light production and massive tissue attenuation, CL has not been applied widely. Therefore, we attempted to shift the CL emission to more near infrared (NIR) spectrum for better tissue penetration by using Cerenkov Radiation Energy Transfer (CRET). Gold nanoclusters were conjugated with NIR dye molecules (AuNc-IR820 and AuNc-ICG) to be activated with ultraviolet light. We found optimal conjugate concentrations of AuNc-NIR conjugates by spectroscopy system to generate maximal photon emission. When exposed by ultraviolet light, the emission of NIR light from the conjugates were verified. In quantitative analysis, AuNc-NIR conjugates emit brighter light signal than pure AuNc. This result implies that NIR fluorescent dyes (both IR820 and ICG) can be excited by the emission from AuNc. Following the above baseline experiment, we mixed F-18 fluorodeoxyglucose (F-18 FDG) radioisotope to the AuNc- NIR conjugates, to confirm NIR emission induced from Cerenkov radiation. Long pass filter was used to block Cerenkov luminescence and to collect the emission from AuNc-NIR conjugates. Instead of one long exposure imaging with CCD, we used multiple frame scheme to eliminate gamma radiation strike in each frame prior to combination. In summary, we obtained NIR emission light from AuNc-NIR conjugated dyes that is induced from CL. We plan to perform in vivo small animal imaging with these conjugates to assess better tissue penetration.

  10. [Application of near-infrared diffuse reflectance spectroscopy to the detection and identification of transgenic corn].

    PubMed

    Rui, Yu-kui; Luo, Yun-bo; Huang, Kun-lun; Wang, Wei-min; Zhang, Lu-da

    2005-10-01

    With the rapid development of the GMO, more and more GMO food has been pouring into the market. Much attention has been paid to GMO labeling under the controversy of GMO safety. Transgenic corns and their parents were scanned by continuous wave of near infrared diffuse reflectance spectroscopy range of 12000-4000 cm(-1); the resolution was 4 cm(-1); scanning was carried out for 64 times; BP algorithm was applied for data processing. The GMO food was easily resolved. Near-infrared diffuse reflectance spectroscopy is unpolluted and inexpensive compared with PCR and ELISA, so it is a very promising detection method for GMO food. PMID:16395887

  11. Porphyrin–phospholipid liposomes permeabilized by near-infrared light

    PubMed Central

    Carter, Kevin A.; Shao, Shuai; Hoopes, Matthew I.; Luo, Dandan; Ahsan, Bilal; Grigoryants, Vladimir M.; Song, Wentao; Huang, Haoyuan; Zhang, Guojian; Pandey, Ravindra K.; Geng, Jumin; Pfeifer, Blaine A.; Scholes, Charles P.; Ortega, Joaquin; Karttunen, Mikko; Lovell, Jonathan F.

    2014-01-01

    The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin–phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin–phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin–phospholipid doping, irradiation intensity or irradiation duration. Porphyrin–phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy. PMID:24699423

  12. Porphyrin-phospholipid liposomes permeabilized by near-infrared light.

    PubMed

    Carter, Kevin A; Shao, Shuai; Hoopes, Matthew I; Luo, Dandan; Ahsan, Bilal; Grigoryants, Vladimir M; Song, Wentao; Huang, Haoyuan; Zhang, Guojian; Pandey, Ravindra K; Geng, Jumin; Pfeifer, Blaine A; Scholes, Charles P; Ortega, Joaquin; Karttunen, Mikko; Lovell, Jonathan F

    2014-01-01

    The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin-phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin-phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin-phospholipid doping, irradiation intensity or irradiation duration. Porphyrin-phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy. PMID:24699423

  13. A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model

    NASA Technical Reports Server (NTRS)

    Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)

    2002-01-01

    Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.

  14. Near Infrared 45°/0° Reflectance Factor of Pressed Polytetrafluoroethylene (PTFE) Powder

    PubMed Central

    Nadal, Maria E.; Barnes, P. Yvonne

    1999-01-01

    Pressed polytetrafluoroethylene (PTFE) powder is commonly used as a reflectance standard for bidirectional and hemispherical geometries. The wavelength dependence of the reflectance factor of PTFE is presented for the near-infrared spectral region (800 nm to 1600 nm) for the 45°/0° geometry, as well as in the visible spectral region (380 nm to 800 nm) for comparison with previously published results.

  15. Plasmonic light harvesting for multicolor infrared thermal detection.

    PubMed

    Mao, Feilong; Xie, Jinjin; Xiao, Shiyi; Komiyama, Susumu; Lu, Wei; Zhou, Lei; An, Zhenghua

    2013-01-14

    Here we combined experiments and theory to study the optical properties of a plasmonic cavity consisting of a perforated metal film and a flat metal sheet separated by a semiconductor spacer. Three different types of optical modes are clearly identified-the propagating and localized surface plasmons on the perforated metal film and the Fabry-Perot modes inside the cavity. Interactions among them lead to a series of hybridized eigenmodes exhibiting excellent spectral tunability and spatially distinct field distributions, making the system particularly suitable for multicolor infrared light detections. As an example, we design a two-color detector protocol with calculated photon absorption efficiencies enhanced by more than 20 times at both colors, reaching ~42.8% at f1 = 20.0THz (15μm in wavelength) and ~46.2% at f2 = 29.5THz (~10.2μm) for a 1μm total thickness of sandwiched quantum wells. PMID:23388923

  16. Non-invasive neuroimaging using near-infrared light

    NASA Technical Reports Server (NTRS)

    Strangman, Gary; Boas, David A.; Sutton, Jeffrey P.

    2002-01-01

    This article reviews diffuse optical brain imaging, a technique that employs near-infrared light to non-invasively probe the brain for changes in parameters relating to brain function. We describe the general methodology, including types of measurements and instrumentation (including the tradeoffs inherent in the various instrument components), and the basic theory required to interpret the recorded data. A brief review of diffuse optical applications is included, with an emphasis on research that has been done with psychiatric populations. Finally, we discuss some practical issues and limitations that are relevant when conducting diffuse optical experiments. We find that, while diffuse optics can provide substantial advantages to the psychiatric researcher relative to the alternative brain imaging methods, the method remains substantially underutilized in this field.

  17. Portable multichannel multiwavelength near-infrared diffusive light imager

    NASA Astrophysics Data System (ADS)

    Chen, Nan Guang; Xia, Hongjun; Piao, Daqing; Zhu, Quing

    2003-07-01

    We have developed a near infrared optical tomography system features fast optical switching, three-wavelength excitations, and avalanche photodiode (APD) detectors with a high dynamic range. Pigtailed laser diodes at 660, 780, and 830 nm are used as light sources and their outputs are distributed sequentially to one of nine source fibers. The crosstalk between source channels is around 65 dB, equivalent to 130 dB in opto-electrical signals. 10 Silicon APD"s detect diffusive photon density waves simultaneously. The dynamic range of an APD is several orders higher than that of a photomultiplier tube (PMT), which eliminates the need of multi-step system gain control. However, the internal gain of the APD we are using is about 3 orders lower than an ordinary PMT. Efforts have been made to suppress the feed through interferences from the transmission part to the reception part so as to reduce the errors in amplitude and phase measurements.

  18. Combined optical and near infrared reflectance measurements of vasomotion in both skin and underlying muscle

    NASA Astrophysics Data System (ADS)

    Thorn, Clare E.; Shore, Angela C.; Matcher, Stephen J.

    2007-02-01

    The cardiovascular system is designed to deliver oxygen to every cell in the body through the microcirculation. Optical Reflectance Spectroscopy (ORS) is a powerful tool used to study oxygen delivery through vessels less than 50 μm in diameter. Depth analysis can be achieved by varying the geometry of the incident light source and the detector of the back-scattered light. A fibre optic probe has been designed with spacings to study the capillary loops and microvessels of the skin. Similarly, Near Infrared Spectroscopy (NIRS) can directly measure haemodynamics in muscle. A combined study of ORS and NIRS is currently investigating the relationship of vasomotion in the skin and underlying muscle. Vasomotion is usually defined as rhythmic changes in the diameter of the small blood vessels and has been linked to both endothelial and sympathetic activity. It has been suggested that vasomotion in the muscle preserves nutritive perfusion not only in the muscle itself but also to neighbouring tissue i.e. skin. ORS and NIRS can provide a direct measure of these changes in blood volume. At frequencies linked with endothelial and sympathetic activity, rhythmical oscillations in blood volume of the same magnitude, were demonstrated in both skin and muscle, 15.3(4.0)% skin vs 16.3(5.3)% muscle for endothelial frequencies, (mean(SD), t-test, p=0.633) and 10.9(3.8)% skin and 12.4(5.5)% muscle for sympathetic frequencies (p=0.354). These data demonstrate the potential of these optical techniques to enable simultaneous examination of microvascular haemodynamics in two tissue types.

  19. Near infrared reflectance-based tools for predicting soil chemical properties of Oklahoma grazinglands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared reflectance spectroscopy (NIRS) has potential to provide timely, and lower cost estimates of soil properties than current laboratory techniques. This study defined the capacity of NIRS to predict soil organic matter (SOM), total carbon (C) and nitrogen (N) in native prairie (n=3) and c...

  20. Low-resolution mid-infrared reflection analysis for discernment of contaminants in seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminants often decrease cotton quality, which subsequently decrease cotton profitability. In this research, a low-resolution mid-infrared reflection instrument was designed and constructed by using only four different wavelengths to accomplish good separation of cotton samples from 14 contaminan...

  1. PRINCIPAL COMPONENT REGRESSION OF NEAR-INFRARED REFLECTANCE SPECTRA FOR BEEF TENDERNESS PREDICTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tenderness is the most important factor affecting consumer perception of eating quality of meat. In this paper, the development of the principal component regression (PCR) models to relate near-infrared (NIR) reflectance spectra of raw meat to Warner-Bratzler (WB) shear force measurement of cooked m...

  2. Near-infrared transmission and reflectance spectroscopy for the measurement of dietary fiber in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared (NIR) transmission and reflectance spectroscopy were investigated as rapid screening tools to evaluate the total dietary fiber content of barley (Hordeum vulgare L.) cultivars. A Foss Grainspec Rice Analyzer and an NIR Systems 6500 spectrometer were used to obtain transmission and ref...

  3. TETRACHLORODIBENZODIOXIN ISOMER DIFFERENTIATION BY MICRO DIFFUSE REFLECTANCE FOURIER TRANSFORM INFRARED SPECTROMETRY AT THE LOW NANOGRAM LEVEL

    EPA Science Inventory

    Infrared diffuse reflectance spectra were recorded for the 22 tetrachlorodibenzodioxin isomers (TCDDs). By use of micro-DRIFT techniques and signal averaging, identifiable spectra for each of the isomers were achieved at low nanogram levels. Spectral features in the 1200/cm to 16...

  4. Light scattering by a rough surface of human skin. 1. The luminance factor of reflected light

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-08-31

    Based on the analytical solution of Maxwell's equations, we have studied the angular structure of the luminance factor of light reflected by the rough skin surface with large-scale relief elements, illuminated by a directed radiation beam incident at an arbitrary angle inside or outside the medium. The parameters of the surface inhomogeneities are typical of human skin. The calculated angular dependences are interpreted from the point of view of the angular distribution function of micro areas. The results obtained can be used for solving direct and inverse problems in biomedical optics, in particular for determining the depth of light penetration into a biological tissue, for studying the light action spectra on tissue chromophores under the in vivo conditions, for developing diagnostic methods of structural and biophysical parameters of a medium, and for optimising the mechanisms of interaction of light with biological tissues under their noninvasive irradiation through skin. (biomedical optics)

  5. Durable silver mirror with ultra-violet thru far infra-red reflection

    DOEpatents

    Wolfe, Jesse D.

    2010-11-23

    A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.

  6. Modeling thermal infrared (2-14 micrometer) reflectance spectra of frost and snow

    NASA Technical Reports Server (NTRS)

    Wald, Andrew E.

    1994-01-01

    Existing theories of radiative transfer in close-packed media assume that each particle scatters independently of its neighbors. For opaque particles, such as are common in the thermal infrared, this assumption is not valid, and these radiative transfer theories will not be accurate. A new method is proposed, called 'diffraction subtraction', which modifies the scattering cross section of close-packed large, opaque spheres to account for the effect of close packing on the diffraction cross section of a scattering particle. This method predicts the thermal infrared reflectance of coarse (greater than 50 micrometers radius), disaggregated granular snow. However, such coarse snow is typically old and metamorphosed, with adjacent grains welded together. The reflectance of such a welded block can be described as partly Fresnel in nature and cannot be predicted using Mie inputs to radiative transfer theory. Owing to the high absorption coefficient of ice in the thermal infrared, a rough surface reflectance model can be used to calculate reflectance from such a block. For very small (less than 50 micrometers), disaggregated particles, it is incorrect in principle to treat diffraction independently of reflection and refraction, and the theory fails. However, for particles larger than 50 micrometers, independent scattering is a valid assumption, and standard radiative transfer theory works.

  7. Improving the light quantification of near infrared (NIR) diffused light optical tomography with ultrasound localization

    NASA Astrophysics Data System (ADS)

    Ardeshirpour, Yasaman

    According to the statistics published by the American Cancer Society, currently breast cancer is the second most common cancer after skin cancer and the second cause of cancer death after lung cancer in the female population. Diffuse optical tomography (DOT) using near-infrared (NIR) light, guided by ultrasound localization, has shown great promise in distinguishing benign from malignant breast tumors and in assessing the response of breast cancer to chemotherapy. Our ultrasound-guided DOT system is based on reflection geometry, with patients scanned in supine position using a hand-held probe. For patients with chest-wall located at a depth shallower than 1 to 2cm, as in about 10% of our clinical cases, the semi-infinite imaging medium is not a valid assumption and the chest-wall effect needs to be considered in the imaging reconstruction procedure. In this dissertation, co-registered ultrasound images were used to model the breast-tissue and chest-wall as a two-layer medium. The effect of the chest wall on breast lesion reconstruction was systematically investigated. The performance of the two-layer model-based reconstruction, using the Finite Element Method, was evaluated by simulation, phantom experiments and clinical studies. The results show that the two-layer model can improve the accuracy of estimated background optical properties, the reconstructed absorption map and the total hemoglobin concentration of the lesion. For patients' data affected by chest wall, the perturbation, which is the difference between measurements obtained at lesion and normal reference sites, may include the information of background mismatch between these two sites. Because the imaging reconstruction is based on the perturbation approach, the effect of this mismatch between the optical properties at the two sites on reconstructed optical absorption was studied and a guideline for imaging procedure was developed to reduce these effects during data capturing. To reduce the artifacts

  8. Light reflection visualization to determine solute diffusion into clays

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0 = 0.1, Brilliant Blue FCF in kaolinite (R = 11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R = 7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments.

  9. Light reflection visualization to determine solute diffusion into clays.

    PubMed

    Yang, Minjune; Annable, Michael D; Jawitz, James W

    2014-06-01

    Light reflection visualization (LRV) experiments were performed to investigate solute diffusion in low-permeability porous media using a well-controlled two-dimensional flow chamber with a domain composed of two layers (one sand and one clay). Two different dye tracers (Brilliant Blue FCF and Ponceau 4R) and clay domains (kaolinite and montmorillonite) were used. The images obtained through the LRV technique were processed to monitor two-dimensional concentration distributions in the low-permeability zone by applying calibration curves that related light intensity to equilibrium concentrations for each dye tracer in the clay. One dimensional experimentally-measured LRV concentration profiles in the clay were found to be in very good agreement with those predicted from a one-dimensional analytical solution, with coefficient of efficiency values that exceeded 0.97. The retardation factors (R) for both dyes were relatively large, leading to slow diffusive penetration into the clays. At a relative concentration C/C0=0.1, Brilliant Blue FCF in kaolinite (R=11) diffused approximately 10 mm after 21 days of source loading, and Ponceau 4R in montmorillonite (R=7) diffused approximately 12 mm after 23 days of source loading. The LRV experimentally-measured two-dimensional concentration profiles in the clay were also well described by a simple analytical solution. The results from this study demonstrate that the LRV approach is an attractive non-invasive tool to investigate the concentration distribution of dye tracers in clays in laboratory experiments. PMID:24657742

  10. Simulation and measurement of transcranial near infrared light penetration

    NASA Astrophysics Data System (ADS)

    Yue, Lan; Monge, Manuel; Ozgur, Mehmet H.; Murphy, Kevin; Louie, Stan; Miller, Carol A.; Emami, Azita; Humayun, Mark S.

    2015-03-01

    We are studying the transmission of LED array-emitted near-infrared (NIR) light through human tissues. Herein, we simulated and measured transcranial NIR penetration in highly scattering human head tissues. Using finite element analysis, we simulated photon diffusion in a multilayered 3D human head model that consists of scalp, skull, cerebral spinal fluid, gray matter and white matter. The optical properties of each layer, namely scattering and absorption coefficient, correspond to the 850 nm NIR light. The geometry of the model is minimally modified from the IEEE standard and the multiple LED emitters in an array were evenly distributed on the scalp. Our results show that photon distribution produced by the array exhibits little variation at similar brain depth, suggesting that due to strong scattering effects of the tissues, discrete spatial arrangements of LED emitters in an array has the potential to create a quasi-radially symmetrical illumination field. Measurements on cadaveric human head tissues excised from occipital, parietal, frontal and temporal regions show that illumination with an 850 nm LED emitter rendered a photon flux that closely follows simulation results. In addition, prolonged illumination of LED emitted NIR showed minimal thermal effects on the brain.

  11. Near Infrared Light-Powered Janus Mesoporous Silica Nanoparticle Motors.

    PubMed

    Xuan, Mingjun; Wu, Zhiguang; Shao, Jingxin; Dai, Luru; Si, Tieyan; He, Qiang

    2016-05-25

    We describe fuel-free, near-infrared (NIR)-driven Janus mesoporous silica nanoparticle motors (JMSNMs) with diameters of 50, 80, and 120 nm. The Janus structure of the JMSNMs is generated by vacuum sputtering of a 10 nm Au layer on one side of the MSNMs. Upon exposure to an NIR laser, a localized photothermal effect on the Au half-shells results in the formation of thermal gradients across the JMSNMs; thus, the generated self-thermophoresis can actively drive the nanomotors to move at an ultrafast speed, for instance, up to 950 body lengths/s for 50 nm JMSNMs under an NIR laser power of 70.3 W/cm(2). The reversible "on/off" motion of the JMSNMs and their directed movement along the light gradient can be conveniently modulated by a remote NIR laser. Moreover, dynamic light scattering measurements are performed to investigate the coexisting translational and rotational motion of the JMSNMs in the presence of both self-thermophoretic forces and strong Brownian forces. These NIR-powered nanomotors demonstrate a novel strategy for overcoming the necessity of chemical fuels and exhibit a significant improvement in the maneuverability of nanomotors while providing potential cargo transportation in a biofriendly manner. PMID:27152728

  12. Spectrum of reflected light by self-focusing of light in a laser plasma

    SciTech Connect

    Gorbunov, L.M.

    1983-05-01

    The spectrum of the radiation reflected by a laser-produced plasma is considered. In this situation, self-focusing occurs and a region of low density (caviton) is formed. It is shown that the process leads to a considerable broadening of the spectrum on the ''red'' side, and to the appearance of a line structure in the spectrum. The results can explain data for the reflected light spectrum (L. M. Gorbunov et al., FIAN Preprint No. 126 (1979)) as being due to the nonstationary self-focusing of light in a laser-produced plasma that has recently been observed (V. L. Artsimovich et al., FIAN Preprint No. 252 (1981); Sov. Phys. Doklady 27, 618 (1982)).

  13. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    PubMed

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  14. Unpolarized emissivity with shadow and multiple reflections from random rough surfaces with the geometric optics approximation: application to Gaussian sea surfaces in the infrared band.

    PubMed

    Bourlier, Christophe

    2006-08-20

    The emissivity from a stationary random rough surface is derived by taking into account the multiple reflections and the shadowing effect. The model is applied to the ocean surface. The geometric optics approximation is assumed to be valid, which means that the rough surface is modeled as a collection of facets reflecting locally the light in the specular direction. In particular, the emissivity with zero, single, and double reflections are analytically calculated, and each contribution is studied numerically by considering a 1D sea surface observed in the near infrared band. The model is also compared with results computed from a Monte Carlo ray-tracing method. PMID:16892130

  15. Spectral reflectance from plant canopies and optimum spectral channels in the near infrared

    NASA Technical Reports Server (NTRS)

    Allen, W. A.; Gausman, H. W.; Wiegand, C. L.

    1970-01-01

    Theoretical and experimental aspects of the interaction of light with a typical plant canopy are considered. Both theoretical and experimental results are used to establish optimum electromagnetic wavelength channels for remote sensing in agriculture. The spectral range considered includes half of the visible and much of the near-infrared regions.

  16. Effects of Sample Preparation on the Infrared Reflectance Spectra of Powders

    SciTech Connect

    Brauer, Carolyn S.; Johnson, Timothy J.; Myers, Tanya L.; Su, Yin-Fong; Blake, Thomas A.; Forland, Brenda M.

    2015-05-22

    While reflectance spectroscopy is a useful tool in identifying molecular compounds, laboratory measurement of solid (particularly powder) samples often is confounded by sample preparation methods. For example, both the packing density and surface roughness can have an effect on the quantitative reflectance spectra of powdered samples. Recent efforts in our group have focused on developing standard methods for measuring reflectance spectra that accounts for sample preparation, as well as other factors such as particle size and provenance. In this work, the effect of preparation method on sample reflectivity was investigated by measuring the directional-hemispherical spectra of samples that were hand-packed as well as pressed into pellets using an integrating sphere attached to a Fourier transform infrared spectrometer. The results show that the methods used to prepare the sample have a substantial effect on the measured reflectance spectra, as do other factors such as particle size.

  17. Potential of remote visible and near-infrared spectral reflectance measurements for mapping thermal maturity variations

    SciTech Connect

    Rowan, L.C.; Pawlewicz, M.J.; Jones, O.D. )

    1989-09-01

    The visible and near-infrared (VNIR) spectral reflectance of rocks containing organic matter is related to thermal maturity because thermal alteration liberates hydrogen and forms highly absorbing carbon-rich polycondensed structures. To evaluate the usefulness of remote spectral reflectance measurements for mapping thermal maturity differences, Landsat Thematic Mapper (TM) images of the Eureka, Nevada, area were processed to produce a digital classification image maps that shows maturity in well-exposed, sparsely vegetated areas consisting of Chainman Shale. The relationship between spectral reflectance in TM bands and band ratios and maturity was confirmed through analysis of laboratory VNIR spectral reflectance and mean vitrinite reflectance (R{sub m}) measurements of 20 samples.

  18. Evaluation of thermal stability of indinavir sulphate using diffuse reflectance infrared spectroscopy.

    PubMed

    Singh, Parul; Premkumar, L; Mehrotra, Ranjana; Kandpal, H C; Bakhshi, A K

    2008-06-01

    Indinavir sulphate is a potent and specific protease inhibitor of human immunodeficiency virus (HIV). It is used for the treatment of acquired immune deficiency syndrome (AIDS). At elevated temperature the drug which otherwise remains crystalline undergoes a phase transition to an amorphous phase to form degradation products. In the present study, thermal stability of indinavir sulphate is evaluated using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Infrared spectra of the drug before and after the exposure to thermal radiation at different temperatures were acquired in the diffuse reflectance mode using a Fourier transform infrared (FTIR) spectrophotometer. The differential scanning calorimetry (DSC) and the X-ray diffraction (XRD) studies were used as complimentary techniques to adequately implement and assist the interpretation of the infrared spectroscopy results. The DRIFT spectra reveal that the drug remains stable up to 100 degrees C, degrades slightly at 125 degrees C and undergoes complete degradation at about 150 degrees C to produce degradation products. The degradation products can easily be characterized using the infrared spectra. PMID:18280078

  19. Infrared

    NASA Astrophysics Data System (ADS)

    Vollmer, M.

    2013-11-01

    techniques such as attenuated total reflectance [6]. The two final papers deal with what seem to be wholly different scientific fields [7, 8]. One paper describes SOFIA, an aeroplane-based astronomical observatory covering the whole IR range [7], while the other represents a small review of the quite new topic of terahertz physics at the upper end of the IR spectral range, from around 30 µm to 3 mm wavelength, and its many applications in science and industry [8]. Although artificially separated, all these fields use similar kinds of detectors, similar kinds of IR sources and similar technologies, while the instruments use the same physical principles. We are convinced that the field of infrared physics will develop over the next decade in the same dynamic way as during the last, and this special issue may serve as starting point for regular submissions on the topic. At any rate, it shines a light on this fascinating and many-faceted subject, which started more than 200 years ago. References [1] Mangold K, Shaw J A and Vollmer M 2013 The physics of near-infrared photography Eur. J. Phys. 34 S51-71 [2] Vollmer M and Möllmann K-P 2013 Characterization of IR cameras in student labs Eur. J. Phys. 34 S73-90 [3] Ibarra-Castanedo C, Tarpani J R and Maldague X P V 2013 Nondestructive testing with thermography Eur. J. Phys. 34 S91-109 [4] Shaw J A and Nugent P W 2013 Physics principles in radiometric infrared imaging of clouds in the atmosphere Eur. J. Phys. 34 S111-21 [5] Möllmann K-P and Vollmer M 2013 Fourier transform infrared spectroscopy in physics laboratory courses Eur. J. Phys. 34 S123-37 [6] Heise H M, Fritzsche J, Tkatsch H, Waag F, Karch K, Henze K, Delbeck S and Budde J 2013 Recent advances in mid- and near-infrared spectroscopy with applications for research and teaching, focusing on petrochemistry and biotechnology relevant products Eur. J. Phys. 34 S139-59 [7] Krabbe A, Mehlert D, Röser H-P and Scorza C 2013 SOFIA, an airborne observatory for infrared astronomy

  20. A cryogenic dichroic mirror for separating visible light from wideband infrared

    NASA Astrophysics Data System (ADS)

    Enya, K.; Fujishiro, N.; Haze, K.; Kotani, T.; Kaneda, H.; Oyabu, S.; Ishihara, D.; Oseki, S.

    2014-08-01

    We present the design, fabrication and test results for a dichroic mirror, which was primarily developed for the SPICA Coronagraph Instrument (SCI), but is potentially useful for various types of astronomical instrument. The dichroic mirror is designed to reflect near- and mid-infrared but to transmit visible light. Two designs, one with 3 layers and one with 5 layers on BK7 glass substrates, are presented. The 3-layer design, consisting of Ag and ZnS, is simpler, and the 5-layer design, consisting of Ag and TiO2 is expected to have better performance. Tape tests, evaluation of the surface figure, and measurements of the reflectivity and transmittance were carried out at ambient temperature in air. The reflectivity obtained from measurements made on mirrors with 5 layers were < 80 % for wavelengths, λ, from 1.2 to 22 μm and < 90 % for λ from 1.8 to 20 μm. The transmittance obtained from measurements made on mirrors with 5 layers were < 70 % for λ between 0.4 and 0.8 μm. Optical ghosting is estimated to be smaller than 10-4 at λ < 1.5 μm. A protective coating for preventing corrosion was applied and its influence on the reflectivity and transmittance evaluated. A study examining the trade-offs imposed by various configurations for obtaining a telescope pointing correction signal was also undertaken.

  1. Infrared reflectance measurements of the insulator-metal transition in solid hydrogen

    NASA Technical Reports Server (NTRS)

    Mao, H. K.; Hemley, R. J.; Hanfland, M.

    1990-01-01

    Reflectance measurements on solid hydrogen to 177 GPa (1.77 Mbar) have been performed from near-infrared to ultraviolet wavelengths (0.5 to 3 eV). Above 150 GPa characteristic free-electron behavior in the infrared region is observed to increase sharply with increasing pressure. Analysis of volume dependence of the plasma frequency obtained from Drude-model fits to the spectra indicates that the pressure of the insulator-metal transition is 149 (+ or - 10) GPa at 295 K. The measurements are consistent with metallization by closure of an indirect gap in the molecular solid.

  2. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

    PubMed Central

    Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.

    2011-01-01

    An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445

  3. Spectral matching factors between low-light-level and infrared fusion optoelectronic detector and objects

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Fan, Yinghao; Chang, Benkang

    2009-09-01

    According to the response of photoelectric device to a light source, the formula of spectral matching factor of low-lightlevel and infrared fusion optoelectronic detector-object combination is deduced. The spectral matching factors of photo cathode and infrared detector for green vegetation are calculated and compared. Through the analysis of results it shows that spectral matching factor has influence on the performance of low light level and infrared fusion night vision system.

  4. Use of visible and infrared reflectance and luminescence imaging spectroscopy to study illuminated manuscripts: pigment identification and visualization of underdrawings

    NASA Astrophysics Data System (ADS)

    Ricciardi, Paola; Delaney, John K.; Glinsman, Lisha; Thoury, Mathieu; Facini, Michelle; de la Rie, E. René

    2009-07-01

    Site specific, in situ techniques such as X-ray fluorescence (XRF) and Raman spectroscopy are commonly used to identify pigments on illuminated manuscripts. With both techniques, spectra are usually acquired on visually identified sites thought to be representative of the pigments and mixtures used for the illumination. Such visual inspection may not always ensure an adequate representation of the pigment diversity. Here we report on the application of multispectral (MSI) visible/infrared reflectance and luminescence imaging spectroscopy, along with fiber optics reflectance spectroscopy (FORS) to help determine and map the primary pigments in a late 14th century miniature on vellum, attributed to Niccolo da Bologna and representing the birth of John the Baptist. XRF analyses of visually selected sites found elements consistent with azurite, ultramarine, vermillion, lead white, "mosaic gold" and yellow earth pigments. Visible/infrared FORS analyses confirmed these assignments and showed evidence for the use of organic dyes. The spectral analysis of the MSI-reflectance images gave distribution maps for these pigments (i.e., regions of azurite, ultramarine, vermillion) along with some indication of pigment layering not identified visually. The luminescence image gave a probable map of the organic dye(s). Images acquired in the near- and shortwave-infrared (NIR and SWIR, 750 to 2400 nm) revealed preparatory sketches and illumination techniques. These results show, like those of a prior study carried out on another 14th century Italian miniature, that the combination of low light multi-spectral imaging spectroscopy with FORS provides improved in situ mapping and identification of pigments on illuminated manuscripts.

  5. Polymer-cholesteric liquid-crystalline composites with a broad light reflection band

    NASA Astrophysics Data System (ADS)

    Mitov, Michel

    2016-05-01

    Cholesteric liquid crystals selectively reflect the light. The reflection bandgap is typically limited to 100 nm in the visible spectrum and, at the best, 50% of the unpolarized incident light is reflected. Solutions are found in biopolymers and polymer-liquid crystal composite materials to go beyond these limits.

  6. Reflective films and expression of light-regulated genes in field-grown apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reflective films are used in orchard management to improve fruit coloration. Numerous physiological studies on the effects of application of these films have been conducted, including variation of angles of light incidence and reflection, spectral determination of reflected light and effects on pho...

  7. [Near infrared reflectance spectroscopy (NIRS) and its application in the determination for the quality of animal feed and products].

    PubMed

    Wang, Li; Meng, Qing-Xiang; Ren, Li-Ping; Yang, Jian-Song

    2010-06-01

    Near-infrared reflectance spectroscopy (NIRS) has been the most rapidly developing and noticeable spectrographic analytical technique in recent years. The determining principle and progresses of near-infrared reflectance spectroscopy are presented briefly. It mainly includes the progresses in pre-processing technique and analyzing model of near-infrared reflectance spectroscopy. Two pre-processing techniques, including differential coefficient-dealt with technique, the signal-smoothing technique, and four analyzing models of near-infrared spectroscopy, including the multiplied lined regression (MLR), principal component analysis (PCA), partial least squares (PLS), and artificial nerve network (ANN). The application of near-infrared reflectance spectroscopy to the first time. The investigation of reviewed papers shows that the near-infrared reflectance spectroscopy is widely applied in feed analysis and animal products analysis because of its rapidness, non-destruction and non-pollution. The near infrared reflectance spectroscopy has been used to determine the feed common ingredient, such as dry matter, crude protein, crude fiber, crude fat and so on, micro-components including amino acid, vitamin, and noxious components, and to determine the physical and chemical properties of animal products which including egg, mutton, beef and pork. Details of the analytical characteristics of feed and animal products described in the reviewed papers are given. New trends and limits to the application of near-infrared reflectance spectroscopy in these fields are also discussed. PMID:20707134

  8. Total internal reflection and dynamic light scattering microscopy of gels

    NASA Astrophysics Data System (ADS)

    Gregor, Brian F.

    Two different techniques which apply optical microscopy in novel ways to the study of biological systems and materials were built and applied to several samples. The first is a system for adapting the well-known technique of dynamic light scattering (DLS) to an optical microscope. This can detect and scatter light from very small volumes, as compared to standard DLS which studies light scattering from volumes 1000x larger. The small scattering volume also allows for the observation of nonergodic dynamics in appropriate samples. Porcine gastric mucin (PGM) forms a gel at low pH which lines the epithelial cell layer and acts as a protective barrier against the acidic stomach environment. The dynamics and microscopic viscosity of PGM at different pH levels is studied using polystyrene microspheres as tracer particles. The microscopic viscosity and microrheological properties of the commercial basement membrane Matrigel are also studied with this instrument. Matrigel is frequently used to culture cells and its properties remain poorly determined. Well-characterized and purely synthetic Matrigel substitutes will need to have the correct rheological and morphological characteristics. The second instrument designed and built is a microscope which uses an interferometry technique to achieve an improvement in resolution 2.5x better in one dimension than the Abbe diffraction limit. The technique is based upon the interference of the evanescent field generated on the surface of a prism by a laser in a total internal reflection geometry. The enhanced resolution is demonstrated with fluorescent samples. Additionally. Raman imaging microscopy is demonstrated using the evanescent field in resonant and non-resonant samples, although attempts at applying the enhanced resolution technique to the Raman images were ultimately unsuccessful. Applications of this instrument include high resolution imaging of cell membranes and macroscopic structures in gels and proteins. Finally, a third

  9. Evidence for Reflected Light from the Most Eccentric Exoplanet Known

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.; Wittenmyer, Robert A.; Hinkel, Natalie R.; Roy, Arpita; Mahadevan, Suvrath; Dragomir, Diana; Matthews, Jaymie M.; Henry, Gregory W.; Chakraborty, Abhijit; Boyajian, Tabetha S.; Wright, Jason T.; Ciardi, David R.; Fischer, Debra A.; Butler, R. Paul; Tinney, C. G.; Carter, Brad D.; Jones, Hugh R. A.; Bailey, Jeremy; O’Toole, Simon J.

    2016-04-01

    Planets in highly eccentric orbits form a class of objects not seen within our solar system. The most extreme case known among these objects is the planet orbiting HD 20782, with an orbital period of 597 days and an eccentricity of 0.96. Here we present new data and analysis for this system as part of the Transit Ephemeris Refinement and Monitoring Survey. We obtained CHIRON spectra to perform an independent estimation of the fundamental stellar parameters. New radial velocities from Anglo-Australian Telescope and PARAS observations during periastron passage greatly improve our knowledge of the eccentric nature of the orbit. The combined analysis of our Keplerian orbital and Hipparcos astrometry show that the inclination of the planetary orbit is \\gt 1\\_\\_AMP\\_\\_fdg;22, ruling out stellar masses for the companion. Our long-term robotic photometry show that the star is extremely stable over long timescales. Photometric monitoring of the star during predicted transit and periastron times using Microvariability and Oscillations of STars rule out a transit of the planet and reveal evidence of phase variations during periastron. These possible photometric phase variations may be caused by reflected light from the planet’s atmosphere and the dramatic change in star–planet separation surrounding the periastron passage.

  10. A new optical head tracing reflected light for nanoprofiler

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Okita, K.; Tokuta, Y.; Kitayama, T.; Nakano, M.; Kudo, R.; Yamamura, K.; Endo, K.

    2014-09-01

    High accuracy optical elements are applied in various fields. For example, ultraprecise aspherical mirrors are necessary for developing third-generation synchrotron radiation and XFEL (X-ray Free Electron LASER) sources. In order to make such high accuracy optical elements, it is necessary to realize the measurement of aspherical mirrors with high accuracy. But there has been no measurement method which simultaneously achieves these demands yet. So, we develop the nanoprofiler that can directly measure the any surfaces figures with high accuracy. The nanoprofiler gets the normal vector and the coordinate of a measurement point with using LASER and the QPD (Quadrant Photo Diode) as a detector. And, from the normal vectors and their coordinates, the three-dimensional figure is calculated. In order to measure the figure, the nanoprofiler controls its five motion axis numerically to make the reflected light enter to the QPD's center. The control is based on the sample's design formula. We measured a concave spherical mirror with a radius of curvature of 400 mm by the deflection method which calculates the figure error from QPD's output, and compared the results with those using a Fizeau interferometer. The profile was consistent within the range of system error. The deflection method can't neglect the error caused from the QPD's spatial irregularity of sensitivity. In order to improve it, we have contrived the zero method which moves the QPD by the piezoelectric motion stage and calculates the figure error from the displacement.

  11. Reflected light microspectroscopy for single-nanoparticle biosensing

    NASA Astrophysics Data System (ADS)

    Patskovsky, Sergiy; Meunier, Michel

    2015-09-01

    Conventional and dark-field microscopy in the transmission mode is extensively used for single plasmonic nanoparticle (NP) imaging and spectral analysis. However, application of the transmission mode for real-time biosensing to single NP poses strict limitations on the size and material properties of the microfluidic system. This article proposes a simple optical technique based on reflected light microscopy to perform microspectroscopy of a single NP placed in a conventional, nontransparent liquid delivery system. The insertion of a variable spot diaphragm in the optical path reduces the interference effect that occurs at the NP-substrate interface and improves the signal-to-noise ratio in NP imaging. Using this method, we demonstrated spatial imaging and spectral analyses of 60-, 80-, and 100-nm single gold NPs. A single-NP sensor based on a 100-nm NP was used for real-time measurement of bulk refractive index changes in the microfluidic channel and for detection of fast dynamic poly(ethylene glycol) attachment to the NP surface. Finally, electrochemical single-particle microspectroscopy was demonstrated by using a methylene blue electroactive redox tag. The proposed optical approach is expected to significantly improve the miniaturization and multiplexing capabilities of high-throughput biosensing based on single NP.

  12. Near-infrared light penetration profile in the rodent brain

    PubMed Central

    Abdo, Ammar; Ersen, Ali

    2013-01-01

    Abstract. Near-infrared (NIR) lasers find applications in neuro-medicine both for diagnostic and treatment purposes. Penetration depth and profile into neural tissue are critical parameters to be considered in these applications. Published data on the optical properties of rodent neural tissue are rare, despite the frequent use of rats as an animal model. The aim of this study was to measure the light intensity profile inside the rat brain using a direct method, while the medium is being illuminated by an NIR laser beam, and compare the results with in vitro measurements of transmittance in the rat brain slices. The intensity profile along the vertical axis had an exponential decline with multiple regions that could be approximated with different coefficients. The Monte Carlo method that was used to simulate light–tissue interactions and predict the scattering coefficient of brain tissue from the measurements suggested that more scattering occurred in deeper layers of the cortex. A single scattering coefficient of 125  cm−1 was estimated for cortical layers from 300 to 1500 μm and a gradually increasing value from 125 to 370  cm−1 for depths of 1500 to 3000 μm. The deviations of in vivo results from the in vitro transmittance measurements, as well as the postmortem in vivo results from the alive measurements were significant. PMID:23831713

  13. Near infrared light responsive hybrid nanoparticles for synergistic therapy.

    PubMed

    Liang, Yan; Gao, Wenxia; Peng, Xinyu; Deng, Xin; Sun, Changzhen; Wu, Huayue; He, Bin

    2016-09-01

    A near infrared (NIR) light responsive chromophore 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM) was synthesized and incorporated to β-cyclodextrins with cRGD functionalized poly(ethylene glycol), the amphiphiles were coordinated with Au nanorods or nanoparticles to load anticancer drug doxorubicin (DOX) for fabricating hybrid nanoparticles. The π-π stacking interaction between DEACM and DOX was formed in the hybrid nanoparticles, which contributed to the high drug loading content. The Au nanorods or nanoparticles enhanced the photosolvolysis of DEACM under the irradiation of NIR with 808 nm wavelength and triggered the accelerated drug release from the nanoparticles. The drug loaded hybrid nanoparticles with NIR irradiation exhibited efficient inhibition effect on the proliferation of 4T1 breast cancer cells in vitro. The in vivo anticancer activity study on breast cancer bearing mice revealed that the hybrid nanoparticles containing Au nanorods exhibited excellent anticancer activity under the irradiation of 808 nm wavelength NIR with 800 mW. PMID:27244691

  14. Infrared imaging of LED lighting tubes and fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  15. Crystal orientation dependence of polarized infrared reflectance response of hexagonal sapphire crystal

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Ng, S. S.; Abu Hassan, H.; Hassan, Z.; Dumelow, T.

    2014-11-01

    Polarized infrared (IR) reflectance responses of c-, a- and r-plane sapphire crystals were investigated. The sapphire crystals with differently oriented surfaces exhibited different reststrahlen features. Except for c-plane sapphire, the polarized IR reflectance responses were sensitive to the orientation of the samples. The spectral features for a- and r-plane sapphire crystals were modulated by just rotating the samples about their surface normal. To analyze the observations, a theoretical model for the polarized IR reflectivity that considers the effects of crystal orientation of a hexagonal crystal system was employed. Overall, the theoretical predictions were in good agreement with experimental data. The crystal orientation information deduced from the polarized IR reflectance spectra is consistent with that acquired from X-ray diffraction measurements.

  16. [Application of Fourier transform attenuated total reflection infrared spectroscopy in analysis of pulp and paper industry].

    PubMed

    Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun

    2011-03-01

    As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211

  17. Attenuated total reflectance powder cell for infrared analysis of hygroscopic samples.

    PubMed

    Lekgoathi, M D S; le Roux, J P

    2011-11-01

    An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR-ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly. PMID:21835688

  18. Attenuated total reflectance powder cell for infrared analysis of hygroscopic samples

    NASA Astrophysics Data System (ADS)

    Lekgoathi, M. D. S.; le Roux, J. P.

    2011-11-01

    An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR-ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly.

  19. Cryo-Transmittance and -Reflectance of Filters and Beamsplitters for the SIRTF Infrared Array Camera

    NASA Technical Reports Server (NTRS)

    Stewart, Kenneth P.; Quijada, Manuel A.a

    2000-01-01

    The Space Infrared Telescope Facility (SIRTF) Infrared Array Camera (IRAC) uses two dichroic beamsplitters, four bandpass filters, and four detector arrays to acquire images in four channels at wavelengths between 3 and 10 micron. Accurate knowledge of the pass bands is necessary because, in order to meet the science objectives, IRAC is required to do 2% relative photometry in each band relative to the other bands. We report the in-band and out-of-band polarized transmittance and reflectance of these optical elements measured near the instrument operating temperature of 1.4 K. Details of the experimental apparatus, which include a continuous flow liquid helium optical cryostat and a Fourier transform infrared (FTIR) spectrometer are discussed.

  20. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    PubMed

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil

  1. [Tri-Level Infrared Spectroscopic Identification of Hot Melting Reflective Road Marking Paint].

    PubMed

    Li, Hao; Ma, Fang; Sun, Su-qin

    2015-12-01

    In order to detect the road marking paint from the trace evidence in traffic accident scene, and to differentiate their brands, we use Tri-level infrared spectroscopic identification, which employs the Fourier transform infrared spectroscopy (FTIR), the second derivative infrared spectroscopy(SD-IR), two-dimensional correlation infrared spectroscopy(2D-IR) to identify three different domestic brands of hot melting reflective road marking paints and their raw materials in formula we Selected. The experimental results show that three labels coatings in ATR and FTIR spectrograms are very similar in shape, only have different absorption peak wave numbers, they have wide and strong absorption peaks near 1435 cm⁻¹, and strong absorption peak near 879, 2955, 2919, 2870 cm⁻¹. After enlarging the partial areas of spectrograms and comparing them with each kind of raw material of formula spectrograms, we can distinguish them. In the region 700-970 and 1370-1 660 cm⁻¹ the spectrograms mainly reflect the different relative content of heavy calcium carbonate of three brands of the paints, and that of polyethylene wax (PE wax), ethylene vinyl acetate resin (EVA), dioctyl phthalate (DOP) in the region 2800-2960 cm⁻¹. The SD-IR not only verify the result of the FTIR analysis, but also further expand the microcosmic differences and reflect the different relative content of quartz sand in the 512-799 cm-1 region. Within the scope of the 1351 to 1525 cm⁻¹, 2D-IR have more significant differences in positions and numbers of automatically peaks. Therefore, the Tri-level infrared spectroscopic identification is a fast and effective method to distinguish the hot melting road marking paints with a gradually improvement in apparent resolution. PMID:26964206

  2. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  3. Near-infrared reflectance spectra-applications to problems in asteroid-meteorite relationships

    NASA Technical Reports Server (NTRS)

    Mcfadden, Lucy A.; Chamberlin, Alan; Vilas, Faith

    1991-01-01

    Near-infrared spectral reflectance data were collected at the Infrared Telescope Facility (IRTF) at Mauna Kea Observatories in 1985 and 1986 for the purpose of searching the region near the 3:1 Kirkwood gap for asteroids with the spectral signatures of ordinary chondrite parent bodies. Twelve reflectance spectra are observed. The presence of ordinary chondrite parent bodies among this specific set of observed asteroids is not obvious, though the sample is biased towards the larger asteroids in the region due to limitations imposed by detector sensitivity. The data set, which was acquired with the same instrumentation used for the 52-color asteroid survey (Bell et al., 1987), also presents some additional findings. The range of spectral characteristics that exist among asteroids of the same taxonomic type is noted. Conclusions based on the findings are discussed.

  4. Infrared reflectance and photoemission spectroscopy studies across the phase transition boundary in thin film vanadium dioxide

    SciTech Connect

    Ruzmetov, Dmitry; Zawilski, Kevin; Senanayake, Sanjaya D; Narayanamurti, Venkatesh; Ramanathan, Shriram

    2008-01-01

    Optical properties and valence band density of states near the Fermi level of high-quality VO2 thin films have been investigated by mid-infrared reflectometry and hard-UV (h = 150 eV) photoemission spectroscopy. An exceptionally large change in reflectance from 2 to 94% is found upon the thermally driven metal insulator transition (MIT). The infrared dispersion spectra of the reflectance across the MIT are presented and evidence for the percolative nature of the MIT is pointed out. The discrepancy between the MIT temperatures defined from the electrical and optical properties is found and its origin is discussed. The manifestation of the MIT is observed in the photoemission spectra of the V 3d levels. The analysis of the changes of the V 3d density of states is done and the top valence band shift upon the MIT is measured to be 0.6 eV.

  5. Large-Area Reflective Infrared Filters for Millimeter/Sub-mm Telescopes

    NASA Astrophysics Data System (ADS)

    Ahmed, Z.; Grayson, J. A.; Thompson, K. L.; Kuo, C.-L.; Brooks, G.; Pothoven, T.

    2014-09-01

    Ground-based millimeter and sub-millimeter telescopes are attempting to image the sky with ever-larger cryogenically-cooled bolometer arrays, but face challenges in mitigating the infrared loading accompanying large apertures. Absorptive infrared filters supported by mechanical coolers scale insufficiently with aperture size. Reflective metal-mesh filters placed behind the telescope window provide a scalable solution in principle, but have been limited by photolithography constraints to diameters under 300 mm. We present laser etching as an alternate technique to photolithography for fabrication of large-area reflective filters, and show results from lab tests of 500-mm-diameter filters. Filters with up to 700-mm diameter can be fabricated using laser etching with existing capability.

  6. Optical constants of silver and copper indium ternary sulfides from infrared reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2016-03-01

    Infrared reflection spectra are obtained in the frequency range of 50-2000 cm-1 for AgIn5S8 and CuIn5S8 single crystals grown by Bridgman method. All four infrared-active modes are detected, which are in full agreement with the prediction of group-theoretical analysis. Spectral dependence of optical parameters; real and imaginary parts of the dielectric function, the function of energy losses, refractive index, absorption index and absorption coefficient were calculated from reflectivity experiments. The frequencies of transverse and longitudinal optical modes and oscillator strengths were also determined. The bands detected in IR spectra of studied crystals were assigned to various vibration types (valence and valence-deformation) on the basis of the symmetrized displacements of atoms obtained employing the Melvin projection operators.

  7. Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite

    NASA Astrophysics Data System (ADS)

    Aufort, Julie; Ségalen, Loïc; Gervais, Christel; Brouder, Christian; Balan, Etienne

    2016-06-01

    Attenuated total reflectance (ATR) infrared spectra were measured on a synthetic and a natural fluorapatite sample. A modeling approach based on the computation of the Fresnel reflection coefficient between the ATR crystal and the powder sample was used to analyze the line shape of the spectra. The dielectric properties of the samples were related to those of pure fluorapatite using an effective medium approach, based on Maxwell-Garnett and Bruggeman models. The Bruggeman effective medium model leads to a very good agreement with the experimental data recorded on the synthetic fluorapatite sample. The poorer agreement observed on the natural sample suggests a more significant heterogeneity of the sample at a characteristic length scale larger than the mid-infrared characteristic wavelength, i.e., about 10 micrometers. The results demonstrate the prominent role of macroscopic electrostatic effects over fine details of the microscopic structure in determining the line shape of strong ATR bands.

  8. Infrared reflectance spectroscopy and thermographic investigations of the Shroud of Turin.

    PubMed

    Accetta, J S; Baumgart, J S

    1980-06-15

    In this paper we present the results of the IR investigations of the controversial Turin Shroud. Reflectance spectroscopy in the 3-5- and 8-14-microm bands was attempted in situ using commercial equipment with moderate success. Spectral comparisons are made between laboratory reflectance data and selected Shroud features. Infrared thermographic imaging was accomplished with an enhanced contrast technique using external illumination. Due to the spectral similarities of most features observed, we show that the results are inconclusive. The IR imagery yielded results that are consistent with expectations with no anomalies observed. PMID:20221156

  9. Aircraft observations of Venus' near-infrared reflection spectrum - Implications for cloud composition

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Erickson, E. F.; Witteborn, F. C.; Chackerian, C., Jr.; Summers, A. L.; Van Camp, W.; Baldwin, B. J.; Augason, G. C.; Caroff, L. J.

    1974-01-01

    A comparison of aircraft-based measurement data on Venus' near-infrared (1.2- to 4.1-micron) reflection spectrum with computer generated spectra of a number of cloud candidates shows a 75-% or more concentrated water solution of sulfuric acid to give the only acceptable match to the profile of Venus' strong 3-micron absorption feature. However, the measurement data obtained also show a modest decline in reflectivity from 2.3-micron to 1.2-micron wavelength, which is inconsistent with the flat spectrum of sulfuric acid in this spectral region. It is hypothesized that this decline is due to impurities in the sulfuric acid droplets.

  10. Measuring near infrared spectral reflectance changes from water stressed conifer stands with AIS-2

    NASA Technical Reports Server (NTRS)

    Riggs, George; Running, Steven W.

    1987-01-01

    Airborne Imaging Spectrometer-2 (AIS-2) data was acquired over two paired conifer stands for the purpose of detecting differences in spectral reflectance between stressed and natural canopies. Water stress was induced in a stand of Norway spruce and white pine by severing the sapwood near the ground. Water stress during the AIS flights was evaluated through shoot water potential and relative water content measurements. Preliminary analysis with raw AIS-2 data using SPAM indicates that there were small, inconsistent differences in absolute spectral reflectance in the near infrared 0.97 to 1.3 micron between the stressed and natural canopies.

  11. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging.

    PubMed

    Allegra Mascaro, Anna Letizia; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S

    2015-11-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated. PMID:26601011

  12. Label-free near-infrared reflectance microscopy as a complimentary tool for two-photon fluorescence brain imaging

    PubMed Central

    Mascaro, Anna Letizia Allegra; Costantini, Irene; Margoni, Emilia; Iannello, Giulio; Bria, Alessandro; Sacconi, Leonardo; Pavone, Francesco S.

    2015-01-01

    In vivo two-photon imaging combined with targeted fluorescent indicators is currently extensively used for attaining critical insights into brain functionality and structural plasticity. Additional information might be gained from back-scattered photons from the near-infrared (NIR) laser without introducing any exogenous labelling. Here, we describe a complimentary and versatile approach that, by collecting the reflected NIR light, provides structural details on axons and blood vessels in the brain, both in fixed samples and in live animals under a cranial window. Indeed, by combining NIR reflectance and two-photon imaging of a slice of hippocampus from a Thy1-GFPm mouse, we show the presence of randomly oriented axons intermingled with sparsely fluorescent neuronal processes. The back-scattered photons guide the contextualization of the fluorescence structure within brain atlas thanks to the recognition of characteristic hippocampal structures. Interestingly, NIR reflectance microscopy allowed the label-free detection of axonal elongations over the superficial layers of mouse cortex under a cranial window in vivo. Finally, blood flow can be measured in live preparations, thus validating label free NIR reflectance as a tool for monitoring hemodynamic fluctuations. The prospective versatility of this label-free technique complimentary to two-photon fluorescence microscopy is demonstrated in a mouse model of photothrombotic stroke in which the axonal degeneration and blood flow remodeling can be investigated. PMID:26601011

  13. Selecting the Right Tool: Comparison of the Analytical Performance of Infrared Attenuated Total Reflection Accessories.

    PubMed

    Schädle, Thomas; Mizaikoff, Boris

    2016-06-01

    The analytical performance of four commercially available infrared attenuated total reflection (IR-ATR) accessories with various ATR waveguide materials has been analyzed and evaluated using acetate, CO2, and CO3 (2-) solutions. Calibration functions have been established to determine and compare analytically relevant parameters such as sensitivity, signal-to-noise ratio (SNR), and efficiency. The obtained parameters were further analyzed to support conclusions on the differences in performance of the individual IR-ATR accessories. PMID:27091901

  14. Influence of Si doping on the infrared reflectance characteristics of GaN grown on sapphire

    NASA Astrophysics Data System (ADS)

    Hou, Y. T.; Feng, Z. C.; Chua, S. J.; Li, M. F.; Akutsu, N.; Matsumoto, K.

    1999-11-01

    Si-doped GaN films grown on sapphire are investigated by infrared reflectance. A damping behavior of the interference fringes is observed, and interpreted to be due to the presence of an interface layer between the film and the substrate. A theoretical calculation using a two-layer model to take into account the interface layer resulted in this damping in agreement with the experiment. The damping behavior and an improvement of interface properties by Si incorporation are demonstrated.

  15. Improved calibration technique of the infrared imaging bolometer using ultraviolet light-emitting diodes.

    PubMed

    Drapiko, E; Peterson, B; Alekseev, A; Seo, D C

    2010-10-01

    The technique used until recently utilizing the Ne-He laser for imaging bolometer foils calibration [B. J. Peterson et al., J. Plasma Fusion Res. 2, S1018 (2007)] has showed several issues. The method was based on irradiation of 1 cm spaced set of points on a foil by the laser beam moved by set of mirrors. Issues were the nonuniformity of laser power due to the vacuum window transmission nonuniformity and high reflection coefficient for the laser. Also, due to the limited infrared (IR) window size, it was very time consuming. The new methodology uses a compact ultraviolet (uv) light-emitting diodes installed inside the vacuum chamber in a fixed position and the foil itself will be moved in the XY directions by two vacuum feedthroughs. These will help to avoid the above mentioned issues due to lack of a vacuum window, fixed emitters, higher uv power absorption, and a fixed IR camera position. PMID:21033981

  16. High reflected cubic cavity as long path absorption cell for infrared gas sensing

    NASA Astrophysics Data System (ADS)

    Yu, Jia; Gao, Qiang; Zhang, Zhiguo

    2014-10-01

    One direct and efficient method to improve the sensitivity of infrared gas sensors is to increase the optical path length of gas cells according to Beer-Lambert Law. In this paper, cubic shaped cavities with high reflected inner coating as novel long path absorption cells for infrared gas sensing were developed. The effective optical path length (EOPL) for a single cubic cavity and tandem cubic cavities were investigated based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) measuring oxygen P11 line at 763 nm. The law of EOPL of a diffuse cubic cavity in relation with the reflectivity of the coating, the port fraction and side length of the cavity was obtained. Experimental results manifested an increase of EOPL for tandem diffuse cubic cavities as the decrease of port fraction of the connecting aperture f', and the EOPL equaled to the sum of that of two single cubic cavities at f'<0.01. The EOPL spectra at infrared wavelength range for different inner coatings including high diffuse coatings and high reflected metallic thin film coatings were deduced.

  17. Graphical Approach to Fresnel's Equations for Reflection and Refraction of Light.

    ERIC Educational Resources Information Center

    Doyle, William T.

    1980-01-01

    Develops a coordinate-free approach to Fresnel's equations for the reflection and refraction of light at a plane interface. Describes a graphical construction for finding the vector amplitudes of the reflected and transmitted waves. (Author/CS)

  18. Lights, Camera, Action: Facilitating PETE Students' Reflection through Film

    ERIC Educational Resources Information Center

    Lee, Okseon; Ravizza, Dean; Lee, Myung-Ah

    2009-01-01

    Preparing teacher candidates to be reflective professionals is a critical component of physical education teacher education programs. Although many specific strategies have been developed to facilitate post-lesson reflection, strategies for reflecting on future work and professional life have not been widely explored. As a way to facilitate…

  19. Comparison of Diffuse Reflectance Fourier Transform Mid-Infrared and Near-Infrared Spectroscopy with Grating-Based Near-Infrared for the Determination of Fatty Acids in Forages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse reflectance Fourier transform mid-infrared (FTMIR) and near infrared spectroscopy (FTNIR) were compared to scanning monochromator-grating-based near infrared spectroscopy (SMNIR), for their ability to quantify fatty acids (FA) in forages. Thirteen different forage cultivars belonging to 11 d...

  20. The use of visible and near-infrared reflectance spectra for estimating organic matter thermal maturity

    SciTech Connect

    Rowan, L.C.; Poole, F.G.; Pawlewicz, M.J.

    1995-10-01

    Measurements of visible and near-infrared spectral reflectance of 41 samples of mudstone, silt-stone, and carbonate rocks representing two major depositional settings in Nevada were compared to vitrinite reflectance (R{sub o}) and hydrogen index (HI) measurements to determine the relation between spectral reflectance and organic matter (OM) maturity. The samples range in age from Devonian to Paleogene and have highly variable total organic carbon (TOC) contents, recycled OM contents, and kerogen compositions. Visible and near-infrared spectral reflectance of the samples changes systematically as OM maturity increases from submature to supermature (R{sub o} range of 0.28 to 4.32); therefore, spectral reflectance generally can be used to estimate the thermal maturity of the contained OM. The sum of several ratios (compound ratio) used to express spectral changes in the visible and near-infrared wavelength region is high for most submature samples, decreases rapidly with increasing R{sub o} into the mature range, and then decreases less rapidly through the remaining mature range and the supermature range. A similar trend is displayed in the plot of HI vs. compound ratio. Some spectra are affected by iron absorption features and the presence of recycled OM. Iron absorption generally causes the compound ratio values to be anomalously high relative to the OM maturity, whereas recycled OM results in unusually low ratio values. Spectra affected by recycled OM were identified by using a pair of ratios that expresses the difference in spectral shape between these spectra and spectra of supermature samples, which they resemble. Samples containing recycled kerogen are much more numerous from the Mississippian prodelta basin of the Antler foreland basin than from the Antler orogene; this difference indicates derivation of much of the kerogen from the orogene.

  1. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs, particularly at MIR wavelengths (3 to 5 microns), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  2. Health Monitoring of Thermal Barrier Coatings by Mid-Infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Spuckler, C. M.; Nesbitt, J. A.; Street, K. W.

    2002-01-01

    Mid-infrared (MIR) reflectance is shown to be a powerful tool for monitoring the integrity of 8wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs). Because of the translucent nature of plasma-sprayed 8YSZ TBCs at MIR wavelengths (3 to 5 pm), measured reflectance does not only originate from the TBC surface, but contains strong contributions from internal scattering within the coating as well as reflectance from the underlying TBC/substrate interface. Therefore, changes in MIR reflectance measurements can be used to monitor the progression of TBC delamination. In particular, MIR reflectance is shown to reproducibly track the progression of TBC delamination produced by repeated thermal cycling (to 1163 C) of plasma-sprayed 8YSZ TBCs on Rene N5 superalloy substrates. To understand the changes in MIR reflectance with the progression of a delamination crack network, a four-flux scattering model is used to predict the increase in MIR reflectance produced by the introduction of these cracks.

  3. Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System

    PubMed Central

    Lee, Hoonsoo; Kim, Moon S.; Jeong, Danhee; Delwiche, Stephen R.; Chao, Kuanglin; Cho, Byoung-Kwan

    2014-01-01

    The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detecting cuticle cracks on tomatoes. A hyperspectral NIR reflectance imaging system that analyzed the spectral region of 1000–1700 nm was used to obtain hyperspectral reflectance images of 224 tomatoes: 112 with and 112 without cracks along the stem-scar region. The hyperspectral images were subjected to partial least square discriminant analysis (PLS-DA) to classify and detect cracks on the tomatoes. Two morphological features, roundness (R) and minimum-maximum distance (D), were calculated from the PLS-DA images to quantify the shape of the stem scar. Linear discriminant analysis (LDA) and a support vector machine (SVM) were then used to classify R and D. The results revealed 94.6% and 96.4% accuracy for classifications made using LDA and SVM, respectively, for tomatoes with and without crack defects. These data suggest that the hyperspectral near-infrared reflectance imaging system, in addition to traditional NIR spectroscopy-based methods, could potentially be used to detect crack defects on tomatoes and perform quality assessments. PMID:25310472

  4. Quantitative analysis of sulfathiazole polymorphs in ternary mixtures by attenuated total reflectance infrared, near-infrared and Raman spectroscopy.

    PubMed

    Hu, Yun; Erxleben, Andrea; Ryder, Alan G; McArdle, Patrick

    2010-11-01

    The simultaneous quantitative analysis of sulfathiazole polymorphs (forms I, III and V) in ternary mixtures by attenuated total reflectance-infrared (ATR-IR), near-infrared (NIR) and Raman spectroscopy combined with multivariate analysis is reported. To reduce the effect of systematic variations, four different data pre-processing methods; multiplicative scatter correction (MSC), standard normal variate (SNV), first and second derivatives, were applied and their performance was evaluated using their prediction errors. It was possible to derive a reliable calibration model for the three polymorphic forms, in powder ternary mixtures, using a partial least squares (PLS) algorithm with SNV pre-processing, which predicted the concentration of polymorphs I, III and V. Root mean square errors of prediction (RMSEP) for ATR-IR spectra were 5.0%, 5.1% and 4.5% for polymorphs I, III and V, respectively, while NIR spectra had a RMSEP of 2.0%, 2.9%, and 2.8% and Raman spectra had a RMSEP of 3.5%, 4.1%, and 3.6% for polymorphs I, III and V, respectively. NIR spectroscopy exhibits the smallest analytical error, higher accuracy and robustness. When these advantages are combined with the greater convenience of NIR's "in glass bottle" sampling method both ATR-IR and Raman methods appear less attractive. PMID:20605386

  5. Study on the activation of styrene-based shape memory polymer by medium-infrared laser light

    SciTech Connect

    Leng Jinsong; Yu Kai; Lan Xin; Zhang Dawei; Liu Yanju

    2010-03-15

    This paper demonstrates the feasibility of shape memory polymer (SMP) activation by medium-infrared laser light. Medium-infrared light is transmitted by an optical fiber embedded in the SMP matrix, and the shape recovery process and temperature distribution are recorded by an infrared camera. Light-induced SMP exhibits potential applications in biomedicines and flexible displays.

  6. Light-Induced Infrared Difference Spectroscopy in the Investigation of Light Harvesting Complexes.

    PubMed

    Mezzetti, Alberto

    2015-01-01

    Light-induced infrared difference spectroscopy (IR-DS) has been used, especially in the last decade, to investigate early photophysics, energy transfer and photoprotection mechanisms in isolated and membrane-bound light harvesting complexes (LHCs). The technique has the definite advantage to give information on how the pigments and the other constituents of the biological system (proteins, membranes, etc.) evolve during a given photoreaction. Different static and time-resolved approaches have been used. Compared to the application of IR-DS to photosynthetic Reaction Centers (RCs), however, IR-DS applied to LHCs is still in an almost pioneering age: very often sophisticated techniques (step-scan FTIR, ultrafast IR) or data analysis strategies (global analysis, target analysis, multivariate curve resolution) are needed. In addition, band assignment is usually more complicated than in RCs. The results obtained on the studied systems (chromatophores and RC-LHC supercomplexes from purple bacteria; Peridinin-Chlorophyll-a-Proteins from dinoflagellates; isolated LHCII from plants; thylakoids; Orange Carotenoid Protein from cyanobacteria) are summarized. A description of the different IR-DS techniques used is also provided, and the most stimulating perspectives are also described. Especially if used synergically with other biophysical techniques, light-induced IR-DS represents an important tool in the investigation of photophysical/photochemical reactions in LHCs and LHC-containing systems. PMID:26151118

  7. Cryogenic Infrared Reflectance Spectra of Organic Ices and Their Relevance to the Surface Composition of Titan

    NASA Astrophysics Data System (ADS)

    Curchin, John; Clark, R. N.; Hoefen, T. M.

    2006-09-01

    In order to properly interpret reflectance spectra of Titan's surface, laboratory spectra of candidate materials for comparative analysis is needed. Although the common cosmochemical species (H2O, CO2, CO, NH3, and CH4) are well represented in the spectroscopic literature, comparatively little reflectance work has been done on organics at cryotemperatures at visible to near infrared wavelengths. Measurement of reflectance is required for characterizing weak features not seen in transmittance. Such features may be important in remote sensing of planetary surfaces. The USGS Spectroscopy Laboratory uses Nicolet FT-IR and ASD field spectrometers in combination with cryogenic chambers to acquire reflectance spectra of organic ices at approximately 80-90 ºK in a wavelength range of 0.35 to 15.5 microns. This region encompasses the fundamental absorptions and many overtones and combinations of major organic molecules including those with hydrogen-carbon, carbon-carbon (single, double and triple bonds), carbon-oxygen, oxygen-hydrogen, carbon-nitrogen, and nitrogen-hydrogen bonds. Because most organic compounds belong to families with similar structure and composition, individual species identification within a narrow wavelength range may be ambiguous. Only by measuring spectral reflectance of the pure laboratory ices from the visible through the near and mid-infrared can absorption bands unique to each be observed, cataloged and compared to planetary reflectance data. We present here spectra of organic ices belonging to eight families, the alkanes, cycloalkanes, alkenes, alkynes, aromatics, nitriles, amines, and cyanides. Many of these compounds are predicted to coat the surface of Titan and indeed, a number of atmospheric windows, particularly at 5 microns, have allowed their identification with VIMS (Clark et al., DPS 2006, this volume). The spectral properties of these materials have applications to other solar system surfaces and remote sensing of terrestrial

  8. Assessment of diffuse transmission and reflection modes in near-infrared quantification, part 2: DIFFuse reflection information depth.

    PubMed

    Saeed, Muhanned; Probst, Leila; Betz, Gabriele

    2011-03-01

    Near-infrared spectroscopy offers tremendous advantages for pharmaceutical manufacturing as a fast and nondestructive method of quantitative and qualitative analysis. Content uniformity (end-product analytics) and process analytics are two important applications of the method. Diffuse reflection (DR) information depth (vertical sampling span) assessment is of equal importance in content prediction applications and to understand the effect of inhomogeneities in the sample. Three experiments were conducted: (a) 0.5 to 10.0 mm incremental thickness MCC tablets with constant porosity, (b) MCC/phenylbutazone (PBZ) double-layered (DL) tablets (PBZ layer 0%-100% in 0.5 mm steps), and (c) Comparison of placebo and 30% caffeine tablet cores with incremental film coating (film thickness of 0-0.35 mm). Incremental thickness and cluster analysis of DL tablets showed that DR information depth was <0.5 mm, whereas the data fitting from incremental coating showed that signal drop reached 50% at 0.05 to 0.07 mm, depending on the wavenumber and 90% signal drop (10% information content) can be seen between 0.20 and 0.25 mm without extrapolation. These results mean that DR mode for pharmaceutical tablets obtains spectral information from the very surface, and radiation is barely reflected back from beyond thin-film coatings, making it less useful than diffuse transmission mode for core content analysis, especially for thick-coated, multilayer, multicore, or highly inhomogeneous tablets. PMID:20862671

  9. Nondestructive Evaluation of Thermal Barrier Coatings by Mid-infrared Reflectance

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I; Spuckler, Charles M.; Nesbitt, James A.; Martin, Richard E.

    2005-01-01

    The application of mid-infrared reflectance (MIR) imaging to monitor damage in thermal barrier coatings (TBCs) has been extended from a previously demonstrated area-averaged spectroscopic analysis tool to become a practical imaging tool that provides the spatial resolution needed to quickly identify localized regions of TBC damage by visual inspection, Illumination optics and image collection procedures were developed to produce illumination-normalized flatfield reflectance images after subtraction of the background thermal emission. MIR reflectance images were collected with a bandpass filter centered at a wavelength of 4 microns, which provided the optimum balance between good sensitivity to buried cracks and coating erosion, but with a desirable sensitivity to TBC sintering and absorption from ambient gases. Examples are presented of the application of MIR reflectance imaging to monitor damage progression in plasma-sprayed 8wt% yttria-stabilized zirconia (8YSZ) TBCs subjected to either furnace cycling or alumina particle jet erosion. These results show that MIR reflectance imaging can reliably track the progression of buried delamination cracks produced by thermal cycling and can also be used to determine when any local section of the TBC has eroded beyond an acceptable limit. Modeling of the effects of buried cracks and erosion on reflectance will be presented to show the dependence of damage sensitivity to TBC thickness.

  10. Development of a realistic photonic modeling for the evaluation of infrared reflections in the metallic environment of ITER

    SciTech Connect

    Aumeunier, M.-H.; Travere, J.-M.

    2010-10-15

    In nuclear fusion experiments, the plasma facing components are exposed to high heat fluxes and infrared (IR) imaging diagnostics are routinely used for surveying their surface temperature for preventing damages. However the future use of metallic components in the ITER tokamak adds complications in temperature estimation. Indeed, low and variable emissivity of the observed surface and the multiple reflections of the light coming from hot regions will have to be understood and then taken into account. In this paper, a realistic photonic modeling based on Monte Carlo ray-tracing codes is used to predict the global response of the complete IR survey system. This also includes the complex vessel geometry and the thermal and optical surface properties using the bidirectional reflectivity distribution function that models the photon-material interactions. The first results of this simulation applied to a reference torus are presented and are used as a benchmark to investigate the validity of the global model. Finally the most critical key model parameters in the reflected signals are identified and their contribution is discussed.

  11. High temperature far-infrared dynamics of orthorhombic NdMnO3: emissivity and reflectivity.

    PubMed

    Massa, Néstor E; del Campo, Leire; Meneses, Domingos De Sousa; Echegut, Patrick; Martínez-Lope, María Jesús; Alonso, José Antonio

    2013-06-12

    We report on near normal far- and mid-infrared emission and reflectivity of NdMnO3 perovskite from room temperature to sample decomposition above 1800 K. At 300 K the number of infrared active phonons is in close agreement with the 25 calculated for the orthorhombic D(2h)(16)-Pbnm (Z = 4) space group. Their number gradually decreases as we approach the temperature of orbital disorder at ~1023 K where the orthorhombic O' lower temperature cooperative phase coexists with the cubic orthorhombic O. At above ~1200 K, the three infrared active phonons coincide with that expected for cubic Pm-3m (Z = 1) in the high temperature insulating regime. Heating samples in dry air triggers double exchange conductivity by Mn(3+) and Mn(4+) ions and a small polaron mid-infrared band. Fits to the optical conductivity single out the octahedral antisymmetric and symmetric vibrational modes as the main phonons in the electron-phonon interactions at 875 K. For 1745 K, it is enough to consider the symmetric stretching internal mode. An overdamped defect induced Drude component is clearly outlined at the highest temperatures. We conclude that rare earth manganite eg electrons are prone to spin, charge, orbital, and lattice couplings in an intrinsic orbital distorted perovskite lattice, favoring embryonic low energy collective excitations. PMID:23676242

  12. Quantum Well Infrared Photodetectors: Device Physics and Light Coupling

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Mumolo, J.; Luong, E.; Hong, W.; Sengupta, D. K.

    1997-01-01

    It is customary to make infrared (IR) detectors in the long wavelength range by utilizing the interband transition which promotes an electron across the band gap (Eg) from the valence band to the conduction.

  13. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light

    NASA Astrophysics Data System (ADS)

    Kniazkov, A. V.

    2016-04-01

    Electro-optic coefficients of variations in the refractive index of PZT and PLZT ceramic materials induced by ac electric field are estimated using modulation of reflected light. The electro-optic coefficients of PLZT ceramics measured with the aid of conventional birefringence using the phase shift of transmitted radiation and the proposed method of birefringence using the modulation of reflected light are compared.

  14. Method of Detecting Coliform Bacteria and Escherichia Coli Bacteria from Reflected Light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting coliform bacteria in water from reflected light and a method of detecting Eschericha Coli bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  15. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    PubMed Central

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  16. Applications of diffuse reflectance Fourier transform infrared spectroscopy to fiber-reinforced composites

    SciTech Connect

    Cole, K.C.; Noel, D.; Hechler, J.J.

    1988-12-01

    Diffuse reflectance Fourier transform infrared (FTIR) spectroscopy can be used to obtain infrared spectra directly from the surface of composite materials, with little or no sample preparation. It is thus of interest as a nondestructive method for industrial inspection. In many cases, the IR spectra provide detailed information concerning the chemical composition and molecular structure of the material. The technique works particularly well for carbon-fiber composites. This paper describes the principles involved, some factors which influence the quality of the spectra, and a number of examples of applications. These include the characterization of epoxy matrices (composition, curing, degradation), the detection of surface contamination, and the determination of the degree of crystallinity in poly(phenylene sulfide)-based composites. 24 references.

  17. Transcutaneous analyte measuring method (TAMM): a reflective, noninvasive, near-infrared blood chemistry analyzer

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.; Ruchti, Timothy L.

    1995-04-01

    TAMM for Transcutaneous Analyte Measuring Method is a near infrared spectroscopic technique for the noninvasive measurement of human blood chemistry. A near infrared indium gallium arsenide (InGaAs) photodiode array spectrometer has been developed and tested on over 1,000 patients as a part of an SBIR program sponsored by the Naval Medical Research and Development Command. Nine (9) blood analytes have been measured and evaluated during pre-clinical testing: sodium, chloride, calcium, potassium, bicarbonate, BUN, glucose, hematocrit and hemoglobin. A reflective rather than a transmissive invasive approach to measurement has been taken to avoid variations resulting from skin color and sensor positioning. The current status of the instrumentation, neural network pattern recognition algorithms and test results will be discussed.

  18. Mars - Near-infrared spectral reflectance of surface regions and compositional implications

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Clark, R. N.; Singer, R. B.

    1982-04-01

    Both morphological and compositional information are needed to define and characterize surface geologic units on Mars. A description is presented of new, near-infrared spectra (0.65 to 2.50 micrometers) for 11 regions on the Martian surface observed in 1978. The high photometric quality of these data combined with increased near-infrared spectral coverage provide new information about the spectral behavior and, therefore, the composition and physical nature of Martian surface materials. The spectral reflectances were obtained with the aid of a 2.2-m telescope located on Mauna Kea, Hawaii. A cooled (to 77 K) circular variable filter spectrometer with an InSb detector was used to measure alternatively Mars and the standard star Beta Geminorum. Attention is given to general spectral characteristics, the dark region composition, spectral evidence for water, and the 2.3 micrometer absorption.

  19. Infrared Attenuated Total Reflectance Spectroscopy: An Innovative Strategy for Analyzing Mineral Components in Energy Relevant Systems

    NASA Astrophysics Data System (ADS)

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Piane, Claudio Delle; Raven, Mark; Mizaikoff, Boris

    2014-10-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis.

  20. Infrared attenuated total reflectance spectroscopy: an innovative strategy for analyzing mineral components in energy relevant systems.

    PubMed

    Müller, Christian Menno; Pejcic, Bobby; Esteban, Lionel; Delle Piane, Claudio; Raven, Mark; Mizaikoff, Boris

    2014-01-01

    The direct qualitative and quantitative determination of mineral components in shale rocks is a problem that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least squares (PLS) regression techniques for classifying and quantifying various mineral components present in a number of different shale rocks. The developed multivariate classification model was calibrated using pure component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally, the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction (XRD) analysis. PMID:25358261

  1. Study of Spectral Modifications in Acidified Ignitable Liquids by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy.

    PubMed

    Martín-Alberca, Carlos; Ojeda, Fernando Ernesto Ortega; García-Ruiz, Carmen

    2016-03-01

    In this work, the spectral characteristics of two types of acidified gasoline and acidified diesel fuel are discussed. Neat and acidified ignitable liquids (ILs) infrared absorption spectra obtained by attenuated total reflection Fourier transform infrared spectroscopy were compared in order to identify the modifications produced by the reaction of the ILs with sulfuric acid. Several bands crucial for gasoline identification were modified, and new bands appeared over the reaction time. In the case of acidified diesel fuel, no significant modifications were observed. Additionally, the neat and acidified ILs spectra were used to perform a principal components analysis in order to confirm objectively the results. The complete discrimination among samples was successfully achieved, including the complete differentiation among gasoline types. Taking into account the results obtained in this work, it is possible to propose spectral fingerprints for the identification of non-burned acidified ILs in forensic investigations related with arson or the use of improvised incendiary devices (IIDs). PMID:26810182

  2. Far-infrared reflectivity and Raman spectra of Ba5Nb4O15

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Pagola, Silvina; Carbonio, Raúl

    1996-04-01

    We report low-temperature, far-infrared reflectivity, and Raman-scattering measurements for layered Ba5Nb4O15. We find that this material is characterized by a strong anharmonic lattice where the symmetric stretching vibration of the empty octahedra, a singular feature of this layer compound, splits into two narrow Raman-active bands. We assign them to the same phonon in a slightly different environment, and suggest a small local departure of the reported centrosymmetric D33d-P3m1 space group. We think that the infrared and mainly the Raman band profiles indicate that the lattice of Ba5Nb4O15 is close to collapsing into a lower symmetry structure.

  3. Killing Cancer Cells with the Help of Infrared Light – Photoimmunotherapy

    Cancer.gov

    Near-infrared photoimmunotherapy uses an antibody–photoabsorber conjugate that binds to cancer cells. When near-infrared light is applied, the cells swell and then burst, causing the cancer cell to die. Photoimmunotherapy is in clinical trials in patients with inoperable tumors.

  4. Near-infrared reflectance spectroscopy as a novel method to detect demyelination in rat sciatic nerve in vivo

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Senapati, Arun; Peng, Yuan Bo; Kashyap, Dheerendra; Liu, Hanli

    2005-04-01

    This study was done to use near infrared (NIR) spectroscopy to bring out differences in the anatomical substructures in the rat spinal cord and further to differentiate scattering between demyelinated and normal sciatic nerves in rat models, thereby exploring a new methodology to localize MS (multiple Sclerosis) lesions in vivo for animal studies. The experimental setup consisted of a tungsten light source, CCD array spectrometer, and bifurcated optical fibers for light delivery and detection of back scattered light from tissue. The measurement system was calibrated with reflectance standard. The spinal cord of 14 rats was exposed by laminectomy, and the measurements were taken on 8 points at intervals of 1 mm on the right and left lumbar-sacral regions and the central blood vessel. For measurements on the sciatic nerve, the spinal nerves of 84 rats were ligated according to the Chung Model. Measurements were taken on five points on both the ligated and the control nerve side after 1, 4, 7 and 14 days. The reduced scattering coefficient, μs', was found to be higher in the lumbar-sacral regions (34.17 +/- 2.05 cm-1) than that near the central blood vessel (19.9 +/- 3.8 cm-1). Statistically, there was significant difference in scattering between the control side and the ligated side on postoperative days 4, 7, and 14. This study shows a promising diagnostic value in the future for monitoring of demyelinated CNS (central nervous system) diseases, like Multiple Sclerosis.

  5. Specular reflectance of optical-black coatings in the far infrared

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1984-01-01

    Far-infrared specular reflectance spectra of seven optically black coatings near normal incidence are presented. Seven photometric spectra were obtained using eleven bandpass transmission filters in the wavelength range between 12 and 500 microns, and three interferometric spectra were obtained for corroboration. Data on the construction, thickness, and rms surface roughness of the coatings are also presented. The chemical composition of three coatings can be distinguished from that of the others by a strong absorption feature between 20 and 40 microns, which can be largely attributed to amorphous silicate material. At 100 microns, the most and least reflective coatings differ by nearly 3 orders of magnitude. Inverse relationships observed between the spectra and the roughness and thickness of the coatings led to development of a reflecting-layer model for the measured reflectance. The model successfully describes the spectra at wavelengths outside the silicate absorption, and optical constants are deduced from a nonlinear least squares fit to the data. Parametric errors are estimated by chi-square analysis, and sensitivity tests are performed to determine which parameters control reflectance in different spectral regions.

  6. Investigations of high-speed digital imaging of low-light-level events using pulsed near-infrared laser light sources

    NASA Astrophysics Data System (ADS)

    Jantzen, Connie; Slagle, Rick

    1997-05-01

    The distinction between exposure time and sample rate is often the first point raised in any discussion of high speed imaging. Many high speed events require exposure times considerably shorter than those that can be achieved solely by the sample rate of the camera, where exposure time equals 1/sample rate. Gating, a method of achieving short exposure times in digital cameras, is often difficult to achieve for exposure time requirements shorter than 100 microseconds. This paper discusses the advantages and limitations of using the short duration light pulse of a near infrared laser with high speed digital imaging systems. By closely matching the output wavelength of the pulsed laser to the peak near infrared response of current sensors, high speed image capture can be accomplished at very low (visible) light levels of illumination. By virtue of the short duration light pulse, adjustable to as short as two microseconds, image capture of very high speed events can be achieved at relatively low sample rates of less than 100 pictures per second, without image blur. For our initial investigations, we chose a ballistic subject. The results of early experimentation revealed the limitations of applying traditional ballistic imaging methods when using a pulsed infrared lightsource with a digital imaging system. These early disappointing results clarified the need to further identify the unique system characteristics of the digital imager and pulsed infrared combination. It was also necessary to investigate how the infrared reflectance and transmittance of common materials affects the imaging process. This experimental work yielded a surprising, successful methodology which will prove useful in imaging ballistic and weapons tests, as well as forensics, flow visualizations, spray pattern analyses, and nocturnal animal behavioral studies.

  7. Demonstration of light reflection from the relativistic mirror

    NASA Astrophysics Data System (ADS)

    Pirozhkov, A. S.; Esirkepov, T. Z.; Kando, M.; Fukuda, Y.; Ma, J.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-05-01

    Electromagnetic wave frequency upshifting upon reflection from a relativistic mirror (the double Doppler effect) can be used for the generation of coherent high-frequency radiation. The reflected high-frequency pulse inherits the coherence, polarization, and temporal shape from the original laser pulse. A partly reflecting relativistic mirror (flying mirror) can be formed by a breaking wake wave created by a strong laser pulse propagating in underdense plasma [Bulanov S V et al. 2003 Phys. Rev. Lett. 91, 085001]. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the flying mirror. In the experiment, the breaking wake wave is created by a Ti:S laser pulse (2 TW, 76 fs) in helium plasma with the electron density of ~5×1019 cm-3. The incidence angle of the second laser pulse on the flying mirror is 45°. The reflected signal is observed in 24 shots, with the wavelength from 7 to 14 nm, which corresponds to the frequency upshifting factors from 55 to 114 and the relativistic gamma-factors from 4 to 6. The reflected signal contains at least 3×107 photons/sr. The new source promises the generation of coherent ultrashort XUV and x-ray pulses with tunable wavelength and duration, with the possibility of focusing to record intensities.

  8. Infrared reflectance spectra (2.2-15 microns) of plagioclase feldspars

    NASA Technical Reports Server (NTRS)

    Nash, Douglas B.; Salisbury, John W.

    1991-01-01

    Laboratory results show that (1) the Christiansen frequency (CF) feature in mid-infrared reflectance spectra of powders can be used to accurately distinguish plagioclase composition, and (2) the wavelength position of the CF is not affected by vitrification of the plagioclase. Although the CF position does not distinguish glass from crystalline forms of plagioclase, other features (combination-tone, overtone, restrahlen bands) in the mid-IR spectra of plagioclase can be used for that purpose. These results have important implications for application of thermal emission spectroscopy to mapping the surface composition of regolith-covered planetary bodies like the moon, Mars, and asteroids.

  9. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    NASA Technical Reports Server (NTRS)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  10. Atomic Scale Flatness of Chemically Cleaned Silicon Surfaces Studied by Infrared Attenuated-Total-Reflection Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sawara, Kenichi; Yasaka, Tatsuhiro; Miyazaki, Seiichi; Hirose, Masataka

    1992-07-01

    Hydrogen-terminated Si(111) and Si(100) surfaces obtained by aqueous HF or pH-modified (pH{=}5.3) buffered-HF (BHF) treatments have been characterized by a Fourier transform infrared (FT-IR) attenuated-total-reflection (ATR) technique. The BHF treatment provides better surface flatness than the HF treatment. Pure water rinse is effective for improving the Si(111) surface flatness, while this is not the case for Si(100) because the pure water acts as an alkaline etchant and promotes the formation of (111) microfacets or microdefects on the (100) surface.

  11. Preliminary Method for Direct Quantification of Colistin Methanesulfonate by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    PubMed Central

    Niece, Krista L.

    2015-01-01

    Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160

  12. Multivariate determination of hematocrit in whole blood by attenuated total reflection infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kostrewa, S.; Paarmann, Ch.; Goemann, W.; Heise, H. M.

    1998-06-01

    A spectral analysis of whole blood was undertaken in the mid-infrared spectral range by using the attenuated total reflection technique. The reference hematocrit values of 109 blood samples were measured after centrifugation with a range between 30% and 50%. Multivariate calibration with the partial least-squares (PLS) algorithm was performed using baseline corrected absorbance spectra between 1600 and 1200 cm-1. The relative prediction error achieved was 2.7% based on average hematocrit values. The performance is comparable to that using centrifugation or conductivity measurements. The spectral effects from protein adsorption onto the ATR-crystal, as well as erythrocyte sedimentation have been investigated.

  13. Imaging the Material Properties of Bone Specimens Using Reflection-Based Infrared Microspectroscopy

    SciTech Connect

    Acerbo A. S.; Carr, G.L.; Judex, S.; Miller, L.M.

    2012-03-13

    Fourier transform infrared microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 {micro}m for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/nonstoichiometric apatite crystallinity parameter shifted from 1032/1021 cm{sup -1} in transmission-based to 1035/1025 cm{sup -1} in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such as nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone's material and mechanical properties.

  14. Imaging the Material Properties of Bone Specimens using Reflection-Based Infrared Microspectroscopy

    PubMed Central

    Acerbo, Alvin S.; Carr, G. Lawrence; Judex, Stefan; Miller, Lisa M.

    2012-01-01

    Fourier Transform InfraRed Microspectroscopy (FTIRM) is a widely used method for mapping the material properties of bone and other mineralized tissues, including mineralization, crystallinity, carbonate substitution, and collagen cross-linking. This technique is traditionally performed in a transmission-based geometry, which requires the preparation of plastic-embedded thin sections, limiting its functionality. Here, we theoretically and empirically demonstrate the development of reflection-based FTIRM as an alternative to the widely adopted transmission-based FTIRM, which reduces specimen preparation time and broadens the range of specimens that can be imaged. In this study, mature mouse femurs were plastic-embedded and longitudinal sections were cut at a thickness of 4 μm for transmission-based FTIRM measurements. The remaining bone blocks were polished for specular reflectance-based FTIRM measurements on regions immediately adjacent to the transmission sections. Kramers-Kronig analysis of the reflectance data yielded the dielectric response from which the absorption coefficients were directly determined. The reflectance-derived absorbance was validated empirically using the transmission spectra from the thin sections. The spectral assignments for mineralization, carbonate substitution, and collagen cross-linking were indistinguishable in transmission and reflection geometries, while the stoichiometric/non-stoichiometric apatite crystallinity parameter shifted from 1032 / 1021 cm−1 in transmission-based to 1035 / 1025 cm−1 in reflection-based data. This theoretical demonstration and empirical validation of reflection-based FTIRM eliminates the need for thin sections of bone and more readily facilitates direct correlations with other methods such nanoindentation and quantitative backscatter electron imaging (qBSE) from the same specimen. It provides a unique framework for correlating bone’s material and mechanical properties. PMID:22455306

  15. Diagnosis of the phase function of random media from light reflectance

    PubMed Central

    Xu, Min

    2016-01-01

    Light reflectance has been widely used to diagnose random media in both in situ and in vivo applications. The quantification of the phase function of the medium from reflectance measurements, however, remains elusive due to the lack of an explicit connection between the light reflectance profile and the phase function. Here we first present an analytical model for reflectance of scattered light at an arbitrary source-detector separation by forward-peaked scattering media such as biological tissue and cells. The model incorporates the improved small-angle scattering approximation (SAA) to radiative transfer for sub-diffusive light reflectance and expresses the dependence of the light reflectance on the phase function of the scattering medium in a closed form. A spreading length scale, lΘ, is found to characterise subdiffusive light reflectance at the high spatial frequency (close separation) limit. After validation by Monte Carlo simulations, we then demonstrate the application of the model in accurate determination of the complete set of optical properties and the phase function of a turbid medium from the profile of subdiffusive and diffusive light reflectance. PMID:26935167

  16. Diagnosis of the phase function of random media from light reflectance

    NASA Astrophysics Data System (ADS)

    Xu, Min

    2016-03-01

    Light reflectance has been widely used to diagnose random media in both in situ and in vivo applications. The quantification of the phase function of the medium from reflectance measurements, however, remains elusive due to the lack of an explicit connection between the light reflectance profile and the phase function. Here we first present an analytical model for reflectance of scattered light at an arbitrary source-detector separation by forward-peaked scattering media such as biological tissue and cells. The model incorporates the improved small-angle scattering approximation (SAA) to radiative transfer for sub-diffusive light reflectance and expresses the dependence of the light reflectance on the phase function of the scattering medium in a closed form. A spreading length scale, lΘ, is found to characterise subdiffusive light reflectance at the high spatial frequency (close separation) limit. After validation by Monte Carlo simulations, we then demonstrate the application of the model in accurate determination of the complete set of optical properties and the phase function of a turbid medium from the profile of subdiffusive and diffusive light reflectance.

  17. Bidirectional reflectance distribution function of the Infrared Astronomical Satellite solar-shield material

    NASA Astrophysics Data System (ADS)

    Hubbs, J. E.; Nofziger, M. J.; Bartell, F. O.; Wolfe, W. L.; Brooks, L. D.

    1982-09-01

    The Infrared Astronomical Satellite (IRAS) telescope has an outer shield on it which is used to reduce the amount of thermal radiation that enters the telescope. The shield forms the first part of the baffle structure which reduces the photon incidence on the focal plane. It was, therefore, necessary to model this structure for scattering, and a required input for such modeling is the scattering characteristic of this surface. Attention is given to the measurement of the bidirectional reflectance distribution function (BRDF), the reflected radiance divided by the incident irradiance at 10.6 micrometers, 118 micrometers, and at several angles of incidence. Visual observation of the gold sample shows that there are striations which line up in a single direction. The data were, therefore, taken with the sample oriented in each of two directions.

  18. Sediment mineralogy based on visible and near-infrared reflectance spectroscopy

    USGS Publications Warehouse

    Jarrard, R.D.; Vanden Berg, M.D.

    2006-01-01

    Visible and near-infrared spectroscopy (VNIS) can be used to measure reflectance spectra (wavelength 350-2500 nm) for sediment cores and samples. A local ground-truth calibration of spectral features to mineral percentages is calculated by measuring reflectance spectra for a suite of samples of known mineralogy. This approach has been tested on powders, core plugs and split cores, and we conclude that it works well on all three, unless pore water is present. Initial VNIS studies have concentrated on determination of relative proportions of carbonate, opal, smectite and illite in equatorial Pacific sediments. Shipboard VNIS-based determination of these four components was demonstrated on Ocean Drilling Program Leg 199. ?? The Geological Society of London 2006.

  19. Cloud Thermodynamic-Phase Determination From Near-Infrared Spectra of Reflected Sunlight.

    NASA Astrophysics Data System (ADS)

    Knap, Wouter H.; Stammes, Piet; Koelemeijer, Robert B. A.

    2002-01-01

    A simple method for the determination of the thermodynamic phase of clouds over ocean from near-infrared spectra of reflected sunlight is presented. The method is based on thresholding the parameter S1.67 (in percent), which is defined as the ratio of the difference between the spectral reflectivities at 1.70 and 1.64 μm to the reflectivity at 1.64 μm. Radiative transfer calculations for different cloudy atmospheres over ocean are presented to show that S1.67 0 for water clouds and S1.67 > 0 for ice clouds and mixed-phase clouds. It is shown that S1.67 is sensitive to the presence of ice particles in clouds, and depends primarily on ice-cloud optical thickness and crystal size. The method is relatively independent of viewing and solar geometry because it is based on spectral absorption properties rather than scattering properties of clouds.The method is thoroughly analyzed using near-infrared reflectivity spectra made by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) over a well-defined cloud system of stratocumulus and cirrus situated over the Pacific Ocean. The location of water and ice clouds, derived from pilot information and from visual interpretation of the 0.87-μm (atmospheric window) and 1.38-μm (water vapor absorption band) images, is well reproduced by thresholding S1.67 according to the following scheme: S1.67 2%, water cloud; 2% < S1.67 < 10%, optically thin ice cloud; and S1.67 10%, optically thick ice cloud.On the basis of radiative transfer calculations it is shown that the method may lead to misclassifications in cases where optically thin clouds are present over snow. It is suggested that this also applies to minerals, rocks, and (dry) soils. On the other hand, it is shown that there is no fundamental difference between S1.67 cloud-phase determination over ocean and green vegetation. It is therefore expected that the method is suitable for application to measurements made over large parts of the globe by spaceborne

  20. Stray light analysis of the Diffuse Infrared Background Experiment (DIRBE)

    NASA Technical Reports Server (NTRS)

    Breault, R. P.

    1984-01-01

    The straylight analysis of the diffuse infrared background experiment (DIRBE) on the cosmic background explorer (COBE) mission is discussed. From the statement of work (SOW), the purpose of DIRBE is to measure, or set upper limits on, the spectral and spatial character of the diffuse extra galactic infrared radiation. Diffuse infrared sources within our own galaxy are measured. The required reduction of the unwanted radiation imposes severe design and operating restrictions on the DIRBE instrument. To accomplish its missions, it will operate at a multitude of wavelengths ranging from 1.25 um out to 200 to 300 microns. The operating bands and the required point source normalized irradiance transmittance (PSNIT) are shown. The important straylight concepts in the DIRBE design are reviewed. The model and assumptions used in APART analysis are explained. The limitations due to the scalar theory used in the analysis are outlined.

  1. Surface Compositional Units on Mercury from Spectral Reflectance at Ultraviolet to Near-infrared Wavelengths

    NASA Astrophysics Data System (ADS)

    Izenberg, N. R.; Holsclaw, G. M.; Domingue, D. L.; McClintock, W. E.; Klima, R. L.; Blewett, D. T.; Helbert, J.; Head, J. W.; Sprague, A. L.; Vilas, F.; Solomon, S. C.

    2012-12-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been acquiring reflectance spectra of Mercury's surface for over 16 months. The Visible and Infrared Spectrograph (VIRS) component of MASCS has accumulated a global data set of more than 2 million spectra over the wavelength range 300-1450 nm. We have derived a set of VIRS spectral units (VSUs) from the following spectral parameters: visible brightness (R575: reflectance at 575 nm); visible/near-infrared reflectance ratio (VISr: reflectance at 415 nm to that at 750 nm); and ultraviolet reflectance ratio (UVr: reflectance at 310 nm to that at 390 nm). Five broad, slightly overlapping VSUs may be distinguished from these parameters. "Average VSU" areas have spectral parameters close to mean global values. "Dark blue VSU" areas have spectra with low R575 and high UVr. "Red VSU" areas have spectra with low UVr and higher VISr and R575 than average. "Intermediate VSU" areas have spectra with higher VISr than VSU red, generally higher R575, and a wide range of UVr. "Bright VSU" areas have high R575 and VISr and intermediate UVr. Several units defined by morphological or multispectral criteria correspond to specific VSUs, including low-reflectance material (dark blue VSU), pyroclastic deposits (red VSU), and hollows (intermediate VSU), but these VSUs generally include other types of areas as well. VSU definitions are complementary to those obtained by unsupervised clustering analysis. The global distribution of VIRS spectral units provides new information on Mercury's geological evolution. Much of Mercury's northern volcanic plains show spectral properties ranging from those of average VSU to those of red VSU, as does a large region in the southern hemisphere centered near 50°S, 245°E. Dark blue VSU material is widely distributed, with concentrations south of the northern plains, around the Rembrandt and

  2. Interaction of infrared light with impurity gels in superfluid helium

    NASA Astrophysics Data System (ADS)

    Izotov, A. N.; Efimov, V. B.

    2011-05-01

    Rapid cooling of an impurity-helium mixture into superfluid helium produces a distinctive soft matter—impurity-helium gel, clusters of which coagulate into nanoparticles. The sizes of the particles and their mutual interaction depend on the nature of the impurity atoms and the impurity-helium coupling. Here we describe the setup of and preliminary results from an experiment to study infrared absorption by a water-helium gel. Comparisons of the infrared absorption spectra of the gel and of water and ice suggests a peculiar interaction among water molecules in a water-helium gel.

  3. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    PubMed

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. PMID:25691149

  4. Combination of infrared thermography and reflectance spectroscopy for precise classification of hair follicle stage

    NASA Astrophysics Data System (ADS)

    Wang, Jianru; Guan, Yue; Liu, Caihua; Zhu, Dan

    2015-03-01

    Hair follicles enjoy continual cycle of anagen, catagen and telogen all life. They not only provide a unique opportunity to study the physiological mechanism of organ regeneration, but also benefit to guide the treatment of organ repair in regenerative medicine. Usually, the histological examination as a gold standard has been applied to determine the stage of hair follicle cycle, but noninvasive classification of hair cycle in vivo remains unsolved. In this study, the thermal infrared imager was applied to measure the temperature change of mouse dorsal skin with hair follicle cycle, and the change of diffuse reflectance was monitored by the optical fiber spectrometer. Histological examination was used to verify the hair follicle stages. The results indicated that the skin temperature increased at the beginning of anagen. After having stayed a high value for several days, the temperature began to decrease. At the same time, the skin diffuse reflectance decreased until the end of this period. Then the temperature increased gradually after slightly decreased when the hair follicle entered into catagen stage, and the diffuse reflectance increased at this time. In telogen, both the temperature and the diffuse reflectance went back to a steady state all the time. Sub-stages of hair follicle cycle could be distinguished based on the joint curves. This study provided a new method to noninvasively recognize the hair follicle stage, and should be valuable for the basic and therapeutic investigations on hair regeneration.

  5. Infrared and Reflected Solar Radiation Measurements from the TIROS 2 Meteorological Satellite

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R.; Hanel, R. A.; Licht, John; Stampfl, R. A.; Stroud, W. G.

    1961-01-01

    TIROS II contains instrumentation for measuring infrared and reflected solar radiation from the earth and its atmosphere. A medium resolution scanning radiometer and a low resolution non-scanning radiometer are employed. The satellite's spin provides the scan line of the medium resolution radiometer which is then advanced by the orbital motion. The spatial resolution is about 40 miles square when the earth directly beneath the satellite is viewed. The five channels employ bolometer detectors and filters to limit the spectral responses to five bands: 6 to 6.5 microns, 8 to 12 microns, 0.2 to 6 microns, 8 to 30 microns, and 0.55 to 0.75 microns. These five bands study, respectively: radiation in the water vapor absorption band; day and nighttime cloud cover; albedo; thermal radiation; and visual maps for comparison with satellite vidicon pictures. The low resolution non-scanning radiometer measures the earth's black-body temperature and albedo. Its field when viewing directly below is a circle of 450 miles diameter, covering part of each frame from the wide-field television camera. This radiometer consists of two thermistors, each in the apex of a reflective cone which provides optical gain. One thermistor is black and responds to both thermal and reflected solar radiation. The second responds to thermal but reflects solar radiation. The design, calibration, performance, and data reduction for both systems are discussed herein.

  6. Infrared Studies of the Reflective Properties of Solar Cells and the HS376 Spacecraft

    NASA Technical Reports Server (NTRS)

    Frith, James; Reyes, Jacqueline; Cowardin, Heather; Anz-Meador, Phillip; Buckalew, Brent; Lederer, Susan

    2016-01-01

    In 2015, a selection of HS-376 buses were observed photometrically with the United Kingdom Infrared Telescope (UKIRT) to explore relationships between time-on-orbit and Near Infrared (NIR) color. These buses were chosen because of their relatively simple shape, for the abundance of similar observable targets, and their surface material being primarily covered by solar cells. While the HS-376 spacecraft were all very similar in design, differences in the specific solar cells used in the construction of each model proved to be an unconstrained variable that could affect the observed reflective properties. In 2016, samples of the solar cells used on various models of HS-376 spacecraft were obtained from Boeing and were analyzed in the Optical Measurements Center at the Johnson Space Center using a visible-near infrared field spectrometer. The laboratory-based spectra are convolved to match the photometric bands previously obtained using UKIRT and compared with the on-orbit photometry. The results and future work are discussed here.

  7. Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte

    SciTech Connect

    Gallagher, Neal B.; Blake, Thomas A.; Gassman, Paul L.; Shaver, Jeremy M.; Windig, Willem

    2006-07-01

    Multivariate curve resolution (MCR) is a powerful technique for extracting chemical information from measured spectra on complex mixtures. The difficulty with applying MCR to soil reflectance measurements is that light scattering artifacts can contribute much more variance to the measurements than the analyte(s) of interest. Two methods were integrated into a MCR decomposition to account for light scattering effects. Firstly, an extended mixture model using pure analyte spectra augmented with scattering ‘spectra’ was used for the measured spectra. And secondly, second derivative preprocessed spectra, which have higher selectivity than the unprocessed spectra, were included in a second block as a part of the decomposition. The conventional alternating least squares (ALS) algorithm was modified to simultaneously decompose the measured and second derivative spectra in a two-block decomposition. Equality constraints were also included to incorporate information about sampling conditions. The result was an MCR decomposition that provided interpretable spectra from soil reflectance measurements.

  8. Attenuated total internal reflectance infrared microspectroscopy as a detection technique for capillary electrophoresis.

    PubMed

    Patterson, Brian M; Danielson, Neil D; Sommer, André J

    2004-07-01

    A novel detector for capillary electrophoresis (CE) using single-bounce attenuated total internal reflectance (ATR) Fourier transform infrared (FT-IR) microspectroscopy is presented. The terminus of the CE capillary is placed approximately 1 microm from the internal reflectance crystal at the focus of an ATR infrared microscope. Using pressure driven flow injection, concentration and volume detection limits have been determined for 25- and 10-microm-i.d. silica capillaries. Upon injection of 820 pL of succinylcholine chloride in a 10-microm capillary, a concentration detection limit of approximately 0.5 parts per thousand (ppt), or 410 pg, is found. The injection volume detection limit using a 108 ppt solution is 2.0 pL (216 pg). Sample separations using a programmed series of pressure, voltage, and again pressure on 25-, 50-, and 75-microm-i.d. capillaries are shown. CE separations of citrate and nitrate, as well as succinylcholine chloride with sodium salicylate using acetone as a neutral marker, are demonstrated. Several advantages of this CE-FT-IR technique include: (1) minimization of postcolumn broadening as a result of a small detector volume; (2) the ability to signal average spectra of the same aliquot, thereby improving the signal-to-noise in a stopped-flow environment; and (3) simplicity of design. PMID:15228361

  9. Reflective and photoacoustic infrared spectroscopic techniques in assessment of binding media in paintings

    NASA Astrophysics Data System (ADS)

    Łojewski, Tomasz; Bagniuk, Jacek; Kołodziej, Andrzej; Łojewska, Joanna

    2011-11-01

    This study proposes a method to estimate the lipid content in binding media in paintings that can be used at any laboratory equipped with an infrared spectrometer. The lipid content estimator, termed greasiness index (GI), is defined as a ratio of lipid ν(C=O) and protein amide I bands at 1743 and 1635 cm-1, respectively. Three Fourier transform infrared (FTIR) sampling techniques were evaluated for GI determination: reflective attenuated total reflection—ATR, specular reflection microscopy— μSR and photoacoustic—PAS. A set of model painting samples containing three tempera binding media (casein, egg, egg + oil), seven pigments and one varnish type were used in the study. Multivariate analysis was used to evaluate the resulting data. A good reproducibility of GI was obtained by ATR and PAS but not with μSR. The discriminative power of the technique is higher for unvarnished samples, but, generally, the GI estimator can be used for the categorisation of binding media in large populations of painting samples analysed with the same FTIR technique (sampling technique, detection, etc.).

  10. Classification of the waxy condition of durum wheat by near infrared reflectance spectroscopy using wavelets and a genetic algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared (NIR) reflectance spectroscopy has been applied to the problem of differentiating four genotypes of durum wheat: ‘waxy’, wx-A1 null, wx-B1 null and wild type. The test data consisted of 95 NIR reflectance spectra of wheat samples obtained from a USDA-ARS wheat breeding program. A two...

  11. Engineering light-emitting diode surgical light for near-infrared fluorescence image-guided surgical systems

    PubMed Central

    Zhu, Nan; Mondal, Suman; Gao, Shengkui; Achilefu, Samuel; Gruev, Viktor; Liang, Rongguang

    2014-01-01

    Abstract. The near-infrared (NIR) fluorescence signal in the 700 to 900 nm from molecular probes used in fluorescence image-guided surgery (FIGS) is usually weak compared to the NIR component from white light-emitting diode surgical light, which is typically switched off during FIGS to enhance the molecular fluorescence contrast of the image. We propose a simple solution to this critical issue in FIGS by removing NIR light from surgical light with a low cost commercial 3M cool mirror film 330. PMID:25057962

  12. Superfast Near-Infrared Light-Driven Polymer Multilayer Rockets.

    PubMed

    Wu, Zhiguang; Si, Tieyan; Gao, Wei; Lin, Xiankun; Wang, Joseph; He, Qiang

    2016-02-01

    A gold nanoshell-functionalized polymer multilayer nanorocket performs self-propulsion upon the irradiation with NIR light in the absence of chemical fuel. Theoretical simulations reveal that the NIR light-triggered self-thermophoresis drives the propulsion of the nanorocket. The nanorocket also displays -efficient NIR light-triggered propulsion in -biofluids and thus holds considerable promise for various potential biomedical applications. PMID:26690728

  13. Population Studies of Quasars in Infrared and X-Ray Light

    NASA Astrophysics Data System (ADS)

    George, Joseph; Singal, Jack

    2016-01-01

    We present newly assembled multiwavelength datasets for studying the luminosity evolution, density evolution, and luminosity functions of quasars in infrared and X-ray light, as well as preliminary results for these parameters in infrared. We use infrared and X-ray data from NASA's Wide-Field Infrared Survey Explorer Chandra X-ray satellites respectively, in combination with optically identified quasars from the Sloan Digital Sky Survey. We present results for the infrared population parameters, including luminosity evolution which suggests that quasars have evolved more slowly in infrared than in other bands. We also demonstrate new techniques for recovering the intrinsic luminosity-luminosity correlations in datasets with different wavebands in the presence of artificial correlations introduced by survey limits and similar redshift evolutions.

  14. Improved near-infrared ocean reflectance correction algorithm for satellite ocean color data processing.

    PubMed

    Jiang, Lide; Wang, Menghua

    2014-09-01

    A new approach for the near-infrared (NIR) ocean reflectance correction in atmospheric correction for satellite ocean color data processing in coastal and inland waters is proposed, which combines the advantages of the three existing NIR ocean reflectance correction algorithms, i.e., Bailey et al. (2010) [Opt. Express18, 7521 (2010)Appl. Opt.39, 897 (2000)Opt. Express20, 741 (2012)], and is named BMW. The normalized water-leaving radiance spectra nLw(λ) obtained from this new NIR-based atmospheric correction approach are evaluated against those obtained from the shortwave infrared (SWIR)-based atmospheric correction algorithm, as well as those from some existing NIR atmospheric correction algorithms based on several case studies. The scenes selected for case studies are obtained from two different satellite ocean color sensors, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellite Aqua and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP), with an emphasis on several turbid water regions in the world. The new approach has shown to produce nLw(λ) spectra most consistent with the SWIR results among all NIR algorithms. Furthermore, validations against the in situ measurements also show that in less turbid water regions the new approach produces reasonable and similar results comparable to the current operational algorithm. In addition, by combining the new NIR atmospheric correction with the SWIR-based approach, the new NIR-SWIR atmospheric correction can produce further improved ocean color products. The new NIR atmospheric correction can be implemented in a global operational satellite ocean color data processing system. PMID:25321543

  15. Testing Models of Low-Excitation Photodissociation Regions with Far-Infrared Observations of Reflection Nebulae

    NASA Astrophysics Data System (ADS)

    Young Owl, Rolaine C.; Meixner, Margaret M.; Fong, David; Haas, Michael R.; Rudolph, Alexander L.; Tielens, A. G. G. M.

    2002-10-01

    This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O I] 63 and 145 μm, [C II] 158 μm, and [Si II] 35 μm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000-30,000 K, the gas densities are 4×102-2×104 cm-3, the gas temperatures are 200-690 K, and the incident far-ultraviolet intensities are 300-8100 times the ambient interstellar radiation field strength (1.2×10-4 ergs cm-2 s-1 sr-1). Our observations are compared with current theory for low-excitation PDRs. The [C II] 158 μm to [O I] 63 μm line ratio decreases with increasing incident far-ultraviolet intensity. This trend is due in part to a positive correlation of gas density with incident far-ultraviolet intensity. We show that this correlation arises from a balance of pressure between the H II region and the surrounding PDR. The [O I] 145 to 63 μm line ratio is higher (greater than 0.1) than predicted and is insensitive to variations in incident far-ultraviolet intensity and gas density. The stellar temperature has little effect on the heating efficiency that primarily had the value 3×10-3, within a factor of 2. This result agrees with a model that modifies the photoelectric heating theory to account for color temperature effects and predicts that the heating efficiencies would vary by less than a factor of 3 with the color temperature of the illuminating field. In addition to the single-pointing observations, an [O I] 63 μm scan was done across the molecular ridge of one of our sample reflection nebulae, NGC 1977. The result appears to support previous suggestions that the ionization front of this well-studied PDR is not purely edge-on.

  16. Assessment of Drowsiness Based on Ocular Parameters Detected by Infrared Reflectance Oculography

    PubMed Central

    Anderson, Clare; Chang, Anne-Marie; Sullivan, Jason P.; Ronda, Joseph M.; Czeisler, Charles A.

    2013-01-01

    Study Objectives: Numerous ocular parameters have been proposed as reliable physiological markers of drowsiness. A device that measures many of these parameters and then combines them into a single metric (the Johns Drowsiness Scale [JDS]) is being used commercially to assess drowsiness in professional drivers. Here, we examine how these parameters reflect changes in drowsiness, and how they relate to objective and subjective indices of the drowsy state in a controlled laboratory setting. Design: A within subject prospective study. Participants: 29 healthy adults (18 males; mean age 23.3 ± 4.6 years; range 18-34 years) Interventions: N/A. Measurements and Results: Over the course of a 30-h extended wake vigil under constant routine (CR) conditions, participants were monitored using infrared reflectance oculography (Optalert) and completed bi-hourly neurobehavioral tests, including the Karolinska Sleepiness Scale (KSS) and Psychomotor Vigilance Task (PVT). Ocular-defined increases in drowsiness were evident with extended time awake and during the biological night for all ocular parameters; JDS being the most sensitive marker of drowsiness induced by sleep regulatory processes (p < 0.0001). In addition, the associations between JDS in the preceding 10-min period and subsequent PVT lapses and KSS were stronger (AUC 0.74/0.80, respectively) than any other ocular metric, such that PVT lapses, mean response time (RT), and KSS increased in a dose-response manner as a function of prior JDS score (p < 0.0001). Conclusions: Ocular parameters captured by infrared reflectance oculography detected fluctuations in drowsiness due to time awake and during the biological night. The JDS outcome was the strongest predictor of drowsiness among those tested, and showed a clear association to objective and subjective measures of drowsiness. Our findings indicate this real-time objective drowsiness monitoring system is an effective tool for monitoring changes in alertness and

  17. Using reflectance measurements to determine light use efficiency in corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examines the ability of narrow band vegetation indexes to detect spectral changes associated with stress and relate them to light use efficiency (LUE) over the course of a day as well as through the growing season. In a corn field in Beltsville, MD, carbon flux measurements were made at a...

  18. Near-infrared light as a possible treatment option for Parkinson's disease and laser eye injury

    NASA Astrophysics Data System (ADS)

    DeSmet, Kristina; Buchmann, Ellen; Henry, Michele; Wong-Riley, Margaret; Eells, Janis; VerHoeve, Jim; Whelan, Harry

    2009-02-01

    Studies in our laboratory demonstrate that the action spectrum for stimulation of cytochrome oxidase activity and cellular ATP parallels the near-infrared absorption spectrum of cytochrome oxidase and that 660-680 nm irradiation upregulates cytochrome oxidase activity in cultured neurons. Treatment with nearinfrared light augments cellular energy production and neuronal viability following mitochondrial injury linking the actions of red to near-infrared light on mitochondrial metabolism in vitro and cell injury in vivo. NIR light treatment represents an innovative therapeutic approach for disease processes in which mitochondrial dysfunction is postulated to play a role including Parkinson's disease, laser eye injury and Age-related macular degeneration.

  19. Nondestructive inspection of organic films on sandblasted metals using diffuse reflectance infrared spectroscopy

    SciTech Connect

    Powell, G.L.; Cox, R.L.; Barber, T.E.; Neu, J.T.

    1996-07-08

    Diffuse reflectance infrared spectroscopy is a very useful tool for the determination of surface contamination and characterization of films in manufacturing applications. Spectral data from the surfaces of a host of practical materials may be obtained with sufficient insensitivity to characterize relatively thick films, such as paint, and the potential exists to detect very thin films, such as trace oil contamination on metals. The SOC 400 Surface Inspection Machine/InfraRed (SIMIR) has been developed as a nondestructive inspection tool to exploit this potential in practical situations. This SIMIR is a complete and ruggidized Fourier transform infrared spectrometer with a very efficient and robust barrel ellipse diffuse reflectance optical collection system and operating software system. The SIMIR weighs less than 8 Kg, occupies less than 14 L volume, and may be manipulated into any orientation during operation. The surface to be inspected is placed at the focal point of the SIMIR by manipulating the SIMIR or the surface. The SIMIR may or may not contact the surface being inspected. For flat or convex items, there are no size limits to items being inspected. For concave surfaces, the SIMIR geometry limits the surface to those having a radius of curvature greater than 0.2 m. For highly reflective metal surfaces, the SIMIR has a noise level approaching 1 {times} 10{sup {minus}4} absorbance units, which is sufficient for detecting nanometer thick organic film residues on metals. The use of this nondestructive inspection tool is demonstrated by the spatial mapping of organic stains on sand blasted metals in which organic stains such as silicone oils, mineral oils, and triglycerides are identified both qualitatively and quantitatively over the surface of the metal specimen.

  20. Temperature dependence of far-infrared difference reflectivity of YBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Krenn, H.; Bauer, G.; Vogl, G.; Strasser, G.; Gornik, E.

    1989-04-01

    Far-infrared difference reflectivity spectra (50-450 cm-1) below, across and above the transition temperature on polycrystalline single-phase YBa2Cu3O7-y samples were measured. The data are compared with model fits using the explicit temperature dependence of the Mattis-Bardeen conductivity, an effective-medium approach and temperature-dependent phonon oscillator parameters and alternatively a plasma model. For the plasma model we alternatively use a generalized Drude-like expression with a frequency-dependent damping after Thomas et al. [Phys. Rev. B 36, 846 (1987)] or the original model with Orenstein et al. [Phys. Rev. B 36, 729 (1987)] and Sherwin, Richards, and Zettl [Phys. Rev. B 37, 1587 (1988)] with a Drude contribution plus a mid-infrared oscillator, but with constant carrier relaxation rates. The models explain the difference reflectivity data (precision <0.2%) with a fitting accuracy of 1-2 % (Mattis-Bardeen model) or 2-3 % (plasma model) over the full temperature range. In order to investigate their applicability, reflectivity, and conductivity data of a highly oriented YBa2Cu3O7-y sample, as recently published by Bonn et al. [Phys. Rev. Lett. 58, 2249 (1987)], were also fitted with both models. Because of the frequency dependence of the free-carrier damping rates, it was important to fulfill the Kramers-Kronig relations between the real and the imaginary part of the dynamic conductivity in the calculations. For both models the characteristic dependences of the conductivity on frequency and temperature are given. Whereas, naturally, the Mattis-Bardeen model yields a gaplike depression of the conductivity for frequencies below an assumed gap, the plasma model results in somewhat smoother dependences of Re(σ(ω)) and Im(σ(ω)) in the frequency region of interest.

  1. A Near-Infrared Spectrometer to Measure Zodiacal Light Absorption Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, A. S.; Arendt, R.; Dwek, E.; Kimble, R.; Moseley, S. H.; Rapchun, D.; Silverberg, R. F.

    2010-01-01

    We have developed a high throughput infrared spectrometer for zodiacal light fraunhofer lines measurements. The instrument is based on a cryogenic dual silicon Fabry-Perot etalon which is designed to achieve high signal to noise Fraunhofer line profile measurements. Very large aperture silicon Fabry-Perot etalons and fast camera optics make these measurements possible. The results of the absorption line profile measurements will provide a model free measure of the zodiacal Light intensity in the near infrared. The knowledge of the zodiacal light brightness is crucial for accurate subtraction of zodiacal light foreground for accurate measure of the extragalactic background light after the subtraction of zodiacal light foreground. We present the final design of the instrument and the first results of its performance.

  2. Integrated Analysis of Carbonatite using Short Wave Infra-Red and Visible/Near Infra-Red Reflectance Characteristics

    NASA Astrophysics Data System (ADS)

    Assiri, A.; Rooney, T. O.; Velbel, M. A.

    2012-12-01

    Carbonatites are among the most important hosts for economically important rare-earth element (REE) deposits. An ongoing challenge has been the identification of carbonatites, which may outcrop as small bodies with indistinct field characteristics. Remote sensing techniques may provide a routine and reliable method to identify such deposits. We have used short wave infra-red (SWIR) and visible/near infra-red (VNIR) reflectance characteristics of a well exposed carbonatite located in the north east of the United Arab Emirates to develop techniques to facilitate the distinction of carbonatites from other rock types. This project has focused on the wavelength region from 0.45 to 2.43 μm of SWIR and VNIR subsystems on the imaging instrument onboard ASTER. We hypothesize that based on spectral and spatial data derived from computer segmentation algorithms of the SWIR (7) and VNIR (4, 1) bands we will be able to identify carbonatite rocks. In order to build a technique that can capture the intrinsic associations between carbonatite anomalies, rock class types, and attributes, we assembled the spectral and spatial information derived from computer segmentation algorithms into a single segment image. During our investigation of the spatial data two principal questions arose: 1) How should spatial structures, or "neighborhoods" for each pixel within the image be automatically defined? 2) How should spatial and spectral information be combined in the classification? We addressed these questions by using unsupervised and supervised segmentation algorithm strategies based on pixel values and locations. Pixels that are spatially connected and have similar values were grouped in a single segment (fixed neighborhood pixels) on the basis of the integration of the maximum-likelihood supervised classification technique within a Markov Random Fields framework. We then developed guidelines for combining the spatial information extracted through segmentation with spectral information

  3. The Investigation of Property of Radiation and Absorbed of Infrared Lights of the Biological Tissues

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Deng, Bo; Xiao, He-Lan; Cai, Guo-Ping

    2010-04-01

    The properties of absorption of infrared light for collagen, hemoglobin, bivine serum albumen (BSA) protein molecules with α- helix structure and water in the living systems as well as the infrared transmission spectra for person’s skins and finger hands of human body in the region of 400-4000 cm-1 (i.e., wavelengths of 2-20 μm) have been collected and determined by using a Nicolet Nexus 670 FT-IR Spectrometer, a Perkin Elmer GX FT-IR spectrometer, an OMA (optical multichannel analysis) and an infrared probe systems, respectively. The experimental results obtained show that the protein molecules and water can all absorb the infrared lights in the ranges of 600-1900 cm-1 and 2900-3900 cm-l, but their properties of absorption are somewhat different due to distinctions of their structure and conformation and molecular weight. We know from the transmission spectra of person’s finger hands and skin that the infrared lights with wavelengths of 2 μm-7 μm can not only transmit over the person’s skin and finger hands, but also be absorbed by the above proteins and water in the living systems. Thus, we can conclude from this study that the human beings and animals can absorb the infrared lights with wavelengths of 2 μm-7 μm.

  4. Reflected-light-source-based three-dimensional display with high brightness.

    PubMed

    Lv, Guo-Jiao; Wu, Fei; Zhao, Wu-Xiang; Fan, Jun; Zhao, Bai-Chuan; Wang, Qiong-Hua

    2016-05-01

    A reflected-light-source (RLS)-based 3D display is proposed. This display consists of an RLS and a 2D display panel. The 2D display panel is located in front of the RLS. The RLS consists of a light source, a light guide plate (LGP), and a reflection cavity. The light source and the LGP are located in the reflection cavity. Light from the light source can enter into the LGP and reflect continuously in the reflection cavity. The reflection cavity has a series of slits, and light can exit only from these slits. These slits can work as a postpositional parallax barrier, so when they modulate the parallax images on the 2D display, 3D images are formed. Different from the conventional 3D display based on a parallax barrier, this RLS has less optical loss, so it can provide higher brightness. A prototype of this display is developed. Experimental results show that this RLS-based 3D display can provide higher brightness than the conventional one. PMID:27140355

  5. Ranging system which compares an object reflected component of a light beam to a reference component of the light beam

    NASA Technical Reports Server (NTRS)

    Mclauchlan, J. M.; Auyeung, J.; Tubbs, E. F.; Goss, W. C.; Psaltis, D. (Inventor)

    1985-01-01

    A system is described for measuring the distance to an object by comparing a first component of a light pulse that is reflected off the object with a second component of the light pulse that passes along a reference path of known length, which provides great accuracy with a relatively simple and rugged design. The reference path can be changed in precise steps so that it has an equivalent length approximately equal to the path length of the light pulse component that is reflected from the object. The resulting small difference in path lengths can be precisely determined by directing the light pulse components into opposite ends of a detector formed of a material that emits a second harmonic light output at the locations where the opposite going pulses past simultaneously across one another.

  6. Infrared microscope inspection apparatus

    DOEpatents

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  7. Infrared microscope inspection apparatus

    DOEpatents

    Forman, S.E.; Caunt, J.W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface. 4 figs.

  8. Innovative light collimator with afocal lens and total internal reflection lens for daylighting system.

    PubMed

    Chen, Bo-Jian; Chen, Yin-Ti; Ullah, Irfan; Chou, Chun-Han; Chan, Kai-Cyuan; Lai, Yi-Lung; Lin, Chia-Ming; Chang, Cheng-Ming; Whang, Allen Jong-Woei

    2015-10-01

    This research presents a novel design of the collimator, which uses total internal reflection (TIR), convex, and concave lenses for the natural light illumination system (NLIS). The concept of the NLIS is to illuminate building interiors with natural light, which saves energy consumption. The TIR lens is used to collimate the light, and convex and concave lenses are used to converge the light to the required area. The results have shown that the efficiency in terms of achieving collimated light using the proposed collimator at the output of the light collector is better than that of a previous system without a collimator. PMID:26479648

  9. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrate and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O and adsorbed H2O. The spectal character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micrometers, 2.2 micrometers, 2.7 micrometers, 3 micrometers, and 6 micrometers are reported here in spetra measured under Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micrometer band depth is 8-17%; this band is much stonger under moist conditions. Under Marslike atmospheric conditions the 1.9-micrometer feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micrometer feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3- micrometer band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micromter band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural

  10. Low-temperature and low atmospheric pressure infrared reflectance spectroscopy of Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.

    1995-01-01

    Infrared reflectance spectra of carefully selected Mars soil analog materials have been measured under low atmospheric pressures and temperatures. Chemically altered montmorillonites containing ferrihydrite and hydrated ferric sulfate complexes are examined, as well as synthetic ferrihydrite and a palagonitic soil from Haleakala, Maui. Reflectance spectra of these analog materials exhibit subtle visible to near-infrared features, which are indicative of nanophase ferric oxides or oxyhydroxides and are similar to features observed in the spectra of the bright regions of Mars. Infrared reflectance spectra of these analogs include hydration features due to structural OH, bound H2O, and adsorbed H2O. The spectral character of these hydration features is highly dependent on the sample environment and on the nature of the H2O/OH in the analogs. The behavior of the hydration features near 1.9 micron, 2.2 micron, 2.7 micron, 3 micron, and 6 microns are reported here in spectra measured under a Marslike atmospheric environment. In spectra of these analogs measured under dry Earth atmospheric conditions the 1.9-micron band depth is 8-17%; this band is much stronger under moist conditions. Under Marslike atmospheric conditions the 1.9-micron feature is broad and barely discernible (1-3% band depth) in spectra of the ferrihydrite and palagonitic soil samples. In comparable spectra of the ferric sulfate-bearing montmorillonite the 1.9-micron feature is also broad, but stronger (6% band depth). In the low atmospheric pressure and temperature spectra of the ferrihydrite-bearing montmorillonite this feature is sharper than the other analogs and relatively stronger (6% band depth). Although the intensity of the 3-micron band is weaker in spectra of each of the analogs when measured under Marslike conditions, the 3-micron band remains a dominant feature and is especially broad in spectra of the ferrihydrite and palagonitic soil. The structural OH features observed in these materials

  11. "Lights, Camera, Reflection": Using Peer Video to Promote Reflective Dialogue among Student Teachers

    ERIC Educational Resources Information Center

    Harford, Judith; MacRuairc, Gerry; McCartan, Dermot

    2010-01-01

    This paper examines the use of peer-videoing in the classroom as a means of promoting reflection among student teachers. Ten pre-service teachers participating in a teacher education programme in a university in the Republic of Ireland and ten pre-service teachers participating in a teacher education programme in a university in the North of…

  12. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2013-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  13. Method and apparatus for detecting phycocyanin-pigmented algae and bacteria from reflected light

    NASA Technical Reports Server (NTRS)

    Vincent, Robert (Inventor)

    2006-01-01

    The present invention relates to a method of detecting phycocyanin algae or bacteria in water from reflected light, and also includes devices for the measurement, calculation and transmission of data relating to that method.

  14. Effects on biological systems of reflected light from a satellite power system

    NASA Technical Reports Server (NTRS)

    White, M.

    1981-01-01

    Light reflection produced by the satellite power system and the possible effects of that light on the human eye, plants, and animals were studied. For the human eye, two cases of reflected light, might cause eye damage if viewed for too long. These cases are: (1) if, while in low Earth orbit, the orbital transfer vehicle is misaligned to reflect the Sun to Earth there exists a maximum safe fixation time for the naked eye of 42.4 secs; (2) reflection from the aluminum paint on the back of the orbital transfer vehicle, while in or near low Earth orbit, can be safely viewed by the naked eye for 129 sec. For plants and animals the intensity and timing of light are not a major problem. Ways for reducing and/or eliminating the irradiances are proposed.

  15. Experiment in the Bragg Reflection of Light for the Undergraduate Using Cholesteric Liquid Crystals

    ERIC Educational Resources Information Center

    Olah, A.; Doane, J. W.

    1977-01-01

    Describes a simple experimental setup in which the student can detect and record light spectra, study and test the concept of Bragg reflection, and measure the anisotropy of the index of refraction in a cholesteric liquid crystal. (MLH)

  16. Preliminary Circuit Design for Robotics Environment Mapping Utilizing Ambient Light, Reflected Light and Stationary Infrared Radiation

    NASA Astrophysics Data System (ADS)

    Adrian, Leslie

    2011-01-01

    The paper deals with robotics mobility and a proposed topology for the acquisition of the necessary data to enable accurate mapping of a given environment, be that for basic maneuverability, (obstacle avoidance) or for higher level applications such as fire detection or item location. The topology is composed of a four layered system of analogue components which lends itself not only to excellent linearity but allows the system to control peripheral devices directly through any logic configuration, or to provide data needed for microcontrollers and their user defined algorithms. The various layers have been analyzed through simulation and to date confirmed though physical observation of the working model. The conclusions about the prospective solution are made.

  17. First light observations with TIFR Near Infrared Imaging Camera (TIRCAM-II)

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; D'Costa, S. L. A.; Naik, M. B.; Sandimani, P. R.; Poojary, S. S.; Bhagat, S. B.; Jadhav, R. B.; Meshram, G. S.; Bakalkar, C. B.; Ramaprakash, A. N.; Mohan, V.; Joshi, J.

    TIFR near infrared imaging camera (TIRCAM-II) is based on the Aladdin III Quadrant InSb focal plane array (512×512 pixels; 27.6 μm pixel size; sensitive between 1 - 5.5 μm). TIRCAM-II had its first engineering run with the 2 m IUCAA telescope at Girawali during February - March 2011. The first light observations with TIRCAM-II were quite successful. Several infrared standard with TIRCAM-II were quite successful. Several infrared standard stars, the Trapezium Cluster in Orion region, McNeil's nebula, etc., were observed in the J, K and in a narrow-band at 3.6 μm (nbL). In the nbL band, some bright stars could be detected from the Girawali site. The performance of TIRCAM-II is discussed in the light of preliminary observations in near infrared bands.

  18. The pupillary light response reflects eye-movement preparation.

    PubMed

    Mathôt, Sebastiaan; van der Linden, Lotje; Grainger, Jonathan; Vitu, Françoise

    2015-02-01

    When the eyes are exposed to an increased influx of light, the pupils constrict. The pupillary light response (PLR) is traditionally believed to be purely reflexive and not susceptible to cognitive influences. In contrast to this traditional view, we report that preparation of a PLR occurs in parallel with preparation of a saccadic eye movement toward a bright (or dark) stimulus, even before the eyes set in motion. Participants fixated a central gray area and made a saccade toward a peripheral target. Using gaze-contingent display changes, we manipulated whether or not the brightness of the target background was the same during and after saccade preparation. More specifically, on some trials we changed the brightness of the target background during the saccade, thus dissociating the preparatory PLR (i.e., to the brightness of the target background before the saccade) from the regular PLR (i.e., to the brightness after the saccade). We show that preparation triggers a pupillary response to the brightness of a to-be-fixated target background already before the eyes have landed on it. We link our findings to the presaccadic shift of attention: The pupil prepares to adjust its size to the brightness of a to-be-fixated stimulus as soon as attention covertly shifts toward that stimulus. Our findings illustrate that the PLR is a dynamic movement that is tightly linked to visual attention and eye-movement preparation. PMID:25621584

  19. Optimum conditions of the distributed bragg reflector in 850-nm GaAs infrared light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ahn, Su-Chang; Lee, Byung-Teak; An, Won-Chan; Kim, Dae-Kwang; Jang, In-Kyu; So, Jin-Su; Lee, Hyung-Joo

    2016-07-01

    In this paper, a distributed Bragg reflector (DBR) for a bottom reflector in 850-nm GaAs infrared light-emitting diodes (Ir-LEDs) was developed and optimized. At an 850-nm wavelength, markedly improved reflection spectra were observed from DBRs consisting of Al1-xGaxAs/AlxGa1-xAs materials. In addition, the reflection spectra of Al1-xGaxAs/AlxGa1-xAs-based DBRs was found to increase with increasing difference between the high and the low refractive indices. At multiple layers of 10 pairs, maximal reflection spectra having about a 92% reflectivity were obtained from DBRs consisting of GaAs/AlAs. At 20 pairs, however, outstanding reflection spectra having a higher reflectivity and broader width were clearly observed from DBRs consisting of Al0.1Ga0.9As/Al0.9Ga0.1As. Some incident light appears to have been absorbed and confined by the narrow bandgap of the GaAs material used in DBRs consisting of GaAs/AlAs. This fact could be supported by the decrease in the reflectivity of the shorter wavelength region in DBRs consisting of GaAs/AlAs. For this reason, a remarkable output power could be obtained from the 850-nm GaAs Ir-LED chip having a DBR consisting of Al0.1Ga0.9As/Al0.9Ga0.1As.

  20. Electrically controlled infrared optical transmission and reflection through metallic grating using NEMS technology

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kenzo; Fujii, Masamitsu

    2015-12-01

    The enhanced optical properties of metallic subwavelength gratings with very narrow slits have recently been extensively studied in the field of plasmonics. The optical transmission and reflection of such nanostructures, which act as nano-electro-mechanical systems (NEMS) actuators, can be electrically controlled by varying their geometrical parameters, giving them great flexibility for numerous applications in photonics, opto-electronics, and sensing. The previous challenges in controlling the optical properties were overcome by forming a metallic subwavelength grating with an NEMS actuator in mid-air, allowing the grating to be physically moved with the bias voltage. The device can shift the plasmon resonance wavelength with an electrical signal. The resonance wavelength for Wood's anomaly at the infrared region is predicted through simulations to shift by approximately 150 nm. We discuss the effect of polarization on the optical properties and grating mechanism. The reported effect may be used to achieve active spectral tuning and switching in a wide range of applications.

  1. Multiple perturbation two-dimensional correlation analysis of cellulose by attenuated total reflection infrared spectroscopy.

    PubMed

    Shinzawa, Hideyuki; Morita, Shin-Ich; Awa, Kimie; Okada, Mariko; Noda, Isao; Ozaki, Yukihiro; Sato, Hidetoshi

    2009-05-01

    An extension of the two-dimensional (2D) correlation analysis scheme for multi-dimensional perturbation is described. A simple computational form is provided to construct synchronous correlation and disrelation maps for the analysis of microscopic imaging data based on two independent perturbation variables. Sets of time-dependent attenuated total reflection infrared (ATR-IR) spectra of water and cellulose mixtures were collected during the evaporation of water from finely ground cellulose. The system exhibits complex behaviors in response to two independent perturbations, i.e., evaporation time and grinding time. Multiple perturbation 2D analysis reveals a specific difference in the rate of evaporation of water molecules when accompanied by crystallinity changes of cellulose. It identifies subtle differences in the volatility of water, which is related to the crystalline structure of cellulose. PMID:19470205

  2. [Use of visible and near infrared reflectance spectroscopy to identify the cashmere and wool].

    PubMed

    Liu, Xin-Ru; Zhang, Li-Ping; Wang, Jian-Fu; Wu, Jian-Ping; Wang, Xin-Rong

    2013-08-01

    The wool and cashmere samples (n = 130) from different areas of Gansu province were identified by visible and near-infrared reflectance spectroscopy (Vis/NIRs). The result shows that principal component-mahalanobis distance pattern can identify the wool and cashmere, and the boundary between two categories was clear; The calibration set samples were used to establish calibration qualitative model using PCR combined with the best pretreatment of the spectra and math, including multivariate scattering correction (MSC), first derivative, eight for the best principal component factor, one for uncertainty factor, this calibration model of the predicted was the best, and the result of the external validation was correct completely. Results from this experiment indicate that Vis/NIRs can be utilized to identify the wool and cashmere. PMID:24159853

  3. Polarized infrared attenuated total reflection study of sapphire crystals with different crystallographic planes

    NASA Astrophysics Data System (ADS)

    Lee, S. C.; Ng, S. S.; Hassan, H. Abu; Dumelow, T.

    2015-04-01

    Polarized infrared (IR) attenuated total reflection (ATR) measurements were performed on c- (polar) and r-plane (semi-polar) sapphire crystals. For c-plane sapphire crystal, spectral features due to the surface phonon polariton (SPhP) modes are only observable in the p-polarized ATR spectrum. Calculation of the SPhP dispersion spectra revealed that the SPhP modes of r-plane sapphire crystal are possible to be observed in both the s- and p-polarized ATR spectra. ATR measurements verified that excitation of the SPhP modes are still easier in the p-polarized ATR spectra. Taking into account the effects of anisotropy and the crystal orientation of hexagonal crystal system, the ATR spectra of r-plane sapphire crystal with arbitrary orientations were simulated. Through a best fit of experimental with simulated spectra, information about the crystal orientation of sapphire crystals was deduced.

  4. Reflection-Absorption Infrared Spectroscopy of Thin Films Using an External Cavity Quantum Cascade Laser

    SciTech Connect

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-02-04

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with < 1E-3 absorbance noise for a 10 second measurement time.

  5. Reflection-absorption infrared spectroscopy of thin films using an external cavity quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Craig, Ian M.; Blake, Thomas A.

    2013-01-01

    We present experimental demonstrations using a broadly tunable external cavity quantum cascade laser (ECQCL) to perform Reflection-Absorption InfraRed Spectroscopy (RAIRS) of thin layers and residues on surfaces. The ECQCL compliance voltage was used to measure fluctuations in the ECQCL output power and improve the performance of the RAIRS measurements. Absorption spectra from self-assembled monolayers of a fluorinated alkane thiol and a thiol carboxylic acid were measured and compared with FTIR measurements. RAIRS spectra of the explosive compounds PETN, RDX, and tetryl deposited on gold substrates were also measured. Rapid measurement times and low noise were demonstrated, with <1E-3 absorbance noise for a 10 second measurement time.

  6. Estimation of blood alcohol concentration by horizontal attenuated total reflectance-Fourier transform infrared spectroscopy.

    PubMed

    Sharma, Kakali; Sharma, Shiba P; Lahiri, Sujit C

    2010-06-01

    Numerous methods like distillation followed by iodometric titrations, gas chromatograph (GC)-flame ionization detector, gas chromatograph-mass spectrophotometer, GC-Headspace, Breath analyzer, and biosensors including alcohol dehydrogenase (enzymatic) have been used to determine blood alcohol concentration (BAC). In the present study, horizontal attenuated total reflectance-Fourier transform infrared spectroscopy had been used to determine BAC in whole blood. The asymmetric stretching frequency of C-C-O group of ethanol in water (1,045 cm(-1)) had been used to calculate BAC using Beer's Law. A seven-point calibration curve of ethanol was drawn in the concentration range 24-790 mg dL(-1). The curve showed good linearity over the concentration range used (r(2)=0.999, standard deviation=0.0023). The method is accurate, reproducible, rapid, simple, and nondestructive in nature. PMID:20541351

  7. Strategies for Detecting Organic Liquids on Soils Using Mid-Infrared Reflection Spectroscopy

    SciTech Connect

    Gallagher, Neal B.; Gassman, Paul L.; Blake, Thomas A.

    2008-06-25

    Stand-off monitoring for chemical spills can provide timely information for clean-up efforts and mid-infrared reflection-absorption spectroscopy is one approach being investigated. Anomaly and target detection strategies were examined for detection of four different low-volatility organic liquids on two different soil types. Several preprocessing and signal weighting strategies were studied. Anomaly detection for C-H bands was very good using second derivative preprocessing and provided similar performance to target detection approaches such as generalized least squares (GLS) and partial least squares (PLS) with detections at soil loads of approximately 0.6 to 1.5 mg/cm2. Good performance was also found for detection of P=O, O–H and C=O bands but the optimal strategy varied. The simplicity and generality of anomaly detection is attractive, however target detection provides more capability for classification.

  8. Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis.

    PubMed

    Huck, Christian W

    2016-01-01

    A review with more than 100 references on the principles and recent developments in the solid-phase extraction (SPE) prior and for in situ near and attenuated total reflection (ATR) infrared spectroscopic analysis is presented. New materials, chromatographic modalities, experimental setups and configurations are described. Their advantages for fast sample preparation for distinct classes of compounds containing different functional groups in order to enhance selectivity and sensitivity are discussed and compared. This is the first review highlighting both the fundamentals of SPE, near and ATR spectroscopy with a view to real sample applicability and routine analysis. Most of real sample analyses examples are found in environmental research, followed by food- and bioanalysis. In this contribution a comprehensive overview of the most potent SPE-NIR and SPE-ATR approaches is summarized and provided. PMID:27187347

  9. Infrared Reflection-Absorption Spectroscopy: Principles and Applications to Lipid-Protein Interaction in Langmuir Films

    PubMed Central

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R.

    2010-01-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  10. Detection of whitening agents in illegal cosmetics using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Bothy, J L; Desmedt, B; Courselle, P; De Beer, J O

    2014-09-01

    Cosmetic products containing illegal whitening agents are still found on the European market. They represent a considerable risk to public health, since they are often characterised by severe side effects when used chronically. The detection of such products at customs is not always simple, due to misleading packaging and the existence of products containing only legal components. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. The use of attenuated total reflectance-infrared (ATR-IR) spectroscopy, combined with chemometrics, was evaluated for that purpose. It was found that the combination of ATR-IR with the simple chemometric technique k-nearest neighbours gave good results. A model was obtained in which a minimum of illegal samples was categorised as legal. The correctly classified illegal samples could be attributed to the illegal components present. PMID:24927403

  11. [Quantitative analysis of contents in compound fertilizer and application research using near infrared reflectance spectroscopy].

    PubMed

    Song, Le; Zhang, Hong; Ni, Xiao-Yu; Wu, Lin; Liu, Bin-Mei; Yu, Li-Xiang; Wang, Qi; Wu, Yue-Jin

    2014-01-01

    In the present study, a new approach to fast determining the content of urea, biuret and moisture in compound fertilizer composed of urea, ammonium dihydrogenphosphate and potassium chloride was proposed by using near infrared diffuse reflectance spectroscopy. After preprocessing the original spectrum, partial least squares (PLS) models of urea, biuret and moisture were built with the R2 values of 0.9861, 0.9770 and 0.9713 respectively, the root mean square errors of cross validation were 2.59, 0.38, 0.132 respectively. And the prediction correlation factors were 0.9733, 0.9215 and 0.9679 respectively. The authors detected six kinds of compound fertilizer in market for the model verification, the correlation factors were 0.9237, 0.9786 and 0.9874 respectively. The data implied that the new method can be used for situ quality control in the production process of compound fertilizer. PMID:24783536

  12. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films.

    PubMed

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R

    2010-04-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  13. [Application of near-infrared reflectance spectroscopy in grass breeding with space flight mutagenesis].

    PubMed

    Ren, Wei-Bo; Han, Jian-Guo; Zhang, Yun-Wei; Guo, Hui-Qin

    2008-02-01

    Near infrared reflectance spectroscopy is a new fast and efficient analysis method. It has been wildly used in many areas such as evaluation of feedstuff, assessment of soil fertilizer and so on. In the present paper, the principle, technique method and merits of NIRS were introduced. The potential application of NIRS in grass breeding with space flight mutagenesis was discussed in areas such as analysis of grass nutrition, estimate of secondary metabolism compounds, forecast of disease and insects resistance, and evaluation of abiotic stress. The conclusion is that application of NIRS in grass breeding with space mutagenesis is significant in both academic and technical areas because it not only improves the efficiency of mutation selection but helps uncover the mechanism of space mutation breeding. PMID:18479009

  14. Calibration and prediction of amino acids in stevia leaf powder using near infrared reflectance spectroscopy.

    PubMed

    Li, Guan; Wang, Ruiguo; Quampah, Alfred Julius; Rong, Zhengqin; Shi, Chunhai; Wu, Jianguo

    2011-12-28

    The use of stevia as animal feed additive has been researched over the years, but how to rapidly predict its amino acid contents has not been studied yet by using near-infrared reflectance spectroscopy. In the present study, 301 samples of stevia leaf powder were defined as the calibration set from which calibration models were optimized, and the performance of prediction was evaluated. Compared with other mathematical treatments, the models developed with the "1, 12, 12, 1" treatment, combined with modified partial least-squares regression and standard normal variance with de-trending, had a significant potential in predicting amino acid contents, such as threonine, serine, etc. Six spectral regions were found to possess large spectrum variation and show high contribution to calibration models. From the present study, the calibration models of amino acids in stevia were successfully developed and could be applied to quality control in feed processing, breeding selection and mutant screening. PMID:22066716

  15. Fast determination of total ginsenosides content in ginseng powder by near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Hua-cai; Chen, Xing-dan; Lu, Yong-jun; Cao, Zhi-qiang

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy was used to develop a fast determination method for total ginsenosides in Ginseng (Panax Ginseng) powder. The spectra were analyzed with multiplicative signal correction (MSC) correlation method. The best correlative spectra region with the total ginsenosides content was 1660 nm~1880 nm and 2230nm~2380 nm. The NIR calibration models of ginsenosides were built with multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS) regression respectively. The results showed that the calibration model built with PLS combined with MSC and the optimal spectrum region was the best one. The correlation coefficient and the root mean square error of correction validation (RMSEC) of the best calibration model were 0.98 and 0.15% respectively. The optimal spectrum region for calibration was 1204nm~2014nm. The result suggested that using NIR to rapidly determinate the total ginsenosides content in ginseng powder were feasible.

  16. Pectin functionalised by fatty acids: Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopic characterisation

    NASA Astrophysics Data System (ADS)

    Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania

    2015-01-01

    Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.

  17. Depth profile characterization technique for electron density in GaN films by infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamijoh, Takaaki; Ma, Bei; Morita, Ken; Ishitani, Yoshihiro

    2016-05-01

    Infrared reflectance spectroscopy is a noncontact measurement method for carrier density and mobility. In this article, the model determination procedure of layer-type nonuniform electron distribution is investigated, since the spectrum fitting hitherto has been conducted on the basis of a multilayer model defined in advance. A simplified case of a high-electron-density GaN layer embedded in a GaN matrix is mainly studied. The following procedure is found to be applicable. The first step is the determination of the high-density layer position in the vicinity of the surface, in the middle region, or in the vicinity of the interface. This is followed by the specification of the sheet electron density and the layer thickness of the high-density region. It is found that this procedure is also applicable to the characterization of two-dimensional electron gases in the vicinity of AlGaN/GaN heterointerfaces.

  18. Time-resolved far-infrared experiments at the National Synchrotron Light Source. Final report

    SciTech Connect

    Tanner, D.B.; Reitze, D.H.; Carr, G.L.

    1999-10-12

    A facility for time-resolved infrared and far-infrared spectroscopy has been built and commissioned at the National Synchrotron Light Source. This facility permits the study of time dependent phenomena over a frequency range from 2-8000cm{sup {minus}1} (0.25 meV-1 eV). Temporal resolution is approximately 200 psec and time dependent phenomena in the time range out to 100 nsec can be investigated.

  19. Analysis of visible and near infrared spectral reflectance for assessing metals in soil.

    PubMed

    Rathod, Paresh H; Müller, Ingo; Van der Meer, Freek D; de Smeth, Boudewijn

    2015-10-01

    Visible and near infrared reflectance (VNIR; 350-2500 nm) spectroscopy has greatly been used in soils, especially for studying variability in spectrally active soil components (e.g., organic carbon, clays, and Fe/Al oxides) based on their diagnostic spectral features. In recent years, this technique has also been applied to assess soil metallic ions. In this research, the feasibility of VNIR spectroscopy for determination of soil metals was investigated with two soil data sets: (i) artificially metal-spiked and (ii) in situ metal-contaminated soils. Results showed that reflectance spectra of neither metal-spiked soils with Cd, As, and Pb even at their higher concentrations of 20, 900, and 1200 mg kg(-1), respectively, nor in situ metal-contaminated soils (with concentrations of 30 mg Cd, 3019 mg As, and 5725 mg Pb kg(-1) soil) showed any recognized absorption peaks that correspond to soil metal concentrations. We observed variations in reflectance intensity for in situ metal-contaminated soils only, showing higher reflectance across the entire spectrum for strongly and lower for less metal-contaminated soils. A significant correlation was found between surface soil metals' concentrations and continuum removed spectra, while soil metals were also found significantly associated with soil organic matter and total Fe. A partial least square regression with cross-validation approach produced an acceptable prediction of metals (R (2) = 0.58-0.94) for both soil data sets, metal-spiked and in situ metal-contaminated soils. However, high values of root mean square error ruled out practical application of the achieved prediction models. PMID:27614958

  20. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    PubMed Central

    Khan, Ahmed Nawaz; Khar, Roop Krishen; Ajayakumar, P. V.

    2016-01-01

    Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX) in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH) and European Medicine Agency (EMA) developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC), 2.38% root mean square error of prediction (RMSEP), 2.43% root mean square error of cross-validation (RMSECV). Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated using developed

  1. Quantitative diffuse reflectance infrared fourier transform spectrometric studies of cementitious blends

    SciTech Connect

    Rebagay, T.V.; Dodd, D.A.

    1989-07-01

    The effective immobilization of low-level radioactive liquid wastes in the form of grout depends on the quality of the dry cementitious blends used in the grout formulation. Variation in the mix ratios of the components of the blend can cause detrimental effects on the processing behavior of the grout slurry and the final properties of the cured grout. Thus the blends require thorough chemical characterization and monitoring by strict quality control protocols. In an earlier work at our laboratories, Fourier transform infrared- transmission method has been successfully applied in the analysis of blends of cement, fly ash, and clays. However, this method involved time-consuming sample preparation resulting in slow turnaround for repetitive sampling. A practical approach to quality control required a fast and simple method for the analysis of the blends. This paper describes a diffuse reflectance infrared Fourier transform (DRIFT) spectrometric procedure for the routine examination of neat blends consisting of cement, fly ash, clays and/or blast furnace slags. (1 ref., 10 figs., 4 tabs.)

  2. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy.

    PubMed

    van den Brand, J; Blajiev, O; Beentjes, P C J; Terryn, H; de Wit, J H W

    2004-07-20

    The bonding of two types of ester group-containing molecules with a set of different oxide layers on aluminum has been investigated using infrared reflection absorption spectroscopy. The different oxide layers were made by giving typical surface treatments to the aluminum substrate. The purpose of the investigation was to find out what type of ester-oxide bond is formed and whether this is influenced by changes in the composition and chemistry of the oxide. The extent by which these bonded ester molecules resisted disbondment in water or substitution by molecules capable of chemisorption was also investigated. The ester groups were found to show hydrogen bonding with hydroxyls on the oxide surfaces through their carbonyl oxygens. For all oxides, the ester groups showed the same nu(C = O) carbonyl stretching vibration after adsorption, indicating very similar bonding occurs. However, the oxides showed differences in the amount of molecules bonded to the oxide surface, and a clear relation was observed with the hydroxyl concentration present on the oxide surface, which was determined from XPS measurements. The two compounds showed differences in the free to bonded nu(C = O) infrared peak shift, indicating differences in bonding strength with the oxide surface between the two types of molecules. The bonding of the ester groups with the oxide surfaces was found to be not stable in the presence of water and also not in the presence of a compound capable of chemisorption with the aluminum oxide surface. PMID:15248718

  3. Recent progress in noninvasive diabetes screening by diffuse reflectance near-infrared skin spectroscopy

    NASA Astrophysics Data System (ADS)

    Heise, H. M.; Haiber, S.; Licht, M.; Ihrig, D. F.; Moll, C.; Stuecker, M.

    2006-02-01

    Near infrared spectroscopy exhibits a tremendous potential for clinical chemistry and tissue pathology. Owing to its penetration depth into human skin, near infrared radiation can probe chemical and structural information non-invasively. Metabolic diseases such as diabetes mellitus increase nonenzymatic glycation with the effect of glucose molecules bonding chemically to proteins. In addition, glycation accumulates on tissue proteins with the clearest evidence found in extracellular skin collagen, affecting also covalent crosslinking between adjacent protein strands, which reduces their flexibility, elasticity, and functionality. Non-enzymatically glycated proteins in human skin and following chemical and structural skin changes were our spectroscopic target. We carried out measurements on 109 subjects using two different NIR-spectrometers equipped with diffuse reflection accessories. Spectra of different skin regions (finger and hand/forearm skin) were recorded for comparison with clinical blood analysis data and further patient information allowing classification into diabetics and non-diabetics. Multivariate analysis techniques for supervised classification such as linear discriminant analysis (LDA) were applied using broad spectral interval data or a number of optimally selected wavelengths. Based on fingertip skin spectra recorded by fiber-optics, it was possible to classify diabetics and non-diabetics with a maximum accuracy of 87.8 % using leave-5-out cross-validation (sensitivity of 87.5. %, specificity of 88.2 %). With the results of this study, it can be concluded that ageing and glycation at elevated levels cannot always be separated from each other.

  4. Using low-energy near infrared light and upconverting nanoparticles to trigger photoreactions within supramolecular assemblies.

    PubMed

    Wu, Tuoqi; Branda, Neil R

    2016-07-01

    This overview highlights how the high-energy ultraviolet or visible light required to drive photochemical reactions can be overcome by integrating the chromophores into supramolecular structures containing upconverting nanoparticles with trivalent lanthanide dopants (such as Tm(3+) and Er(3+)). These nanoparticles are particularly interesting systems because they absorb multiple photons of near infrared light and convert them into higher-energy light which is emitted in the ultraviolet and visible regions of the electromagnetic spectrum. The upconverting nanoparticles effectively act as nanoscopic 'light bulbs', and in this way, less damaging near infrared light can be used to trigger photochemical reactions for use in imaging and small molecule release. Several examples of how this phenomenon is being used in photochemistry will be presented with the focus being on self-assembled supramolecular systems, some of which are being used in cells and small animals. PMID:27270956

  5. Optical measurement of temperature in biological cells under infrared laser light exposure (λ=800 nm)

    NASA Astrophysics Data System (ADS)

    Moreau, David; Lefort, Claire; Leveque, Philippe; O'Connor, Rod P.

    2015-07-01

    Interest in the interaction between laser light and biological samples has gained momentum in recent years, particularly in neurobiology, where there is significant potential to stimulate neurons with infrared laser light. Despite recent reports showing the application of infrared light for neurostimulation, the underlying mechanism is still unknown. The two main hypotheses are based on thermal or electrostatic mechanisms. Here, a novel optical method is presented to make temperature measurements in human neural cells under infrared laser excitation (λ=800nm) using the dye Rhodamine B (RhB). The measurement of temperature is based on the property of RhB, a fluorescent dye whose fluorescence intensity decreases linearly with increases in temperature. We present and detail the setup and measurement procedure that has temporal resolution of few milliseconds, based around a fluorescent live-cell imaging microscope used for cellular microfluorimetry experiments.

  6. Infrared divergence on the light-front and dynamical Higgs mechanism

    NASA Astrophysics Data System (ADS)

    Maedan, Shinji

    1998-10-01

    Dynamical Higgs mechanism on the light-front (LF) is studied using a (1+1)-dimensional model, with emphasis on the infrared divergence problem. The consideration of the zero mode k+=0 is not sufficient for investigating dynamical symmetry breaking on the LF. It also needs to treat properly an infrared divergence caused by internal momentum p+-->0 (p+≠0) in the continuum limit. In order to avoid the divergence, we introduce an infrared cutoff function FIR(p,Λ) which is not Lorentz invariant. It is then shown that the gauge boson obtains mass dynamically on the LF.

  7. Development of blood vessel searching system using near-infrared light stereo method for clinical blood sampling

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Morita, Yusuke; Nakamachi, Eiji; Honda, Norihiro; Awazu, Kunio

    2014-10-01

    We developed an accurate three-dimensional blood vessel search (3D BVS) system using NIR light for the clinical blood sampling. In the previous study, the 3D BVS system, which used near-infrared (NIR) light imaging and the stereo method to locate blood vessel accurately in three dimensions has been developed(1). However, as NIR lights could not transmit the human arm, this system could not be used for the subcutaneous blood vessel detection. In this study, we developed a BVS by using the reflecting NIR light for blood sampling assist. The light scattering in human tissue will cause blur of blood vessel edge in image, that makes the diameter of blood vessel became uncertain. In this study, a light propagation simulation and a multilayer phantom were adopted to estimate the measurement error of blood vessel diameter in our BSV system. In the simulation, the optical properties of scattering coefficient, absorption coefficient, and refractive index were set similar with human skin. Next, we fabricated a multilayer phantom, which has the similar structure and optical properties with the human skin to confirm availability of the simulation. Also, the optical properties of our phantom are adjustable in our phantom to imitate the different color of skin. We established the estimation algorithm to detect the blood vessel accurately. Finally, we confirm the availability of our BVS for the blood sampling assist system.

  8. An Optical/Infrared Astrometric Satellite Project LIGHT

    NASA Astrophysics Data System (ADS)

    Yoshizawa, M.; Sato, K.; Nishikawa, J.; Fukushima, T.; Miyamoto, M.

    1997-08-01

    LIGHT is the name of a scanning astrometric satellite for stellar and galactic astronomy planned to be launched between 2007 and 2010. Four sets of Fizeau-type interferometers with a beam combiner unit of 1m baseline are the basic structure of the satellite optics. LIGHT is expected to observe the parallaxes and proper motions of nearly a hundred million stars up to V=18 mag (K=15 mag) magnitude with the precision better than 0.1 milliarcsec (about 50 microarcsec in V-band and 90 microarcsec in K-band) in parallaxes and better than 0.1 milliarcsec per year in proper motions, as well as the precise photometric characteristics of the observed stars. Almost all of the giant and supergiant stars belonging to the disk and halo components of our Galaxy within 10 to 15kpc from the sun will be observed by LIGHT to study the most fundamental structure and evolution of the Galaxy. LIGHT will become a precursor of a more sophisticated future astrometric interferometer satellite like GAIA (Lindegren & Perryman 1996).

  9. Stray light in the Infrared Astronomical Satellite (IRAS)

    NASA Technical Reports Server (NTRS)

    Lange, S. R.; Breault, R. P.

    1980-01-01

    Changes made to the telescope and critical objects considered in modeling these changes into the APART program are described. The optical system was analyzed for scattered light, diffracted then scattered radiation, and thermally emitted radiation. The damaged area of the primary to mirror was also examined. Results are presented in tables and graphs.

  10. Chemical morphology of Areca nut characterized directly by Fourier transform near-infrared and mid-infrared microspectroscopic imaging in reflection modes.

    PubMed

    Chen, Jian-Bo; Sun, Su-Qin; Zhou, Qun

    2016-12-01

    Fourier transform near-infrared (NIR) and mid-infrared (MIR) imaging techniques are essential tools to characterize the chemical morphology of plant. The transmission imaging mode is mostly used to obtain easy-to-interpret spectra with high signal-to-noise ratio. However, the native chemical compositions and physical structures of plant samples may be altered when they are microtomed for the transmission tests. For the direct characterization of thick plant samples, the combination of the reflection NIR imaging and the attenuated total reflection (ATR) MIR imaging is proposed in this research. First, the reflection NIR imaging method can explore the whole sample quickly to find out typical regions in small sizes. Next, each small typical region can be measured by the ATR-MIR imaging method to reveal the molecular structures and spatial distributions of compounds of interest. As an example, the chemical morphology of Areca nut section is characterized directly by the above approach. PMID:27374557

  11. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder.

    PubMed

    Huang, Min; Kim, Moon S; Chao, Kuanglin; Qin, Jianwei; Mo, Changyeun; Esquerre, Carlos; Delwiche, Stephen; Zhu, Qibing

    2016-01-01

    The increasingly common application of the near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected for eight different milk powder products that included five brands of non-fat milk powder and three brands of whole milk powder. For each milk powder, five different powder depths ranging from 1 mm-5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection of the melamine through the milk. A relationship was established between the NIR reflectance spectra (937.5-1653.7 nm) and the penetration depth was investigated by means of the partial least squares-discriminant analysis (PLS-DA) technique to classify pixels as being milk-only or a mixture of milk and melamine. With increasing milk depth, classification model accuracy was gradually decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93% as the milk depth increased from 1 mm-3 mm. As the milk depth increased to 4 mm and 5 mm, model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk powders using an online NIR hyperspectral imaging system similar to that used in this study. PMID:27023555

  12. Penetration Depth Measurement of Near-Infrared Hyperspectral Imaging Light for Milk Powder

    PubMed Central

    Huang, Min; Kim, Moon S.; Chao, Kuanglin; Qin, Jianwei; Mo, Changyeun; Esquerre, Carlos; Delwiche, Stephen; Zhu, Qibing

    2016-01-01

    The increasingly common application of the near-infrared (NIR) hyperspectral imaging technique to the analysis of food powders has led to the need for optical characterization of samples. This study was aimed at exploring the feasibility of quantifying penetration depth of NIR hyperspectral imaging light for milk powder. Hyperspectral NIR reflectance images were collected for eight different milk powder products that included five brands of non-fat milk powder and three brands of whole milk powder. For each milk powder, five different powder depths ranging from 1 mm–5 mm were prepared on the top of a base layer of melamine, to test spectral-based detection of the melamine through the milk. A relationship was established between the NIR reflectance spectra (937.5–1653.7 nm) and the penetration depth was investigated by means of the partial least squares-discriminant analysis (PLS-DA) technique to classify pixels as being milk-only or a mixture of milk and melamine. With increasing milk depth, classification model accuracy was gradually decreased. The results from the 1-mm, 2-mm and 3-mm models showed that the average classification accuracy of the validation set for milk-melamine samples was reduced from 99.86% down to 94.93% as the milk depth increased from 1 mm–3 mm. As the milk depth increased to 4 mm and 5 mm, model performance deteriorated further to accuracies as low as 81.83% and 58.26%, respectively. The results suggest that a 2-mm sample depth is recommended for the screening/evaluation of milk powders using an online NIR hyperspectral imaging system similar to that used in this study. PMID:27023555

  13. Assessment of Various Organic Matter Properties by Infrared Reflectance Spectroscopy of Sediments and Filters

    NASA Astrophysics Data System (ADS)

    Alaoui, G.; Leger, M.; Gagne, J.; Tremblay, L.

    2009-05-01

    The goal of this work was to evaluate the capability of infrared reflectance spectroscopy for a fast quantification of the elemental and molecular compositions of sedimentary and particulate organic matter (OM). A partial least-squares (PLS) regression model was used for analysis and values were compared to those obtained by traditional methods (i.e., elemental, humic and HPLC analyses). PLS tools are readily accessible from software such as GRAMS (Thermo-Fisher) used in spectroscopy. This spectroscopic-chemometric approach has several advantages including its rapidity and use of whole unaltered samples. To predict properties, a set of infrared spectra from representative samples must first be fitted to form a PLS calibration model. In this study, a large set (180) of sediments and particles on GFF filters from the St. Lawrence estuarine system were used. These samples are very heterogenous (e.g., various tributaries, terrigenous vs. marine, events such as landslides and floods) and thus represent a challenging test for PLS prediction. For sediments, the infrared spectra were obtained with a diffuse reflectance, or DRIFT, accessory. Sedimentary carbon, nitrogen, humic substance contents as well as humic substance proportions in OM and N:C ratios were predicted by PLS. The relative root mean square error of prediction (%RMSEP) for these properties were between 5.7% (humin content) and 14.1% (total humic substance yield) using the cross-validation, or leave-one out, approach. The %RMSEP calculated by PLS for carbon content was lower with the PLS model (7.6%) than with an external calibration method (11.7%) (Tremblay and Gagné, 2002, Anal. Chem., 74, 2985). Moreover, the PLS approach does not require the extraction of POM needed in external calibration. Results highlighted the importance of using a PLS calibration set representative of the unknown samples (e.g., same area). For filtered particles, the infrared spectra were obtained using a novel approach based on

  14. Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders

    NASA Astrophysics Data System (ADS)

    Horng, R. H.; Chiang, C. C.; Hsiao, H. Y.; Zheng, X.; Wuu, D. S.; Lin, H. I.

    2008-09-01

    Using maskless lithography and electroforming techniques, we have demonstrated an enhanced performance of GaN/sapphire light-emitting diode (LED) embedded in a reflective copper heat spreader. The chip size and dominant wavelength of the blue emitter used in this research is 1×1 mm2 and 455 nm, respectively. The cup-shaped LED heat sink is electroformed on sapphire directly using the spin-coated photoresist coated with the Au/Cr/Ag mirror as a mold and dicing into the embedded LED with a Cu base dimension of 3×3 mm2, which effectively enhances the heat dissipation down to the metal frame and reaps the light flux generated from the side emission. With the aid of a reflective heat spreader, the encapsulated LED sample driven at 1 A yields the light output power of 700 mW and around 2.7-times increase in the wall-plug efficiency compared to that of the conventional GaN/sapphire LED. Infrared thermal images confirm the GaN/sapphire LED with more efficient heat extraction and better temperature uniformity. These results exhibit an alternative solution to thermal management of high power LED-on-sapphire samples besides the laser lift-off technique.

  15. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy

    PubMed Central

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G.; Gimeno, Vicente; Navarro, Josefa M.; Moral, Raul; Martínez-Nicolás, Juan J.; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  16. Simulation of attenuated total reflection infrared absorbance spectra: applications to automotive clear coat forensic analysis.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; Nishikida, Koichi; Campbell, Jay

    2014-01-01

    Attenuated total reflection (ATR) is a widely used sampling technique in infrared (IR) spectroscopy because minimal sample preparation is required. Since the penetration depth of the ATR analysis beam is quite shallow, the outer layers of a laminate or multilayered paint sample can be preferentially analyzed with the entire sample intact. For this reason, forensic laboratories are taking advantage of ATR to collect IR spectra of automotive paint systems that may consist of three or more layers. However, the IR spectrum of a paint sample obtained by ATR will exhibit distortions, e.g., band broadening and lower relative intensities at higher wavenumbers, compared with its transmission counterpart. This hinders library searching because most library spectra are measured in transmission mode. Furthermore, the angle of incidence for the internal reflection element, the refractive index of the clear coat, and surface contamination due to inorganic contaminants can profoundly influence the quality of the ATR spectrum obtained for automotive paints. A correction algorithm to allow ATR spectra to be searched using IR transmission spectra of the paint data query (PDQ) automotive database is presented. The proposed correction algorithm to convert transmission spectra from the PDQ library to ATR spectra is able to address distortion issues such as the relative intensities and broadening of the bands, and the introduction of wavelength shifts at lower frequencies, which prevent library searching of ATR spectra using archived IR transmission data. PMID:25014606

  17. Water sorption on martian regolith analogs: Thermodynamics and near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Pommerol, Antoine; Schmitt, Bernard; Beck, Pierre; Brissaud, Olivier

    2009-11-01

    The near-infrared reflectance spectra of the martian surface present strong absorption features attributed to hydration water present in the regolith. In order to characterize the relationships between this water and atmospheric vapor and decipher the physical state of water molecules in martian regolith analogs, we designed and built an experimental setup to measure near-IR reflectance spectra under martian atmospheric conditions. Six samples were studied that cover part of the diversity of Mars surface mineralogy: a hydrated ferric oxide (ferrihydrite), two igneous samples (volcanic tuff, and dunite sand), and three potential water rich soil materials (Mg-sulfate, smectite powder and a palagonitic soil, the JSC Mars-1 regolith stimulant). Sorption and desorption isotherms were measured at 243 K for water vapor pressure varying from 10 -5 to ˜0.3 mbar (relative humidity: 10 -4 to 75%). These measurements reveal a large diversity of behavior among the sample suite in terms of absolute amount of water adsorbed, shape of the isotherm and hysteresis between the adsorption and desorption branches. Simultaneous in situ spectroscopic observations permit a detailed analysis of the spectral signature of adsorbed water and also point to clear differences between the samples. Ferric (oxy)hydroxides like ferrihydrite or other phases present in palagonitic soils are very strong water adsorbent and may play an important role in the current martian water cycle by allowing large exchange of water between dust-covered regions and atmosphere at diurnal and seasonal scales.

  18. Improved depth resolution in near-infrared diffuse reflectance spectroscopy using obliquely oriented fibers

    NASA Astrophysics Data System (ADS)

    Thilwind, Rachel Estelle; 't Hooft, Gert; Uzunbajakava, Natallia E.

    2009-03-01

    We demonstrate a significant improvement of depth selectivity when using obliquely oriented fibers for near-infrared (NIR) diffuse reflectance spectroscopy. This is confirmed by diffuse reflectance measurements of a two-layer tissue-mimicking phantom across the spectral range from 1000 to 1940 nm. The experimental proof is supported by Monte Carlo simulations. The results reveal up to fourfold reduction in the mean optical penetration depth, twofold reduction in its variation, and a decrease in the number of scattering events when a single fiber is oriented at an angle of 60 deg. The effect of reducing the mean optical penetration depth is enhanced by orienting both fibers inwardly. Using outwardly oriented fibers enables more selective probing of deeper layers, while reducing the contribution from surface layers. We further demonstrate that the effect of an inward oblique arrangement can be approximated to a decrease in fiber-to-fiber separation in the case of a perpendicular fiber arrangement. This approximation is valid in the weak- or absorption-free regime. Our results assert the advantages of using obliquely oriented fibers when attempting to specifically address superficial tissue layers, for example, for skin cancer detection, or in noninvasive glucose monitoring. Such flexibility could be further advantageous in a range of minimally invasive applications, including catheter-based interventions.

  19. Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy.

    PubMed

    Galvez-Sola, Luis; García-Sánchez, Francisco; Pérez-Pérez, Juan G; Gimeno, Vicente; Navarro, Josefa M; Moral, Raul; Martínez-Nicolás, Juan J; Nieves, Manuel

    2015-01-01

    Sufficient nutrient application is one of the most important factors in producing quality citrus fruits. One of the main guides in planning citrus fertilizer programs is by directly monitoring the plant nutrient content. However, this requires analysis of a large number of leaf samples using expensive and time-consuming chemical techniques. Over the last 5 years, it has been demonstrated that it is possible to quantitatively estimate certain nutritional elements in citrus leaves by using the spectral reflectance values, obtained by using near infrared reflectance spectroscopy (NIRS). This technique is rapid, non-destructive, cost-effective and environmentally friendly. Therefore, the estimation of macro and micronutrients in citrus leaves by this method would be beneficial in identifying the mineral status of the trees. However, to be used effectively NIRS must be evaluated against the standard techniques across different cultivars. In this study, NIRS spectral analysis, and subsequent nutrient estimations for N, K, Ca, Mg, B, Fe, Cu, Mn, and Zn concentration, were performed using 217 leaf samples from different citrus trees species. Partial least square regression and different pre-processing signal treatments were used to generate the best estimation against the current best practice techniques. It was verified a high proficiency in the estimation of N (Rv = 0.99) and Ca (Rv = 0.98) as well as achieving acceptable estimation for K, Mg, Fe, and Zn. However, no successful calibrations were obtained for the estimation of B, Cu, and Mn. PMID:26257767

  20. Synchrotron Infrared Reflectance Microspectroscopy Study of Film Formation and Breakdown on Copper

    SciTech Connect

    Hahn, F.; Melendres, C

    2010-01-01

    This work demonstrates the utility of synchrotron infrared reflectance microspectroscopy in the far- and mid-IR for the determination of the composition of electrogenerated surface films formed during the general and localized corrosion of copper in alkaline and bicarbonate solutions. Back-reflection geometry has been employed to identify the anodic film formed on copper in 0.1 M NaOH solution at 0.3 V (versus a Ag/AgCl reference) to be mainly CuO. In 0.01 M NaHCO{sub 3} solution general corrosion occurs with passive film formation below 0.2 V. The surface film at 0.2 V consisted mainly of bicarbonate, copper carbonate dihydroxide or malachite [CuCO{sub 3} {center_dot} Cu(OH){sub 2}], Cu(OH){sub 2} and possibly some CuO. At higher potentials the passive film breaks down and localized corrosion occurs leading to the formation of pits. The composition of the surface films inside the pits formed at 0.6 V was found to be essentially the same as that outside but the relative amount of Cu(OH){sub 2} appears to be higher.

  1. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy.

    PubMed

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L; Kobayashi, Hisataka

    2016-03-22

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  2. Comparative effectiveness of light emitting diodes (LEDs) and Lasers in near infrared photoimmunotherapy

    PubMed Central

    Sato, Kazuhide; Watanabe, Rira; Hanaoka, Hirofumi; Nakajima, Takahito; Choyke, Peter L.; Kobayashi, Hisataka

    2016-01-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein we compare two NIR-light sources; light emitting diodes (LEDs) and Lasers, for their effectiveness in NIR-PIT. A photosensitizer, IRDye-700DX, conjugated to panitumumab (pan-IR700), was incubated with EGFR-expressing A431 and MDA-MB-468-luc cells. NIR-light was provided by LEDs or Lasers at the same light dose. Laser-light produced more cytotoxicity and greater reductions in IR700-fluorescence intensity than LED-light. Laser-light also produced more cytotoxicity in vivo in both cell lines. Assessment of super-enhanced permeability and retention (SUPR) effects were stronger with Laser than LED. These results suggest that Laser-light produced significantly more cytotoxic effects compared to LEDs. Although LED is less expensive, Laser-light produces superior results in NIR-PIT. PMID:26885688

  3. Interactions of light with rough dielectric surfaces - Spectral reflectance and polarimetric properties

    NASA Technical Reports Server (NTRS)

    Yon, S. A.; Pieters, C. M.

    1988-01-01

    The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.

  4. Seeing Through the Clouds: Thermal Emission and Reflected Light Spectra of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan J.; Marley, Mark; Zahnle, Kevin; Line, Michael R.; Kempton, Eliza M.-R.; Lewis, Nikole K.; Cahoy, Kerri

    2015-12-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain their atmospheric compositions. Of the planets smaller than Neptune studied to date, all have radii in the near-infrared consistent with being constant in wavelength, likely showing that these small planets are consistently enshrouded in thick hazes and clouds. We explore the types of clouds and hazes that can completely obscure transmission spectra and find that very thick, lofted clouds of salts or sulfides in high metallicity (1000× solar) atmospheres create featureless transmission spectra in the near-infrared. Photochemical hazes with a range of particle sizes also create featureless transmission spectra at lower metallicities.We present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break the degeneracies and better constrain the atmospheric compositions. Cloudy thermal emission spectra have muted features more like blackbodies, and hazy thermal emission spectra have emission features caused by an inversion layer at altitudes where the haze forms. Analysis of reflected light from warm (~400-800 K) planets can distinguish cloudy planets, which have moderate albedos (Ag=0.05-0.20), from hazy planets, which are very dark (Ag=0.0-0.03). Reflected light spectra of cold planets (~200 K) accessible to a space-based visible light coronagraph may be the key to understanding small planets: they will have high albedos and large molecular features that actually allow them to be more easily characterized than the warmer transiting planets. We suggest a number of complementary observations to characterize super Earths, including transmission spectra of hot (~1000 K) targets, thermal emission spectra of warm targets using the James

  5. Surgical lighting with contrast enhancement based on spectral reflectance comparison and entropy analysis

    NASA Astrophysics Data System (ADS)

    Shen, Junfei; Wang, Huihui; Wu, Yisi; Li, An; Chen, Chi; Zheng, Zhenrong

    2015-10-01

    Surgical light is important for helping the surgeon easily identify specific tissues during an operation. We propose a spectral reflectance comparison model to optimize the light-emitting diode light spectrum in the operating room. An entropy evaluation method, meant specifically for surgical situations, was developed to evaluate images of biological samples. White light was mixed to achieve an optimal spectrum, and images of different tissues under the light were captured and analyzed. Results showed that images obtained with light with an optimal spectrum had a higher contrast than those obtained with a commercial white light of different color temperatures. Optimized surgical light obtained using this simple and effective method could replace the traditional surgical illumination systems.

  6. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV).

    PubMed

    Genkawa, Takuma; Shinzawa, Hideyuki; Kato, Hideaki; Ishikawa, Daitaro; Murayama, Kodai; Komiyama, Makoto; Ozaki, Yukihiro

    2015-12-01

    An alternative baseline correction method for diffuse reflection near-infrared (NIR) spectra, searching region standard normal variate (SRSNV), was proposed. Standard normal variate (SNV) is an effective pretreatment method for baseline correction of diffuse reflection NIR spectra of powder and granular samples; however, its baseline correction performance depends on the NIR region used for SNV calculation. To search for an optimal NIR region for baseline correction using SNV, SRSNV employs moving window partial least squares regression (MWPLSR), and an optimal NIR region is identified based on the root mean square error (RMSE) of cross-validation of the partial least squares regression (PLSR) models with the first latent variable (LV). The performance of SRSNV was evaluated using diffuse reflection NIR spectra of mixture samples consisting of wheat flour and granular glucose (0-100% glucose at 5% intervals). From the obtained NIR spectra of the mixture in the 10 000-4000 cm(-1) region at 4 cm intervals (1501 spectral channels), a series of spectral windows consisting of 80 spectral channels was constructed, and then SNV spectra were calculated for each spectral window. Using these SNV spectra, a series of PLSR models with the first LV for glucose concentration was built. A plot of RMSE versus the spectral window position obtained using the PLSR models revealed that the 8680–8364 cm(-1) region was optimal for baseline correction using SNV. In the SNV spectra calculated using the 8680–8364 cm(-1) region (SRSNV spectra), a remarkable relative intensity change between a band due to wheat flour at 8500 cm(-1) and that due to glucose at 8364 cm(-1) was observed owing to successful baseline correction using SNV. A PLSR model with the first LV based on the SRSNV spectra yielded a determination coefficient (R2) of 0.999 and an RMSE of 0.70%, while a PLSR model with three LVs based on SNV spectra calculated in the full spectral region gave an R2 of 0.995 and an RMSE of

  7. In vivo measurement of mid-infrared light scattering from human skin

    PubMed Central

    Michel, Anna P. M.; Liakat, Sabbir; Bors, Kevin; Gmachl, Claire F.

    2013-01-01

    Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin. PMID:23577287

  8. Infrared light scattering in biological tissues and fluids

    NASA Astrophysics Data System (ADS)

    Thomas, Gordon A.; Koo, Tae-Woong; Dasari, Ramachandra R.; Feld, Michael S.

    2001-03-01

    We have studied the elastic and Raman scattering from whole blood, blood serum and related biological fluids and tissues. The motivation of this work is to determine the composition and elastic scattering properties with a non-invasive, optical method. An example of the possible applications is the determination of the glucose concentration and its variations in a way that would be clinically effective for patients with diabetes. We have imaged the elastically scattered light and determined the scattering parameters in order to assess appropriate geometries for efficient collection of the Raman scattering. Using the Raman apectra we have determined the concentration of glucose and the other analytes under laboratory conditions.

  9. Photosynthesis-related infrared light transmission changes in spinach leaf segments

    SciTech Connect

    Akimoto, T.

    1985-10-01

    The time courses of infrared light transmission changes and fluorescence induced by light in spinach leaf segments were measured. The illumination by red light exhibited a complex wave pattern. The transmission approached the baseline after repeating decreases and increases. Illumination by far-red light decreased the transmission. One of the differences between the two responses was the difference between the two amplitudes of the first increasing component. The component in the red light response was larger than the component in the far-red light response. The transmission decrease by far-red light is supposed to correspond to ''red drop.'' The transmission decrease by far-red light was suppressed by red light. This is due to an activation of a transmission-increasing component. This probably corresponds to ''enhancement.'' A proportional correlation existed between the intensity of far-red light and the minimum intensity of red light that suppressed the transmission decrease induced by far-red light. The component which made Peak D in the time course of fluorescence yield and the first increasing component in the transmission changes were suppressed by intense light.

  10. Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer's and Parkinson's Disease

    PubMed Central

    Johnstone, Daniel M.; Moro, Cécile; Stone, Jonathan; Benabid, Alim-Louis; Mitrofanis, John

    2016-01-01

    Alzheimer's and Parkinson's disease are the two most common neurodegenerative disorders. They develop after a progressive death of many neurons in the brain. Although therapies are available to treat the signs and symptoms of both diseases, the progression of neuronal death remains relentless, and it has proved difficult to slow or stop. Hence, there is a need to develop neuroprotective or disease-modifying treatments that stabilize this degeneration. Red to infrared light therapy (λ = 600–1070 nm), and in particular light in the near infrared (NIr) range, is emerging as a safe and effective therapy that is capable of arresting neuronal death. Previous studies have used NIr to treat tissue stressed by hypoxia, toxic insult, genetic mutation and mitochondrial dysfunction with much success. Here we propose NIr therapy as a neuroprotective or disease-modifying treatment for Alzheimer's and Parkinson's patients. PMID:26793049

  11. Polarized task lighting to reduce reflective glare in open-plan office cubicles.

    PubMed

    Japuntich, D A

    2001-10-01

    This ergonomic study deals with the common situation where a glossy document is placed between a viewer and an under-shelf task light source in a common open-plan office cubicle workstation. With a task lamp in front, when looking at a document a viewer sees two images, the document itself and specular glare, which is the reflected image of the light source. Specular glare or veiling reflection causes eye discomfort, makes it difficult to read a document and has been thought to contribute to eyestrain. This paper analyzes the application of polarized lighting for this specific situation. The use of a linear polarized light source helps to minimize specular glare by darkening the reflected image of the light source on the document. The performance and predictive optimization of the use of polarized lighting in this situation is investigated according to female and male viewer height demographics. Theoretical predictions and light measurement analysis of specular glare reduction are compared with empirical results from testing on a panel of humans on semi-gloss finish and matte finish papers. This study shows that with the right alteration of a polarized light source position, specular glare may be significantly reduced, and correlations exist between the theory, empirical measurements and the human response to specular glare reduction. PMID:11534794

  12. Electrically tunable selective reflection of light by heliconical cholesteric structures (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg D.; Xiang, Jie; Shiyanovskii, Sergij V.; Li, Quan

    2015-10-01

    Cholesteric liquid crystals with helicoidal molecular architecture are known for their ability to selectively reflect light with the wavelength that is determined by the periodicity of molecular orientations. Resulting interference colors are highly saturated, they add like colored lights and produce a color gamut greater than that obtained with inks, dyes, and pigments. The periodicity of the helical structure and thus the wavelength of the reflected light can be controlled by chemical composition and sometimes by temperature, but tuning with the electric field has been so far elusive. Here we demonstrate that by using a cholesteric with oblique helicoidal (heliconical) structure, as opposed to the classic "right-angle" helicoid, one can vary the wavelength of selectively reflected light in a broad spectral range, by simply adjusting the electric field applied parallel to the helicoidal axis. The effect can enable many applications that require dynamically controlled transmission and reflection of light, from energy-saving smart windows to tunable organic lasers, and transparent "see-through" displays. Since the material is non-absorbing and transparent everywhere except the electrically preselected reflection band, the effect can be used in creating multilayered structures with a dynamic additive mixture of colors.

  13. Ordering of pentacene in organic thin film transistors induced by irradiation of infrared light

    SciTech Connect

    Wang, C. H.; Chen, S. W.; Hwang, J.

    2009-09-07

    The device performances of pentacene-based organic thin film transistors (OTFTs) were greatly improved by irradiation of infrared light. The field effect mobility and maximum drain current increase from 0.20{+-}0.01 to 0.57{+-}0.02 cm{sup 2}/V s and 1.14x10{sup -5} to 4.91x10{sup -5} A, respectively. The (001) peak of the pentacene 'thin film' phase increases in intensity by 4.5 times after infrared irradiation at 50 W for 2 h. Two types of crystal orientations, i.e., 'crystal I' (2{theta}=5.91 deg.) and 'crystal II' (2{theta}=5.84 deg.), coexist in the pentacene. The improvement of the characteristics of OTFTs is attributed to crystallization and crystal reorientation induced by infrared light.

  14. Prediction of alpaca fibre quality by near-infrared reflectance spectroscopy.

    PubMed

    Canaza-Cayo, A W; Alomar, D; Quispe, E

    2013-07-01

    Rapid and efficient methods to evaluate variables associated with fibre quality are essential in animal breeding programs and fibre trade. Near-infrared reflectance spectroscopy (NIRS) combined with multivariate analysis was evaluated to predict textile quality attributes of alpaca fibre. Raw samples of fibres taken from male and female Huacaya alpacas (n = 291) of different ages and colours were scanned and their visible-near-infrared (NIR; 400 to 2500 nm) reflectance spectra were collected and analysed. Reference analysis of the samples included mean fibre diameter (MFD), standard deviation of fibre diameter (SDFD), coefficient of variation of fibre diameter (CVFD), mean fibre curvature (MFC), standard deviation of fibre curvature (SDFC), comfort factor (CF), spinning fineness (SF) and staple length (SL). Patterns of spectral variation (loadings) were explored by principal component analysis (PCA), where the first four PC's explained 99.97% and the first PC alone 95.58% of spectral variability. Calibration models were developed by modified partial least squares regression, testing different mathematical treatments (derivative order, subtraction gap, smoothing segment) of the spectra, with or without applying spectral correction algorithms (standard normal variate and detrend). Equations were selected through one-out cross-validation according to the proportion of explained variance (R 2CV), root mean square error in cross-validation (RMSECV) and the residual predictive deviation (RPD), which relates the standard deviation of the reference data to RMSECV. The best calibration models were accomplished when using the NIR region (1100 to 2500 nm) for the prediction of MFD and SF, with R 2CV = 0.90 and 0.87; RMSECV = 1.01 and 1.08 μm and RPD = 3.13 and 2.73, respectively. Models for SDFD, CVFD, MFC, SDFC, CF and SL had lower predictive quality with R 2CV < 0.65 and RPD < 1.5. External validation performed for MFD and SF on 91 samples was slightly poorer than cross

  15. Use of visible-near infrared reflectance spectroscopy to assess soil quality related to long-term tillage effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Visible-near infrared diffuse reflectance spectroscopy (VNIRDRS) is emerging as an effective method for rapid evaluation of soil properties and may be promising for the simultaneous determination of soil quality indicators. This study employed VNIRDRS to analyze treatment effects associated with lo...

  16. High-Throughput Near-Infrared Reflectance Spectroscopy for Predicting Quantitative and Qualitative Composition Phenotypes of Individual Maize Kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near-infrared reflectance (NIR) spectroscopy can be used for fast and reliable prediction of organic compounds in complex biological samples. We used a recently developed NIR spectroscopy instrument to predict starch, protein, oil, and weight of individual maize (Zea mays) seeds. The starch, prote...

  17. Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (FTIR) can be used quickly and non destructively to identify and quantify the presence of important organic functional groups in environmental samples. However, soils contain myriad organic and inorganic components that absorb in the M...

  18. Diffuse-reflectance fourier-transform mid-infrared spectroscopy as a method of characterizing changes in soil organic matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy (MidIR) can identify the presence of important organic functional groups in soil organic matter (SOM). Soils contain myriad organic and inorganic components that absorb in the MidIR so spectral interpretation needs to be validated in or...

  19. Secondary cell wall development in cotton fibers as examined with attenuated total reflection Fourier transform infrared spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fibers harvested at 18, 20, 24, 28, 32, 36 and 40 days after flowering were examined using attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy. The selected harvesting points coincide with secondary cell wall (SCW) development in the fibers. Progressive but moderat...

  20. PREDICTION OF COLOR, TENDERNESS, AND SENSORY CHARACTERISTICS OF BEEF STEAKS BY VISIBLE AND NEAR INFRARED REFLECTANCE SPECTROSCOPY. A FEASIBILITY STUDY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Color, texture and sensory attributes of 24 beef carcasses at 2, 4, 8, 14, and 21 days post mortem were predicted by visible/near infrared (visible/NIR) reflectance spectroscopy in 400-1080 nm region. Predicting the Hunter a*, b*, and E* values yielded the coefficient of determination (R**2) in cal...

  1. Enhanced single seed trait predictions in soybean (Glycine max) and robust calibration model transfer with near infrared reflectance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single seed near infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait...

  2. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  3. Geometric conditions for reflection measurement II: effects of light trap size of integrating sphere

    NASA Astrophysics Data System (ADS)

    Baba, Gorow; Suzuki, Kenichi

    2002-06-01

    Many samples with various color and gloss grades were measured by the spectrophotometer with integrating sphere, of which light trap size was variable. Samples include white plaques, ceramic tiles, paint panels, ink-jet printings, textiles and metal surfaces. For these samples, lightness and chromaticness change with light trap size, which is relate to the elimination of surface reflection, was examined. In case of color measurement, using integrating sphere, colorimetric values are affected by the light trap size, when gloss grade of sample is different.

  4. First derivative of NIR light diffuse reflectance spectra as an approach to analyze muscle tissue chromophores and light pathlength

    NASA Astrophysics Data System (ADS)

    Gussakovsky, Eugene

    2009-02-01

    Diffuse reflectance was applied to the biomedical studies (muscles, cardiac tissues etc.) in a form of either a direct pseudo-optical spectrum or its second derivative. The first derivative adopts advantages of both direct spectrum (high signal-to-noise ratio) and its second derivative (simplifying the consideration of light scattering contribution, S). In contrast to spectrophotometry of solutions, diffuse reflectance application to the analysis of turbid medium chromophores leads to non-trivial problems of contribution of light scattering, the choice of reference, and light pathlength. Under certain conditions, the first approximation of the Taylor series of S results in the known linear dependence of S on wavelength in the 650-1050 nm wavelength range. Then the light scattering contribution to the first derivative becomes a wavelength-independent offset. In contrast to the second derivative, the information on light scattering inside the tissue is not lost. Effect of reference on the measured spectra becomes negligible. Application of the first derivative allowed (i) determination of NIR light pathlength in muscle tissue, and (ii) quantification of hemoglobin + myoglobin absolute concentration (in mM) in cardiac tissue during open-heart surgery. The first derivative approach may in general be applied to any chromophores in turbid (biological) media.

  5. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-09-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  6. Joint FDTD-Optical/FEM-Electrical Numerical Simulation of Reflection-Type Subwavelength-Microstructure InSb Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    He, J. L.; Hu, W. D.; Ye, Z. H.; Lv, Y. Q.; Chen, X. S.; Lu, W.

    2016-05-01

    The design of a reflection-type subwavelength microstructure has been numerically investigated to concentrate incident light onto pixels for improved photoresponse of InSb infrared focal-plane arrays. Compared with traditional microlenses placed on top of the detector substrate, this reflection-type microstructure is better suited for extremely small pixel pitches. The structure is simulated using a joint numerical method combining the finite-difference time-domain method based on Maxwell's curl equations and the finite-element method based on the Poisson and continuity equations. The results show that this advanced design could effectively improve device response without sacrificing crosstalk. The optimal structure parameters are obtained theoretically, with response increase of approximately 100%.

  7. Analysis of total oil and fatty acids composition by near infrared reflectance spectroscopy in edible nuts

    NASA Astrophysics Data System (ADS)

    Kandala, Chari V.; Sundaram, Jaya

    2014-10-01

    Near Infrared (NIR) Reflectance spectroscopy has established itself as an important tool in quantifying water and oil present in various food materials. It is rapid and nondestructive, easier to use, and does not require processing the samples with corrosive chemicals that would render them non-edible. Earlier, the samples had to be ground into powder form before making any measurements. With the development of new soft ware packages, NIR techniques could now be used in the analysis of intact grain and nuts. While most of the commercial instruments presently available work well with small grain size materials such as wheat and corn, the method present here is suitable for large kernel size products such as shelled or in-shell peanuts. Absorbance spectra were collected from 400 nm to 2500 nm using a NIR instrument. Average values of total oil contents (TOC) of peanut samples were determined by standard extraction methods, and fatty acids were determined using gas chromatography. Partial least square (PLS) analysis was performed on the calibration set of absorption spectra, and models were developed for prediction of total oil and fatty acids. The best model was selected based on the coefficient of determination (R2), Standard error of prediction (SEP) and residual percent deviation (RPD) values. Peanut samples analyzed showed RPD values greater than 5.0 for both absorbance and reflectance models and thus could be used for quality control and analysis. Ability to rapidly and nondestructively measure the TOC, and analyze the fatty acid composition, will be immensely useful in peanut varietal improvement as well as in the grading process of grain and nuts.

  8. Diffuse reflectance infrared spectroscopic identification of dispersant/particle bonding mechanisms in functional inks.

    PubMed

    Deiner, L Jay; Farjami, Elaheh

    2015-01-01

    In additive manufacturing, or 3D printing, material is deposited drop by drop, to create micron to macroscale layers. A typical inkjet ink is a colloidal dispersion containing approximately ten components including solvent, the nano to micron scale particles which will comprise the printed layer, polymeric dispersants to stabilize the particles, and polymers to tune layer strength, surface tension and viscosity. To rationally and efficiently formulate such an ink, it is crucial to know how the components interact. Specifically, which polymers bond to the particle surfaces and how are they attached? Answering this question requires an experimental procedure that discriminates between polymer adsorbed on the particles and free polymer. Further, the method must provide details about how the functional groups of the polymer interact with the particle. In this protocol, we show how to employ centrifugation to separate particles with adsorbed polymer from the rest of the ink, prepare the separated samples for spectroscopic measurement, and use Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) for accurate determination of dispersant/particle bonding mechanisms. A significant advantage of this methodology is that it provides high level mechanistic detail using only simple, commonly available laboratory equipment. This makes crucial data available to almost any formulation laboratory. The method is most useful for inks composed of metal, ceramic, and metal oxide particles in the range of 100 nm or greater. Because of the density and particle size of these inks, they are readily separable with centrifugation. Further, the spectroscopic signatures of such particles are easy to distinguish from absorbed polymer. The primary limitation of this technique is that the spectroscopy is performed ex-situ on the separated and dried particles as opposed to the particles in dispersion. However, results from attenuated total reflectance spectra of the wet separated

  9. Total reflection infrared spectroscopy of water-ice and frozen aqueous NaCl solutions

    SciTech Connect

    Walker, Rachel L.; Searles, Keith; Willard, Jesse A.; Michelsen, Rebecca R. H.

    2013-12-28

    Liquid-like and liquid water at and near the surface of water-ice and frozen aqueous sodium chloride films were observed using attenuated total reflection infrared spectroscopy (ATR-IR). The concentration of NaCl ranged from 0.0001 to 0.01 M and the temperature varied from the melting point of water down to 256 K. The amount of liquid brine at the interface of the frozen films with the germanium ATR crystal increased with salt concentration and temperature. Experimental spectra are compared to reflection spectra calculated for a simplified morphology of a uniform liquid layer between the germanium crystal and the frozen film. This morphology allows for the amount of liquid observed in an experimental spectrum to be converted to the thickness of a homogenous layer with an equivalent amount of liquid. These equivalent thickness ranges from a nanometer for water-ice at 260 K to 170 nm for 0.01 M NaCl close to the melting point. The amounts of brine observed are over an order of magnitude less than the total liquid predicted by equilibrium thermodynamic models, implying that the vast majority of the liquid fraction of frozen solutions may be found in internal inclusions, grain boundaries, and the like. Thus, the amount of liquid and the solutes dissolved in them that are available to react with atmospheric gases on the surfaces of snow and ice are not well described by thermodynamic equilibrium models which assume the liquid phase is located entirely at the surface.

  10. Far-infrared BRDFs and reflectance spectra of candidate SOFIA telescope, cavity, and focal-plane instrument surfaces

    NASA Astrophysics Data System (ADS)

    Meyer, Allan W.; Smith, Sheldon M.; Koerber, Christopher T.

    2000-06-01

    The far-infrared reflectance and scattering properties of telescope surfaces, surrounding cavity walls, and surfaces within focal-plane instruments can be significant contributors to background noise. Radiation from sources well off-axis, such as the earth, moon or aircraft engines may be multiply scattered by the cavity walls and/or surface facets of a complex telescope structure. The Non-Specular Reflectometer at NASA Ames Research Center was reactivated and upgraded, and used to measure reflectance and Bi- directional Reflectance Distribution Functions for samples of planned telescope system structural materials and associated surface treatments.

  11. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): A SOUNDING ROCKET PAYLOAD TO STUDY THE NEAR INFRARED EXTRAGALACTIC BACKGROUND LIGHT

    SciTech Connect

    Zemcov, M.; Bock, J.; Hristov, V.; Levenson, L. R.; Mason, P.; Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K.; Wada, T.; Battle, J.; Cooray, A.; Keating, B.; Renbarger, T.; Kim, M. G.; Lee, D. H.; Nam, U. W.; Sullivan, I.; Suzuki, K.

    2013-08-15

    The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earth's atmosphere. The instrument package comprises two imaging telescopes designed to characterize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBER's flight profile and configurations. CIBER is designed to be recoverable and has flown four times, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the subsequent flights, and the scientific data from these flights are currently being analyzed.

  12. Impact of Multipath Reflections on the Performance of Indoor Visible Light Positioning Systems

    NASA Astrophysics Data System (ADS)

    Gu, Wenjun; Aminikashani, Mohammadreza; Deng, Peng; Kavehrad, Mohsen

    2016-05-01

    Visible light communication (VLC) using light-emitting-diodes (LEDs) has been a popular research area recently. VLC can provide a practical solution for indoor positioning. In this paper, the impact of multipath reflections on indoor VLC positioning is investigated, considering a complex indoor environment with walls, floor and ceiling. For the proposed positioning system, an LED bulb is the transmitter and a photo-diode (PD) is the receiver to detect received signal strength (RSS) information. Combined deterministic and modified Monte Carlo (CDMMC) method is applied to compute the impulse response of the optical channel. Since power attenuation is applied to calculate the distance between the transmitter and receiver, the received power from each reflection order is analyzed. Finally, the positioning errors are estimated for all the locations over the room and compared with the previous works where no reflections considered. Three calibration approaches are proposed to decrease the effect of multipath reflections.

  13. Forensic Hair Differentiation Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy.

    PubMed

    Manheim, Jeremy; Doty, Kyle C; McLaughlin, Gregory; Lednev, Igor K

    2016-07-01

    Hair and fibers are common forms of trace evidence found at crime scenes. The current methodology of microscopic examination of potential hair evidence is absent of statistical measures of performance, and examiner results for identification can be subjective. Here, attenuated total reflection (ATR) Fourier transform-infrared (FT-IR) spectroscopy was used to analyze synthetic fibers and natural hairs of human, cat, and dog origin. Chemometric analysis was used to differentiate hair spectra from the three different species, and to predict unknown hairs to their proper species class, with a high degree of certainty. A species-specific partial least squares discriminant analysis (PLSDA) model was constructed to discriminate human hair from cat and dog hairs. This model was successful in distinguishing between the three classes and, more importantly, all human samples were correctly predicted as human. An external validation resulted in zero false positive and false negative assignments for the human class. From a forensic perspective, this technique would be complementary to microscopic hair examination, and in no way replace it. As such, this methodology is able to provide a statistical measure of confidence to the identification of a sample of human, cat, and dog hair, which was called for in the 2009 National Academy of Sciences report. More importantly, this approach is non-destructive, rapid, can provide reliable results, and requires no sample preparation, making it of ample importance to the field of forensic science. PMID:27412186

  14. Determination of soil content in chlordecone (organochlorine pesticide) using near infrared reflectance spectroscopy (NIRS).

    PubMed

    Brunet, Didier; Woignier, Thierry; Lesueur-Jannoyer, Magalie; Achard, Raphaël; Rangon, Luc; Barthès, Bernard G

    2009-11-01

    Chlordecone is a toxic organochlorine insecticide that was used in banana plantations until 1993 in the French West Indies. This study aimed at assessing the potential of near infrared reflectance spectroscopy (NIRS) for determining chlordecone content in Andosols, Nitisols and Ferralsols from Martinique. Using partial least square regression, chlordecone content conventionally determined through gas chromatography-mass spectrometry could be correctly predicted by NIRS (Q(2) = 0.75, R(2) = 0.82 for the total set), especially for samples with chlordecone content <12 mg kg(-1) or when the sample set was rather homogeneous (Q(2) = 0.91, R(2) = 0.82 for the Andosols). Conventional measures and NIRS predictions were poorly correlated for chlordecone content >12 mg kg(-1), nevertheless ca. 80% samples were correctly predicted when the set was divided into three or four classes of chlordecone content. Thus NIRS could be considered a time- and cost-effective method for characterising soil contamination by chlordecone. PMID:19493598

  15. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    NASA Technical Reports Server (NTRS)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  16. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  17. [Study on germination rate of zoysia (Zoysia japonica Steud.) seeds using near infrared reflectance spectroscopy].

    PubMed

    Liang, Xiao-Hong; Zhang, Li-Juan; Fan, Bo; Mao, Wen-Hua; Mao, Wen-Hua; Puyang, Xue-Hua; Han, Lie-Bao

    2013-10-01

    With 37 zoysia seed samples with different germination rates ranging from 58.5% to 92%, harvested in different years from 2009 to 2011 and from different locations of China, a model for determining germination rate of zoysia seeds was tried to be built by near infrared reflectance spectroscopy with quantitative partial least squares (QPLS). All the seeds samples were divided into two groups: calibration set (including 28 samples) and validation set (including 9 samples). The results showed that with the spectral range from 6 000 to 7 000 cm(-1) and 6 main components, there was a better fitting between the predictive value and true value. Determination coefficients (R2) of calibration and validation sets are 90.73% and 91.80%, the coefficients of correlation are 0.986 6 and 0.987 2, the standard errors are 9.80 and 9.47, and the average absolute errors are 7.64% and 6.98% respectively. Even with different calibration samples, the models have a high determination coefficient (R2 over building of NIR model for determining 90%), low standard errors (about 10.00) and low absolute errors (about 8.00%). The building of NIR model for determining germination rate of zoysia seeds could promote the application of high quality seeds in production. PMID:24409708

  18. Histological validation of near-infrared reflectance multispectral imaging technique for caries detection and quantification

    NASA Astrophysics Data System (ADS)

    Salsone, Silvia; Taylor, Andrew; Gomez, Juliana; Pretty, Iain; Ellwood, Roger; Dickinson, Mark; Lombardo, Giuseppe; Zakian, Christian

    2012-07-01

    Near infrared (NIR) multispectral imaging is a novel noninvasive technique that maps and quantifies dental caries. The technique has the ability to reduce the confounding effect of stain present on teeth. The aim of this study was to develop and validate a quantitative NIR multispectral imaging system for caries detection and assessment against a histological reference standard. The proposed technique is based on spectral imaging at specific wavelengths in the range from 1000 to 1700 nm. A total of 112 extracted teeth (molars and premolars) were used and images of occlusal surfaces at different wavelengths were acquired. Three spectral reflectance images were combined to generate a quantitative lesion map of the tooth. The maximum value of the map at the corresponding histological section was used as the NIR caries score. The NIR caries score significantly correlated with the histological reference standard (Spearman's Coefficient=0.774, p<0.01). Caries detection sensitivities and specificities of 72% and 91% for sound areas, 36% and 79% for lesions on the enamel, and 82% and 69% for lesions in dentin were found. These results suggest that NIR spectral imaging is a novel and promising method for the detection, quantification, and mapping of dental caries.

  19. Measurement of evapotranspiration with combined reflective and thermal infrared radiance observations

    NASA Technical Reports Server (NTRS)

    Hope, Allen S.

    1993-01-01

    The broad goal of the research summarized in this report was 'To facilitate the evaluation of regional evapotranspiration (ET) through the combined use of solar reflective and thermal infrared radiance observations.' The specific objectives stated by Goward and Hope (1986) were to: (1) investigate the nature of the relationship between surface temperature (T(sub S)) and the normalized difference vegetation index (NDVI) and develop an understanding of this relationship in terms of energy exchange processes, particularly latent flux heat (LE); (2) develop procedures to estimate large area LE using combined T(sub S) and NDVI observations obtained from AVHRR data; and (3) determine whether measurements derived from satellite observations relate directly to measurements made at the surface or from aircraft platforms. Both empirical and modeling studies were used to develop an understanding of the T(sub S)-NDVI relationship. Most of the modeling was based on the Tergra model as originally proposed by Goward. This model, and modified versions developed in this project, simulates the flows of water and energy in the soil-plant-atmosphere system using meteorological, soil and vegetation inputs. Model outputs are the diurnal course of soil moisture, T(sub S), LE and the other individual components of the surface energy balance.

  20. [Near-infrared reflectance spectroscopy analytic model established for the IVDMD of Cichorium intybus L].

    PubMed

    Hu, Chao; Bai, Shi-qie; Zhang, Yu; Yan, Jia-jun; You, Ming-hong; Li, Da-xu; Bai, Ling; Zhang Jin

    2014-08-01

    Chicory (Cichorium intybus L.) is a new type of forage grasses of high yield and quality with a great value of popularization and utilization. In vitro dry matter digestibility (IVDMD) is one of the important indicators of the nutritional value of forage evaluation. For the study of establishment of Chicory IVDMD NIRS quantitative analysis model, seventy-two species with different genotypes, different growth stages of 204 chicory samples of aboveground material were collected, and by Fourier transform near-infrared diffuse reflectance spectroscopy, through the use of different regression algorithms, can comparing different spectral ranges and spectral pretreatment methods, eight chicory IVDMD NIRS calibration models were established, and the best calibration model parameters were chosen. Its calibration coefficient of determination (Ri) and external validation coefficient of determination (Rval2) were 0.95317 and 0.90455, calibration standard deviation (RMSEC) and predictive standard deviation (RMSEP) was 1.977 99% and 2.008 82%, and the correlation coefficient (r) between predicted values and chemical values was 0.95108. The results show that using NIRS to determine chicory IVDMD is feasible, and provided a rapid analysis method for the determination IVDMD of chicory. PMID:25474939

  1. [Near-infrared reflectance spectroscopy analytic model established for the IVDMD of Cichorium intybus L].

    PubMed

    Hu, Chao; Bai, Shi-qie; Zhang, Yu; Yan, Jia-jun; You, Ming-hong; Li, Da-xu; Bai, Ling; Zhang Jin

    2014-08-01

    Chicory (Cichorium intybus L.) is a new type of forage grasses of high yield and quality with a great value of popularization and utilization. In vitro dry matter digestibility (IVDMD) is one of the important indicators of the nutritional value of forage evaluation. For the study of establishment of Chicory IVDMD NIRS quantitative analysis model, seventy-two species with different genotypes, different growth stages of 204 chicory samples of aboveground material were collected, and by Fourier transform near-infrared diffuse reflectance spectroscopy, through the use of different regression algorithms, can comparing different spectral ranges and spectral pretreatment methods, eight chicory IVDMD NIRS calibration models were established, and the best calibration model parameters were chosen. Its calibration coefficient of determination (Ri) and external validation coefficient of determination (Rval2) were 0.95317 and 0.90455, calibration standard deviation (RMSEC) and predictive standard deviation (RMSEP) was 1.977 99% and 2.008 82%, and the correlation coefficient (r) between predicted values and chemical values was 0.95108. The results show that using NIRS to determine chicory IVDMD is feasible, and provided a rapid analysis method for the determination IVDMD of chicory. PMID:25508718

  2. Attenuated total reflectance Fourier-transform infrared spectroscopic investigation of silicon heterojunction solar cells.

    PubMed

    Holovský, Jakub; De Wolf, Stefaan; Jiříček, Petr; Ballif, Christophe

    2015-07-01

    Silicon heterojunction solar cells critically depend on the detailed properties of their amorphous/crystalline silicon interfaces. We report here on the use of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy to gain precise insight into the vibrational properties of the surfaces and ultrathin layers present in such solar cells. We fabricate ATR prisms from standard silicon wafers similar to those used for device fabrication. In this fashion, we acquire very-high sensitivity FTIR information on device-relevant structures. Our method has no requirement for minimum layer thickness, enabling the study of the impact of the different fabrication process steps on the film microstructure. We discuss the necessary requirements for the method implementation and give a comprehensive overview of all observed vibration modes. In particular, we study vibrational signatures of Si-H(X), Si-H(X)(Si(Y)O(Z)), B-H, hydroxyl groups, and hydrocarbons on the Si(111) surface. We observe subtle effects in the evolution of the chemical state of the surface during sample storage and process-related wafer handling and discuss their effect on the electronic properties of the involved interfaces. PMID:26233357

  3. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy.

    PubMed

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin. PMID:25751030

  4. Detection of sibutramine in adulterated dietary supplements using attenuated total reflectance-infrared spectroscopy.

    PubMed

    Deconinck, E; Cauwenbergh, T; Bothy, J L; Custers, D; Courselle, P; De Beer, J O

    2014-11-01

    Sibutramine is one of the most occurring adulterants encountered in dietary supplements with slimming as indication. These adulterated dietary supplements often contain a herbal matrix. When customs intercept these kind of supplements it is almost impossible to discriminate between the legal products and the adulterated ones, due to misleading packaging. Therefore in most cases these products are confiscated and send to laboratories for analysis. This results inherently in the confiscation of legal, non-adulterated products. Therefore there is a need for easy to use equipment and techniques to perform an initial screening of samples. Attenuated total reflectance-infrared (ATR-IR) spectroscopy was evaluated for the detection of sibutramine in adulterated dietary supplements. Data interpretation was performed using different basic chemometric techniques. It was found that the use of ATR-IR combined with the k-Nearest Neighbours (k-NN) was able to detect all adulterated dietary supplements in an external test set and this with a minimum of false positive results. This means that a small amount of legal products will still be confiscated and analyzed in a laboratory to be found negative, but no adulterated samples will pass the initial ATR-IR screening. PMID:25173110

  5. Far infrared reflectance of sintered nickel manganite samples for negative temperature coefficient thermistors

    SciTech Connect

    Nikolic, M.V. . E-mail: maria@mi.sanu.ac.yu; Paraskevopoulos, K.M.; Aleksic, O.S.; Zorba, T.T.; Savic, S.M.; Lukovic, D.T.

    2007-08-07

    Single phase complex spinel (Mn, Ni, Co, Fe){sub 3}O{sub 4} samples were sintered at 1050, 1200 and 1300 deg. C for 30 min and at 1200 deg. C for 120 min. Morphological changes of the obtained samples with the sintering temperature and time were analyzed by X-ray diffraction and scanning electron microscope (SEM). Room temperature far infrared reflectivity spectra for all samples were measured in the frequency range between 50 and 1200 cm{sup -1}. The obtained spectra for all samples showed the presence of the same oscillators, but their intensities increased with the sintering temperature and time in correlation with the increase in sample density and microstructure changes during sintering. The measured spectra were numerically analyzed using the Kramers-Kroenig method and the four-parameter model of coupled oscillators. Optical modes were calculated for six observed ionic oscillators belonging to the spinel structure of (Mn, Ni, Co, Fe){sub 3}O{sub 4} of which four were strong and two were weak.

  6. On-site variety discrimination of tomato plant using visible-near infrared reflectance spectroscopy.

    PubMed

    Xu, Hui-rong; Yu, Peng; Fu, Xia-ping; Ying, Yi-Bin

    2009-02-01

    The use of visible-near infrared (NIR) spectroscopy was explored as a tool to discriminate two new tomato plant varieties in China (Zheza205 and Zheza207). In this study, 82 top-canopy leaves of Zheza205 and 86 top-canopy leaves of Zheza207 were measured in visible-NIR reflectance mode. Discriminant models were developed using principal component analysis (PCA), discriminant analysis (DA), and discriminant partial least squares (DPLS) regression methods. After outliers detection, the samples were randomly split into two sets, one used as a calibration set (n=82) and the remaining samples as a validation set (n=82). When predicting the variety of the samples in validation set, the classification correctness of the DPLS model after optimizing spectral pretreatment was up to 93%. The DPLS model with raw spectra after multiplicative scatter correction and Savitzky-Golay filter smoothing pretreatments had the best satisfactory calibration and prediction abilities (correlation coefficient of calibration (R(c))=0.920, root mean square errors of calibration=0.196, and root mean square errors of prediction=0.216). The results show that visible-NIR spectroscopy might be a suitable alternative tool to discriminate tomato plant varieties on-site. PMID:19235271

  7. Rapid analysis of diesel fuel properties by near infrared reflectance spectra.

    PubMed

    Feng, Fei; Wu, Qiongshui; Zeng, Libo

    2015-10-01

    In this study, based on near infrared reflectance spectra (NIRS) of 441 samples from four diesel groups (-10# diesel, -20# diesel, -35# diesel, and inferior diesel), three spectral analysis models were established by using partial least square (PLS) regression for the six diesel properties (i.e., boiling point, cetane number, density, freezing temperature, total aromatics, and viscosity) respectively. In model 1, all the samples were processed as a whole; in model 2 and model 3, samples were firstly classified into four groups by least square support vector machine (LS-SVM), and then partial least square regression models were applied to each group and each property. The main difference between model 2 and model 3 was that the latter used the direct orthogonal signal correction (DOSC), which helped to get rid of the non-relevant variation in the spectra. Comparing these three models, two results could be concluded: (1) models for grouped samples had higher precision and smaller prediction error; (2) models with DOSC after LS-SVM classification yielded a considerable error reduction compared to models without DOSC. PMID:25965174

  8. Rapid analysis of diesel fuel properties by near infrared reflectance spectra

    NASA Astrophysics Data System (ADS)

    Feng, Fei; Wu, Qiongshui; Zeng, Libo

    2015-10-01

    In this study, based on near infrared reflectance spectra (NIRS) of 441 samples from four diesel groups (-10# diesel, -20# diesel, -35# diesel, and inferior diesel), three spectral analysis models were established by using partial least square (PLS) regression for the six diesel properties (i.e., boiling point, cetane number, density, freezing temperature, total aromatics, and viscosity) respectively. In model 1, all the samples were processed as a whole; in model 2 and model 3, samples were firstly classified into four groups by least square support vector machine (LS-SVM), and then partial least square regression models were applied to each group and each property. The main difference between model 2 and model 3 was that the latter used the direct orthogonal signal correction (DOSC), which helped to get rid of the non-relevant variation in the spectra. Comparing these three models, two results could be concluded: (1) models for grouped samples had higher precision and smaller prediction error; (2) models with DOSC after LS-SVM classification yielded a considerable error reduction compared to models without DOSC.

  9. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Brown, C. P.; Jayadev, C.; Glyn-Jones, S.; Carr, A. J.; Murray, D. W.; Price, A. J.; Gill, H. S.

    2011-04-01

    Interest in localized and early stage treatment technologies for joint conditions such as osteoarthritis is growing rapidly. It has therefore become important to develop objective measures capable of characterizing the earliest (non-visible) changes associated with degeneration to aid treatment procedures. In addition to assessing tissue before treatment, it is further important to develop an effective, non-destructive means of monitoring post-treatment tissue healing, and of providing the high-quality data needed for trials of developing treatment methods. To investigate its ability to detect the early stages of degeneration in cartilage-on-bone, diffuse reflectance near infrared spectroscopy was applied to normal and osteoarthritic joints. A discriminating function was developed to relate absorbance peaks of interest and track degradation around focal osteoarthritic defects. The function could distinguish between normal and degraded tissue (100% separation of normal tissue from that within 25 mm of a defect) and between different stages of osteoarthritic progression (p < 0.05). This technique allows simple, practical and non-destructive assessment of component-level properties over the full depth of the tissue. It has the potential to increase our understanding of the underlying etiologic and pathogenic processes in early stage degeneration, to assist classification and the development of new treatment methods.

  10. [Maize Hybrid Seed Purity Identification Based on Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectra].

    PubMed

    Li, Tian-xin; Jia, Shi-qiang; Liu, Xu; Zhao, Sheng-yi; Ran, Hang; Yan, Yan-lu; An, Dong

    2015-12-01

    This article explore the feasibility of using Near Infrared Reflectance (NIR) and Transmittance (NIT) Spectroscopy (908.1-1677.2 nm wavelength range) to identify maize hybrid purity, and compare the performance of NIR and NIT spectroscopy. Principle Component Analysis (PCA) and Orthogonal Linear Discriminant Analysis (OLDA) were used to reduce the dimension of spectra which have been pretreated by first derivative and vector normalization. The hybrid purity identification model of Nonghua101 and Jingyu16 were built by SVM. Models based on NIR spectra obtained correct identification rate as 100% and 90% for Nonghua101 and Jingyu16 respectively. But NIR spectra were greatly influenced by the placement of seeds, and there existed significant difference between NIR spectra of embryo and non-embryo side. Models based on NIT spectroscopy yielded correct identification rate as 98% both for Nonghua101 and Jingyu16. NIT spectra of embryo and non-embryo side were highly similar. The results indicate that it is feasible to identify maize hybrid purity based on NIR and NIT spectroscopy, and NIT spectroscopy is more suitable to analyze single seed kernel than NIR spectroscopy. PMID:26964215

  11. Quantitative orientation measurements in thin lipid films by attenuated total reflection infrared spectroscopy.

    PubMed Central

    Picard, F; Buffeteau, T; Desbat, B; Auger, M; Pézolet, M

    1999-01-01

    Quantitative orientation measurements by attenuated total reflectance (ATR) infrared spectroscopy require the accurate knowledge of the dichroic ratio and of the mean-square electric fields along the three axes of the ATR crystal. In this paper, polarized ATR spectra of single supported bilayers of the phospholipid dimyristoylphosphatidic acid covered by either air or water have been recorded and the dichroic ratio of the bands due to the methylene stretching vibrations has been calculated. The mean-square electric field amplitudes were calculated using three formalisms, namely the Harrick thin film approximation, the two-phase approximation, and the thickness- and absorption-dependent one. The results show that for dry bilayers, the acyl chain tilt angle varies with the formalism used, while no significant variations are observed for the hydrated bilayers. To test the validity of the different formalisms, s- and p-polarized ATR spectra of a 40-A lipid layer were simulated for different acyl chain tilt angles. The results show that the thickness- and absorption-dependent formalism using the mean values of the electric fields over the film thickness gives the most accurate values of acyl chain tilt angle in dry lipid films. However, for lipid monolayers or bilayers, the tilt angle can be determined with an acceptable accuracy using the Harrick thin film approximation. Finally, this study shows clearly that the uncertainty on the determination of the tilt angle comes mostly from the experimental error on the dichroic ratio and from the knowledge of the refractive index. PMID:9876167

  12. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging.

    PubMed

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-07-17

    Structural changes in fly ash geopolymers activated with different sodium hydroxide and silicate concentrations are investigated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy over a period of 200 days. A strong correlation is found between the concentration of silicate monomer in the activating solution and the position of the main Si-O-T stretching band in the FTIR spectrum, which gives an indication of the relative changes in the gel Si/Al ratio. The FTIR spectra of geopolymer samples with activating solution concentrations of up to 1.2 M SiO2 indicate that an Al-rich gel forms before the final gel composition is reached. The time required for the system to reach a steady gel composition depends on the silicate activating solution concentration and speciation. Geopolymers activated with solutions containing predominantly high-order silicate species rapidly reach a steady gel composition without first forming an Al-rich gel. A minimum silicate monomer concentration of approximately 0.6 M is required to shift the geopolymer synthesis mechanism from hydroxide activation to silicate activation. Silicate speciation in the activating solutions also affects zeolite formation and geopolymer microstructures, with a more homogeneous microstructure and less zeolite formation observed at a higher SiO2 content. PMID:17590027

  13. Rapid assessment of soluble solids content in navel orange by near-infrared diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Liu, Yande; Luo, Ji; Chen, Xingmiao; Ying, Yibin

    2006-10-01

    The potential of using Near Infrared diffuse reflectance spectroscopy to assess soluble solids content (SSC) of intact navel orange was examined. A total 40 samples were used to develop the calibration and prediction models. NIR spectral data were collected in the spectral region between 350 nm and 2500 nm and its second derivative spectra was used for this study. Different scattering correction algorithms (no preprocessing and multiplicative scattering correction (MSC) were compared. Calibration models based on different spectral ranges, different derivatives and different kinds of statistical models including partial least square (PLS) and principle component regression (PCR) were also compared in this research. The best results of PLS models with the second derivative spectra are r=0.929, RMSEC=0.517 and RMSEP=0.592, in the wavelength range of 361-2488 nm. The segment length used to derivate the spectra influences the calibration model and the results are better when the segment lengths and gap sizes are lower in Norris derivate filter. The results show that this method is feasible for rapid assessing SSC of the navel orange.

  14. Crop/weed discrimination using near-infrared reflectance spectroscopy (NIRS)

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; He, Yong

    2006-09-01

    The traditional uniform herbicide application often results in an over chemical residues on soil, crop plants and agriculture produce, which have imperiled the environment and food security. Near-infrared reflectance spectroscopy (NIRS) offers a promising means for weed detection and site-specific herbicide application. In laboratory, a total of 90 samples (30 for each species) of the detached leaves of two weeds, i.e., threeseeded mercury (Acalypha australis L.) and fourleafed duckweed (Marsilea quadrfolia L.), and one crop soybean (Glycine max) was investigated for NIRS on 325- 1075 nm using a field spectroradiometer. 20 absorbance samples of each species after pretreatment were exported and the lacked Y variables were assigned independent values for partial least squares (PLS) analysis. During the combined principle component analysis (PCA) on 400-1000 nm, the PC1 and PC2 could together explain over 91% of the total variance and detect the three plant species with 98.3% accuracy. The full-cross validation results of PLS, i.e., standard error of prediction (SEP) 0.247, correlation coefficient (r) 0.954 and root mean square error of prediction (RMSEP) 0.245, indicated an optimum model for weed identification. By predicting the remaining 10 samples of each species in the PLS model, the results with deviation presented a 100% crop/weed detection rate. Thus, it could be concluded that PLS was an available alternative of for qualitative weed discrimination on NTRS.

  15. Low-pressure, automated, sample packing unit for diffuse reflectance infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Christy, Alfred A.; Tvedt, Jan Erik; Karstang, Terje V.; Velapoldi, Rance A.

    1988-03-01

    An automatic, low-pressure packing unit has been designed with control of packing time and pressure to prepare powder samples for diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). This unit also provides a polished packing surface that ensures constant measurement height of the sample in the spectrometer. Use of this unit coupled with sample rotation during measurement and control of particle size and size distribution, provides excellent precision in obtaining DRIFTS spectra. For example, repackings by a single person or by several untrained people gave coefficients of variation from 0.8% to 2.3% for each digital spectral value for a coal sample and from 1.3% to 3.7% for thymol blue, a sharp spectral featured organic, rather than the 15%-30% normally found for repackings of the same sample. Thus representative DRIFTS spectra can be obtained quickly and efficiently from a powder sample with a single spectrum using this low-pressure, mechanical packing device, control of particle parameters, and sample rotation as opposed to previous efforts requiring the repacking of several samples and averaging of the spectra.

  16. [Discriminant Analysis of Lavender Essential Oil by Attenuated Total Reflectance Infrared Spectroscopy].

    PubMed

    Tang, Jun; Wang, Qing; Tong, Hong; Liao, Xiang; Zhang, Zheng-fang

    2016-03-01

    This work aimed to use attenuated total reflectance Fourier transform infrared spectroscopy to identify the lavender essential oil by establishing a Lavender variety and quality analysis model. So, 96 samples were tested. For all samples, the raw spectra were pretreated as second derivative, and to determine the 1 750-900 cm(-1) wavelengths for pattern recognition analysis on the basis of the variance calculation. The results showed that principal component analysis (PCA) can basically discriminate lavender oil cultivar and the first three principal components mainly represent the ester, alcohol and terpenoid substances. When the orthogonal partial least-squares discriminant analysis (OPLS-DA) model was established, the 68 samples were used for the calibration set. Determination coefficients of OPLS-DA regression curve were 0.959 2, 0.976 4, and 0.958 8 respectively for three varieties of lavender essential oil. Three varieties of essential oil's the root mean square error of prediction (RMSEP) in validation set were 0.142 9, 0.127 3, and 0.124 9, respectively. The discriminant rate of calibration set and the prediction rate of validation set had reached 100%. The model has the very good recognition capability to detect the variety and quality of lavender essential oil. The result indicated that a model which provides a quick, intuitive and feasible method had been built to discriminate lavender oils. PMID:27400512

  17. Visible and Infra-red Light Emission in Boron-Doped Wurtzite Silicon Nanowires

    PubMed Central

    Fabbri, Filippo; Rotunno, Enzo; Lazzarini, Laura; Fukata, Naoki; Salviati, Giancarlo

    2014-01-01

    Silicon, the mainstay semiconductor in microelectronic circuitry, is considered unsuitable for optoelectronic applications owing to its indirect electronic band gap, which limits its efficiency as a light emitter. Here we show the light emission properties of boron-doped wurtzite silicon nanowires measured by cathodoluminescence spectroscopy at room temperature. A visible emission, peaked above 1.5 eV, and a near infra-red emission at 0.8 eV correlate respectively to the direct transition at the Γ point and to the indirect band-gap of wurtzite silicon. We find additional intense emissions due to boron intra-gap states in the short wavelength infra-red range. We present the evolution of the light emission properties as function of the boron doping concentration and the growth temperature. PMID:24398782

  18. Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media

    NASA Astrophysics Data System (ADS)

    Barboza, Raouf; Bortolozzo, Umberto; Clerc, Marcel G.; Residori, Stefania

    2016-07-01

    A Berry phase is revealed for circularly polarized light when it is Bragg reflected by a chiral liquid-crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.

  19. Plastic embedding and polishing of bone for reflected light and electron microscopy.

    PubMed

    Wighton, A H J; Jones, Chris G; Bell, Lynne S

    2012-01-01

    The successful embedding of bone or any sample for reflected light or electron microscopy is crucial to the success of any analysis that might follow. Different materials present different embedding challenges, and here we discuss bone. Embedding is developed often as an adapted in-house protocol, and will vary from one institution to another, and is barely referenced in any detail in scientific papers. This chapter provides the protocol for bone that has proved successful at the Natural History Museum, both for reflected light and particularly for scanning electron microscopic examination. PMID:22907400

  20. Mid-infrared (λ = 8.4-9.9 μm) light scattering from porcine tissue

    NASA Astrophysics Data System (ADS)

    Liakat, Sabbir; Michel, Anna P. M.; Bors, Kevin A.; Gmachl, Claire F.

    2012-08-01

    Back-scattering of mid-infrared light from porcine skin is studied versus wavelength and angle for a Quantum Cascade laser and a broadband infrared light source. Scattering is detected over 30° away from the specular angle for both sources, and modulation patterns with angle are seen when using the laser. A nonlinear increase in scattered light intensity versus input power indicates that directional scattering from within the skin is dominant. Collagen fibers in the dermis layer, over 200 μm deep into the skin, are conducive to such scattering. We conclude that mid-infrared light penetrates deep enough for potential glucose detection in dermal interstitial fluid.

  1. Reflection of diffuse light from dielectric one-dimensional rough surfaces.

    PubMed

    González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto

    2016-03-01

    We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface. PMID:26974906

  2. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide

    NASA Astrophysics Data System (ADS)

    Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin

    2016-05-01

    In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm2 C-1 at 650 nm and 255 cm2 C-1 at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions.In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured

  3. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2001-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  4. Infrared light irradiation diminishes effective charge transfer in slow sodium channel gating system

    NASA Astrophysics Data System (ADS)

    Plakhova, Vera B.; Bagraev, Nikolai T.; Klyachkin, Leonid E.; Malyarenko, Anna M.; Romanov, Vladimir V.; Krylov, Boris V.

    2000-02-01

    Effects of infrared light irradiation (IR) on cultured dorsal root ganglia cells were studied by the whole-cell patch-clamp technique. The IR field is demonstrated to diminish the effective charge transfer in the activation system from 6.2 +-0.6 to 4.5 +-0.4 in units of electron charge per e-fold change in membrane potential. The effects was blocked with ouabain. Our data is the first indication that sodium pump might be the molecular sensor of infrared irradiation in animal kingdom.

  5. Effects of polychromatic visible and infrared light on biological liquid media.

    PubMed

    Zilov, V G; Khadartsev, A A; Bitsoev, V D

    2014-08-01

    Experimental study of the effects of polychromatic visible and infrared light on biological fluids was carried out in order to validate the new approaches to phototherapy. Polychromatic light generated by Bioptron device at different modes and frequencies was released through the fiberoptic cable, including the exposure paralleled by CO2 saturation of water and exposure from a device placed 10 cm above the water surface, which ensured maximum light absorption. The effects of irradiation were recorded in 26 and 15 min, while the increase of light absorption by blood plasma in vivo was recorded 1 h after a bath with water pre-exposed to polarized light. Absorption bands corresponding to those for immunomodulatory, anti-inflammatory, and antiviral drugs, were detected. Changes in the spectra of valency oscillations, depending on the oscillation anharmonism values, were detected. PMID:25110085

  6. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    SciTech Connect

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-15

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  7. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes.

    PubMed

    Wiesinger, R; Schade, U; Kleber, Ch; Schreiner, M

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations. PMID:24985826

  8. An experimental set-up to apply polarization modulation to infrared reflection absorption spectroscopy for improved in situ studies of atmospheric corrosion processes

    NASA Astrophysics Data System (ADS)

    Wiesinger, R.; Schade, U.; Kleber, Ch.; Schreiner, M.

    2014-06-01

    A new set-up for improved monitoring of atmospheric corrosion processes in situ and in real-time is presented. To characterize chemical structures of thin films on metal surfaces surface sensitive analytical techniques are required. One possible technique is Infrared Reflection Absorption Spectroscopy (IRRAS) which has become an established method to investigate surface corrosion films of thicknesses less than 200 nm. However, there are limitations related to the sensitivity of these measurements, in case of investigating ultrathin films or absorption bands of interest, surface species are superimposed by atmospheric background absorption, which changes during in situ measurements in ambient atmospheres. These difficulties of in situ surface reflection measurements can be eliminated by availing the polarization selectivity of adsorbed surface species. At grazing angles of incidence the absorption of p-polarized infrared radiation by thin surface films on metals is enhanced, while the absorption of s-polarized light by this film is nearly zero. This different behavior of the polarization properties leads to strong selection rules at the surface and can therefore be used to identify molecules adsorbed on metal surfaces. Polarization Modulation (PM) of the infrared (IR) light takes advantage of this disparity of polarization on sample surfaces and in combination with IRRAS yielding a very sensitive and surface-selective method for obtaining IR spectra of ultra-thin films on metal surfaces. An already existing in situ IRRAS/Quartz Crystal Microbalance weathering cell was combined with PM and evaluated according to its applicability to study in situ atmospheric corrosion processes. First real-time measurements on silver samples exposed to different atmospheres were performed showing the advantage of PM-IRRAS compared to conventional IRRAS for such investigations.

  9. Asymmetric light reflection at the reflecting layer incorporated in a linear, time-independent and non-magnetic two-dimensional photonic crystal

    NASA Astrophysics Data System (ADS)

    Mohan Gupta, Man; Medhekar, Sarang

    2016-06-01

    For the first time, we show the phenomenon of asymmetric light reflection at the reflecting layer incorporated in a linear, time-independent and non-magnetic two-dimensional (2D) photonic crystal (PC). The proposed reflector shows asymmetry in the reflection (and hence, in transmission), if incident and reflected ports are interchanged. The possibility shown here should be of interest from the point of view of basic optics and should have interesting consequences/applications in applied optics.

  10. Variable Stars in the 3.6 Year DIRBE Near-Infrared Light Curve Archive

    NASA Astrophysics Data System (ADS)

    Kraemer, Kathleen E.; Price, S. D.; Smith, B. J.; Kuchar, T. A.; Mizuno, D. R.; Webb, J.

    2011-05-01

    The 3.6 year light curve archive created by Price et al. (2010) from the cryo+post-cryo Diffuse Infrared Background Experiment (DIRBE) mission contains a wealth of variable star information at 1.25, 2.2, 3.5, and 4.9 microns. Of the 2700 objects in the archive, over 500 show strong variability and another 75 show potential variability. We have combined visible observations obtained during the DIRBE extended mission with the infrared archive to investigate wavelength-dependent phase lags between the visible and the near-IR maxima, extending the study of Smith et al. (2006) to those stars with periods longer than the 300 day cryo mission. Of those 518 stars exhibiting strong near-infrared variability, 200 have visible light curves in the American Association of Variable Star Observers database during the DIRBE mission. Because viewing geometry for both the visible observers and DIRBE mission limited the opportunities for observing the stars, the light curves were inspected to determine if the peaks were defined well enough to determine phase lags among the five wavebands. For those objects that have sufficient data, we investigate a number of methods to best estimate the peaks and thus find the phase lags, if any. We have also examined the differences in phase dependence on variable type, e.g. Miras, SRa's, SRb's, and carbon stars. The DIRBE light curve data are available to the community through the Vizier service at the Centre de Donnees Astronomique de Strasbourg.

  11. Progress in the Field of Constructing Near-Infrared Light-Responsive Drug Delivery Platforms.

    PubMed

    Zhou, Fang; Wang, Hanjie; Chang, Jin

    2016-03-01

    Stimuli-responsive materials have taken replace of traditional drug carriers due to their ability to achieve controlled release of their encapsulated contents. A variety of sensitive materials, such as polymers that respond to pH, light, and magnetic fields, are widely used to construct drug carriers, and achieved good results. Specifically, near-infrared light (NIR) responsive materials are of particular interest in drug delivery, as NIR can penetrate body tissue and is minimally absorbed by the body's water and hemoglobin and is less harmful to healthy cells than UV or visible light. Thus, the near-infrared excitation drug delivery systems (NIRDDSs) have some essential advantages just like being efficient to kill tumor cells, accurate to achieve the tumor sites and less damage to human body. Also, in the process of building the carriers, we may achieve a combination of controlled release chemotherapy, photothermal therapy (PTT) or photodynamic therapy (PDT). In addition, besides utilizing as drug delivery platforms, some carriers can achieve multifunctional tumor diagnosis and treatment, such as magnetic resonance imaging, optical imaging, drug carriers and PTT. In this review, based on the mechanism of NIR, we highlight diverse near-infrared light-responsive drug delivery platforms and recent advances in the development of NIRDDSs for cancer therapy primarily. PMID:27455610

  12. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  13. THE 1.6 {mu}m NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    SciTech Connect

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-12-20

    Using HST NICMOS 2 observations we have measured 1.6 {mu}m near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 {mu}m. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  14. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  15. VUV light reflectivity measurements from PTFE in Liquid Xenon for the LZ Dark Matter experiment

    NASA Astrophysics Data System (ADS)

    Pushkin, Kirill; LZ Collaboration

    2016-03-01

    The LUX-Zeplin (LZ) collaboration is the next generation of the experiment to search for Dark Matter in the Universe with a dual-phase detector based on liquid xenon (LXe) with a target mass of 7 ton. LXe dual phase detectors are very sensitive probes to search for WIMP dark matter interactions. The LZ collaboration is conducting R&D to study VUV light reflectivity from PTFE (Teflon) in LXe. Teflon is used in dual phase detectors both as an electrical insulator and as reflector of VUV scintillation light (~175 nm) to improve photon detection with photomultiplier tubes (PMTs). However, experimental data for the reflectance of VUV light from PTFE in LXe is not sufficiently conclusive. We present a new technique of measuring the light reflectivity from PTFE by varying the fractional area of the PMT in the detector. PTFE reflectivity measurements were performed as a function of Teflon wall thickness in the range of 2 mm to 9.5 mm. The method, apparatus and experimental results will be presented.

  16. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  17. Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy.

    PubMed

    Chakraborty, Somsubhra; Weindorf, David C; Zhu, Yuanda; Li, Bin; Morgan, Cristine L S; Ge, Yufeng; Galbraith, John

    2012-11-01

    Visible near-infrared (VisNIR) diffuse reflectance spectroscopy (DRS) is a rapid, non-destructive method for sensing the presence and amount of total petroleum hydrocarbon (TPH) contamination in soil. This study demonstrates the feasibility of VisNIR DRS to be used in the field to proximally sense and then map the areal extent of TPH contamination in soil. More specifically, we evaluated whether a combination of two methods, penalized spline regression and geostatistics could provide an efficient approach to assess spatial variability of soil TPH using VisNIR DRS data from soils collected from an 80 ha crude oil spill in central Louisiana, USA. Initially, a penalized spline model was calibrated to predict TPH contamination in soil by combining lab TPH values of 46 contaminated and uncontaminated soil samples and the first-derivative of VisNIR reflectance spectra of these samples. The r(2), RMSE, and bias of the calibrated penalized spline model were 0.81, 0.289 log(10) mg kg(-1), and 0.010 log(10) mg kg(-1), respectively. Subsequently, the penalized spline model was used to predict soil TPH content for 128 soil samples collected over the 80 ha study site. When assessed with a randomly chosen validation subset (n = 10) from the 128 samples, the penalized spline model performed satisfactorily (r(2) = 0.70; residual prediction deviation = 2.0). The same validation subset was used to assess point kriging interpolation after the remaining 118 predictions were used to produce an experimental semivariogram and map. The experimental semivariogram was fitted with an exponential model which revealed strong spatial dependence among soil TPH [r(2) = 0.76, nugget = 0.001 (log(10) mg kg(-1))(2), and sill 1.044 (log(10) mg kg(-1))(2)]. Kriging interpolation adequately interpolated TPH with r(2) and RMSE values of 0.88 and 0.312 log(10) mg kg(-1), respectively. Furthermore, in the kriged map, TPH distribution matched with the expected TPH variability of the study site. Since the

  18. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  19. De-polarization of a CdZnTe radiation detector by pulsed infrared light

    SciTech Connect

    Dědič, V. Franc, J.; Rejhon, M.; Grill, R.; Zázvorka, J.; Sellin, P. J.

    2015-07-20

    This work is focused on a detailed study of pulsed mode infrared light induced depolarization of CdZnTe detectors operating at high photon fluxes. This depolarizing effect is a result of the decrease of positive space charge that is caused by the trapping of photogenerated holes at a deep level. The reduction in positive space charge is due to the optical transition of electrons from a valence band to the deep level due to additional infrared illumination. In this paper, we present the results of pulse mode infrared depolarization, by which it is possible to keep the detector in the depolarized state during its operation. The demonstrated mechanism represents a promising way to increase the charge collection efficiency of CdZnTe X-ray detectors operating at high photon fluxes.

  20. Multi-spectral imaging with infrared sensitive organic light emitting diode.

    PubMed

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R; So, Franky

    2014-01-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions. PMID:25091589

  1. Multi-spectral imaging with infrared sensitive organic light emitting diode

    NASA Astrophysics Data System (ADS)

    Kim, Do Young; Lai, Tzung-Han; Lee, Jae Woong; Manders, Jesse R.; So, Franky

    2014-08-01

    Commercially available near-infrared (IR) imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits (ROIC) by indium bump bonding which significantly increases the fabrication costs of these image sensors. Furthermore, these typical III-V compound semiconductors are not sensitive to the visible region and thus cannot be used for multi-spectral (visible to near-IR) sensing. Here, a low cost infrared (IR) imaging camera is demonstrated with a commercially available digital single-lens reflex (DSLR) camera and an IR sensitive organic light emitting diode (IR-OLED). With an IR-OLED, IR images at a wavelength of 1.2 µm are directly converted to visible images which are then recorded in a Si-CMOS DSLR camera. This multi-spectral imaging system is capable of capturing images at wavelengths in the near-infrared as well as visible regions.

  2. The potential of near infrared reflectance spectroscopy (NIRS) for the estimation of agroindustrial compost quality.

    PubMed

    Galvez-Sola, L; Moral, R; Perez-Murcia, M D; Perez-Espinosa, A; Bustamante, M A; Martinez-Sabater, E; Paredes, C

    2010-02-15

    Composting is an environmentally friendly alternative for the recycling of organic wastes and its use is increasing in recent years. An exhaustive monitoring of the composting process and of the final compost characteristics is necessary to certify that the values of compost characteristics are within the limits established by the legislation in order to obtain a safe and marketable product. The analysis of these parameters on each composting batch in the commercial composting plant is time-consuming and expensive. So, their estimation in the composting facilities based on the use of near infrared reflectance spectroscopy (NIRS) could be an interesting approach in order to monitor compost quality. In this study, more than 300 samples from 20 different composting procedures were used to calibrate and validate the NIRS estimation of compost properties (pH, electrical conductivity (EC), total organic matter (TOM), total organic carbon (TOC), total nitrogen (TN) and C/N ratio, macronutrient contents (N, P, K) and potentially pollutant element concentrations (Fe, Cu, Mn and Zn)). The composts used were elaborated using different organic wastes from agroindustrial activities (GS: grape stalk; EGM: exhausted grape marc; GM: grape marc; V: vinasse; CJW: citrus juice waste; Alpeorujo: olive-oil waste; AS: almond skin; EP: exhausted peat; TSW: tomato soup waste; SMS: spent mushroom substrate) co-composted with manures (CM: cattle manure; PM: poultry manure) or urban wastes (SS: sewage sludge) The estimation results showed that the NIRS technique needs to be fitted to each element and property, using specific spectrum transformations, in order to achieve an acceptable accuracy in the prediction. However, excellent prediction results were obtained for TOM and TOC, successful calibrations for pH, EC, Fe and Mn, and moderately successful estimations for TN, C/N ratio, P, K, Cu and Zn. PMID:20061002

  3. [Attenuated total reflection-fourier transform infrared spectroscopic study of dried shark fin products].

    PubMed

    Han, Wan-qing; Luo, Hai-ying; Xian, Yan-ping; Luo, Dong-hui; Mu, Torng-na; Guo, Xin-dong

    2015-02-01

    Sixty-four pieces of shark fin dried products (including real, fake and artificial shark fin products) and real products coated with gelatin were rapidly and nondestructively analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). The characteristic of IR spectrograms among the above four kinds of samples were systematically studied and comparied, the results showed that the spectrograms of the same kind of samples were repeatable, and different kinds of shark fin products presented significant differences in the spectrograms, which mainly manifested as the specific absorption peaks of amido bonds in protein (1650, 1544 cm(-1)) and skeletal vibration in polysaccharide (1050 cm(-1)). The spectrograms of real shark fins were characterized by the strong absorption peaks of protein characteristic amide I and II absorbent (1650, 1544 cm(-1)) and relatively weak C--O--C vibration absorbent (1050 cm(-1)) owing to the high content of protein and relatively low level of polysaccharide. For fake shark fin products that were molded form by mixing together with the offcut of shark, collagen and other substances, the introduction of non-protein materials leaded to the weaker amido bonds absorbent than real products along with a 30 cm(-1) blue shift of amide I absorbent. Opposite to the real sample, the relatively strong absorption peak of polysaccharide (approximately 1047 cm(-1)) and barely existed amide absorbent were the key features of the spectrogram of artificial samples, which was synthersized by polysaccharide like sodium alginate. Real samples coated with gelatin, the peak strength of protein and polysaccharide were decreased simultaneously when the data collection was taken at the surface of sample, while the spectrogram presented no significant difference to real samples when the data was collected in the section. The results above indicated that by analyzing the characteristic of IR spectrograms and the value range of Apro

  4. Quantification of bovine immunoglobulin G using transmission and attenuated total reflectance infrared spectroscopy.

    PubMed

    Elsohaby, Ibrahim; McClure, J Trenton; Riley, Christopher B; Shaw, R Anthony; Keefe, Gregory P

    2016-01-01

    In this study, we evaluated and compared the performance of transmission and attenuated total reflectance (ATR) infrared (IR) spectroscopic methods (in combination with quantification algorithms previously developed using partial least squares regression) for the rapid measurement of bovine serum immunoglobulin G (IgG) concentration, and detection of failure of transfer of passive immunity (FTPI) in dairy calves. Serum samples (n = 200) were collected from Holstein calves 1-11 days of age. Serum IgG concentrations were measured by the reference method of radial immunodiffusion (RID) assay, transmission IR (TIR) and ATR-IR spectroscopy-based assays. The mean IgG concentration measured by RID was 17.22 g/L (SD ±9.60). The mean IgG concentrations predicted by TIR and ATR-IR spectroscopy methods were 15.60 g/L (SD ±8.15) and 15.94 g/L (SD ±8.66), respectively. RID IgG concentrations were positively correlated with IgG levels predicted by TIR (r = 0.94) and ATR-IR (r = 0.92). The correlation between 2 IR spectroscopic methods was 0.94. Using an IgG concentration <10 g/L as the cut-point for FTPI cases, the overall agreement between TIR and ATR-IR methods was 94%, with a corresponding kappa value of 0.84. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for identifying FTPI by TIR were 0.87, 0.97, 0.91, 0.95, and 0.94, respectively. Corresponding values for ATR-IR were 0.87, 0.95, 0.86, 0.95, and 0.93, respectively. Both TIR and ATR-IR spectroscopic approaches can be used for rapid quantification of IgG level in neonatal bovine serum and for diagnosis of FTPI in dairy calves. PMID:26699522

  5. Reflectivity, transmission, and photoinduced infrared spectra of NdNiO{sub 3}

    SciTech Connect

    Massa, N.E.; Alonso, J.A.; Martinez-Lope, M.J.; Rasines, I.

    1997-07-01

    We report temperature-dependent infrared spectra of NdNiO{sub 3} prepared by synthesis under high oxygen pressure. Its room-temperature reflectivity is characteristic of a metal oxide with a Drude tail asymptotically extending to higher frequencies. The sharp metal-insulator transition is detected at about 200 K as phonons become unscreened. While their activity is in the frequency range for a distorted perovskite, the strength of involving the Nd ion against the NiO{sub 6} octahedra at 183cm{sup {minus}1} is remarkable. This and all phonon groups show strong antiresonances near the longitudinal optical frequencies and these are unusually close to absorptions seen in transmission measurements. We interpret this as evidence of strong electron-phonon interactions with carrier localization in a temperature-dependent regime. Low-temperature photoinduced spectra, excited with argon laser lines, support this picture by showing weak absorptions at about those frequencies as well as a relatively very strong photoinduced band at 810cm{sup {minus}1} and one very broad and weak peak at {approximately}2300cm{sup {minus}1} and tail up to 4000cm{sup {minus}1}. They are assigned to electronic transitions involving localized defects. Our measurements suggest that the metal-insulator phase transition in NdNiO{sub 3} is triggered by electron localization in a polaronic environment. We conclude that a suitable order parameter for perovskites with a metal-insulator phase transition may be identified in the coupling between those electrons and local spins {copyright} {ital 1997} {ital The American Physical Society}

  6. Evaluation of various polyethylene as potential dosimeters by attenuated total reflectance-Fourier-transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Halperin, Fred; Collins, Greta; DiCicco, Michael; Logar, John

    2014-12-01

    Various types of polyethylene (PE) have been evaluated in the past for use as a potential dosimeter, chiefly via the formation of an unsaturated transvinylene (TV) double-bond resulting from exposure to ionizing radiation. The utilization of attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy in characterizing TV formation in irradiated PE for a potential dosimeter has yet to be fully developed. In this initial investigation, various PE films/sheets were exposed to ionizing radiation in a high-energy 5 megaelectron volt (MeV) electron beam accelerator in the 10-500 kilogray (kGy) dose range, followed by ATR-FTIR analysis of TV peak formation at the 965 cm-1 wavenumber. There was an upward trend in TV formation for low-density polyethylene (LDPE) films and high-density polyethylene (HDPE) sheets as a function of absorbed dose in the 10-50 kGy dose range, however, the TV response could not be equated to a specific absorbed dose. LDPE film displayed a downward trend from 50 kGy to 250 kGy and then scattering up to 500 kGy; HDPE sheets demonstrated an upward trend in TV formation up to 500 kGy. For ultra-high molecular weight polyethylene (UHMWPE) sheets irradiated up to 150 kGy, TV response was equivalent to non-irradiated UHMWPE, and a minimal upward trend was observed for 200 kGy to 500 kGy. The scatter of the data for the irradiated PE films/sheets is such that the TV response could not be equated to a specific absorbed dose. A better correlation of the post-irradiation TV response to absorbed dose may be attained through a better understanding of variables.

  7. [Alfalfa quality evaluation in the field by near-infrared reflectance spectroscopy].

    PubMed

    Xu, Rui-Xuan; Li, Dong-Ning; Yang, Dong-Hai; Lin, Jian-Hai; Xiang, Min; Zhang, Ying-Jun

    2013-11-01

    To explore the feasibility of using near-infrared reflectance spectroscopy (NIRS) to evaluate alfalfa quality rapidly in the field and try to find the appropriate machine and sample preparation method, the representative population of 170 fresh alfalfa samples collected from different regions with different stages and different cuts were scanned by a portable NIRS spectrometer (1 100 - 1 800 nm). This is the first time to build models of fresh alfalfa to rapidly estimate quality in the field for harvesting in time. The calibrations of dry matter (DM), crude protein (CP), neutral detergent fiber (NDF) and acid detergent fiber (ADF) were developed through the partial least squares regression (PLS). The determination coefficients of cross-validation (R2((CV)) were 0.831 4, 0.597 9, 0.803 6, 0.786 1 for DM, CP, NDF, ADF, respectively; the root mean standard error of cross-validation (RMSECV) were 1.241 1, 0.261 4, 0.990 3, 0.830 6; The determination coefficients of validation (R2(V)) were 0.815 0, 0.401 1, 0.784 9, 0.752 1 and the root mean standard errors of validation(RMSEP)were 1.06, 0.31, 0.95, 0.80 for DM, CP, NDF, ADF, respectively. For fresh alfalfa ,the calibration of DM, NDF, ADF can do rough quantitative analysis but the CP's calibration is failed. however, as CP in alfalfa hay is enough for animal and the DM, NDF and ADF is the crucial indicator for evaluating havest time, the model of DM, NDF and ADF can be used for evaluating the alfalfa quality rapidly in the field. PMID:24555370

  8. Modeling near-infrared reflectance spectra of clay and sulfate mixtures and implications for Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Milliken, R. E.

    2015-04-01

    High-resolution mapping by visible and near-infrared orbital spectrometers has revealed a diversity of hydrated mineral deposits on the surface of Mars. Quantitative analysis of mineral abundances within these deposits has the potential to distinguish depositional and diagenetic processes. Such analysis can also provide important constraints on the nature of putative global and local-scale mineralogical transitions on Mars. However, the ability of models to extract quantitative mineral abundances from spectra of mixtures relevant to sedimentary rocks remains largely untested. This is particularly true for clay and sulfate minerals, which often occur as fine-grained components of terrestrial sedimentary rocks and are known to occur in a number of sedimentary deposits on Mars. This study examines the spectral properties of a suite of mixtures containing the Mg-sulfate epsomite mixed with varying proportions of smectitic clay (saponite, nontronite, and montmorrilonite). The goal of this work is to test the ability of checkerboard (linear) and intimate (non-linear) mixing models to obtain accurate estimates of mineral abundances under ideal and controlled laboratory conditions. The results of this work suggest that: (1) spectra of clay-sulfate mixtures can be reproduced by checkerboard and intimate mixing models to within 2% absolute reflectance or single scattering albedo, (2) clay and epsomite abundance can be modeled to within 5 wt.% when particle diameter is optimized, and (3) the lower threshold for modeling clay in spectra of clay-epsomite mixtures is approximately 10 wt.%, below which the models often fail to recognize the presence of clay.

  9. LightLeaves: computer controlled kinetic reflection hologram installation and a brief discussion of earlier work

    NASA Astrophysics Data System (ADS)

    Connors Chen, Betsy

    2013-02-01

    LightLeaves is an installation combining leaf shaped, white light reflection holograms of landscape images with a special kinetic lighting device that houses a lamp and moving leaf shaped masks. The masks are controlled by an Arduino microcontroller and servomotors that position the masks in front of the illumination source of the holograms. The work is the most recent in a long series of landscapes that combine multi-hologram installations with computer controlled devices that play with the motion of the holograms, the light, sound or other elements in the work. LightLeaves was first exhibited at the Peabody Essex Museum in Salem, Massachusetts in a show titled "Eye Spy: Playing with Perception".

  10. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    SciTech Connect

    Barun, V V; Ivanov, A P

    2013-10-31

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues. (biophotonics)

  11. Light scattering by a rough surface of human skin. 2. Diffuse reflectance

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.

    2013-10-01

    Based on the previously calculated luminance factors, we have investigated the integral characteristics of light reflection from a rough surface of the skin with large-scale inhomogeneities under various conditions of the skin illumination. Shadowing of incident and scattered beams by relief elements is taken into account. Diffuse reflectances by the Gaussian and the quasi-periodic surfaces are compared and, in general, both these roughness models are shown to give similar results. We have studied the effect of the angular structure of radiation multiply scattered deep in the tissue and the refraction of rays as they propagate from the dermis to the surface of the stratum corneum on the reflection characteristics of the skin surface. The importance of these factors is demonstrated. The algorithms constructed can be included in the schemes of calculation of the light fields inside and outside the medium in solving various direct and inverse problems of optics of biological tissues.

  12. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    SciTech Connect

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-10-10

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK{sub s} SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are sigma(M{sub J}) = 0.17 +- 0.03, sigma(M{sub H}) = 0.11 +- 0.03, and sigma(M{sub Ks}) = 0.19 +- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms{sup -1} is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  13. Simulation of reflected light intensity changes during navigation and radio-frequency lesioning in the brain

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.; Fredriksson, Ingemar; Wa˚Rdell, Karin; Eriksson, Ola

    2009-07-01

    An electrode with adjacent optical fibers for measurements during navigation and radio frequency lesioning in the brain is modeled for Monte Carlo simulations of light transport in brain tissue. Relative reflected light intensity at 780 nm, I780, from this electrode and probes with identical fiber configuration are simulated using the intensity from native white matter as reference. Models are made of homogeneous native and coagulated gray, thalamus, and white matter as well as blood. Dual layer models, including models with a layer of cerebrospinal fluid between the fibers and the brain tissue, are also made. Simulated I780 was 0.16 for gray matter, 0.67 for coagulate gray matter, 0.36 for thalamus, 0.39 for coagulated thalamus, unity for white matter, 0.70 for coagulated white matter, and 0.24 for blood. Thalamic matter is also found to reflect more light than gray matter and less than white matter in clinical studies. In conclusion, the reflected light intensity can be used to differentiate between gray and white matter during navigation. Furthermore, coagulation of light gray tissue, such as the thalamus, might be difficult to detect using I780, but coagulation in darker gray tissue should result in a rapid increase of I780.

  14. Absorption and electrochromic modulation of near-infrared light: realized by tungsten suboxide.

    PubMed

    Li, Guilian; Zhang, Shouhao; Guo, Chongshen; Liu, Shaoqin

    2016-05-01

    In the present study, needle-like tungsten suboxide W18O49 nanocrystals were fabricated as the optical active substance to realize the aim of optical control of near-infrared light. The W18O49 nanocrystals were selected in this regard due to their unique optical performance. As revealed by the powder absorption result, the needle-like W18O49 nanocrystals show strong and wide photoabsorption in the entire near infrared region of 780-2500 nm, from which thin films with the W18O49 nanocrystal coating thus benefits and can strongly shield off almost all near infrared irradiation, whereas transmitting the majority of visible light. To make it more tunable, the W18O49 nanocrystals were finally assembled onto an ITO glass via the layer-by-layer strategy for later electrochromic investigation. The nanostructured architectures of the W18O49 nanocrystal electrochromic films exhibit high contrast, faster switching response, higher coloration efficiencies (150 cm(2) C(-1) at 650 nm and 255 cm(2) C(-1) at 1300 nm), better long-term redox switching stability (reversibility of 98% after 500 cycles) and wide electrochromic spectrum coverage of both the visible and infrared regions. PMID:27119556

  15. Method for measuring retardation of infrared wave-plate by modulated-polarized visible light

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Song, Feijun

    2012-11-01

    A new method for precisely measuring the optical phase retardation of wave-plates in the infrared spectral region is presented by using modulated-polarized visible light. An electro-optic modulator is used to accurately determine the zero point by the frequency-doubled signal of the Modulated-polarized light. A Babinet-Soleil compensator is employed to make the phase delay compensation. Based on this method, an instrument is set up to measure the retardations of the infrared wave-plates with visible region laser. Measurement results with high accuracy and sound repetition are obtained by simple calculation. Its measurement precision is less than and repetitive precision is within 0.3%.

  16. Photodynamic inactivation of microorganisms which cause pulmonary diseases with infrared light: an in vitro study

    NASA Astrophysics Data System (ADS)

    Leite, Ilaiáli S.; Geralde, Mariana C.; Salina, Ana C.; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.; Inada, Natalia M.

    2014-03-01

    Lower respiratory infections are among the leading causes of death worldwide. In this study, it was evaluated the interaction of indocyanine green, a photosensitizer activated by infrared light, with alveolar macrophages and the effectiveness of the photodynamic therapy using this compound against Streptococcus pneumoniae . Initial experiments analyzed indocyanine green toxicity to alveolar macrophages in the dark with different drug concentrations and incubation times, and macrophage viability was obtained with the MTT method. The average of the results showed viability values below 90% for the two highest concentrations. Experiments with Streptococcus pneumoniae showed photodynamic inactivation with 10 μM indocyanine green solution. Further experiments with the bacteria in co-culture with AM will be conducted verifying the photodynamic inactivation effectiveness of the tested drug concentrations and incubation periods using infrared light.

  17. Calorimetric support of directional-hemispherical reflection measurements in the infrared spectral range.

    PubMed

    Richter, W; Sarge, S M; Kämmer, F

    1994-03-01

    Measurements of the directional-hemispherical reflectance ρ with the Physikalisch-Technische Bundesanstalt IR sphere reflectometer have been confirmed by calorimetric determination of the absorptance α in the same geometrical conditions (irradiation at 10°, hemispherical reflection). The good agreement of ρ with (1 - α) on both highly reflecting and low-reflecting surfaces indicates that in the mid-IR spectral range the integrating sphere reflectometer is capable of essentially correct reflectance measurements of diffusely reflecting surfaces, with an estimated uncertainty of 0.01 after correction for a small systematic deviation. This capability opens up the possibility of developing IR reflectance standards. PMID:20862150

  18. Potential of near-infrared hyperspectral reflectance imaging for screening of farm feed contamination

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Paliwal, Jitendra

    2005-09-01

    With the outbreak of Bovine Spongiform Encephalopathy (BSE) (commonly known as mad cow disease) in 1987 in the United Kingdom and a recent case discovered in Alberta, more and more emphasis is placed on food and farm feed quality and safety issues internationally. The disease is believed to be spread through farm feed contamination by animal byproducts in the form of meat-and-bone-meal (MBM). The paper reviewed the available techniques necessary to the enforcement of legislation concerning the feed safety issues. The standard microscopy method, although highly sensitive, is laborious and costly. A method to routinely screen farm feed contamination certainly helps to reduce the complexity of safety inspection. A hyperspectral imaging system working in the near-infrared wavelength region of 1100-1600 nm was used to study the possibility of detection of ground broiler feed contamination by ground pork. Hyperspectral images of raw broiler feed, ground broiler feed, ground pork, and contaminated feed samples were acquired. Raw broiler feed samples were found to possess comparatively large spectral variations due to light scattering effect. Ground feed adulterated with 1%, 3%, 5%, and 10% of ground pork was tested to identify feed contamination. Discriminant analysis using Mahalanobis distance showed that the model trained using pure ground feed samples and pure ground pork samples resulted in 100% false negative errors for all test replicates of contaminated samples. A discriminant model trained with pure ground feed samples and 10% contamination level samples resulted in 12.5% false positive error and 0% false negative error.

  19. Diffuse near-infrared reflectance spectroscopy during heatstroke in a mouse model: pilot study

    NASA Astrophysics Data System (ADS)

    Abookasis, David; Zafrir, Elad; Nesher, Elimelech; Pinhasov, Albert; Sternklar, Shmuel; Mathews, Marlon S.

    2012-10-01

    Heatstroke, a form of hyperthermia, is a life-threatening condition characterized by an elevated core body temperature that rises above 40°C (104°F) and central nervous system dysfunction that results in delirium, convulsions, or coma. Without emergency treatment, the victim lapses into a coma and death soon follows. The study presented was conducted with a diffuse reflectance spectroscopy (DRS) setup to assess the effects of brain dysfunction that occurred during heatstroke in mice model (n=6). It was hypothesized that DRS can be utilized in small animal studies to monitor change in internal brain tissue temperature during heatstroke injury since it induces a sequence of pathologic changes that change the tissue composition and structure. Heatstroke was induced by exposure of the mice body under general anesthesia, to a high ambient temperature. A type of DRS in which the brain tissue was illuminated through the intact scalp with a broadband light source and diffuse reflected spectra was employed, taking in the spectral region between 650 and 1000 nm and acquired at an angle of 90 deg at a position on the scalp ˜12 mm from the illumination site. The temperature at the onset of the experiment was ˜34°C (rectal temperature) with increasing intervals of 1°C until mouse death. The increase in temperature caused optical scattering signal changes consistent with a structural alteration of brain tissue, ultimately resulting in death. We have found that the peak absorbance intensity and its second derivative at specific wavelengths correlate well with temperature with an exponential dependence. Based on these findings, in order to estimate the influence of temperature on the internal brain tissue a reflectance-temperature index was established and was seen to correlate as well with measured temperature. Overall, results indicate variations in neural tissue properties during heatstroke and the feasibility to monitor and assess internal temperature variations using

  20. Ultra low emittance electron beams from multi-alkali antimonide photocathode operated with infrared light

    NASA Astrophysics Data System (ADS)

    Cultrera, L.; Gulliford, C.; Bartnik, A.; Lee, H.; Bazarov, I.

    2016-03-01

    The intrinsic emittance of electron beams generated from a multi-alkali photocathode operated in a high voltage DC gun is reported. The photocathode showed sensitivity extending to the infrared part of the spectrum up to 830 nm. The measured intrinsic emittances of electron beams generated with light having wavelength longer than 800 nm are approaching the limit imposed by the thermal energy of electrons at room temperature with quantum efficiencies comparable to metallic photocathodes used in operation of modern photoinjectors.

  1. Monte Carlo analysis of light transport in tissue in the mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Mourant, Judith R.; Aida, Toru

    2004-07-01

    The mid-infrared wavelength region contains characteristic peaks of several of the biochemical constituents of tissue. Recently, it has been shown that measurements of mammalian cell suspensions can provide estimates of biochemical composition and consequently information on the growth stage. This information may be used to identify cancerous tissue in-vivo. To facilitate the development of an in-vivo diagnostic technique, we have performed simulations of photon propagation and light collection in epithelial tissue, given a specific optical probe geometry.

  2. Transparent conductive and near-infrared reflective Ga-doped ZnO/Cu bilayer films grown at room temperature

    SciTech Connect

    Lu, J. G.; Bie, X.; Wang, Y. P.; Gong, L.; Ye, Z. Z.

    2011-05-15

    Bilayer films consisting of Ga-doped ZnO (GZO) and Cu layers were grown at room temperature by magnetron sputtering. The structural, electrical, and optical properties of GZO/Cu bilayer films were investigated in detail. The crystallinity and transparent-conductive properties of the films were correlated with the Cu layer thickness. The GZO/Cu bilayer film with the Cu layer thickness of 7.8 nm exhibited a low resistivity of 7.6x10{sup -5} {Omega} cm and an average visible transmittance of 74%. The reflectance was up to 65% in the near-infrared region for this film. The transparent conductive and near-infrared reflective GZO/Cu bilayer films could be readily deposited at room temperature. The GZO/Cu bilayer films were thermally stable when annealed at temperatures as high as 500 deg. C.

  3. [Study on determining the content of all kinds of composition in the natural rock by near infrared reflectance spectroscopy].

    PubMed

    Li, Jun-Hua; Wu, Wei; He, Yan; Yao, Jin-Zhu; Wu, Xiao-Hong; Deng, Bo

    2013-01-01

    The infrared reflectance spectroscopy from the sample simulating natural-rock prepared by kaolin, muscovite and montmorillonite mixed-powders was obtained by a spectrometer. Spectral data preprocessing was done using SNV. Random forest mathematical modeling was used for predicting the components of rock samples. The smallest root mean square error of the predicted three types of rock composition were 0.088 0, 0.095 6 and 0.121 2 respectively. The predictive studies showed that the application of near infrared diffuse reflectance spectroscopy to determining the content of the natural rocks and minerals of various rock composition is feasible. The study provides a theoretical basis for the rapid detection of the rock composition in the future. PMID:23586231

  4. Enhanced luminous efficiency of phosphor-converted LEDs by using back reflector to increase reflectivity for yellow light.

    PubMed

    Zhou, Shengjun; Cao, Bin; Yuan, Shu; Liu, Sheng

    2014-12-01

    To obtain high reflectivity over a broad range of green, yellow, and red light as well as blue light incidents from a particular angular range and further increase the luminous efficiency of a phosphor-converted white LED packaging module, a novel back hybrid reflector including a SiO(2) total internal reflection layer (TIR), five-pair SiO(2)/TiO(2) double distributed Bragg reflector (DBR) stacks, and a gold (Au) metallic mirror was designed and fabricated. The double DBR stacks have layers configured to reflect green, yellow, and red light as well as blue light, which includes a first portion where the thickness of the layers are relatively larger, and also includes a second portion where the thickness of the layers is relatively smaller. Light that is passing toward the hybrid reflector at angles greater than the critical angle (56°) is reflected by the SiO(2) TIR layer at the sapphire/SiO(2) interface, whereas the light that passes through the SiO(2) TIR layer with incident angles between 0° and 56° is reflected by the double DBR stacks. The overall hybrid reflector can ensure a reflectivity of more than 95% in both the blue light wavelength region and the yellow light wavelength region. The obtained higher reflectivity in the yellow light wavelength region will benefit the phosphor-converted LEDs because yellow light backscattered by phosphor particles is reflected upward. PMID:25607969

  5. Reanalysis of the Near-infrared Extragalactic Background Light Based on the IRTS Observations

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Kim, M. G.; Pyo, J.; Tsumura, K.

    2015-07-01

    We reanalyze data of the near-infrared background taken by IRTS using up-to-date observational results of zodiacal light (ZL), integrated star light, and diffuse Galactic light. We confirm the existence of residual isotropic emission, which is slightly lower but almost the same as previously reported. At wavelengths longer than 2 μm, the result is fairly consistent with the recent observation with AKARI. We also perform the same analysis using a different ZL model by Wright and detect residual isotropic emission that is slightly lower than that based on the original Kelsall model. Both models show residual isotropic emission that is significantly brighter than the integrated light of galaxies.

  6. Improved efficiency of organic/inorganic hybrid near-infrared light upconverter by device optimization.

    PubMed

    Chu, Xinbo; Guan, Min; Li, Linsen; Zhang, Yang; Zhang, Feng; Li, Yiyang; Zhu, Zhanping; Wang, Baoqiang; Zeng, Yiping

    2012-09-26

    An organic/inorganic hybrid up-conversion device was demonstrated in this work, which can convert near-infrared light (NIR) to visible green at high conversion efficiency. The upconverter was fabricated by integrating an In(0.12)Ga(0.88)As/GaAs multiquantum wells (MQWs) photodetector (PD) with an organic light emitting diode (OLED). The up-conversion efficiency of 4.0 W/W % was obtained at 20 V under NIR illumination of 1 mW/mm(2) at room temperature by optimizing the structure of the PD unit and adding MoO(3) doped perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as interfacial layer of OLED. Meanwhile, the green light output induced by NIR achieved 6050 cd/m(2), which proves that the organic/inorganic hybrid upconverter an excellent candidate that can be applied in light converter field. PMID:22931090

  7. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  8. The Use of NASA Light-Emitting Diode Near-Infrared Technology for Biostimulation

    NASA Technical Reports Server (NTRS)

    Whelan, Harry T.

    2002-01-01

    Studies on cells exposed to microgravity and hypergravity indicate that human cells need gravity to stimulate growth. As the gravitational force increases or decreases, the cell function responds in a linear fashion. This poses significant health risks for astronauts in long-term spaceflight. The application of light therapy with the use of NASA LEDs will significantly improve the medical care that is available to astronauts on long-term space missions. NASA LEDs stimulate the basic energy processes in the mitochondria (energy compartments) of each cell, particularly when near-infrared light is used to activate the color sensitive chemicals (chromophores, cytochrome systems) inside. Optimal LED wavelengths include 680, 730 and 880 nm and our laboratory has improved the healing of wounds in laboratory animals by using both NASA LED light and hyperbaric oxygen. Furthermore, DNA synthesis in fibroblasts and muscle cells has been quintupled using NASA LED light alone, in a single application combining 680, 730 and 880 nm each at 4 Joules per centimeter squared. Muscle and bone atrophy are well documented in astronauts, and various minor injuries occurring in space have been reported not to heal until landing on Earth. An LED blanket device may be used for the prevention of bone and muscle atrophy in astronauts. The depth of near-infrared light penetration into human tissue has been measured spectroscopically.

  9. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.

    PubMed

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  10. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    NASA Astrophysics Data System (ADS)

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-11-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform.

  11. At near-infrared wavelengths, following the subtraction of zodiacal light

    NASA Technical Reports Server (NTRS)

    2002-01-01

    At near-infrared wavelengths, following the subtraction of zodiacal light (see Slide 16), map pixels containing discrete bright sources are masked and the DIRBE Faint Source Model is used to subtract residual Galactic starlight in order to detect or place an upper limit on the brightness of the cosmic infrared (extragalactic) background emission (Arendt et al. 1998, ApJ, in press). Here the upper map shows the residual sky brightness at 2.2 Aum after zodiacal light subtraction and bright source masking (dark spots in maps). In this projection, the Galactic plane runs horizontally through the map. Ideally, if the zodiacal model were perfect, only the collective emissions of (faint) stars in the Milky Way and the sought-after extragalactic light (cosmic infrared background) would remain in this map. The lower map shows the DIRBE Faint Source Model. To facilitate comparison, both maps are shown on the same brightness scale and with the same pixels masked. Clearly, most of the residual 2.2 Aum emission in the upper map is attributable to stars in the Milky Way.

  12. Non-destructively reading out information embedded inside real objects by using far-infrared light

    NASA Astrophysics Data System (ADS)

    Okada, Ayumi; Silapasuphakornwong, Piyarat; Suzuki, Masahiro; Torii, Hideyuki; Takashima, Youichi; Uehira, Kazutake

    2015-09-01

    This paper presents a technique that can non-destructively read out information embedded inside real objects by using far-infrared-light. We propose a technique that can protect the copyrights of digital content for homemade products using digital fabrication technologies such as those used in 3D printers. It embeds information on copyrights inside real objects produced by 3D printers by forming fine structures inside the objects as a watermark that cannot be observed from the outside. Fine structures are formed near the surface inside real objects when they are being fabricated. Information embedded inside real objects needs to be read out non-destructively. We used a technique that could non-destructively read out information from inside real objects by using far-infrared light. We conducted experiments where we structured fine cavities inside objects. The disposition of the fine domain contained valuable information. We used the flat and curved surfaces of the objects to identify them. The results obtained from the experiments demonstrated that the disposition patterns of the fine structures appeared on the surface of objects as a temperature profile when far-infrared light was irradiated on their surface. Embedded information could be read out successfully by analyzing the temperature profile images of the surface of the objects that were captured with thermography and these results demonstrated the feasibility of the technique we propose.

  13. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  14. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander; Arendt, Richard G.; Dwek, Eli; Moseley, Samuel H.; Silverberg, Robert F.; Rapchun, David

    2008-01-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program.

  15. Near-infrared reflectance spectra of mixtures of kaolin-group minerals: use in clay mineral studies

    USGS Publications Warehouse

    Crowley, J.K.; Vergo, N.

    1988-01-01

    Near-infrared (NIR) reflectance spectra for mixtures of ordered kaolinite and ordered dickite have been found to simulate the spectral response of disordered kaolinite. The amount of octahedral vacancy disorder in nine disordered kaolinite samples was estimated by comparing the same spectra to the spectra of reference mixtures. The resulting estimates are consistent with previously published estimates of vacancy disorder for similar kaolin minerals that were modeled from calculated X-ray diffraction patterns. -from Authors

  16. ELiXIR—Solid-State Luminaire With Enhanced Light Extraction by Internal Reflection

    NASA Astrophysics Data System (ADS)

    Allen, Steven C.; Steckl, Andrew J.

    2007-06-01

    A phosphor-converted light-emitting diode (pcLED) luminaire featuring enhanced light extraction by internal reflection (ELiXIR) with efficacy of 60 lm/W producing 18 lumens of yellowish green light at 100 mA is presented. The luminaire consists of a commercial blue high power LED, a polymer hemispherical shell lens with interior phosphor coating, and planar aluminized reflector. High extraction efficiency of the phosphor-converted light is achieved by separating the phosphor from the LED and using internal reflection to steer the light away from lossy reflectors and the LED package and out of the device. At 10 and 500 mA, the luminaire produces 2.1 and 66 lumens with efficacies of 80 and 37 lm/W, respectively. Technological improvements over existing commercial LEDs, such as more efficient pcLED packages or, alternatively, higher efficiency green or yellow for color mixing, will be essential to achieving 150 200 lm/W solid-state lighting. Advances in both areas are demonstrated.

  17. Recovery of reflection spectra in a multispectral imaging system with light emitting diodes.

    PubMed

    Fauch, Laure; Nippolainen, Ervin; Teplov, Victor; Kamshilin, Alexei A

    2010-10-25

    Performance of recently proposed multispectral imaging system for fast acquisition of two dimensional distribution of reflectance spectrum is experimentally studied. The system operation is based on a subspace vector model in which any reflectance spectrum is described in the compressed form as a linear combination of few spectral functions. A key element of the proposed system is a light source which includes a set of light-emitting diodes with different central wavelengths. The light source provides illumination of the object by fast-switchable sequences of spectral bands whose energy distributions are proportional to mutually orthogonal spectral functions (calculated in-advance). Object illumination is synchronized with a monochrome digital camera. The system allows us fast acquisition of reflectance spectra in a compressed form with high spatial resolution. A model of the system calibration by using standard white matte sample is proposed. Reconstruction of the reflectance spectrum from the compressed data collected after illumination of selected color samples from the Munsell book by 7 mutually orthogonal spectral functions is demonstrated. Parameters of the system, which affect the accuracy of the spectrum reconstruction, are analyzed and discussed. PMID:21164681

  18. Tunable natural nano-arrays: controlling surface properties and light reflectance

    NASA Astrophysics Data System (ADS)

    Watson, Jolanta A.; Myhra, Sverre; Watson, Gregory S.

    2006-01-01

    The general principles of optical design based on the theories of reflection, refraction and diffraction have been rigorously developed and optimized over the last three centuries. Of increasing importance has been the ability to predict and devise new optical technologies designed for specific functions. A key design feature of many of today's optical materials is the control of reflection and light transmittance through the medium. A sudden transition or impedance mismatch from one optical medium to another can result in unwanted reflections from the surface plane. Modification of a surface by creation of a gradual change in refractive index over a significant portion of a wavelength range will result in a reduction in reflection. An alternative surface modification to the multi layered stack coating (gradient index coating) is to produce a surface with structures having a period and height shorter than the light wavelength. These structures act like a pseudo-gradient index coating and can be described by the effective medium theory. Bernhard and Miller some forty years ago were the first to observe such structures found on the surface of insects. These were found in the form of hexagonally close packed nanometre sized protrusions on the corneal surface of certain moths. In this study we report on similar structures which we have found on certain species of cicada wings demonstrating that the reflective/transmission properties of these natural nano-structures can be tuned by controlled removal of the structure height using Atomic Force Microscopy (AFM).

  19. Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light

    SciTech Connect

    Meglinskii, I V

    2001-12-31

    The reflection spectra of a multilayer random medium - the human skin - strongly scattering and absorbing light are numerically simulated. The propagation of light in the medium and the absorption spectra are simulated by the stochastic Monte Carlo method, which combines schemes for calculations of real photon trajectories and the statistical weight method. The model takes into account the inhomogeneous spatial distribution of blood vessels, water, and melanin, the degree of blood oxygenation, and the hematocrit index. The attenuation of the incident radiation caused by reflection and refraction at Fresnel boundaries of layers inside the medium is also considered. The simulated reflection spectra are compared with the experimental reflection spectra of the human skin. It is shown that a set of parameters that was used to describe the optical properties of skin layers and their possible variations, despite being far from complete, is nevertheless sufficient for the simulation of the reflection spectra of the human skin and their quantitative analysis. (laser applications and other topics in quantum electronics)

  20. Light propagation with phase discontinuities: generalized laws of reflection and refraction.

    PubMed

    Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno

    2011-10-21

    Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat's principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces. PMID:21885733

  1. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

    NASA Astrophysics Data System (ADS)

    Yu, Nanfang; Genevet, Patrice; Kats, Mikhail A.; Aieta, Francesco; Tetienne, Jean-Philippe; Capasso, Federico; Gaburro, Zeno

    2011-10-01

    Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

  2. Cloud shortwave radiative effect and cloud properties estimated from airborne measurements of transmitted and reflected light

    NASA Astrophysics Data System (ADS)

    LeBlanc, Samuel E.; Redemann, Jens; Segal-Rosenheimer, Michal; Kacenelenbogen, Meloë; Shinozuka, Yohei; Flynn, Connor; Russell, Philip; Schmid, Beat; Schmidt, K. Sebastian; Pilewskie, Peter; Song, Shi

    2015-04-01

    Surface cloud radiative effect, or the perturbation of sunlight by clouds, is often estimated by cloud properties retrieved from reflected sunlight, however transmission-based retrievals may lead to a more representative surface radiative effect than reflection-based counterparts. Transmitted light interacts with cloud particles throughout the vertical extent of the cloud, while reflected light, commonly used for satellite remote sensing of clouds, is more influenced by the top-most cloud particles. We showcase the difference in measurement-based estimates of cloud radiative effect at the surface when using transmitted light instead of reflected light for particular cases during recent field missions. Along with cloud radiative effect, we present the retrieved cloud properties based on light transmitted and reflected by clouds in the Gulf of Mexico, sampled during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS), and in the Gulf of Maine, sampled during the Two-Column Aerosol Project (TCAP). To quantify cloud properties from transmitted shortwave radiation, a new retrieval utilizing spectrally resolved measurements is employed. Spectral features in shortwave radiation transmitted through clouds are sensitive to changes in cloud properties including cloud optical thickness, effective radius, and thermodynamic phase. The absorption and scattering of light by liquid water and ice clouds result in shifts in spectral slopes, curvatures, maxima, and minima of cloud-transmitted radiance. A new framework is introduced to quantify these spectral features that are observed in measured and modeled transmittance. This new framework consists of 15 parameters that are independent of spectrally neutral variations in radiometric calibration quantifying spectral slopes, derivatives, spectral curvature calculations, and ratios. These parameters are used to retrieve cloud properties from measurements of zenith radiance

  3. Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies

    NASA Astrophysics Data System (ADS)

    Stavenga, D. G.; Giraldo, M. A.; Hoenders, B. J.

    2006-05-01

    The colors of butterfly wings are determined by the structural as well as pigmentary properties of the wing scales. Reflectance spectra of the wings of a number of pierid butterfly species, specifically the small white, Pieris rapae, show that the long-wavelength reflectance of the scales in situ, on the wing, is distinctly higher than that of single, isolated scales. An optical model explains that this is due to multiple scattering on overlapping scales by treating the layers of scales on both sides of the wing as a stack of incoherently scattering plates. The model sheds new light on the adaptive significance and evolution of butterfly wing patterns.

  4. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Luke; Verbiscer, Anne; Yung, Yuk L.

    2016-05-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μm, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ˜1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 USA.

  5. Reflected Light Curves, Spherical and Bond Albedos of Jupiter- and Saturn-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Dyudina, Ulyana; Zhang, Xi; Li, Liming; Kopparla, Pushkar; Ingersoll, Andrew P.; Dones, Luke; Verbiscer, Anne; Yung, Yuk L.

    2016-05-01

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μm, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μm. We simulate the images of the planets with a ray-tracing model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating. Division of Geological and Planetary Sciences, 150-21 California Institute of Technology, Pasadena, CA 91125 USA.

  6. Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo.

    PubMed

    Cayce, Jonathan M; Friedman, Robert M; Jansen, E Duco; Mahavaden-Jansen, Anita; Roe, Anna W

    2011-07-01

    Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=250 μs, radiant exposure=0.01-0.55 J/cm(2), fiber size=400 μm, repetition rate=50-200 Hz) was used to stimulate the somatosensory cortex of anesthetized rats, and its efficacy was assessed using intrinsic optical imaging and electrophysiology techniques. INS was found to evoke an intrinsic response of similar magnitude to that evoked by tactile stimulation (0.3-0.4% change in intrinsic signal magnitude). A maximum deflection in the intrinsic signal was measured to range from 0.05% to 0.4% in response to INS, and the activated region of cortex measured approximately 2mm in diameter. The intrinsic signal magnitude increased with faster laser repetition rates and increasing radiant exposures. Single unit recordings indicated a statistically significant decrease in neuronal firing that was observed at the onset of INS stimulation (0.5s stimulus) and continued up to 1s after stimulation onset. The pattern of neuronal firing differed from that observed during tactile stimulation, potentially due to a different spatial integration field of the pulsed infrared light compared to tactile stimulation. The results demonstrate that INS can be used safely and effectively to manipulate neuronal firing. PMID:21513806

  7. Visible light and near infrared-responsive chromophores for drug delivery-on-demand applications

    PubMed Central

    Linsley, Chase S.; Quach, Viola Y.; Agrawal, Gaurav; Hartnett, Elyse; Wu, Benjamin M.

    2016-01-01

    The need for temporal-spatial control over the release of biologically active molecules has motivated efforts to engineer novel drug delivery-on-demand strategies actuated via light irradiation. Many systems, however, have been limited to in vitro proof-of-concept due to biocompatibility issues with the photo-responsive moieties or the light wavelength, intensity and duration. To overcome these limitations, this paper describes a light actuated drug delivery-on-demand strategy that uses visible and near infrared (NIR) light and biocompatible chromophores: cardiogreen, methylene blue and riboflavin. All 3 chromophores are capable of significant photothermal reaction upon exposure to NIR and visible light, and the amount of temperature change is dependent upon light intensity, wavelength as well as chromophore concentration. Pulsatile release of bovine serum albumin (BSA) from thermally-responsive hydrogels was achieved over 4 days. These findings have the potential to translate light actuated drug delivery-on-demand systems from the bench to clinical applications that require explicit control over the presentation of biologically active molecules. PMID:26423655

  8. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    NASA Astrophysics Data System (ADS)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  9. A Near-Infrared Spectrometer Based on Novel Grating Light Modulators

    PubMed Central

    Wei, Wei; Huang, Shanglian; Wang, Ning; Jin, Zhu; Zhang, Jie; Chen, Weimin

    2009-01-01

    A near-infrared spectrometer based on novel MOEMS grating light modulators is proposed. The spectrum detection method that combines a grating light modulator array with a single near-infrared detector has been applied. Firstly, optics theory has been used to analyze the essential principles of the proposed spectroscopic sensor. Secondly, the grating light modulators have been designed and fabricated by micro-machining technology. Finally, the principles of this spectroscopic sensor have been validated and its key parameters have been tested by experiments. The result shows that the spectral resolution is better than 10 nm, the wavelength deviation is less than 1 nm, the deviation of the intensity of peak wavelength is no more than 0.5%, the driving voltage of grating light modulators array device is below 25 V and the response frequency of it is about 5 kHz. With low cost, satisfactory precision, portability and other advantages, the spectrometer should find potential applications in food safety and quality monitoring, pharmaceutical identification and agriculture product quality classification. PMID:22574065

  10. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light

    NASA Astrophysics Data System (ADS)

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A.; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice.

  11. Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light.

    PubMed

    Lin, Liang; Liu, Ling; Zhao, Bing; Xie, Ran; Lin, Wei; Li, He; Li, Yaya; Shi, Minlong; Chen, Ye-Guang; Springer, Timothy A; Chen, Xing

    2015-05-01

    Receptor-mediated signal transduction modulates complex cellular behaviours such as cell growth, migration and differentiation. Although photoactivatable proteins have emerged as a powerful tool for controlling molecular interactions and signalling cascades at precise times and spaces using light, many of these light-sensitive proteins are activated by ultraviolent or visible light, which has limited tissue penetration. Here, we report a single-walled carbon nanotube (SWCNT)-assisted approach that enables near-infrared light-triggered activation of transforming growth factor β (TGF-β) signal transduction, an important signalling pathway in embryonic development and cancer progression. The protein complex of TGF-β and its latency-associated peptide is conjugated onto SWCNTs, where TGF-β is inactive. Upon near-infrared irradiation, TGF-β is released through the photothermal effect of SWCNTs and becomes active. The released TGF-β activates downstream signal transduction in live cells and modulates cellular behaviours. Furthermore, preliminary studies show that the method can be used to mediate TGF-β signalling in living mice. PMID:25775150

  12. Plasmonic caged gold nanorods for near-infrared light controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Mazid, Romiza; Yap, Lim Wei; Li, Xinyong; Cheng, Wenlong

    2014-11-01

    A new near-infrared light-controlled drug delivery system based on caged gold nanorods (CGNRs) is demonstrated. The loading and release process of drug payloads into/from CGNR nanocarriers were systematically investigated. The drug-loaded CGNR constructs could enable combined chemotherapy and photo-thermal effects in killing tumor cells upon light irradiation, therefore, enhance the killing efficiency. In conjunction with visibility under quenching-free dark-field imaging, CGNRs may serve as multifunctional theranostic reagents towards cancer diagnostics and therapeutics.A new near-infrared light-controlled drug delivery system based on caged gold nanorods (CGNRs) is demonstrated. The loading and release process of drug payloads into/from CGNR nanocarriers were systematically investigated. The drug-loaded CGNR constructs could enable combined chemotherapy and photo-thermal effects in killing tumor cells upon light irradiation, therefore, enhance the killing efficiency. In conjunction with visibility under quenching-free dark-field imaging, CGNRs may serve as multifunctional theranostic reagents towards cancer diagnostics and therapeutics. Electronic supplementary information (ESI) available: Calculation of the SERS enhancement factor of CGNRs, tunable UV-vis absorbance for CGNRs, TEM images for CGNRs loaded with nile red, dark field images of HeLaGFP cells uptaken with CGNRs loaded with Dox. See DOI: 10.1039/c4nr04400b

  13. Variability of light absorption by aquatic particles in the near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Tassan, Stelvio; Ferrari, Giovanni M.

    2003-08-01

    We have measured the light absorption of a set of particle suspensions of varying nature (pure minerals, particulate standards, aquatic particles) using a double-beam spectrophotometer with a 15-cm-diameter integrating sphere. The sample was located inside the sphere so as to minimize the effect of light scattering by the particles. The results obtained showed highly variable absorption in the near-IR region of the wavelength spectrum. The same particle samples were deposited on glass-fiber filters, and their absorption was measured by the transmittance-reflectance method, based on a theoretical model that corrects for the effect of light scattering. The good agreement found between the results of the measurements carried out inside the sphere and by the transmittance-reflectance method confirms the validity of the scattering correction included in the above method.

  14. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes

    SciTech Connect

    Wierer, J. J. Allerman, A. A.; Montaño, I.; Moseley, M. W.

    2014-08-11

    The improvement in light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes (UVLEDs) emitting at ∼270 nm is shown to be influenced by optical polarization. Three UVLEDs with different reflective scattering structures are investigated and compared to standard UVLEDs without scattering structures. The optical polarization and therefore the direction of light propagation within the various UVLEDs are altered by changes in the quantum well (QW) thickness. The improvement in light extraction efficiency of the UVLEDs with reflective scattering structures increases, compared to the UVLEDs without scattering structures, as the fraction of emitted light propagating parallel to the QW plane increases. Additionally, the light extraction efficiency increases as the average distance to the reflective scattering structures decreases.

  15. Visible and near-infrared (0.4-2.5 μm) reflectance spectra of playa evaporite minerals

    USGS Publications Warehouse

    Crowley, James K.

    1991-01-01

    Visible and near-infrared (VNIR; 0.4–2.4 μm) reflectance spectra were recorded for 35 saline minerals that represent the wide range of mineral and brine chemical compositions found in playa evaporite settings. The spectra show that many of the saline minerals exhibit diagnostic near-infrared absorption bands, chiefly attributable to vibrations of hydrogen-bonded structural water molecules. VNIR reflectance spectra can be used to detect minor hydrate phases present in mixtures dominated by anhydrous halite or thenardite, and therefore will be useful in combination with X ray diffraction data for characterizing natural saline mineral assemblages. In addition, VNIR reflectance spectra are sensitive to differences in sample hydration state and should facilitate in situ studies of minerals that occur as fragile, transitory dehydration products in natural salt crusts. The use of spectral reflectance measurements in playa studies should aid in mapping evaporite mineral distributions and may provide insight into the geochemical and hydrological controls on playa mineral and brine development.

  16. Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection

    SciTech Connect

    Luo Hailu; Zhou Xinxing; Shu Weixing; Wen Shuangchun; Fan Dianyuan

    2011-10-15

    We theorize an enhanced and switchable spin Hall effect (SHE) of light near the Brewster angle on reflection and demonstrate it experimentally. The obtained spin-dependent splitting reaches 3200 nm near the Brewster angle, which is 50 times larger than the previously reported values in refraction. We find that the amplifying factor in weak measurement is not a constant, which is significantly different from that in refraction. As an analogy of SHE in an electronic system, a switchable spin accumulation in SHE of light is detected. We were able to switch the direction of the spin accumulations by slightly adjusting the incident angle.

  17. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    NASA Technical Reports Server (NTRS)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  18. Gallium antimonide texturing for enhanced light extraction from infrared optoelectronics devices

    NASA Astrophysics Data System (ADS)

    Wassweiler, Ella; Toor, Fatima

    2016-06-01

    The use of gallium antimonide (GaSb) is increasing, especially for optoelectronic devices in the infrared wavelengths. It has been demonstrated in gallium nitride (GaN) devices operating at ultraviolet (UV) wavelengths, that surface textures increase the overall device efficiency. In this work, we fabricated eight different surface textures in GaSb to be used in enhancing efficiency in infrared wavelength devices. Through chemical etching with hydrofluoric acid, hydrogen peroxide, and tartaric acid we characterize the types of surface textures formed and the removal rate of entire layers of GaSb. Through optimization of the etching recipes we lower the reflectivity from 35.7% to 1% at 4 μm wavelength for bare and textured GaSb, respectively. In addition, we simulate surface textures using ray optics in finite element method solver software to provide explanation of our experimental findings.

  19. Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene

    NASA Astrophysics Data System (ADS)

    Zhu, Peifen

    2016-02-01

    The light extraction efficiency of top-emitting organic light-emitting diodes (OLEDs) is numerically investigated employing the finite-difference time-domain method. The periodic nanostructures formed by embedding the sphere arrays in polystyrene (PS) are placed on top of OLED to frustrate the total internal reflection at the interface between OLED and free space. These nanostructures serve as an intermediate medium to extract the light out of OLED devices. Efficiently coupling both evanescent waves and propagation waves into spheres and subsequently extracting these light waves out of the sphere is key to achieving high extraction efficiency. By tuning the thickness of PS layer, both of the in-coupling efficiency and out-coupling efficiency are optimized for achieving high light extraction efficiency. Thicker PS layer results in higher in-coupling efficiency in sphere while the thinner PS layer leads to higher out-coupling efficiency. Thus the maximum light extraction is a trade-off between the in-coupling efficiency and out-coupling efficiency. The study shows that light extraction efficiency of 89% can be achieved by embedding 0.90 μm TiO2 sphere in 0.30 μm PS layer with optimized in-coupling efficiency, out-coupling efficiency and cavity effect.

  20. Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 - 2.55 microns) and its applications in carbonate petrology

    NASA Technical Reports Server (NTRS)

    Gaffey, S. J.

    1984-01-01

    Reflection spectroscopy in the visible and near infrared (0.35 to 2.55 micron) offers a rapid, inexpensive, nondestructive tool for determining the mineralogy and investigating the minor element chemistry of the hard-to-discriminate carbonate minerals, and can, in one step, provide information previously obtainable only by the combined application of two or more analytical techniques. When light interacts with a mineral certain wavelengths are preferentially absorbed. The number, positions, widths and relative intensities of these absorptions are diagnostic of the mineralogy and chemical composition of the sample. At least seven bands due to vibrations of the carbonate radical occur between 1.60 and 2.55 micron. Positions of these bands vary from one carbonae mineral to another and can be used for mineral identification. Cation mass is the primary factor controlling band position; cation radius plays a secondary role.